
Analysis of adaptive streaming technologies for
segmented multimedia transport of high-resolution

videos for 360° playback on multiple devices

Master-Thesis

Benedikt Meyer-Schwickerath

Institut für Rundfunktechnik München (IRT)
University of Applied Sciences Hamburg (HAW)

Faculty of Design, Media and Information

Department Media Technology - Master Sound/Vision

First examiner: Prof. Dr. Robert Mores - HAW
Second examiner: Sebastian Siepe - IRT

Hamburg, June 2019

Abstract

Streaming of conventional planar video content is widespread in modern everyday
life. Recently, dispersion of 360° video and virtual reality content, has increased with
the upcoming development of transmission technologies and playback devices in the past
decade and is trending to increase enormously in the next years. This evokes the need
for even more efficient streaming and bitrate reduction technologies, considering today’s
available technical resources. This work gives an overview on current 360° video coding
techniques and its peculiarities for video streaming. The principles of tiling at encoding-
level, segmented transmission, and other concepts for streaming of 360° video, targeting
bitrate reduction, will be discussed. The advantages of the new MPEG Omnidirectional
Media Format (OMAF) standardization [51] will be outlined, with regard to other non-
standardized streaming approaches. On the basis of these theoretical findings and ac-
cording to the technical infrastructure and demands of the Institut für Rundfunktechnik 1

(IRT) and the public broadcasters, a use case scenario is conceived. Considering this use
case, different 360° streaming systems, some of which OMAF-based, will be implemented
and tested. Further, future trends and chances of 360° video streaming will be examined.

1En: Institute of Broadcasting Technologies IRT, Munich

Contents

Acknowledgments iii

Acronyms iv

List of Figures vii

Listings x

1 Introduction 1

2 360◦ video 5
2.1 Content generation . 7
2.2 Content representation . 8
2.3 Content distribution . 15

3 Overview of related technologies and clarifying terms 16
3.1 Video coding technologies . 16

3.1.1 H.264 . 18
3.1.2 High Efficiency Video Coding (HEVC) 19

3.1.2.1 Segmentation of Processing Units 20
3.1.2.2 High Level Syntax . 20
3.1.2.3 Slices . 21
3.1.2.4 Tiles . 22

3.1.3 Scalability features of H.264 and HEVC 24
3.1.3.1 SI- and SP-slices . 24
3.1.3.2 Scalable Video Coding (SVC) 24
3.1.3.3 Scalable extensions of High Efficiency Video Coding . . . 26

3.1.4 AV1 video coding . 27
3.1.4.1 Block-partitioning . 28
3.1.4.2 Intra-Coding . 28
3.1.4.3 Inter-Coding . 29
3.1.4.4 Transform Coding, Entropy Coding and additional features 30

3.1.5 Joint Exploration Test Model 7 . 30
3.1.6 Peculiarities on 360° video coding and streaming 31
3.1.7 Performance comparison of AV1, HEVC and JEM 33

3.2 Video streaming technologies . 36
3.2.1 HTTP and RTSP . 37

i

3.2.2 HTTP Live Streaming . 41
3.2.3 Caching - Edge and origin server principle 43
3.2.4 Multicast and unicast streaming . 44
3.2.5 Cloud transcoding . 44
3.2.6 Viewport-adaptivity and tiles . 46
3.2.7 ROI and FOV prediction . 47

3.2.7.1 Image saliency maps . 48
3.2.7.2 Neural network based FOV Prediction 49

4 Related 360° video streaming systems 51
4.1 MPEG Standardizations and 360° Video Streaming Technologies 51

4.1.1 ISO Base Media File Format . 51
4.1.2 MPEG-DASH . 53
4.1.3 MPEG Media Transport . 57
4.1.4 MPEG-I . 59
4.1.5 MPEG - Omnidirectional Media Format

(OMAF) . 60
4.1.5.1 OMAF - Projection mapping 61
4.1.5.2 OMAF - Profiles and encoding configurations 62
4.1.5.3 OMAF - Viewport adaptivity 64
4.1.5.4 OMAF - ISOBMFF, SEI and DASH integration 68

4.2 JCT-VC 360° video signalling standardization via SEI 72
4.3 Related 360° video streaming approaches 73
4.4 Evaluation of proposed streaming technologies 75

5 Implementing and testing different streaming systems 77
5.1 Demands and use case scenario . 77
5.2 Streaming infrastructure and available resources 79

5.2.1 Akamai CDN . 79
5.2.2 360◦ audio-visual test content . 79

5.3 Realization of different 360° streaming systems 81
5.3.1 GPAC Kvazaar HEVC tile-based adaptation guide implementation 81
5.3.2 Nokiatech OMAF implementation 89
5.3.3 Fraunhofer HHI OMAF implementation 96
5.3.4 Tiledmedia . 101

5.4 Comparison of tested implementations . 103

6 Conclusion and outlook 106

Bibliography 108

ii

Acknowledgments

First of all, I would like to thank my tutors and advisers Martin Schmalohr and Sebas-
tian Siepe of the IRT, and my mentor and professor Dr. Robert Mores for their support,
constructive feedback and confidence in my work.

Moreover, my thanks go to the IRT for providing the resources and the working envi-
ronment for realization of this work.

Further, I would like to thank the developers of GPAC Telecom ParisTech, Nokia Tech-
nologies and Fraunhofer HHI, for providing their codes and Tiledmedia for their cooper-
ation.

iii

Acronyms

ADC Asset Delivery Characteristics

ADST Asymmetric Discrete Sine Transform

AOM Alliance Of Open Media

AV1 AOMedia Video Codec 1

AVC Advanced Video Coding, MPEG-standard

AVDE AVC viewport-dependent baseline profile

BD-rate Bjontegaard Delta Bitrate Savings

BLP Baseline Profile

BL Base Layer

BM-SC Broadcast Multicast Service Center

CABAC Context-adaptive Binary Arithmetic Coding

CAVLC Context-adaptive Variable Length Coding

CB Coding Block

CDF Cumulative-distribution Functions

CDN Content Delivery Network

CI Composition Information

CMAF Common Media Application Format

CNN Convolutional Neural Network

CQ Constant Quality

CTB Coding Tree Blocks

CTU Coding Tree Units

CU Coding Unit

iv

DASH Dynamic Adaptive Streaming Over HTTP, MPEG-standard

DCT Discrete Cosine Transformation

EL Enhancement Layer

ERP Equirectangular Projection

FEC Forward Error Correction

FOV Field Of View

GFD Generic File Delivery

GOP Group Of Picture

HDS HTTP Dynamic Streaming

HEVC High Efficiency Video Coding, MPEG-standard

HEVD HEVC viewport-dependent baseline profile

HEVI HEVC viewport-independent baseline profile

HHI Heinrich-Hertz-Institut

HiLS High Level Syntax

HLS HTTP Live-streaming

HMD Head-mounted Display

HQ High Quality

HVS Human Visual System

IDTX Identity Transform

ILP Inter-layer Prediction

IRT Institut Für Rundfunktechnik

ISM Image Saliency Maps

ISO International Organization for Standardization

ISOBMFF ISO Base Media File Format, MPEG-standard

ITU International Telecommunication Union

JEM 7 Joint Exploration Test Model 7

JVET Joint Video Exploration Team

MANEs Media-Aware Network Elements

v

MBMS Multimedia Broadcast Multicast Service

MB Macroblock

MCTS Motion-constrained Tile Set

MC Motion Compensation

MFU Media Fragment Unit

MMT MPEG Media Transport, MPEG-standard

MOS Mean Opinion Score

MPD Media Presentation Description

MPEG Moving Picture Experts Group

MPM Most Probable Mode

MPU Media Processing Unit

MTU Maximum Transmission Unit

MVR Multicast Virtual Reality

MV Motion Vector

NAL Network Abstraction Layer

NBMP Network-Based Media Processing

OBMC Overlapped Block Motion Compensation

OMAF Omnidirectional MediA Format, MPEG-standard

PPS Picture Parameter Set

PSNR Peak To-Signal-Noite Ratio

PU Prediction Unit

QoS Quality Of Service

QP Quantization Parameter

QTBT Quadtree Plus Binary Tree

RAP Random-access Points

RA Random Access

RD Rhombic Dodecahedron Projection

RL Reference Layer

vi

RNN Recurrent Neural Network

ROI Region Of Interest

RSP Rotated Sphere Projection

RTSP Real-Time Streaming Protocol

RWQR Region-wise Quality Ranking

SAP Stream Access Points

SB Super-macroblocks

SDT Signal Dependent Transform

SEI Supplemental Enhancement Information

SPS Sequence Parameter Set

SRD Spatial Relationship Description

SVC Scalable Video Coding

TS Transport Stream

TU Transform Unit

UHD Ultra High Definition

VCEG Video Coding Experts Group

VCL Video Coding Layer

VOD Video On Demand

VPS Video Parameter Set

VUI Video Usability Information

WST Watershed-Transformation

vii

List of Figures

1.1 Virtual reality sales forecast worldwide from 2016 to 2021, in Billion USD.
Source: [15]. 2

2.1 a) Field of view representation. b) Three-dimensional and Euler axes.
Source of both: [16]. 6

2.2 Creation of a stereoscopic image and representation via HMD. Source: [16]. 7
2.3 Stitched equirectangular sample frame from a H.265 320 Mbps 8K 2D

recording with the Insta360 Pro 2.0 . 8
2.4 Equirectangular (0°) world map projection. Source: [117]. 9
2.5 a) Sphere-to-cubemap projection. Source: [71]; b) Example of an unfolded

cubemap, by Emil Peerson. Source: [89], Creative Commons Attribution
3.0 Unported License; c) Multi-resolution equirectangular and cubemap
projection arrangements. Source: [103]. 11

2.6 a) Geometric structure of a rhombic Dodecahedron, b) Distinction between
cubemap and Dodecahedron mapping, c) Re-segmentation of the unfolded
Dodecahedron, for encoding. Source: [53]. 12

2.7 a) Viewport orientation and pyramidal projection of [72]; b) Geometric
structure of rhombic pyramidal mapping, c) Truncated pyramidal mapping,
d) Square pyramidal mapping. Source: [103]. 13

2.8 a) Tile-segmented projection by Yu et al. [118]. b) c) d) Sphere-to-planar
tile-segmented projection scheme and segmentation and frame-packing for
encoding of Li et al. Source: [79]. 14

2.9 a) Conventional cubemap (left) and offset-cubemap (right). Source: [73];
b), c), d) Quality reduction according to viewport changes. Source: [73]. . 14

3.1 Typical HEVC coding scheme, by Sullivan et al. Source: [106]. 20
3.2 Dividing a luma-CTB in CBs (blue) and TBs (red). The numbers represent

the processing order of encoding the TB. 21
3.3 Segmentation into slices a) and tiles b). Source: [106]. 22
3.4 Two examples of dividing a picture into tiles, slices and slice segments. On

the left, a slice (solid bold lines) with four dependent slice segments (dotted
lines) and two tiles (dashed bold lines). On the right, three slices, each of
which with a dependent slice segment. Source: [107]. 23

3.5 Switching a H.264 video stream by using SI- and SP-Slices. Source: [93, p.
217]. 25

3.6 An example for a SVC encoder structure. Source: [97]. 26
3.7 SHVC decoder principle with two layers. Source: [28]. 26
3.8 Two SHVC spatial-scalable layers with temporal sub-layers. Source: [28]. . 27

viii

3.9 (a) Smooth intra-prediction mode in AV1. P as a weighted combination of
TR, BL, T and L. (b) Paeth intra-prediction mode in AV1. Source: [83]. . 29

3.10 QTBT partitioning scheme of JEM, with vertical or horizontal sub-division
into CUs. Source: [24]. 31

3.11 Motion discontinuity at the cube side borders. Source: [105]. 32
3.12 Streaming workaround and architecture to categorize the used technologies. 37
3.13 HLS streaming architecture. Source: [65]. 42
3.14 Structure of stream alternates, with a master index-file and index files of

the corresponding media alternates. Source: [67]. 44
3.15 Principle of the origin-edge server architecture, scalable by different op-

tional origin server Levels, based on [81]. 45
3.16 Viewport-adaptive tiled content distribution. 47
3.17 Interaction chain for FOV-updating, causing delay and bitrate-overhead. . 48
3.18 a) Original image (left), Resulting over-segmented layer (second left) and

three layers of regions with merged segments by different thresholds. b)
Original image (left), three layers of saliency cue maps (right-sided) with
resulting final saliency map (rightest). Source: Shi, Yan, Xu, Jia [99]. . . . 49

4.1 Logical and hierarchical physical structure of ISOBMFF. 52
4.2 Structuring and segmentation scheme of MPEG-DASH 54
4.3 Sample of MPD XML file, from MPEG-DASH dataset [76]. 56
4.4 MMT Data Model and ISOBMFF structure, based on [88]. 58
4.5 System architecture of MPEG-OMAF. 61
4.6 Viewport dependency by OMAF region-wise quality ranking, based on [115]. 65
4.7 HEVC-based MCTS viewport adaptivity scheme of MPEG-OMAF for two

sequences of the same resolution at different bitrates, based on [55] and [51]. 66
4.8 AVC-based viewport adaptivity scheme of MPEG-OMAF using slices for

two content-similar tracks of the same resolution at different bitrates, based
on [51]. 67

4.9 DASH segmentation and ISOBMFF integration, based on [115]. 70
4.10 OMAF DASH Adaptation Set architecture for the HEVD profile, based on

[52]. 71

5.1 a) Exported frame of equirectangular representation of recorded test se-
quence ‘06 Lombardsbruecke’. b) Excerpt and possible viewport of ‘06 Lombardsbruecke’.
c) Screenshot of the stitching process with encoding parameters on the
right band, and single lens fisheye representation. Content recorded with
Insta360 Pro 2.0 camera and post-processed by Insta360 Stitcher software
[8]. 82

5.2 Step by step explanation of Kvazaar compiling in Visual Studio 2017, of [3]. 83
5.3 OSMO4 player playback of corresponding MPD, with configuration window

and manual bitrate adjustments of single tracks. Bitrate of stream 1 is 1000
Kbps, stream 2 is 6000 Kbps. 89

5.4 Screenshot of playback of viewport independent DASH MPD, created by
the Nokiatech OMAF implementation [108] and Kvazaar HEVC encoder
[19]. 96

ix

5.5 Playback screenshot of viewport dependent DASH MPD, created and played
by the HHI OMAF implementation tools of [90], with deactivated guard
bands. 101

5.6 Playback screenshots of a test sequence of WDR in the Android application
of Tiledmedia. 102

x

Listings

5.1 FFMPEG transcoding into RAW YUV format, for post-processing with
the Kvazaar encoder [19]. 81

5.2 Command for HEVC Kvazaar encoding, with tiles enabled, here for a bi-
trate of 5 Mbps. 84

5.3 Encapsulation of .hvc stream into ISOBMFF-conform format. 85
5.4 Creation of corresponding DASH MPD and segment files. 85
5.5 Excerpt of exemplary MPD for generated adaptive HEVC tile-track DASH

stream, created by using MP4Box, for base-track and tile-tracks 1 and 2. . 86
5.6 SRD base-track specification in the MPD XML. 88
5.7 SRD specification of tile-track 1 in the MPD XML. 88
5.8 Starting the GPAC DASH stream, for test with OSMO4 player in 360° mode. 88
5.9 Kvazaar HEVC encoding at 500 Kbps and 5000 Kbps for Nokiatech OMAF

preparation. 90
5.10 Packaging of the Kvazaar files into the MP4 container. 90
5.11 Parameters in Config.json for creation of the Nokiatech DASH directory,

based on the example of [108]. 91
5.12 Excerpt of exemplary MPD for generated Nokiatech OMAF DASH stream,

generated by use of omafvd of [108]. 92
5.13 Command for playback of the OMAF files, by the Nokiatech sample player

[109]. 95
5.14 Command for playback of the DASH stream, by the Nokiatech sample

player [109]. 95
5.15 FFMPEG downsampling into 6K RAW YUV format, for processing with

the HHI content creation tools. 98
5.16 Execution of Python script, provided by [90], for content creation of OMAF

DASH stream. 98
5.17 Excerpt of exemplary MPD for generated HHI OMAF DASH stream, gen-

erated by the tools of [90]. 98
5.18 OMAF-conform schemes in MPD, of created DASH stream. 104

xi

Chapter 1

Introduction

360° video is one of the most emerging technologies of the audio-visual media industry of
the last years, as will be stated below. Especially due to improvements of available soft and
hardware, the generation and playback of high quality 360° video applications has become
more and more common. One should keep in mind, that 360° video applications are still a
spade area, except for the gaming industry. The exact potential for all industrial sectors
is still not completely conceivable. The term omnidirectional-, spherical- or 360°- video,
defines video generation and playback, where a user can perceive an entirely surrounding
scenery. Every direction and angle is covered by the video and the user can look around.
This switching of viewport can be done either by turning the head, when a head-mounted
display (HMD) is used or by a computer mouse or touchscreen, i.e. a pointing-device. This
concept is not new, but the advance of today’s camera and lens systems, storage devices,
computer-chips and display technologies paved the way for new kinds of applications and
broad availability for many users.

In this sense, the amount of HMDs will grow globally nearly five-fold, from 18 million
in 2016 to around 100 million in 2021, whereas 50% will be connected to smartphones
and the other 50% will be connected to PC, console or as standalone, as prognosticated
in [1]. Considering the imminent launch of 5G in Europe, consumption of video over the
internet may arise even more. In 2021, over 78% of the world’s data traffic is expected
to be covered by videos [1]. In particular, world-wide traffic of virtual and augmented
content will grow 12-fold from 22 petabytes per month in 2017 to 254 petabytes per month
in 2022 [2]. Not only the application potential, but also the commercial interest in 360°
video is immense. Since a lot of expenditures are spend in this scope, the sales induced by
virtual reality are forecast to double, from around 9 billion US-Dollar in 2019 to around
19 billion USD in 2021, as visualized in Figure 1.1 of [15].

Most of this conventional and spherical video files are encoded and compressed by
common video codecs like MPEG-4/H.264 AVC Part-10, its successor MPEG-H/H.265
HEVC or the open source solutions like VP9 or AV1, as described in Section 3.1. Due
to the inevitable higher resolution and the more content that needs to be covered, 360°
videos naturally require much higher bandwidth. Hence, a major challenge is still how
to efficiently encode and transmit the 360° video streams. This implies new demands
for popular streaming technologies, such as HTTP live streaming, Dynamic Adaptive
Streaming over HTTP (MPEG-DASH), etc. and for the video codecs. Against this
background, the central questions that motivate this thesis are:

1

Figure 1.1: Virtual reality sales forecast worldwide from 2016 to 2021, in Billion USD.
Source: [15].

• How can we transmit 360° video content at high quality without a burst-
ing increase of required bandwidth, compared to that of conventional
video?

• How can we enhance the viewing experience, i.e. the immersion of the
spherical video and ensure a playback with less technical impairments,
such as buffering pauses, compression artifacts and low resolution?

By high quality is meant, that the technically measurable video quality, by resolu-
tion, frame rate and data rate, significantly exceeds the values for conventional video.
Exemplary, at this moment the public broadcasters stream their video content normally
at 1280x720 with 25fps at around 4 Mbps. That is, for spherical video content, the res-
olution, framerate and hereby bitrate should be much higher, e.g. 4K at 60fps or more,
as will be stated later in this work. Since all data traffic produces financial costs for the
content providers, the goal is to keep the data-rate low.

Some research attacking this problem has been published recently, but no solution has
become a industry standard yet. Especially the concept of using slices and tiles, proposed
by H.264 and H.265 respectively, has been established and proven as an effective approach.
Tiles are regions of images that can be decoded independently from other regions, hereby
the spherical video can be split in different parts, covering the viewport, side-regions
and the background. This concept can further be used at transmission level, when video
content is transmitted in segments, at best corresponding to the tiling scheme of the
encoder. Hereby the idea of viewport-dependent streaming can be realized. That is,
streaming only that region at high quality, the viewer is currently watching at and the
rest at lower quality.

In this thesis popular available technologies for efficient video encoding and streaming
will be examined first and recent approaches for efficient viewport-dependent 360° video

2

streaming will be evaluated in the aftermath. By this, it is tended to construct a more
complete understanding of the concepts and peculiarities of omnidirectional video trans-
mission and playback, using up-to-date technologies. As some companies and developers
put high effort into development of efficient omnidirectional streaming systems, this work
can be understood as overview of emerging technologies of this topic, with an evaluation
of some of these, according to the demands of the IRT and the corresponding use case. In
this sense, first 360° video is broadly delineated in Chapter 2. An overview of related tech-
nologies, like popular video codecs and streaming standards is given in Chapter 3 and the
respective Sections 3.1 and 3.2. In Section 3.2.6 the concept of tiled viewport-dependent
streaming is introduced, which is one of the key-approaches to achieve acceptable bi-
trates. This concept is used by all of the tested streaming systems. The first standardized
technology is MPEG-I Part 2 Omnidirectional MediA Format (OMAF), [51], described
in Sections 4.1.4 and 4.1.5. Other recently proposed efficient approaches of viewport-
dependent 360° video streaming are presented in Section 4.3. Some of these approaches
propose entire architectures, while others examine parts of it extensively. The main fo-
cus will be on the recently introduced OMAF standard, which aims to generalize and
standardize the various particular workflows and technologies.

The featured 360° streaming systems are compared and their technical functioning is
evaluated theoretically. The practical part and objective of this work is the implementa-
tion of some of the presented technologies and approaches for the Institut für Rundfunk-
technik 1 (IRT) in Chapter 5. It will be investigated, which approaches and technologies
are practical and appropriate and which provide what kind of features. The recent OMAF
standard will be the main part of this practical evaluation, so OMAF implementations
from different developers will be compared and tested on the server system of the IRT.
Furthermore, the findings could be used to realize or optimize possible future 360° appli-
cations.

The practical part is structured as follows: In Section 5.1, the demands will be carved
out and a use case scenario will be drafted. Thereafter, Section 5.2 comprises the technical
infrastructure of the IRT, with available software and hardware. For evaluation of the
streaming system, test sequences are required, which are self-generated recordings of the
Insta360 Pro 2.0 in Hamburg, due to licensing issues, when publishing a spherical video
stream online. The creation process of content generation and the technical description
of the test sequences is also part of Section 5.2. The single implementations used for
evaluation are the HEVC Tile-based GPAC Kvazaar system [6] and the OMAF imple-
mentations of Nokia Technologies [108] and Fraunhofer Heinrich-Hertz-Institut [90]. The
implementation and evaluation process, i.e. encoding of the test footage and creation of a
MPEG-DASH stream, is documented in Section 5.3. These descriptions are based on the
guides, tutorials and Git documentations of the OMAF Nokia Technologies implementa-
tion [108], the GPAC Télécom ParisTech implementations [75] and the OMAF Fraunhofer
Heinrich-Hertz-Institut implementation [90]. The created media files are then integrated
into the IRT server system. The evaluation of the used implementation approaches is
stated in Section 5.4, with the focus on the two OMAF implementations and the used
creation modules and playback environments. A conclusion and outlook is given in the
aftermath, recapitulating the theoretical parts and analysis of technologies, i.e. Chapters
2 to 4 and the practical implementation, including the evaluation of the tested approaches,

1En: Institute for Broadcasting, Munich

3

with regard to the demands of the IRT.

4

Chapter 2

360◦ video

Recently, the use of 360° video and the interest in Virtual Reality (VR) and Augmented
Reality (AR) applications is rising, primarily due to technical improvements in this field.
That is not just the possibilities for streaming of high resolution 360° content, but also the
availability of recording and playback devices are increasing. The term 360° video gener-
ally does not define the playback device, but is a generic term for all kinds of applications,
where a user can watch video content in a 360° surrounding representation, i.e. the con-
tent is presented like the inside of a sphere. Common playback devices are head-mounted
displays, with integrated displays or via smartphone, and 2D representations for tablets
or computers, where the field of view (FOV) can be selected by a pointing device, as a
substitute for the head-movement. The FOV is that area of the video, currently being
watched by the viewer and played by the device, as depicted in Figure 2.1 a). As stated
in [91], the FOV, also referred to as viewport, can be defined as the head rotation angles
on the X, Y, and Z axes, presented by the Euler angles pitch, yaw and roll respectively, as
shown in Figure 2.1 b). The playback device displays only the selected corresponding area
of the whole video but not the whole 360° content at all time, which is one of the main
ideas when compressing 360° videos and will be stated later more detailed. Although, a
free choice of the viewport does not involve, that the viewer has to interact with the en-
vironment within the video. Interactivity in 360° video is possible, but not automatically
implied. In this work, the main attention is spent on the conventional 360° video, without
interaction with the environment, except the free choice of the viewport, which indicates
a communication between viewer or client and the provider of the video content.

The FOV or viewport have to be differentiated from the humans field of vision, which
is biologically predetermined and describes that area in which objects are visible, when
staring in one direction. According to [102], it is separated for each eye in the monocular
visual field, which is defined by the inner 30 degrees of vision and represents the central
vision and the peripheral visual field, which is about 100 degrees laterally, and vertically
60 degrees upward and 75 degrees downward. The binocular visual field consists of the
overlap of the two visual fields, and is about about 114° horizontally, as stated in [60].
Since the remaining 40 degrees of each eye on the left and right sides are only covered by
one eye respectively, they are outside the binocular vision. When a 360° video is watched
via a HMD, nearly the whole visual field is covered by the display, in contrast to 2D
representation on a 2D screen.

The region of interest (ROI) is the area of the video, where the action focus is placed

5

(a)

(b)

Figure 2.1: a) Field of view representation. b) Three-dimensional and Euler axes. Source
of both: [16].

and thus it is the region, that attracts the viewer’s interest most. Hence, it is the part of
the video, that the viewer is moving his viewport to most likely. Further, the content of
360° video is not predetermined. That is, content can be virtually, synthetically animated
or recorded by 360° capable camera-systems. The distinction between Augmented Reality
and Virtual Reality is only defined by the content and the playback system. AR places
virtual objects in our real environment. Hence, the real environment is not replaced
entirely, but only expanded by digital content [40]. It is important to note, that in this
way, parts of the real environment are masked and hereby the user’s perception is already
manipulated. VR represents an entire virtual environment [40], without parts of the
surrounding real environment. The term 360° video is the overall term and its technical
representation is stated more precisely in Section 2.2. In this work, only playback systems
with a free choice of the user’s viewport are considered as 360° video. Since the term
immersion is a key to describe the user’s 360° experience, a definition is important. As
Grau stated in [57, p. 13]:

”Immersion can be an intellectually stimulating process; however, in the present
as in the past, in most cases immersion is mentally absorbing and a process,
a change, a passage from one mental state to another. It is characterized
by diminishing critical distance to what is shown and increasing emotional
involvement in what is happening.”

Hence, an immersive 360° experience, is a situation that makes the user cutting out
his consciousness and the virtual environment appears to be real [40]. In relation to 360°
video, Grau [57, p.13] differentiates the term immersion, as follows:

”The intention is to install an artificial world that renders the image space
a totality or at least fills the observer’s entire field of vision [...]. Unlike, for
example, a cycle of frescoes that depicts a temporal sequence of successive
images, these images integrate the observer in a 360° space of illusion, or
immersion, with unity of time and place.”

6

Figure 2.2: Creation of a stereoscopic image and representation via HMD. Source: [16].

2.1 Content generation

Understanding how humans spatial or three-dimensional stereoscopic viewing works, is
important to understand how 360° content can be generated and displayed on a VR-
capable playback device. This section will focus on playback via a HMD, where the user
sees and hears solely the virtual 360° audio-visual content.

Normally, the distance between our two eyes is about 6-7 cm, thus we see objects
from two slightly different positions, the closer the focused object, the more our eyes
turn into the middle. A focused object, far away from the viewer, results in parallel eye
position [94]. Hence, very long distant objects can only be discriminated by our viewing-
experiences. This spatial perception gets lost when watching a picture on a paper or
screen [94]. Therefore 3D stereoscopic spatial seeing can be produced by presenting two
different pictures of two slightly different positions, one for each eye separately [94], as
shown in Figure 2.2. The accuracy of the content generation also decides, whether the
brain can easily create a spatial impression out of the two separately presented images,
to prevent motion sickness.

Today, special camera-systems can record 360° videos, composed by multiple single
recording modules, i.e. lens-systems. To record all content around a certain point, i.e.
the center of the camera system, at minimum two single optical lens-systems need to
record simultaneously. Distortions resulting from wide-angle optics have to be compen-
sated, to generate an omnidirectional image. These pictures need to be merged to a
full 360° representation. There are two kinds of omnidirectional images, monoscopic and
stereoscopic. Monoscopic systems provide identical images for each eye, disregarding the
natural characteristics of the humans visual system. For stereoscopic omnidirectional
video, separation of the two images for each eye needs to be done by recording the same
content out of slightly different positions, matching the perspective for the left and the
right eye. Alternatively, the difference between the two slightly different pictures, that are
presented to each eye, can be calculated. Besides, virtual 360° content can be generated
via 3D modelling on a computer. However, for both kinds of omnidirectional representa-
tion, errors resulting from incorrect merging, the so-called stitching of the several single
recorded pictures can occur, which are called stitching errors. These errors can be reduced
by recording with more than two lens-systems, so more data at the edges of the single
images can be used for calculation. This section illustrates the recording of such content,

7

Figure 2.3: Stitched equirectangular sample frame from a H.265 320 Mbps 8K 2D record-
ing with the Insta360 Pro 2.0

at the example of the Insta360 Pro 2.0 camera, with reference to [9]. The Insta360 Pro 2.0
is equipped with 6 single F2.4 fish-eye lenses with 10.57 mm focal length. Each of which
covering 1/3 of the whole 360° sphere, hence stereoscopic recording is possible. Real-time
Stitching is only activated using H.264 encoding and only up to a resolution of 3840 x
3840 pixels with 30 fps. Higher resolutions and H.265 encoding are only activated with
stitching in post-processing. Data-rates up to 120 Mbps are disposable per lens. The 2D
content representations can be of different formats and shape. One example for a stitched,
post-processed recording of the Insta360 Pro 2.0 is illustrated in Figure 2.3, to introduce a
possible 2D transformation of a 360° camera recording. In the following section, the 360°
content representations and sphere to planar mapping methods are examined in detail.

2.2 Content representation

The idea of 360° video is not new. As aforementioned, 360° video content can be displayed
by different playback devices, even though, the most common one is the HMD. The first
HMDs have been developed in the 1960, when Morton Heilig patented his concept of a
HMD, where users could watch short video content in a 3D stereoscopic way, although
with stereo audio playback [40, p. 25]. Today’s HMDs work with the same principle
by displaying to images, separately for each eye, in case of stereoscopic representation
out of slightly different perspectives. They are extra equipped with head- and/or eye-
tracking sensors, detecting the viewer’s head movement, and hereby his viewport, to
change the displayed content accordingly. Further, the resolution of the video content and
the installed displays are decisive for an immersive 360° application. Considering the short
distance between eye and display, the viewer might be able to distinguish between single
pixels, when presenting videos in low-resolution. High resolution and high framerates are
recommended, to enhance the depiction of the 360° environment.

8

Figure 2.4: Equirectangular (0°) world map projection. Source: [117].

Transformation of the recorded or generated spherical video content is necessary for ef-
ficient en- and decoding, transmission and displaying, in order to generate a single planar
image for each eye. Especially, when using reliable popular video codecs. This trans-
formation of spherical content into a planar representation is called projection or map-
ping. Several sphere-to-planar mapping methods have been established, some of which
have been proposed recently, optimizing prior approaches by minimizing shape distortion.
Those mapping methods can be categorized into two groups, depending on whether the
360° content is projected with constant quality over all parts of the sphere or with quality
grades, i.e. variable quality, preserving higher quality for parts of the viewport and lower
quality for side regions [38]. First, the two main mapping methods, equirectangular pro-
jection and cubemap projection will be explained and afterwards other approaches like
i.a. Rhombic Dodecahedron Mapping, Pyramid Mapping and tile-segmented Mapping
will be introduced.

1. Equirectangular projection
Because of its simplicity and compatibility equirectangular projection (ERP) is very
common and widley used [39]. The inner surface of a sphere is unfold on a two-
dimensional rectangular map, as depicted in Figure 2.4, interpolating or duplicating
the missing pixels towards the poles. The width and height, according to the circle
properties are 2πr and πr respectively, where r is the radius of the sphere [38][39].
No special playback device is necesseray, since this content can be displayed by
conventional screens. Contrarily, redundant information at the poles, resulting from
stretching, i.e. interpolating pixels, lead to an increase in bandwidth [39]. Bitrate or
bandwidth-consumption should be treated very economical, as will be stated later
more detailed.

2. Cubemap projection
Another common projection method is the cubemap projection, which is supported
by various graphic libraries. First the sphere-surface is projected onto a cube’s
surface and afterwards a 2D map from the cube is generated, without creating as
many redundant pixels towards the poles of the sphere [39]. The most common
cubemap projection uses a six-sided cube, each of which covering a part of the
spheres surface. Each perspective with a 90° angle and each looking down an axis

9

of a coordinate system, with it is origin at the viewport, i.e. the camera, as stated
in [58]. The single steps of sphere-to-cube projection and cube-to-planar projection
are illustrated in Figures 2.5a and 2.5b, according to [71]. Multi-resolution cubemap
and equirectangle projection approaches are introduced in [103], where the viewport
is streamed at higher resolution, than the side and background regions, in a 50/50
ratio of the overall resolution, as depicted in Figure 2.5c.

3. Rhombic Dodecahedron projection
As stated in [53], Rhombic Dodecahedron projection (RD-projection) subdivides the
sphere in 12 normally equal-sized parts, i.e. rhombi or pentagons. The dodechaedron
is built by inscribing a cube into an octahedron, where the cube’s edges touch
the edge midpoints of the octahedron. Combining the eight cube vertices and six
octahedron vertices results in an equal 12-sided dodecahedron, whose rhombi can
be projected onto a 4π sphere surface via Gnomic projection [53] as shown in Figure
2.6a. To get a planar 2D picture, compatible to conventional video en- and decoders,
a re-segmentation has to be done, which is shown in Figure 2.6b and 2.6c.

4. Pyramidal projection
One approach of pyramidal projection is proposed by developers of Facebook [72],
where the spherical 360° content is projected onto a six-sided regular pyramid, as
depicted in Figure 2.7a. The proposed approach of [72] uses different video qualities
for different parts of the mapping area, i.e. the base of the pyramid containing the
FOV is maintained high, while the resolution of the pyramidal sides, representing
the side area and the area behind the viewer, is reduced. As illustrated in Figure
2.7b, the unwarped pyramidal representation can be processed as a rectangular
image, by stretching the sides to fit the full 360° area. The main idea is to switch
the pyramid, which the user is looking at, when shifting the perspective. The viewer
steps into a new pyramid, when changing the perspective of the viewport. Therefore,
the sphere is covered by 30 different viewports in total, each covering an area of
around 30°. Quality adaptation is introduced by offering five different resolutions for
each viewport, resulting in 150 different viewports. Hence, first transformation and
transcoding are processed and afterwards each pyramidal viewport representation
is stored on the server, instead of computing each viewport in real-time, for each
client-request.

Two modifications of the pyramidal mapping are treated by Kammachi-Sreedhar
et al. in [103]. They change the geometrical arrangement in two different ways, to
address coding inefficiency caused by sharp diagonal edges between front and side
faces of the pyramid. These alternative arrangements are illustrated in Figures 2.7c
and 2.7d, howbeit the proposed frame-packing is only one of many possible solutions
[103].

5. Tile-segmented projection
In 2015 Yu et al. [118] proposed a tile-segmented sphere-to-planar mapping ap-
proach. As shown in Figure 2.8a, a equirectangular representation of a sphere is
divided into several striped latitude pieces, i.e. tiles. Where the density of tiling
and sampling can be adjusted by changing the size of the tiles. This tile-segmented
projection is quality-adaptive by changing the number of tiles according to the view-

10

(a)

(b)

(c)

Figure 2.5: a) Sphere-to-cubemap projection. Source: [71]; b) Example of an unfolded
cubemap, by Emil Peerson. Source: [89], Creative Commons Attribution 3.0 Unported Li-
cense; c) Multi-resolution equirectangular and cubemap projection arrangements. Source:
[103].

11

(a)

(b)

(c)

Figure 2.6: a) Geometric structure of a rhombic Dodecahedron, b) Distinction between
cubemap and Dodecahedron mapping, c) Re-segmentation of the unfolded Dodecahedron,
for encoding. Source: [53].

12

(a)

(b)

(c) (d)

Figure 2.7: a) Viewport orientation and pyramidal projection of [72]; b) Geometric struc-
ture of rhombic pyramidal mapping, c) Truncated pyramidal mapping, d) Square pyra-
midal mapping. Source: [103].

ers behaviour. Content in the ROI can be processed prioritized at a higher quality
and less important or detailed regions can be coded at lower quality. To overcome
artifacts at the edges of tiles, they use overlapping tiles. Li et al. optimized this
approach by changing the tiling structure and re-segmentation of the tiled pieces
for encoding [79], as depicted in Figures 2.8b, 2.8c and 2.8d. Instead of tiling after
equirectangular mapping, the sphere is cut into several tiles first and the single tiles
are cut open, unfold and reshaped into rectangular stripes afterwards. The cam-
bers at the poles are treated differently, as two circles and for re-segmentation filled
black, due to reshape them into rectangular representation.

Some of these sphere-to-planar mapping methods have been modified or extended, to
gain coding efficiency and quality enhancement. An offset-cubemap projection scheme
is proposed by Facebook [73] and reported in [38]. The Offset-cubemap projection is
a variable quality mapping, where, unlike to the aforementioned cubemap projection,
the viewer’s position is pushed backwards from the centre of the cube, by a predefined
offset, as illustrated in Figure 2.9a [38][39]. The quality of the extended viewport in
front of the viewer is set higher. The viewports to the sides and backwards of the viewer
have gradually reduced quality, as shown in Figures 2.9b, 2.9c, 2.9d. The coding- and
compatibility advantages are still kept up and pixel interpolation at the side edges is used,
to overcome artifacts, caused by missing pixel information at the edges of each cube side,
referring to [73] and [38].

13

(a)

(b)

(c) (d)

Figure 2.8: a) Tile-segmented projection by Yu et al. [118]. b) c) d) Sphere-to-planar
tile-segmented projection scheme and segmentation and frame-packing for encoding of Li
et al. Source: [79].

(a)

(b) (c) (d)

Figure 2.9: a) Conventional cubemap (left) and offset-cubemap (right). Source: [73]; b),
c), d) Quality reduction according to viewport changes. Source: [73].

14

2.3 Content distribution

The distribution of 360° video consists of different processing modules and entities. With
reference to the VR-industry forum, a working group, specifying recommendations for the
use of omnidirectional video in [52], the following work-flow for content distribution is ex-
pounded. The capturing is done by a content provider, applying the stitched content to the
service provider separately for audio and video. This module pre-processes and encodes
the applied audio and video content, in one of the respective 2D-representations discussed
before, producing elementary streams at the outlet. Moreover, the separated media parts
are then encapsulated, e.g. in segmented tracks and delivered over a Content Delivery
Network (CDN) to a VR service module. This module consists of a computing-platform
and the application module or playback device. This service module communicates with
the CDN to manage viewport changes adequately, measured by sensors of the HMD or
by input of a pointing device. The service platform decapsulates the segmented stream,
e.g. the single tracks, and decodes the elementary streams for audio and video. It is
worth to be note, that the playback device and the service platform can be merged in
one single module, or separated into two devices. The service platform, e.g. a computer,
smartphone, etc. is responsible for correct decoding of the incoming bitstream, whereas
the playback device playbacks the rendered audio and video stream and tracks the head-
and eye-movements. Detailed concepts of content distribution are the key aspects of this
work and will be explained more detailed in the following chapters.

15

Chapter 3

Overview of related technologies and
clarifying terms

3.1 Video coding technologies

Recorded or artificially generated digital video content has to be encoded in some form
and packed into a bitstream to provide subsequent access to the digital data. For this
purpose, various coding methods have been developed, to pack the data either lossy or
lossless in a particular codec. Lossy video compression uses various techniques to effi-
ciently reduce bitrates for transmission, while at best preventing visible image artifacts.
The output data does not exactly match the input data in this case. Most compression
techniques use similar base technologies, like transformations of the data, dependencies
of the image content of neighbouring frames, dependencies and similarities of image parts
within a frame, compressing strings of a data set, prediction of possible movements of
objects within the image, and segmentation structures such as blocks or tree structures
to put pixels into groups, to reduce the overall amount of data. Thus, the individual
frames and pixels of a sequence are not stored entirely, but redundant and irrelevant data
is identified and omitted. The approach of reducing irrelevant data often depends on the
characteristics of the human visual system (HVS). The most common and widely used
lossy video codecs are the various MPEG and H.26X versions developed by the Video
Coding Experts Group (VCEG), a working group of the International Telecommunica-
tion Union (ITU) and Moving Picture Experts Group (MPEG) of ISO and IEC and the
associated mechanisms and algorithms designed to make the transmission, storage and ac-
cess of video data more efficient. MPEG12 is a working group of the ISO/IEC developing
standardizations for coded representation of digital audiovisual data. The goal is to im-
prove the digital media experience of the user and to unitize technological improvements,
making them better available for the audiovisual industry.

To understand the demands and peculiarities of efficient 360° video streaming, it is
necessary to understand the mechanisms of encoding and decoding videos and to know
how basic image compression works. The functioning of inter- and intra-frame coding,
structure of macroblocks in MPEG, motion compensation, transform coding, discrete
cosine transformation (DCT), quantization and entropy coding, are stated precisely by

1Official working group name: ISO/IEC JTC1/SC29/WG11
2https://mpeg.chiariglione.org/

16

Watkinson in [116], Milde in [84], Richardson in [93] and Sze, Budagavi and Sullivan
in [107]. The following section starts with the functioning of MPEG-video coding, at
the example of MPEG-4/H.264 as a still widely used codec and High Efficiency Video
Coding (HEVC)/H.265, as its powerful successor, followed by other state-of-the-art video
codecs. The principle of JPEG still-image compression is used for MPEG video coding.
It is based on the DCT, to convert image-values (YCbCr, YUV etc.) into DC and AC
components and a subsequent quantization to get rid of high-frequency values, less visible
for the HVS. This concept will not further be discussed in this work, as it is a wide topic
and less relevant for the understanding of a 360° streaming-architecture. This principle
of image compression is stated precisely by Watkinson in [116] and by Richardson in [93].
Recently, AV1 and JEM, as two powerful and high-efficient codecs have been released,
competitive to the performance of H.265. The base-functioning of AV1 and JEM will be
explained later in this section and at the end, those four codecs will be shortly evaluated,
based on related works.

As aforementioned, bitrate should not be wasted by the use of inefficient coding tools.
To reduce bitrate and to provide decent image quality, different video compressing stan-
dardizations can be used. In the following, the overall principle of compressing a video
sequence is explained, to maintain acceptable quality, but reduce data. According to
[116, p. 13], a video signal is generally presented as a temporal sequence of images of a
certain size x, y. Even 360° video, is presented to the eye in this two-dimensional way.
The whole video sequence can be described in three dimensions, the direction of the time
axis and each dimension of the direction of the spatial axes. A further dimension results
from the properties of each pixel. The distinction of the way a frame is coded and what
dependencies to other images may arise, depend on whether it was intra- or inter-coded.

Frequently, neighboring individual images of digital video sequences have similarities
and differ only slightly to the preceding or following frame. In many lossy video codecs,
this property is used and not a complete frame is stored, but only differences from the
preceding or following frame. A frame or block that can only be decoded with a so-called
residual information together with another frame is called inter-frame coded, inter-coded
or inter-predicted. The functioning of this inter-coding is not only based on similarities
between neighbouring pixels, but also uses prediction of the motion of objects of neigh-
boured frames. This is called motion prediction or motion compensation (MC). This
inter-coding, with motion prediction can reduce the amount of data enormously and is
one of the base ideas of video compression [116, p. 15].

A frame or block that is encoded completely independent to other frames and is
compressed only within itself, can be called inter-coded and referred to as key or I-frame.
Here, the time axis does not affect the compression of the frame to be encoded. In intra-
coding the compression is only achieved by compressing in the spatial dimensions and
can therefore also be called spatial coding, intra-coding or intra-prediction. Often, intra-
coding uses compression methods developed for still images. An example of this is the
compression using methods like JPEG, which is applied in MPEG-2 [116, p. 14-15].

A video sequence can be presented in form of different frequencies. Intra-coding ex-
ploits the fact that the HVS is less sensitive to high-frequency parts of the image and
can only perceive them to a certain extent. Individual images often have blocks in which
identical or similar pixels are present. This property increases, the higher the spatial
frequency of the single image is. To simply omit the high frequency fractions of an image

17

would result in softening and visibly blur the image. The amplitude of the spatial com-
ponents coincides with the spatial frequency, which is utilized for the compression. Thus,
when the local frequency spectrum is divided into frequency bands, the high-frequency
components can be represented by fewer bits, not only because their amplitudes are lower
but also because the eye perceives the hereby increased noise less strongly. In order to de-
scribe the frequency ranges of two-dimensional images, transformations such as the DCT
are applied.

In intra-coding, theoretically the complete data of each frame can be transferred, de-
pending on the quantizing parameter. The resulting data quantity is significantly higher,
but the processing effort while decoding is reduced, compared to inter-coding. Even with
a high quantization parameter, the bitrate reduction between intra-only modes and inter-
coding is not comparable. On the other hand, coding methods that use inter-coding can
compress more strongly, by evoking higher decoding expenditure, since the resulting frame
must first be calculated from its predecessor [116, p. 13-14].

Changes in transfer-rates and data-loss can influence the decoding of a streamed video
sequence. Artifacts can occur if the necessary data of a dependent frame does not exist
at the decoder. H.264 and H.265 usually use intra- and inter-coding and have different
mechanisms to prevent package-loss and artifacts, H.265 better than H.264. Besides, there
exist scalable extensions for streaming, such as SVC for H.264 and SHVC for H.265. These
extensions optimize the coding architecture especially for video streaming applications.

3.1.1 H.264

H.264/MPEG-4 AVC3[46] is based on the basic mechanisms of MPEG-2, but has been
optimized and new functionalities. It was developed by the VCEG and the MPEG. In
the following, only the differences and advantages compared to MPEG-2 are stated, re-
ferring to Richardson [93] and Marpe et al. [82]. For base information on MPEG video
coding, the reader is referred to Watkinson [116]. The basic functions of the MC and
the idea of storing only differential information and no complete picture data, by using a
frame structure of intra-frames (I-frames), prediction-frames (P-frames), and bidirectional
prediction-frames (B-frames), have been forwarded from MPEG-2. Depending on the ap-
plication field and the transmission environment, different profiles can be set up in H.264,
each of which is suitable for different applications. A distinction is made between baseline
profile (BLP), main profile and extended profile, which offer different and extended func-
tionalities. One of the introduced key features is the concept of slices. A slice is a set of
macroblocks, i.e. one part of an image, that is independently decodable from other slices.
It is a useful feature to classify dependencies for different regions of a frame. In the BLP
intra- and inter-coding through I- and P-slices, and entropy coding with context-adaptive
variable length coding (CAVLC) is used. The main profile also supports B-slices as well as
weighted prediction for inter-coding, entropy coding with context-adaptive binary arith-
metic coding (CABAC) and interlaced processing. The extended profile does not support
these extensions of the main profile, but introduces other features that prevent package
loss and enable a video stream to be changed. The most common profile is the main
profile, which provides efficient video coding with appropriate complexity [93, p. 162].

Important for improvement of the picture quality is the optimized macroblock (MB)

3ITU-T H.264; ISO/IEC 14496-10

18

structure and the use of slices in H.264. Further, the MC and inter-coding as well as the
sample prediction and thus the intra-coding were improved in the standard. Furthermore,
H.264 also uses the transformation of prediction residuals, which is called transform-
coding. These transforms are performed in different block-sizes with different integer-
transformations based on the DCT. In block-based video coding, blocking artifacts can
occur, when the target bitrate is too low. To overcome these block artifacts, in H.264 a
so-called Content Adaptive in-loop Deblocking Filter is applied [82].

3.1.2 High Efficiency Video Coding (HEVC)

MPEG-H/H.265 HEVC4[48] is a video coding standard released in 2012 by the ITU-T
VCEG and the ISO/IEC MPEG, specifically designed to obtain a significant reduction in
bitrates, about 50% higher compared to its predecessor MPEG-4/H.264 AVC, meanwhile
preserving consistent video quality [106]. The following descriptions are based on the
descriptions of Sullivan et al. in [106] and Sze et al. in [107]. The uprising development
of high-resolution and high-framerate video systems, the accompanying development of
spherical video and plenty of other applications, call for more efficient coding standards
to save data while, reducing visual artifacts. HEVC thus gradually usurps the place of
the widely used H.264 codec, addressing video content requiring high image quality, at
the expense of higher encoding and decoding times. HEVC is better adapted to parallel
processing architectures, which counteracts the increased computational power. Besides
defining the coding-structure, the developers propose a reference implementation of the
standard.

As in previous standards, different profiles and levels are defined, addressing different
applications and use cases. The profiles define the coding mechanisms used and the
levels define the coding parameters such as maximum bitrate, etc. In addition, tiers were
introduced that define two different bitrates within the levels. Initially, three profiles
were predefined: Main Profile, Main Still Picture Profile, and Main 10 Profile. The
Main Profile with 8-Bit per sample, 4:2:0 chroma subsampling, is the standard profile for
video sequences in the consumer area. The Main Still Picture Profile can be used for
the compression of single images, similar to JPEG. The Main 10 profile provides 10-bits
per sample and overall higher quality of color representation. The Main 10 profile offers
chroma subsampling up to 4:4:4 and bit depths up to 16 bit. In newer versions, the
Multiview Main Profile, the Scalable Main Profile and the Scalable Main 10 profiles have
been added [106], also referred to as SHVC.

The coding efficiency is achieved by extending and optimizing the basic operating
principle of H.264, mainly by improvements of the block structure, the intra-coding, the
inter-coding, the entropy coding and the High Level Syntax. As shown in Figure 3.1,
demonstrating the coding-scheme of HEVC, the basic process of motion estimation and
compensation, the resulting inter- and intra-coding, subsequent transformation and quan-
tization and finally the entropy coding are comparable to H.264/AVC. As HEVC’s in-loop
filtering has been changed, new processing steps have been added.

4ITU-T H.265; ISO/IEC 23008-2

19

Figure 3.1: Typical HEVC coding scheme, by Sullivan et al. Source: [106].

3.1.2.1 Segmentation of Processing Units

One of the key aspects for achieving higher compression in HEVC, is the segmentation
of the luma and chroma processing units. In H.264, pixels were grouped into 16x16
macroblocks. In HEVC, the corresponding structure is a tree-like division into Coding
Tree Units (CTU), which are divided into luma and chroma by Coding Tree Blocks (CTB)
[106]. These blocks have sizes of NxN of N=8, 16, 32, or 64 pixels and can be subdivided
into smaller blocks. In HEVC a CTB can consist out of a single coding unit (CU),
but can also be divided into several coding units. These coding units consist of a luma
coding block (CB) and usually two chroma CBs with the associated syntax information.
These CUs are in turn divided into prediction units (PU) and transform units (TU) [106].
Figure 3.2 shows the tree-structure of HEVC and the division and subdivsion of these
single processing units, according to Sullivan et al. [106]. The exact processing of these
units and the single steps of inter-/intra-coding and transformation are described in [107].

3.1.2.2 High Level Syntax

As stated by Sullivan et al. in [106], the High Level Syntax (HiLS) defines the structure
of a bitstream, providing information of slices or full images, e.g. the spatial resolution or
the encoding settings to be used. In HEVC, the HiLS is defined by a Network Abstraction
Layer (NAL). Thus, a bitstream in HEVC consists of a sequence of NAL units, which is
transmitted as an even number of bits. The first two bytes define the NAL unit header,
the remaining define the payload. These NAL units transmit either slices, with slice
header and data, or parameter sets that provide additional information. Depending on
whether a NAL unit contains encoded images, or other necessary data, it is called Video
Coding Layer (VCL) NAL unit or is classified as a non-VCL NAL unit, respectively. The

20

Figure 3.2: Dividing a luma-CTB in CBs (blue) and TBs (red). The numbers represent
the processing order of encoding the TB.

NAL provides the data uniformly for various transport layers, such as RTP/IP, ISO MP4
and H.222.0/MPEG-2 Systems. A parameter set contains fixed information, that may
not further be changed and enables decoding of a large amount of NAL units. For HEVC
there are three kinds of parameter sets:

1. Video Parameter Set (VPS) - A set providing unified information for all layers of a
bitstream.

2. Sequence Parameter Set (SPS) - A set providing information for several sequences.

3. Picture Parameter Set (PPS) - A set providing information for several frames.

NAL units may contain Supplemental Enhancement Information (SEI) and Video
Usability Information (VUI) metadata. These provide additional information about the
temporal use of video frames, i.e. timing, the correct interpretation of the color space
used in the video signal, 3D-stereoscopic additional information, 360°-specific information
and other additional information. The parameter set structure ensures a robust access
structure.

3.1.2.3 Slices

This section relates to the descriptions of Sze et al. in [107] and Sullivan et al. in [106]. As
aforementioned, slices represent parts of an image or an entire image that can be decoded
independently from other slices of the same image. As macroblocks in HEVC are replaced
by CTUs, they are a single or a sequence of CTUs and are processed in raster-scan order.
Slices are coded by entropy coding, signal prediction and reconstruction, to compensate
data loss during packetized transmission. In order to minimize the overhead of a packet
and to keep the size of a slice within the prescribed limits, the maximum size of the
payload of a slice is limited. Meanwhile, varying the number of CTUs in the slice.

The division into slices, shown in Figure 3.3a, is particularly useful for three aspects
of coding: The reduction of errors caused by transmission, the maximum size of the
portable units, and parallel processing. In the case of data losses, transmission-errors

21

(a) (b)

Figure 3.3: Segmentation into slices a) and tiles b). Source: [106].

can be compensated more easily, since independently decodeable image parts are located
in different transmission units. The second aspect concerns the maximum size of the
transmission units, also Maximum Transmission Unit (MTU). The so-called MTU-Size-
Matching prescribes a maximum size of the payload, i.e. the maximum number of bits
in the payload of a slice. The number of CTUs within the different slices can vary, to
comply with this maximum bit count. The third aspect, why a division into slices is
useful, is the parallel processing of data. Slices and the applied processing can be carried
out independently of one another, i.e. in parallel.

A slice always consists of a header and the corresponding data, whose minimum size
is determined by the CTUs. The independence of one slice to another requires certain
conditions. For this purpose, the processing of the coding must be carried out in raster-
scan and possible dependencies between CTUs of different slices must be broken up.
Breaking down the dependencies of individual CTUs can also have a negative impact on
coding efficiency. Thus, the more slices per image, the lower the data saving and thus the
coding efficiency.

To overcome these drawbacks, HEVC optimizes the slice structure by dividing a slice
into two levels. At the first level, a slice is divided into multiple slice segments at the
boundaries of each CTU, as depicted in Figure 3.3a. The first slice segment is completely
transferred and contains the complete header and data. The following slice segments have
a very reduced header and are dependent on this first slice-segment. By defining these
dependent slice-segments at the borders of the CTUs the coding efficiency is not affected
that strongly. The second level are the so-called slice segment subsets or substreams,
consisting of all encoded bits of the contained CTUs or their subdivisions.

3.1.2.4 Tiles

The ability to split images into rectangular tiles, as shown in Figure 3.3b, has been
introduced in HEVC, to facilitate parallel processing and minimize data loss, and allows
spatial random access to specific regions of an image. This concept is precisely stated
by Sullivan et al. in [106] and Sze et al. in [107], and outlined based on these, in the
following. Certain regions of an image can be coded independently of each other but with
one header. This so-called shared header is transmitted within slices that combine several
tiles. If different tiles are in the same slice, they can be transferred with the same header
information. Normally, an image is partitioned into a certain number of rectangular
tiles with the same number of CTUs in each tile. Tiles enable parallel processing at an

22

Figure 3.4: Two examples of dividing a picture into tiles, slices and slice segments. On
the left, a slice (solid bold lines) with four dependent slice segments (dotted lines) and
two tiles (dashed bold lines). On the right, three slices, each of which with a dependent
slice segment. Source: [107].

even lower level, than slices and no complex synchronization of the individual threads
is necessary, as is the case with block level parallelization in H.264. In addition, the
dependencies between individual CTUs are omitted by tiles [106][107].

The size and number of tiles can be defined per picture or for a complete sequence
of pictures. The information is transmitted to the decoder in the PPS, a NAL unit,
by breaking up prediction dependencies, since independent individual packets can be
transmitted, addressing error-proneness.

In-loop filtering, can be applied to the boundaries of nearby tiles, thereby impeding
blocking artifacts at the boundaries of the tiles [107]. As mentioned earlier, tiles, slices,
and slice segments can be used together to break up a picture into different parts. Figure
3.4 shows a possible segmentation of an image into one (left) or three slices (right),
with four or three dependent slice segments respectively. Both image representations are
further divided into two tiles, at the boundaries of the slice segments. Independence of
tiles and slices is only given, when all CTUs in a slice belong to the same tile, or vice
versa. At slice segment level, all CTUs must belong to the same tile, or all CTUs in a
tile must belong to the same slice segment. This means that either a slice can be divided
into several tiles, or that a tile can be split into several slices [107].

Overall, tiles can lower the overhead of the slice-header, especially if multiple slices
per tile are used. By distributing tiles according to the spatial dependencies between
different regions of an image, coding efficiency can be maintained. Nevertheless, the more
tiles are used, the more spatial dependencies have to be disbanded and hence, the more
the coding efficiency is affected negatively. A balance between optimization of parallel
processing and overhead reduction on one hand and disbanding spatial dependencies of
the CTUs on the other hand has to be established [107].

23

3.1.3 Scalability features of H.264 and HEVC

3.1.3.1 SI- and SP-slices

The concept of SI- and SP-slices is described in the following section, with reference to
Richardson et al. in [93]. Changing from one video stream to a lower bitrate video stream
can be one solution to provide constant video playback in unstable network environments.
In H.264, for inter-coding this change of a video stream cannot be performed by simply
using the reference-frame of the other stream for prediction. This would evoke artifacts,
because images of a video sequence with lower bitrate are technically different to those of
a higher bitrate. For the change of video streams, for random access (RA) or streaming
scenarios, SI- and SP-slices are introduced in the Extended Profile of H.264. They provide
RA to compensate changes in bandwidths. For this purpose, a video sequence can be
encoded with different bitrates, to choose the optimal stream with a higher or lower
bitrate depending on the current available bandwidth.

SI and SP are used to exchange identical video sequences A and B with different
bitrates. There are several SP-slices and a special switching SP-slice on so-called switching
points. These switching SPs can be used for the prediction of the following SP-slices of
the stream A as well as the following SP-slices of the stream B. Figure 3.5 shows exactly
this change of a stream A at a switching point to a stream B. The subsequent subtraction
and formation of the residual is performed differently from the usual P-slices after block
transformation. SI-slices can also be used as switching slices. For SI-slices the intra-frame
coding is performed in 4x4 blocks and they, like ordinary I-frames, require a higher amount
of data, [93, pp. 216-218]. Inter-coding and prediction of inter-coded frames using SI-
and SP-slices need to be adjusted, since the reference frames, used for prediction have
to be available at the right time. The encoding and decoding of a switching-frame AB,
has dependencies to stream A and stream B, thus the en- and decoding process has to be
adjusted. The exact processing of encoding for SI- and SP-slices and the adjusted MC
and prediction is explained by Richardson et al. in [93].

3.1.3.2 Scalable Video Coding (SVC)

The Scalable Video Coding (SVC) is outlined in the following, based on Schwarz et al. in
[97] and Boyce et al. in [28]. Two or more non-scalable streams transmitted as simulcast
usually can evoke the same functionalities as the scalable profiles of the MPEG codecs.
A scalable bitstream can be generated by removing parts of its data, while still creating
a valid bitstream, that can be decoded and interpreted correctly. The reconstructed
bitstream consists of multiple layers that form a single scalable bitstream. These layers
are of different quality or resolution, ergo of different Peak to-Signal-Noite Ratio (PSNR).
It is a measure for the relationship between the maximum possible power of a signal and
the power of the noise. The base layer (BL) is the one with the lowest bitrate and quality,
when the bandwidth is reduced it guarantees flowing playback. The enhancement layer
(EL) contains additional data, for higher quality.

The changes in quality are achieved by changing the spatial and temporal resolutions
and compressing the bitstream more strongly by e.g. higher quantization. Offering a
stream with different resolution and quality as single layers would lead to en- and decoding
of a video entirely for each parameter. Transcoding a video more than once increases the

24

Figure 3.5: Switching a H.264 video stream by using SI- and SP-Slices. Source: [93, p.
217].

en- and decoding time and usually influences the computational power. Encoding the
stream as a scalable bitstream with the highest desired quality, provides decoding in many
different qualities with different video specifications. This variability and advantages cause
an increase in bitrate compared to single layer non-scalable video coding. But especially
for transmission channels with high packet-loss rates and unstable network connection the
SVC Extension can be very useful. By using so-called Media-Aware Network Elements
(MANEs), information about the transmission channel can be received and used to protect
the most important data of a bitstream, by skipping the ELs and using the lower layers.
For systems with less computational power optionally only the lower layers can be used
[97] [28].

An exemplary SVC Encoder creates a scalable bitstream containing a H.264/AVC
encoder to maintain compatibility, as shown in Figure 3.6. The MBs of the EL can be
predicted from the collocated MB of the BL or by using intra- or inter-prediction with
ELs. Using inter-prediction includes the use of motion vectors (MVs) which can also be
predicted from the corresponding BL. In a conventional H.264 decoder, the decoding of
a MB is looped to prevent errors. As described in [97], SVC decoding uses a single-loop,
to reduce complexity and memory requirement. Decoding a bitstream of multiple layers
also may provide reduced complexity, since partial decoding of the reference layers in
motion compensation may be sufficient. The Reference Layer (RL) MBs that are used
for prediction of other layers, can only be intra-predicted by spatially neighbouring MBs.
The residuals of the ELs can be predicted by using the inter-prediction residuals of the
corresponding RLs [97].

In SVC many extensions to the common H.264 main profile were made. These exten-
sions affect the prediction structures for temporal and spatial scalability, the inter-layer
prediction and MC, the usage of key frames and the compatibility to common H.264
bitstreams. SVC can create bitstreams with bitrates less than 10% higher than those of
common single layer H.264 bitstreams, but containing a scalable bitstream for individual
transmission channels, as explained in [97]. The specific functionalities of SVC are further

25

Figure 3.6: An example for a SVC encoder structure. Source: [97].

Figure 3.7: SHVC decoder principle with two layers. Source: [28].

explained in [97].

3.1.3.3 Scalable extensions of High Efficiency Video Coding

According to Boyce et al. [28], the scalable extension for HEVC (SHVC) uses the HiLS-
only, to create scalable bitstreams. The block structure and coding logic remains the
same as in single-layer H.265 coding. In SHVC also a simulcasting coding principle is
defined and realized in one bitstream, with so-called independent non-BLs [28]. The
inter-layer prediction (ILP) is realized in two different modes. The first one is similar to
H.264’s SVC ILP, by predicting the current macroblock either by using the corresponding
reference layer (RL) or by conventional temporal or spatial prediction in the same layer.
A flag at the prediction unit and coding unit level indicates the way of coding the current
block [28]. In HEVC a reference list contains a number of possible reference pictures for
inter-prediction.

In the second ILP mode, only an index is signalled which indicates the number in
a corresponding reference picture list, together with other temporal reference pictures.
At the PU level, the indices of the reference pictures are used for reconstruction of the
layer to decode. This second reference index approach causes similar coding efficiency, by
leading to some new advantages in comparison to the ILP of SVC, whereby it is the main
model for SHVC [28].

The decoding principle shown in Figure 3.7 by Boyce et al. [28] is based on the
reference index approach with two layers. It outputs a BL and EL and provides backward-
compatibility of the BL, to older MPEG codecs. The input bitstream, that has to be
demultiplexed first, can contain a BL and an EL, or the BL can be sent as an external
BL stream, for example in form of a HEVC, H.264 or MPEG-2 stream. Subsequently

26

Figure 3.8: Two SHVC spatial-scalable layers with temporal sub-layers. Source: [28].

the EL and BL are allocated to the decoders, respectively. The decoder for the EL
has nearly the same architecture as a conventional HEVC decoder, excluding the HiLS-
only structure. The interlayer prediction is applied to the reconstructed BLs from the
picture buffer and afterwards used for prediction of the ELs, via another picture buffer
for the ELs. The discussed decoder in Figure 3.7 [28] contains two layers, but decoding
architectures with more layers are also possible, where the base layer (layer 0) can be
sent externally and all other layers have to be included in the single SHVC bitstream.
Different to SVC, not only single-loop decoding but multi-loop is provided, which allows
the use of RLs of other layers, for interlayer processing. This multi-loop design increases
the complexity for temporal and spatial scalability. As reported in [28], the advantages
of SHVC concern the HEVC single-layer coding architecture, which can be used without
adjustments in the SHVC coding structure. This concerns the MB tree structure, the
context-adaptive in-loop filtering and the coding logic of HEVC. The coding information,
i.e. layer dependencies and interlayer processing types, are made only at the HiLS level.
The implementation of SHVC stays simple due to the possibility of adapting parts of
HEVC.

Another advantage is the reconstruction of the ELs, which can be performed by using
the decoded BLs of the picture buffer and the corresponding motion data [28]. A spatial
scalable-layer architecture is shown in Figure 3.8 [28], with temporal sublayers 0 and 1.
The exact proceeding of SHVC, with the high level syntax and the processing of the
reference pictures is further explained in [28].

3.1.4 AV1 video coding

To push the development of efficient video coding tools on one hand and to be indepen-
dent of HEVC and other royalty-requiring video codecs on the other hand, the Alliance
of Open Media (AOM)5 launched the open project AOMedia Video Codec 1 (AV1). The
AOM is a video technology consortium with 40 members, mainly big hi-tech companies,
like Amazon, Apple, ARM, Cisco, Facebook, Google, IBM, Intel Corporation, Microsoft,
Mozilla, Netflix and Nvidia, just to name the founders. AOMedia Video Codec 1 is fun-
damentally based on Googles VP9 codec, which was first launched in 2013, but could
not overcome entirely the newest demands of compression-efficiency of the last years.

5https://aomedia.org/

27

The first version of AV1 was launched in 2018 and achieves bitrate reductions of around
30%, compared to VP9 [34]. AV1 is also based on fundamental established compression
techniques, similar to the ones of MPEG image-compression like H.264 or H.265. Thus,
block-partitioning, inter- and intra-frame coding with different coding modes for spatial
and temporal prediction, transform coding, entropy coding and in-loop filtering are also
used in AV1. Furthermore, these classic compression technologies are extended and opti-
mized, in a different way than HEVC does, achieving different PSNR values, i.e. coding
efficiency, depending on the referred test and evaluation. With reference to Chen et al.
[34], Grange et al. [56], Daede [37] and Trudeau et al. [113], the basic functioning of block-
partitioning, intra-coding, inter-coding and other adjustments in AV1 are delineated in
the following. The efficiency of AV1 compared to HEVC will be discussed at the end of
this section.

3.1.4.1 Block-partitioning

The tree-structured block-partitioning used in VP9 has some similarities to that of HEVC.
Referring to Grange et al. [56] MBs of a size of 64x64, so-called super-macroblocks (SB),
can be subdivided into smaller sub blocks. At each level of a squared block the decision
of subdividing is made using four different options. Three of these options define the
block, either as a single square block, or two rectangular blocks, divided horizontally or
vertically. The fourth option divides the block into four squared smaller blocks of half
of the current block-size. This method is processed recursively, until the end of block-
partitioning is reached, whereas the smallest possible division is 4x4. As stated in [37],
in AV1 this block-structure is expanded by finer sub-partitioning, allowing partitioning
into quarter rectangular blocks and by increasing the SB-size up to 128x128. Albeit
quarter rectangular blocks can not further be sub-divided. Moreover, block-partitioning
is mode-dependent in the sense, that the minimum or maximum block-size, of 2x2 in some
cases of chroma-inter-prediction or 128x128 are not inevitably available at each intra- and
inter-coding mode.

3.1.4.2 Intra-Coding

Pursuant to Grange et al. [56] and Mukherjee et al. [86], in VP9 intra-coding 10 dif-
ferent prediction modes with block-sizes up to 32x32 are supported: The DC-mode, a
so-called true motion prediction mode and the modes depending on the prediction direc-
tion of the collocated reference MB, like horizontal-, vertical- or directional modes. The
directional modes predict the MB, by using adjacent MBs, i.e. their luma/chroma val-
ues. In VP9 the subsequent transformation of the MBs is performed by a 4x4 transform
and scanned in raster-scan order. The intra-coding in AV1 has been refined and optimized,
due to an increase of available directional modes, improvement of the non-directional pre-
dictors, exploiting the common properties of luma and chroma signals and sequestrated
caring about artificially produced image-content. The generic directional prediction has
eight different modes, caused by eight main directions, with angles between 45 to 207
degrees, of VP9. These can be shifted by an offset or delta of a three degree step-size,
leading to 56 modes in total. Directional prediction requires estimation of pixel values
from neighbouring blocks. The refinement of angles for directional prediction leads to
necessary sub-pixel interpolation for the reference pixels, which is done by 2-tap bilinear

28

(a) (b)

Figure 3.9: (a) Smooth intra-prediction mode in AV1. P as a weighted combination of
TR, BL, T and L. (b) Paeth intra-prediction mode in AV1. Source: [83].

filtering [34] [37]. The smooth prediction mode is introduced in AV1, using horizontal,
vertical or averaged quadratic interpolation of the block to be coded. Starting by edge
pixels, i.e. the rightest pixel of the top row and the bottom pixel of the left row, as
depicted in Figure 3.9a of [83].

Corresponding to Figure 3.9a, with TR = R, and BL = B, the current pixel P is
calculated by a weighted combination of TR, BL, L and T, as described in [83]. In
paeth intra mode, shown in Figure 3.9b, the values of the top (T), left (L) and top-left
(TL) edge reference pixels are regarded and the most matching value is copied [34]. To
detect the best matching value, each pixel value is compared to L + T - TL and the
values with the minimum gradient are copied [83]. In AV1 a so-called chroma from luma
prediction is introduced, where chroma values are defined by incident luma values. The
reader is referred to [34] and [113] for a detailed description of this prediction mode. The
color palette mode is primarily for artificially produced and animated video content
with consistent colors and few distortion, for block-sizes down to 8x8. A color palette of
two to eight base colors can be used to define pixel values and only information about the
palette and indices need to be signalled. Entropy coding is used to reduce the data for
the indices and palette-size values. In Intra_BC mode, whole blocks can be copied from
already predicted areas, which is useful for coding of areas with repeating patterns or
regular background areas, using in-loop filtering to reduce blocking-artifacts at the edges
of the blocks.

3.1.4.3 Inter-Coding

Compared to VP9, the inter-coding in AV1 has extended reference frames and consists of
single prediction modes or paired and averaged prediction of two modes. The prediction
modes depend on the distance of the reference frame and its spatio-temporal similarities.
Inter-prediction generally can be bi-directional or uni-directional like in the latest MPEG
codecs. The exact functioning of inter-coding in AV1 is stated more precisely in [34]. The
MV reference selection is based on spatial and temporal similarities, by creating a list
with best matching candidates. The spatial neighbourhood for MV referencing is wider
than in VP9. In AV1, a so-called overlapped block motion compensation (OBMC) is

29

used, to reduce prediction errors near edges of coding blocks, by combining predictions
from adjacent motion vectors. The warped motion compensation divides the MC into
global and local. Local MC is the conventional detection of motion and 2D displacements
within the 2D scene, signalled by MVs. Global MC refers to camera movements and
movement of the entire scene. According to [34], the compound prediction is a weighted
inter-prediction mode, with two references. The weighting factor is determined based
on a table with regard to different use cases. Different calculation of the weighting and
different combinations of the the predictors lead to multiple compound prediction modes.

3.1.4.4 Transform Coding, Entropy Coding and additional features

Four different transform-types can be used: The DCT and the asymmetric discrete sine
transform (ADST) were also used in VP9. Additionally, a so-called identity transform
(IDTX) and a reverse-order ADST (flipADST) are used in AV1. In IDTX, transform cod-
ing is skipped in a specific direction [34]. Block-sizes between 4x4 and 64x64 are possible
and not only squared, but 1:2 and 1:4 rectangular block-sizes are allowed [45]. Albeit, not
all combinations of transforms are allowed for all inter- and intra-modes. A multi-symbol
arithmetic entropy coding is used for efficient adaptive compression of the symbol-string.
Alphabet-sizes up to 16, for binary and multi-symbols are used and the probabilities
are stored as 15-bit cumulative-distribution functions (CDF) [34]. Many more features
like recursive-filtering for intra-coding, in-loop deblocking filters, grain reconstruction and
super-resolution are established. For more information about the functioning of AV1, the
reader is referred to Chen et al. [34].

3.1.5 Joint Exploration Test Model 7

ITU-T VCEG (Q6/16) and ISO/IEC MPEG (JTC 1/SC 29/WG 11) are working together
in the so-called Joint Video Exploration Team (JVET), to study and develop video coding
technologies, exceeding the performance of current video codecs like AV1 and HEVC [59].
The resulting video coding model is called Joint Exploration Test Model 7 (JEM 7)
[24]. Studying video coding algortihms is a very complex and broad subject, so that
only a short outline of the main changes of JEM, compared to HEVC is given in the
following section, based on the descriptions of [24]. In the performance analysis at the
end of Section 3.1, all three codecs, AV1, H.265 and JEM are considered. For a detailled
describtion of the single coding modules of JEM, the reader is referred to [24]. As JEM
is based on HEVCs core coding scheme, enhancements of single technologies in block-
partitioning, inter- and intra-coding, transform coding, loop filtering and entropy coding,
lead to the performance improvement of JEM. The block-partitioning scheme of HEVC is
changed extensively and simplified, by discarding the separation concept of coding units,
prediction units and transform units and changing the partitioning scheme from the CTB
and CTU structure to a quadtree plus binary tree (QTBT) block strucutre. Hence, the
coding unit, i.e. the processing unit of the leaf-node is the only segmentation unit for
both, prediction and residue-transformation. The main division is the quadtree structure
and finer partitioning of quadtree leaf nodes is done in binary tree order. The shapes
of the binary tree blocks can be either squared or rectangular, as they can be vertically
or horizontally subdivided as depicted in Figure 3.10. Here, solid lines and broken-lines
symbolize quadtree or binary tree division respectively.

30

Figure 3.10: QTBT partitioning scheme of JEM, with vertical or horizontal sub-division
into CUs. Source: [24].

Moreover, the sizes for the CTUs, as the root unit, can be larger than in HEVC
with maximum sizes of 256x256. Furthermore, the partitioning restrictions of HEVC
inter-coding into 4x8 and 8x4 blocks for bi-prediction are discarded in JEM. The concept
of coding blocks for separated chroma and luma processing is maintained. Intra-frame
coding in JEM is extended, compared to HEVC, due to addition of directional intra-
prediction modes, from 32 to 65. Defining the corresponding intra-prediction direction
is done, as in HEVC by selecting a most probable mode (MPM), with a list of several
candidates, that can be used as a reference. Defining the MPM is done by an enhanced
derivation. Additionally, entropy coding is used for data-reduction of the MPMs. For
interpolation in intra-prediction 4-tap filters are used and enhanced boundary filtering,
compared to HEVC is introduced in JEM. As the accuracy of inter-coding mainly depends
on precision of the MVs, in JEM the MV-prediction and MV-resolution are amended.
Further, an overlapped block motion compensation is used, similar to that of AV1. The
used transformations in JEM are adaptive multiple core transform, mode dependent non-
separable transform and signal dependent transform (SDT). The exact functioning of
these modules and the in-loop filters and CABAC are further described in [24].

3.1.6 Peculiarities on 360° video coding and streaming

As already mentioned, 360° video has some special characteristics differing from those of
common planar video, for the single processing steps. The content representation differs
from conventional 2D representation. It is a projected two-dimensional representation
of spherical content, which results in some special treatment of some coding steps, espe-
cially for motion compensation, intra-prediction and inter-prediction. Further, 360° videos
should be displayed in very high resolution, principally when using HMDs for playback,
to prevent the eye from distinguishing between single pixels. To overcome this extremely
high resolution issue, not all parts of the spherical video should be entirely streamed at
all time, or at least at weighted qualities. Thus, interaction between the client and the
server is required, to establish viewport-dependent streaming.

Conventional 2D planar videos contain objects with predictable regular movements,
from one frame to subsequent frames. Motion compensation uses motion-vectors to define
the movement of objects inside a scene. Considering that spherical content needs to
be mapped and frame-packed into a rectangular representation, like cubemaps etc., the

31

Figure 3.11: Motion discontinuity at the cube side borders. Source: [105].

resulting frame is partitioned into e.g. six pieces, each containing one cube side. In this
kind of two-dimensional image representation, objects do not move the classical way. If, for
example, in spherical representation an object moves constantly from one point to another,
it may move from one cube side to another one. In the resulting frame-packed image,
by changing and rotating the cube side, an object would move to a completely different
part of an image, abruptly from one frame to another. Figure 3.11 of [105] illustrates
this problem. Hence, for frame-packing MC needs to be considered, as unrefined classic
motion compensation is less effective in 360° video.

This frame-packing problem also affects intra-prediction. In this case similarities of
neighbouring samples within one frame are used for coding. The conventional sample-
derivation from left and upward co-located blocks, works less efficiently, especially at the
borders of the cubes faces. As a consequence, sample derivation from reference samples
geometrically neighboring in the sphere would be more effective, by frame-packing the
cube sides according to their similarities and regularities, like the approach of Su et al.
in [105]. They introduce a sphere rotation prediction and train a convolutional neural
network (CNN) to pack single cube sides into frames, according to their similarities,
achieving data reductions of about 8% in average, for H.264 and HEVC [105].

Generally, viewport-dependent coding and ROI prediction lead to higher coding effi-
ciency. By defining a content-dependent viewport and ROI, individually from scene to
scene, these parts can be coded in advance at a higher quality, than less important parts
of the image. These characteristics also effect the streaming settings, not just because of
the huge amount of data, that needs to be transmitted, but also due to the peculiarities
of playback and the user’s viewing manners. In conventional broadcasting systems, every
user receiving an conventional live stream can be served with one single multicast session.
In 360° video each user can decide which part part of the video he/she wants to watch,
and accordingly he/she can change the viewport during the streaming session [23].

These peculiarities are the thread of this work and take parts in all sections. They
might not be resolved all in one solution, but should be considered, especially when it
comes to evaluation of a streaming-architecture according to the infrastructure of the IRT.

32

3.1.7 Performance comparison of AV1, HEVC and JEM

Objective performance analysis of current high-efficient video codecs like AV1, HEVC and
JEM is a complex and elaborate scope. Some performance evaluations are not that ob-
jective and their results differ enormously, depending on the used codec-implementation
and version, the used test-sequences and the used evaluation method like PSNR, SSIM
etc., just to name the key aspects. Often, developers of a video codec not only publish the
codec-algorithm and/or implementation but also evaluate the proposed codec, compared
to others, in the aftermath. Self-interest of the companies can not always be suppressed.
Amongst others, the aspects mentioned above explain different results of different evalua-
tions. These circumstances should be considered for the following introduced evaluations.
Only results suitable for the 360° use case are considered in detail in this section, so mainly
high-resolution low-delay content is considered, and lossless or all-intra configurations are
omitted.

Grois, Nguyen and Marpe compare the performance of AV1, HEVC and JEM in [59].
For evaluation the JCT-VC HEVC Test Model HM 16.15 implementation, the AV1 version
of August 2017 and JEM 6.0 were compared to each other. Similar coding parameters
for all codecs and the HEVC and JVET CTC test sets of [32] were used, including Full-
HD, 2K, 4K and 360° video content in equirectangular representation. Here, only classes
A, A1-A3 (UHD), B (1080p) and 360 will be considered, to fit the aforementioned use
case. The 360° content of 8K-resolution is downsampled to 4k to fit the PSNR encoding
comparison. In this case, for fixed quantize-parameter settings, JEM outperforms AV1
with bitrate-savings between 47.7% to 53.9% for the same PSNR values, depending on the
test-sequences. For 360° content, a bitrate-reduction of 51.6% can be achieved. The overall
averaged bitrate-reduction between JEM and AV1 of these classes is around 50%. In this
test-environment HEVC HM 16.15 outperforms AV1 for fixed quantization parameter
(QP) settings for classes A, A1-A3 in average by around 22,25% Bjontegaard Delta bitrate
savings (BD-rate). The same codec comparison for 360° content leads to around 34.8%
BD-rate savings. For high-resolution content the bitrate-savings vary between 12.4% to
31.4% for classes A, A1-A3. VP9 is also considered in [59] and outperformed by all other-
codecs. The evaluations for the multi-pass rate-control encoding configurations match all
in all the listed results for fixed QP-settings. This bitrate reduction usually comes at the
expense of significantly higher encoding times. So in average JEM needs 10.51x more time
for encoding than the selected HEVC configuration. In contrast, the JEM encoder and
the HM encoder are around three and 25-times faster than the AV1 encoder, respectively.
It should be noted, that the AV1 implementation used in this test, is of August 2017 and
hence still an early state of implementation of AV1.

In [98] Dias et al. evaluate the coding efficiency of AV1, HEVC and JEM using a sub-
jective method - the mean opinion score (MOS), according to ITU-R BT.500-13(8)[114]
and PSNR values. The test-set consists of five UHD and five full-HD broadcasting test-
sequences of mainly 50 and 60 fps, in 4:2:0, 8-Bit. Except one in 10-Bit and one with
25 fps. The implementations used are HEVC HM 16.10, of summer 2016, AV1 of Jan-
uary 2018 and JEM 7.1 of October 2017. Noticing that the used HM implementation
is obviously older than the other two. Nevertheless, with the proposed configurations,
HM and AV1 achieve similar coding efficiency, measured by MOS. Generally, a quality
gain for higher-bitrates is less visible than for lower bitrates. So a sequence encoded at
12 Mbps might look similar to a sequence of 15 Mbps, whereas the difference between

33

a sequence of 0.5 Mbps compared to 3.5 Mbps is much more apparent. For MOS and
PSNR evaluation in this test, JEM achieves significantly higher coding efficiency than
the other two, especially for lower bitrates. At higher bitrates the quality improvement is
less clear and in some cases HM and AV1 achieve comparable qualities and in some cases
one of both has higher coding efficiency than the other. The bitrates for the same PSNR
values of HM and AV1 are quite similar, calculating the overall PSNRyuv. In the test only
the single PSNR values for Y,U,V are listed, which differ among themselves. For similar
PSNR and MOS results HM 16.10 outperforms AV1 with respect to 106x faster encoding
times and four times faster decoding than AV1. As JEM outperforms both significantly
in terms of bitrate-savings measured by PSNR, the encoding and decoding times are 5x
higher compared to HM. The coding times depend on the used configuration, resulting in
faster encoding of AV1 when other faster presets are used. This is accompanied by a loss
of coding efficiency.

In terms of bitrate-reduction of JEM over AV1 and HEVC Laude et al. come to similar
results in [74]. HEVC HM 16.16, JEM 7.0 and an early AV1 implementation6 were eval-
uated for intra-only, low-delay B, and random-access configurations, measured by PSNR.
For coding of high resolution content with inter-coding configurations, that matches the
streaming-scenario, HM achieves considerable bitrate-reductions of around 38.3% for RA-
configurations and 34.3% for low-delay configurations over all test-sequences. For UHD
content the bitrate overhead of AV1 is less drastic, leading to bitrate savings for HM of
17% for RA-configurations and 14.9% for low-delay-B configurations, in average for classes
A1 and A2. The compression efficiency of JEM is crucial, compared to the others, with
average bitrate-reductions of 38.7% and 31.1% for classes A1 and A2 in RA-configurations
and 25.1% and 30.4% in low-delay-B configurations, respectively over HM and AV1. Due
to these results, one could expect higher complexity, leading to higher encoding-times
for JEM. In this case, the AV1-encoder needs 32.6x and 21.9x of the HM-encoding-time,
for RA and low-delay-B configurations respectively. The decoding-time of both is com-
parable, and slightly faster for the AV1 encoder. The JEM decoder in this case is the
slowest.

Another test, of Chen et al. [34], comparing AV1, VP9 and x265 for mid-res source
files, comes to different results. Compared to the x265 implementation of HEVC, bitrate-
savings of AV1 of around 22,23% for full-HD content, evaluated by PSNRy are measured.
For chroma these measured savings are even higher. Nevertheless, this test does not fit
exactly the proposed use case, as only mid-res sequences were tested and no UHD content
or higher has been evaluated.

6AV1 Version 0.1.0-5913
1Classes A (2K), A1-A3 (UHD)
2Fixed-QP settings
3360° content
4Rate-Control settings
5MOS
6BD-rate PSNRY
7RA-configuration
8Low-Delay B
9Classes A1, A2 (UHD)

10Calculated based on the given BD-rate / encoding time ratios of JEM vs HM and HEVC vs AV1
11Equirectangular projection
12Rotated Sphere projection

34

Parameter Grois et al.
[59]

Dias et al.
[98]

Laude et al.
[74]

Chen et al.
[34]

Topiwala et
al. [112]

Implemen-
tation

HM 16.15
AV1 (Aug.
17) JEM
6.0

HM 16.10
AV1 (Jan.
18) JEM
7.1

HM 16.16
AV1 0.1.0
(2016) JEM
7.0

x265 AV1
(Apr. 18)

HM 16.15
x265v.2.4
AV1 0.1.0
(2016) JEM
6.0

Coder Config-
uration

Fixed-QP,
Multipass
Rate-
Control,
RA

Fixed QP,
RA

Fixed-QP,
RA, Low-
Delay B

Fixed QP
- Constant
Quality
(CQ), Mul-
tipass Rate-
control

CQ 1-pass,
target bi-
trate 2-pass

Test-Set CTC JVET
(2016) CTC
HEVC
(2013)

5x UHD
5x Full-HD
Broadcast-
ing Content

CTC JVET
(2017)

AWCY
Full-HD
and lower-
res. content

8k JVET
test set
(year n.a.)

Year 2017 2018 2018 2018 2017
Evaluation
Method

BD-Rate/
PSNR

MOS (ITU-
R BT.500-
13) and
BD-Rate/
PSNR

BD-Rate/
PSNR

BD-Rate/
PSNR

BD-Rate/
spherical
PSNR
evaluations

Bitrate-
savings [%]

JEM vs
HEVC

−32.15%1,2

−26.0%3,2

−30%5

−32%6

−38.7%7,9

−25.1%8,9

n.a. −26%6,11
HM

−21%6,12
HM

HEVC vs
AV1

−22.25%1,2

−34.8%2,3

4.0%5

−5.0%6

−17.0%7,9

−14.9%8,9

22.23%6 −15%6,11
x265

−12%6,12
x265

JEM vs AV1 −50.0%1,2

−51.6%2,3

−35.4%10,6 −31.1%7,9

−30.4%8,9

n.a. −51%6,11

−51%6,12

Encoding-
times

JEM vs
HEVC

10.51x2 5x 10.35x7,9

8.9x8,9

n.a. n.a.

HEVC vs
AV1

0.04x2

0.05x4

0.0094x

AV1 106x

over HM

0.024x7,9

0.033x8,9

n.a. n.a.

JEM vs AV1 0.37x2

0.52x4

0.047x10 0.25x7,9,10

0.29x8,9,10

n.a. n.a.

Table 3.1: Overview of particular evaluation results by [59], [98], [74], [34] and [112] for
HEVC, JEM and AV1 codecs.

35

Considering the sought 360° streaming use case, the test of Topiwala et al.[112] is also
appropriate. The used test set consist of five 8K 30fps 4:2:0 YUV 360° sequences of 8
to 10 bit-depth, from a JVET test set, not further described. Equirectangular projection
and Rotated Sphere projection (RSP)[22] are used for sphere-to-planar mapping. For
evaluation of the different codec-implementations, specific spherical PSNR measurements
are used, which are stated in [112]. The implementations are HM 16.15 for HEVC, JEM
6.0 and AV1 version 0.1.0 from 2016 for constant quality, 1-pass vbr encoding and x265
2.4 replacing HM for target bitrate 2-pass encoding. Before encoding the test-sequences
into AV1, HEVC and JEM, the 8K source clips are downsampled to 4K resolution. Af-
terwards they are encoded and subsequently up-sampled to 8K, presumably to overcome
computational-power issues and run-time problems. The results conform to those of the
above mentioned tests, with JEM outperforming AV1 and HEVC. An average bitrate
reduction of around 26% of JEM to HM for ERP and 21% for RSP is documented, for
all spherical PSNR measurings, of the luma component. The contrast between JEM and
AV1 is even higher, as with -51% BD-rate for ERP and RSP for PSNR Y, JEM needs
around half of the bitrate than AV1 at a comparable quality-level. Even the x265 imple-
mentation at target bitrate encoding outperforms AV1 with around 15% bitrate savings
for ERP and around 12% for RSP, for PSNR Y. For exact values of the single PSNR
Y,U,V components for each sequence, the reader is referred to the paper of Topiwala et
al. [112]. The gap between the presented results of all tests, might also be caused by
the different versions, implementations and encoding configurations used. An excerpt of
certain results of the referred tests of Grois et al. [59], Seixas Dias et al. [98], Laude et
al. [74], Chen et al. [34] and Topiwala et al. [112] is given in table 3.1.

3.2 Video streaming technologies

Constant quality and constant playback are a key for video streaming of an immersive
audiovisual experience. As a consequence, the main demands on streaming scenarios and
the prior coding, are handling the varying network coverage and transmission quality,
saving computing power and hereby energy consumption and simultaneously maintain
adequate subjective and objective video quality [78]. Regarding streaming scenarios most
important for a constant fluent playback is to control the transfer rate to let the data ar-
rive before it has to be displayed. This section first treats basic HTTP streaming roughly
and outlines streaming technologies, especially attractive to 360° video and scalability.
Thus, with respect to 360° video, the approach of adaptive streaming using tiles is intro-
duced and approaches of predicting the ROI and FOV are presented. Afterwards MPEG
Dynamic Adaptive Streaming over HTTP (DASH) as a common and effective streaming
standardization over HTTP is explained in Section 4.1.2. It has been developed by MPEG
and published in 2012.

Unlike as in traditional broadcast scenario, for streaming per internet a direct con-
nection between each client and server, hosting the video content is established. For the
data transfer several transport protocols are used, to standardize the communication, i.e.
requests of the client and responses of the server. It is useful to distinguish between
on-demand and live streaming, to select the respective streaming enviroment, i.e. pro-
tocols, specifications etc. Popular protocols for on-demand access are HTTP and FTP,
whereas protocols for live streaming are RTP, RTCP, RTSP, SIP [81]. Figure 3.12 illus-

36

Figure 3.12: Streaming workaround and architecture to categorize the used technologies.

trates the overall principle of a streaming architecture and the relations inbetween the
used technologies and protocols.

3.2.1 HTTP and RTSP

Hypertext Transport Protocol
The Hypertext Transport Protocol (HTTP) is the most common protocol, used since

1990 for communication between clients and servers. After a TCP connection is estab-
lished, the process consists of a request of the client and a corresponding response of the
server, containing hypertext links to other files [104]. As described in [44], the nowadays
supported HTTP request lines are GET, HEAD, POST, PUT, DELETE, CONNECT,
OPTIONS, TRACE, even though only GET, HEAD and POST where established in the
HTTP 1.0 version. These are the most important request start-lines to understand how
HTTP works and are delineated in this paragraph. According to [43], a basis HTTP
request (Version 1.1.) appears as follows:

1 −−−−−−−−−−−−−−−−−−−−−−−−
2 Request−l i n e j Start−l i n e
3 Message−header
4

5 [message body]
6 −−−−−−−−−−−−−−−−−−−−−−−−

Using the command GET, requests a transfer of a target resource and is the primary
mechanism of information retrieval [44]. The command GET is followed by a URL,
addressing the server and the corresponding HTTP version. The request to an example

37

server with HTTP 1.1 using GET could appear like this:

1 −−−−−−−−−−−−−−−−−−−−−−−−
2 GET http ://www. example . com/ pub l i c / ob j e c t . html HTTP/1 .1
3 Host : www. example . com
4 User Agent : Moz i l l a /5 .0 . . .
5 Accept : t ext /html . . .
6 Accept−Encoding : gzip , d e f l a t e , sdch . . .
7 Accept−Language : en−US . . .
8 Accept−Charset : ISO−8859−1, utf −8;q=0.7 ,∗ ; q=0.3
9 Cookie : . . .

10 −−−−−−−−−−−−−−−−−−−−−−−−

To request the file directly from a certain origin server the host can be directly ad-
dressed. A response message consists of a status line, headers and the body. The status
line again is composed by the HTTP version, a status code and the status phrase. An
example is depicted below:

1 −−−−−−−−−−−−−−−−−−−−−−−−
2 Status−Line
3 General−Header j Response−Header j Entity−Header
4

5 [message body]
6 −−−−−−−−−−−−−−−−−−−−−−−−

For the status code, various responses like "200 OK", "100 CONTINUE" or
"202 ACCEPTED" are possible, just to name a few. They are divided into five groups with
according code-numbers in the brackets: informational (1xx), successful (2xx), redirection
(3xx), client error (4xx), server error (5xx). For the above named GET request a typical
server response could be:

1 −−−−−−−−−−−−−−−−−−−−−−−−
2 HTTP/1 .1 200 OK
3 Server : nginx /2 . 0 . 1
4 Connection : keep−a l i v e
5 Content−Type : t ext /html ; cha r s e t=utf−8
6 Via : HTTP/1 .1 GWA
7 Date : Wed, 31 Oct 2018 12 : 16 : 22 GMT
8 Expires : Wed, 31 Oct 2018 12 : 16 : 22 GMT
9 Cache−Control : max−age=0, no−cache

10 Transfer−Encoding : chunked
11

12

13 100
14 <! doctype html>
15 (content)
16 . . .
17 −−−−−−−−−−−−−−−−−−−−−−−−

In this case, first the request of the resource is confirmed by "200 OK" and header
information is delivered beneath. Ensuing, the requested HTML content is transmitted.
The request line HEAD is quite similar to GET, but instead of requesting the whole
resource, only the header is requested. This can be used for the delivery of metadata of
the resource, without transmission of the whole payload. The command line POST can
be used for delivery of packages to the server, i.e. block-data, as an input of a HTML

38

form, messages or mails etc. or as extension of requested resources. The response in this
case could be "201 created".

HTTP Pseudo Streaming
This paragraph is based on the descriptions of Longolius in [81]. Accordingly, many

providers transmit audiovisual content via HTTP progressive download or HTTP Pseudo
streaming. In this case, the data-stream is requested from a server by HTTP, but the
content is accessed before finishing the download. The simplicity of the HTTP protocol
makes it very easy to establish. To access the data before it has been received entirely,
some adjustments of the audio-visual content have to be done. Technically, the header
of a video stream is located at the end of the bitstream, with important information for
correct decoding. So the header of a video stream has to be put from the end to the
beginning of the bitstream, preventing access errors. HTTP pseudo streaming is based on
this idea, extending the basic principle by some extra functionalities. It can be considered
as a client-based solution, since the server only hosts the video file and no extra protocols
or implementations are needed. The client has the software and computational power
to decode and display the incoming bitstream correctly, by first downloading the video
header and following media parts subsequently. By limiting the bandwith or transferring
the file in split parts the provider can reduce waste of traffic resources and client-sided
buffers can prevent from unfluent playback, caused by unstable network conditions. To
provide random access at every position of the video stream some special treatment is
necessary. In this case, the client requests the bitstream at a certain point Y, represented
by a certain Byte Y. So first a new modified header, with a new starting point Y of
the bitstream is transmitted and subsequently the following parts, so it appears to be a
new video stream. Since most video files have a group of picture (GOP) structure, with
reference- or key-frames and predicted-frames and dependencies from inter-coding as a
consequence, point Y has to be modified, corresponding to the next reference frame.

As described in [81], apart from that, there exist the TCP and UDP protocols i.a.
They are designed, to reduce overload and traffic waste, to enable live streaming and to
provide quality of service (QoS) (TCP only) and interaction between client and server.
In this case, only the desired and requested parts of the video stream are transmitted
and adaptation to the available bandwidth is done by changing the video stream. In
TCP QoS is included by transmitting packet-recipes, informing about possible package
loss, by measuring the time needed to transmit a certain package. A threshold is set
by a so-called Retransmission Timer, defining the time to restart the transmission of a
certain data-package. UDP has less included functionalities and QoS is not automatically
included, but hereby has more possibilities for extensions. As TCP, UDP and other
protocols do not play an important role for the implementation of the 360° stream at the
end of this work, they will not further be discussed.

Real-Time Streaming Protocol (RTSP)
This paragraph refers to the RFC 7826 documentation of Schulzrinne et al. [96]. Cor-

respondingly, RTSP and its successor RTSP 2.0 have been designed for delivery of data
in real-time scenarios, to establish a stateful communication between client and server.
Noticing, that the syntax of RTSP 2.0 has slightly changed to its predecessor. Moreover,
it is worth to be note, that RTSP 2.0 uses TCP and TLS over TCP obligatorily for all

39

RTSP messages, indicating, that UDP is no longer supported for RTSP (2.0) message
transport. In contrast to HTTP a stateful session is established by a RTSP server af-
ter a successful "SETUP" request of the client. In "SETUP" the requested resource, the
streaming type (unicast/ multicast), RTP/AVP and the corresponding port are specified.
This initiated session is maintained until a certain time-out by the server or explicit re-
moval via a "TEARDOWN" request of the client. Different session-states can be triggered
by certain client requests and are maintained by a so called session state machine of the
RTSP server. One single or multiple media streams can be associated to one single RTSP
session and controlled by the RTSP server. RTSP is bidirectional, providing requests
and responses for both sides. RTSP consists of three main steps: The establishment of a
session, the media delivery control and the extensibility model [96]. The media delivery
is based on RTP, using UDP/ TCP or RTSP connection. The transmission of the stream
is controlled by RTCP. Detailed information about RTP and RTCP are stated in [95] and
[61] and will not be further expounded. Different to conventional HTTP, during a media
transmission positioning and searching within the media content is possible and the client
can send requests to start, stop or pause a stream. By extra configurations this is also
possible in HTTP, but it is not automatically included. In RTSP, the message lines are
either requests or responses. A request consists of a method line, header information and
a message body. The method line, identifies the used method, the protocol version and
the resource information. The host is delivered as URI, where IP4 and IP6 are included.
The message header defines the body length, i.e. the length of the submitting data. A
RTSP request is composed as follows:

1 −−−−−−−−−−−−−−−−−−−−−−−−
2 Request−l i n e
3 ∗ ((genera l−header / request−header / message−body−header)CRLF)
4 CRLF
5 [message body data]
6 −−−−−−−−−−−−−−−−−−−−−−−−
7 Request−Line = Method SP Request−URI SP RTSP−Vers ion CRLF
8 −−−−−−−−−−−−−−−−−−−−−−−−

Possible request-lines in RTSP 2.0 are:

1 DESCRIBE, GET PARAMETER, OPTIONS, PAUSE, PLAY,
2 PLAY NOTIFY, REDIRECT, SETUP, SET PARAMETER, TEARDOWN

The reader is referred to [96] for detailed functioning of these requests. An exemplary
"PLAY" request, after successful establishment of a RTSP session, between client C and
media server M is depicted below:

1 −−−−−−−−−−−−−−−−−−−−−−−−
2 C−>M: PLAY rt sp ://media . example . com/media . 3 gp RTSP/2 .0
3 CSeq : 835
4 Ses s i on : yd21lyv
5 Range : npt=0
6 Seek−Sty l e : RAP
7 User−Agnet : PhonyClient /1 .2
8 −−−−−−−−−−−−−−−−−−−−−−−−

The response starts correspondingly with a response line, the used protocol and ver-
sion, the status code and the reason phrase:

40

1 −−−−−−−−−−−−−−−−−−−−−−−−
2 Status−l i n e
3 ∗ ((genera l−header / response−header / message−body−header)CRLF)
4 CRLF
5 [message body data]
6 −−−−−−−−−−−−−−−−−−−−−−−−
7 Status−l i n e = RTSP−Vers ion SP Status−Code SP Reason−Phrase CRLF
8 −−−−−−−−−−−−−−−−−−−−−−−−

The Status-codes in the RTSP server response resemble to HTTP and are: 1xx in-
formational, 2xx success, 3rr redirection, 4xx client error, 5xx server error. A possible
response, containing the necessary information of the RTP packet with the media content,
corresponding to the preceding request is depicted below:

1 −−−−−−−−−−−−−−−−−−−−−−−−
2 M−>C: RTSP/2 .0 200 OK
3 CSeq : 4
4 Server : PhonyServer /1 .0
5 Date : 06 Nov 2018 12 : 32 : 23 GMT
6 Ses s i on : yd21lyv
7 Range : npt=0−634.10
8 Seek−Sty l e : RAP
9 RTP−I n f o : u r l="r t sp ://media . example . com/media . 3 gp/ trackID=4"

10 s s r c=0D12F123 : seq=12345; rtpt ime=3450012 ,
11 ur l="r t sp ://media . example . com/media . 3 gp/ trackID=1"
12 s s r c=4F312DD8 : seq=54321; rtpt ime=2876889
13 −−−−−−−−−−−−−−−−−−−−−−−−

Conventional HTTP pseudo streaming and RTSP differ in terms of use cases and
transmission configuration and result in different advantages for different scenarios. Some
of them are noted hereafter based on the aforementioned properties. First, the interop-
erability, compatibility and network configurations differ noticeably. HTTP is a common
and extensively used protocol, supported by nearly every common network device, server
and client. Less configuration steps and few requests and responses are needed to establish
a media transmission. RTSP needs to setup a session with more communication steps for
delivery. In case of varying network conditions and transmission errors, HTTP and RTP,
used in RTSP for transmission, have different key solutions. In case of package loss, RTSP
clients skip expired RTP packages, to maintain signal-reliability and low-delay transmis-
sion. On the other hand, that is, parts of the mediafile will not be received and can not be
played at all. Users accustomed to stops and re-buffering might prefer watching the video
with pauses, instead of omitting whole parts just to maintain low-delay. Nevertheless, this
depends on the user’s watching behaviour, the use case and the importance of the (live-)
event to be displayed. Special streaming architectures based on HTTP are discussed in
Section 3.2.2 and 4.1.2, addressing aforementioned problems of HTTP streaming.

3.2.2 HTTP Live Streaming

As already stated, live streaming needs some special treatments, due to particular main
demands, differing from those for conventional video on demand (VOD) streaming:

• High distribution-rate, due to provide simultaneous delivery to many clients.

41

Figure 3.13: HLS streaming architecture. Source: [65].

• Low-delay delivery in terms of recording, live encoding, uploading, server speed and
bandwidth.

• Constant-quality: Fluent playback, without drastic changes in perceived quality.

These main demands are not covered by HTTP pseudo streaming imminently. In
2009, the so called HTTP live streaming (HLS) [64] was launched by Apple Inc. defining
a streaming architecture, based on the HTTP protocol, transmitting audiovisual content
over conventional servers, for VOD and live streaming scenarios. Using the simple and
popular HTTP protocol provides compatibility, simplicity of integration and configuration
of the servers. According to the corresponding RFC document [92] and the descriptions
of Apple in [65] the following specific transmission and processing scheme is used. First,
the source material needs to be H.264 or H.265 encoded, hence no other codecs are
supported. After encoding, the media representation is segmented into multiple parts,
i.e. short media files. An index file list referred to as playlist is created, defining the
file-order for re-segmentation. These single split media parts and the corresponding index
list are stored on a web server separately. A client, requesting the resource, first retrieves
and accesses the index file and subsequently requests the listed media parts in the desired
order. During data-retrieval and playback, the segmented single media parts are merged
to avoid breaks. This scheme is depicted in Figure 3.13 of [65].

In detail, the h.264/h.265 encoding or transcoding and segmentation of the audiovisual
resource is made by the server module. For live-sessions, a live encoder is required,
providing real-time low-delay encoding and outputting a MPEG-2 transport stream (TS)
or a fragmented MPEG-4 file (fMP4). For segmentation, apple suggests the use of its
own media stream segmenter, creating the single media parts of equal length as single
MPEG-2 transport streams, i.e. .ts files or fragmented MPEG-4 files and the related
index list, in .M3U8 format. On client side, the segmented media parts need to be re-
assembled and merged using the index file, where the ordering and location of the media
parts, the decryption keys and any alternating available representations are listed. The
"EXT-X-ENDLIST" tag in the index file defines the end of the media stream. That is, for
a running live-stream without expiration, this tag will not appear. To reduce storage
resources and bandwidth requirements, the index files can be compressed by zipping.
After a client request they are automatically unzipped. Further, it is possible to use

42

stream alternates, to switch the media representation quality dynamically, for the change
of bandwidth or different playback devices, as stated in [67]. In this case, a master index
file is downloaded once, pointing to the alternating index files. For live streaming the
alternate index files are updated periodically and the client chooses an adequate alternate
quality representation, depending on its network conditions. In case of delivery errors,
due to server crashes etc. these alternate streams can also be used as redundant streams.
This is depicted in Figure 3.14 of [67]. In this case same media representations are located
at different server locations and listed separately in the master index file. An exemplary
representation of a conventional index file of Apple in [66], with three un-encrypted media
parts of 10 seconds length is illustrated hereafter:

1 −−−−−−−−−−−−−−−−−−−−−−−−
2 #EXT−X−VERSION:3
3 #EXTM3U8
4 #EXT−X−TARGETDURATION:10
5 #EXT−X−MEDIA−SEQUENCE:1
6

7 # Old−s t y l e i n t e g e r durat ion ; avoid f o r newer c l i e n t s .
8

9 #EXTINF:10 ,
10 http ://media . example . com/segment0 . t s
11

12 # New−s t y l e f l o a t i n g−point durat ion ; use f o r modern c l i e n t s .
13

14 #EXTINF: 1 0 . 0 ,
15 http ://media . example . com/segment1 . t s
16

17 #EXTINF: 9 . 5 ,
18 http ://media . example . com/segment2 . t s
19

20 #EXT−X−ENDLIST
21 −−−−−−−−−−−−−−−−−−−−−−−−

3.2.3 Caching - Edge and origin server principle

Usually, a video stream is addressed not only to a small group of users, but to many users
at the same time. Depending on the specifications of a single streaming server, a limited
number of users can be supplied. To overcome a server and bandwidth overload, multicast
single servers access the requested media data from a certain single storage module. The
servers storing the content can be called origin servers and the interposed caching servers
can be called edge servers. In this way, when many users request the same content, the
edge server only needs to access the content once and can divide it accordingly. Less
demanded video streams can be deleted to maintain storage space and computational
power for frequently requested streams [81]. This principle is depicted in Figure 3.15.

According to [81], in this case, first the (live-)content is transcoded and transmitted to
an origin server, which is not accessible directly by a client. After the request of a client,
a load balancer selects a suitable edge server, to balance the payload on each server
homogeneously, optimally regarding the servers resources and the clients requirements.
The more client requests of different content, the more requests and responses between
origin and edge server and hence the more complex the distribution.

43

Figure 3.14: Structure of stream alternates, with a master index-file and index files of the
corresponding media alternates. Source: [67].

3.2.4 Multicast and unicast streaming

A unicast transmission is a widely used and supported way to transfer media content from
the server separately to each user. It is easy to establish and supported by all kinds of
networks, using the TCP transport protocol [41]. Nevertheless, unicast streaming has its
limits when many users request the same content simultaneously, due to missing scalability
options.

Multicast transmissions aim to reduce a potential server overload, by sending a single
packet to a group of users, from one or more distribution points and with one particular
IP adress [25]. In this case, the administration of delivery is done by the network routers
instead of the streaming servers [25]. Hereby, up-scaling of content distribution is more
effective, at the cost of less adaptivity to the individual bandwidth requirements of the
users. It is worth to be note, that mulitcast usually uses UDP protocols, due to more
implementable options and extensions [41]. Compared to unicast, bandwidth savings are
reduced, so multicast requires 1/N of bandwidth, with N: separate unicast clients [41].

3.2.5 Cloud transcoding

The term cloud transcoding is commonly used in relation with video streaming. Albeit,
it only defines that transcoding of audiovisual content is not exclusively done before dis-
tribution by a hard- or software (live-)encoder, but at a transcoding server module. Most
cloud transcoding services provide an all-in-one solution for processing and distribution of
the media files. Consequently, a cloud transcoding service consists out of several modules
for different processing steps, depending on the used service. These can be generally di-
vided into video processing and distribution, i.e. transcoding server and streaming server.
Video-processing includes the transcoding into multiple different video formats. The dis-
tribution is conventionally done by a CDN, suitable for different users and devices. Cloud

44

Figure 3.15: Principle of the origin-edge server architecture, scalable by different optional
origin server Levels, based on [81].

45

transcoding is used especially by customers with varying capacity demands. Capacities in
the cloud are easily scalable, so additional transcoding engines can be enclosed for simul-
taneous transcoding of several projects and media files. This procedure can save encoding
time and costs and provide a wide range of available formats and distribution ways for the
content provider. The cloud transcoding service provider, on the other hand, can manage
the coding jobs for all of their customers according to all resulting capacity-demands.
Examples for these cloud transcoding services are the Amazon Elastic Transcoder7 or the
solutions of Akamai8 or Google9 just to name a few.

3.2.6 Viewport-adaptivity and tiles

This section gives an overview of the principle of viewport-adaptive tiled streaming. The
latter Section 4 gives a more detailed insight into the scope of possible combined viewport-
and bandwidth-adaptive tiled streaming approaches. This section outlines the overall
principle of viewport-adaptivity and describes the related modules. To overcome huge
bandwidth-consumption and equally-weighted quality, the concept of viewport-adaptive
systems is a powerful solution. The main idea is to transmit the entire 360° content to
the client, but with differently weighted parts of quality. Completely omitting parts, less
probably chosen by the viewer leads to black pauses and re-buffering, causing disagreeable
impairments for an immersive 360° experience. Hence, streaming the entire content but
with regions of different quality and adjusting the quality of the corresponding region,
when the user shifts the FOV, is preferable. This process should not produce a high
delay, i.e. higher than around 10ms [36], to not impair the viewing experience. For this
purpose, the concept of tiles can be used, which was broached earlier in this work. In the
context of content delivery, tiling means delivery of content in separated parts or tiles,
each of which representing a small region of one single video frame. It should be noted,
that a higher number of tiles can increase the storage resources of the server, but smaller
tiles can map the viewport more accurately.

Combining those two concepts, enables the transmission of tiles covering the viewport
at a higher quality, i.e. encoded at higher bitrate and/or higher resolution, whereas
all other tiles are streamed at lower qualities. This requires a constant exchange of
information about the change of viewport and a server system capable to switch the
stream with low-delay. Due to this low-delay use case, each single tile of each quality
level needs to be available at the server. The following example illustrates this concept of
creating tiles in different quality representations.

For instance, regarding a video sequence of 7680x3840 resolution can be split into
e.g. 8 squared tiles, each of which of 1920x1920 pixels. This equirectangular 360° video
lasts 12 seconds and is HEVC encoded at 8K60fps at 50 Mbps. The resulting number
of frames is 720. The selected number of tiles is 8, leading to 5760 tiles for one single
quality level. The simplest viewport adaptivity would be to stream all viewport tiles at
best quality and all others at one lower quality, i.e. two quality levels. The best quality in
this case would be e.g. 8K tiles at 8 Mbps, the lower quality could be of lower resolution
or bitrate, accordingly 4K at 1 Mbps. Consequently the resulting sum of tiles, for our

7https://aws.amazon.com/de/elastictranscoder/
8https://www.akamai.com/de/de/resources/video-transcoding.jsp
9https://cloud.google.com/solutions/media-entertainment/use-cases/live-streaming/

46

Figure 3.16: Viewport-adaptive tiled content distribution.

12s 360° video would be 11520. Moreover, these tiles need to be packed, e.g. as tile-
tracks, to be available for the client. The exact principle of creating tiles, tile-tracks and
a segmentation structure for distribution is explained in Section 4.1.5.

This example illustrates, that creating an adaptive architecture, with tiles at multiple
quality levels is a complex task, especially for live streaming. When the viewer changes
the viewport, the corresponding client needs to send a request for the updated tiles to
the server. The server module changes the tile-representations accordingly, for a sequence
of time s. This system as a much higher server storage consumption than a conventional
streaming system, increasing with the number of quality levels. Simultaneously, this adap-
tivity should not only address viewport changes, but also network conditions. Combining
it to the bandwidth adaptive DASH-architecture is possible, which is discussed in Section
4. Moreover, the concept of tiling depends on the 2D-mapping. For an equirectangular
2D-representation, tiling can be easily conducted, as all neighbouring tiles are neighbour-
ing regions of content. For instance, a frame-packed cubemap might better be tiled along
the cube side edges. Figure 3.16 depicts the scheme of viewport adaptive tiled streaming
systems.

3.2.7 ROI and FOV prediction

Adaptive tiled streaming can be one solution to overcome huge data-rates of even high-
efficiently encoded 360° videos. Thus, the common process is comprised by action of the
viewer and reaction of the server, i.e. delivering module. In Figure 3.17 an interaction
chain of common 360° streaming applications is illustrated. In most cases the whole
360° content is delivered, although with variable quality regions and viewport adaptive at
best. The user changes his viewport to neighbouring parts, usually when another region
attracts his/her interest. As a consequence, another part than the current viewport has
to be displayed. Thus, initially only parts with lower quality can be displayed. After
re-sending information of this viewport change from the client to the server, the FOV is
updated. So after all, by changing the bitrate of the requested new tile, the quality is re-
enhanced. This action of the viewer, resulting in a request to the server and subsequently
transmitting new parts of higher quality to the client, lasts a few perceptible moments,
depending on bandwidth and computational power of the server and CDN module. This
change of stream is perceptible, so the viewer first watches a sequence of low quality

47

Figure 3.17: Interaction chain for FOV-updating, causing delay and bitrate-overhead.

which changes abruptly to high quality and disturbs the immersion. Moreover, an abrupt
change of about 180° of the viewport is unusual. Consequently, transferring all content
at all time at homogeneous quality, wastes bandwidth resources and lowers the overall
quality.

All those approaches of adaptivity and scalability depend on the question of the view-
port: When does the viewer move his/her head in what direction? And ergo: Which area
of the 360° video should be transmitted at which time, to display it exactly when it is
needed? Predicting the FOV, i.e. the area, where the user will turn to most probably and
transferring only that parts, the user will fixate most likely, could avoid sudden changes
in quality. By this more bandwidth for fever parts of the whole spherical video content
can be provided, resulting in an increase of perceived quality.

3.2.7.1 Image saliency maps

One way to define that ROI is by creating so-called image saliency maps (ISM). There
has been a lot of research concerning the classification of image regions, sensitive for the
HVS. One initial model for saliency detection was proposed by Itti, Koch and Neibur in
[68]. An overview of different methods for image saliency is given by Borji et al. in [27].
In the following section the approach of an advanced method by Shi, Yan, Xu and Jia
[99] for creation of image saliency maps is introduced and roughly delineated, based on
their corresponding paper. ISMs classify reagions of images according to their saliency
or importance for a human viewer. Usually, defining the image saliency encompasses
eye-fixation habits and object detection and estimation. As aforementioned, segmenting
these regions for a single picture, according to their saliency, can be of considerable
interest for creation, processing and transmission of video content, especially 360° video.
Generally, object detection and image analysis can be done, by image transformations
and pixel comparison, according to their luma- and chroma-values. Common problems in
this scope occur, when areas with less interest for the viewer are classified as high salient
or the opposite way, when important regions with homogeneous content are classified as
background. In [99], for construction of the saliency map, three layers based on the original

48

(a)

(b)

Figure 3.18: a) Original image (left), Resulting over-segmented layer (second left) and
three layers of regions with merged segments by different thresholds. b) Original image
(left), three layers of saliency cue maps (right-sided) with resulting final saliency map
(rightest). Source: Shi, Yan, Xu, Jia [99].

image are computed. These three layers are of different detail levels, but all of lower detail
than the original. The base-layer is calculated based on an over-segmentation of the source
image. This over-segmented layer, is generated by the watershed transformation (WST).
Based on this, for each segmented region of the image, a scale-value is calculated and
applied. Regions below a certain threshold are merged to the next neighbouring segment,
neighbouring in the sense of CIELUV color distance. This first base layer is the one with
the highest detail level, i.e. number of segments and lowest threshold. The mid and high
layers are calculated the same way, only with higher thresholds, to reduce the number
of segments. Figure 3.18a shows the WST-generated layer and the resulting three layers
of different granularity. Additionally, the regions are analysed in terms of color, size and
position. As the HVS is more sensitive to high-contrast edges and objects allocated to
the center of an image, saliency cue maps are generated. The local contrast and objects
positions and size are used as weighting factors. Based on those three resulting saliency
cue maps a final saliency map is calculated, considering refined hierarchical inference, as
depicted in Figure 3.18b.

3.2.7.2 Neural network based FOV Prediction

Creating image saliency maps is an important base for the prediction of the user’s view-
port. Since at this time FOV prediction is a very recent and emerging technology yet,
only the approach of Fan et al. [42] is considered. It is picked as an example, to show
possible enhancements by using neuronal networks for FOV prediction. With reference
to [42], in the following, the functioning of this approach is briefly described.

They use two neural networks, combining content-related information of the image and
sensor-related information of the user’s behaviour. Content-related information include
motion detection and image saliency maps, whereas sensor-related information include
the viewers watching behaviour, like head orientation. As one feature, image saliency is
ascertained by a CNN, designed for discovery of objects and content categorization. This
network outputs an image saliency map for each video frame. Additionally, a motion

49

detector module, outputs motion maps for the single video frames. These information
plus HMD sensor data, as the user’s head orientation, are stored in a buffer module.
This buffer module stores these features, like a sliding window by a particular number of
previous frames. The key module is a recurrent neural network (RNN), responsible for the
fixation prediction or FOV prediction, with a successive tiles rate selector. Based on the
above mentioned feature data, the fixation prediction network outputs a single probability
for all single tiles of a respective future spherical video frame. Predicated on this, the tiles
rate selector defines the output data-rate of the single tiles for a frame. Moreover, two
different prediction networks are introduced, one working as described above. The other
is working similar, except using already watched tiles, in place of orientation-behaviour of
the viewer, as input data. The RNN is trained and validated by self-generated user data,
of 25 subjects watching different spherical videos, in 4K resolution, at 30fps.

As stated in the work of Fan et al. [42], the neural network using orientation-data
comes to more accurate tile probability. Moreover, compared to other solutions of adaptive
hybrid streaming systems, the proposed FOV prediction reduces the initial buffering time
and the consumed bandwidth, at similar quality levels, measured by PSNR and SSIM,
among others. The three other compared solutions use: a) the current orientation for
viewport-adaption, b) the velocity of the orientation for viewport-prediction, c) tiles only
at a certain average saliency-level. Compared to those, as a result, an average buffering
time reduction up to 43% and bandwidth reductions between 22-36% can be achieved
[42].

50

Chapter 4

Related 360° video streaming
systems

4.1 MPEG Standardizations and 360° Video Stream-

ing Technologies

In the scope of 360° video, many technological approaches have been proposed, offering
solutions for the enhancement of omnidirectional video processing, transmission and play-
back. Especially the optimization of 360° video applications has been subject to immense
research effort. As MPEG proposed standardizations for nearly every level of audiovisual
data processing, e.g. video coding standards, such as MPEG-4 and MPEG-H, encapsula-
tion standards, such as ISOBMFF and streaming system standards like DASH or MMT,
the standardization of an omnidirectional media format is a logical step.

For this reason, the following section concentrates on common encapsulation and
streaming technologies, standardized by MPEG, which build the fundament for the stan-
dardization of an Omnidirectional Media Format (OMAF). Accordingly, the file encap-
sulation via ISO Base Media File Format (ISOBMFF) is explained first. Then MPEG’s
HTTP streaming standards MPEG-DASH, unifying scalable HTTP streaming approaches
like HLS etc. and MPEG Media Transport (MMT), replacing MPEG-TS are introduced.

4.1.1 ISO Base Media File Format

The ISO Base Media File Format, specified in ISO/IEC 14496-12 [50], is a standardized
format for the access of media files, developed by MPEG. It contains timed media infor-
mation, i.e. audio-visual content and extra information. It is based on the MP4 container
format, which is predicated on the Quicktime MOV container format. The MP4 file
format was generalized into the ISO Base Media File format and hence ISOBMFF is a
superclass or basis for more specific container formats such as MP4 or 3GP, just to name
a few. The MP4 container standardization was first published as ISO/IEC 14496-12:2004
in 2004 and has been updated continuously, latest in 2015. ISOBMFF is independent
of particular network protocols and is hereby extendable and flexible for interoperability.
The access can be per network or locally. According to [101], ISOBMFF is object ori-
ented, specifying the content as a series of boxes, to enable segmented access of media

51

Figure 4.1: Logical and hierarchical physical structure of ISOBMFF.

data. Each box type is defined by 4 printable chairs and a certain length amongst others.
The ISOBMFF file contains descriptive information in the boxes ‘ftyp’ and ‘moov’.

The overall hierarchical structure of ISOBMFF boxes is depcited in Figure 4.1, where
the dotted boxes indicate the sub-structure of boxes below the ‘trak’ box level. More-
over, ‘ftyp’ specifies the file type and version, whereas the ‘moov’ box contains the
metadata of the respective media. The media stream, i.e. the respective coded audio or
video data stream can be accessed by the track, i.e. ‘trak’ box, of an according type,
like audio, video, text, etc. The media data itself is packed into the ‘mdat’ or ‘idat’ box
and can be accessed sample-wise by reference of the respective track. The sample entry
specifies the media stream, as it contains the name of the exact media type, to define
how a decoder can access the media correctly. When fragmented fMP4 files are used,
the ‘moov’ box only contains basic information about the tracks, defining the quantity,
type, codec and initialization etc. Information about the sample locations and sample
size in the track are stored separately in the ‘moof’ box. A ‘mdat’ box is following
after each ‘moof’ box, containing the samples as defined in the preceding ‘moof’ box.
The length of a moof-mdat-pair is not restricted but typically may be between 2-10 sec-
onds, depending on the use case. The signalling of ISOBMFF in MPEG-OMAF and the
packaging-structure between MPEG-DASH and ISOBMFF will be explained in Section
4.1.5.

The Common Media Application Format (CMAF) is a MPEG standardization for
encoding and packaging of segmented media. It can be used by many popular stream-
ing technologies, such as MPEG-DASH or HLS. CMAF defines a logical structure for
several media objects, such as CMAF tracks, derived from ISOBMFF, CMAF switching
sets, CMAF presentation, CMAF Header, Segment, Chunk and Track File. For detailed
information about CMAF, the reader is referred to [100] and [63].

52

4.1.2 MPEG-DASH

Streaming over HTTP is a very simple and rife way of audiovisual content distribution.
As RTP and RTSP are not supported by all CDNs and an individual streaming session for
each client has to be established and maintained by the server, increasing the distribution
effort, optimized HTTP streaming can tackle these problems and comes along with some
advantages, like interoperability, compatibility and preservation of server resources, just
to name a few. HTTP streaming architectures like HLS[92], Adobe’s HTTP Dynamic
Streaming (HDS) or the approach of Microsoft’s Smooth Streaming, all use similar and
effective HTTP streaming, but un-unified and un-standardized. For this reason, MPEG
introduced the Dynamic Adaptive Streaming over HTTP, which was released as ISO stan-
dard ISO/IEC 23009-1 [47] in 2012. Today, MPEG-DASH is widely supported by many
manufacturers on client side, for instance by popular internet-browsers like Chrome, Sa-
fari, Firefox, Android’s ExoPlayer etc., and devices like Chromecast, FireTV and many
Smart-TVs. The functional schematic of MPEG-DASH, based on the revised standard-
ization ISO/IEC 23009-1:2014(E) [49] is described in the following.

MPEG-DASH is a bandwidth-adaptive streaming solution, providing efficient quality
management, robust for varying network conditions. DASH specifies XML and binary
formats, meanwhile exploiting the advantages of the HTTP protocol. When the client
desires a certain resource, it requests a so-called Media Presentation Description (MPD),
via GET, containing metadata and additional information about the media. The media
content is transferred in Segments, each of wich containing parts of coded media data,
including the allocated metadata. The main idea of DASH is, to provide split Segments
of media content, at different quality levels. At client side, the merged Segments create
a continuous stream. Figure 4.2 illustrates the hierarchical composition and relations
between the single elements: MPD, Period, Adaptation Set, Representation, Segment
and Sub-Segment.

The superordinate instance is the MPD, in XML format, containing information about
the resource, like types of Representations, timing information, information of the seg-
mentation and HTTP-URLs, referring to the server location of the single Segments. That
implies, in live-scenarios the MPD needs to be updated regularly. The MPD can be struc-
tured into content information, Period information and information about the adaptivity
and data-location. The metadata on content- and Period level contain the description,
time and duration respective to the content or Period. The adaptation information de-
scribes the Adaptation Set, considering the network-conditions and contains the attributes
of the Representations. With the provided information, such as bit rate, resolution or
frame-rate the client can request the appropriate alternative, i.e. Segment. The meta-
data can be split into certain parts, to reduce processing complexity and data flow, so the
metadata of content only needs to be sent once and not periodically, divergent to Period
level information [111].

In the second amendment of MPEG-DASH [87] the so-called Spatial Relationship
Description (SRD) is introduced. The SRD feature extends the MPD and contains spatial
relationship information of single parts of one video. Hereby, the DASH client is able to
request only video streams at the respective relevant resolutions and spatial position. it is
used in some of the approaches at the end of this chapter and in the system implementation
at the end of this work, to describe the single positions of the individual tile-tracks in the
resulting spherical video stream.

53

Figure 4.2: Structuring and segmentation scheme of MPEG-DASH

54

The Period element defines the temporal interval for the whole media-presentation.
Additional information like languages, subtitles etc. can be uniformly defined for a whole
Period. For each Period one or more Adaptation Sets are defined, containing multiple
Representations of identical content at different quality levels. Identical content in terms
of viewpoint, language, aspect-ratio, but at different output bitrates and resolutions.
Splitting of audio and video can be done at Adaptation Set level, although multiplexed bit-
streams are possible. The client accesses the content within one Adaptation Set, capable
to change the corresponding media representation, according to network conditions and
other aspects. This change of stream, i.e. request of Segments at different quality level,
should not be visible in terms of pauses or bucking, thus, only an increase or decrease of
quality might be noticeable.

The segmentation is done for each Representation, resulting in multiple Segments
of multiple qualities. Each single HTTP request of the client refers to a Segment, or
Sub-Segment, representing an even finer division of Segments. Hence, a Segment is the
largest possible media file in MPEG-DASH. Since the number and size of Segments is
not predetermined, a single Segment can also cover a whole Representation. However,
the division of the Segments and Sub-Segments should match the coding properties, like
the GOP structure in MPEG. Typically Segments have roughly the same size. Besides
the content body itself, the Segments contain time and synchronization information for
accurate merging onto a timeline. Additionally, timing information notifies about the
accessibility and validity, which is especially important for live-streaming scenarios.

Switching of streams is generally possible at any point or time of a certain Period.
Different solutions to accurately switch the quality level can be used. So-called stream
access points (SAPs), define fixed positions in the representation to switch a Segment.
Different types of SAPs are predefined and described in [49]. Coding dependencies at SAPs
need to be broken up, so the GOP structure needs to be considered or rather be used,
i.e. the beginning of a closed GOP might be an appropriate SAP. Moreover, overlapping
Segments can be useful to switch a quality Representation, but simultaneously evoke a
bitrate overhead, as content is redundantly present in several Segments .

To illustrate the specific functioning of MPEG-DASH, the sample DASH dataset of
Bacher et al. [76] and Lederer et al. [77] is used and described in the following. In
this case, the video source, a high-bitrate 1080p AVC file, is encoded into 20 quality
representations, from 0.047 Mbps to 4.51 Mbps. The encoded sequences are then split
into six Periods of different length, each of which containing a set of Segments for each
quality representation. The MPD informs about the structure of the DASH stream and
points to the respective Segment locations, via HTTP-URL, as shown in the exemplary
MPD-XML, Figure 4.3. The SegmentTemplate media and initialization elements,
define the server base location of each Segment and the initialization Segment respectively,
whereas the single files can be accessed by replacing the ‘$’ element according to the
naming structure. After requesting the MPD file, the client accesses the initialization
.mp4 file and subsequently the single Segments, e.g. as .m4s files (exampleMedia 2s1.m4s),
according to the network conditions. In this case, only H.264/AVC encoded streams are
available, defined by the codec element in the XML.

55

Figure 4.3: Sample of MPD XML file, from MPEG-DASH dataset [76].

56

4.1.3 MPEG Media Transport

For support of segmented real-time video delivery, in 1996 MPEG standardized the digital
container format MPEG-2 TS, as ISO/IEC 13818-1:1996, which is widely used in today’s
streaming systems. MPEG-2 TS is used for multiplexing audiovisual media data into one
consistent delivery stream, structured into small packets with a fixed byte-size of 188 Byte
[80]. For contemporary streaming scenarios, especially for streaming of high-resolution or
omnidirectional video content, MPEG-2 TS might not be the best solution, as the small
segmentation with fixed-length entities of 188 Byte might not be suitable for high resolu-
tion video delivery. Moreover, individual access of single parts of a media stream, e.g. a
single audio-track of one particular language, or low-latency live-streaming are difficult to
integrate into MPEG-2 TS [69][80]. To overcome these new requirements for an adequate
multimedia delivery environment, MPEG MMT has been developed and published as in-
ternational ISO standard ISO/IEC MPEG-H 23008-1 Part-1 [88]. It replaces MPEG-2 TS
and defines a delivery architecture and container format for audiovisual media streams, es-
pecially for delivery over broadcasting environments or IP networks. More precisely, MMT
defines four main Sections of media-delivery [88]: The composition of media-conent via
HTML5; The encapsulation format and data-model, based on ISOBMFF packaging; The
delivery through an own application layer transport protocol MMTP; The signalling, by
defining a message format for properties of delivery and consumption of media packages.
Moreover, to provide reliable delivery in IP networks, MMT introduces new QoS features
by the so-called forward error correction (FEC).

According to [80], the main advantages of MPEG-2 TS are kept, whereas some simpli-
fications and adjustments were introduced. The easy format conversion between simple
storage and packetized streaming and the compatibility for future technologies are main-
tained. The MPEG-2 TS signalling message framework is mostly adopted. The simpli-
fications mostly concern the fixed-packet size and the clock-reference, both of which are
discarded.

The MMT architecture and data model is structured as follows: The smallest entity is
the Media Fragment Unit (MFU), building a slice of media data and being independently
processable. The next unit is the Media Processing Unit (MPU) containing one or more
MFUs and being likewise independent from other MPUs. That is, the media content is
packed into a series of MPUs. To ensure the independency of each MPU, besides the
content itself, it contains metadata, i.e. additional configuration information for correct
decoding and a fixed starting point. As a consequence, inter-coding dependencies and the
GOP structure of the HEVC or AVC conform bitstream need to be considered. Further,
one single or multiple MPUs are packetized into MMT assets, for each media type, like
audio, video and additional data. These MMT assets are independent from each other
and identified by a particular asset-ID, by which the MPUs can be assigned. Hence, the
entire MMT package consists of several MMT assets, asset delivery characteristics (ADC)
and composition information (CI), as shown in Figure 4.4.

As the data-model of the MMT MPU is based on ISOBMFF it is liable to its data
structure. The MPU brand in ISOBMFF is ‘mpuf’. Consequently, each single MPU is
packed into a single ISOBMFF file [80]. With reference to [88] and [80], correspondingly,
two new box types are defined: The MPU box ‘mmpu’, in place of ‘sidx’ and the MMT
hint box ‘mmth’. The ‘mmpu’ box identifies MPU related media content, like the sequence
number and asset-ID, to assign the MPU file to the corresponding asset. The ‘mmth’ box

57

Figure 4.4: MMT Data Model and ISOBMFF structure, based on [88].

58

is part of the MMT hint ‘trak’, defining the number of MFUs, identifying the type of
media data, i.e. timed or non-timed media data and informing about the media-samples.
The MMT hint ‘trak’ is placed in the ‘moov’ box. As stated in [80], it also provides
conversion information between encapsulated MPUs to MMTP payloads and packets.
Like in the predefined ISOBMFF structure, the media data is placed in the ‘mdat’ box,
together with MMT hint data. The ‘moov’ box contains the media track references and
initialization information. For the exact ISOBMFF integration of MMT, the reader is
referred to [80] and [88].

With MMTP, an own application layer protocol is defined, specifying the MMTP
packet with the MMTP packet header and the corresponding payload. The MMTP pay-
load is similar to the RTP payload structure. It can be used for real-time delivery, by
the delivery mode MPU or for non-live on demand download by the generic file delivery
(GFD) mode [69][80]. The MMT signalling can be delivered through the MMTP payload
as binary format, providing information about the media delivery and consumption or
timing-information. The signalling can be used for uni- and bidirectional communication
within the delivery system. The explicit signalling messages can be obtained from [80]
and [88].

4.1.4 MPEG-I

With the increasing development and spread of spherical video and gaming applications,
many particular formats and technologies have been introduced. Most of them are based
on existing technologies, but due to the multitude of developers and manufacturers many
technologies are designed with deficient compatibility to others. Moreover, there is a need
for long term specifications of spherical video and audio. Consequently, MPEG started the
development of the standardization MPEG-I ISO/IEC 23090, for the coded representation
of immersive media, which is expected to be launched in 2019. At this time, according to
this first version and the technical report of it Champel et al. [33], MPEG-I consists of
nine single parts:

• Part 1 – Technical Report on Immersive Media

• Part 2 – Omnidirectional Media Format (OMAF)

• Part 3 – Immersive Video

• Part 4 – Immersive Audio

• Part 5 – Point Cloud Compression

• Part 6 – Immersive Media Metrics

• Part 7 – Immersive Media Metadata

• Part 8 – Network-Based Media Processing (NBMP)

It comprises an overview on the technical architectures and general definitions for
immersive media in Part-1, the standardization for an application format for spherical
multimedia content in Part-2, coding standardizations for immersive video and audio in

59

Part-3 and 4 respectively, and new compression approaches by point-wise description of
3D media in Part-5. Furthermore, it defines new metrics for the evaluation of immersive
media applications in Part-6. Part-7 specifies the immersive media related metadata,
which may differ from those of conventional media applications. Processing of immersive
or spherical media applications is much more complex and resource-consumptive than
conventional media processing. For this reason, in Part-8 formats and interfaces are
defined, to relay resource exhaustive immersive media processing tasks to the network
[33].

The following chapters will concentrate on MPEG-OMAF, based on [51], with its
supported projection schemes, profiles and the signalling in ISOBMFF and MPEG-DASH.
OMAF was published in January 2019. It defines an application format for a system
standardization with delivery, storage and rendering of spherical multimedia, i.e. 360°
video and audio. Due to the extent and early state of the standardization and the focus
of this work on streaming architectures, the other parts of MPEG-I won’t be treated
explicitly.

According to [33], MPEG-I makes some general clarifications and definitions on 360°
video, not only for quality evaluation of omnidirectional media. Regarding the definition
of resolution for evaluation purposes, in VR scenarios with HMDs, the notion of number
of pixels per degree (pix/deg) is preferred, instead of absolute pixels. Moreover, the
viewport of an entire 360° video (4π steradian space) is assumed to cover around 12-14%,
resulting in only 1080 pixel vertical-resolution for each eye, for an 8K 360° source video.
These assumptions apply to conventional delivery and playback technologies, at this state
of time, and are caused primarily by the resolutions of today’s cameras and playback
systems.

4.1.5 MPEG - Omnidirectional Media Format
(OMAF)

The omnidirectional media format is Part 2 of the MPEG-I standardization ISO/IEC
23090-2 and Part-20 of the MPEG-A standardization ISO/IEC 23000-20, specified in [51].
As aforementioned, OMAF is a system standardization for storage, delivery and rendering
of 360° videos. It specifies sphere-to-planar mapping methods and the signalling of writing
into a file using ISOBMFF, for encapsulation and transmission of the resulting media-file
using MPEG-DASH or MMT. Moreover, it specifies profiles and encoding configurations
for the use of HEVC and H.264. Viewport-dependency is supported by the use of tiles in
HEVC, file encapsulation in ISOBMFF and segmentation in MPEG-DASH. Furthermore,
the integration of the scalable profiles of AVC and HEVC were under consideration, but
seem to be disregarded at this time of research.

This section is structured as follows: First, the determined supported mapping meth-
ods and other mapping-methods under consideration will be introduced. The frame-
packing and region-wise packing will be explained thereafter. One goal of MPEG-OMAF
is to provide available profiles and to determine the used video and audio codecs, which
will be explained subsequently. Afterwards, the implementation of viewport dependency
will be explained. At last, the signalling of OMAF in ISOBMFF and DASH will be delin-
eated, which is an important part for standardized implementations of content creation
tools and players. The overall system architecture of OMAF for 360° streaming, based on

60

Figure 4.5: System architecture of MPEG-OMAF.

the descriptions of [35], [115] and [51], is illustrated in Figure 4.5.

4.1.5.1 OMAF - Projection mapping

According to [51],[115] and [35], in the first version of OMAF two projection types are
supported: The equirectangular and cubemap projection. Other mapping methods are
under consideration, some of those are discussed in Section 2.2. For projection mapping
a coordinate systems needs to be determined, which in OMAF consists of the x,y,z axes
and a unit sphere. The center of the sphere is The origin of the coordinate system is
exactly at the center of the sphere, where the viewers perspective is located at, looking
towards the inner surface. As stated in [115], the sphere coordinates can be described
by (Φ,Θ). The conversion into sphere coordinates can be processed, by transformation of
cartesian coordinates to global coordinates using rotations over pitch, yaw and roll and
conversion from global coordinates to sphere coordinates. Global coordinates x2, y2, z2
can be converted into sphere coordinates (Φ,Θ) as:

Φ = atan2(y2, x2)
180°
π

(4.1)

Θ = asin(z2)
180°
π

(4.2)

In OMAF equirectangular projection the inner of the sphere is also unfold onto a 2D
map, as described earlier in this work. The cubemap projection, as described in Section
2.2, is done by a six-sided cube, each of which representing one part of the sphere of
the same size. Rearranging the cube-sides or parts of an equirectangular mapping in 2D
representation, to match image content and similarities to coding dependencies is also
specified in OMAF. it is called region-wise-packing and can enhance the coding efficiency.
To avoid seaming and stitching artifacts, a guard band can be added at the borders of

61

the single packing regions, so that a small overlapping part is transmitted and signalled
as part of the region-wise-packing syntax [115]. For representation to the human eyes,
spherical video content needs to be split into left and right part, one for each eye. This
arrangement needs also to be frame-packed. In OMAF it can be done by side-by-side
packing, top-down packing or temporal interleaving. Additionally, OMAF supports the
representation of content as a fisheye sphere. In this case no projection or region-wise
packing needs to be done, but the playback system needs to be capable of processing the
fisheye representation. This information can be send as metadata.

4.1.5.2 OMAF - Profiles and encoding configurations

The Profiles of OMAF predetermine encoding configurations and properties of the 360°
video processing and transmission. They define specifications and constraints for ISOBMFF
items and tracks, according to their media type, i.e. video, audio, image or timed-text.
The OMAF profiles define the ISOBMFF sample entry types, possible extensions, i.e.
box-types and the single samples of the tracks, i.e. elementary streams, according to the
enabled configurations [51][115]. According to [51] a total of nine profiles is offered, 3 for
video and 2 for audio, image and timed-text respectively. Additionally, 3 profiles for the
CMAF integration of the media profiles are defined. The major difference between the
video profiles are viewport adaptivity and the used video codec. Viewport dependency
is enabled for two profiles. Other profiles and configurations are under consideration, so
presumably other main or high-quality profiles might be introduced in following versions
of OMAF. An overview of all OMAF profiles is given in Table 4.1.

Profile Brand Profile &
Level

Scheme
& Type

Resolution/
Sampling-
rate

Additional
specification

OMAF
Video-profiles

HEVC viewport
independent
baseline profile

HEVI Main 10 Level
5.1

’podv’ &
’erpv’

up to
4096x2160
@ 60fps HDR

no region-wise
packing

HEVC viewport
dependent base-
line profile

HEVD Main 10 Level
5.1

’podv’ &
’erpv’ or
’ercm’

up to
4096x2160
@ 60fps HDR

region-wise
packing avail-
able

AVC viewport
dependent
baseline profile

AVDE High
Progressive-
only 5.1

’podv’ &
’erpv’ or
’ercm’

up to
4096x2160
@ 25fps HDR

region-wise
packing avail-
able

OMAF
Audio-
profiles

3D audio
MPEG-H base-
line profile

oabl Low-
complexity
Level 1,2 or 3

- 48000 Hz 3D metadata
included in
codec

2D audio legacy
profile AAC

oa2d HE-AACv2
Level 4

- 48000 Hz no 3D meta-
data required

62

OMAF
Image-
profiles

HEVC image
profile

heoi Main still 5.1 - - -

JPEG image
profile

jpoi - - - -

OMAF timed
text profiles

IMSC1 timed
text profile

ttml text or image
profile

- - -

WebVtt ttwv - - - -

OMAF pre-
sentation
profiles

Viewport in-
dependent
baseline presen-
tation profile

ompp - - - min. one
video-track
HEVI, min.
1 audio-track
oabl

Viewport
dependent
baseline presen-
tation profile

ovdp - - - min. one
video-track
HEVD, min.
1 audio-track
oabl

CMAF Media
Profiles for
OMAF

CMAF Media
Profile for the
HEVC-based
viewport-
independent
OMAF video
profile

cvid - - - -

CMAF Media
Profile for the
HEVC-based
viewport-
dependent
OMAF video
profile

chev - - - -

63

CMAF Me-
dia Profile for
OMAF 3D
audio baseline
profile

cabl - - - -

Table 4.1: OMAF media-profiles based on [51],[115] and [35].

For ISOBMFF signalling, the scheme type first defines, whether projection is used,
i.e. ‘podv’, or no projection is applied and fisheye representation is chosen, i.e. ‘fodv’.
The two introduced projection types, equirectangular and cubemap are determined by
‘erpv’ and ‘ercm’, respectively. The selected HEVC profiles allow up to 4K resolution
at 60 fps, with HDR enabled. The exact region-wise packing is not predetermined by the
profile, but just enabled or disabled, e.g. enabled for ‘hevd’. The presentation profiles
define global media profiles, specifying video configurations together with adequate audio
configurations.

4.1.5.3 OMAF - Viewport adaptivity

Viewport dependency in OMAF can be achieved by different technologies of different
efficiency and complexity. Conventionally, processing and transmission of a video has no
viewport-adaptivity feature. In this case, the entire bitstream is encoded and transmitted
in one single layer. For spherical video, the bitstream would represent a sequence of frame
packed cubemap or equirectangular map pictures. Here, basically, the only possibilities
of bitrate-reduction are at video encoding level, e.g. HEVC and distribution architecture-
level, e.g. MPEG-DASH.

According to [115], one way to enable viewport dependency is the so-called region-wise
quality ranking (RWQR). It consists of several encoded single-layer bitstreams, each of
which representing the entire 360° video. The single bitstreams are encoded with one
particular region encoded at high quality (HQ), the rest is encoded at lower quality, as
depicted in Figure 4.6. Together with parallely, or afore transmitted metadata, informing
about the respective region quality ranking, the client can request the best track, according
to the users viewport. In ISOBMFF, the region-wise quality ranking method can be
signalled in the sphere region quality ranking box ‘srqr’ or the 2D region quality ranking
box ‘2dqr’, in the sample entry. When using RWQR tiling is disabled. Hence, entire
spherical video sequences are transmitted.

As stated in [51] and [115], OMAF integrates tile-based viewport adaptivity by the
so-called motion-constrained tile set (MCTS), proposed by [119] for viewport-adaptive
streaming of omnidirectional video. This approach is HEVC-based and uses bitstreams
at two different quality levels, with tiling at encoding-level. Motion-constrained relates to
the fact, that motion vectors can cross tile boundaries within the tile set. The borders of a
tile-set may not be crossed, so no temporal motion-vectors between temporal-neighbouring
tiles are allowed. The quality divergence can be achieved at encoding-level by change of
bitrates or by change of resolution. The tile division of the single layer bitstreams should
be equal for the two representations, when changing the quality by bitrate, whereas the
tiles within one representation may be of different size. On an origin or edge server,

64

Figure 4.6: Viewport dependency by OMAF region-wise quality ranking, based on [115].

an intermediate extractor, e.g. a running script, extracts the tile-tracks of the higher
quality bitstream, representing the viewport. All tiles covering the non-visible area of the
omnidirectional video, are chosen from the lower quality bitstream. Next, the single tiles
are put together, composing the whole spherical video, as a conventional HEVC bitstream,
to maintain compatibility to existing HEVC-decoders. The decision of tile-switching,
according to head-movements is based on sensory-feedback and metadata transmitted by
the clients. The temporal independency of decoding certain regions, results in the need for
switching points, that should conform to the SAPs. Moreover, to allow seamless switching
and abolish inter-coding dependencies, intra-coded random-access points (RAPs) need to
be embedded, without coding dependencies to other frames. It should be noted, that
additional RAPs ordinarily impair the coding efficiency. This principle of using MCTSs
at different qualities is illustrated in Figure 4.7.

In the example of Figure 4.7 two HEVC bitstreams of equal content and resolution, but
with different qualities are created. Each frame is divided into a 4x2 MCTS. Each single
MCTS is included into a single tile-track, referred to as sub-picture track, formed by the
temporal following tiles of each MCTS, i.e. ’sub-picture track 1’ for all ’tiles 1’ etc. This
is done at file encapsulation level. Here, the OMAF player receives tile-tracks 1,2,5,6 of
higher quality for the viewport and tile-tracks 3,4,7,8 for the rest, lasting for a particular
period of time. This selection is done via extractor tracks, that form a particular viewport,
by pointing to single sub-picture tracks of the two qualities.

The OMAF player, i.e. omaf-capable playback device or intermediate extractor,
chooses the respective version of each sub-picture track. Using these sub-picture tracks
and the extractor track it can parse the single tile combinations, for reconstruction of
a bitstream. This reconstructed bitstream can further be decoded with a conventional
HEVC or AVC decoder.

According to [51], four different of these MCTS viewport-dependent transmission ap-
proaches are supported in OMAF. The first approach can be realized as described above.
In this case the different tiled bitstreams are of different bitrate, i.e. quality, but have the
same resolution. Here, the tile grid of the single bitstreams remains the same. To realize
this approach for the AVC viewport-dependent profile, slices need to be used instead of
tiles, as depicted in Figure 4.8. Considering that, the eight tiles of the HEVC approach
above are replaced by eight single slices, constructing a motion-constrained slice set for
each frame. The same inter-coding-dependency constrains need to be observed. The prin-
ciple of using a sub-picture track, for re-consolidating the single slices, together with an
extractor track, basically remains the same.

The HEVC-based MCTS approach is also supported for bitstreams of different res-

65

Figure 4.7: HEVC-based MCTS viewport adaptivity scheme of MPEG-OMAF for two
sequences of the same resolution at different bitrates, based on [55] and [51].

66

Figure 4.8: AVC-based viewport adaptivity scheme of MPEG-OMAF using slices for two
content-similar tracks of the same resolution at different bitrates, based on [51].

67

olutions. As the degradation artifacts are others, compared to a low-bitrate sequence,
for example blurriness compared to blocking artifacts, this approach may be suitable for
other use cases. Sub-picture tracks and extractor tracks need to be created, similarly. An
OMAF player should be able to merge and rearrange the two sub-picture tracks of differ-
ent resolutions, in order to construct a conforming bitstream of one single resolution. By
changing the tiling grid, i.e. creating inhomogeneous tile-sizes, the number of bitstreams,
i.e. available resolutions, and the rearrangement of the different sub-picture tracks, to-
gether with the resulting extractor tracks, higher resolution than 4K for the whole sphere
can be achieved. That results in effective higher resolution for the region covering the
viewport, even for 4K-only capable decoders. The creation of viewport combinations in
the extractor tracks, is the key-processing step for these viewport-adaptivity approaches
with higher resolutions. These schemes for achieving 5K or 6K effective ERP or cubemap
resolution are stated in precisely in Section D.6 of [51]. In this work, they will not be
further explained, but may be used for the resulting 360° streaming-scenario, described
in chapter 5. Moreover, apart from these MCTS approaches using tiles for all bitstreams,
OMAF proposes the use of an un-tiled single layer bitstream for the lowest resolution
or quality, together with HEVC-coded MCTSs for the higher resolutions or qualities.
Sub-picture tracks are constructed likewise at file encapsulation level. For each viewport
representation extractor tracks can be formed. That is, the lowest quality, a full-spherical
representation is continuously sent and the distinct viewport representations can be de-
coded by selecting the different sub-picture tracks autonomously or by extracting them
directly from the extractor tracks.

It should be noted that these viewport-adaptivity approaches were initially considered
to be realized by the scalable profiles SHVC and SVC. The base-layer and enhancement-
layer could be used for the content-representations of the respective quality. The enhance-
ment layer could be used for higher quality representations, with tiles covering the current
viewport. The base-layer could be transmitted continously, covering the whole sphere,
for abrubt head-movement. This use of SHVC and SVC appears to be disregarded and is
not further stated in the final OMAF standardization [51].

4.1.5.4 OMAF - ISOBMFF, SEI and DASH integration

As ISOBMFF is easily extendable to OMAF signalling, new MIME-types and box-types
are defined in OMAF, some of which are presented in the following, according to [51],[115],
[52]. Due to the focus of this work on video streaming, storing and signalling of omni-
directional still images, via the OMAF still image profiles, are not further discussed.
Captions and timed text in OMAF can generally be integrated with fixed position or
viewport-dependently, signalled by the timed text configuration box ‘otcf’, informing
about the mode, i.e. fixed-position or viewport-dependent/ always-visible and the corre-
sponding coordinate information. The initial viewing orientation with the sample entry
type ‘invo’ and other metadata, like the recommended viewport and timed text sphere
location metadata can be signalled as a timed metadata track by a ‘cdsc’ track refer-
ence. The recommended viewport can either be predefined e.g. by a director (type 1) or
statistically derived (type 2).

First, to distinguish between conventional video and spherical video, the entry-type
‘resv’ defines the restriction, that only capable decoders can extract the content cor-
rectly. A restricted scheme info box is supplied to the sample description, informing about

68

the omnidirectional video. The exact codec profile is delivered by an original format box
‘frma’ for indication of the HEVC packaging ‘hvc1’ or ‘hvc2’ or the H.264 packag-
ing ‘avc1’. The OMAF profiles are signalled in the ‘ftyp’ box, as ‘hevd’, ‘hevi’ or
‘avde’, corresponding to the described profiles of Section 4.1.5.2. As proposed in [52]
and [115] for streaming scenarios, multiple ISOBMFF files can be created, each of which
containing the same content as one single valid HEVC or H.264 bitstream, i.e. a set
of MCTS tracks, at a certain quality. A flag of the TrackHeaderBox indicates that the
single ISOBMFF tracks are not intended for separate presentation, but in combination
with others.

As already noted, viewport-dependent profiles may produce streams and corresponding
viewports of higher quality and should preferably be used for streaming scenarios. In this
case, the client should receive one or more particular tracks of higher quality, i.e. the
viewport and all others of reduced quality, according to the chosen OMAF profile. The
respective quality of the related region can be signalled by the sphere region quality ranking
box ‘srqr’. For each MCTS, a corresponding mctsID is generated. The corresponding
MCTS tracks have a particular track_ID, which can be calculated from the mctsID. As
proposed by [52], in addition to the single MCTS bitstreams packed as single ISOBMFF
files, multiple ISOBMFF extractor track files are generated, building several possible tile
combinations. The extractor track files build specific viewport combinations, each of
which composed of one extractor track and multiple MCTS tracks, i.e. tiles of a specific
quality level. All tracks are added to the ‘moov’ box of the extractor file. These tile
combinations produce a rectangular 360° frame of a fixed resolution, corresponding to the
chosen OMAF profile. The projection and spherical indications are signalled in specific
boxes.

According to [115], the following boxes are defined for 360° video signalling in OMAF.
The distinction between projection or fisheye is indicated by ‘podv’ for projection and
‘fodv’ for fisheye, i.e. no sphere-to-planar mapping. Equirectangular or cubemap pro-
jection is signalled by ‘erpv’ and ‘ercm’ respectively, other projection types under con-
sideration may be added in the future. When region-wise packing is used, it can be
indicated by ‘rwpk’. The rotation for projection can be signalled by the rotation box
‘rotn’, where three integer values define the rotation of yaw, pitch and roll. For sig-
nalling of the frame-packing method, the existing stereo video box ‘stvi’ in the sample
entry can be used. The indication which area of the sphere is covered by a which track is
important for the OMAF player, to choose the appropriate track, i.e. tile that covers the
viewport. The coverage information box ‘covi’ in the sample entry can be used for this
indication. The OMAF ISOBMFF integration into DASH, based on [115], is depicted in
Figure 4.9.

As stated in [52], OMAF-related metadata may be signalled as high level syntax via
SEI messages of the H.264 or HEVC file. Information about the use of equirectangular
projection, cubemap projection, sphere rotation, region-wise packing and the viewport
location may be signalled as SEI. For specific SEI parameters of OMAF the reader is
referred to 5.5.2 of [52] and [51]. According to [51], for DASH delivery of OMAF-specific
information the MPD is extended by additional MPD DASH descriptors, accessible by
the URN ‘urn:mpeg:mpegI:omaf:2017’ (hereinafter referred to as namespace a) and
‘urn:mpeg:mpegI:omaf:2018’ (hereinafter referred to as namespace b), defining the
namespaces for the XML elements and attributes. The projection type (’pf’), region-

69

Figure 4.9: DASH segmentation and ISOBMFF integration, based on [115].

wise-packaging (‘rwpk’), content coverage (’cc’), spherical and 2D region-wise quality
ranking (‘srqr’ and ‘2dqr’) and fisheye omnidirectional video (‘fomv’) DASH MPD
descriptor, are accessible at namespace a. Exemplary, the scheme identifier for the pro-
jection type is defined by the URN ‘urn:mpeg:mpegI:omaf:2017:pf’. Other attributes,
like the association descriptor (‘assoc’), viewpoint information descriptor (‘vwpt’) and
overlay information descriptor (‘ovly’) are accesible at namespace b.

According to [51], the particular OMAF video profiles should be instantiated at the
Adaptation Set, as
‘@codecs=‘resv.podv+erpv.hvc1.1.6.L93.B0’’

‘@mimeType=‘video/mp4 profiles="hevi"’’,
exemplarily for the HEVC viewport independent OMAF profile, using equirectangular
projection and the hvc1 MP4 container.

As stated in [52], the OMAF DASH workaround differs for the HEVI and HEVD
profile. The viewport-independent profile, mainly for progressive download applications,
has one single Adaptation Set per Period, containing several representations, at differ-
ent bitrates and/or resolutions, according to the HEVI-specific requirements. For the
HEVD profile, multiple Adaptation Sets per Period, each of which containing multiple
representations are used. This principle is illustrated in Figure 4.10.

Each single Adaptation Set represents one tile per resolution. The single representa-
tions of an Adaptation Set, i.e. MCTSs only differ by their respective bitrate. Besides to
the Adaptation Sets for each tile, different viewing directions are pre-constructed by addi-
tional Adaptation Sets. These point to the respective tiles at the different quality levels,
where the viewport is covered by high-resolution tiles and the rest at lower resolution, as
Adaptation Set 10 and 11 of Figure 4.10.

70

Figure 4.10: OMAF DASH Adaptation Set architecture for the HEVD profile, based on
[52].

71

4.2 JCT-VC 360° video signalling standardization via

SEI

As stated earlier, SEI messages can be used for signalling of supplemental information
within h.264 or HEVC-encoded video. For this purpose, in 2016 JCT-VC initiated a
corresponding standardization for SEI messages, as amendment to the HEVC standard
ISO/IEC 23008-2:2017/Amd 3:2018 [31], published in 2018. According to [30], this
amendment includes SEI message standardizations for HDR video signalling, omnidi-
rectional video signalling, regional nesting and MCTS extraction information signalling.
The following section concentrates on SEI messages for omnidirectional video and hereby
MCTS extraction messages, HDR and nesting SEI will not further be treated. SEI mes-
sages are information that do not directly affect the decoding process. Either the decoder
can interpret them correctly to obtain enhancement information for decoding, or the SEI
can be skipped.

The standardized omnidirectional video SEI messages comprise the projection map-
ping and coordinate systems indications, the region-wise quality indication as stated in
Section 4.1.5.4, the region-wise packing and the indication of a particular viewport. Addi-
tionally, the MCTS extraction SEI messages can be used for deriving a HEVC conforming
bitstream by extraction of MCTSs.

As proposed in [29] and [30], the ‘geometry_type’ informs about the coordinate
system used for projection, i.e. spherical coordinates or cartesian coordinates. The
‘projection_type’ SEI message indicates whether equirectangular projection, cubemap
projection or rectilinear projection is set, i.e. type 0, 1, 2. The coordinate-system center
position is defined by yaw, pitch and roll center values. The coordinate-system expan-
sion, i.e. the ranges for the yaw and pitch values are determined by ‘yaw_range’ and
‘pitch_range’ respectively. The rectilinear projection type indicates a predetermined
viewport, as an extracted region of an entire spherical video bitstream, with its corre-
sponding position and size. In this case, first the region is extracted and afterwards
rectilinear projection is used. The omnidirectional viewport SEI message, can be used for
definition of at least one certain viewport, represented by spherical coordinates. If the
bitstream is encoded with quality grades, a corresponding indication for the quality of a
certain region is necessary, which can be signalled as region-wise quality indication SEI
message. The RWP can also be signalled as SEI message, as already stated in Section
4.1.5.4.

As Boyce et al. stated in [30], the integration of MCTS extraction information into
SEI is defined as follows. So-called extraction information sets are defined, containing
identifiers for several MCTSs. That is, each extraction set covers information for a set
of MCTSs. This extraction is done by replacing and modifying the VPSs, SPSs and
PPSs structure, resulting in a new composition of several MCTSs, forming a conventional
HEVC-conforming bitstream. For the exact process of MCTS extraction information set
SEI message signalling and detailed information about omnidirectional SEI messages, the
reader is refered to [30] and [31].

72

4.3 Related 360° video streaming approaches

Besides MPEG’s 360° video standardization OMAF, many other system-approaches exist,
some of which are described in papers or tutorials, others are not accessible, due to
licensing issues. This section gives an overview of related works, besides the extensively
described approach of MPEG OMAF.

In [26] Bassbouss et al. introduce an ISOBMFF-DASH-based streaming system for
16K omnidirectional video source-material, resulting in a 4K viewport. They only trans-
mit the viewport area, without the use of tiling. As for interoperability reasons, the
transformation and video-preprocessing is server-sided, less post-processing is needed at
client side. For this reason, viewport combinations are pre-generated out of an equirectan-
gular spherical source. However, as this approach is desgined for playback on conventional
2D screens, it is not suitable for continuous and free viewport selection, as playback on
HMD would require.

Gankhuyag et al. [54] designed a motion-constrained AV1 encoder for omnidirectional
tiled streaming. It can be considered as alternative to the HEVC tiling approach. Still,
the paper concentrates on the encoding via AV1. The transmission-architecture is not
regarded in detail and not in focus of the paper.

Another HEVC tile-based approach of 360° video transcoding and streaming, using
MPEG-DASH is proposed by Kim et al. [70]. This approach has similarities to MPEG-
OMAF using different resolutions for the viewport tiles and all other regions. For this
reason they use two decoders, one for the viewport tiles, and another one for the entire
spherical video at lower resolution, without tiling.

In the following, another approach by Ahamdi et al. [23] is described more detailed,
as it is extensively described in the corresponding paper and fits the use case. Due to the
large scope of possible approaches, not all can be considered and described in detail.

Ahmadi et al. [23] proposed an DASH HEVC tile-based streaming architecture for
360° video, with similarities to the proposed DASH-based OMAF system. The following
synopsis is based on the corresponding descriptions of [23].

In the system, they establish multicast by so-called Multimedia Broadcast Multicast
Service (MBMS) base stations, that employ point-to-multipoint bearers. Moreover, they
use an approach of weighting tiles, depending on the user’s viewing behaviour. That
is, a tile weighting prediction technique to address viewport changes is introduced. A
new rate adaptation algorithm, maximizing the average data-rate is proposed. These
introduced technologies lead to a higher available data-rate for the viewport of 46%, by
not increasing the overall needed bandwidth. The recorded source material is mapped
using equirectangular and cubemap projection. Multiple quality representations of certain
bitrates are created and afterwards temporally divided into several Segments and spatially
divided into several tiles. These representations are then stored on a server together with
an MPD. Additionally, a SRD is supplied, containing information about the dependencies
between the spatially divided tiles. According to the current viewing orientation the
decoder of the client selects the respective tile-tracks to decode. The MPD and service
description are supplied to the Broadcast Multicast Service Center (BM-SC) and the
MPD is updated periodically by the content provider, so it contains all representations
available on the content server. They recommended to create one MPD for unicast and
one for multicast. After the MPD request of the client and requesting of the respective

73

Segment, the MBMS service bearer is activated and MBMS delivery function of the BM-
SC is triggered to send the desired tiles to all listening clients. The respective video tiles
covering the current viewport are communicated during the session by the MBMS client
to the BM-SC. Additionally to consumption information, transmitted as XML service
description, extra information of the weighting of each video tile can be easily supplied
into the XML. Using this weighting information and a rate adaptation algorithm the BM-
SC specifies the appropriate tiles of each representation that needs to be transmitted.
The MPD file is updated by the BM-SC according to the output of the rate adaptation
algorithm, hence, only tiles determined by the algorithm will be set as available. Based
on this updated MPD file and information about the channel conditions, the client selects
the representation for each tile and starts downloading them. For finishing the stream,
the client deregisters from the service and deactivates the MBMS service bearer.

As already stated, the tiling structure is strongly affecting the overall transmission
efficiency. On the one hand, with smaller tile sizes, more inter-prediction dependencies
need to be broken and more multicast sessions need to be established requiring more
resource blocks, on the other hand, smaller tiles lead to more precise ROI resolution. The
proposed tiling configuration of [23] is based on an analysis of a head traces dataset, with
information about the bitrate overhead, the viewport change distribution and the ROI
coverage. They decide to use a 4x8 tiling grid, resulting in only 3,78% bitrate overhead,
compared to no tiling. In the proposed system, all tiles are streamed, but with different
bitrate weights. Three different weighting approaches are proposed:

• Binary - Fixed viewport definition and no weighting; All tiles within the viewport
have quality 1, all others quality 0.

• Pyramidal - Weighting relative to the distance of each tile to the current viewport,
graded weighting with more than two weighting-grades.

• Probabilistic - Head traces-based probability weighting; Probability of viewport
changes based on user’s watching habits; Small-angle changes are regarded more
likely; Probability of tile changes, i.e. viewing angle-changes is calculated.

The proposed rate adaptation algorithm, referred to as Multicast Virtual Reality
(MVR) algorithm, results in transmitting video tiles with maximum weight at maxi-
mum available bandwidth. All other parts are streamed with quality according to their
weights. When, in practice, the resources are limited, the quality is reduced accordingly
to the available resources.

The authors of [23] state, their approach to address nearly twice the bitrate (46%) to
the viewport tiles, than to all other tiles. Simultaneously, the viewport bitrate variations
over a short period of time are minimized, to not affect the immersion negatively, by
switching the quality too often. Moreover, the spectral efficiency, i.e. transmitted data
rate (bit/s) divided by the allocated bandwidth (HZ), is maximized. For more detailed
information about the tile-weighting, the Rate-adaptation algorithm and an evaluation of
this system, the reader is further referred to [23].

74

4.4 Evaluation of proposed streaming technologies

Below, the proposed streaming systems are evaluated under consideration of efficiency,
usability and feasibility. Moreover, the benefits and drawbacks of standardized approaches
like OMAF are roughly compared to proprietary and open-source solutions.

OMAF uses the most popular projection mappings, like equirectangular and cubemap-
projection, which are already approved and widely used. The integration of H.264, HEVC,
ISOBMFF, DASH and MMT is comprehensible, since they are very efficient, popular and
approved technologies. OMAF supports viewport-adaptivity, by using and extending ex-
isting technologies, without increasing the complexity and the computational costs to the
limit, even though viewport-prediction is not considered. The computational power and
processing is allocated to the client, together with a running script on a server prese-
lecting the viewport tile combinations. The different profiles fit today’s state of the art
technologies, match multiple use cases and simplify the use of the proposed technologies.
Moreover, 4K viewport support is enabled and 3D audio is supported, which correlates
to today’s state of technology.

The system of Bassbous et al. [26] is designed for 2D playback on conventional screens,
without ’live’ viewport-adaptation, albeit HbbTV integration and high resolution are
introduced. This server-sided approach provides interoperability and easy access to several
clients. Still, it does not fit the use case for playback on all kinds of playback-devices and
fluent viewport-adaptation.

Since Gankhuyag et al. [54] propose an AV1 tiling-scheme, their approach is free
of charge and might be comparable to HEVC tiling. Nevertheless, no entire architecture
design is proposed and integration into common streaming systems is not stated precisely.

Kim et al. [70] proposed a HEVC tile-based approach with DASH integration, with
many similarities to OMAF. Since it is not standardized and the documentation of OMAF
is very extensive, the implementation and usability is likely to be more difficult than
OMAF.

The multicast solution of Ahmadi et al. [23] is DASH-based and uses probabilistic-
based tile weighting to build viewport combinations, which is very advanced. Moreover
an own effective rate-adaptation algorithm is proposed. The implementation and admin-
istration of this system seems to be very complex and extensive.

The proprietary solutions often include, open-source technologies, which are easily
available and royalty-free. These are independent from commercial entities in the media-
technology industry and usually can be integrated into existing frameworks. In contrast,
system integration and system design are often very complex and time-consumptive, re-
gardless of the risk that the proprietary solution might be less efficient than the standard-
ized one. Further, for integration and implementation of a certain proprietary solution
the entire system needs to be regarded and a lot of research is necessary in advance.
Existing interfaces need to be adjusted to fit the used protocols and data exchange. The
administration either has to be simplified or the person in charge needs to be instructed
and trained.

Doubtless, OMAF, as a standardized omnidirectional streaming system, will charge
licence-fees and induces dependencies on other MPEG-based technologies. Open-source
technologies, such as AV1 or VP9 are not supported and efficient technologies of other
companies might not be regarded. The adaptation and integration of technological-

75

progress into the standard is a time-consumptive process, as particular standardization
review procedures need to be maintained. For instance, the integration of new sphere-
to-planar mappings would require a revision of the proposed approach and an extension
of the ISO standard. On the other hand, OMAF can be easily and uniformly integrated,
based on efficient, approved and widely used standards such as H.264, HEVC, MPEG-
DASH and ISOBMFF. Presumably, the support lasts over a long period of time and
new deployments will be updated in frequent periods. A broad dispersion of OMAF in
the future is supposable, leading to integration into future technologies, like camera sys-
tems and playback technologies. As the big German broadcasting corporations widely
use MPEG technologies such as codecs and streaming systems, the integration of HEVC
tiling, ISOBMFF, DASH and OMAF into the streaming-network of the IRT will be the
scope of the practical elaboration of this work, documented in the next Section.

76

Chapter 5

Implementing and testing different
streaming systems

5.1 Demands and use case scenario

The IRT is responsible for research and development, and proposing recommendations for
the public German broadcasters ARD and ZDF. For this reason, the final use case also
relates to the demands of ARD and ZDF, i.e. their omnidirectional video applications.
Distribution of video content over online platforms like ARD-Mediathek or ZDF-Mediathek
is emerging. Likewise, such applications might be an adequate way to offer omnidirec-
tional content. In this sense, the platforms serve as hosts for the provided content and
shift the distribution liability to the Akamai CDN. The distribution network and server
infrastructure of Akamai CDN will be examined in Section 5.2.1. The responsibilities of
the broadcasters for allocation of 360° content hereby primarily concern the recording,
pre-processing, formatting, and distribution. The playback itself is hardly to be exactly
specified, as many users use different playback devices and no standard workflow is es-
tablished yet. Generally three types of playback need to be distinguished:

• Playback on popular internet browsers, with manual viewport selection.

• Playback on smartphones used as HMDs, with automatic viewport selection.

• Playback on HMDs, with sensor-based automatic viewport selection.

There exist several ways to supply the users with the corresponding media-files adapted
to each playback environment. One way would be to use a running script on the server,
normalizing the spherical representation into a conventional planar video representation,
decodable by conventional clients. Depending on the range and scale of the media content
to be streamed, e.g. live-event, VOD etc., this requires a lot of computational power on
the server side, to generate a viewport for each watching client. Another architecture,
relocating more computational power to the client, could be realized by OMAF integra-
tion. In this way, multiple client environments can be served, assuming they have OMAF
integration. At this very early state of 360° video technology, standards like OMAF are
not yet integrated by many manufacturers and can not be considered as standard work-
flow. Nevertheless, assuming that OMAF integration becomes more and more common

77

in future, an OMAF-based system architecture might be an interesting solution for ZDF
and ARD and could be tested by the IRT previously. Despite this option, the general
integration of a HEVC-based MPEG-DASH streaming system for omnidirectional con-
tent seems expedient, as it corresponds to the conventional streaming infrastructure of
the broadcasters.

Consequently, four main demands were defined, which are essential for the implemen-
tation of the omnidirectional streaming system.

1. Usability for supplier: Intuitive and simple operability and handling of the sys-
tem.

2. Quality: Noticeable enhanced quality, compared to conventional streaming of 360°
content.

3. Integration: Possibility of integration and implementation into existing infrastruc-
ture and hardware of the IRT, i.e. ZDF and ARD.

4. Cross-platform support: Playback and accessibility for a multitude of playback
environments, e.g. monoscopic, stereoscopic, HMD, 2D-screen.

Some of these demands may contradict or influence each other, which is why not all can
be realized entirely yet. Other aspects of importance are the financial cost, the disposabil-
ity of appropriate omnidirectional content, the market development of the used streaming
technology and the storage and computational resources allocated at the servers. De-
pending on the content to transmit, some of these aspects will be more important than
others. A plausible use case scenario for future omnidirectional video streaming applica-
tions could be live-events. Supposing a sport event like the football world cup should be
provided as spherical video. In this case, the content would have to be encoded, pack-
etized, and transmitted live to ensure low-delay playback. Computational resources for
viewport-dependent transmission would have to be aligned to the clients, to overcome im-
mense server workload. For that reason, server-sided approaches with high computational
complexity might not be appropriate.

However, for evaluation of the consulted implementations 360° video content needs
to be created, due to copyright issues. As for the test, the content itself is less rele-
vant, more importance should be attached to the technical properties of the test content.
The generation of test sequences is stated in Section 5.2.2. The evaluation of adequate
omnidirectional streaming systems of this chapter is divided into three main steps:

1. Test content generation, recording and post-processing, in Section 5.2.2.

2. Implementation of HEVC tile-based MPEG-DASH streaming approaches, of three
different developers: GPAC Telecom ParisTech1 [6], Nokia Technologies2 [108],
Fraunhofer Heinrich-Hertz-Institut3 [90], in Section 5.3.1, 5.3.2, 5.3.3. With In-
tegration of DASH elements into the Akamai CDN of the IRT and distribution of
content and test-wise playback in particular environments for each section.

1GPAC Telecom ParisTech: Hereinafter referred to as GPAC.
2Nokia Technologies Corporation: Hereinafter referred to as: Nokiatech.
3Fraunhofer Heinrich-Hertz-Institut: Hereinafter referred to as Fraunhofer HHI or just HHI.

78

3. Evaluation of the different implementations.

It should be considered, that neither the approach of GPAC, nor the implementation of
Nokiatech and the HHI enable a native support for immediate playback on HMDs. Albeit,
Nokiatech provides the source code for playback integration into Android smartphones.
The implementation of the HHI provides a content creation toolkit, and a JavaScript
browser player. Moreover, the solution of GPAC is based on HEVC, using tiles and
MPEG-DASH, but still has no standardized OMAF integration. The other two imple-
mentations use OMAF and may be pioneers for integration of OMAF-based streaming
solutions. Additionally, the approach of Tiledmedia [13] will be roughly analyzed, by
comparing the possible streaming properties and the playback to the other approaches.

5.2 Streaming infrastructure and available resources

5.2.1 Akamai CDN

The corporation Akamai is a provider for content delivery network systems, headquar-
tered in Cambridge US. They are offering network services for multiple different content
providers and large companies,and administer more than 50 terabit daily Web traffic per
second [62]. It possesses a huge origin and edge server infrastructure scattered over the
whole world, with 240.000 servers in over 130 countries and over 1.700 networks worldwide
[62]. Besides media delivery and network administration, which are the key features for
the mentioned use case, Akamai offers Cloud networking, Cloud security systems, and
web-performance optimization services. The server of the IRT in this case, can be used as
origin server, passing the content through the Akamai gateway to the edge server, which
the respective client can access. It enhances the content distribution performance, admin-
istrates the data transmission between each client and server, and is hereby responsible
for transmission quality and security. The server address of the corresponding origin test
server, where the test content will be hosted is available at
http://akamai-progressive.irt.de/masterarbeit_testfiles/, with corresponding
subfolders for each implementation. The content integration of the implemented streams,
i.e. DASH MPDs, Segments etc. into the IRT test server and hereby Akamai CDN is
done by a ftp administration tool.

5.2.2 360◦ audio-visual test content

The test sequences, for subsequent DASH processing and integration into the CDN, are
recorded by the Insta360 Pro 2.0 camera, [9]. Table 5.1 gives an overview of all test
sequences and corresponding recording parameters. All recordings are post-processed in
the available tool Insta360 Stitcher4. The camera records the footage of each lens on each
of the six single micro SD-cards. Additional information and instantaneously stitched files
are written on an additional SD-card. Each single fisheye recording has a resolution of
3840x1920 at 120 Mbps variable bitrate in AVC with profile Main@L5.2, with bit-depth
of 8 bits. The recordings were mapped into equirectangular representation and encoded
into various technical representations, differing in codec, framerate, resolution, bit depth,

4Available at: https://www.insta360.com/download/insta360-pro2

79

Content name and descrip-
tion

Length Format Encoding pa-
rameters

01_Binnenalster.mp4 Ham-
burg city impressions Binnenal-
ster, townhall, cityscape

01:27 min MP4 x.265 8
bit 4:2:0

7680x3840 30fps
223Mbps 2D

02_Lombardsbruecke.mp4

Hamburg city impressions
Lombardsbrücke, townhall,
cityscape, traffic

01:01 min MP4 x.265 8
bit 4:2:0

3840x1920 60fps
222Mbps 2D

03_Aussenalster.mp4 Ham-
burg city impressions Außenal-
ster, ride, pedestrians

05:47 min MP4 x.265 8
bit 4:2:0

3840x1920 30fps
223Mbps 2D

04_Lombardsbruecke.mov

Hamburg city impressions
Lombardsbrücke, townhall,
cityscape, traffic

01:01 min MOV
ProRes422HQ
4:2:2 10 bit

7680x3840 60fps
7890Mbps 2D

05_Lombardsbruecke-02.mov

Hamburg city impressions
Lombardsbrücke, townhall,
cityscape, traffic

01:24 min MOV
ProRes422HQ
4:2:2 10 bit

3840x1920 120fps
3967Mbps 2D

06_Lombardsbruecke-02.mp4

Hamburg city impressions
Lombardsbrücke, townhall,
cityscape, traffic

01:24 min MP4 x.265 8
bit 4:2:0

7680x3840 60fps
223Mbps 2D

07_Binnenalster.mp4 Ham-
burg city impressions Binnenal-
ster, townhall, cityscape

01:27 min MP4 x.265 8
bit 4:2:0

7680x3840 30fps
223Mbps 3D
(top,bottom)

Table 5.1: Specification and encoding parameters of recorded test sequences, with the
Insta360 Pro 2 and Insta360 Stitcher software for post-processing.

stereoscopy, etc. The content are three main motives, all cityscapes in Hamburg, Germany.
Two still recordings, where the camera was put on a tripod, and one recording is a tracking
shoot, of a longboard trip. So, steady and moved content is recorded. As the movement
of the tracking shoot is shaky, some stitching and motion errors occur at faces of persons.
The encoding was performed with more than one file, albeit the documentation in this
section and the following Section 5.3 relates to one single clip. It was chosen to record
with various camera settings, such as various framerates of e.g. 30, 60, 120 fps, resolutions
and 2D or 3D of the same content.

After successful stitching of the six single recordings, i.e. perspectives, the files were
transcoded into RAW YUV format by ffmpeg with the corresponding command line of
Listing 5.1, to prepare them for Kvazaar encoding. In this case the RAW video was
downsampled into 4K resolution, and reframed to match the source clip parameters of
the corresponding guide [75]. Two exported example frames of the recorded test content
06_Lombardsbruecke-02.mp4 are given in Figure 5.1a and 5.1b. A screenshot of the

80

stitching process and exemplary fisheye representation of one single lens recording is
depicted in 5.1c, noticing that six of these single lens fisheye recordings are used to create
the full spherical equirectangular representation.

1 $ f fmpeg − i 06 Lombardsbruecke−02 8K60fps2D HEVC .mp4 −c : v rawvideo −vf
s c a l e =3840:1920 −r 30 −pix fmt yuv420p 06 RAW Lombardsbruecke−02
4K30fps2D HEVC . yuv

Listing 5.1: FFMPEG transcoding into RAW YUV format, for post-processing with the
Kvazaar encoder [19].

5.3 Realization of different 360° streaming systems

5.3.1 GPAC Kvazaar HEVC tile-based adaptation guide imple-
mentation

Since viewport adaptive streaming of 360° videos by using tiles is an emerging topic, there
are several implementation options. One way to realize HEVC tile-based adaptation in
DASH is the proposed basic tutorial [75] of GPAC [17], that was implemented and roughly
tested during this work. The following section documents the implementation steps of
this approach and can be understood as one example of the stated guide. It is worth to
note, that implementing this GPAC solution step by step is a challenging task, requiring
many additional libraries, tools and Github5 implementations to be integrated.

Since the HEVC encoding of the proposed approach is based on the Ultravideo Group
Kvazaar Encoder [14], first the corresponding Kvazaar version 1.2.0 Github resources [19]
and manual were used to compile a functioning Kvazaar build in Microsoft Visual Studio
2017. The following steps were done to create the Kvazaar executable, to be run on
Windows10, based on the instructions of [3] and [19].

The instructions stated in [3], as shown in Figure 5.2, were executed, noticing that
the ’pthreads.2’ folder should be placed at the same directory level, as the folder of the
Kvazaar clone project. Visual Studio 2017 requires the external ‘vsyasm.exe’. Adjust-
ing the build dependencies to ‘vsyasm’ by right clicking on the ‘kvazaar_lib’ in Visual
Studio might be necessary. When these steps were implemented properly, the correspond-
ing ‘kvazaar_VS2013.sln’ can be executed and first the ‘kvazaar_lib.lib’ file can be
compiled. After successful compilation of the lib file, the executable can be generated
by compiling the ‘kvazaar_cli’. The ‘kvazaar.exe’ can afterwards be used in the OS
shell by adding the corresponding environment variables in the system settings.

The next step is the Kvazaar HEVC encoding with tiles enabled. Since the encoder
implementation can only process videos in the RAW .yuv format, the source footage needs
to be converted into the RAW format. As sample footage, the equirectangular source clip,
06_Lombardsbruecke-02 recorded with the Insta 2 Pro is used. The transcoding into the
.yuv format is done by using ffmpeg version 4.1.1. [5]. Since the tutorial describes the
DASH setup for a 4K 30fps equirectangular stream, the 8K source-clip was downsampled
into 3840x1920 30fps, at aspect ratio of the native clip 2:1. The .yuv video is then
transcoded in Kvazaar, by the corresponding command line of Listing 5.2, for two different
qualites, i.e. 1 Mbps and 6 Mbps.

5https://github.com/

81

(a)

(b)

(c)

Figure 5.1: a) Exported frame of equirectangular representation of recorded test sequence
‘06 Lombardsbruecke’. b) Excerpt and possible viewport of ‘06 Lombardsbruecke’. c)
Screenshot of the stitching process with encoding parameters on the right band, and
single lens fisheye representation. Content recorded with Insta360 Pro 2.0 camera and
post-processed by Insta360 Stitcher software [8].

82

Figure 5.2: Step by step explanation of Kvazaar compiling in Visual Studio 2017, of [3].

83

1 ~n Source>kvazaar − i 06 RAW Lombardsbruecke−02 4K30fps2D HEVC . yuv −−input−
r e s =3840x1920 −−input−f p s 30 −o 06 kva Lombardsbruecke−02
4K30fps2D HEVC GPAC 1000kbps . hvc −−b i t r a t e 1000000 −−per iod 30 −−gop 8
−−no−open−gop −−bipred −p 8 −−mv−c on s t r a i n t f ramet i l emarg in −− t i l e s 3x3
−q 30 −− s l i c e s t i l e s

Listing 5.2: Command for HEVC Kvazaar encoding, with tiles enabled, here for a bitrate
of 5 Mbps.

The corresponding commands are defined as follows, with reference to the descriptions
of [19].

• -i, --input <filename>: Input file in RAW yuv420p 8-bit format.

• --input-res <res>: Input resolution default is [auto], by detecting it from the
file name. Otherwise defining the input resolution in -<int>x<int>: width times
height pixels.

• --o, --output <filename>: Output file as .hvc format.

• --tiles <int>x<int>: Split picture into size of width x height [px] uniform tiles.

• --slice<string>: Defines how slices are used. Using the string ‘tiles’ puts each
desired tile in an independent slice.

• --mv-constraint <string>: Defines the motion vector constrains. The string
‘frametilemargin’ defines the motion vector constrains corresponding to each
tile, even stricter than the string ‘frametile’.

• -q, --qp <integer>: Defines the quantization parameter. When the ’bitrate’

is predefined as command, it will be omitted.

• --bitrate <integer>: Specifies the target bitrate. By default it is set to 0, so
rate control is disabled. A following higher integer N defines the target N bits per
second. E.g. 1 Mbps would be defined as ’--bitrate 1000000’.

• -p, --period <integer>: Defines the period of following intra-pictures and is set
to 64 by default. 0: Only first picture is intra. 1: Enables the all-intra mode and no
inter-prediction is used. Using any other integer N: Every Nth picture is intra-coded.

• -n, --frames <integer>: Specifies the number of frames to code, if not the whole
video needs to be coded. By default the whole video is encoded.

• --input-fps <num>[/<denom>]: Defines the framerate of the input video. By
default it is set to 25 fps. In this case 30 fps is used.

Next, the two resulting output files, each of which as single hvc stream, need to be
packed ISOBMFF-conformly into the MP4 container, by using MP4Box. After setting
up the latest GPAC builds version 0.7.0 [7], the following command line of Listing 5.3
was used, according to the MP4Box documentation [10] and the adaptation guide [75],
noticing that the log is also inserted in the listing, below the command.

84

1 mp4box −add 06 kva Lombardsbruecke−02 4K30fps2D HEVC GPAC 1000kbps . hvc :
s p l i t t i l e s −f p s 30 −new 06 mp4 Lombardsbruecke−02
4K30fps2D HEVC GPAC 1000kbps .mp4

2 HEVC import − frame s i z e 3840 x 1920 at 30 .000 FPS
3 HEVC Import r e s u l t s : 1840 samples (18404 NALUs) − S l i c e s : 1845 I 1854 P

12861 B − 1841 SEI − 1845 IDR
4 Stream uses forward p r ed i c t i on − stream CTS o f f s e t : 3 frames
5 Saving 06 mp4 Lombardsbruecke−02 4K30fps2D HEVC GPAC 1000kbps .mp4 : 0 .500

s e c s I n t e r l e a v i n g
6

7 mp4box −add 06 kva Lombardsbruecke−02 4K30fps2D HEVC GPAC 6000kbps . hvc :
s p l i t t i l e s −f p s 30 −new 06 mp4 Lombardsbruecke−02
4K30fps2D HEVC GPAC 6000kbps .mp4

8 HEVC import − frame s i z e 3840 x 1920 at 30 .000 FPS
9 HEVC Import r e s u l t s : 1840 samples (18404 NALUs) − S l i c e s : 1845 I 1854 P

12861 B − 1841 SEI − 1845 IDR
10 Stream uses forward p r ed i c t i on − stream CTS o f f s e t : 3 frames
11 Saving 06 mp4 Lombardsbruecke−02 4K30fps2D HEVC GPAC 6000kbps .mp4 : 0 .500

s e c s I n t e r l e a v i n g

Listing 5.3: Encapsulation of .hvc stream into ISOBMFF-conform format.

This leads to the desired number of tile-tracks as separate streams, of type hvt1, plus
the base tile-track of type hvc2/hev2 containing parameter sets and SEI messages. The
first track corresponds to the base tile-track and the ensuing ISOBMFF tracks correspond
to tile-tracks of tiles 1-9. The authors of [75] note, that removing the first tile-track leads to
a corrupt file, albeit normally the single tile-tracks should be decodable independently of
each other. Removing the second or any other tile-tracks by using the MP4Box command
‘-rem <trackID>’ can be used to check whether tiling worked properly, resulting in
entire green rectangular blocks at the corresponding locations. Besides the two different
bitrates, all other encoding parameters, like resolution, tiling-grid, PPS and SPS should
remain the same. For this purpose, MP4Box was used to create the corresponding DASH
files out of the two created ISOBMFF packed HEVC streams, as follows in Listing 5.4:

1 MP4Box −dash 1000 −p r o f i l e l i v e −f r a g 1000 −rap −segment−name %s segment −
min−bu f f e r 1000 −url−template −out da sh t i l ed−lombardsbruecke 1−6mbps .
mpd 06 mp4 Lombardsbruecke−02 4K30fps2D HEVC GPAC 1000kbps .mp4 06
mp4 Lombardsbruecke−02 4K30fps2D HEVC GPAC 6000kbps .mp4

Listing 5.4: Creation of corresponding DASH MPD and segment files.

The command of Listing 5.4 results in one single MPD depicted in Listing 5.5. The
MP4box dash commands are listed below, with reference to [4].

• -dash <integer X>: Creating segments of size X in milliseconds.

• -profile <string>: Defining the desired profile. In this case ’live’ is chosen.

• -frag <integer X>: Use movie fragments of roughly Y milliseconds. By default,
fragments duration is 500 ms. Here the fragments should match the segment size,
so it is correspondingly set to 1000 ms.

• -rap: Cutting segments to match access points, to not impair coding dependencies.

85

• -segment-name <string NAME>: Generating each segment in a dedicated file, called
NAME%d.EXT. %s can be used to replace them by the name of each file being dashed
(without file-extension).

• -min-buffer: Determines the minimum buffer time before playback.

• -url-template: The segments of different files will be referred to use the Segment-
Template syntax in the MPD.

• -out <String OUTPUT.mpd>: Creates the corresponding MPD into the desired
OUTPUT file.

1 <?xml ve r s i on ="1.0"?>
2 <!−− MPD f i l e Generated with GPAC ver s i on 0.7.0− rev0−gbd5c9af−master at

2019−03−19T15 : 2 7 : 5 3 . 4 7 0Z−−>
3 <MPD xmlns="urn :mpeg : dash : schema :mpd:2011 " minBufferTime="PT1.000S" type="

s t a t i c " mediaPresentat ionDurat ion="PT0H1M1.333S" maxSegmentDuration="
PT0H0M1.033S" p r o f i l e s="urn :mpeg : dash : p r o f i l e : i s o f f −l i v e :2011 ">

4 <ProgramInformation moreInformationURL="http :// gpac . i o ">
5 <Ti t l e>da sh t i l ed−lombardsbruecke 1−6mbps .mpd generated by GPAC</ T i t l e>
6 </ProgramInformation>
7

8 <Period durat ion="PT0H1M1.333S">
9 <AdaptationSet segmentAlignment=" true " b i t s t reamSwitch ing=" true " maxWidth

="3840" maxHeight="1920" maxFrameRate="30" par=" 2 :1 " lang="und">
10 <Essent i a lPrope r ty schemeIdUri="urn :mpeg : dash : srd :2014 " value=" 1 ,0 ,0 ,0 ,0

"/>
11 <SegmentTemplate i n i t i a l i z a t i o n=" da sh t i l ed−lombardsbruecke 1−6

mbps s e t 1 in i t .mp4"/>
12 <Representat ion id="1" mimeType="video /mp4" codecs="hev2 . 1 . 6 . L186 .80 "

width="3840" he ight="1920" frameRate="30" sa r=" 1 :1 " startWithSAP="1"
bandwidth="9558">

13 <SegmentTemplate t ime s ca l e="30000" media="06 mp4 Lombardsbruecke−02
4K30fps2D HEVC GPAC 1000kbps segment track1 $Number$. m4s" startNumber="
1" durat ion="30000"/>

14 </Representat ion>
15 </AdaptationSet>
16 <AdaptationSet segmentAlignment=" true " b i t s t reamSwitch ing=" true " maxWidth

="1280" maxHeight="640" maxFrameRate="30" par=" 2 :1 " lang="und">
17 <SupplementalProperty schemeIdUri="urn :mpeg : dash : srd :2014 " value="

1 ,0 ,0 ,1280 ,640 "/>
18 <Representat ion id="1 2 " mimeType="video /mp4" codecs="hvt1 . 1 . 6 . L186 .80 "

width="1280" he ight="640" frameRate="30" sa r=" 1 :1 " startWithSAP="1"
bandwidth="54815" dependencyId="1">

19 <SegmentTemplate t ime s ca l e="30000" media="06 mp4 Lombardsbruecke−02
4K30fps2D HEVC GPAC 1000kbps segment track2 $Number$. m4s" startNumber="
1" durat ion="30000"/>

20 </Representat ion>
21 <Representat ion id="1 11 " mimeType="video /mp4" codecs="hvt1 . 1 . 6 . L186 .80 "

width="1280" he ight="640" frameRate="30" sa r=" 1 :1 " startWithSAP="1"
bandwidth="101632" dependencyId="1">

22 <SegmentTemplate t ime s ca l e="30000" media="06 mp4 Lombardsbruecke−02
4K30fps2D HEVC GPAC 6000kbps segment track2 $Number$. m4s" startNumber="
1" durat ion="30000"/>

23 </Representat ion>

86

24 </AdaptationSet>
25 <AdaptationSet segmentAlignment=" true " b i t s t reamSwitch ing=" true " maxWidth

="1280" maxHeight="640" maxFrameRate="30" par=" 2 :1 " lang="und">
26 <SupplementalProperty schemeIdUri="urn :mpeg : dash : srd :2014 " value="

1 ,1280 ,0 ,1280 ,640 "/>
27 <Representat ion id="1 3 " mimeType="video /mp4" codecs="hvt1 . 1 . 6 . L186 .80 "

width="1280" he ight="640" frameRate="30" sa r=" 1 :1 " startWithSAP="1"
bandwidth="54859" dependencyId="1">

28 <SegmentTemplate t ime s ca l e="30000" media="06 mp4 Lombardsbruecke−02
4K30fps2D HEVC GPAC 1000kbps segment track3 $Number$. m4s" startNumber="
1" durat ion="30000"/>

29 </Representat ion>
30 <Representat ion id="1 12 " mimeType="video /mp4" codecs="hvt1 . 1 . 6 . L186 .80 "

width="1280" he ight="640" frameRate="30" sa r=" 1 :1 " startWithSAP="1"
bandwidth="105010" dependencyId="1">

31 <SegmentTemplate t ime s ca l e="30000" media="06 mp4 Lombardsbruecke−02
4K30fps2D HEVC GPAC 6000kbps segment track3 $Number$. m4s" startNumber="
1" durat ion="30000"/>

32 </Representat ion>
33 </AdaptationSet>
34 <AdaptationSet segmentAlignment=" true " b i t s t reamSwitch ing=" true " maxWidth

="1280" maxHeight="640" maxFrameRate="30" par=" 2 :1 " lang="und">
35 <SupplementalProperty schemeIdUri="urn :mpeg : dash : srd :2014 " value="

1 ,2560 ,0 ,1280 ,640 "/>
36 <Representat ion id="1 4 " mimeType="video /mp4" codecs="hvt1 . 1 . 6 . L186 .80 "

width="1280" he ight="640" frameRate="30" sa r=" 1 :1 " startWithSAP="1"
bandwidth="52257" dependencyId="1">

37 <SegmentTemplate t ime s ca l e="30000" media="06 mp4 Lombardsbruecke−02
4K30fps2D HEVC GPAC 1000kbps segment track4 $Number$. m4s" startNumber="
1" durat ion="30000"/>

38 </Representat ion>
39 <Representat ion id="1 13 " mimeType="video /mp4" codecs="hvt1 . 1 . 6 . L186 .80 "

width="1280" he ight="640" frameRate="30" sa r=" 1 :1 " startWithSAP="1"
bandwidth="91227" dependencyId="1">

40 <SegmentTemplate t ime s ca l e="30000" media="06 mp4 Lombardsbruecke−02
4K30fps2D HEVC GPAC 6000kbps segment track4 $Number$. m4s" startNumber="
1" durat ion="30000"/>

41 </Representat ion>
42 </AdaptationSet>
43 <AdaptationSet segmentAlignment=" true " b i t s t reamSwitch ing=" true " maxWidth

="1280" maxHeight="640" maxFrameRate="30" par=" 2 :1 " lang="und">
44 <SupplementalProperty schemeIdUri="urn :mpeg : dash : srd :2014 " value="

1 ,0 ,640 ,1280 ,640 "/>
45 <Representat ion id="1 5 " mimeType="video /mp4" codecs="hvt1 . 1 . 6 . L186 .80 "

width="1280" he ight="640" frameRate="30" sa r=" 1 :1 " startWithSAP="1"
bandwidth="133506" dependencyId="1">

46 <SegmentTemplate t ime s ca l e="30000" media="06 mp4 Lombardsbruecke−02
4K30fps2D HEVC GPAC 1000kbps segment track5 $Number$. m4s" startNumber="
1" durat ion="30000"/>

47 </Representat ion>
48 <Representat ion id="1 14 " mimeType="video /mp4" codecs="hvt1 . 1 . 6 . L186 .80 "

width="1280" he ight="640" frameRate="30" sa r=" 1 :1 " startWithSAP="1"
bandwidth="888490" dependencyId="1">

49 <SegmentTemplate t ime s ca l e="30000" media="06 mp4 Lombardsbruecke−02
4K30fps2D HEVC GPAC 6000kbps segment track5 $Number$. m4s" startNumber="
1" durat ion="30000"/>

87

50 </Representat ion>
51 </AdaptationSet>
52

53 <AdaptationSet . . .
54 </AdaptationSet>
55 −−>
56 </Period>
57 </MPD>

Listing 5.5: Excerpt of exemplary MPD for generated adaptive HEVC tile-track DASH
stream, created by using MP4Box, for base-track and tile-tracks 1 and 2.

Each tile-track is now packed into one Adaptation Set, with two possible quality
representations, i.e. 1000 Kbps and 6000 Kbps. The size of each tile-track is 1280x640,
for three columns and rows. Resulting in 3840x1920 pixels, i.e. three-times 1280 x three-
times 640. The SRD is auto-generated by the MP4Box -dash command, to describe the
position of each tile in the respective resulting spherical video-frame. It is specified for
each Adaptation Set by:

1 <Essent i a lPrope r ty schemeIdUri="urn :mpeg : dash : srd :2014 " value=" 1 ,0 ,0 ,0 ,0 "/>

Listing 5.6: SRD base-track specification in the MPD XML.

as an example for the base-tile-track. The SRD for the single tile-tracks of tiles 1-9 are
set by the following command, exemplarily for track 2:

1 <SupplementalProperty schemeIdUri="urn :mpeg : dash : srd :2014 " value="
1 ,0 ,0 ,1280 ,640 "/>

Listing 5.7: SRD specification of tile-track 1 in the MPD XML.

The values are set correspondingly for each tile-track position in the resulting frame.
As stated in the documentation, the playback can be done by the GPAC OSMO4 player
[12], either by the GUI or by using the corresponding command of Listing 5.8.

1 ~n Source>$ mp4cl ient http :// akamai−p r og r e s s i v e . i r t . de/
m a s t e r a r b e i t t e s t f i l e s /Nokiatech Gpac/Gpac eval /DASH01/ da sh t i l ed−
lombardsbruecke 1−6mbps .mpd#LIVE360

Listing 5.8: Starting the GPAC DASH stream, for test with OSMO4 player in 360° mode.

The DASH MPD was successfully created, with each tile-track nested as one single
Representation. Albeit the playback in the OSMO4 player only works partially and does
not interpret the MPD and its segments reliably, the architecture of the MPD is logical
and well structured. When accessing the MPD on the server, the resulting stream in the
OSMO4 player seems to be assembled by different tile-tracks, i.e. bitrate streams. This
can be somewhat visualized by the player properties of Figure 5.3. The two different tile-
tracks, i.e. Representations, with a certain position specified by the SRD, can be switched.
In this case the two possible quality representations or ’auto’ can be set. Noticing, that
in the case of more streams of multiple bitrates, these would be listed accordingly in
the properties of the player. This leads to the assumption that the MPD is created
properly, and could be used adaptively by a proper player implementation. The GPAC
OSMO4 player does not seem to operate reliably and support viewport adaptivity. Even
when playing the provided test MPD, with tiles enabled, linked at [75], playback artifacts
occurred.

88

Figure 5.3: OSMO4 player playback of corresponding MPD, with configuration window
and manual bitrate adjustments of single tracks. Bitrate of stream 1 is 1000 Kbps, stream
2 is 6000 Kbps.

In OSMO4 playback of the dash_tiled-lombardsbruecke_1-6mbps.mpd the chosen
bitrate of each tile always corresponds to the lowest available bandwidth of the tile-tracks
in the MPD. By changing the bitrate manually in the player properties to the highest
bitrate for each tile-track, as visible in Figure 5.3, the image quality can be enhanced,
although it is still not viewport-adaptive. It should be noted, that the resulting playback
frame depicted in Figure 5.3 is not the refreshed playback frame, according to the manually
adjusted bitrate for each track, but illustrates the player configurations. This appears to
be an issue of the OSMO4 player, that chooses the lowest available bitrate by default. This
issue was stated in forums of GPAC and does not seem to be fixed yet, according to the
current state of research. It is assumed, that the available bandwidth is calculated wrong.
This problem is stated in [11]. However, the GPAC OSMO4 player can be considered
as test environment for research purposes, but may not meant to be an adaptive player
solution. For detailed information on this issue and a possible browser integration of the
GPAC solution, the reader is referred to the work of [85], where a similar example of the
GPAC solution was examined and further integrated into a browser playback environment.

5.3.2 Nokiatech OMAF implementation

Another solution of HEVC tiled viewport-adaptive omnidirectional video streaming, is
the OMAF implementation of Nokia Technologies [108], hereinafter referred to as Noki-
atech. Three different OMAF creation modes are supported for the viewport-dependent
profile, in this OMAF implementation. In the following, the test of a 360° OMAF HEVC
viewport-dependent DASH stream is documented. In the implementation the following
three viewport dependent modes are supported: Equal-resolution streams with extractor;

89

Effective 5K ERP; Effective 6K ERP all defined in the annex of the OMAF standard [51].
In this work, the first mode, equal-resolution streams with extractor tracks, was chosen
for evaluation.

First, the provided Github resources [108], need to be compiled to build an exe-
cutable OMAF generator and player. For compilation, additionally the heif-Git [110] and
libdash-Git [20][21] are supplied into the same root-location as the Nokiatech OMAF-
Git. It should be noted, that the cmake6 library needs to be installed on the sys-
tem, when using Windows10. Moreover the HEVC video extensions of Windows10 for
GPU and CPU accelerated HEVC playback need to be installed, as its decoders are
used. These can be obtained e.g. by the Microsoft Store. When all resources are pre-
pared, the ‘build-visualstudio.bat vs2017’ command was executed to build the im-
plementation, located at /omaf/build. Afterwards, the respective executable files are
located at the ‘bin’ folder of the directory ‘Creator’. The OMAF player, named
‘Monitor_Sample’ of Nokiatech needs to be compiled by Visual Studio. The correspond-
ing Visual Studio 2017 solution file is located at ‘omaf\Player\VideoPlayback\Windows
\Monitor_Sample\Monitor_Sample.sln’. When all the executables are built success-
fully, the environment-variables were defined for easier handling.

To create a DASH stream, first two versions of the source test video are were encoded at
two different bitrates, with identical resolutions and encoding parameters. For encoding,
as recommended, the HEVC Kvazaar encoder was used. The corresponding command
lines and chosen parameters are depicted in Listing 5.9 below.

1 kvazaar − i 06 RAW Lombardsbruecke−02 4K30fps2D HEVC . yuv −−input−r e s =3840
x1920 −−input−f p s 30 −−b i t r a t e 500000 −−gop 8 −−no−open−gop −−bipred −p
8 −−mv−c on s t r a i n t f ramet i l emarg in −− t i l e s 5x2 −−set−qp−in−cu −− s l i c e s
t i l e s −o 06 kva Lombardsbruecke−02 4K30fps2D HEVC nokiatech 500kbps .265

2

3 kvazaar − i 06 RAW Lombardsbruecke−02 4K30fps2D HEVC . yuv −−input−r e s =3840
x1920 −−input−f p s 30 −−b i t r a t e 5000000 −−gop 8 −−no−open−gop −−bipred −p
8 −−mv−c on s t r a i n t f ramet i l emarg in −− t i l e s 5x2 −−set−qp−in−cu −− s l i c e s
t i l e s −o 06 kva Lombardsbruecke−02 4K30fps2D HEVC nokiatech 5000kbps .265

Listing 5.9: Kvazaar HEVC encoding at 500 Kbps and 5000 Kbps for Nokiatech OMAF
preparation.

After successful encoding of the two .265 Kvazaar files, the MP4 packaging was done
with MP4Box, as shown in Listing 5.10, for both files, i.e. bitrates.

1 ~/360 stream/nokia−omaf/ source
2 mp4box −add 06 kva Lombardsbruecke−02 4K30fps2D HEVC nokiatech 500kbps .265

−f p s 30 −new 06 packed Lombardsbruecke−02
4K30fps2D HEVC nokiatech 500kbps .mp4

3

4 HEVC import − frame s i z e 3840 x 1920 at 30 .000 FPS
5 HEVC Import r e s u l t s : 1840 samples (20244 NALUs) − S l i c e s : 2050 I 2060 P

14290 B − 1841 SEI − 2050 IDR
6 Stream uses forward p r ed i c t i on − stream CTS o f f s e t : 3 frames
7 Saving 06 packed Lombardsbruecke−02 4K30fps2D HEVC nokiatech 500kbps .mp4 :

0 .500 s e c s I n t e r l e a v i n g

Listing 5.10: Packaging of the Kvazaar files into the MP4 container.

6https://cmake.org/

90

The two generated files have a 2x5 tiling-grid and are encoded at 4K resoultion, 30 fps,
with 0.5 Mbps and 5 Mbps for the non-viewport and viewport areas respectively. To cre-
ate an OMAF-conform DASH directory, with segments, subsegments, initalization-file and
MPD, the ‘omafvd’ application can be used. This uses a JSON script as input for specifica-
tion of the DASH parameters and file indexing. The code was named ‘config.json’, as
proposed by [109]. Hence, the command is simply ‘omafvd config.json’. The config

file is depicted in Listing 5.11. The ‘omafvd.exe’ expects the files referred in the JSON file
to be placed at the same folder. The example JSON file, provided by [108], was modified
and adjusted to the desired DASH configuration.

1 f
2 // " video " i s ob l i g a t o ry
3 " video " : f
4 "common" : f
5 " p r o j e c t i on " : " equ i r e c t angu l a r " , // or ' cubemap ' ; cu r r en t l y

only the d e f au l t OMAF cubemap format i s supported
6 "output mode" : "MultiQ" // Mode o f VD: MultiQ ==

s i n g l e r e s o l u t i o n , mul t ip l e b i t r a t e s , "5K" == 5K unequal r e s o l u t i o n (
Annex D. 6 . 2/example 2) , "6K" == 6K unequal r e s o l u t i o n (Annex D. 6 . 3)

7 g ,
8 "bg" : f
9 " f i l ename " : "06 packed Lombardsbruecke−02 4K30 fp s 2

D HEVC nokiatech 500kbps .mp4" , //non viewport−t i l e s at 500 Kbps (bg =
background)

10 " qua l i t y " : 50 // 1 . . . 255 where 1 i s the best ; i f not g iven ,
d e f a u l t s to 1

11 g ,
12 " fg " : f
13 " f i l ename " : "06 packed Lombardsbruecke−02 4K30 fp s 2

D HEVC nokiatech 5000kbps .mp4" , // viewport t i l e s at 5000 Kbps (f g =
foreground)

14 " qua l i t y " : 1
15 g
16 // add as many as needed
17 g ,
18 // "dash" i s a l t e r n a t i v e to "mp4 " . Creates a l l t r a ck s s epa r a t e l y in

segments (f o r a l l inputs) and one f o r the ex t r a c t o r t rack
19 // i f both are given , only dash output i s generated
20 "dash" : f
21 "output name base " : " ou tput t i l ed−lombardsbruecke−02 500−5000kbps"

, // Basename f o r the DASH output f i l e s
22 "mpd" : f
23 " f i l ename " : "$Name$.mpd" // opt i ona l , d e f au l t i s $Name$.mpd.

$Name$ expands to the value o f " output name base " or i f i t i s not g iven ,
to "output mode"

24 g ,
25 "media" : f
26 " subsegments per segment " : 1 , // op t i ona l , d e f a u l t s to 1 . I f

more than 1 , 1 GOP i s mapped to a subsegment , o therwi se 1 GOP i s mapped
to a segment

27 "segment name" : f
28 // $Name$ expands to the value o f " output name base " or i f

i t i s not g iven , to "output mode"
29 // $Segment$ expands to MPD' s "$Number$" or " i n i t "

depending on the segment type . Using MPD' s $Number$ d i r e c t l y here i s not

91

al lowed .
30 " video " : "$Name$. v ideo . $Segment$.mp4" ,
31 " audio " : "$Name$. audio . $Segment$.mp4" ,
32 " ex t r a c t o r " : "$Name$. e x t r a c t o r . $Segment$.mp4"
33 g
34 g
35 g ,
36 // "mp4" i s a l t e r n a t i v e to "dash " . Creates a s i n g l e mp4 with a l l t r a ck s

(one per t i l e) and the ex t r a c t o r t rack
37 //"mp4" : f
38 // " f i l ename " : "06 OMAF Lombardsbruecke−02 4K30 fp s 2D HEVC nokiatech

5000kbps .mp4"
39 g
40

41 g

Listing 5.11: Parameters in Config.json for creation of the Nokiatech DASH directory,
based on the example of [108].

An extract of the resulting DASH MPD is depicted below, in Listing 5.12. The first
Adaptation Set, with ID=1 contains the two Representations of the first tile-track. All
following Adaptation Sets, contain the following two tile-tracks, each of which lasting
for ‘duration=9’. One of the Representations, i.e. tile-tracks in each Adaptation Set
is of high bitrate, i.e. ‘fg’, the other of lower quality, i.e. ‘bg’. Hence, the tile-track
ID corresponds to the ID of the Adaptation Set. Supplemental OMAF-specific infor-
mation are included in ‘SupplementalProperty’ referring to the ‘srqr’ MPEG URN.
Further information about the quality ranking, and content coverage are included in the
‘omaf:sphRegionQuality’ and ‘omaf:cc shape_type="0"’ entries, respectively. The
region-wise packing type and the projection are defined by ‘omaf:packing_type="0"’

and ‘omaf:projection_type="0"’. As expected, projection type 0 is used, that refers
to equirectangular projection. Although in the Adaptation Set entries the specified pro-
jection mapping, signalled by the SEI, refers to ‘ercm’, i.e cubemap projection, by
‘codecs="resv.podv+ercm.hvc2.1.6.L153.80"’. In the example JSON file, for OMAF
configuration, equirectangular is predetermined. However, the last Adaptation Set with
‘ID=11’ contains the extractor track, as one single Representation at full resolution.

1 <?xml ve r s i on ="1.0" encoding="utf−8"?>
2 <MPD xmlns : omaf="urn :mpeg : mpegI : omaf :2017 "
3 xmlns : x s i="http ://www.w3 . org /2001/XMLSchema−i n s t ance "
4 xmlns="urn :mpeg : dash : schema :mpd:2011 "
5 xmlns : x l i nk="http ://www.w3 . org /1999/ x l ink "
6 x s i : schemaLocation="urn :mpeg : dash : schema :mpd:2011 http :// standards . i s o

. org / i t t f / Pub l i c lyAva i l ab l eStandards /MPEG−DASH schema fi les /DASH−MPD. xsd
"

7 minBufferTime="PT3S"
8 type=" s t a t i c "
9 mediaPresentat ionDurat ion="PT1M1.197S"

10 p r o f i l e s="urn :mpeg : dash : p r o f i l e : i s o f f −l i v e :2011 ">
11 <Essent i a lPrope r ty schemeIdUri="urn :mpeg : mpegI : omaf : 2 0 1 7 : pf " omaf :

p r o j e c t i on type="0"/>
12 <Period durat ion="PT1M1.197S">
13 <AdaptationSet id="1" mimeType="video /mp4 p r o f i l e s ='hevd ' " codecs=" resv

. podv+ercm . hvc1 . 1 . 6 . L186 .80 " maxWidth="768" maxHeight="960" maxFramerate
="30" segmentAlignment="1">

92

14 <Essent i a lPrope r ty schemeIdUri="urn :mpeg : mpegI : omaf : 2 0 1 7 : rwpk" omaf :
pack ing type="0"/>

15 <SupplementalProperty schemeIdUri="urn :mpeg : mpegI : omaf : 2 0 1 7 : cc ">
16 <omaf : cc shape type="1" d e f a u l t v i ew i d c="0">
17 <omaf : cove rage In fo centre az imuth="9437184" c e n t r e e l e v a t i o n="

2949120" c e n t r e t i l t="0" azimuth range="4718592" e l e v a t i on r ang e="
5898240"/>

18 </omaf : cc>
19 </SupplementalProperty>
20 <Representat ion id=" output t i l ed−lombardsbruecke−02 500−5000kbps . bg .

t i l e 1 . v ideo " bandwidth="50980" width="768" he ight="960" frameRate="30"
startWithSAP="1">

21 <SegmentTemplate media=" output t i l ed−lombardsbruecke−02 500−5000
kbps . bg . t i l e 1 . v ideo . $Number$.mp4"

22 i n i t i a l i z a t i o n=" output t i l ed−lombardsbruecke−02
500−5000kbps . bg . t i l e 1 . v ideo . i n i t .mp4"

23 durat ion="9"
24 startNumber="1"
25 t ime s ca l e="30"/>
26 <SupplementalProperty schemeIdUri="urn :mpeg : mpegI : omaf : 2 0 1 7 : s rq r ">
27 <omaf : sphRegionQuality shape type="1" r ema in i ng a r e a f l a g=" f a l s e "

q u a l i t y r a n k i n g l o c a l f l a g=" f a l s e " qua l i t y type="0" d e f a u l t v i ew i d c="0
">

28 <omaf : qu a l i t y I n f o qua l i t y r ank ing="50" centre az imuth="9437184"
c e n t r e e l e v a t i o n="2949120" c e n t r e t i l t="0" azimuth range="4718592"

e l e v a t i on r ang e="5898240"/>
29 </omaf : sphRegionQuality>
30 </SupplementalProperty>
31 </Representat ion>
32 <Representat ion id=" output t i l ed−lombardsbruecke−02 500−5000kbps . f g .

t i l e 1 . v ideo " bandwidth="507850" width="768" he ight="960" frameRate="30"
startWithSAP="1">

33 <SegmentTemplate media=" output t i l ed−lombardsbruecke−02 500−5000
kbps . f g . t i l e 1 . v ideo . $Number$.mp4"

34 i n i t i a l i z a t i o n=" output t i l ed−lombardsbruecke−02
500−5000kbps . f g . t i l e 1 . v ideo . i n i t .mp4"

35 durat ion="9"
36 startNumber="1"
37 t ime s ca l e="30"/>
38 <SupplementalProperty schemeIdUri="urn :mpeg : mpegI : omaf : 2 0 1 7 : s rq r ">
39 <omaf : sphRegionQuality shape type="1" r ema in i ng a r e a f l a g=" f a l s e "

q u a l i t y r a n k i n g l o c a l f l a g=" f a l s e " qua l i t y type="0" d e f a u l t v i ew i d c="0
">

40 <omaf : qu a l i t y I n f o qua l i t y r ank ing="1" centre az imuth="9437184"
c e n t r e e l e v a t i o n="2949120" c e n t r e t i l t="0" azimuth range="4718592"
e l e v a t i on r ang e="5898240"/>

41 </omaf : sphRegionQuality>
42 </SupplementalProperty>
43 </Representat ion>
44 </AdaptationSet>
45 <AdaptationSet id="2" mimeType="video /mp4 p r o f i l e s ='hevd ' " codecs=" resv

. podv+ercm . hvc1 . 1 . 6 . L186 .80 " maxWidth="768" maxHeight="960" maxFramerate
="30" segmentAlignment="1">

46 <Essent i a lPrope r ty schemeIdUri="urn :mpeg : mpegI : omaf : 2 0 1 7 : rwpk" omaf :
pack ing type="0"/>

47 <SupplementalProperty schemeIdUri="urn :mpeg : mpegI : omaf : 2 0 1 7 : cc ">

93

48 <omaf : cc shape type="1" d e f a u l t v i ew i d c="0">
49 <omaf : cove rage In fo centre az imuth="4718592" c e n t r e e l e v a t i o n="

2949120" c e n t r e t i l t="0" azimuth range="4718592" e l e v a t i on r ang e="
5898240"/>

50 </omaf : cc>
51 </SupplementalProperty>
52 <Representat ion id=" output t i l ed−lombardsbruecke−02 500−5000kbps . bg .

t i l e 2 . v ideo " bandwidth="50980" width="768" he ight="960" frameRate="30"
startWithSAP="1">

53 <SegmentTemplate media=" output t i l ed−lombardsbruecke−02 500−5000
kbps . bg . t i l e 2 . v ideo . $Number$.mp4"

54 i n i t i a l i z a t i o n=" output t i l ed−lombardsbruecke−02
500−5000kbps . bg . t i l e 2 . v ideo . i n i t .mp4"

55 durat ion="9"
56 startNumber="1"
57 t ime s ca l e="30"/>
58 <SupplementalProperty schemeIdUri="urn :mpeg : mpegI : omaf : 2 0 1 7 : s rq r ">
59 <omaf : sphRegionQuality shape type="1" r ema in i ng a r e a f l a g=" f a l s e "

q u a l i t y r a n k i n g l o c a l f l a g=" f a l s e " qua l i t y type="0" d e f a u l t v i ew i d c="0
">

60 <omaf : qu a l i t y I n f o qua l i t y r ank ing="50" centre az imuth="4718592"
c e n t r e e l e v a t i o n="2949120" c e n t r e t i l t="0" azimuth range="4718592"

e l e v a t i on r ang e="5898240"/>
61 </omaf : sphRegionQuality>
62 </SupplementalProperty>
63 </Representat ion>
64 <Representat ion id=" output t i l ed−lombardsbruecke−02 500−5000kbps . f g .

t i l e 2 . v ideo " bandwidth="507850" width="768" he ight="960" frameRate="30"
startWithSAP="1">

65 <SegmentTemplate media=" output t i l ed−lombardsbruecke−02 500−5000
kbps . f g . t i l e 2 . v ideo . $Number$.mp4"

66 i n i t i a l i z a t i o n=" output t i l ed−lombardsbruecke−02
500−5000kbps . f g . t i l e 2 . v ideo . i n i t .mp4"

67 durat ion="9"
68 startNumber="1"
69 t ime s ca l e="30"/>
70 <SupplementalProperty schemeIdUri="urn :mpeg : mpegI : omaf : 2 0 1 7 : s rq r ">
71 <omaf : sphRegionQuality shape type="1" r ema in i ng a r e a f l a g=" f a l s e "

q u a l i t y r a n k i n g l o c a l f l a g=" f a l s e " qua l i t y type="0" d e f a u l t v i ew i d c="0
">

72 <omaf : qu a l i t y I n f o qua l i t y r ank ing="1" centre az imuth="4718592"
c e n t r e e l e v a t i o n="2949120" c e n t r e t i l t="0" azimuth range="4718592"
e l e v a t i on r ang e="5898240"/>

73 </omaf : sphRegionQuality>
74 </SupplementalProperty>
75 </Representat ion>
76 </AdaptationSet>
77

78 <!−− More Adaptation Sets f o l l ow ing , corresponding to the t i l i n g −gr id
−−>

79

80 <AdaptationSet id="11" mimeType="video /mp4 p r o f i l e s ='hevd ' " codecs="
re sv . podv+ercm . hvc2 . 1 . 6 . L186 .80 " maxWidth="3840" maxHeight="1920"
maxFramerate="30" segmentAlignment="1">

81 <Essent i a lPrope r ty schemeIdUri="urn :mpeg : mpegI : omaf : 2 0 1 7 : rwpk" omaf :
pack ing type="0"/>

94

82 <SupplementalProperty schemeIdUri="urn :mpeg : dash : p r e s e l e c t i o n :2016 "
value="ext11 ,11 1 2 3 4 5 6 7 8 9 10"/>

83 <Representat ion id=" output t i l ed−lombardsbruecke−02 500−5000kbps .
e x t r a c t o r " bandwidth="0" width="3840" he ight="1920" frameRate="30"
startWithSAP="1">

84 <SegmentTemplate media=" output t i l ed−lombardsbruecke−02 500−5000
kbps . e x t r a c t o r . $Number$.mp4" i n i t i a l i z a t i o n=" output t i l ed−
lombardsbruecke−02 500−5000kbps . e x t r a c t o r . i n i t .mp4" durat ion="9"
startNumber="1" t ime s ca l e="30"/>

85 </Representat ion>
86 </AdaptationSet>
87 </Period>
88 </MPD>

Listing 5.12: Excerpt of exemplary MPD for generated Nokiatech OMAF DASH stream,
generated by use of omafvd of [108].

The viewport-dependent DASH stream of multiple bitrates and the single locally-
stored OMAF-conform MP4 file, can be played by the SDK Monitor_Sample.exe exe-
cuting the respective commands of Listing 5.13 and 5.14 for Windows, or in Android by
using Android Studio. Here, only the Windows playback has been tested.

1 monitor sample s to rage ://06 OMAF Lombardsbruecke−02
4K30fps2D HEVC nokiatech 5000kbps . mp4

Listing 5.13: Command for playback of the OMAF files, by the Nokiatech sample player
[109].

1 monitor sample http :// akamai−p r o g r e s s i v e . i r t . de/ m a s t e r a r b e i t t e s t f i l e s /
Nokiatech Gpac / Nok ia tech eva l /DASH02/DASH02/ o u t p u t t i l e d−lombardsbruecke
−02 500−5000kbps .mpd

Listing 5.14: Command for playback of the DASH stream, by the Nokiatech sample player
[109].

With the chosen OMAF profile, tiling grid, resolution, framerate and number of quality
representations, i.e. the coding command lines mentioned above, the playback by the
Monitor_sample player only works partially. Playback artifacts occur, assumed to be
caused by wrong color component interpretation and encoding parameters, especially
when using the viewport adaptive profile, with more than one quality representation.
Notwithstanding, that this could have been caused by the self-configured Kvazaar HEVC
encoding. For this purpose single bitrate and unadaptive DASH streams have also been
tested, which were interpreted properly by the sample player. Since the DASH MPD
has the tiling and segmentation structure, determined by the OMAF standard, it can
be assumed, that another player implementation might be able to interpret the created
DASH stream correctly. Since the source .yuv, the created OMAF-conform single files
and the unadaptive streams can be decoded without artifacts, as depicted in Figure 5.4
it is assumed, that assembling the stream by different tile-tracks is a tricky task for the
player. Although it is evident, at this point it should be noted, that this implementation
is not intended to be a final version, but more a pre-version and test implementation at
development state of the OMAF standard.

95

Figure 5.4: Screenshot of playback of viewport independent DASH MPD, created by the
Nokiatech OMAF implementation [108] and Kvazaar HEVC encoder [19].

5.3.3 Fraunhofer HHI OMAF implementation

The Fraunhofer Heinrich Herz Institut (HHI) is developing a MPEG-OMAF implementa-
tion, as stated by the developers Podborski et al. in [90]. The current version was roughly
tested thanks to a cooperation between the IRT and HHI. The resources were obtained by
the corresponding Gitlab of the HHI and contain a JavaScript player, as HTML web page
with a MPD URL input field and additional tools for content creation. Since the provided
pre-built content creation tools are for Linux and MacOS, in this work, they were exe-
cuted on a Virtual Box Ubuntu 18.04. These tools expect RAW .yuv ERP source video
files as input to create a cubemap-projected viewport-dependent OMAF-conform DASH
stream and single OMAF-conform files. The HEVC encoder implementation is the latest
HM encoder [18]. In this version the tiling grid is set to 24 tiles for each transmitted
stream, 12 in high-res, for the viewport, and 12 in low-res, for the rest. The high reso-
lution tiles have a size of 768x768 pixels, the low resolution tiles are of 384x384 pixels.
Correspondingly, the packed frame, has a resolution of 3840x2304 pixels. The tile-tracks
are generated for each tile, resulting in 24 tile-tracks, so the assembled stream the client
receives is divided into 12 low-res and 12-high-res tile-tracks, constructing a total of 48
triangular surfaces that form a 3D cube.

The content creation is based on the allocated programs ffmpeg, hevc2omaf,
TAPP360convert, and TAPPencoder, to process the input .yuv file and is divided into five
main execution steps:

• Step 1: Conversion of .yuv file from ERP into cubemap of highest available resolu-
tion.

• Step 2: Downscaling the high-res cubemap .yuv and creation of the low-res cubemap
.yuv RAW files.

96

• Step 3: Split both, i.e. high- and low-res files, into 24 tiles (each), to create all
required tiles.

• Step 4: Run HM and encode each tile as MCTS for chosen QPs.

• Step 5: Packaging of encoded HEVC bitstreams into OMAF DASH files and OMAF-
conform single HEVC files.

For creation of the OMAF files, after installing Python version 2.7, the provided
Python script and a configuration file for specification of the HM encoder parameters
were used. The Python script handles the following input parameters, with reference to
the script file of [90]:

• ‘-s’, ‘--steps’: <string> ‘1-5’= all; ‘1’ = ERP to cubemap conversion only;
‘5’ = Only packaging; ‘3-5’= First tiling, then encoding and packaging.

• ‘-i’, ‘--input’: ‘input filename’ as <string>.

• ‘-o’, ‘--OutputDir’: <string>, default = ‘out’. Name of output folder,
located at the same root as .py script.

• ‘-p’, ‘--FilePrefix’: <string>.

• ‘--InputBitDepth’: <int>, default=8.

• ‘-icf’, ‘--InputChromaFormat’: <int>, default=420.

• ‘-wdt’, ‘--SourceWidth’: <int>, default=8192.

• ‘-hgt’, ‘--SourceHeight’: <int>, default=4096.

• ‘-f’, ‘--FramesToBeEncoded’: <int>, default=-1.

• ‘-fr’, ‘--FrameRate’: <int>, default=30.

• ‘-q’, ‘--QP’: <int>, default=[32], nargs=‘+’. Quantization parameter for
quality adjustment.

• ‘-c’, ‘--HMconfig’: <string> ‘filename of the .cfg file’ for encoder pa-
rameters.

• ‘-t’, ‘--NumThreads’: <int>, default=4. Number of parallel processes.

• ‘-gbs’, ‘--GuardBandSize’: <int>, default=0. Size of OMAF guard band.

• ‘-gbm’, ‘--GuardBandMode’: <string> ‘smear’,

<string> ‘mirror’>, default=‘smear’. Mode of OMAF guard band.

• ‘--hhienc’, HHI HEVC encoder instead of HM.

97

For evaluation, 6K RAW content was be used as input, to diminish the encoding
times of the HM encoder. Hence, the source .yuv file was downsampled using ffmpeg

accordingly, as shown in Listing 5.15. It should be noted, that the HHI OMAF creation
tool expects the color component format to be yuv420p by default. Other pixel formats
such as yuvj420p etc. can also be used, which has to be parametrized as ‘-icf input.
As some color component artifacts occurred at the first encodings, ffmpeg was used to
transform the yuvj420p pixel format into yuv420p, so no input color format had to be
specified for the OMAF creation tools.

1 f fmpeg −s : v 7680 x3840 −r 60 −pix fmt yuvj420p − i 06 RAW Lombardsbruecke−02
8K60fps2D HEVC . yuv −vf s c a l e =6144x3072 −c : v rawvideo −pix fmt yuv420p
06 RAW Lombardsbruecke−02 6k60fps yuv420p new . yuv

Listing 5.15: FFMPEG downsampling into 6K RAW YUV format, for processing with
the HHI content creation tools.

Afterwards, using the downsampled 6144x3072, 60 fps .yuv source clip, the following
Python script was executed in Ubuntu to generate the OMAF DASH stream, as shown
in Listing 5.16.

1 . / c r e a t e oma f f i l e s . py − i 06 RAW Lombardsbruecke−02 6k60fps yuv420p new . yuv
−s 1−5 −wdt 6144 −hgt 3072 − f r 60 −f 600 −q 32 −t 8 −o out−t i l e d −4 −c
encoder con f i g l ombards . c f g

Listing 5.16: Execution of Python script, provided by [90], for content creation of OMAF
DASH stream.

Since the HM encoder was used, with many complex HEVC features enabled, the
encoding is very slow. For that reason, not the entire clip, but only 600 frames were
encoded. The output of the HHI OMAF creation tool, contains two DASH folders, for
two profiles, live and VOD, respectively. Each of which containing a MPD, and segments
at two quality levels, as depicted in Listing 5.17. The corresponding tile-tracks are also
created and located in subfolders, for the two resolutions, i.e. 384x384 and 768x768.
Additionally one single OMAF-conform HEVC coded ISOBMFF file, encoded with the
chosen QP, and the entire high-res and low-res RAW files, are created and separately
stored. The MPD XML of Listing 5.17 contains the 48 Adaptation Sets, each of which
containing one Representation, for each single tile-track. The HEVC codec and cubemap
projection is specified in ‘codecs="resv.podv+ercm.hvc1.2.L153.B0"’. A SRD is not
used in this case, as the position of each tile is specified by a ‘coverageInfo’. The OMAF
brands discussed in Section 4.1.5 can be identified in this MPD. The 48 Adaptation Sets
for each tile-track, are followed by 24 additional Adaptation Sets, each containing one
Representation for one particular extractor track, assembling one particular viewport.

1 <?xml ve r s i on ="1.0" encoding="utf−8"?>
2 <MPD xmlns : x s i="http ://www.w3 . org /2001/XMLSchema−i n s t ance " xmlns="urn :mpeg :

dash : schema :mpd:2011 " xmlns : omaf="urn :mpeg : mpegI : omaf :2017 " xmlns : x l i nk=
"http ://www.w3 . org /1999/ x l ink " x s i : schemaLocation="urn :mpeg : dash : schema :
mpd:2011 http :// standards . i s o . org / i t t f / Pub l i c lyAva i l ab l eStandards /MPEG−
DASH schema fi les /DASH−MPD. xsd" type=" s t a t i c " p r o f i l e s="urn :mpeg : dash :
p r o f i l e : i s o f f −l i v e :2011 " mediaPresentat ionDurat ion="PT4.95S"
minBufferTime="PT1S">

3 <Essent i a lPrope r ty schemeIdUri="urn :mpeg : mpegI : omaf : 2 0 1 7 : pf " omaf :
p r o j e c t i on type="1"/>

4 <Period durat ion="PT4.95S">

98

5 <AdaptationSet mimeType="video /mp4 p r o f i l e s ='hevd ' " codecs=" re sv . podv+
ercm . hvc1 . 2 . L153 .B0" segmentAlignment="1" subsegmentAlignment="1" id="1"
>

6 <Viewpoint schemeIdUri="urn :mpeg : dash : viewpoint :2011 " value="vp1"/>
7 <Essent i a lPrope r ty schemeIdUri="urn :mpeg : mpegI : omaf : 2 0 1 7 : rwpk"/>
8 <SupplementalProperty schemeIdUri="urn :mpeg : mpegI : omaf : 2 0 1 7 : cc ">
9 <omaf : cc shape type="0">

10 <omaf : cove rage In fo centre az imuth="7602176" c e n t r e e l e v a t i o n="
1572864" azimuth range="1310720" e l e v a t i on r ang e="1310720"/>

11 </omaf : cc>
12 </SupplementalProperty>
13 <Representat ion id="1 qp32" bandwidth="112121" qual i tyRanking="1"

frameRate="60">
14 <SegmentTemplate t ime s ca l e="90000" durat ion="13500" startNumber="1"

i n i t i a l i z a t i o n=" l i v e /qp32/06RAWLombardsbruecke−026
k60fpsyuv420pnew out 384x384 qp32 seg0 .mp4" media=" l i v e /qp32/
Track 1 Seg $Number$.mp4"/>

15 </Representat ion>
16 </AdaptationSet>
17 <AdaptationSet mimeType="video /mp4 p r o f i l e s ='hevd ' " codecs=" re sv . podv+

ercm . hvc1 . 2 . L153 .B0" segmentAlignment="1" subsegmentAlignment="1" id="2"
>

18 <Viewpoint schemeIdUri="urn :mpeg : dash : viewpoint :2011 " value="vp1"/>
19 <Essent i a lPrope r ty schemeIdUri="urn :mpeg : mpegI : omaf : 2 0 1 7 : rwpk"/>
20 <SupplementalProperty schemeIdUri="urn :mpeg : mpegI : omaf : 2 0 1 7 : cc ">
21 <omaf : cc shape type="0">
22 <omaf : cove rage In fo centre az imuth="4128768" c e n t r e e l e v a t i o n="

1572864" azimuth range="1310720" e l e v a t i on r ang e="1310720"/>
23 </omaf : cc>
24 </SupplementalProperty>
25 <Representat ion id="2 qp32" bandwidth="139558" qual i tyRanking="1"

frameRate="60">
26 <SegmentTemplate t ime s ca l e="90000" durat ion="13500" startNumber="1"

i n i t i a l i z a t i o n=" l i v e /qp32/06RAWLombardsbruecke−026
k60fpsyuv420pnew out 384x384 qp32 seg1 .mp4" media=" l i v e /qp32/
Track 2 Seg $Number$.mp4"/>

27 </Representat ion>
28 </AdaptationSet>
29

30 <!−− 46 More Adaptation Sets f o l l ow ing , corresponding to the
t i l i n g −gr id o f 24 t i l e s per r e s o l u t i on−−>

31

32 </AdaptationSet>
33 <AdaptationSet mimeType="video /mp4 p r o f i l e s ='hevd ' " codecs=" re sv . podv+

ercm . hvc2 . 2 . L153 .B0" segmentAlignment="1" subsegmentAlignment="1" id="49
">

34 <Viewpoint schemeIdUri="urn :mpeg : dash : viewpoint :2011 " value="vp1"/>
35 <Essent i a lPrope r ty schemeIdUri="urn :mpeg : mpegI : omaf : 2 0 1 7 : rwpk"/>
36 <SupplementalProperty schemeIdUri="urn :mpeg : mpegI : omaf : 2 0 1 7 : s rq r ">
37 <omaf : sphRegionQuality qua l i t y type="1" shape type="0"

r ema in i ng a r e a f l a g="1" q u a l i t y r a n k i n g l o c a l f l a g="1">
38 <omaf : qu a l i t y I n f o qua l i t y r ank ing="1" or i g w idth="4608"

o r i g h e i g h t="3072" centre az imuth="7602176" c e n t r e e l e v a t i o n="1572864"
azimuth range="6553600" e l e v a t i on r ang e="6553600"/>

39 <omaf : qu a l i t y I n f o qua l i t y r ank ing="2" or i g w idth="2304"
o r i g h e i g h t="1532"/>

99

40 </omaf : sphRegionQuality>
41 </SupplementalProperty>
42 <SupplementalProperty schemeIdUri="urn :mpeg : dash : p r e s e l e c t i o n :2016 "

value="PreselTag1 ,49 25 38 31 26 44 32 45 39 41 47 42 37 3 4 5 6 9 10 11
12 16 19 22 24 "/>

43 <Representat ion id="49" bandwidth="356906" frameRate="60">
44 <SegmentTemplate t ime s ca l e="90000" durat ion="13500" startNumber="1"

i n i t i a l i z a t i o n=" l i v e /06RAWLombardsbruecke−026
k60fpsyuv420pnew out Extractors0 .mp4" media=" l i v e /Ext 1 Seg $Number$.mp4
"/>

45 </Representat ion>
46 </AdaptationSet>
47 <AdaptationSet mimeType="video /mp4 p r o f i l e s ='hevd ' " codecs=" re sv . podv+

ercm . hvc2 . 2 . L153 .B0" segmentAlignment="1" subsegmentAlignment="1" id="50
">

48 <Viewpoint schemeIdUri="urn :mpeg : dash : viewpoint :2011 " value="vp1"/>
49 <Essent i a lPrope r ty schemeIdUri="urn :mpeg : mpegI : omaf : 2 0 1 7 : rwpk"/>
50 <SupplementalProperty schemeIdUri="urn :mpeg : mpegI : omaf : 2 0 1 7 : s rq r ">
51 <omaf : sphRegionQuality qua l i t y type="1" shape type="0"

r ema in i ng a r e a f l a g="1" q u a l i t y r a n k i n g l o c a l f l a g="1">
52 <omaf : qu a l i t y I n f o qua l i t y r ank ing="1" or i g w idth="4608"

o r i g h e i g h t="3072" centre az imuth="4128768" c e n t r e e l e v a t i o n="1572864"
azimuth range="6553600" e l e v a t i on r ang e="6553600"/>

53 <omaf : qu a l i t y I n f o qua l i t y r ank ing="2" or i g w idth="2304"
o r i g h e i g h t="1532"/>

54 </omaf : sphRegionQuality>
55 </SupplementalProperty>
56 <SupplementalProperty schemeIdUri="urn :mpeg : dash : p r e s e l e c t i o n :2016 "

value="PreselTag2 ,50 26 47 27 32 25 41 33 31 28 48 39 38 5 6 10 11 12 13
16 18 19 20 21 22 "/>

57 <Representat ion id="50" bandwidth="356906" frameRate="60">
58 <SegmentTemplate t ime s ca l e="90000" durat ion="13500" startNumber="1"

i n i t i a l i z a t i o n=" l i v e /06RAWLombardsbruecke−026
k60fpsyuv420pnew out Extractors1 .mp4" media=" l i v e /Ext 2 Seg $Number$.mp4
"/>

59 </Representat ion>
60 </AdaptationSet>
61

62 <!−− 22 More Adaptation Sets f o l l ow ing , each o f which c r e a t i n g one
p a r t i c u l a r viewport , by the r e s p e c t i v e ex t r a c t o r track−−>

63

64 </Period>
65 </MPD>

Listing 5.17: Excerpt of exemplary MPD for generated HHI OMAF DASH stream,
generated by the tools of [90].

To test this created stream, the player was first set up on an Akamai Apache web
server of the IRT. Here, unfortunately some errors occurred, as some functions of the
angular.js were not supported. For that reason, as recommended in the provided git
documentation, a Nginx web server was implemented for testing, configured to be ac-
cessible at ‘localhost:5555’. As only the Safari Browser has native HEVC support,
this OMAF HHI player can only be executed on a Mac OS, to test the created DASH
MPD. The playback of the created DASH stream works, even though the edges of the
tiles are slightly visible. To prevent from these artifacts, OMAF guard bands have to be

100

Figure 5.5: Playback screenshot of viewport dependent DASH MPD, created and played
by the HHI OMAF implementation tools of [90], with deactivated guard bands.

set by the ‘-gbs’ parameter, which by default is 0. Analyzing the network activities of
the player, especially the GET requests, via the development tools of the Safari browser,
leads to the assumption that viewport adaptivity works properly. That is, first the extrac-
tor tracks are requested, referring to the segments of tile-tracks for the viewport, which
are requested from the ‘qp32’ folder and those for the background are requested from
the root folder of the DASH segments. Nonetheless, the playback on the used playback
system7 is stagnant and has short interruptions by black frames, especially when turning
the viewport. Additionally, the limitations of the self-configuration in terms of of tiling
and segmenting should be mentioned. It should be noted, that this implementation is at
development state and can not be considered as finished solution, but more as proof of
concept. A screenshot of the created OMAF stream is shown in Figure 5.5. An evaluation
and comparison to the other implementations is stated in Section 5.4.

5.3.4 Tiledmedia

Tiledmedia is a private company, providing a partially standardized solution for omni-
directional tiled HEVC and H.264 streaming, using x264 and Intel’s SVT-HEVC codec
implementations. They were collaborating in the OMAF standardization process and the
streaming solution is likely to become OMAF-standard in future, with the announcement
of the second OMAF version in MPEG-I Phase 2. For evaluation of the stream, a stitched

7iMac Retina 5K, 27 inch, mid 2015, 3.3 GHz Intel Core i5, 32 GB 1600 MHz DDR3, AMD Radeon
R9 M290 2 GB

101

(a)

(b)

Figure 5.6: Playback screenshots of a test sequence of WDR in the Android application
of Tiledmedia.

8K 30fps 2D equirectangular source sequence of the WDR, recorded with the Insta Pro
2.0, was processed by Tiledmedia and provided through a proprietary Android applica-
tion. In this case the chosen target bitrate of the transmitted HEVC stream was around
8 Mbps, displayed on a 2K Andorid smartphone. The playback was displayed fluently
and viewport-adaptively. The quality switching, according to abrupt head-movement was
slightly visible, but adaptation was performed very fast. Since this approach is a propri-
etary one, not all information regarding tiling structure, viewport-adaptivity and other
processing specifications are open accessable and the descriptions of this section are of lim-
ited scale. As the examination of the transmission statistics of the stream is only possible
through the application itself, or with additional technical effort, the specifications of this
streaming solution were requested directly from the developers. The streams have been
tested on a Samsung Gear with a Samsung Galaxy S7. Correspondingly, a screenshot of
playback with the provided app is depicted in Figure 5.6a and 5.6b.

Currently, the maximum receivable resolution and framerate of the rendered viewport,
are 8k mono and close to 6k stereoscopic, at 60 fps, assuming the device can display

102

it. On a Samsung Galaxy S10 it can be even higher, up to 16K, since it has an 8k
decoder. The content is either transmitted as cubemap, or as cylindrical 2D mapping,
either of 360° or 180° and with a choice of monoscopic or stereoscopic, and seamless
switching between those. The maximum bitrate for transmission of the entire stream is
tried to be kept below 20 Mbps, depending on the spatial and temporal complexity of the
content. The configuration of the different quality representations, used for the tile-tracks
is highly adjustable. Currently, e.g. for 8K source content, they use a low-res and a
high-res representation, for the background and the viewport, respectively. In this case,
the low-res background could be composed by 6 tiles of 512x512 pixels, i.e. 1536x1024,
for the whole cubemap. The high-res viewport could be transmitted as a short GOP
with, for instance 4x4 tiles of 512x512 pixels, i.e. 2048x2048 pixels, per cubeface. A
long GOP with the same resolution and configuration, is also provided. It is assumed,
that the low-res stream is transmitted continuously, and the high-res tiles are transmitted
viewport-adaptively. More advanced bandwidth and viewport-adaptive stream switching
is under development, to switch between different quality bitrate levels and also between
different resolutions. Moreover, Tiledmedia uses CDN prefetching for neighbouring tiles.
The playback is configurable for different playback devices and is already supported for
all Android devices with a hardware HEVC decoder on Android OS version 6.0 or higher.
Further, all iOS devices with a hardware 4K HEVC decoder and iOS version of 11.0 or
higher are supported, i.e. including all iPhones 7 and higher. Support for PC playback
on the Oculus RIFT or HTC VIVE has already been developed in principle, but is not
commercially available and will only be released when the demand on such an application
increases. As currently most browsers have no native HEVC support, browser playback
is not supported. Further, an AV1 based implementation is under development.

5.4 Comparison of tested implementations

Different approaches for implementation of a tiled 360° stream were presented above, some
of which are already OMAF-conform and use the proposed optimization technologies, like
viewport-adaptivity, tiles and segmented transmission. This subsection summarizes the
findings of the roughly tested implementations. It is important to note, that all of them are
still under development at different states and the tests of Nokiatech and HHI refer to pre-
versions, which are likely to be enhanced gradually. The first three approaches use MPEG-
DASH and create MPDs, to segment the single tile-tracks in an adequate distribution
format. Since the Tiledmedia implementation is not entirely standardized and no open-
source solution, the exact transmission technology, e.g. whether DASH, HLS etc. is used,
is not revealed. Hence, the comparison of the streaming architectures primarily refers
to the OMAF solutions of Nokiatech and HHI, and the GPAC-based tiling guide. The
tile-based encoding of the source content, into independently decodable parts of a whole
frame, and the subsequent packaging of these sequences into a standardized transmission
structure, e.g. MPEG DASH, are the key steps for creation of an omnidirectional stream.
The resulting OMAF-conform MPDs of a certain OMAF profile, created by different
implementations, basically should not deviate from each other, to maintain playback
compatibility. For that reason the tiling structure and MPDs are compared to identify
differences and OMAF-conformity.

Generally, all use very similar structures, packing either one or more Representation for

103

each single tile-track into one Adaptation Set. The OMAF Nokiatech DASH creation tool
[108], creates multiple Adaptation Sets, each containing two Representations of different
bitrates. Hence, one Adaptation Set with one particular ID contains all tiles covering one
particular area. The MPD created by the GPAC guide [75] has a very similar structure,
although it is not OMAF standard. The differences primarily are, that the Nokiatech
approach uses the OMAF brands and does not determine the positions of the tiles by
the SRD. Both, HHI and Nokiatech use the OMAF content coverage brand ‘cc’ for
positioning of the single tiles in the resulting image and specify the projection format by
‘pf’ of the respective type, i.e. here Nokiatech uses ‘type 1’ and HHI uses ‘type 0’.
Since the HHI approach uses the HEVC-based viewport-dependent OMAF video profile
with MCTS of different resolutions, the tiling grid and the MPD creation differs from the
others. Here, each single tile is packed into one single Adaptation Set, with 24 additional
extractor tracks. The MPD of the Nokiatech DASH stream only contains one single
pre-selected viewport orientation, packed into one Adaptation Set, containing one single
extractor track. Both OMAF solutions use cubemap projection and HEVC encoding,
albeit of different codec implementations. Most brands and standardized labels of the
OMAF MPDs, i.e. the specified profiles, codecs, mappings, region-wise packing or sphere
region quality ranking are identical. Exemplarily, OMAF-conform entries specifying the
region wise packing rwpk—, the quality ranking ‘srqr’, and the content coverage ‘cc’

are picked and shown in Listing 5.18.

1 <Essent i a lPrope r ty schemeIdUri="urn :mpeg : mpegI : omaf : 2 0 1 7 : rwpk"/>
2 <SupplementalProperty schemeIdUri="urn :mpeg : mpegI : omaf : 2 0 1 7 : s rq r ">
3 . . .
4 <SupplementalProperty schemeIdUri="urn :mpeg : mpegI : omaf : 2 0 1 7 : cc ">
5 . . .

Listing 5.18: OMAF-conform schemes in MPD, of created DASH stream.

The DASH entry ‘viewpoint’ is only used in the MPD created by the HHI tools.
Since at this early state of the OMAF standard, not all profiles and tools are supported
in each implementation yet, the test player implementations only work with their own
proprietary created DASH MPD. Even for content, created by their own tools, the players
have a very limited functionality and only work in particular environments. They can
rather be considered as test players without the pretension to work with other approaches.
Nevertheless, player interoperability for different OMAF profiles and implementations is
necessary, and needs to be expedited in the future, as OMAF-conform DASH MPDs
should be uniformly interpretable.

At this very early state of development, performance comparison between these ap-
proaches is very difficult, since different profiles and encoding parameters were used, and
the players have a very limited functional range, working only in particular technical en-
vironments. The playback of the Tiledmedia stream, appears to be of high-performance,
comparing the streams visually. Their player has a extensive functionality and exceeds
the capabilities of other players. As described above, numerous different streaming pa-
rameters can be set with few limitations in terms of projection mapping, resolution and
bitrate. Notwithstanding, the approaches of Nokiatech and HHI are promising to become
efficient OMAF implementations, if the range of encoding parameters, profiles, and en-
coder implementations is expanded. Further, with future profiles and extensions of the
OMAF standard, efficient competitive solutions compared to other proprietary ones will

104

be proposed, which can be integrated into the existing approaches.
Considering, that all of them are based on MPEG video coding, i.e. H.264 and HEVC,

and MPEG streaming is the base for three of them, probably other approaches, based
on other codecs and streaming systems might be developed in the future. Tile-based
AV1 coding is already emerging, and might be used for similar omnidirectional viewport-
adaptive streaming systems. The potential of the streaming architectures, and the OMAF
standard, with regard to future usability, especially referring to the introduced use case
scenario will be discussed and concluded in Chapter 6.

105

Chapter 6

Conclusion and outlook

The introduced technologies of the theoretical part of this work and the potential for
streaming efficiency of the above tested approaches are summarized in the following.
Meanwhile considering the introduced use case of 360° streaming at the public broad-
casters. In the end, the technologies and findings are examined with respect to future
prospects.

First, 360° video has been defined and content creation and representation have been
analyzed, considering recent approaches. Albeit not all have been integrated into the
tested implementations of section 5.3. Basic technologies for video coding and streaming
have been discussed in the aftermath, with focus on MPEG technologies and HTTP
streaming. Moreover, new approaches for streaming of spherical content, by using tiles and
novel prediction algorithms, based on machine learning, were roughly described in Section
3.2.6 and 3.2.7. Technical descriptions and realizations of some of those technologies
in 360° streaming systems were discussed subsequently, with focus on MPEG-OMAF
in Section 4.1.5. Other technical approaches were also introduced in Section 4.3 and
examined afterwards, with respect to usability, efficiency and feasibility. The practical
part of this work is stated in Chapter 5, testing different implementations, two of them
based on OMAF.

Bitrate reduction for streaming of omnidirectional video content is realizable through
sphere to planar mapping optimization, efficient video coding, viewport-adaptive seg-
mented transmission and prediction algorithms. Today, streaming of spherical content can
be done in several ways. For instance, it can either be done viewport-independently, with
efficient video coding, but reduced resolution and bitrate, due to bandwidth constraints.
Furthermore, it can be realized viewport-dependently, with much higher efficiency and
bitrate for the viewport. Albeit today, this implies reduced compatibility and usability
or much more effort and costs yet. Since for live streaming low-complexity and low-delay
are required, the stream can be transmitted entirely as conventional planar 2D sequence
with respective SEI messages, informing about the spherical specifications. Another way
would be with hardware i.e. live encoders and encapsulators, capable of tiling, and play-
ers capable of assembling the viewport out of tile-tracks. In this sense, the development
of MPEG-OMAF is an important advance, so capable hardware and software might be
released in the future and already existing partially standard-conform solutions and pro-
prietary solutions might be adapted to fit the standard. If viewport adaptivity is desired
for the drafted use case, today it can be realized in one of the following three ways:

106

1. By server-sided viewport allocation, and transmission of the stream as conventional
decodable stream, i.e. H.264, HEVC etc.

2. By using OMAF encoding and a standardized OMAF player.

3. By other non-standardized, or partially-standardized approaches, e.g. third-party
solutions, with proprietary stream creation and playback environments.

Since OMAF is still very young, no fully functional capable players have been released
and the content creation implementations have a limited functionality yet. For this rea-
son, if such a solution is desired, players need to be developed and content creation
implementations need to be expanded. As server-sided viewport allocation is compu-
tationally expensive and a complex task, the amount of clients, receiving the content
should be considered. Other third-party solutions may be the most efficient solution yet,
with different scope of service, distribution properties and financial plans. It should be
considered that for VOD streaming, content can be high efficiently pre-processed, using
very time-consumptive but efficient encoding. For transmission environments with higher
disposable bandwidths, especially regarding the emerging 5G internet standard, and ap-
plications with less priority to low delay, viewport dependency might not imminently be
necessary. This also depends on the used codec and encoding parameters. With respect
to the public broadcasters one could also propose to wait for more mature implementa-
tions, that provide viewport adaptivity, while simultaneously using conventional content
allocation for VOD and cooperating with third-party companies for realization of complex
live streaming of particular events.

Relating to the initially examined questions of maintaining high quality for omnidirec-
tional video the OMAF standard can be an efficient solution. Exploiting the potential of
viewport-adaptivity and video codecs and offering broad disposability are crucial features
for effective omnidirectional video streaming. Since OMAF is based on popular and effec-
tive video codecs and streaming technologies, such as H.264, HEVC and MPEG-DASH the
integration and interoperability are enhanced. Further, by offering viewport-adaptivity
and effective high resolutions up to 8K, OMAF meets today’s technical demands. Espe-
cially with future advances of OMAF implementations generally the usability, streaming
efficiency and feasibility can further be improved. Although the tested implementations
are of limited extent yet. That is support of other input formats besides RAW .yuv

and better configuration of encoding parameters are necessary. Noticing, that the exact
comparison and examination of the implementations were stated in Section 5.4.

Regarding the content providers, it should be determined for which content and use
case 360° streaming is necessary at all, and which playback environment is adequate,
i.e. TV, browser, HMD etc. For browser-based playback, the popularity and dispersion
of HEVC needs to increase, to provide OMAF-conform omnidirectional content. Other
different approaches, based on other codecs and distribution systems, such as AV1 or
HLS, can be of enormous importance in the future, as the big companies in content
creation and content distribution, such as Netflix, Amazon, Google and co. are interested
in open-source solutions. Further, upcoming improvements in conventional video coding,
e.g. JEM7, special treatment of spherical content, e.g. MPEG-I, and progress in machine
learning algorithms, used for content and viewport prediction, provide novel approaches
for efficient omnidirectional streaming.

107

Bibliography

[1] Cisco Visual Networking Index: Global Mobile Data
Traffic Forecast Update, 2016–2021 White Paper.
"https://www.cisco.com/c/en/us/solutions/collateral/service-provider/

visual-networking-index-vni/mobile-white-paper-c11-520862.html", ac-
cessed: 2018-10-16.

[2] Cisco Visual Networking Index: Global Mobile Data
Traffic Forecast Update, 2017–2022 White Paper.
"https://www.cisco.com/c/en/us/solutions/collateral/service-provider/

visual-networking-index-vni/white-paper-c11-738429.html", accessed:
2019-03-25.

[3] Compilation error · Issue #203 · ultravideo/kvazaar.
"https://github.com/ultravideo/kvazaar/issues/203", accessed: 2019-
02-24.

[4] DASH Streaming Support |GPAC. "https://gpac.wp.imt.fr/2012/02/01/dash-
support/", accessed: 2019-02-24.

[5] FFmpeg. "https://www.ffmpeg.org/", accessed: 2019-02-01.

[6] GPAC |Multimedia Open Source Project. "https://gpac.wp.imt.fr/", accessed:
2019-02-24.

[7] GPAC-Downloads. "https://gpac.wp.imt.fr/downloads/", accessed: 2019-02-
24.

[8] Insta360 360 Camera - Insta360 Download. "https://www.insta360.com/

download/insta360-pro2", accessed: 2019-03-16.

[9] Insta360 Pro 2 - Better from every angle.
"https://www.insta360.com/product/insta360-pro2/?gclid=EAIaIQobChMIuJ

7B8eDn3QIVV6WaCh0NfgoQEAAYASAAEgIM5_D_BwE", accessed: 2018-10-02”.

[10] MP4 Box General Documentation | GPAC. "https://gpac.wp.imt.fr/mp4box/
mp4box-documentation/", accessed: 2019-02-24.

[11] MP4client quality adaptation not working when playing SRD tiled video · Is-
sue #827 · gpac/gpac. "https://github.com/gpac/gpac/issues/827", accessed:
2019-02-24.

108

[12] Osmo4 | GPAC. "https://gpac.wp.imt.fr/player/", accessed: 2019-02-24.

[13] Tiledmedia. "https://www.tiledmedia.com/", accessed: 2019-02-24.

[14] Ultra Video Group. "http://ultravideo.cs.tut.fi/", accessed: 2019-02-24.

[15] Virtual Reality - Prognose zum Umsatz weltweit bis 2021 | Statistik.
"https://de.statista.com/statistik/daten/studie/318536/umfrage/prog

nose-zum-umsatz-mit-virtual-reality-weltweit/" and
"https://www.superdataresearch.com/wp-content/uploads/2018/01/

SuperData-Research-Virtual-Reality-XR-Report-1.png", accessed: 2019-03-
20.

[16] WebVR concepts. "https://developer.mozilla.org/en-US/docs/Web/API/
WebVR_API/Concepts", accessed: 2018-10-02.

[17] GPAC main code repository. GPAC Implementation, February 2019.
"https://github.com/gpac/gpac", accessed: 2019-02-25.

[18] HEVC Test Model (HM) Documentation, March 2019.
"https://hevc.hhi.fraunhofer.de/HM-doc/", accessed: 2019-03-02.

[19] Kvazaar - an open-source HEVC encoder. Implementation, February 2019.
"http://github.com/ultravideo/kvazaar", accessed: 2019-02-27.

[20] MPEG-DASH Access Library: Official ISO/IEC MPEG-DASH
Reference Implementation - bitmovin/libdash, February 2019.
"https://github.com/bitmovin/libdash", accessed: 2019-02-24.

[21] MPEG-DASH Access Library: Official ISO/IEC MPEG-DASH Reference Imple-
mentation - nokia/libdash, March 2019. "https://github.com/nokia/libdash",
accessed: 2019-03-02.

[22] Adeel Abbas and David Newman. AHG8: Rotated Sphere
Projection for 360 Video. April 2017. [Online]. Available:
http://phenix.it-sudparis.eu/jvet/doc_end_user/current_document.php?

id=3060.

[23] Hamed Ahmadi, Omar Eltobgy, and Mohamed Hefeeda. Adaptive Multicast
Streaming of Virtual Reality Content to Mobile Users. In Proceedings of the on
Thematic Workshops of ACM Multimedia 2017, Thematic Workshops ’17, pages
170–178, New York, NY, USA, 2017. ACM.

[24] Elena Alshina, Gary J Sullivan, Microsoft Corp, Jens-Rainer Ohm, and Jill Boyce.
JVET-G1001: Algorithm description of Joint Exploration Test Model 7 (JEM7).
July 2018.

[25] David Austerberry. The technology of video and audio streaming. Focal Press,
Burlington, MA, 2nd edition, 2004.

109

[26] L. Bassbouss, S. Pham, and S. Steglich. Streaming and playback of 16k 360° videos
on the web. In 2018 IEEE Middle East and North Africa Communications Confer-
ence (MENACOMM), pages 1–5, April 2018.

[27] Ali Borji, Ming-Ming Cheng, Huaizu Jiang, and Jia Li. Salient Object Detection: A
Benchmark. IEEE Transactions on Image Processing, 24(12):5706–5722, December
2015. arXiv: 1501.02741.

[28] J. M. Boyce, Y. Ye, J. Chen, and A. K. Ramasubramonian. Overview of SHVC:
Scalable Extensions of the High Efficiency Video Coding Standard. IEEE Transac-
tions on Circuits and Systems for Video Technology, 26(1):20–34, January 2016.

[29] Jill M. Boyce. Omnidirectional projection indication SEI message geom-
etry type and projection type changes. page 11, 27th Meeting: Hobart,
April 2017. Joint Collaborative Team on Video Coding (JCT-VC) of ITU-
T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11. [Online]. Available:
https://www.researchgate.net/publication/327253566_JCTVC-AA0035

_Omnidirectional_projection_indication_SEI_message_geometry_type_and

_projection_type_changes.

[30] Jill M. Boyce, Adarsh Ramasubramanian, R. Skupin, Gary J. Sullivan, and Alexis
Tourapis. HEVC Additional Supplemental Enhancement Information (Draft 1).
page 20, 26th Meeting: Geneva, CH, January 2017. Joint Collaborative Team on
Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG
11.

[31] Jill M. Boyce, Adarsh Ramasubramanian, R. Skupin, Gary J. Sullivan, and Alexis
Tourapis. ISO/IEC 23008-2:2017/Amd 3:2018 Information technology — High ef-
ficiency coding and media delivery in heterogeneous environments — Part 2: High
efficiency video coding AMENDMENT 3: Additional supplemental enhancement
information. Geneva, CH, July 2018. International Organization for Standardiza-
tion.

[32] Jill M. Boyce, Li Xiang, Karsten Suehring, and Vadim Seregin. JVET-J1010: JVET
common test conditions and software reference configurations. 10th Meeting: San
Diego, US, April 2018. Joint Video Exploration Team (JVET) of ITU-T SG16 WP3
and ISO/IEC JTC1/SC29/WG11.

[33] Mary-Luc Champel, Rob Koenen, Gauthier Lafruit, and Madhukar Budagavi. Pro-
posed Draft 1.0 of TR: Technical Report on Architectures for Immersive Media,
n17685. San Diego, US, April 2018. International Organization for Standardization
ISO/IEC JTC1/SC29/WG11.

[34] Y. Chen, D. Murherjee, J. Han, A. Grange, Y. Xu, Z. Liu, S. Parker, C. Chen,
H. Su, U. Joshi, C. Chiang, Y. Wang, P. Wilkins, J. Bankoski, L. Trudeau, N. Egge,
J. Valin, T. Davies, S. Midtskogen, A. Norkin, and P. de Rivaz. An Overview of
Core Coding Tools in the AV1 Video Codec. In 2018 Picture Coding Symposium
(PCS), pages 41–45, June 2018.

110

[35] Byeongdoo Choi, Ye-Kui Wang, and Miska M. Hannuksela. WD on ISO/IEC 23000-
20 Omnidirectional Media Application Format, n16189. Working Draft, Interna-
tional Organization for Standardization ISO/IEC JTC1/SC29/WG11, Geneva, CH,
June 2016.

[36] X. Corbillon, G. Simon, A. Devlic, and J. Chakareski. Viewport-adaptive navigable
360-degree video delivery. In 2017 IEEE International Conference on Communica-
tions (ICC), pages 1–7, May 2017.

[37] Thomas Daede. AV1 Update, May 2017. "https://people.xiph.org/~tdaede/de
muxed_av1_2017.pdf", accessed: 2018-07-11.

[38] Tarek El-Ganainy. Spatiotemporal Rate Adaptive Tiled Scheme for 360
Sports Events. arXiv:1705.04911 [cs], May 2017. [Online]. Available:
http://arxiv.org/abs/1705.04911.

[39] Tarek El-Ganainy and Mohamed Hefeeda. Streaming Virtual Reality
Content. arXiv:1612.08350 [cs], December 2016. [Online]. Available:
http://arxiv.org/abs/1612.08350.

[40] N. Engelmann. Virtual Reality Gaming: Potential der Technologie für die Welt der
digitalen Spiele. Tectum Wissenschaftsverlag, July 2018.

[41] Gorry Fairhurst. Unicast, Broadcast, and Multicast, October 2009.
"https://erg.abdn.ac.uk/users/gorry/course/intro-pages/uni-b-mcast.

html", accessed: 2018-10-16.

[42] Ching-Ling Fan, Jean Lee, Wen-Chih Lo, Chun-Ying Huang, Kuan-Ta Chen, and
Cheng-Hsin Hsu. Fixation Prediction for 360 Video Streaming in Head-Mounted
Virtual Reality. In Proceedings of the 27th Workshop on Network and Operating
Systems Support for Digital Audio and Video, NOSSDAV’17, pages 67–72, New
York, NY, USA, 2017. ACM.

[43] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext Transfer Protocol – HTTP/1.1. Technical report, 1999. [Online].
Available: https://www.rfc-editor.org/info/rfc2616.

[44] Roy T. Fielding, Mark Nottingham, and Julian Reschke. HTTP Semantics. Internet-
Draft Version: draft-ietf-httpbis-semantics-03, Internet Engineering Task Force, Oc-
tober 2018.

[45] Alliance for Open Media and Yunqing Wang.
av1/common/enums.h - aom - Git at Google, 2016.
"https://aomedia.googlesource.com/aom/+/master/av1/common/enums.h",
accessed: 2018-11-13.

[46] International Organization for Standardization. ISO/IEC 14496-10 Information
technology – Coding of audio-visual objects – Part 10: Advanced Video Coding.
Geneva, CH, December 2003.

111

[47] International Organization for Standardization. ISO/IEC FDIS 23009-1 Information
technology – Dynamic adaptive streaming over HTTP (DASH) – Part 1: Media
presentation description and segment formats. Geneva, CH, April 2012.

[48] International Organization for Standardization. ISO/IEC 23008-2 Information tech-
nology – High efficiency coding and media delivery in heterogeneous environments
– Part 2: High efficiency video coding. Geneva, CH, December 2013.

[49] International Organization for Standardization. ISO/IEC 23009-1:2014 Information
technology – Dynamic adaptive streaming over HTTP (DASH) – Part 1: Media
presentation description and segment formats. Geneva, CH, May 2014.

[50] International Organization for Standardization. ISO/IEC 14496-12:2015 Informa-
tion technology – Coding of audio-visual objects – Part 12: ISO base media file
format. Geneva, CH, February 2015.

[51] International Organization for Standardization. ISO/IEC 23090-2 | Information
technology – Coded representation of immersive media – Part 2: Omnidirectional
media format. Geneva, CH, January 2019.

[52] VR Industry Forum. VR Industry Forum - GUIDE-
LINES, Version 1.1draft009 2018-05-11, May 2018.
"https://www.vr-if.org/wp-content/uploads/vrif2018.018.09-clean.pdf",
accessed: 2018-11-24.

[53] C. Fu, L. Wan, T. Wong, and C. Leung. The Rhombic Dodecahedron Map: An
Efficient Scheme for Encoding Panoramic Video. IEEE Transactions on Multimedia,
11(4):634–644, June 2009.

[54] G. Gankhuyag, J. Jeong, and Y. Kim. Motion-constrained AV1 Encoder for 360
VR Tiled Streaming. In 2018 International Conference on Information and Com-
munication Technology Convergence (ICTC), pages 596–598, October 2018.

[55] R. Ghaznavi-Youvalari, A. Zare, H. Fang, A. Aminlou, Q. Xie, M. M. Hannuksela,
and M. Gabbouj. Comparison of HEVC coding schemes for tile-based viewport-
adaptive streaming of omnidirectional video. In 2017 IEEE 19th International
Workshop on Multimedia Signal Processing (MMSP), pages 1–6, October 2017.

[56] Adrian Grange, Peter de Rivaz, and Jonathan Hunt. VP9
Bitstream & Decoding Process Specification, March 2016.
"https://storage.googleapis.com/downloads.webmproject.org/docs/vp9/

vp9-bitstream-specification-v0.6-20160331-draft.pdf", accessed: 2018-07-
11.

[57] O. Grau and G. Custance. Virtual Art: From Illusion to Immersion. Leonardo
(Series) (Cambridge, Mass.). MIT Press, 2003.

[58] N. Greene. Environment Mapping and Other Applications of World Projections.
IEEE Computer Graphics and Applications, 6(11):21–29, November 1986.

112

[59] Dan Grois, Tung Nguyen, and Detlev Marpe. Performance comparison of AV1,
JEM, VP9, and HEVC encoders, (conference presentation). pages 1–12, September
2017.

[60] Ian P Howard, Brian J Rogers, et al. Binocular vision and stereopsis. Oxford
University Press, USA, 1995.

[61] C. Huitema. Real Time Control Protocol (RTCP) attribute in Session De-
scription Protocol (SDP). Technical report, 2003. [Online]. Available:
https://www.rfc-editor.org/info/rfc3605.

[62] Akamai Technologies Inc. Facts & Figures | Akamai.
"https://www.akamai.com/uk/en/about/facts-figures.jsp", accessed: 2019-
03-20.

[63] Apple Inc. About the Common Media Application Format
with HTTP Live Streaming | Apple Developer Documentation.
"https://developer.apple.com/documentation/http_live_streaming/about

_the_common_media_application_format_with_http_live_streaming", ac-
cessed: 2019-01-15.

[64] Apple Inc. Apple developer, HTTP live streaming.
"https://developer.apple.com/streaming/", accessed: 2018-09-20.

[65] Apple Inc. Understanding the HTTP Live Stream-
ing Architecture | Apple Developer Documentation.
"https://developer.apple.com/documentation/http_live_streaming/unde

rstanding_the_http_live_streaming_architecture", accessed: 2018-10-25.

[66] Apple Inc. HTTP Live Streaming | Apple Developer Documentation, January
2016. "https://developer.apple.com/documentation/http_live_streaming",
accessed: 2018-10-25.

[67] Apple Inc. Using HTTP Live Streaming, January 2016.
"https://developer.apple.com/library/archive/documentation/Networking

Internet/Conceptual/StreamingMediaGuide/UsingHTTPLiveStreaming/Usin

gHTTPLiveStreaming.html", accessed: 2018-10-31.

[68] L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid
scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(11):1254–1259, November 1998.

[69] Kyuheon Kim, Kyungmo Park, Sunghee Hwang Hwang, and Jaeyeon Song. In-
ternational Organization for Standardization ISO/IEC JTC1/SC29/WG11 Coding
of moving pictures and audio - Draft of White paper on MPEG Media Transport
(MMT). Technical report, Geneva, CH, February 2015.

[70] Y. Kim, J. Huh, and J. Jeong. Distributed Video Transcoding System for 8k 360
VR Tiled Streaming Service. In 2018 International Conference on Information and
Communication Technology Convergence (ICTC), pages 592–595, October 2018.

113

[71] Evgeny Kuzyakov and David Pio. Under the hood: Building 360 video, October
2015. "https://code.fb.com/video-engineering/under-the-hood-building-
360-video/", accessed: 2018-10-05.

[72] Evgeny Kuzyakov and David Pio. Next-generation video en-
coding techniques for 360 video and VR, January 2016.
"https://code.fb.com/virtual-reality/next-generation-video-encoding-

techniques-for-360-video-and-vr/", accessed: 2018-10-05.

[73] Evgeny Kuzyakov, David Pio, and Sean Liu. Facebook for De-
velopers - Optimizing 360 Video for Oculus, February 2018.
"https://developers.facebook.com/videos/f8-2016/optimizing-360-video

-for-oculus/", accessed: 2018-10-05.

[74] T. Laude, Y. G. Adhisantoso, J. Voges, M. Munderloh, and J. Ostermann. A
Comparison of JEM and AV1 with HEVC: Coding Tools, Coding Efficiency and
Complexity. In 2018 Picture Coding Symposium (PCS), pages 36–40, June 2018.

[75] Le Feuvre, Jean - GPAC. HEVC Tile-based adaptation guide | GPAC.
"https://gpac.wp.imt.fr/2017/02/01/hevc-tile-based-adaptation-guide/",
accessed: 2019-02-24.

[76] Stefan Lederer and Florian Bacher. Datasets | ITEC – Dynamic Adaptive Streaming
over HTTP. "http://www-itec.uni-klu.ac.at/dash/?page_id=207", accessed:
2018-12-05.

[77] Stefan Lederer, Christopher Müller, and Christian Timmerer. Dynamic Adaptive
Streaming over HTTP Dataset. In Proceedings of the 3rd Multimedia Systems Con-
ference, MMSys ’12, pages 89–94, New York, NY, USA, 2012. ACM.

[78] H. Lee, Y. Lee, J. Lee, D. Lee, and H. Shin. Design of a mobile video streaming
system using adaptive spatial resolution control. IEEE Transactions on Consumer
Electronics, 55(3):1682–1689, August 2009.

[79] J. Li, Z. Wen, S. Li, Y. Zhao, B. Guo, and J. Wen. Novel tile segmentation scheme for
omnidirectional video. In 2016 IEEE International Conference on Image Processing
(ICIP), pages 370–374, September 2016.

[80] Y. Lim, S. Aoki, I. Bouazizi, and J. Song. New MPEG Transport Standard for
Next Generation Hybrid Broadcasting System With IP. IEEE Transactions on
Broadcasting, 60(2):160–169, June 2014.

[81] Nikolai Longolius. Web-TV AV-Streaming im Internet, Echtzeitübertragung von
Ton & Bild im Internet. O’Reilly Germany, Köln, 1. edition, 2011.

[82] D. Marpe, T. Wiegand, and G. J. Sullivan. The H.264/MPEG4 advanced video
coding standard and its applications. IEEE Communications Magazine, 44(8):134–
143, August 2006.

114

[83] Pascal Massimino. AOM - AV1 How does it work?, July 2017.
"ttps://parisvideotech.com/wp-content/uploads/2017/07/AOM-AV1-Video-

Tech-meet-up.pdf", accessed: 2018-09-12.

[84] Torsten Milde. Videokompressionsverfahren im Vergleich. JPEG, MPEG, H.261,
XCCC, Wavelets, Fraktale. Dpunkt.Verlag GmbH, Heidelberg, Germany, January
1999.

[85] Gert Moesen. Viewport dependent MPEG-DASH streaming of 360 de-
gree natively tiled HEVC video in web browser context. University of Has-
selt. 2018. [Online]. Available: https://uhdspace.uhasselt.be/dspace/

bitstream/1942/26918/1/862be5ce-7a5f-4bf8-8e9e-8012633524b8.pdf.

[86] D. Mukherjee, J. Bankoski, A. Grange, J. Han, J. Koleszar, P. Wilkins, Y. Xu, and
R. Bultje. The latest open-source video codec VP9 - An overview and preliminary
results. In 2013 Picture Coding Symposium (PCS), pages 390–393, December 2013.

[87] Omar A. Niamut, Emmanuel Thomas, Lucia D’Acunto, Cyril Concolato, Franck
Denoual, and Seong Yong Lim. MPEG DASH SRD: Spatial Relationship Descrip-
tion. In Proceedings of the 7th International Conference on Multimedia Systems,
MMSys ’16, pages 5:1–5:8, New York, NY, USA, 2016. ACM. event-place: Klagen-
furt, Austria.

[88] Kyungmo Park, Youngkwon Lim, Shuichi Aoki, Gerard Fernando, and Jin Young
Lee. Text of ISO/IEC 2nd CD 23008-1 MPEG Media Transport. Geneva,
CH, January 2013. International Organization for Standardization, ISO/IEC
JTC1/SC29/WG11 Coding of moving pictures and audio.

[89] Emil Peerson. San Francisco 2, February 2015. [Online]. Available:
http://www.humus.name/index.php?page=Textures&start=16.

[90] Dimitri Podborski, Jangwoo Son, Gurdeep Singh Bhullar, Cornelius Hellge, and
Thomas Schierl. HTML5 MSE Playback of MPEG 360 VR Tiled Streaming, 2019.
[Online]. Available: https://arxiv.org/abs/1903.02971.

[91] Feng Qian, Lusheng Ji, Bo Han, and Vijay Gopalakrishnan. Optimizing 360 Video
Delivery over Cellular Networks. In Proceedings of the 5th Workshop on All Things
Cellular: Operations, Applications and Challenges, ATC ’16, pages 1–6, New York,
NY, USA, 2016. ACM.

[92] Ed R. Pantos and W. May. HTTP Live Streaming. Technical report, 2017.
"https://www.rfc-editor.org/info/rfc8216", accessed: 2018-10-25.

[93] Iain E. G. Richardson. H.264 and MPEG-4 Video Compression: Video Coding for
Next-generation Multimedia. Wiley, Aberdeen, February 2004.

[94] Oliver Röder. Grundlagen der Stereoskopie: Analyse der Aufnahme und Projektion
von 3-D Bildern. VDM, Verlag Dr. Müller, Saarbrücken, 2007.

115

[95] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport
Protocol for Real-Time Applications. Technical report, 2003. [Online]. Available:
https://www.rfc-editor.org/info/rfc3550.

[96] H. Schulzrinne, A. Rao, R. Lanphier, M. Westerlund, and Ed M. Stiemerling. Real-
Time Streaming Protocol Version 2.0. Technical report, 2016. [Online]. Available:
https://www.rfc-editor.org/info/rfc7826.

[97] H. Schwarz, D. Marpe, and T. Wiegand. Overview of the Scalable Video Coding
Extension of the H.264/AVC Standard. IEEE Transactions on Circuits and Systems
for Video Technology, 17(9):1103–1120, September 2007.

[98] Andre Seixas Dias, Blasi Saverio, Fiona Riveira, Izquierdo Ebroul, and Marta Mrak.
An overview of recent video coding developments in MPEG and AOMEDIA. Ams-
terdam, September 2018. 1BBC, Research & Development Department, UK 2Queen
Mary University of London, Multimedia and Vision Group, UK.

[99] J. Shi, Q. Yan, L. Xu, and J. Jia. Hierarchical Image Saliency Detection on Ex-
tended CSSD. IEEE Transactions on Pattern Analysis and Machine Intelligence,
38(4):717–729, April 2016.

[100] David Singer and Kilroy Hughes. Text of Common Media Application Format for
Segmented Media | N16186. pages 1–187, Geneva, CH, June 2016. International
Organization for Standardization ISO/IEC JTC1/SC29/WG11.

[101] David Singer and Thomas Stockhammer. White paper on an
Overview of the ISO Base Media File Format, October 2018.
"https://mpeg.chiariglione.org/sites/default/files/files/standards/

docs/N18093_ISOFF%28TS%29.pptx", accessed: 2018-12-14.

[102] Robert H. Spector. Visual Fields. In H. Kenneth Walker, W. Dallas Hall, and
J. Willis Hurst, editors, Clinical Methods: The History, Physical, and Laboratory
Examinations. Butterworths, Boston, 3rd edition, 1990.

[103] K. K. Sreedhar, A. Aminlou, M. M. Hannuksela, and M. Gabbouj. Viewport-
Adaptive Encoding and Streaming of 360-Degree Video for Virtual Reality Ap-
plications. In 2016 IEEE International Symposium on Multimedia (ISM), pages
583–586, December 2016.

[104] W. Richard Stevens. TCP/IP Illustrated (Vol. 3): TCP for Transactions, HTTP,
NNTP, and the Unix Domain Protocols. Addison Wesley Longman Publishing Co.,
Inc., Redwood City, CA, USA, 1996.

[105] Yu-Chuan Su and Kristen Grauman. Learning Compressible 360 Video Isomers.
arXiv:1712.04083 [cs], December 2017. arXiv: 1712.04083.

[106] G. J. Sullivan, J. Ohm, W. Han, and T. Wiegand. Overview of the High Efficiency
Video Coding (HEVC) Standard. IEEE Transactions on Circuits and Systems for
Video Technology, 22(12):1649–1668, December 2012.

116

[107] Vivienne Sze, Madhukar Budagavi, and Gary J. Sullivan, editors. High Efficiency
Video Coding (HEVC): Algorithms and Architectures. Integrated Circuits and Sys-
tems. Springer International Publishing, 2014.

[108] Nokia Technologies. Nokia OMAF implementation, February 2019.
"https://github.com/nokiatech/omaf", accessed: 2019-02-25.

[109] Nokia Technologies. Nokia OMAF implementation. Usage instruc-
tions for OMAF Creator Viewport dependent mode, February 2019.
"https://github.com/nokiatech/omaf/wiki/Usage-instructions-for-OMAF-

Creator---Viewport-dependent-mode", accessed: 2019-02-25.

[110] Nokia Technologies. Nokiatech High Efficiency Image File Format Implementation,
March 2019. "https://github.com/nokiatech/heif", accessed: 2019-03-01.

[111] T. C. Thang, Q. Ho, J. W. Kang, and A. T. Pham. Adaptive streaming of audio-
visual content using MPEG DASH. IEEE Transactions on Consumer Electronics,
58(1):78–85, February 2012.

[112] Pankaj Topiwala, Wei Dai, Madhu Krishnan, Adeel Abbas, Sandeep Doshi, and
David Newman. Performance comparison of AV1, HEVC, and JVET video codecs
on 360 (spherical) video. In Applications of Digital Image Processing XL, volume
10396, page 1039609. International Society for Optics and Photonics, September
2017.

[113] L. Trudeau, N. Egge, and D. Barr. Predicting Chroma from Luma in AV1. In 2018
Data Compression Conference, pages 374–382, March 2018.

[114] International Telecommunication Union. Recommendation ITU-R BT.500-13
(01/2012), Methodology for the subjective assessment of the quality of television
pictures. Recommendation BT.500. Geneva, 2012.

[115] Ye-Kui Wang. An Overview of Omnidirectional Me-
diA Format (OMAF), December 2017. [Online]. Available:
https://mpeg.chiariglione.org/sites/default/files/files/standards/

docs/OMAFoverview2017-1212-10.zip.

[116] John Watkinson. MPEG Handbook. Focal Press, 1st edition edition, 2001.

[117] Tobias Young and Tom Patterson. Equirectangular (0-degree) Map Pro-
jection Image, physical map. 15-degree graticule. [Online]. Available:
https://map-projections.net/img/flat-ocean-w/rectang-0.jpg.

[118] Matt Yu, Haricharan Lakshman, and Bernd Girod. Content Adaptive Represen-
tations of Omnidirectional Videos for Cinematic Virtual Reality. In Proceedings
of the 3rd International Workshop on Immersive Media Experiences, ImmersiveME
’15, pages 1–6, New York, NY, USA, 2015. ACM.

[119] Alireza Zare, Alireza Aminlou, Miska M. Hannuksela, and Moncef Gabbouj. HEVC-
compliant Tile-based Streaming of Panoramic Video for Virtual Reality Applica-
tions. In Proceedings of the 24th ACM International Conference on Multimedia,
MM ’16, pages 601–605, New York, NY, USA, 2016. ACM.

117

Ich versichere, die vorliegende Arbeit selbstständig ohne fremde Hilfe
verfasst und keine anderen Quellen und Hilfsmittel als die angegebe-
nen benutzt zu haben. Die aus anderen Werken wörtlich entnomme-
nen Stellen oder dem Sinn nach entlehnten Passagen sind durch Quel-
lenangaben eindeutig kenntlich gemacht.

Ort, Datum Benedikt Meyer-Schwickerath

118

