
Bachelor Thesis

Fynn Luca Maaß

End-to-End Deep Learning for Lane Keeping of
Self-Driving Cars with Focus on Robustness against

System Discrepancies Regarding the Steering

Fakultät Technik und Informatik
Department Informatik

Faculty of Computer Science and Engineering
Department Computer Science



Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung

im Studiengang Bachelor of Science Informatik Technischer Systeme

am Department Informatik

der Fakultät Technik und Informatik

der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Stephan Pareigis

Zweitgutachter: Prof. Dr. Peer Stelldinger

Eingereicht am: 11. Oktober 2021

Fynn Luca Maaß

End-to-End Deep Learning für die Spurhaltung von
selbstfahrenden Autos mit dem Fokus auf die

Robustheit gegenüber Systemdiskrepanzen in der
Lenkung



Fynn Luca Maaÿ

Title of Thesis

End-to-End Deep Learning for Lane Keeping of Self-Driving Cars with Focus on Robust-

ness against System Discrepancies Regarding the Steering

Keywords

Autonomous Driving, End-to-End, PilotNet, Deep Learning, Steering Discrepancies

Abstract

End-to-end approaches for autonomous driving gain popularity since NVIDIA demon-

strated its capabilities with their PilotNet architecture in 2016. Although many research

projects are subject to the �eld of end-to-end architecures, less e�ort is taken into the

issue that arises when a vehicle with di�erent physical properties uses an architecture

that it was not trained on speci�cally. This results in something that we refer to as

`system discrepancies' and can be understood as a sim-to-real problem. In this thesis

we implement and evaluate NVIDIA's popular PilotNet against a system discrepancy

which is an o�set in the steering. This architecture maps an input image of the front

facing camera to an absolute steering wheel angle. We use a custom data set includ-

ing images with minimal complexity in regard to image features that we generated in

the autonomous driving simulator CARLA. In the context of CARLA, we demonstrate

that a steering o�set negatively impact the driving performance and o�sets the vehicle's

position to an amount that is not acceptable in a real world scenario. We propose, im-

plement and evaluate a prototype architecture called PilotNet∆ (PilotNet Delta) that

has increased robustness against the steering o�set and leads to improved results when

comsidering the lateral o�set on the road. PilotNet∆ uses a convolutional LSTM layer

to map a sequence of images to a relative steering angle, which is the di�erence to the

prevoius steering prediction.
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Kurzzusammenfassung

End-to-End-Ansätze für das autonome Fahren gewinnen an Popularität, seit NVIDIA

2016 mit der PilotNet-Architektur deren Fähigkeiten demonstrierte. Obwohl sich viele

Forschungsprojekte mit End-to-End-Architekturen befassen, werden weniger Anstren-

gungen unternommen, um das Problem zu lösen, das entsteht, wenn ein Fahrzeug mit

unterschiedlichen physikalischen Eigenschaften eine Architektur verwendet, für die es

nicht speziell trainiert wurde. Dies führt zu etwas, das wir als �Systemdiskrepanzen� beze-

ichnen und als ein Sim-zu-Real-Problem verstanden werden kann. In dieser Arbeit im-

plementieren und evaluieren wir NVIDIAs PilotNet hinsichtlich einer Systemdiskrepanz,

die ein Versatz im Lenksignal ist. Diese Architektur bildet ein Eingangsbild der Fron-

tkamera auf einen absoluten Lenkradwinkel ab. Wir verwenden einen benutzerde�nierten

Datensatz mit Bildern mit minimaler Komplexität in Bezug auf Bildmerkmale, die wir

im autonomen Fahrsimulator CARLA generiert haben. Im Rahmen von CARLA zeigen

wir, dass sich ein Lenkungsversatz negativ auf die Fahrleistung auswirkt und die Position

des Fahrzeugs in einem Ausmaÿ verschiebt, das in einem realen Szenario nicht akzept-

abel ist. Wir schlagen eine Prototyp-Architektur mit dem Namen PilotNet∆ (PilotNet

Delta) vor, implementieren und bewerten sie. Diese Architektur ist robuster gegenüber

dem Lenkungsversatz und führt zu besseren Ergebnissen bei der Berücksichtigung des

seitlichen Versatzes auf der Straÿe. PilotNet∆ verwendet ein Convolutional LSTM Layer,

um eine Bildsequenz auf einen relativen Lenkwinkel abzubilden, der die Di�erenz zur

vorherigen Lenkvorhersage darstellt.

iv



Contents

List of Figures viii

List of Tables x

Acronyms xi

1 Introduction 1

1.1 Problem De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 What to Expect from this Thesis . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Structure of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 The Simulation Environment 6

2.1 Autonomous Driving Simulator: CARLA . . . . . . . . . . . . . . . . . . . 6

2.2 Custom Maps for CARLA with RoadRunner . . . . . . . . . . . . . . . . 6

2.2.1 Client - Server Interaction . . . . . . . . . . . . . . . . . . . . . . . 7

3 Training Pipeline 9

3.1 Data Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Data aligned with Target Trajectory . . . . . . . . . . . . . . . . . 10

3.1.2 Data not aligned with Target Trajectory . . . . . . . . . . . . . . . 11

3.2 Training Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Data Generator including Image Processing . . . . . . . . . . . . . 12

3.2.2 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Performance and Behavior Evaluation Methods . . . . . . . . . . . . . . . 13

3.3.1 Metric: Steering Output over Time . . . . . . . . . . . . . . . . . . 14

3.3.2 Metric: Deviation from Ground Truth Trajectory . . . . . . . . . . 14

4 Set a Baseline: Recreating NVIDIA's PilotNet 15

4.1 PilotNet Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

v



Contents

4.2 Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 Behavior and Performance Results . . . . . . . . . . . . . . . . . . . . . . 17

4.3.1 Performance without System Discrepancy . . . . . . . . . . . . . . 17

4.3.2 Performance with System Discrepancy . . . . . . . . . . . . . . . . 18

4.3.3 Generalization Capability of the Model . . . . . . . . . . . . . . . . 20

4.4 Conclusion on NVIDIA's PilotNet Results . . . . . . . . . . . . . . . . . . 21

5 Proposal: PilotNet∆ 23

5.1 PilotNet∆ Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1.1 Model Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3 Behavior and Performance Results . . . . . . . . . . . . . . . . . . . . . . 26

5.3.1 Performance without System Discrepancy . . . . . . . . . . . . . . 26

5.3.2 Performance with System Discrepancy . . . . . . . . . . . . . . . . 28

5.4 Conclusion on PilotNet∆ Results . . . . . . . . . . . . . . . . . . . . . . . 29

6 Discussion 30

6.1 The impact of Steering O�set on PilotNet and PilotNet∆ Contradicted . . 30

6.2 Di�erence between PilotNet and PilotNet∆ in regard to Data Distribution,

Data Quality and Error Susceptibility . . . . . . . . . . . . . . . . . . . . 31

6.2.1 Data Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.2.2 Data Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2.3 Error Susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.3 Crucial Design decisions contributing to Training success of PilotNet∆ . . 34

6.3.1 Distribution re-weighing in Loss Function . . . . . . . . . . . . . . 35

6.3.2 Using more Complex Training Data . . . . . . . . . . . . . . . . . 36

6.3.3 Hyperparameter Choice . . . . . . . . . . . . . . . . . . . . . . . . 37

6.4 General Ideas that did not Solve the Problem with the System Discrepancy 37

6.4.1 Extend Training Data by Images with di�erent Steering O�sets . . 38

6.4.2 Reinforcement Online Learning on the Steering O�set . . . . . . . 38

6.4.3 Low pass Filtering the Training Data . . . . . . . . . . . . . . . . . 38

6.4.4 Feed the Current Absolute Steering Angle into PilotNet∆ as addi-

tional Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 Conclusion 40

7.1 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

vi



Contents

Bibliography 42

Selbstständigkeitserklärung 45

vii



List of Figures

1.1 Illustration of a steering wheel o�set in regard to the front axle of a vehi-

cle. The top illustrates the relationship between steering angle and wheel

position as expected. The bottom illustrates a steering o�set. In this

particular case of -15 degrees (to the left) for illustration purposes. . . . . 3

2.1 Custom maps designed for evaluation and training purposes. . . . . . . . . 7

2.2 Client-Server Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Training pipeline consisting of 3 steps. . . . . . . . . . . . . . . . . . . . . 9

3.2 25 frames long excerpt of generated data ordered line-by-line showing the

vehicle's alignment to the target trajectory. . . . . . . . . . . . . . . . . . 10

3.3 25 frames long excerpt of generated data ordered line-by-line showing the

vehicle not being aligned with the target trajectory, but returns to alignment. 11

3.4 Example image with a resolution of 800x600x3 (width x height x channels)

from Data Set (left) - cropped and scaled image only containing relevant

parts of the image used for training with a resolution of 200x66x3 (right). 12

4.1 Histogram with bins of 0.25◦width showing the distribution of data aligned

with target trajectory. 6,055 Images - Mean: 0.008◦- Standard Deviation:

5.33◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Performance results for NVIDIA's PilotNet driving on the s-shaped eval-

uation map with no steering o�set. . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Performance results for NVIDIA's PilotNet driving on the s-shaped eval-

uation map with steering o�set. . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 Comparison between lateral position of the vehicle with and without a

steering o�set applied from the vehicle's perspective. . . . . . . . . . . . . 20

4.5 Results and experimental setup demonstrating the generalization capability. 21

viii



List of Figures

5.1 Histogram comparison between relative steering angles for the data set

containing data aligned with target trajectory to the data set containing

data not aligned with target trajectory. . . . . . . . . . . . . . . . . . . . . 25

5.2 Performance results for PilotNet∆ driving on the s-shaped evaluation map

without steering o�set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3 Performance results for PilotNet∆ driving on the s-shaped evaluation map

with steering o�set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.1 Ground truth steering signal on map 2 over time, generated by CARLA's

Tra�cManager. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.2 Histogram comparison between absolute steering angles and relative steer-

ing angles for the set of images. . . . . . . . . . . . . . . . . . . . . . . . . 34

ix



List of Tables

4.1 NVIDIA's PilotNet Architecture - 252,219 Parameters . . . . . . . . . . . 16

5.1 PilotNet∆ Architecture - 315,291 Parameters . . . . . . . . . . . . . . . . 24

6.1 MAE of PilotNet and PilotNet∆ during the evaluation process, driving

with and without an o�set. . . . . . . . . . . . . . . . . . . . . . . . . . . 30

x



Acronyms

CNN Convolutional Neural Network.

ELU Exponential Linear Unit.

FPM Frames per Meter.

FPS Frames per Second.

GPS Global Positioning System.

GPU Graphics Processing Unit.

IMU's Inertial Measurement Units.

LIDAR Light Detection and Ranging.

MSE Mean Squared Error.

PCA Principal component analysis.

PID Proportional Integral Derivative.

Radar Radio Detection and Ranging.

ReLU Recti�ed Linear Units.

RGB Red Green Blue.

ToF Time of Flight.

xi



1 Introduction

Over the past few years, interest in autonomous driving has increased signi�cantly in

academia and industry. This technology will continue to gain in importance in the

future and will prevail over conventional driving in the long term. There are various

architectures using di�erent sensors implementing di�erent degrees of autonomy in vehi-

cles. Sensors, such as cameras, Inertial Measurement Units (IMU's), Global Positioning

System (GPS), Time of Flight (ToF) sensors like Light Detection and Ranging (LIDAR)

or Radio Detection and Ranging (Radar). The processing of sensor signals typically takes

place in a pipeline, where di�erent sensor signals are accumulated, pre-processed and in-

terpreted to gain an understanding of the current driving scene. This begins with typical

data pre-processing, for instance low or high pass �ltering or inter- or extrapolating of

all kind of signals. Pre-processed data signals can be used independently or combined to

extract features from them using algorithms with varying degree of complexity. A Prin-

cipal component analysis (PCA) [1] can be used as an algorithmic approach to determine

and extract important features from high dimensional sensor signals. An alternative to

PCA is the more advanced autoencoder [1] for the same purpose. Clustering techniques

[2] can be used to classify features or segment objects, for example in a LIDAR point

cloud [3]. Highly complex neural networks can be used for bounding box estimation and

classi�cation of objects [4][5]. Those high-level features can be used further down the

pipeline in other algorithms for route planning in order to make control decisions for the

vehicle.

Pipelines for autonomous driving are very complex and consist of multiple components

and procedures with some of them described above. An alternative solution to those

complex pipelines are end-to-end architectures. They often require only minimal pre-

processing of the input data and combine many steps of a typical pipeline. Such an end-

to-end architecture, called PilotNet, was introduced by NVIDIA for autonomous steering

of a vehicle in 2016 [6], using a Convolutional Neural Network (CNN) architecture. This

architecture is able to drive successfully on a roadway with only 72 hours of data used
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1 Introduction

to train the model in a supervised manner from a single input image to a steering wheel

angle. In May 2017 NVIDIA released another paper `Explaining How End-to-End Deep

Learning Steers a Self-Driving Car' [7]. This publication analyzes PilotNet, which image

features are needed and their in�uence the steering output. Whenever PilotNet is men-

tioned in this work, it refers to the state of PilotNet from 2016 and 2017. The advantage

of PilotNet is its relatively small amount of parameters in the neural network with just

250,000 and a good performance for lane keeping at the same time.

NVIDIA's publications about end-to-end autonomous driving aroused interest in the re-

search community. Many other authors published di�erent papers related to the work of

NVIDIA and to end-to-end autonomous driving in general. [8] for instance, proposed a

Convolutional Long Short-Term Memory Recurrent Neural Network (C-LSTM) to learn

spacial as well as temporal dependencies of the input data. Furthermore, they also treat

the regression problem of estimating the correct steering output as a classi�cation prob-

lem. Others [9] use a 360 degree image input in combination with information of a route

planner rather than just a single front facing camera to train the network and improve

the driving performance. [10] presents an end-to-end architecture for driving via condi-

tional imitation learning. This addresses the problem that the vehicle in most end-to-end

approaches cannot be guided to take a speci�c turn.

In early 2021 NVIDIA published yet another paper `The NVIDIA PilotNet Experiments'

[11] concluding the work over the past couple of years and introducing a new, more

complex version of PilotNet with fundamental di�erences to the previous version. This

end-to-end architecture is not trained on steering angles as the older PilotNet, but on

a trajectory consisting of multiple points. This trajectory is then used in combination

with a feedback controller to steer the vehicle. The architecture is also capable of taking

speci�c turns rather than just following a roadway. However, the training data required

for this architecture is signi�cantly more complex. Due to the novelty, it will only play a

minor role in this thesis, but should nevertheless be mentioned for the sake of complete-

ness.

1.1 Problem De�nition

As described above, not only NVIDIA but other companies and research institutions

have put a lot of e�ort into the �eld of supervised machine learning for end-to-end

autonomous driving architectures. In a lot of cases, training data gathered is done on

the same vehicle as testing the trained model. As a result, certain peculiarities present

2



1 Introduction

in the system are learned as well. An easy example for this is the steering ratio, referring

to the ratio between the turn of the steering wheel and the turn of the wheels. In other

cases, training and evaluation of architectures are only done inside a simulation where

mechanical properties of a vehicle are disregarded to a certain degree. If an architecture is

now trained inside a simulation and tested in the real world, a problem referred to as the

sim-real gap problem [12] often becomes present. Similarly, a problem can occur when

training is done with a di�erent vehicle than testing due to the system discrepancies.

This thesis focuses on a speci�c system discrepancy regarding the steering, which will

Figure 1.1: Illustration of a steering wheel o�set in regard to the front axle of a vehicle.
The top illustrates the relationship between steering angle and wheel position
as expected. The bottom illustrates a steering o�set. In this particular case
of -15 degrees (to the left) for illustration purposes.

be referred to as steering o�set. Figure 1.1 illustrates the meaning of a steering o�set.

The top part of �gure 1.1 illustrates an expected steering behavior. This means the

wheels of the vehicle steer right when the steering wheel is turned right, the wheels are

straight when the steering wheel is straight and so on. The bottom part of �gure 1.1

illustrates the steering with an o�set. This means, in order to drive straight, the steering

wheel needs to rotate 15 degrees to the right in order to even out the o�set of -15 degrees

for this particular case. Such a discrepancy can be caused due to a falsely calibrated

or assembled steering wheel or due to failures in the mechanical hardware. In the case

of a miniature vehicle, it could be a falsely aligned servo motor or an asymmetry in a

3D-printed chassis.

3



1 Introduction

1.2 What to Expect from this Thesis

This thesis requires basic understanding of machine learning and addresses people al-

ready familiar with the basic concepts. In particular, the terms supervised learning, loss

function - especially mean squared error, regression, training/validation data as well as

principles of image pre-processing should be known. There are references to literature

throughout this thesis for more advanced concepts. At this point we would like to make

one more remark: Although all necessary information to recreate the experimental setup

and reproduce the results are given, unnecessary implementation details, especially in

regard to the integration of the simulation environment CARLA (chapter 2) and train-

ing pipeline (chapter 3) are omitted. The aim of this thesis is to introduce the reader to

the issue and possible e�ects of a steering o�set in regard to PilotNet. We will propose a

general idea in the form of a new architecture including some pitfalls to reduce the initial

problem.

1.3 Research Question

Starting from the problem of a steering o�set, this thesis will deal with three main

questions:

1. Chapter 4: How does an o�set in the steering a�ect NVIDIA's end-to-end PilotNet

architecture?

2. Chapter 5: How might an architecture be designed to gain robustness against this

discrepancy, and how does it behave?

3. Chapter 6: How do both architectures di�er in driving performance and training

e�ort?

1.4 Structure of this Thesis

Chapter 2 will focus on the simulation environment and will provide information neces-

sary to recreate the simulation setup which is the foundation of training and evaluation

of the architectures. Chapter 3 will introduce the reader to the training pipeline, which

includes general information about data gathering, data processing, model training and

4



1 Introduction

evaluation, which is relevant to PilotNet and the upcoming architecture in this thesis.

After these foundations have been clari�ed, chapter 4 gives a more detailed introduction

to NVIDIA's PilotNet and presents results on its performance. Insights into the behav-

ior of the trained model are used to develop another architecture. Chapter 5 proposes

the new architecture with results to its performance. Chapter 6 discusses the results

of both architectures and presents di�culties as well as advantages and disadvantages

of the proposed architecture. Finally, the main aspects of this thesis are concluded in

chapter 7.

5



2 The Simulation Environment

The development, training, and evaluation in this thesis is taking place inside a sim-

ulation. This chapter elaborates on details regarding the autonomous driving simula-

tor CARLA [13], how system discrepancies in the steering are modeled and how the

physical environment, meaning the maps used for training and evaluation purposes, are

designed.

2.1 Autonomous Driving Simulator: CARLA

CARLA is an open-source driving simulator, speci�cally designed to tackle a wide variety

of challenges in the autonomous driving space. Its capabilities consist in simulating and

rendering a realistic environment, particularly in regard to a good, physical accurate

world. CARLA features a large suit of sensors including depth- and Red Green Blue

(RGB) cameras, LIDAR and IMU's amongst other sensors. These sensors can be attached

to di�erent actors like a vehicle to perceive the environment. CARLA provides a Python

API to access and con�gure such actors, sensors and the virtual world. CARLA version

0.9.11 is used in this thesis in combination with Python 3.7.

2.2 Custom Maps for CARLA with RoadRunner

CARLA already features maps with high environmental detail and a variety of complex

tra�c scenarios including junctions. However, research on how certain image features

in�uence steering decisions was undertaken by NVIDIA and is thus not included in this

work. Therefore, we reduce the image complexity to simplify the experimental setup as

well as the training procedures to gain a better focus on the research questions. Since

NVIDIA's PilotNet is designed for lane keeping, no maps with junctions are bene�cial

for the experiment setup and the process of data generation.

6



2 The Simulation Environment

RoadRunner [14] is a tool for designing maps for CARLA that is used to create two

custom maps for the purpose of this thesis. Each map is a simple �at surface with a

two lane road on top. Map 1, illustrated in 2.1a, is used for data gathering, which is

described in 3.1. Map 2, illustrated in 2.1b, is a simple s-shaped road for the evaluation

purposes of trained models described in 3.3.

(a) Map 1 for data gathering - length: 1554 m (b) Map 2 for evaluation - length: 557 m

Figure 2.1: Custom maps designed for evaluation and training purposes.

2.2.1 Client - Server Interaction

CARLA is a client-server architecture. The server is responsible for rendering sensor

results, physics computations and updating the world-state. The client consists of cus-

tom modules that can be written to evaluate sensory data from the actors and apply

commands back to them.

Figure 2.2 gives an overview of how the client-server interaction in CARLA works. The

client is more of an interest, because inside of it sits our neural network architecture that

is interchangable. Therefore, parts of the client's implementation will change throughout

this thesis, depending on the neural network architecture that is embedded inside the

client. The general order of events will always be the same and is as follows:

1. The simulation is ticked by the client.

2. The simulation simulates the next 0.1 seconds (moving the vehicle, capturing image

etc.).

3. The image is received by the client, processed and fed into the neural network.

7



2 The Simulation Environment

4. The output of the neural network is manipulated with the steering o�set, depending

on the current test setup, by subtracting 7.5 degrees.

5. The �nal steering command is sent back to the vehicle in the simulation. The

simulation is ticked again by the client.

Figure 2.2: Client-Server Interaction

8



3 Training Pipeline

This section describes the implemented training pipeline as illustrated in �gure 3.1. The

training pipeline consists of three steps: The �rst step is the creation of the training

data and described in section 3.1. The second step is the training process described in

section 3.2, leading to a trained model that is evaluated in the last step in section 3.3.

The training pipeline is implemented in Python 3.7 and uses TensorFlow 2.3.1 for the

training procedure.

3. Evalua�on

2. Training

1. Data Crea�on

Data Generator

Data Gathering with 
TrafficManager

Image 
Processing

Batch 
Crea�on

Data Set 

Aligned

Data Set 

not Aligned

Trained 
Model

Model Training

Absolute Error from 
Ground Truth 

Evalua�on

Steering Output 
Evalua�on

Figure 3.1: Training pipeline consisting of 3 steps.
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3 Training Pipeline

3.1 Data Creation

As described in [6], data is generated in a real world with a human driver steering the

car, while capturing the front facing camera and labeling the images with the steering

angle. The process of data generation in this thesis is similar, yet automated and taking

place inside of the CARLA simulator. This has the bene�t of generating thousands of

images with minimal resources of time and manpower. Therefore, the human driver

is replaced with a software component from the simulation called Tra�cManager [15].

Tra�cManager is a software component capable of steering vehicles based on information

that are accessed from the simulation and fed into the Proportional Integral Derivative

(PID) [16] controller inside the Tra�cManager.

Training data is generated by the Tra�cManager steering the vehicle across map 1 as

introduced in section 2.2. We specify and operate the sample rate of the camera not in

Frames per Second (FPS), but instead in Frames per Meter (FPM), in order to achieve

independence from the vehicle velocity. Unfortunately, the sampling rate of cameras in

CARLA cannot be normalized to distance, consequently the Tra�cManager drives at a

constant speed of 5 meters per second, sampled at 10 FPS with the front facing camera,

resulting in 2 FPM.

A distinction is made regarding the complexity of data gathered by the Tra�cManager.

This results in two di�erent data sets, which are described below. Statistical measures

on the data sets are presented in sections 4.2, 5.2 of the upcoming architectures.

3.1.1 Data aligned with Target Trajectory

Figure 3.2: 25 frames long excerpt of generated data ordered line-by-line showing the
vehicle's alignment to the target trajectory.

10



3 Training Pipeline

The �rst and simpler kind of data covers only the scenario of the vehicle being perfectly

aligned with the target trajectory. Figure 3.3 illustrates an exemplary excerpt of this

kind of data with 25 consecutive frames ordered line-by-line with the corresponding label

in degrees to each frame overlaid in the aftermath. Negative numbers resemble steering

to the left, zero is the neutral angle and positive numbers resemble a steering to the

right. For orientation purposes, it is useful to look at the lane marking on the bottom

right of each image to estimate the lateral position of the vehicle. As can be seen, the

Tra�cManager steers a slight left turn in this particular sequence while maintaining its

lateral position on the road. The data set contains two large sequences of the vehicle

driving, once clockwise, and once counterclockwise on map 1.

3.1.2 Data not aligned with Target Trajectory

Figure 3.3: 25 frames long excerpt of generated data ordered line-by-line showing the
vehicle not being aligned with the target trajectory, but returns to alignment.

The second and more complex kind of data includes sequences where the vehicle is not

aligned with the target trajectory initially, but returns to alignment. Figure 3.3 illustrates

a 25 frames long excerpt of this kind of data. In the �rst frame in the top left, the lateral

o�set of the vehicle can be observed by looking at the lane marking in the bottom right

of the image. In order to recover from that position, the Tra�cManager steers an s-shape

back to the target trajectory. This begins with a right turn initially and merges into a

left turn in the end. The data set contains 120 of those sequences with di�erent initial

positions and lateral o�sets.
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3.2 Training Procedure

The training procedure includes loading and pre-processing of the data, the actual train-

ing and the export of the trained model.

3.2.1 Data Generator including Image Processing

The illustrated data generator in �gure 3.1 is responsible for creating training batches

from the data sets and feeding them into a neural network. Depending on the neural

network architecture, di�erent generators are used. Every data generator uses the same

steps for pre-processing, which includes cropping and scaling the images to the target

resolution of 200x66x3 (width x height x channels) pixels, as well as converting the color

space from RGB to YUV [17] to match the procedure proposed by NVIDIA. Image stan-

dardization is done inside the model, so it can be accelerated by the Graphics Processing

Unit (GPU). Graphic 3.4 illustrates the original image captured and stored in the data

set versus the processed (cropped and rescaled) image used during training.

Figure 3.4: Example image with a resolution of 800x600x3 (width x height x channels)
from Data Set (left) - cropped and scaled image only containing relevant parts
of the image used for training with a resolution of 200x66x3 (right).

From a technical standpoint, the data sets are loaded into the main memory, where they

are processed. The processed data sets are then accessed by the data generator to create

batches in the training procedure. Accessing already processed data in the main memory

accelerates the training process tremendously.
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3 Training Pipeline

3.2.2 Model Training

Regardless of the di�erent network architecture proposed in this work, training is always

in a supervised manner treated as a regression problem. During the training, the training

loss and validation loss is logged and displayed in Tensorboard. The model is saved in

regular intervals. This allows to evaluate the model's performance at di�erent points in

time during the training process and encounters possible over�tting issues. Details on

training hyperparameters such as batch size is provided in the corresponding sections

of the model architectures. There is no test data set in the classical sense to rate each

model's performance, which is described in the following section.

3.3 Performance and Behavior Evaluation Methods

There are no standard metrics for verifying model performance. Many publications use a

test data set and take the Mean Squared Error (MSE) as a performance metric. Others

use measures that describe the number of interventions in the steering in regard to the

distance. Again others also consider ride comfort, for example, in terms of acceleration

of the vehicle.

A frame by frame analysis expressed with the MSE of the model prediction is less useful.

While the MSE is an indicator of training progress, the model has to actually drive to

show how subsequent predictions of the model a�ect the performance. The evaluation of

the model performance and behavior is directly compared to CARLA's Tra�cManager

in a driving test. We chose this method, because every model in this thesis is trained on

the policy set by the Tra�cManager and trying to imitate its behavior. The evaluation

takes place on the s-shaped map 2 introduced in chapter 2.2. Although this map is not

particularly challenging, it is well suited to demonstrate basic capabilities of the model

and the in�uence of the steering o�set on the model.

The Tra�cManager navigates through the course on map 2 in order to create a baseline

that every trained model can be compared to. While driving, the position of the vehicle

and the steering angle are logged at every simulation tick. This creates a series of

positions that are then calculated into a ground truth trajectory. Whenever a model is

evaluated, it drives on the evaluation map and will log its position and steering output.

Every model is evaluated twice: First, with no steering o�set applied. Second, with the
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steering o�set applied. The following two sections introduce one metric each, which are

used to quantify the models performance based on the logs.

3.3.1 Metric: Steering Output over Time

The �rst metric takes the steering output over time into regard. The model drives

across the s-shaped evaluation map and the steering output is visually compared to

the steering output of the Tra�cManager. This comparison should give information

about �uctuations in the steering signal and certain similarities in the steering behavior

compared to the Tra�cManager.

3.3.2 Metric: Deviation from Ground Truth Trajectory

The second metric will be the absolute distance from the model's position to the ground

truth trajectory over time, when driving on the evaluation map. This gives information

on how the current position deviates from the optimal position and under which circum-

stances this in- or decreases. �Wiggles� of the vehicle position can be observed using

this method. Based on this metric, the Mean Absolute Error (MAE) in position can be

calculated and will be used to quantify the model performance as well.
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4 Set a Baseline: Recreating NVIDIA's

PilotNet

This chapter introduces an implementation of NVIDIA's PilotNet architecture, which is

integrated into the simulation environment from chapter 2 and uses the training pipeline

described in chapter 3.

This chapter has the purpose of evaluating PilotNet in regard to a system discrepancy in

the form of a steering o�set in order to see, how it impacts the behavior of the vehicle.

Section 4.1 introduces the neural network architecture. Section 4.2 gives details on the

training process, including important hyperparameters and an overview of the training

data with statistical measures. Section 4.3 presents the results based on the metrics from

section 3.3 of the trained model with and without the steering o�set.

4.1 PilotNet Architecture

Table 4.1 illustrates the CNN architecture of PilotNet with minimal changes to the orig-

inal architecture. The input layer takes images with a resolution of 66x200x3 pixels

(height x width x channels) encoded in the YUV color space. A standardization layer

performs normal image standardization of the input and is not adjusted in the training

process. Standardizing images in the network itself has the bene�t of being GPU accel-

erated. Following that are �ve convolutional layers for feature extraction, the �rst three

convolutional layers with a 5x5 kernel and a 2x2 stride, the last two convolutional layers

with a 3x3 kernel and no stride. After the convolutional layers are 3 fully connected

layers with decreasing size, leading to the �nal output layer, returning the steering angle.

Compared to the original architecture from NVIDIA, this neural network uses Exponen-

tial Linear Unit (ELU) instead of Recti�ed Linear Units (ReLU) as activation functions

for its layers and also contains two dropout layers. These minor changes are suggested

by [18]. The architecture has roughly 250,000 parameters.
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4 Set a Baseline: Recreating NVIDIA's PilotNet

Layer Type Stride Activation Output Shape Params

Input - - 66x200x3 -
Standardization - - 66x200x3 -

Conv2D 5x5 2x2 ELU 24@31x98 1,824
Conv2D 5x5 2x2 ELU 36@14x47 21,636
Conv2D 5x5 2x2 ELU 48@5x22 43,248

Conv2D 3x3 1x1 ELU 64@3x20 27,712
Dropout 0.2 - - 64@3x20 -
Conv2D 3x3 1x1 ELU 64@1x18 36,928

Flatten - - 1,152 -
Dropout 0.2 - - 1,152 -

Dense - ELU 100 115,300
Dense - ELU 50 5,050
Dense - ELU 10 510
Output - - 1 11

252,219

Table 4.1: NVIDIA's PilotNet Architecture - 252,219 Parameters

4.2 Training Details

The neural network is trained on single images labeled with the corresponding steering

angle in degrees in a supervised fashion. Since the steering angles are continuous, the

training is treated as a regression problem using the MSE as the loss function. The data

used for training and validation is illustrated in a histogram in �gure 4.1. This data

is generated with the process described in section 3.1.1 and only contains data, that is

aligned with the target trajectory. The data is split in 75% for training and 25% for

validation.

Figure 4.1 illustrates that the data set is imbalanced. The most data is present around

zero degree (neutral angle) with more than 500 collected images. The mean of the data

is nearly zero degree and the standard deviation is 5.34 degrees. The data set includes

6,055 images in total.

The batch size is relatively large with 100 for a good representation of the distribution

inside the batch.
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4 Set a Baseline: Recreating NVIDIA's PilotNet

Figure 4.1: Histogram with bins of 0.25◦width showing the distribution of data aligned
with target trajectory. 6,055 Images - Mean: 0.008◦- Standard Deviation:
5.33◦

4.3 Behavior and Performance Results

In the course of training, the loss is converging to low level within a couple of minutes with

no over�tting issues. The model from the end of the training process is now evaluated

in this section based on the metrics described in 3.3 driving s-shaped map 2 introduced

in section 2.2.

4.3.1 Performance without System Discrepancy

Figure 4.2a illustrates the ground truth steering signal over time (blue) compared to

PilotNet's prediction (red). Figure 4.2b illustrates the deviation in position compared to

the ground truth trajectory from PilotNet while driving.

In general, the driving performance of the model is very good. At the beginning between

time step 0 and 100 some noticeable �uctuation of the model prediction can be observed.

This temporary �uctuation results in a constant lateral displacement of the vehicle of

about 0.15 m as illustrated in �gure 4.2b. When reaching the right turn at time step 350

a slight overshoot in the ground truth as well as in the prediction can be seen. During

the right turn, the absolute error in positioning is around 0.05 m. After the right turn
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(a) Steering signal over time for PilotNet com-
pared to the ground truth steering signal.

(b) Absolute distance from ground truth trajec-
tory over time for PilotNet.

Figure 4.2: Performance results for NVIDIA's PilotNet driving on the s-shaped evalua-
tion map with no steering o�set.

at time step 500 some overshoot of the ground truth can be observed. The overshoot of

the model is less aggressive at this point. On the straight segment between time step

500 and 650 the absolute error in positioning is between 0.25 m and 0.30 m and thus

the highest error in positioning measured. Time step 650 marks the beginning of the left

turn with some overshoot of the model and no overshoot of the ground truth. During the

left turn the absolute error in positioning is again low with under 5 cm. After the left

turn at time step 800 some overshoot of the model and the ground truth is once again

noticeable.

The mean absolute error during this test is 0.11 m with a maximum deviation from the

ground truth of 0.29 m.

4.3.2 Performance with System Discrepancy

Before analyzing the graphs illustrating the performance of the model, an important

distinction must be made in regard to the model output. Figure 2.2 from section 2.2.1

illustrated the client-server interaction. When looking at the driving logic inside the

client, the steering signal can be either observed right after the neural network, or after

the o�set is applied. The output of the model after the o�set is the signal that is sent

as the steering command to the vehicle in the simulation and will be looked at in the

following graphs.
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4 Set a Baseline: Recreating NVIDIA's PilotNet

The following �gure 4.3 illustrates the results of the evaluation process described in 3.3.

This steering o�set is -7.5 degrees. Figure 4.3a illustrates the ground truth steering signal

over time (blue) compared to the model's prediction after the o�set (red). Figure 4.3b

shows the deviation in position compared to the ground truth trajectory the model has

while driving with the o�set (red) compared to the result from the previous �gure 4.2b,

driving with no o�set applied (blue).

(a) Steering signal over time for PilotNet com-
pared to the ground truth steering signal.

(b) Absolute distance from ground truth trajec-
tory over time for PilotNet driving with o�-
set compared to the absolute distance driv-
ing without an o�set.

Figure 4.3: Performance results for NVIDIA's PilotNet driving on the s-shaped evalua-
tion map with steering o�set.

Generally, the model is able to drive on track successfully from start to end. At time

step 0 the model's prediction after the o�set is -7.5 degrees, which corresponds to the

o�set. As the vehicle begins to move, it turns to the left, increasing the absolute error in

positioning seen in the right graph. Due to the di�erent lateral position of the vehicle,

the model output increases to counteract the incorrect position. Between time step 50

and time step 200 notable �uctuations are observable, caused by the overshoot of the

model counteracting the o�set. After time step 200, the vehicle is in a stable position

approximately shifted 1 m to the left. At this position the model's prediction after

the o�set is 0 degrees, which means the prediction of the model before the o�set is 7.5

degrees and thus perfectly counteracting the o�set. When entering the �rst right turn

at time step 350, the model output changes accordingly, but contains some noise during

the right turn. The lateral deviation in position decreases during the curve to 0.65 m

and is constant throughout and not a�ected by the noise in the steering signal. When

leaving the curve at time step 450, the error in position increases again to 1.4 m showing
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the highest deviation in lateral position, the noise in the steering signal remains the

same. Entering the left turn at time step 650, the error in lateral position decreases over

time. At this point in time, whilst the noise in the steering signal becomes less frequent.

Leaving the curve at time step 800 brings the error in lateral position back down to 1 m

and the steering signal to a stable level.

The mean absolute error in positioning is 0.98 m with a maximum deviation from the

ground truth of 1.46 m and is signi�cantly higher than without an o�set.

Figure 4.4 illustrates how an error in positioning of 1 m looks like from the vehicle's

perspective. Image 4.4a shows the car driving on a straight segment with an o�set of

-7.5 degrees and being left-shifted of about 1 m. Figure 4.4b illustrates the vehicle driving

with no o�set on the straight segment and only being left-shifted of about 0.14 m.

(a) Vehicle driving with steering o�set of -7.5
degrees being left-shifted of about 1 m.

(b) Vehicle driving with no steering o�set being
left-shifted only by 0.14 m.

Figure 4.4: Comparison between lateral position of the vehicle with and without a steer-
ing o�set applied from the vehicle's perspective.

4.3.3 Generalization Capability of the Model

Considering the conducted experiment in 4.3.2, an analysis of the model's prediction

behavior dependend on the distance deviating from the ground truth could be interesting.

Since the training data does not include scenarios where the vehicle deviates from the

center of the right lane, this experiment demonstrates the generalization capabilities of

the model.

Figure 4.5b illsutrates the experimental setup and �gure �gure 4.5a illustrates the re-

sult. The experiment is started with the vehicle being aligned with the target trajectory

(green area). Now the vehicle is shifted to the left, increasing the lateral deviation from

the ground truth trajectory (distance in red). The result, which is the model output
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depending on the distance deviating from the ground truth trajectory, is illustrated in

graph 4.5a. The graph shows that the model output is steadily rising until the �rst meter

is reached. After that, the model prediction gets increasingly unstable with �uctuations

of up to 3 degrees until it eventually begins to fall at around 3 meters. This graph con-

�rms the measurements taken in section 4.3.2 in regard to the absolute steering error of

approximately 1 m caused by a steering o�set of -7.5 degrees. Moreover, the graph can

be used to roughly determine the lateral deviation in position of the vehicle caused by a

certain o�set in the steering. For instance, an o�set of -2 degrees would cause a deviation

of 0.5 m in the lateral position.

(a) Model prediction across di�erent lateral po-
sitions.

(b) Illustration of the vehicle being left-shifted
on the road.

Figure 4.5: Results and experimental setup demonstrating the generalization capability.

4.4 Conclusion on NVIDIA's PilotNet Results

The training and evaluation of NVIDIA's PilotNet in the context of this simulation

demonstrates the capabilities of the architecture. The results from section 4.3.1 show

that the model has very good performance on the road with minimal deviation from the

ground truth trajectory. This is accomplished with training on data, where the vehicle is

exclusively aligned with the target trajectory. The results from section 4.3.2 demonstrate

the in�uence of the steering o�set applied to the model's output. It shows that such an

o�set causes the vehicle to depart from the center of the lane. An o�set of -7.5 degrees

(left) causes a left-shift of the vehicle of about 1 m on a straight road segment. The

vehicle is able to drive with the lateral displacement on the road from start to �nish. In

this context, it is shown in section 4.3.3 that the model is able to generalize in scenarios

21



4 Set a Baseline: Recreating NVIDIA's PilotNet

that are not covered in the training data.

Related to the experimental setup build for this thesis, the results demonstrate the basic

functionality of the data gathering, model training and evaluation processes embedded

in the CARLA simulator.
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We propose a new architecture called PilotNet∆ (PilotNet Delta) with increased ro-

bustness against di�erent steering o�sets, characterized by a lower mean absolute error

in positioning compared to the original PilotNet from chapter 4, when driving with an

o�set.

This chapter implements the new architecture which is integrated into the simulation

environment from chapter 2 and uses the training pipeline described in chapter 3. This

chapter presents changes in the architecture and evaluates PilotNet∆ in regard to the

performance driving with and without a steering o�set.

Section 5.1 introduces the neural network architecture. Section 5.2 gives details on the

training process, including important hyperparameters and an overview of the training

data with statistical measures. Section 5.3 presents the results based on the metrics from

section 3.3 of the trained model with and without the steering o�set.

5.1 PilotNet∆ Architecture

Table 5.1 illustrates the new CNN architecture of PilotNet∆ with some changes to the

original PilotNet. The input layer takes a sequence of 3 images with a resolution of 66 by

200 by 3 pixels (sequence x height x width x channels) each, encoded in the YUV color

space. Each image is spatially 0.5 m apart from the next one. A standardization layer

performs normal image standardization and is not adjusted in the training process. Fol-

lowing that is a convolutional LSTM [19] layer with a 5x5 kernel and a 2x2 stride. This

layer takes an input sequence and returns one set of feature maps per sequence. After

that four more convolutional layers follow for feature extraction, the �rst two convolu-

tional layers with a 5x5 kernel and a 2x2 stride as well, the last two convolutional layers

with a 3x3 kernel and no stride. After the convolutional layers are 3 fully connected

layers with decreasing size, leading to the �nal output layer. Compared to the original
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architecture from NVIDIA, this neural network uses ELU as activation function as well

for its layers and contains 4 dropout layers throughout the model. The architecture has

roughly 315,000 parameters.

Layer Type Stride Activation Output Shape Params

Input Sequence - - 3x66x200x3 -
Standardization - - 3x66x200x3 -

ConvLSTM2D 5x5 2x2 ELU 24@31x98 64,896
Dropout 0.2 - - 24@31x98 -
Conv2D 5x5 2x2 ELU 36@14x47 21,636
Conv2D 5x5 2x2 ELU 48@5x22 43,248

Conv2D 3x3 1x1 ELU 64@3x20 27,712
Dropout 0.2 - - 64@3x20 -
Conv2D 3x3 1x1 ELU 64@1x18 36,928

Flatten - - 1,152 -
Dropout 0.2 - - 1,152 -

Dense - ELU 100 115,300
Dense - ELU 50 5,050

Dropout 0.2 - - 50 -
Dense - ELU 10 510
Output - - 1 11

315,291

Table 5.1: PilotNet∆ Architecture - 315,291 Parameters

5.1.1 Model Output

The original PilotNet as described in chapter 4 trains on single images at a time (imaget0)

labeled with the corresponding absolute steering angle (αt0), creating the following map-

ping:

imaget0 7→ αt0 (5.1)

The new PilotNet∆ has a di�erent approach. The architecture takes the last three frames

at a time imaget0, imaget−1, imaget−2 labeled with the amount the angle (αt0) has to

change compared to the previous angle (αt−1), referred to as relative angle, creating the

following mapping:

imaget0 + imaget−1 + imaget−2 7→ αt0 − αt−1 (5.2)
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Since the architecture uses the di�erence (delta) of two values as an output, it is referred

as PilotNet∆. When using the neural network, the output over time is added to the

absolute steering angle used as the steering command for the simulator.

5.2 Training Details

Training the network continues to be a regression problem. We use a custom implemented

loss function as variation of the MSE, which is illustrated below. ypred is the predicted

steering angle of the model, ytrue is the ground truth steering angle:

1

n

n∑
t=1

(ypred − ytrue)
2 ∗ (|ytrue|+ 0.1) (5.3)

The costs-sensitive loss function is a proposed solution for a problem resulting from the

training data distribution for this architecture. This loss function is discussed in detail

in section 6.3.1.

The following training data is used and distinguished in two groups:

(a) Histogram with bins of 0.25◦width showing
the distribution for relative angles of data
aligned with target trajectory. 6,054 Im-
ages - Mean: -0.0001◦- Standard Deviation:
0.84◦

(b) Histogram with bins of 0.25 degree width
showing the distribution for relative angles
of not aligned with target trajectory. 5,920
Images - Mean: 0.0004◦- Standard Devia-
tion: 04.16◦

Figure 5.1: Histogram comparison between relative steering angles for the data set con-
taining data aligned with target trajectory to the data set containing data
not aligned with target trajectory.

25



5 Proposal: PilotNet∆

The �rst data set is illustrated in a histogram in �gure 5.1a. This data set was generated

with the process described in section 3.1.1 and only contains data, that is aligned with

the target trajectory. In fact, the data illustrated in �gure 5.1a is the same as the data

from section 4.2 used for training the original PilotNet, but now in respect to the relative

angles rather than the absolute angles. The data has a mean of nearly 0 and a standard

deviation of 0.84 degrees. The vast majority of the data is around 0 degree contributing

to a highly imbalanced distribution, with nearly no data deviation more than 5 degrees

around the mean.

The second data set is illustrated in �gure 5.1b. This data set was generated by the

process described in section 3.1.2 and contains data that is not always aligned with the

target trajectory. The data has a mean of nearly 0 and a standard deviation of 4.16,

which is signi�cantly higher than the data in 5.1a. The second data set also includes

data deviating more than 5 degrees from the mean. The batch size is 200 for a good

representation of the distribution inside the batch.

5.3 Behavior and Performance Results

Training PilotNet∆ took signi�cantly longer and issues with over�tting were observed.

Multiple models from the training process were examined. The results of the best per-

forming model are presented in regard to the metrics described in 3.3, driving s-shaped

map 2 introduced in section 2.2.

5.3.1 Performance without System Discrepancy

Figure 5.2 illustrates the results for PilotNet∆ driving with no o�set. Figure 5.2a il-

lustrates the ground truth steering signal over time (blue) compared to the integrated

prediction of the model (red). Note that the model predicts relative angles, therefore

this output is integrated over time resulting in the absolute steering angle that is used to

steer the car. Figure 5.2b illustrates the deviation in position compared to the ground

truth trajectory the model has while driving.

Overall, the performance of the model is good enough to drive the full course from

start to �nish. The right graph shows strong oscillations of the steering signal at the

beginning of time step 0 with amplitudes of nearly 3 degrees. At time step 200 the

oscillations decreased to a high frequent noise that is present throughout the experiment.
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(a) Steering signal over time for PilotNet∆
compared to the ground truth steering sig-
nal.

(b) Absolute distance from ground truth trajec-
tory over time for PilotNet∆ driving with
o�set compared to the absolute distance
driving without an o�set.

Figure 5.2: Performance results for PilotNet∆ driving on the s-shaped evaluation map
without steering o�set.

Interestingly, the lateral displacement seen in graph 5.2b is 0.55 m, even though no

steering wheel o�set is applied. When entering the �rst right turn at time step 300, the

lateral displacement falls from 0.55 m to 0 m and then rises again to 0.2 m. At this point,

the vehicle transitioned from the left side to the right side relative to the ground truth

trajectory. The steering signal is around 5 degrees while driving through the curve. At

time step 480 the vehicle transitions from the right side of the ground truth trajectory

back to the left when leaving the curve, crossing it once again. At this point, the noise

in the steering signal increases with amplitudes of ±1 degrees, but with a relatively low

frequency. Within 15 seconds between time step 450 and 600, the steering signal shows

oscillation in �ve cycles, leading to a frequency of 0.33Hz. This oscillation of the steering

signal has an e�ect on the lateral position. As observed in the graph 5.2b, the distance

from the ground truth trajectory varies with distances in smaller than 0.1 m. Entering

the left turn at time step 650, the steering signal changes to slightly less than -4 degrees.

However, the lateral position increases in the course of the curve to up to 1.2 m, which

is the highest value measured. Leaving the left turn at time step 800, the error in lateral

position falls back to 0.4 m and seems to level o� round 0.5 m. The steering signal

remains noisy around zero degrees. The mean absolute error in positioning is 0.55 m

with a maximum deviation from the ground truth of 1.18 m.
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5.3.2 Performance with System Discrepancy

(a) Steering signal over time for PilotNet∆
compared to the ground truth steering sig-
nal.

(b) Absolute distance from ground truth trajec-
tory over time for PilotNet∆ compared to
the ground truth trajectory.

Figure 5.3: Performance results for PilotNet∆ driving on the s-shaped evaluation map
with steering o�set.

The following �gure 5.3 illustrates the results of driving with the steering o�set of -7.5

degrees. We di�erentiate again between the model output before the o�set and the model

output after the o�set.

Figure 5.3a illustrates the ground truth steering signal over time (blue) compared to the

integrated prediction of the model after the o�set (red). Figure 5.3b shows the deviation

in position from the ground truth trajectory of the model while driving with an o�set

(red) compared to the result from the previous �gure 5.2b, driving with no o�set applied

(blue).

As seen in �gure 5.3b, the lateral positions are nearly identical between driving with

an o�set and driving without an o�set. The only di�erence is in the beginning phase

between time step 0 and time step 100. The model output in �gure 5.3a starts with a

steering angle of nearly 8 degrees, mainly due to the o�set. This causes the vehicle to

drive left, which increases the lateral deviation from the ground truth trajectory. The

model quickly counteracted this within the �rst 7 seconds. A bit of overshoot in the

lateral deviation is measurable. The remaining behavior after time step 100 is identical

to the observations in section 5.3.1. The mean absolute error in positioning is 0.57 m

with a maximum deviation from the ground truth of 1.19 m.
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5.4 Conclusion on PilotNet∆ Results

The proposed PilotNet∆ architecture is signi�cantly harder to train. With some changes

to the training process, including loss function, a larger data set and batch size, the

trained model was able to achieve moderate to good results when simply driving on

the road. When driving with the steering o�set, the results are nearly the same as

diving without an o�set. The moderate performance is characterized by the lateral

displacement of 0.57 m of the vehicle when simply driving on the road in combination

with the �uctuations present in the steering. In general, the model is quite sensitive to

the input data but successfully driving from start to end.
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6 Discussion

This chapter compares the results of the two architectures examined (see section 6.1).

In particular, it discusses the di�culties PilotNet∆ faces due to data quality and error-

proneness (see section 6.2). In addition, necessary design decisions, including loss func-

tion and LSTM Layer, for PilotNet∆ are explained (see section 6.3), as well as design

ideas that have proven to be non-functional (see section 6.4).

6.1 The impact of Steering O�set on PilotNet and

PilotNet∆ Contradicted

The following table 6.1 concludes the driving performance described in chapter 4 for

PilotNet and chapter 5 for PilotNet∆ in regard to the mean absolute error of the vehicle

position with and without the steering o�set.

Architecture MAE Max Error MAE with O�set Max Error with O�set

NVIDIA's PilotNet 0.11 m 0.29 m 0.98 m 1.46 m

PilotNet∆ 0.55 m 1.18 m 0.57 m 1.19 m

Table 6.1: MAE of PilotNet and PilotNet∆ during the evaluation process, driving with
and without an o�set.

The results on the PilotNet architecture demonstrate the architecture's capability, when

driving under normal conditions, meaning without the steering o�set. The deviation from

the ground truth trajectory measured with the MAE of the lateral position on the road

is only 0.11 meter, which is half the width of a typical car tire. When the steering o�set

is engaged, the results show that the architecture is not able to handle the problem well.

As a result, the vehicles is shifted in average 1 meter to the left, when the steering o�set

is -7.5 degree. This is a misconduct, that is not acceptable in the real world, assuming a

car width of 2 meters and the typical width of a German �Landesstraÿe� (equivalent to
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U.S. State Routes) of 3 meters. It is even worse when considering a maximum deviation

of nearly 1.5 meters.

Among the �ndings of the PilotNet∆ architecture is that the MAE is 0.55 meters when

driving under normal conditions. This is an interesting result because the vehicle tends

to measurably be shifted to the left even though an o�set is not applied. In the context

of a real-world scenario, this must be evaluated critically. Moreover, it was measured

in section 5.3.1 that the steering output contains noise throughout the experiment but

was not a�ecting the vehicle's position due to the inertia of the vehicle steering. Besides

the noise however, it was the case that the steering oscillated at some point with a

frequency of 0.33Hz leading to an oscillation in the position of the vehicle. Using the

measurements taken, it can be stated that the driving performance of the vehicle under

normal conditions is better with the PilotNet architecture proposed by NVIDIA.

The most signi�cant �ndings are in the measurements of PilotNet∆ driving with the

steering o�set. Regarding the MAE of the lateral position on the road, PilotNet∆ shows a

lower MAE than PilotNet. Futhermore, the MAE is nearly una�ected between PilotNet∆

driving with an o�set and driving without an o�set. This demonstrates, that PilotNet∆

itself has a robustness against the steering o�set, characterized by the fact that the

general performance is nearly una�ected by the system discrepancy. PilotNet∆ has a

clear advantage in this regard.

6.2 Di�erence between PilotNet and PilotNet∆ in regard to

Data Distribution, Data Quality and Error

Susceptibility

PilotNet and PilotNet∆ follow two di�erent principles, steering the vehicle. PilotNet

uses absolute angles and answers the question: `What is the ideal position of the steering

wheel?'. However, PilotNet∆ uses relative angles that are added up to an absolute

steering angle and answers the question: `How to change the steering wheel position?'.

In mathematical terms, the relative angle is the di�erence quotient between two absolute

steering angles.

Figure 6.1 exempli�es the relationship between relative- and absolute steering angles on

the ground truth steering signal that was also used during the evaluation experiments

described in section 3.3. These ground truths were not used for training. The left
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(a) Ground truths (absolute steering angles)
over time.

(b) Ground truths (relative steering angles)
over time derived from the absolute steer-
ing angles.

Figure 6.1: Ground truth steering signal on map 2 over time, generated by CARLA's
Tra�cManager.

�gure 6.1a illustrates the absolute steering angle signal generated by the Tra�cManager

driving on the s-shaped evaluation map. The �gure 6.1b on the right illustrates the

relative steering angle, which is the numerical di�erentiation of the steering signal from

the left graph. Alongside these graphs, we can make a statement on the data quality,

data distribution and the principles of steering a vehicle with relative angles.

6.2.1 Data Quality

The data quality for training PilotNet is none of a concern, as the results for driving

under normal conditions show. However, data generated by the Tra�cManager includes

features that are suboptimal. One of those features is the small overshoot every time

when leaving or entering a curve. This can be seen in the right graph in �gure 6.1a at

time steps 320, 500, 680 and 880. This is a standard phenomenon in control theory[20]

and caused by the underlying PID controller in the Tra�cManager. PilotNet learns this

behavior, but is less of a concern due to the subtlety.

Another concern is noise (seen as a thicker blue line in the same graph) in the steering

signal during the left and right turns between time step 300 to 450 and 680 to 820.
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Figure 6.1b illustrates the derived relative angles. Where there was relatively low noise

between time step 300 to 450 and 680 to 820 for the absolute steering angles, this noise

is signi�cantly increased for the relative steering angles. Even a small outlier in the

absolute steering signal at time step 360 causes a huge spike in the steering signal for

relative angles. The general circumstance that relative steering angles are very sensitive

to noise is unfavorable because noise leads to contrary data.

Even though the sequence of the Tra�cManager driving on the s-shaped evaluation track

is not part of the training data, the observations made here do apply to the training data

in general.

Further considerations of advanced �lter- or di�erentiation methods to improve the data

quality might be useful. Low pass �ltering the data with a simple rectangular �lter led to

no training success. Apart from that, it must be considered if the bene�t of automatized

generation of data with the Tra�cManager outweighs the time and e�ort it takes to

manually steer the vehicle by hand, if this would lead to a better data quality.

6.2.2 Data Distribution

Figure 6.1b also gives an idea, how the output of PilotNet∆ must behave in order to

drive throughout a curve. When entering the �rst right turn at time step 300, the

model output spikes for a couple of time steps, meaning the steering wheel rotates to

the right. When leaving the curve, the model prediction must spike again, in order to

turn the steering wheel back to the initial position. The principle of steering the vehicle

with relative angles leads to a highly imbalanced data distribution. Steering angles, who

deviate from zero degrees, occur less frequently. If they occur, however, they tend to

be smaller, which is unfavorable. To clarify this, the following �gure 6.2 contradicts the

data set with absolute angles for PilotNet to the dataset containing the same images but

with relative angles for PilotNet∆.

The side by side comparison illustrates the negative in�uence of relative angles on the data

distribution. Figure 6.2a illustrates the data distribution for absolute steering angles,

�gure 6.2a illustrate the data distribution for relative steering angles. The di�erences

already mentioned are clearly recognizable. As a consequence, the training process with

relative angles is more di�cult, because the respective data that leads to a signi�cant

change in the steering is very rare.
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(a) Histogram with bins of 0.25◦width showing
the distribution for relative angles of data
aligned with target trajectory. 6,054 Im-
ages - Mean: -0.0001◦- Standard Deviation:
0.84◦

(b) Histogram with bins of 0.25◦width showing
the distribution for absolute angles of data
aligned with target trajectory. 6,055 Images
- Mean: 0.008◦- Standard Deviation:5.34◦

Figure 6.2: Histogram comparison between absolute steering angles and relative steering
angles for the set of images.

6.2.3 Error Susceptibility

From a theoretical standpoint, PilotNet∆ is more error-prone than PilotNet. The reason

for this is that in case of PilotNet∆, an incorrect prediction consequently changes the

steering wheel position permanently. Thus, a wrong prediction is integrated over time,

which leads to a deviation from the target trajectory. To achieve a similar e�ect in case

of PilotNet, the neural network would not only have to make a false output once, but

instead multiple times in a row.

6.3 Crucial Design decisions contributing to Training

success of PilotNet∆

In the introductory chapter 5 to PilotNet∆, the architecture was presented without going

into more detail about design decisions. In light of the information from section 6.2

regarding data quality, data distribution and error susceptibility, this section discusses

key design decisions necessary to ensure a usable result.
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6.3.1 Distribution re-weighing in Loss Function

There are several ways to compensate for an imbalanced data set. One way is to over

sample or under sample data that is under- or overrepresented. This method is described

in [21]. Although this method is mostly used for classi�cation problems, it would also be

suitable for our regression problem. On the other hand, there is the possibility of cost-

sensitive learning, as described in [22]. Here, incorrect model prediction is associated

with a cost factor that must be minimized. Our self-implemented loss function is a form

of cost-sensitive learning, which has been implemented in a very simple form.

The following illustrates the loss function again, ypred is the predicted steering angle and

ytrue is the ground truth steering angle:

1

n

n∑
t=1

(ypred − ytrue)
2 ∗ (|ytrue|+ 0.1) (6.1)

This function �rst calculates the squared error of the model prediction compared to the

ground truth. This error is then multiplied with a cost-sensitive factor that is mainly

the amount of the ground truth angle. In our case, high amount of the ground truth

steering angle correlates with a low probability in the distribution. Therefore, the loss of

a data sample with a large steering angle, which is relatively rare in the distribution but

very important for steering the vehicle, is associated with a higher cost. The loss of a

data sample around zero degree and is associated with lower cost. The resulting e�ect is

that a rare data sample weighs heavier in the mean squared error than a sample which is

around zero degrees, thus containing less important information. For data samples with

a ground truth of exactly zero, a problem would occur when using zero as the multiplying

factor because it would completely disregard the loss of those samples. Therefore, our

multiplying factor in the loss function includes a small constant to avoid this issue. We

have made tests where we abandoned the small constant, leading to similar but a less

good result. If we just use the standard MSE, no functional model could be trained that

is able to drive from the start of the s-shaped evaluation map to the �nish. Thus, it has

been shown, that our loss function is crucial for the success of the training procedure.

However, more research must be conducted in order to quantify the impact of the loss

function, especially in regard to the small constant in the multiplying factor and the

question of what actually leads to a better training result. Is it actually the re-weighing

e�ect on the data, or is it some kind of low pass �lter that suppress noisy data around zero
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degrees, when calculating the loss? Furthermore, how sensitive is the new loss function

to outliers in the ground truth data?

In a publication related to NVIDIA's research [23], another general problem with the

mean squared error as an error function is described. This problem is also related to the

PilotNet∆ architecture presented by us, to an extent that is possibly even more severe

than in the original paper described.

The problem described deals with the time a prediction is made. Consider the PilotNet∆

model being in front of a left turn. The output of the model will spike at some point

when entering the curve. In a real-world scenario it does not matter wether the vehicle

steers a tenth of a second too late or too soon into the curve. However, when the model

is in training, it could get punished by a very high loss when predicting a curve too early

or too late, even though the behavior outside of the training is tolerable.

Therefore, additional considerations are needed. One solution might be to calculate the

loss as it would be if the prediction was made at the correct time, but then punish it with

a factor proportional to the time delay. This could lead to a model that is not punished

in training for tolerable behavior, but would also be encouraged making predictions at

the right time.

6.3.2 Using more Complex Training Data

Training PilotNet∆ on the same data as PilotNet, but with relative angles, was not

su�cient enough to achieve a functional model as a result. Therefore, another data set

was used in the training process described in section 5.2. The fact that this data set is

necessary for the training success has mainly two reasons.

The �rst reason is, that this data set covers scenarios of the vehicle not being aligned

with the target trajectory. From these scenarios, the model learns how to recover from a

false position. This strengthens the robustness in case of a false steering decision, which

is especially necessary for PilotNet∆, as it is more error-prone than PilotNet. Including

such data is a method that is also described in one of NVIDIA's publications [11] and

addresses a known problem in the �eld of imitation learning that is described in various

other publications such as [24].

The second reason is that the sequences in the additional data set contain many more

changes in between the frames and the steering, leading to a higher standard deviation

for relative angles, which is bene�cial for the training process.
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6.3.3 Hyperparameter Choice

The right choice of hyperparameters is a crucial one. Although the architecture of the

neural network is very similar to PilotNet, the convolutional LSTM layer raises the

question of the correct sequence length, i.e. how many images are fed into the network

before an output is generated. If the sequence length is too long, there is the danger

that wrong long-term dependencies are learned. If the sequence length is too short,

necessary information which are needed for a correct steering decision are missed. Similar

considerations can be made in regard to the FPM used in the process of data generation.

If the FPM are too high, the images do not di�er enough from each other and contain

a lot of redundant information. If the FPM are too low, important information can be

missed.

PilotNet∆ was trained with the parameters presented in chapter 5 where the sequence

length was varied during the development process. Among others, sequence lengths of 1,

3, 5, and 10 were tried, with 3 proving to be functional. The other lengths did not result

in successful training process. Not successful means the loss was either not converging

or the model output biased towards the mean of the data to an extent, where the model

prediction was constant. Similarly, frames per meter were varied and tested between both

2 frames per meter and 1 frame per meter, with 2 frames per meter proving functional.

Overall, the study of hyperparameter selection is not conclusive, because the di�culty

consists in the correct combination of the right hyperparameters. It is the case that the

sequence length, Frames Per Meter as well as the Loss Function and batch size all led

to success only in the right combination. As soon as one thing was dispensed, the loss

in training no longer converged or the trained model was simply not functional, in the

sense that it could not keep itself on the road for a longer time.

6.4 General Ideas that did not Solve the Problem with the

System Discrepancy

This section contains some initial ideas that came up during the development of the

PilotNet∆ architecture, but did not contribute to the improvement of the steering o�set

problem.
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6.4.1 Extend Training Data by Images with di�erent Steering O�sets

One �rst idea might be to use NVIDIA's PilotNet and add additional data to the training

data set, including data where the Tra�cManager drives on the road with di�erent

steering o�sets applied while gathering data, in order to gain robustness. However, this

does not work with supervised learning, because it would generate contrary data.

6.4.2 Reinforcement Online Learning on the Steering O�set

Another idea is to use the trained PilotNet and use reinforcement online learning to train

the model on a speci�c system discrepancy while it's driving on the road. For instance,

with transfer learning only training the last couple of dense layers. In order to accomplish

this, a cost function, or more general an optimization function, is needed to give feedback

to the model in the training process. This function could be the distance between the

vehicle and the center of the lane. This would be conceivable in a simulation where this

information can be queried but is impossible in a real world, without further ado. Lastly,

the step from a simulation to the real world is precisely the one that often causes the

system discrepancies.

6.4.3 Low pass Filtering the Training Data

Two attempts were made by low pass �ltering the relative angles with a rectangular low

pass �lter and kernel size of either 3 or 6. This reduces the noise dramatically, but does

not eliminate noise in the data entirely. One problem with low pass �ltering the data

might be, that this induces some inertia in the steering signal and generates contradicting

data. The steering angles at a certain time from the data set are then dependent on what

the steering angle, and hence the road condition in the future is, which obviously varies.

6.4.4 Feed the Current Absolute Steering Angle into PilotNet∆ as

additional Input

In the development process of the PilotNet∆ architecture, we tried whether is it helpful

to feed the integrated output of the model, i.e. the absolute steering angle, back into

the model. If this is done, the training process is accelerated enormously. However, the

driving characteristics of the model are the same as with the original PilotNet architecture
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from NVIDIA. This is because a �xed relationship between the absolute steering angle

and the position on the road is then learned again. Exactly this relationship must be

avoided. The aim is not to learn a relation between the position of the steering wheel

(which could be changed variably by an o�set) and the input images. The goal is to steer

the vehicle, completely independent of the current steering wheel position. The relevant

information is how the vehicle has already moved throughout the input sequence.
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In this work, we implemented a pipeline around the CARLA simulation environment.

The pipeline allows to generate data sets, use the data in the further training process

to train di�erent neural network architectures, and evaluate them afterwards. With this

experimental setup, we implemented PilotNet, an architecture presented by NVIDIA. We

used the results from PilotNet to validate the general functioning of the pipeline. More

importantly, the general performance of the architecture is demonstrated. Although the

general driving performance of PilotNet is quite good, it is shown that the architecture

struggles with a steering o�set. A steering o�set causes a lateral displacement of the

vehicle on the road. An o�set of -7.5 degrees, for instance, causes a left shift of about 1

meter, which is not acceptable in a real-world scenario.

We proposed and evaluated a prototype architecture called PilotNet∆, which has a ro-

bustness against the steering wheel o�set. When comparing PilotNet∆ driving with an

o�set to PilotNet∆ driving without an o�set, there is hardly any measurable di�erence

in the lateral position, which previously was a problem caused by the steering o�set.

However, some issues still remain with PilotNet∆.

This includes problems with the data quality in terms of data distribution and data noise.

The e�ect of those issues on the driving performance is very di�cult to examine without

an alternative data set with better quality for comparison. To overcome possible prob-

lems caused by the data quality, a lot of e�ort has been put into architectural changes.

This changes include additional dropout layers and increased batch size for a more stable

training process and a customized loss function to handle the imbalanced training data

distribution. Attempts including low pass �ltering the data to reduce the noise led to no

improvements in the training process. Hyperparameters for PilotNet∆ still need further

investigation.

What is left is the empirical evidence that it is possible to steer a vehicle with relative

angles in the context of this simulation setup, which is a success in itself. Even though

the driving performance could be improved, the requirement to not deviate from the road
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throughout the experiment is high and ful�lled by the model.

In addition, the idea of relative steering angles is characterized by the fact that it essen-

tially solves the problem of steering wheel o�set from a mathematical standpoint.

7.1 Outlook

In order for the PilotNet∆ architecture to be transferred to a real-world application,

the training dataset must be extended to include signi�cantly more complex data and

ideally images from the real world. NVIDIA's has proven in the past, that learning

complex image features with PilotNet is possible. In this context, the data set should

be evaluated beforehand and a method for generating this data should be chosen, so

that as little noise as possible is present in the collected data. The distribution of the

collected data should be considered and, if necessary, a method presented in the paper

should be used to reduce the imbalance such as re-weighting with a cost-sensitive loss

function or over/under sampling of the data. With a data set of better quality, further

investigations should also be made regarding the sequence length in order to further

optimize this important parameter. If the architecture proves to be functional in the

real world, which can be assumed from the results so far, the advantage of PilotNet∆

regarding the steering o�set will have to be re-evaluated and the associated di�culties

weighed up.

Of course, there is nothing to prevent PilotNet∆ from being combined with other end-

to-end architectures. For example, [8] already has convolutional LSTM layers and could

also be trained on relative steering angles instead of absolute steering angles.
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