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ABSTRACT 

 

Physical simulation in mobile applications is, for the most part, non-existent; with the exception 

of games. This might be influenced by the fact that applications are normally not expected to 

react in natural ways, even when they try to create an intuitive user interaction. Because of this, 

this thesis tries to break the stigmas of physical simulation on mobile applications, by creating 

an API for the creation of physically accurate motion in cross-platform app development. This 

was followed by the creation of a subsequent example app, as both experimentation, and 

argument reinforcement. 

The results of creating an application, that used the developed physics API showed that such a 

tool is indeed helpful for the development of apps in possible real use case scenarios, as it 

shortens the amount of code, time and knowledge required for its creation. Nevertheless, the 

engine built is still opened for expansion; but it does represent a proof of concept that a broader 

API is needed for this branch of development. 
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ABSTRACT 

 

Physikalische Simulationen in mobilen Anwendungen sind größtenteils nicht vorhanden, mit 

Ausnahme von Spielen. Dies könnte durch die Tatsache beeinflusst werden, dass von 

Anwendungen normalerweise nicht erwartet wird, dass sie auf natürliche Weise reagieren, 

selbst wenn sie versuchen, eine intuitive Benutzerinteraktion zu erzeugen. Aus diesem Grund 

versucht diese Arbeit, die Stigmata der physischen Simulation bei mobilen Anwendungen 

durchzubrechen, indem sie eine API für die Erzeugung von physikalisch akkurater Bewegung 

bei der Entwicklung von plattformübergreifenden mobile Anwendungen schafft. Darauf folgte 

die Erstellung einer anschließenden Beispielanwendung, die sowohl als Experiment als auch 

als Argumentationshilfe dient. 

Die Ergebnisse dieser Erstellung der Anwendung, bei der die entwickelte Physik-API 

verwendet wurde, zeigten, dass ein solches Tool tatsächlich hilfreich für die Entwicklung von 

Anwendungen in möglichen realen Anwendungsszenarien ist, da es die Menge an Code, Zeit 

und Wissen verkürzt. Dennoch ist die gebaute Engine noch immer offen für Erweiterungen, 

aber es stellt einen Beweis für das Konzept dar, dass eine breitere API für diesen 

Entwicklungszweig benötigt wird. 
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1. INTRODUCTION 

 

The laws of the universe are already written; the human being only tries to uncover them. This 

is a fact that no matter what anyone says, cannot be discarded. It does not matter how hard one 

tries; it is impossible to change them… At least in the real world. One aspect that can be grasped 

and influenced are the rules of digitally created worlds, which in turn brings with it the fact that 

this digital worlds also interact with real people.  

But then, the question of how these types of worlds are connected to each other arises. Well, 

one idea to unify them would be trying to make the digital world behave in a similar way to the 

real world. This is where the main statement for this thesis is seeded, being that digital worlds 

might not need to always follow the same laws as reality; but it might be useful to, at the very 

least, have the option to make a digital world behave as the real one. 

Many fields integrate these laws of reality, which are of course called physics. Games, for 

example, are one of the biggest users of physics simulation, when accounting to their creation. 

However, other disciplines could also benefit by the utilization of physics. An example of one 

such subject might be mobile app development. 

Following this logic, an valuable aspect that was recognized by the writer was the lack of a 

sturdy physics simulation API in the branch app development. Since the writer of this thesis 

was already acquainted with this section of development, by utilizing the Flutter SDK, it was 

decided to develop an API, that would help with the physical simulation. 

Not only this, but even with existing physics engines in many other platforms, Flutter as an 

SDK does not really integrate two-dimensional physics simulation at all. So, it would be an 

interesting idea to create an engine in order to prove that such a physical simulation might be 

needed. 

In order to achieve the creation of the engine, the first steps in this thesis will be to introduce 

all the core aspects, of both physics and mathematics, which were needed for the development. 

This will then be followed by the exact proposition, while short after explaining how the 

development process took place. At the end, an analysis will be made in order to conclude if 

the created engine was indeed useful, and needed for the previously mentioned SDK. 

Before moving forward to explain the goals of the thesis, an important clarification is going be 

made: All citations and references follow the APA Sixth edition format. 
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1.1.  GOALS 

 

It is of extreme importance to declare what the main focus the investigation will be. Therefore, 

this chapter will try and explain the core principles which were taken into account in order to 

start the investigation, as well as clarifying the goals and the direction that this written document 

will take.  

 

1.1.1. Formulation of the Problem 

The problem which will be addressed in this thesis is the absence of a complete physics 

simulation engine in the Flutter SDK. Because of this SDK being fairly new, only about four 

years old to the writing of this document, it is of no surprise that developing environment barely 

has any kind of physics integration. It must also be noted that this SDK was created with the 

intent of app development, which few people would associate with physics. This does not mean 

it might not be needed, nonetheless.  

How would it be possible to implement the SDK in order to create, for example, video games 

if there is no physical simulation? The industry nowadays has an almost mandatory focus on 

physical simulation in many their products, which could be explained with the necessity of 

virtual games to feel more tangible, more natural and closer to our world. Not only games, but 

other application could be developed, that might need to implement physics; like learning apps 

for school students. 

Of course, the answers are not as simple, but the idea behind this project is to break this barrier 

of the unknown, while at least trying to implement the very core principles of physics; 

experimenting with what is already being utilized in other industries. 
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1.1.2. General and specific Goals 

General Goal 

The general goal of the investigation is the demonstration of the value of a 2D, rigid body 

focused, physical simulation engine for the Flutter SDK, through the development of such an 

engine and subsequent implementation in a mobile application. 

 

Specific Goals 

The specific goals are as follows: 

1. Investigation of the core principles of rigid body kinematics and dynamics. 

2. Exploration of the motion of 2D rigid bodies in a digital space and the physical 

interactions between each other. 

3. Study of the collision detection and response between 2D rigid bodies in a digital space. 

4. Implementation of 2D physics simulation into the Flutter SDK through the development 

of a physics simulation API. 

5. Application of the studied concepts in the implemented engine. 

6. Justification and exploration of the developed engine’s architecture, methods and 

functionality. 

7. Integration of the developed API in a cross-platform application. 

8. Analysis of the impact of the physics simulation API during the development of the 

application (Developer view). 
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1.2. HYPOTHESIS 

 

Noticing that during this thesis the development will be implemented in the Flutter SDK, the 

hypothesis for the project is as follows: 

A 2D physics engine would be of significant value for the Flutter SDK because of the 

constraints of creating natural and intuitive interactions without the usage of physics. Meaning 

that, as of now, every time one would want to integrate any kind of physical interaction to 

resemble the real world, it will have to be conceived manually. The problem arising with this 

is the lack of experience with physics that many developers have, since not every programmer 

is a physicist. The extra work, which has to be invested in order to create a simple and intuitive 

interaction is gigantic and not worth it. Because of this, for at least the use cases that handle 

physics, the need of an engine is quintessential. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

2. STATE OF RESEARCH AND THEORETICAL FRAMEWORK 

 

Before one can even start the development of any project, investigation, etc. one needs to have 

all of the bases clear, meaning one needs to gather the knowledge in order to tackle the uncanny 

path of an investigation. When the understanding of the direction of the project is set, the next 

step to take is of course to learn what path is going to be taken to help grow the seed of one’s 

work. It should come to no surprise to the reader that the second chapter of this thesis is 

therefore the theoretical bases for the understanding of the study; since it must not only be clear 

for the researcher how everything works, but it is his job to explain to whomever is reading 

how he got to the conclusions at hand. 

This chapter will be divided in several lesser, more manageable pieces of information, in order 

to avoid overloading the reader with data. Because of this, it will be important to take note that 

this chapter will include two general parts being Physics and Simulation and The Flutter 

Framework. These two will try and explain the general concepts behind the two-dimensional 

rigid body mechanics needed for the project and the functionality of Flutter respectively. 
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2.1. PART I: PHYSICS AND SIMULATION 

 

“[…] we do not think that we know a thing until we are acquainted with 

its primary causes or first principles, and have carried our analysis as 

far as its elements.”  

– Aristotle, trans. 1991. 

 

Before starting, it must be made clear what the two main topics of this chapter are. It is easy to 

state how things work, but it might not be as easy to back it up. While a madman can state that 

the world functions in a way that defies all expectations, sometimes this madman will be proven 

to be right, redefining the how we understand the inner workings of our universe. Physics is 

just that at its finest, a science that defines and redefines the laws of the world in which we all 

live. Better explained by the Merriam-Webster Dictionary as “a science that deals with matter 

and energy and their interactions” (Merriam-Webster Dictionary, n.d.), physics declare the 

interactions between physical objects, explaining how they react to each other in the real world. 

It has, though, been made clear that the focus of this thesis is to emulate the interactions of 

objects in the physical world; to copy them as closely and precisely as possible in order to create 

a digital world which includes our own set of predefined laws. Making it of utter importance to 

explain how this laws work, which will of course be the focus of the following chapters. 

Having described the first facet of this part, the second general aspect, which is the term 

simulation, should be defined. Simulation is referred by the Merriam-Webster  dictionary (n.d) 

as the imitation of one process in order to make another one function. This is exactly what the 

project aims to do with the created API: imitate the real world; making it so physics simulation 

is the most important issue that the thesis will have to address. 

 

2.1.1. How the universe moves: The Newtonian Laws of Motion 

With the establishing of the direction of the thesis, it is possible to now get into one of the topics 

which will be the core of the investigation: The Three Laws of Motion. These laws helps one 

explain how many things in the universe move, from tiny pebbles to cosmic objects. These laws 
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are proven concepts which have existed for centuries and are also the three basic concepts which 

will be used in order to build the physics simulation API. 

These laws of Motion were first declared by Sir Isaac Newton in his publication Mathematical 

principles of Natural Philosophy and are as follows1: 

“1. A body continues in its state of rest or of uniform speed in a straight line 

unless it’s compelled to change that state by forces acting on it (Law of 

Inertia) 

2. The acceleration of an object is directly proportional to the net force acting 

on it and is inversely proportional to the mass. The direction of acceleration 

is in the direction of the applied net force (𝑓 = 𝑚𝑎)  

3. Whenever one object exerts a force on a second object, the second object 

exerts an equal and opposite force on the first object” (Kenwright, 2012, p. 

72). 

  

In easier to understand terms, these laws will be as follows: 

First law (Inertia): Inertia is the ability for objects to stay in the predestined state, unless an 

external force is applied on them. This means that objects that are not moving, will not move 

on their own and objects that are already in motion will never stop without something stopping 

them. This law is uncommon to see on Earth, unless it is in a vacuum, since there are external 

forces being applied on everything all the time. If a ball is just placed somewhere it will try to 

move downwards because of gravity, and if it does not it is because another object is creating 

an equal but opposite force, equalizing it. 

Second Law: This law describes how the force, acceleration and mass depend on one another. 

The typical example of this law is letting two fruits fall to the ground, an apple and a 

watermelon. Both will hit the floor at the same time, because the acceleration is the same 

(gravitational acceleration). Nonetheless there has to be something different going on between 

both objects. Since the mass of the watermelon is greater, the force with which the watermelon 

hits the floor is higher than that of the apple. 

 
1 The laws were first declared by Newton but will cited from other sources.  
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Third law: The most commonly heard phrase that describes this law is usually that every action 

has an equal but opposite reaction. A great example of this can be as basic as standing up. When 

one stands up, one is exerting a force on the floor, which in turn has to be greater than the 

gravitational pull, at least for the moment that one desires to stand up. When one is done and 

encounters itself not moving upwards, flying into the sky, is because the body has achieved a 

neutralization of the forces: the body is exerting the same force as gravity, but in an opposite 

direction, coming to a resting state. 

 

2.1.2. Rigid Body Dynamics 

 

“A rigid body is characterized by the region that its mass lives in.” 

– David H. Eberly, 2010.   

 

Basically, everything that moves is bound to follow the three aforementioned laws in some way 

or another, but the focus of this project will be, for the sake of simplicity, rigid bodies. It might 

be of a certain importance to clarify, what exactly rigid bodies are, before explaining how they 

work and what are there going to be used for. 

Explained lightly, rigid bodies are bodies of mass that do not deform, or at least that behave as 

such (Kenwright, 2012. p. 72). A single point, or particle, defines how the whole object acts. 

This makes it so all the infinite amount of points that surround the particle, while at the same 

time belonging to the addressed object, react to the changes made during this point’s motion; 

this is called a continuum of mass (Eberly. 2010. p. 14.), and will be used as synonym for rigid 

body in this written text. As a clarification, other types of rigid bodies exist, like single particles 

or particle systems, but the term rigid body will be referred as afore defined during the length 

of this thesis.  

But, no actual real object is completely oblivious to changes when being subjected to forces. 

Nonetheless, even if perfect examples do not exist in real life, objects with neglectable changes 

in their structure when applied forces can be also treated as rigid bodies; hence making it so 

many, if not all, solid objects can fit in this category.  



9 
 

Because of the already mentioned qualities of rigid bodies, these can be observed in physics 

simulation as a single point that contains information about mass, position and rotation (in the 

form of scalar values for the first and vectors for the rest) while the object itself, represented 

either by a mesh or a sprite2, reacts to this point of information, mimicking its properties.  

As seen bellow in figure 1, the point D changes both location and rotation, while the vector u 

demonstrates that the object surrounding the point also changes these same parameters 

accordingly. Because of this it can be inferred that the distance to the center from anywhere in 

the object always stays the same. 

 

Rigid bodies are considered by the author to be the simplest, most basic forms to simulate in a 

two – dimensional space. Therefore, they will be used for the simulation API created during the 

development of this thesis. This is of course because this thesis will try to demonstrate that a 

physics engine is needed in the Flutter API, constraining itself to rigid bodies; avoiding 

concepts like soft bodies, fluids, etc.  

 

2.1.2.1. Kinematics: Position, Velocity and Acceleration 

Coming into topic with exactly how rigid Bodies behave in a given system, the first thematic 

to be discussed is that of Kinematics. “The study of motion of objects without considering the 

 
2 Mesh: Three-dimensional digital object. 

Sprite: Two-dimensional digital object. 

Figure 1: Demonstration of two-dimensional rigid bodies. 

(Left) Initial state of the rigid body – (Right) Same rigid body after a translation and rotation 

m = 10kg 

m = 10kg 
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influence of external forces […]” (Eberly. 2010, p. 15) answers the question for the definition 

of the previous term. Now, how this is helpful, can only be explained with referring back to the 

definition of a rigid body being represented by a single point in a system, with kinematics, the 

first steps towards calculating how the particle should move are examined. 

 

Position 

First of all, there should be some kind of information of where the object, that is being tracked 

is at every point in time, or when talking about a computer program, every frame. This position 

should be checked, then modified for every single object on the playing field, or coordinate 

system to be exact, and since all objects that are going to be analyze during this thesis are mass 

continuums, one can infer that the only needed thing that needs to be kept track of is the center 

of each object… at least for what the position of the whole is concerned. 

For the purposes of this thesis, no mathematical principles will be deeply explained. So, it is 

indeed recommended to have the basis of linear algebra and vector math under control. Another 

helpful aspect is basic understanding of OO programming, which will be touched upon in future 

chapters. 

Now well, it is important to first define lineal displacement. As explained by David H. Eberly 

(2010) in his book Game Physics, the position is represented in cartesian coordinates as follows: 

 

𝒓(𝑡)  =  𝑥(𝑡)𝑰 +  𝑦(𝑡)𝑱

Where I = (1, 0) and J = (0, 1). While r(t) represents the position vector (p. 15.). Both the x 

and y coordinates are equations which depend on the time. This equations will be further in the 

following chapter. 

 

Velocity 

Without getting into further detail, the velocity is the sum of the derivatives for x(t) and y(t), 

multiplied by the same vectors I and J (Eberly, 2010, p. 16): 
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 𝒗(𝑡)  = 𝒓̇  =  𝑥̇(𝑡)𝑰 +  𝑦̇(𝑡)𝑱  

Acceleration 

Following the previously stated logic acceleration is the second differentiation of the position 

vector (Eberly, 2010, p. 16): 

 

 𝒂(𝒕) = 𝒗̇ = 𝒓̈ = 𝑥̈(𝑡)𝑰 + 𝑦̈(𝑡)𝑱  

 

 

2.1.2.2. Force 

One is now left with a conjunction of really similar equations that are just differentiations of 

one another and one does not even have the basic x(t) and y(t) to start any calculations. It is 

here, nonetheless, where newtons laws come to fruition, making sense of it all. It is now needed 

to know how to calculate the acceleration, so one can start pushing upwards in the tree of 

integration. 

It will be now indicated to the reader to remember the second law of motion3, acceleration is 

directly proportional to the force imposed over the object, and inversely proportional to its mass. 

The used force is a vector and it is calculated by adding all the force vectors being applied on 

the object. From this, it is clear here that one has a way to calculate the acceleration: 

 

  𝒂 =  𝑭 
1

𝑚
  

 

This equation will of course return a vector, but before one can start integrating to get to the 

position vector, it is needed to know the famous 𝑥̈ and 𝑦̈, but knowing a little mathematics it is 

 
3 Refer back to Chapter 2.1.1.  
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easy to infer that this are just the magnitude of the vector for both the X and Y axis of the 

acceleration vector. Because of this, one can already start integrating in order to get the other 

equations. As a small note, only the process for the X axis will be covered, but the process is 

exactly the same for Y. 

The acceleration in a direction in a moment in time (t) can be taken as a constant for the purposes 

of this thesis, because the forces have to be all added in a frame when calculating on a computer 

program; therefore, returning a constant force for that frame. Consequently, the following: 

 

𝑥̈(𝑡) = 𝑎𝑥(𝑡)

𝑥̇(𝑡) = 𝑣𝑥(𝑡) =  ∫ 𝑎𝑥 𝑑𝑡  

𝑣𝑥(𝑡) =  𝑎𝑥𝑡 + 𝑐  

  𝑣𝑥(𝑡) =  𝑎𝑥𝑡 + 𝑣𝑥(𝑡 − 1)  

 

As stated by Kenwright (2012) in its chapter about the Euler Method4: The constant generated 

while integrating is of course the velocity of the previous moment of calculation (also 

sometimes described as the initial velocity), while t is for the purposes of the integration the 

difference in time (Named normally ∆𝑡). 

With the same logic one can integrate 𝑣𝑥 to calculate the magnitude of the position vector in 

the X axis: 

 

  𝑥(𝑡) =  ∫ 𝑣𝑥 𝑑𝑡 =  ∫(𝑎𝑥𝑡 + 𝑣𝑥(𝑡 − 1)) 𝑑𝑡 ( 9 ) 

𝑥(𝑡) =  
𝑎𝑥𝑡2

2
+  𝑣𝑥(𝑡 − 1)𝑡 + 𝑐  

 𝑥(𝑡) =  
𝑎𝑥𝑡2

2
+  𝑣𝑥(𝑡 − 1)𝑡 + 𝑟𝑥(𝑡 − 1) ( 11 ) 

This process is then repeated for the Y axis.  

 
4 This method will be further clarified in future chapters. 
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Having done the needed integrations for both the X and Y components of the position vector, 

and incorporating them in equation ( I ), one is left with its cartesian representation as follows:  

 

 𝒓(𝑡) = (
𝑎𝑥𝑡2

2
+ 𝑣𝑥(𝑡 − 1)𝑡 + 𝑟𝑥(𝑡 − 1)) 𝑰 + (

𝑎𝑦𝑡2

2
+  𝑣𝑦(𝑡 − 1)𝑡 + 𝑟𝑦(𝑡 − 1)) 𝑱   ( 12 ) 

This is what will allow anyone to calculate where a particle is at a certain point in time, and 

with it, the representation of where the whole rigid body is. 

 

2.1.2.3. Integration for computers: Approximation 

With the principles of lineal position being covered, there is a thematic that has to be made 

emphatic before continuing the exploration of the physical principles acting on a rigid body on 

any given time. This being that computers are dumb. These machines are known for being able 

to do an extreme amount of calculations per second, but have to be in turn really simple. 

Computers are known to not be able to do calculus, because of its infinitesimal nature. 

So, the question of how a program can compute the aforementioned differentiations still stands. 

This is where approximation methods come in. There are many numerical ways to approximate 

these integrations, some more precise, some faster to calculate. This chapter will try and explore 

some of the possible methods that will help in the creation of a sturdy physics engine. However, 

many methods exist and not every single one of them will be explained.  

As a clarification, all of the integration methods that will be touched upon follow the Taylor 

Theorem, or at the very least derive from it. It is described as follows: 

“If 𝑥(𝑡) and its derivatives 𝑥(𝑘)(𝑡) for 1 ≤ 𝑘 ≤ 𝑛 are continuous on the closed interval [𝑡0, 𝑡1 ] 

and 𝑥(𝑛)(𝑡) is differentiable on the open interval (𝑡0, 𝑡1), there exists 𝑡 ̅𝜖 [𝑡0, 𝑡1 ] such that 

[…]” (Eberly, 2010. pp. 765 - 766) 
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 𝑥(𝑡1) =  ∑
𝑥(𝑘)(𝑡0)

𝑘!
(𝑡1 −  𝑡0))

𝑘𝑛
𝑘=0 +

𝑥(𝑛+1)(𝑡 ̅)

(𝑛+1)!
 (𝑡1 −  𝑡0))𝑛+1 ( 13 ) 

 

Euler method 

It is now encouraged to remember what was mentioned in the chapter of Force. The Euler 

method is exactly the approximation method that was used beforehand in order to calculate the 

position vector5. Utilizing the approximation with the second grade Taylor polynomial one can 

calculate the position, from the acceleration. Moreover, it was stated before that the acceleration 

will be treated as a constant for each frame of the calculation, making it easy to calculate with 

this.  

However, the single grade Taylor approximation is also sometimes used in order to calculate 

the position. Following the theorem, and according to Kenwright (2012) in the book Game 

Physics, it will look like this (p. 76): 

 

  𝑟𝑛+1 =  𝑟𝑛 + 𝑣𝑛∆𝑡 ( 14 ) 

   𝑣𝑛+1 =  𝑣𝑛 + 𝑎∆𝑡 ( 15 )  

 

This is what is defined as the Explicit Euler Method, which approximates the velocity and 

position of the following frame, using the actual frame data.  

 

 

 

Semi – Implicit Euler 

Moreover, another method exists that, uses half the calculation in an explicit method. With this 

being, the calculation of the velocity, while calculating the position in the next moment in time. 

However, this procedure is described to not be theoretically correct, but produces an error loop 

that corrects itself (Kenwright, 2012, p. 77). It must be clarified that even if it is not correct, it 

 
5 Chapter 2.1.3.2. 
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is widely used in many game physics engines to calculate the position because very small time 

steps can be taken (60 fps for example) and the margin of error with this method is smaller, the 

smaller ∆𝑡 is. Nonetheless, the error order is still in the O(t), making it less accurate than other 

methods (Pronost, n.d). 

As stated again by Kenwright (2012), the velocity is calculated the same way as in the explicit 

Euler, but it is, however, done first. The position can then be achieved with the calculated 

velocity, which now represents of course the velocity of the next frame, hence the name Semi 

– Implicit (p. 77): 

 

   𝑣𝑛+1 =  𝑣𝑛 + 𝑎∆𝑡 ( 16 )  

   𝑟𝑛+1 =  𝑟𝑛 + 𝑣𝑛+1∆𝑡  ( 17 ) 

 

In contrast the Explicit Euler method utilizes the velocity of the actual frame. 

 

Other integration methods 

The existence of many other useful approximation methods must be made clear, but are, for the 

purposes of this thesis, unimportant. The method that will be used for the engine is the Semi – 

Implicit Euler because of its simplicity. 

Other famous methods also include Verlet Integration, which adds the previous Taylor 

expansion with the newly generated one; or Runge – Kutta, which uses a four order Taylor 

approximation (Pronost, n.d.).  

2.1.2.4. Angular Kinematics and Torque 

Apart to everything mentioned before, it might be obvious to state that an object does not just 

change positions in real life, it also rotates. This rotation is what is studied in angular kinematics 

and dynamics. Luckily, angular kinematics work in a very similar way to lineal kinematics, 

they almost mirror one another. Consequently, the three main aspects of circular movement,  

angular displacement, velocity and acceleration are also differentiations of one another; while 

the torque, works similarly to force. This will be further explained in this chapter. 
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Angular displacement, velocity and acceleration 

Angular displacement is defined as “[…] the angle through which an object moved about a 

specified center and in a specified sense” (Ramtal; Dobre, 2014, p. 210), with the center being 

the reference point of the rigid body. 

Using the same logic as before, the differentiation of  the displacement depending on time 

produces the angular velocity, while the derivative of the latter allows the calculation of the 

angular velocity (Ramtal; Dobre. 2014. pp. 210 - 211): 

 

   𝜔 =  
𝑑𝜃

𝑑𝑡
  ( 18 )  

   𝛼 =  
𝑑𝜔

𝑑𝑡
 ( 19 ) 

 

Where 𝜃(𝑡) is the angle in Radians in which the object rotated in the last interval, 𝜔(𝑡) the 

angular velocity and 𝛼(𝑡) the angular acceleration. Moreover, knowing the differentiations, and 

taking into account that time cannot be calculated infinitesimally with computers, the two 

following formulas can be inferred: 

 

   ∆𝜃 =  𝜔∆𝑡   ( 20 ) 

   ∆𝜔 =  𝛼∆𝑡 ( 21 ) 

 

Torque and moment of inertia 

At this moment is when the rotation gets a little more complicated, since the way an object 

rotates depends on the shape of the object; in direct contrast to lineal displacement where an 

object can move only by having a force applied to it. However, something yet to be explained, 

named the moment of inertia, can help with these calculations. It is defined as the sum of all 

the masses of the particles in a body multiplied by the square of the distance of each particle to 

the center of a rigid body (Serway; Jewett. 2014. p. 303): 



17 
 

 

   𝐼 =  ∑ 𝑚𝑖 𝑟𝑖
2 ( 22 ) 

 

Or in its infinitesimal representation, for objects like rigid bodies: 

 

    𝐼 =  ∫ 𝑚𝑖𝑟𝑖
2  𝑑𝑚 ( 23 ) 

 

Nevertheless, this leaves behind a new question: how this moment of inertia influences the 

angular acceleration. But, thinking back at Newton’s second law, some parallels can be brought 

to light, being that the moment of inertia affects the angular acceleration the same way mass 

affects lineal acceleration, and that generally the three laws apply not only for lineal but for 

angular motion as well (Ramtal; Dobre. 2014 p. 339). Furthermore, apart from the relationship, 

Ramtal and Dobre (2014) also explain that the rotational force applied to an object, is named 

torque. This leaves one with the equality between angular acceleration, torque and moment of 

inertia as: 

 

   𝜶 = 𝑻 
1

𝐼
 ( 24 ) 

 

With I being the moment of inertia and T the torque vector. 

But it is still needed to be clarified what exactly the torque is and, continuing with the 

justification, and as explained above, torque is just the force that is applied to the body in order 

for it to rotate. However, the axis of this force does not pass through the center of mass, because 

a force passing through it will only create a translation, not a rotation. Therefore, torque is 

mathematically defined as the cross product between the vector from the center of the rotation 

(r) to the point of application and the force (F) being applied (Ramtal; Dobre. 2014, p. 338.): 

 

   𝑻 = 𝒓 × 𝑭 ( 25 ) 
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And with this a moment has come where everything fits into place. It is now just needed to 

know the forces being applied to each object for the calculation of position and rotation. Yes, 

it is true that now what is missing is to add all forces up and calculate everything else, but a 

moment should be taken to appreciate how amazing it is that everything now is reduced to a 

same level: Force. If there is a force, there is either a lineal displacement or a rotation, hence 

there has to exist a force in order for the objects in the created system to move. These forces 

will be given to the objects in the engine either on their creation or added to the system after 

and will allow them to interact with every other object in the canvas to create an actual moving 

world. Therefore, once the cogs in the system start moving, because of both the first and third 

law of motion, they shall never stop, unless new forces are created to stop it. 

 

2.1.3. Collisions 

Something is, though, still absent to achieve the purpose of this thesis, being that even if the 

rigid bodies in the digital canvas can move and rotate, they still cannot interact with each other, 

at least with the knowledge just described. This last statement opens an enormous query that 

shall not long stay in the air of how objects represented by vertexes, with characteristics like 

position and rotation, know that there is another object to react to.  

Collisions in digital spaces are calculated mostly in three equally important steps: Detection, 

manifold generation and resolution (in that order). Each and every single one of this steps is 

crucial for an accurate collision response of an object and function in a matter that passes 

information from one of the steps into the other, like a chain. Summarizing the three steps can 

be explained as follows: 

- Detection: Recognizes if the object is intersecting with another object, triggering a 

collision response. 

- Manifold generation: Generates the contact points of the collision between two objects, 

indicating where the collision took place. 

- Resolution: Changes the objects properties like velocity or acceleration, in order to 

describe the newly generated movement, according to the information created by the 

manifold. 
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This three milestones of a collision response will be explored with higher detail on the 

upcoming three chapters, also it will be clarified how the algorithms work in order to obtain the 

needed information for each step. 

 

2.1.3.1. Detection 

In order to understand the stated problem, the topic of collision detection must be touched upon, 

but what is it exactly. Collision detection, as its name suggests, is how a rigid body knows that 

another one is nearby or occupying the same space. This is done in a matter a little different to 

the real world, since real objects cannot phase through each other, but instead push each other 

apart. As explained by Ramtal and Dobre (2014), Kenwright (2012) and Eberly (2010); digital 

objects must first check if they are intersecting another one, meaning that collision detection 

takes place not when to objects meet, but instead a frame later, when they are already on top of 

each other. It is important to note that as the first step towards collision response, collision 

detection must generate new information in order to continue, this information is if a collision 

has taken place or not, as well as some extra data like the collision normal vector. 

Though many algorithms exist to calculate which objects are intersecting, this chapter will focus 

on just a couple of them, while explaining how they will be applied in this bachelor thesis. 

 

Broad and narrow phase 

Since the collision detection might take into account thousands, if not millions, of different 

polygons or polyhedra, the collision detection has to be split into two different stages. This is 

of course done because of performance issues. Having to compute and render sixty times per 

second every single object already strains a computer in an immense way, meaning that if extra 

computations can be avoided, this should be taken into account. At this moment is where the 

differentiation between the broad and narrow phase of the collision detection is born. 

As explained by Kenwright (2012), the broad phase is in charge of identify if two objects might 

be colliding, indicating that it does not know for sure if a collision response should be triggered, 

but a closer check must be done. This aforementioned stage of collision detection usually splits 

the physical area into different sectors in order to check them separately, allowing for sectors 

with smaller concentrations of objects to be computed more rapidly, while at the same time 
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completely negating possible collisions of bodies that do not share the same sector. In other 

words, it tells the program which objects are definitely not colliding, while allowing the narrow 

phase algorithms the detailed checks. Stating the obvious, the broad phase algorithms are 

extremely fast and effective checks, stopping the necessity for more memory consuming 

processes when possible. 

It must be clarified that for the purposes of this thesis, it is unneeded to create an engine with 

broad phase capabilities, since the amount of rigid bodies will not be immeasurably great. It 

was, though, crucial to inform that the broad phase exists and its usefulness in scenarios like 

video game engines, where incredible amounts of objects are present in each scene. 

Continuing with the narrow phase, it is the stage of collision detection where it is assured that 

two objects are colliding or intersecting (Kenwright, 2012), hence the importance for any 

collision detection algorithm. This stage will be more in depth described with some example of 

how it works, but mostly the idea behind all them is to know if two objects are on top of each 

other. 

 

Test intersection with bounding circles 

The first algorithm which will be explained for the narrow phase is of course the simplest, but 

also one of the most useful ones. This algorithm is applied to both particles and circle shaped 

rigid bodies and its basis is planted on the idea that calculating if two circles intersect is 

extremely easy and memory efficient. If two particles or circles are occupying any space, they 

will be intersecting if the distance between their centers of mass is smaller than the sum of their 

radii (Ramtal; Dobre. 2014, p. 284).  

 

This can be seen in the following formula, and better displayed in figure 2. 
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   𝑑 <  𝑟1 +  𝑟2 ( 26 ) 

 

Moreover, because all calculations will be measured using vectors in the desired engine, it is 

extremely easy to calculate the distance by subtracting both positions, while both radii should 

be saved in each particle, so it is just a matter of adding them up. 

The beauty of this type of intersection test is that it cannot only trigger a collision response by 

detecting the collision, it can also provide really meaningful information for the next steps, 

which other algorithms do not allow. Both the collision normal6 and the contact point for all 

the particles involved can be calculated. The former is easily deduced by some vector math; 

having the same difference in positions that gave us the distance between both position vectors. 

The formula describing it is as follows: 

 

   𝒅̂ =  
𝒑𝟐− 𝒑𝟏

|𝒑𝟐−𝒑𝟏|
  , ( 27 ) 

 

where the vector 𝒅̂ is the collision unit normal and both 𝒑𝟏and 𝒑𝟐 are the position vectors of 

each particle.  

 
6 Collision normal will refer, in this thesis, to the vector describing the collision direction. 

Figure 2: Non – Intersecting (left) vs Intersecting (right) circular rigid bodies. 
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Furthermore, Ramtal and Dobre (2014) also explain how with this information the contact point 

of the collision can also be calculated, which is explained by the fact that a collision works 

similar to a tangent passing through one point. If two perfect circles are colliding, only one 

point exist on which the contact is taking place, and at which the force is being exerted. Because 

of the information at hand, this point is then calculated utilizing the collision normal and the 

radii of each of the circles: 

 

   𝒄𝟏 = 𝑟1𝒅̂ ( 28 ) 

 

And using the inverse collision vector, it can be calculated: 

 

   𝒄𝟐 = −𝑟2𝒅̂ ( 29 )  

 

Where 𝒄𝟏 and 𝒄𝟐 are the collision points, represented by its position vector. They both should 

represent the same point after position correction, which will be explained in the next chapter. 

Each of this points represents a position vector with the center of mass of its respective rigid 

body as its origin (As seen in figure number 3). 
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SAT Method 

Another common method for collision detection is called the SAT method. The SAT, as 

described by its acronym for Separating Axis Theorem searches for any separating axis between 

two polygons or polyhedra, in order to deny an intersection. It states: “If two convex objects 

are not penetrating, there exists an axis for which the projection of the objects will not overlap” 

(Bittle, 2010). 

When two objects are occupying a space, if there exist even one random axis that separates 

them, the objects are certainly not intersecting. Nonetheless, as explained by Eberly (2010), 

endless amounts of axes exist in a predefined space, making it impossible to measure them all 

for a correct separation axis. But, and this is where one of the most important components of 

the SAT comes in, not all axes have to be tested, only the axes parallel to the outward pointing 

normal to each one of both polygon’s edges. This leaves one with a finite number of axes to 

test equal to the sum of the number of edges in each polygon.  

With this in mind, the calculation of the normal vectors can just be done using some fast vector 

math for each edge. Each edge will be represented as a vector from one vertex to the next one, 

in a counterclockwise rotation, leaving one with: 

 

Figure 3: Representation of vectors 𝒄𝟏 and 𝒄𝟐. 
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  𝒆𝒅𝒈𝒆𝒊 =  𝒗𝒊+𝟏 −  𝒗𝒊 ,  ( 30 ) 

 

while allowing for the normal to be calculated by negating the y component and swapping it 

with the x component, then normalizing the vector. This is not the most intelligent way to 

calculate a normal, however; for example, a ninety-degree rotation matrix could also achieve 

the same effect, but for general purposes this way of calculating the normal is extremely easy 

to replicate in a programmatic environment, while maintaining a real memory efficient process.  

After calculating each normal, one is left with a set of normalized vectors that will be used as 

separation axes for the test.  

The next stage of the SAT is checking on every single axis for intersection, which is done by 

projecting every vertex of both polygons onto the separation axes provided by the set of normals 

afore calculated. Although this procedure sounds complicated, it is exceptionally easy for both 

humans and computers to calculate. Knowing the projection formula, as described by Eberly 

(2010, p. 596), 

 

  𝑝𝑟𝑜𝑗(𝒗 , 𝒖) = (𝒗 ∙  𝒖) 𝒖 , ( 31 ) 

 

it is easy to create projection vector of each vertex, especially knowing that 𝒖 has to be a unit 

vector of the desired axis of which the vector wants to be projected onto. 

Now two factors are known, all of the needed projection axes and the projections of each vertex 

onto these axes. With this information a fast calculation can be done in order to get the minimum 

and maximum vertex projection of each polygon onto the desired axes. This is done in order to 

get the interval of the projections of each polygons onto the tested axis to check for separation. 

If one of the intervals intersects with the other, then no separation was found and the algorithm 

can continue to the next separation axis. Nevertheless, if at any point the algorithm does not 

find an intersection, it can break the loop and prove that indeed both polygons are not 

intersecting at all (Eberly, 2010, p. 398). This creates an early out function that allows the 

algorithm to not test the rest of the axes when a separation was found; just one case loops 

through all of them, the least probable, when a collision was detected! 
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In upcoming figure number 4 an illustrated example can be appreciated in order to better 

understand the algorithm. In this case the algorithm would detect no intersection after checking 

the axis created with the normal v, because no intersection of the projected vertexes was found, 

whereas the one made with the normal w showed no separation. As stated the test has to be 

made until one separating axis is found, no intersection; or all axes are checked, collision. 

 

Other collision detection algorithms 

Both previously discussed algorithms were explained in detail because of the importance for 

this thesis. Meaning, that they are both going to be used in the engine developed during this 

project. The afore stated point does not mean, however, that these are the only usable or best 

algorithms that exist, only that these were the ones chosen. It would not then be irrelevant to 

mention two other usable collision detection algorithms like diagonal intersection  and  the 

GJK algorithm, consequently they are going to be swiftly clarified. 

Figure 4: Example of SAT using two axes. 
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First of all the diagonal intersection algorithm focuses on checking if the diagonal vectors of a 

polygon, position vectors from the center of the polygon to the vertexes, intersect with any of 

the edges of another polygon; and if they do, something know as a vertex – edge collision will 

be detected (Ramtal; Dobre, 2014). The edges in this specific case are clearly defined just as 

they were on the SAT algorithm.  

On account of the intersection between two vectors needed to detect the collision during a 

diagonal intersection, different mathematical principles can be applied in order to resolve if an 

object is colliding or not, these will, nonetheless, not be explained in any further detail. 

On the other hand, one of the algorithms for collision detection between two rigid bodies, which 

is most useful and widespread together with SAT, is the so-called GJK algorithm (Gilbert – 

Johnson – Keerthi). This algorithm is used for example in the dyn4j engine, a very common 

Java based physics simulation engine (Bittle, 2010). 

The GJK algorithm focuses on a mathematical principle of the Minkowski difference (a 

difference between all points inside two bodies) that allows one to know if the two objects are 

intersecting. The calculation of this difference creates in turn a new infinitesimal set of points, 

or which can refer back to the previously mentioned continuum of mass. Consequently, the 

words of the dyn4j engine developers that explain how the algorithm works state: “If two shapes 

are overlapping/intersecting the Minkowski Difference will contain the origin.” (Bittle, 2010.). 

This citation allows for an easy to detect intersection check after making the Minkowski 

difference, with it being that if both of the centers of mass of the objects is inside the Minkowski 

difference, an intersection has been detected, creating the need for a collision resolution. 

As a last point of emphasis, it has to be declared that both the SAT and the GJK methods are 

extremely useful and commonly used, but the SAT was picked over its contestant because of 

the low number of objects that will be present at once in the engine. The advantages of the latter 

of these algorithms relies in that a higher quantity of edges does not necessarily increase the 

number of calculations, because the algorithm does not take edges into account. This makes it 

so might be the preferred one to be used in three – dimensional scenarios, where the number of 

possible separation axes increases exponentially; while the former is, for the most part, more 

effective in environments where the number of polygons is relatively low. 

 



27 
 

2.1.3.2. Position correction 

With the problem of the detection of each individual collision out of the way, a hitherto 

discussed problem has arisen, position correction. Briefly touched upon during the test 

intersection with bounding circles, rigid bodies detection takes form one frame after the 

collision has taken place, when objects are already on top of each other. Due to this, the 

participants of the collision have to have their position corrected (returned to a “just barely 

touching state”). 

The problem at hand might sound complicated, but it is not actually that hard to compute. There 

is a general idea of what is supposed to happen in order to create this correction, or better, to 

calculate the distance the objects have to be moved apart. It is, as with every mathematical 

analysis, needed to know what we are looking for, which in this case is represented by the 

distance between two objects in an intersection, or better described as the overlap distance 

between of the two objects. 

 

Particle – particle collisions 

The easiest instance to aboard is the collision of two particles, or bounding circles, which the 

correction can be done by just calculating the overlap distance and moving the particles by this 

distance along the collision axis. This distance is computed by building the addition between 

the magnitudes of their radii minus the distance between their centers of mass, taking the value 

as the scalar overlap distance between the two. Furthermore, the correction can be done by 

scaling the unit collision normal (See 2.1.4.1 Detection – Test intersection with bounding circles 

for explanation of how this vector is calculated). The aforementioned steps would be 

mathematically described as: 

 

  𝑑𝑐 =  ‖𝒓𝟏‖ + ‖𝒓𝟐‖ − 𝑑    ( 32 ) 

  𝒅𝑐 =  𝑑𝑐 𝒅̂  ( 33 ) 

 

With the vector of total correction calculated, one can then decide how much correction should 

be applied for each particle. As a result, there is a freedom of choice when applying the collision 

correction in a physics engine, leaving it to the developer to decide how it should be done. 
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Examples of this could be depending of which particle is more massive, which particle was 

moving faster or simply of how particles are organized in the scene. 

 

 

Particle – wall collisions 

A special case is the collision correction of particles against walls, which will be defined for 

the purposes of this thesis as line segments. With a little bit of trigonometry, the calculations of 

what the desired correction distance is easy to achieve by following the defined steps by Ramtal 

und Dobre (2014) in their book Physics for JavaScript Games, Animation, and Simulations and 

defined by the following formula (p. 275): 

 

  ∆𝑠 =
𝑟 + 𝒅 ⋅ 𝒏

sin (𝜃)
  ( 35 ) 

 

With ∆s being the desired distance, 𝑟 the radius of the particle, 𝒅 as the position vector from 

the center of mas of the object to, and perpendicular to, the wall; 𝒏 the normalized collision 

normal, and 𝜃 the angle generated between the wall and the velocity vector of the particle. 

 

General collisions 

Having touched upon the most specific cases of collisions with particles, some kind of 

correction has to be explained for cases like polygon – polygon or polygon – wall collisions. 

Unfortunately, these cases are not as easy to calculate as particle collisions, but are in turn way 

more general, applying to most cases.  

Having used collision detection algorithms like SAT; one already has the collision unit normal 

vector, which describes in which direction the collision took place. In the case of SAT this 

collision normal is taken as the axis of least separation found while iterating through all of the 

possible axes explained in chapter 2.1.4.1 Detection – SAT Method (Bittle, 2010). This might 

not be a hundred percent accurate, for example for really fast objects the axis of least penetration 
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can be at the other side of the object, but for cases like this, special measures should be taken 

into account, like for example decreasing the time step at faster velocities.  

Moreover, the mentioned axis of least separation is just the axis that had the least amount of 

separation between the extremes of the projections of both objects, or rudely explained as the 

axis where the maximum of the projection interval of the first object was closest to the minimum 

of the one belonging to the other object (Bittle, 2010). The overlap is on the other hand just the 

value of the separation of both objects on this selected axis. 

So, with this collision unit normal and the overlap the rearrangement of the objects taking part 

in the collision can be done as before, by just moving each one by a factor of the overlap through 

the axis of least separation, making it so both objects are just barely touching7. 

 

2.1.3.3. Collision manifold 

After knowing the previous steps of a collision response, before getting to the core of what 

exactly is the collision manifold, it must be indicated to the reader that this was one of the most 

difficult parts to piece together of the collision resolution. This was the case because of the huge 

impact a badly calculated collision manifold has, and the fact that a general collision manifold 

solution was being searched that could be applied to polygons, not only one which would 

calculate for example squares or circles. For this reason, a method known as the Sutherland – 

Hodgman polygon clipping was utilized. But a brief understanding of other methods is in order 

for learning purposes. 

So, with this in mind, the collision manifold is just the stage of collision calculation that is in 

charge of finding the approximate contact points of two objects, that is, the points at which two 

objects collide. The reasoning of why it is called manifold may come from the contact points it 

generates, because it is not limited, normally, to just one, but instead to a set or collection of 

multiple contact points (Bittle, 2010). 

 

 

 

 
7 See formula number 24. 
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Specific cases 

Some specific cases mentioned above that might be important for the understanding of how 

many physics engine work, and that will be described in this thesis, are Axis Aligned Bounding 

Boxes (AABBs) and circle intersection contact points. The latter was already briefly explained 

during 2.1.4.1 Detection – Test intersection with bounding circles and it is only needed to clarify 

that during this type of collision the collision manifold is unneeded, but the specific contact 

point is generated by the collision detection algorithm.  

On the other side, as explained by Randy (2013) in a practical way, the former of the two 

aforementioned cases tries to generate the set of points by checking the horizontal and vertical 

positions of the AABBs which engulf the rigid body in the space and verify where they 

intersect. This method requires the object to be surrounded in one of this bounding boxes, 

making it so it is not as precise for polygons while completely disregarding any kind of rotation. 

Despite of this it is really common in engines because it allows a really easy and efficient way 

to calculate collisions for objects that do not need the precision of polygons, for example, when 

the sprite of a player character tries to jump over a barrier. 

 

Sutherland – Hodgman Polygon clipping Algorithm 

For more general purposes, a nice algorithm that can help with the calculation of the collision 

Manifold is the Sutherland – Hodgman Polygon clipping algorithm. As clarified by Sutherland 

and Hodgman (1974) in their paper explaining the algorithm, the central idea is to check for the 

intersection points of two polygons, taking into account both the position and rotation of each 

one of them, making it perfect for the desired engine. The algorithm is divided in two steps. 

The first step is the distinguishing of which polygon is going to be clipped, with the second one 

being the clipping itself. A good analogy to understand what is being done is to imagine a 

triangle barely inside a picture frame; someone with scissors will then cut all the parts of the 

triangle out, which are not inside the frame (See figure 5).  
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The first step of the algorithm, the identifying of which polygon is going to be clipped, will be 

explained in further detail when the justification of how the algorithm was implemented comes. 

For the time being, the most important part is to understand how the clipping itself works. 

In order to explain how this clipping method works, one must first understand the four rules 

that compose the algorithm. For the understanding of the representation of these rules, one must 

imagine two polygons in a space, where all of the edges of each polygons are represented as 

vectors. Taking two vectors at a time, one can be used to clip the other, taking into account that 

each vector should come from a different polygon. For the purposes of the explanation the 

vector performing the clipping will be called a reference edge from now on, while the other 

type of vector, the one being clipped, is considered an incidence edge (Bittle, 2010). As a 

clarification, the reference polygon is the one comprised of all the reference edges, while the 

incidence polygon of the incidence edges. With this line of thought, and as explained originally 

by Sutherland and Hodgeman (1974), the following rules must then be applied: 

1. If both points of an incidence edge are visible, that is inside the reference polygon, save the 

terminal vertex of the incidence edge (p. 34). 

2. If the incidence edge is completely out of the reference polygon, do not save any new points 

(p. 34). 

Figure 5: Polygon clipping example. 

(Left) Polygon before being clipped – (Right) Polygon after being clipped. 
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3. If the incidence edge starts at the visible side, but ends outside of the reference polygon, 

save only the intersection between the incidence and reference edge (p. 34). 

4. If the incidence edge starts outside the reference polygon, but ends in the visible side, then 

save both the terminal vertex of the incidence edge in question, as well as the intersection 

between the incident and reference edges (p. 34). 

This process is then applied recursively for all reference and incidence edges, leaving one with 

a set of points that can be then used to describe the searched for collision manifold (Bittle, 

2010). These points are of course the intersection points of the polygons when they are on top 

of each other.  

For further clarification, it is strongly encouraged for the reader to go back to Figure number 5 

and perform the four rules above stated having the blue square as the reference polygon. 

 

2.1.3.4. Resolution: Impulses 

After the whole process of identifying a collision and calculating the contact points of a 

collision, the “real physics” aspect of the physical simulation process can be applied. Different 

types of collision resolution of course exist, but the one that will be important for this thesis is 

the impulse method, meaning that the impulse of the collision has to be calculated in order to 

resolve it.  

Impulse is defined as a force applied in a certain time interval (Ramtal; Dobre. 2014, p. 358): 

 

 𝑱 =  𝑭∆𝑡 = a 𝑚 ∆𝑡  ( 35 ) 

 

with its integral form representing the addition of all forces applied during a set interval 

(Serway; Jewett, p. 253):  

 

  𝑱 =  ∫ ∑ 𝑭  𝑑𝑡
𝒕𝒇

𝒕𝒊
 ( 36 ) 
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The importance of impulses in collision resolution is actually because of the impulse – 

momentum theorem, which states “The change in the momentum of a particle is equal to the 

impulse of the net force acting on the particle” (Serway; Jewett, p. 254). Making it so the 

previous information is useful for the case of collision resolution because of the definition of 

momentum is stated to be: “[linear momentum] is defined to be the product of the mass and 

velocity of the particle […].” (Serway; Jewett, p. 248), so the impulse can be expressed as: 

 

  𝐉 =  𝑚𝒗𝑓 − 𝑚𝒗𝑖 = 𝑚 (𝒗𝑓 − 𝒗𝑖)  ( 37 ) 

 

This is incredibly helpful because it gives one the knowledge that the calculation of the final 

velocity 𝒗𝑓 at any given moment (even after a collision) is none other than the initial velocity  

𝒗𝒊, just before the collision, plus the impulse 𝐉 generated by the collision, divided by the mass 

m of the object in question!8 

 

   𝒗𝑓 =  𝒗𝑖 + 
𝐉

𝑚
 ( 38 ) 

 

A quintessential clarification that is still to be understood, if one knows the lineal velocity after 

a collision – giving in turn birth to the lineal displacement of the object – is of how the rotational 

factor of the body in question is changed after the collision. Luckily, as explained before in 

2.1.3.4. Angular Kinematics and Torque the laws of motion apply equally for angular and linear 

movement, making it so: 

 

   𝜔𝑓 =  𝜔𝑖 + 𝐫 ×  
𝐉

𝐼
 ( 39 ) 

 

But, the reason why there is a cross product between the impulse and the vector from the center 

of mass to the point where the force is being exerted, (𝐫) is because referring back yet again to 

 
8 The following equation is just a simplification in order to get 𝒗𝑓. 
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the chapter of angular kinematics, the torque acts like a force, but is represented as the cross 

product between this vector 𝐫 and the force that is being applied (Ramtal; Dobre, 2014). This 

makes it so the generated impulse has to also be applied through the same point as the forces in 

order to create a rotation.  

The given information is applicable to both objects involved in a collision, though the generated 

impulse is negative for the second object, because of the third Newtonian law of motion (for 

both linear and angular movement). 

Even though this previous understanding of how impulse influences a collision answers the 

most important question of what the velocities of an object after a collision are, it still leaves 

the inquiry of how impulse itself is calculated. This is made easier by the explanation made by 

Ramtal and Dobre (2014), in their already mentioned book, that (p. 359): 

 

 𝐽 =  −
(1+ 𝐶𝑅) 𝒗𝑟

𝑖  ⋅ 𝒏

1
𝑚1⁄ +  1 𝑚2⁄  + 

(𝒓𝑝1× 𝒏)
𝟐

𝐼1 
+  

(𝒓𝑝2× 𝒏)
𝟐

𝐼2

 ( 40 ) 

 

Where 𝐽 is the impulse magnitude, 𝒏 the unit normal vector of the collision, 𝑚1 and 𝑚2 the 

masses of each object; 𝒓𝑝1 and 𝒓𝑝2 the position vectors from each object’s centers of mass to 

the collision point;  𝐼1 and 𝐼2 the respective moments of inertia; 𝐶𝑅 the coefficient of restitution, 

which is just the bounciness factor of a material, and depends on what the object is made of; 

and 𝒗𝑟
𝑖  the initial relative velocity between both objects, calculated by subtracting the velocities 

at the point of impact 𝒗𝑝1
𝑖  and 𝒗𝑝2

𝑖  (pp. 358 - 359):  

 

  𝒗𝑝1
𝑖 =  𝒗1 +  𝜔1  ×  𝒓𝑝1  ( 41 ) 

  ∴   𝒗𝑝2
𝑖 =  𝒗2 + 𝜔2  ×  𝒓𝑝2 

  𝒗𝑟
𝑖 =  𝒗𝑝1

𝑖 − 𝒗𝑝2
𝑖  ( 42 ) 
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With the impulse generated by the collision, having in mind both the angular and lineal 

components of the movement, one can then proceed to resolve the collision. By adding the 

velocities generated to the objects in question, in order to define the new generated motion, one 

can move the bodies after colliding with each other.  
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2.2. PART II: THE FLUTTER FRAMEWORK 

 

“Flutter is Google’s UI toolkit for building beautiful, natively 

compiled applications for mobile, web, and desktop from a single 

codebase.” 

–  Google LLC, n.d. 

 

Having finally understood the whole physical and mathematical aspects needed for the desired 

physical simulation, one can proceed to the explanation of what the Flutter SDK is, while also 

describing why it was chosen as the developing kit for the thesis. This chapter will briefly 

clarify these aforementioned aspects, while at the same time giving a general understanding of 

which parts of physical simulation are already included in the Flutter SDK.  

Some elements, that will not be present in this chapter, are the exact explanations of the inner 

workings of the Flutter framework, or a deep analysis of fundamentals such as its architecture. 

This chapter should only be taken as a small introduction to Flutter in order for the reader to 

comprehend the reasons for the utilization of the software. For more information one can refer 

oneself to the Flutter documentation9. 

Furthermore, most of the explanations done in this chapter will be done with the writer’s 

previous knowledge of the SDK, as well as following the aforementioned documentation. 

 

2.2.1. What is Flutter? 

As explained shortly by the Google team in the quote at the beginning of the chapter, Flutter is 

a developing kit that enables cross platform app development. This encapsulates mobile apps 

(IOS and Android), Web and also desktop applications, making use of the same code basis, and 

avoids the need of different programming languages when coding for different platforms. 

All the programming done in Flutter is performed with Google’s programming language Dart. 

But, it should be obvious to an avid reader that this language is not as well-known as other 

programming languages such as Java or C. Nevertheless, it stands its footing for being pretty 

 
9 Flutter Documentation: https://flutter.dev/docs 
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useful in combination with the development kit. Dart as a programming language is an object-

oriented programming language that was first born as a successor to JavaScript, before it was 

used as the foundation for Flutter. Furthermore, this language’s syntax can be described to be 

similar to other OO languages, which was probably made this way in order for programmers to 

make an easy transition from JavaScript to Dart. 

However, Flutter is accredited by its creators to create native applications, which just means 

code that is written in a specific programming language for a specific platform. But this aspect 

might contradict with the fact that the programs are written in Dart, instead of for example on 

Kotlin or Swift10. On further investigation on this issue, one can come to the inquiry of how 

something can compile with the same programming language on compilers that are completely 

different. This is where Flutter shines: the code can be written in Dart, but at building time, the 

code will compile to its native counterpart and be packaged in a way that matches with the 

system it is being deployed into – For example as an APK file for Android (Flutter 

documentation. n.d.). The whole process packages both the Flutter SDK and the written code 

by the user into this end file, making it so it can be bundled for different platforms. 

 

2.2.2. Widgets 

A quintessential factor that makes Flutter subjectively programmer friendly is the usage of what 

they call Widgets. These are the building blocks of all the applications in Flutter, while also 

being objects that can be built into each other, creating a parent – child relationship. In turn, 

this relationship makes the child widget adopt the properties of the parent (like position and 

constraints). Because of this, two advantages arise: Firstly, creating new layouts becomes 

extremely easy, because widgets always depend of their parents. Secondly, widgets in Flutter 

form a tree like structure that will continuously be built in order, making it so the child widgets 

will always be reconstructed when the parent rebuilds itself.  

Furthermore, widgets can also be customized and be instantiated anew. By extending already 

stablished abstract widgets, one can basically integrate whatever one desires in the Flutter 

application as a widget. It will be highly encouraged to the reader to keep this fact in mind for 

future chapters. 

 
10 Kotlin and Swift are the programming languages for Android and IOS applications, respectively. 
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2.2.3. Plugins and Packages 

Another really important capability that is supported by the Flutter SDK is the option of 

expanding the software when it does not meet one’s needs. Through the so-named plugins and 

packages not only this enlargement of the framework can be achieved, but also allows for the 

creation for many open source projects, that expand the SDK. This system provides a way for 

other programmers with more knowledge of a certain area to create kind of extensions to the 

SDK.  

It will now be explained what packages and plugins are, and their differences: 

- Package: A package works like a library written in completely Dart. This code can then 

be reused in order to help with the creation of new programs without having to calculate 

everything anew.  

- Plugin: A plugin works similarly to the before mentioned packages, but it is written 

natively in whatever programming language it is constraint to (this depends on the 

desired platform). The methods or functions established in the plugin can then be called 

from code written in Dart and are wrapped in a package in order to then be used in a 

Flutter program. This just means that methods and functions programmed natively, can 

be called from a Dart program, increasing the amounts of options when utilizing Flutter. 

Having this in mind, a plugin is then just a package that is expanded to also include native code, 

but, as for the perspective of the user, they both work exactly the same. 

Knowing this, one further explanation should be given: The physics engine planned for this 

thesis will take the form of a package, in order for it to be usable by any programmer without 

any regards to platform. Therefore, the development of the API can be done without being 

constraint by having to also write native code for specific platforms. 

 

2.2.4. Physics Simulation in Flutter 

Nonetheless, after now knowing what exactly the Flutter SDK is, an enormous question might 

arise: does such a complete developing kit have any kind of physics simulation? It should be 

possible for a tool that allows one to create applications for this number of platforms to have a 

physical simulation engine. however, the answer to the previous question is not as 

straightforward as one would like it to be, because the answer is: it kind of supports simulation. 
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The indefinite nature of the previously stated answer is born from the fact that Flutter seems to 

have most of the bases covered for a sturdy physics engine, but it just does not have a complete 

and functioning physics API. An example of this is how AABB’s are already implemented in 

the engine; but are not used for either two- or three-dimensional physics simulation. This can, 

however, quickly advert to a keen-eyed reader that one dimensional was not stated, because the 

SDK does have libraries for this kind of simulation. 

One dimensional physics simulation is used in flutter to create animations for applications. For 

example, a spring animation can be used in scrollables when one swipes farther away from the 

last element in a list. This animation will then be triggered to show the effect of going back to 

the last element.  

Another implementation of physics simulation, apart from the official one-dimensional 

simulation libraries, is the Dart port of Box2D. Box2D is a two-dimensional physics engine for 

Java, and was adapted to Dart. However, as seen in the pub.dev web page11, the biggest 

problems with this port is that it is both not an official Google project and that it has not really 

been tested, having a low coverage (around 28% at the time of writing). Additionally, the 

package is also not even compatible with Dart 2! (pub.dev. 2017). 

Because of the low amount of physical simulations tools covered by the Flutter SDK, it is easy 

to see why a sturdier and functional physics simulation engine might be needed. 

 

 

 

 

 

 

 

 

 
11 The pub.dev page is where the open source Flutter packages and plugins are published. 
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3. PROPOSITION AND CONCEPT 

 

Having finally finished with all the theoretical research done in order to advance the thesis 

forward, it would be wise to explain what exactly will be done with this information. In this 

chapter the proposition for the development of the engine will be announced and explained.  

First of all, it should be indicated that a two-dimensional physics engine will be developed in 

the programming language Dart in conjunction with the Flutter SDK. This engine will focus 

on rigid bodies and will ignore other aspects of physics, such as lighting or Soft bodies.  

The engine itself will, as referenced already, focus on rigid bodies, but most specifically, it will 

try to implement particles and polygons. These objects will react to each other in a physically 

accurate way.  

Consequently, for its development, the algorithms and methods mentioned during the 

theoretical framework will be used. Not only this, but the engine will be developed as a package 

for Flutter meaning that it could be published in the future if needed, allowing other 

programmers to freely use the engine as they see fit. 

Furthermore, in order to show the capabilities of the engine, an example app will also be 

developed. The application will try to use the engine at its fullest, while helping as a contrast 

point of what the engine actually brings to the table. Apart from this, the development of this 

app will help illustrate the amount of code that is avoided when one has a tool at hand, such as 

the developed engine. As a last remark to this point, the application will represent a real-life 

use case scenario in which such an engine can be useful. 

For demonstration purposes, the scenario of an educational app will be employed for the 

development. This application will be made with students in mind, who are learning the 

Newtonian Laws of Motion for the first time. The reasoning of this decision is to demonstrate 

how physics simulation can make a difference when being applied to an end product. 

With reference to what the example application is going to be, the application will didactically 

try to demonstrate the three laws of motion, as described by Sir Isaac Newton. It will have at 

least three different screens, each demonstrating one law in a different way. 

1. Inertia: The user will have an empty canvas with one object always being spawned in the 

middle of the screen. This element can be a random polygon. Moreover, objects spawned 
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will start in resting state, however, in order to demonstrate the first law of motion, the user 

change the force being applied to the object, making it move. 

As mentioned before, the idea is to demonstrate the law of inertia, meaning that the world 

will not have any kind of collisions or friction, apart from probably the edges of the screen.  

2. Force: For the demonstration of the second law of motion, the user will be able to see a 

defined number of objects and accelerate them. The previously mentioned objects will have 

an acceleration and mass dictated by user input. After being added to the screen, the 

elements in question will move, with their motion being in accordance with the force being 

applied to them. The values for mass, acceleration and force might be displayed on screen.  

3. Reaction: In what could be better described as a free for all, the user will be able to add 

objects to the screen, being at the beginning in resting state. Objects will start moving 

across the screen, while colliding with both the rest of the elements, as well as with the 

walls. For the purposes of the demonstration of the third law of motion, no gravity will be 

applied, but one might be able to influence the forces in the system with the usage of the 

device’s gyroscope. Additionally, objects that collide with each other will also shortly show 

the direction of the force after the collision, for a clearer illustration of the third Law of 

Motion. 
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4. DEVELOPMENT, EXPERIMENTATION AND SOLUTION 

 

After the first steps into answering the research question of the thesis; with them being the 

physics basics, the algorithms needed for the development of a physics engine and the core 

concept of what exactly is going to be developed. One can now turn to the next secondary goal: 

the implementation of 2D physics simulation into the Flutter SDK through the development of 

a physics simulation API. 

During the extent of this chapter, it will be explored how one such an engine can be developed 

for the Flutter SDK, while at the same time describing the different steps that were taken during 

the experimentation of the engine. With experimentation of course referring to the creation of 

the example app. This chapter will be crucial for the goals of this thesis, because it will show 

the challenges of creating such an engine, while demonstrating that it might be incredibly 

valuable when being used for app development. 

This chapter will be divided into two parts. The first component will focus on the development 

of the physics engine, whereas the second will be the creation of the app itself. Nevertheless, 

not every single method and function will be explained during this chapter, only the 

quintessential operations for the understanding of the project will be directly cited. For any 

further inquiries, the reader will have to be referred to the source code annexed with this thesis. 
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4.1. DEVELOPMENT OF THE PHYSICS SIMULATION ENGINE 

 

4.1.1. Engine Principles 

Before even trying to explain how the development of the engine started or which steps were 

taken in order to create a functioning physics API, it will be important to refer oneself to the 

architecture of the software. As a minor note, the architecture that will be shown in this chapter 

will be the one of the project after being finished, since it deviates from what was originally 

thought. Nonetheless, it is extremely useful for the understanding of the engine. 

The reader will be referred to the appendix A1 to see the complete UML class diagram of the 

physics engine, but some critical pieces of information will be still be described and exhibited 

during this chapter. 

The general idea of how the architecture of the software was divided was born with the main 

concept in mind: the physics component should work completely separated from the visual. 

This is not only because following clean code the UI should always be separated from the 

functionality of the written code, but also because these two aspects were thought to be used 

independently. Furthermore, the physical simulation component was imagined to be a 

standalone milestone to be achieved by the engine, allowing not only its usage for cases like 

game development, but also the creation of new physically animated UI pieces.  

Because of the stated before, the graphical segment of the engine was called the 

PhysicalCanvas Widget, which allowed one to add physical objects to a scene, letting them 

be moved and refreshed completely by this element.  

On the other side, the standalone physical classes were created. These classes include, for 

example, the collisions resolvers or the physical rigid bodies themselves. All of these classes 

will be further explored in the coming subchapters. 

As for the rigid bodies themselves, just like in real life, they were thought to have a set of 

intrinsic properties that act on them. Examples of these would be mass, moment of inertia and 

position of the rigid body in the system. With this in mind, objects would then be able to act 

independently from each other.  
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In order to keep it as simple as possible, the following objects were used, since it has to be 

thought as a proof of concept that one such an engine is needed for Flutter:  

- Convex Polygons: The most general of the shapes used in the engine. These polygons 

allow for changes both in position and rotation.  

- Particles: Basically, circles as two-dimensional rigid bodies. Position is of course a 

variable issue, but because of the fact that particles are equal on all sides when being 

rotated, no rotation is be applied to them. 

- Walls: The static objects of choice for the engine. Meaning that they even if having a 

position in the system, there is no motion when forces are applied to them12. Static 

objects are considered to have an infinite mass for the most part, like unmovable objects. 

These walls have a starting point, an endpoint; as well as a direction to the positive side 

of the wall. 

A last aspect that would be interesting to clarify, before taking a deeper look at each component, 

is how forces are displayed in the engine. Both Force and Torque are their own respective 

classes. However, force is actually just a vector. This difference in logic is answered by the fact 

that force also needs a differential in time to be applied in. Forces can be constant, like gravity, 

or generate a change velocity in an instant, like an impulse. For this reason, the class forces also 

needed a time of application13, so it was easier to save together with the force vector in an 

instance of a class. On one side, for constant forces, the time of application is set to be null. On 

the other side, forces that are applied in an instant will be exerted in one sixtieth of a second. 

This value was manually set because Flutter refreshes its UI sixty times per second, coming to 

the conclusion that the value of what an instant should represent had to be just one frame. The 

user of the engine can then also manually decide the time in seconds that a force should be 

applied on the object; the engine will then exert this force for the desired number of seconds. 

 

 

 

 
12 Walls are represented by a single line, but one could use several walls to create more complex systems. 
13 See A1. 
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4.1.2. The Physical Canvas Widget and its Architecture 

 

Following with the explanation of the physics API, the core of the graphical component, which 

was already expressed to be independent of the physical calculations, was called the 

PhysicalCanvas Widget. As the name implies, and remembering was implied in previous 

chapters, it is a widget for the Flutter SDK, meaning that it can be integrated in Flutter’s widget 

tree in order to be built.  

Furthermore, PhysicalCanvas extends StatefulWidget. This is an abstract class provided 

by the SDK, that allows the creation of  a widget that can be changed and rebuilt, given that 

there is a change in its state, which is a class of its own. For more information about this class, 

the reader will have to be referred to the Flutter documentation. 

But StatefulWidget is not the only aspect that was taken from the SDK in order to create 

the desired widget. Other two classes had to be used. The first of them was employed by the 

state of PhysicalCanvas. This mixin class, called TickerProviderMixin, allowed the 

usage of a ticker to be called every frame14. This ticker was, as mentioned, used in the 

PhysicalCanvas’ state to refresh the physical calculations with a frequency of sixty hertz.  

Parallel to the aforementioned ticker, the state of the class PhysicalCanvas also had a child 

while building, which extended a class called CustomPainter. For any reader familiar with 

JavaScript, this class works similar to the Canvas element. For the rest, this class is in charge 

of providing a two-dimensional drawing area. Consequently, the canvas state can then render 

the objects in the scene every time the screen is refreshed, while at the same time utilizing the 

intrinsic characteristics possessed by each rigid body for the rendering process.  

The diagram on the next page accurately depicts the relationship between the classes mentioned 

before. 

 

 

 

 
14 A ticker is kind of like a clock, that calls a function every time it ticks. This function is stablished when the 

widget is added to the tree. Afterwards, the ticker starts, recursively calling the function in a set time interval. 
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Since the engine was designed to be used by programmers as a package, the class 

PhysicalCanvas asks for the user to provide it with the list of the rigid bodies that should be 

displayed. These rigid bodies can, of course, be changed or removed at any time, and will be 

presented accordingly on the screen. The aforementioned relationship, as well as the intrinsic 

properties of rigid bodies, can be appreciated in Figure 7. 

Figure 6: Class Diagram – PhysicalCanvas. 
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An interesting note is that many of the attributes of the classes are public. This is because of 

two reasons: First, many of these are final, meaning that even if they can be accessed from 

outside, they cannot be changed. Secondly, the attributes that should be changed by the user 

could be also wrapped in getters / setters, but it was decided otherwise to save some code (due 

to the sheer number of attributes in some classes). This is of course a programming decision 

made by the writer of this thesis, and might not represent the optimal way to do it. 

The last important piece of information is that the PhysicalCanvas does not have a set size, 

which can bring two new things to the table. Firstly, the height and width of the canvas can be 

changed to fill the necessities of every app. And finally, that the pixel per meter ratio can be 

adjusted manually. With the latter of the arguments just explaining that the representation of 

how many pixels are one meter in the digital space can be set to meet the developer’s desires. 

 

Figure 7: Class Diagram – Relationship PhysicalCanvas and RigidBody2d. 
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4.1.3. Motion 

Continuing with the exploration of the engine, after finishing the explanation of the graphical 

component, it will be crucial to know how exactly motion was handled. Motion, for reasons 

explained before, should be performed by following the three Newtonian Laws; as a 

consequence, these were the basis of how objects moved inside the engine.  

So, recapitulating, the three laws are based on force, and how changes in forces influence 

objects in motion. For the case of the engine, the objects in question are the rigid bodies already 

described, while the forces are represented by both the classes Force and Torque. As seen in 

the theoretical framework, a change in the net sum of the forces also creates a change in the 

acceleration of the object in question. Because of this, the intrinsic properties of each object 

had to include the individual forces exerted on it, the acceleration, the velocity and the position 

of the object in the system15. 

Because of the previously mentioned premise, each Rigid body had to be able to calculate its 

own new properties, depending on the applied force. Most of the calculations take part in the 

move()-method, which looks as follows: 

/// Moves the Rigid Body 
void move() { 
  oldPosition = position.clone(); 
  addGravity(); 
  rotate(); 
  updateAcceleration(); 
  updateVelocity(); 
  position.add(velocity.scaled(deltaTime)); 
  positionBeforeCollision = position.clone(); 
  if (onMove != null) onMove(); 
}  

 

As seen in the Code Fragment 1, the method contained inside each rigid body object, updates 

all motion properties of the rigid body, including acceleration and velocity.  

The method updateVelocity(), as well as move(), utilizes the semi – implicit Euler 

formulas  in order to calculate the velocity and position of the object at any given time16. 

 
15 Refer back to Figure 7 – see class PhysicalRigidBody2d. 
16 17 and 18 – Semi implicit Euler formulas for Position and Velocity. 

Code Fragment 1: The move()- Method. 
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Whereas updateAcceleration() applies the second Law of Motion in order to get the new 

acceleration, just after adding up all forces being applied on the object (See Code Fragment 2). 

void updateVelocity() { 
  /// Semi Implicit Euler: 
  /// v_(n+1) = v_n + a∆t 
  velocity.add(acceleration.scaled(deltaTime)); 
  velocityBeforeCollision = velocity.clone(); 
} 
 
void updateAcceleration() { 
  final tempForceVector = Vector2.zero(); 
  final tempForces = List.from(forces); 
 
  /// Add saved forces and reduce the 
  /// time of application of each force by 1/60 sec. 
  for (final force in tempForces) { 
    tempForceVector.add(force.force); 
    if (force.durationOfApplication != null) { 
      if (force.durationOfApplication <= 0) { 
        /// If time of application is completed, 
        /// remove the force 
        forces.remove(force); 
      } else { 
        force.durationOfApplication -= 1 / 60; 
      } 
    } 
  } 
 
  /// a = F/m 
  acceleration = tempForceVector.scaled(1 / mass); 
  if (velocity.length2 != 0.0) addDrag(); 
}  

 

Furthermore, the move method includes a call to the rotate()-method. This method, as 

implied by its name, is in charge of rotating the rigid body; with its calculations being similar 

to the ones made for lineal movement. One can imagine these processes mirroring each other, 

but with the rotational movement employing the formulas for angular movement17.  

Nonetheless, one of the biggest differences to move(), is that the rotate()-method has a 

need for a moment of inertia as well as torque (instead of mass and force respectively), making 

it so both of these have to be provided and changed by the user of the engine. An exception to 

this rule, regarding moments of inertia, were regular polygons of three, four, five and six sides; 

 
17 21 and 22 – Formulas for Difference in Angular Displacement and Velocity. 

Code Fragment 2: The updateVelocity() and updateAcceleration() Methods 
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for which the engine calculates them by itself. This was done because these have easy to use 

formulas, which were inserted in the engine for quality of life. 

Another aspect of rotation that was also treated differently to displacement was the fact that 

rotational displacement, velocity and acceleration are interpreted as scalars in the engine; 

whereas the lineal counterparts are two-dimensional vectors. This made it so the rotational 

aspects were easier and more efficient to calculate. 

As a final note for the move()-method, it also checks for an onMove()-callback function. 

This function is given to the rigid body on the time of instantiation, and if existent, it will be 

called every time the object moves. The usefulness of such a function cannot be underestimated, 

since it gives the user higher control of how objects move in the engine, without having to 

change the engine itself. 

 

4.1.4. Collisions 

Already knowing how motion was applied in the engine, the next step to achieve a system that 

makes sense for calculations of rigid bodies, is the process of collision resolution. This aspect 

took the most time to research and implement, since as seen in the theoretical framework, the 

algorithms needed are fairly complex and time consuming to understand.  

Collisions were then achieved by separating them in the four steps explained during the 

theoretical framework: detection, rearrangement, manifold generation and, finally, resolution 

(as explained in chapter 2.1.3 – Collisions). However, in order to accomplish the needed 

calculations, and as seen in the following diagram, the collisions were separated depending on 

the objects that were being analyzed.  

Two collision resolver classes were created, one for the convex polygons and another one for 

the particles. These two classes were utility classes with just one public method each: a method 

to check collisions of this type (See Figure 8). 
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As a last important note, each rigid body also expects a onCollisionCallback() function as 

a parameter, which is in charge of calling a user defined function, having access to all the 

collision information at the time of collision. This includes both objects taking part in the 

collision, as well as the generated impulse18. A quintessential usage for such a function could 

be, for example, the usage of triggers for game development. 

 

 

 
18 See Figure 7. PhysicalRIgidBody2d – onCollision method. 

Figure 8: Class Diagram – The Collision Resolvers. 
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The Particle Collision Resolver 

The first collision resolver, which is going to be explained, is the 

ParticleCollisionResolver. As described by its name, it was the class in charge of 

checking and resolving the collisions of particles. Referring back to chapter 2.1.3.1 Detection, 

one can appreciate how the collision detection for particles was performed exactly as explained 

by the test intersection with bounding circles. Utilizing the difference of radii and distances 

between particles, collision detection was achieved. It is advisable to turn back to the 

aforementioned chapter if any doubts with the algorithm might arise. 

As for how particle detection against walls was done, it must be stated that it was more 

complicated. The following steps were taken in order to identify Particle – Wall collision19: 

1. First, two position vectors were calculated from the center of the particle. One to the 

initial and one to the end point of the wall. 

2. The projections of both calculated vectors onto the wall was calculated. These will be 

called Initial Projection and End Projection in the next steps. 

3. The normal vector from the center of the particle to the wall was calculated by 

subtracting the Initial Projection to the vector from the center of the particle to the 

initial point of the wall . This vector was named d. 

4. Finally, a check was made: if the magnitude of d resulted smaller than the radius of the 

particle in question and the magnitude of the addition of both projections onto the wall 

smaller than the length of the wall, then a collision was detected (Ramtal; Dobre, 2014). 

The described algorithm can be appreciated in the following code fragment: 

final other = objects[i] as PhysicalWall; 
final wallVector = other.endPoint - other.initialPoint; 
final unitWallVector = wallVector.normalized(); 
 
final vectorToWall1 = other.initialPoint - 
thisParticle.positionBeforeCollision; 
final vectorToWall2 = other.endPoint - 
thisParticle.positionBeforeCollision; 
 
final tangentialVectorToWall = 
unitWallVector.scaled(vectorToWall1.dot(unitWallVector)); 
 
 

 
19 The vector math will not be explained, only the concepts necessary for the understanding of the algorithm. 



53 
 

/// Normal vector to wall 
final d = vectorToWall1 - tangentialVectorToWall; 
 
/// Addition of vector projections to wall 
final projectionAddition = 
unitWallVector.scaled(vectorToWall1.dot(unitWallVector)) + 
    unitWallVector.scaled(vectorToWall2.dot(unitWallVector)); 
 
if (d.length < thisParticle.colliderRadius && projectionAddition.length < 
wallVector.length) { 
/// Rearrange and Resolve ... Removed for clarity 
} 

 

As a reiteration to previous knowledge explained in the theoretical framework, collision 

detection with bounding circles returns the collision normal and the contact point, so it does not 

need extra collision manifold generation. Furthermore, the just detailed algorithm (Particle – 

Wall collision) also generates these same factors:  

- The collision normal is of course the d vector. 

- The contact point is just the scaling of the normalized d vector (𝒅̂) by the magnitude of 

the particle’s radius. This will yield the position vector of the contact point from the 

particle’s center. 

To conclude particle collision, it is in order to know that both Particle – Particle and Particle 

– Wall collision’s next steps, in order to achieve a complete collision resolution, were applied 

as explained in the theoretical framework and will not be reiterated. Because of this one can 

refer oneself to chapters covering the needed methods and formulas if needed. These 

aforementioned chapters are 2.1.3.2. Position Correction  and 2.1.3.4. Resolution: Impulses. 

The code fragments for these can be found in the accompanying source code. 

  

The Polygon Collision Resolver 

The next step in the explanation would be the PolygonCollisionResolver, which was in 

charge of checking and resolving possible collisions between polygons. Even when compared 

to the PolygonCollisionResolver, the PolygonCollisionResolver took way more 

effort to develop. However, since most of the needed algorithms were already deeply explained 

during the theoretical framework, a quick overview of what this resolver does will be done to 

Code Fragment 3: Particle – Wall Collision Detection. 
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illuminate the reader. For a more detailed explanation of the algorithms it is recommended to 

consult previous chapters. 

First of all, the collision detection was performed using the SAT algorithm, just as described in 

chapter 2.1.3.1. Detection – SAT Method, and can be appreciated in the following code 

fragment: 

static List _checkPolygonOverlapSAT( 
  PhysicalPolygon thisPolygon, 
  PhysicalPolygon otherPolygon, 
) { 
  /// Add all edge - normals of both polygons to a single list 
  final projectionNormals = thisPolygon.normals + otherPolygon.normals; 
  double projectionOverlap = 0; 
  double minProjectionOverlap = double.infinity; 
  Vector2 correctionNormal = Vector2.zero(); 
 
  /// Check all possible axes, having in mind 
  /// all normals 
  for (final projectionNormal in projectionNormals) { 
    final projections1 = List<double>(); 
    final projections2 = List<double>(); 
    for (int i = 0; i < otherPolygon.vertexes.length; i++) { 
      projections2.add(otherPolygon.vertexes[i].dot(projectionNormal)); 
    } 
 
    for (int i = 0; i < thisPolygon.vertexes.length; i++) { 
      projections1.add(thisPolygon.vertexes[i].dot(projectionNormal)); 
    } 
    projections2.sort(); 
    projections1.sort(); 
    projectionOverlap = _calculateProjectionDistance( 
      projections1[0], 
      projections1[projections1.length - 1], 
      projections2[0], 
      projections2[projections2.length - 1], 
    ).abs(); 
 
    /// If there is an axis of separation, then 
    /// return false: Objects are NOT colliding 
    if (!(projections1[0] <= projections2[projections2.length - 1] && 
        projections2[0] <= projections1[projections1.length - 1])) return 
[false]; 
 
    /// If the checked axis shows no signs of 
    /// separation, then continue checking the next axes. 
    /// 
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    /// Also: Save and compare the axes of minimum 
    /// separation in order to perform rearrangement 
    if (projectionOverlap < minProjectionOverlap) { 
      minProjectionOverlap = projectionOverlap; 
      correctionNormal = projectionNormal; 
    } 
  } 
 
  /// If all the axes were checked and no separation 
  /// was found, return true: The polygons ARE colliding 
  return [ 
    true, 
    minProjectionOverlap, 
    correctionNormal, 
  ]; 
} 

 

As further clarification, the return value when a collision is detected also returns the minimum 

projection overlap and the correction normal, which are needed by the rearrangement step. 

Nonetheless, the previous algorithm represented only collisions between polygons. As for the 

case of Polygon – Wall collisions, a modified version of the SAT algorithm was used using the 

normal vector to the wall. Because this vector is the only possible separation vector provided 

by the wall, this algorithm then took place by utilizing all normals from the polygon, plus this 

one normal generated by the wall. 

Shortly after, the next phase of the collision resolution had to be completed. This was the 

position correction of each polygon, which took place by moving each object back by a factor 

of the overlap amount through the collision normal. A more detailed explanation can be 

appreciated in chapter 2.1.3.2. Position Correction – General Collisions. 

As for the collision manifold generation, the next step to take, the Sutherland – Hodgman 

algorithm was used. This helped with both Polygon – Polygon and Polygon – Wall collisions. 

Nonetheless, a keen eye and a good memory will reveal that in the chapter explaining this type 

of manifold generation one aspect was missing: Reference and incidence object recognition. 

This was made on purpose in order for it to be specified how it was made in the code, since 

there are several possible ways to perform this final result. Consequently, the former aspect was 

calculated by following the subsequent set of rules (Bittle, 2010): 

Code Fragment 4: SAT Algorithm. 
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1. Firstly, the farthest vertex of each polygon through the separation normal was searched 

for. 

2. Then, with this vertex, both left and right edges connected to this vertex were checked, 

in order to discover which of them was most perpendicular to the separation normal. 

3. With these two edges identified, one for each polygon, one could then compare which 

of them was most perpendicular to the separation normal. This edge was then decided 

to be the reference edge, as a result making the polygon containing this edge the 

reference polygon. 

 

The programming of the first two steps of this ruleset can be appreciated in the following code 

fragment: 

/// Code fragment inspired by: 
/// Dyn4j Organization. “Contact Points Using Clipping”, 2011. 
/// http://www.dyn4j.org/2011/11/contact-points-using-clipping (30. Dec. 
2019). 
List<dynamic> calculatePolygonFeatures( 
  PhysicalPolygon polygon, 
  Vector2 separationNormal, 
) { 
  /// Search for the farthest vertex through the separation 
  /// normal attained during collision detection 
  int vertexIndex = 0; 
  double max = separationNormal.dot(polygon.vertexes[0]); 
  for (int i = 0; i < polygon.vertexes.length; i++) { 
    double projection = separationNormal.dot(polygon.vertexes[i]); 
    if (projection > max) { 
      vertexIndex = i; 
      max = projection; 
    } 
  } 
 
  final Vector2 farthestVertex = polygon.vertexes[vertexIndex]; 
  Vector2 vNext; 
  Vector2 vPrevious; 
 
  if (vertexIndex == 0) { 
    vNext = polygon.vertexes[vertexIndex + 1]; 
    vPrevious = polygon.vertexes[polygon.vertexes.length - 1]; 
  } else if (vertexIndex == polygon.vertexes.length - 1) { 
    vNext = polygon.vertexes[0]; 
    vPrevious = polygon.vertexes[vertexIndex - 1]; 
  } else { 
    vNext = polygon.vertexes[vertexIndex + 1]; 
    vPrevious = polygon.vertexes[vertexIndex - 1]; 



57 
 

  } 
 
  /// Save left and right edges 
  final Vector2 leftEdge = farthestVertex - vNext; 
  final Vector2 rightEdge = farthestVertex - vPrevious; 
 
  leftEdge.normalize(); 
  rightEdge.normalize(); 
 
  /// Check if left or right edge should be returned 
  if (rightEdge.dot(separationNormal) <= leftEdge.dot(separationNormal)) { 
    return [ 
      farthestVertex, 
      farthestVertex, 
      vPrevious, 
    ]; 
  } 
else { 
    return [ 
      farthestVertex, 
      vNext, 
      farthestVertex, 
    ]; 
  } 
} 

 

Having the information of the reference and incidence polygon, the clipping could then be 

completed following the four Sutherland – Hodgman polygon clipping rules as described 

chapter 2.1.3.3. Collision Manifold – Sutherland – Hodgman Polygon clipping Algorithm.  

In addition to the last steps, one needed to also generate and apply the impulse in order for the 

objects to change direction and position. By taking a look at the formulas for impulse 20 and the 

new velocities21, one can infer that all the information needed is now provided and can be used 

in order to resolve the collision. As a consequence, the engine applied this formulas as they 

were, yielding really positive results. 

 

 

 
20 41 – The impulse formula. 
21 39 and 40 – Formulas for angular and lineal velocity depending on the generated impulse. 

Code Fragment 5: Reference polygon recognition. 
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4.2. DEVELOPMENT OF THE EXAMPLE APP 

 

After the whole process of creating the engine, the programming of the example app was 

needed, in order to proof that such an engine is indeed helpful for cross platform app 

development. All in all, the application took less time than expected, having in mind that the 

engine overtook a huge portion of the work. 

The application was created being divided in three main screens, each one representing one of 

the three Newtonian Laws of Motion. Furthermore, they were given short names describing 

each law: Inertia, Forces and Reactions. These are not the official names of the laws, but it was 

better than naming each screen first, second and third. Because of the importance and 

independence of each screen, this following chapter will explain the development of each screen 

separately. 

Every calculation made in this screens, that does not involve UI management, is made through 

the engine. This is because the engine itself, when used in conjunction with the described 

PhysicalCanvas, only needs a description of how it should act. For example, gravity or the 

intrinsic properties of each object are important factors that the engine needs from the user, but 

how they physically act, is calculated by itself.  

On the other side, all the explanations for the laws were taken from quotes directly cited in this 

paper, for any further allusion, it will be requested for the reader to look up the reference page 

of this thesis. 

Nevertheless, this application is not only composed of the physical aspects and representation, 

the design must also be referenced. The design of the application was done by following the 

guidelines of Google’s Material Design, which are for the most part integrated in the Flutter 

SDK. Consequently, a darker color pallet was chosen for the representation, because of personal 

preference of the developer. 

As a final note before proceeding to the explanation of every single screen, that was developed 

for the app: the app was tested using a Huawei Mate 10 Pro with Android version 9 (Pi), for 

Android; and an iPhone XS Max with IOS 13. This is important to have in mind, because it 

might be possible that the application is not optimized for older versions of these operating 

systems. 
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4.2.1. The Inertia Screen 

Even though, the three laws were given individual names for didactic purposes, Inertia is 

actually the only one of these laws which is commonly referred this way. As described in past 

chapters, inertia describes how objects will only change their state of motion when subjected to 

a change in the forces exerted on it. Because of this the Inertia screen was made to contain a 

PhysicalCanvas widget, together with a short explanation of the law. 

The PhysicalCanvas takes three quarters of the screen, being initialized with four 

PhysicalWalls, as constraints for the canvas, and a PhysicalPolygon in the center. The 

latter of these is a regular polygon initially generated with a number of sides of either five or 

six, while being spawned at resting state. 

Gravity and drag are deactivated in this scenario, whereas restitution and friction are set to an 

arbitrary value between zero and one. Because of this, if a force is applied, and shortly after 

deactivated, the object will slow down after every collision with the walls. 

The user experience that was planned for the user to have, was for him to understand how 

objects will not move unless an interaction is made. Because of the law of inertia, the center 

polygon should not have any motion at all, since it is at rest: the system is stopped (Figure 9, 

left). The only possible way for the object to change its velocity, is for a force to be applied. 

This aforementioned force can then only be achieved by the user tapping the change force 

button, which will lead one to a new dialog (Figure 9, right). Here, the user can rotate an arrow 

around a representation of the object in the center of the scene, and tap accept. Shortly after, 

the rigid body, which had encountered itself on a resting state, will start its motion towards the 

selected direction of the force, accelerating in this same direction. 
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Another aspect that should be noted is that the change force button can be pressed at any time, 

making it so one can always change the desired direction of the exerted force. 

An interesting interaction, which was also created for the user, was the ability to keep applying 

the force, or being able to stop it. Meaning, that when one decides in which direction the force 

is going to be exerted, a constant force will keep moving the object in that direction; however, 

by pressing the apply / stop force button the user can influence this force in the desired way. 

Nonetheless, if the user determines to stop the force, and because of the law of inertia, the object 

will keep moving in the direction it was previously, but this time with a constant velocity.  

The previous argument generates an intuitive loop which helps the user understand how the law 

works. The user can see how an object performs while being subjected to forces, while at the 

Figure 9: The Inertia Screen. 

(Left) The main inertia screen – (Right) The change force dialog 
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same time noticing that an object will conserve its velocity when no new forces are being 

applied. 

 

4.2.2. The Forces Screen 

Concerning the Forces Screen, the idea was to have a comparison of how forces affect the 

acceleration of an object. This was decided to be explained by comparing how forces acted on 

two different objects. 

As seen in Figure 10 (Left), two PhysicalCanvas were placed on the screen, one after the 

other, occupying one quarter of the screen each. At the left side of each canvas, a square, 

represented by a PhysicalPolygon, was placed. Both the mass of the square and the desired 

applied acceleration were made editable, so the user could change them by tapping the canvas. 

Moreover, the mass of the object was represented with the opacity, the more massive, the 

opaquer the body is; making so a visual differentiation of masses was also possible. 

 

Figure 10: The Forces Screen. 

(Left) The main forces screen – (Right) The element management dialog 



62 
 

On the other side, when the user taps one of the two displayed canvases the element 

management dialog is opened (Figure 10, Right). In this dialog one can, as user, change the 

desired mass and acceleration of the object in question. This also changes amount of force that 

is going to be applied in order to achieve the desired acceleration. The reasoning behind this, 

in order to demonstrate the second law, as for the user to be able to edit both factors which are 

normally displayed together in the equation (acceleration and mass), while letting the device 

compute the needed force. 

Lastly, the force that was going to be generated, for an object of the stated masses and with the 

desired acceleration, was displayed by both a vector and a numerical representation. Both of 

this representations of the force give visual feedback to the user in order for him to understand 

the proportionality between the acceleration and force. Nonetheless, the drawn vectors were 

made to become visually bigger when the force also becomes larger, producing an effect which 

allows the user to further understand this proportionality with images, not only with numbers. 

Furthermore, the user also gets to experience the difference in accelerations created by applying 

a force of an object. Since the objects will start moving when the user decides to exert the 

forces, he can also observe the difference in the motion of objects with different masses. For 

example, how an object with double the mass of the first can still have the same acceleration, 

if the generated force is also doubling. In this case the user will be able to see a bigger vector 

in the more massive object, but will also be able to appreciate how both bodies move exactly 

the same.  

Apart from all this, the systems created to be both friction- and gravitation- less. 

 

4.2.3. The Reactions Screen 

With both the first two Newtonian Laws being described, only the law describing the reactive 

force created after a collision between two objects was left to be developed. The mentioned 

screen also had a description of the law at the upper part of it, while being followed by three 

quarters of the screen enveloped by the PhysicalCanvas. 

Inside this PhysicalCanvas, the list of rigid bodies was initially instantiated with several 

different PhysicalWalls, to give the objects something else to collide with. Furthermore, the 

whole canvas was wrapped in a gesture detector, which would allow the user to tap anywhere 
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inside of it. This tap will in turn generate a PhysicalParticle at the desired position with a 

random restitution value. 

The PhysicalParticles created when tapping the screen are added to the RigidBody2D 

list, which was given as a parameter to the canvas at instantiation time. Because of how Dart 

manages objects, being that they are passed by reference, new entries can always be added to 

the list without the need to repeat the instantiation of the PhysicalCanvas. These particles 

will be then drawn by the canvas, and react to the other objects inside it. 

The mentioned descriptions can be appreciated in the following figure: 

 

 

The phone’s gyroscope was then used in order to generate a constant force in the direction that 

the device was rotated to, when inside the Reactions Screen. Consequently, this force was used 

to influence all the objects in scene. 

Figure 11: The Reactions Screen. 
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It should be stated that the force exerted when tilting the device is a constant force with the 

same magnitude for all objects, so if the objects had different masses, they would have different 

accelerations. Because of this, a force applied the same way it was in this screen should not be 

considered to act like the gravitational pull; since, if it was like gravity, all objects would be 

then subjected to the same acceleration, resulting in a variable force when accounting to the 

variable masses of the objects. 

Apart from the mentioned elements of the third page, one of the most important aspects 

representing forces being generated in opposite directions was the fact that, utilizing the 

onCollision parameter, a function was created and passed on to the engine. This callback 

function was in charge of examining the impulse generated during each collision and drawing 

the direction of the force vectors generated by the collision. 

Lastly, the Reactions screen was the one which used the engine the most, because of the number 

of objects and collisions in the scene. In figure number 12 a short sequence diagram can be 

appreciated. 

 

Commencing with the interaction of the user, a PhysicalParticle is instantiated. This 

particle has, as stated before, a position, velocity, acceleration, etc.; and is added as an entry to 

Figure 12: Sequence diagram for the Reactions Screen 
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the list of RigidBody2D. Shortly after, during the instantiation of the PhysicalCanvas, this 

list is passed to the canvas, making it draw all rigid bodies and start refreshing every one-sixtieth 

of a second. Every time the screen is refreshed, all the particles are also moved to their new 

positions, while the ParticleCollisionResolver checks if any collision has taken place. 

If a collision was detected, the resolver also resolves the collision, assigning new acceleration 

and velocities; but also calling the onCollisionCallback, which draws the vectors of the 

collision.  

At the same time, the user is also allowed to perform the other possible interaction: tilting the 

device; adding in turn a new force. This force is added every one-sixtieth of a second to each 

particle and depends on how much the phone was rotated. It is also only added with the 

application time of a sixtieth of a second, but every time the canvas refreshes, a new check for 

the rotation is also done, resulting in a new added force. This loop will be called endlessly until 

one either changes screen or shuts the application down. 
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5. ANALYSIS OF RESULTS 

 

After the laborious job of creating a whole functioning two-dimensional, rigid body focused 

physics engine; plus going through the arduous task of creating an application in order to 

identify the benefits of such an engine, one does come to an important question of what this 

solved. A direct answer to this question might be taken as subjective, since the experience of 

each developer may vary when encountering such a problem as the one at the core of this thesis. 

However, the author and developer of this project will try, during the lengths of this chapter, to 

best explain his point of view and experiences. 

Along the lines of this chapter, it will be described what the discoveries during the development 

of the engine were; as well as explaining the reader which were the benefits and problems of 

working with such an engine. As a consequence, the whole analysis will be made from the point 

of view of a developer, who needs to create an application in a similar use case scenario. 

As a start for the analysis of the results created by the experimentation with the engine, a huge, 

if not the most important, argument is how much time and code having a physics calculation 

tool saves. While implementing the application, it was incredible to see how most of the time 

spent was in the development of the UI, whereas very little, if not none, was needed in order to 

calculate physical movements. At the same time, during this development cycle, the engine was 

able to take on all the physical calculations, making it so the developer had no need to create 

extra support functions or methods in order to create realistic physical reactions. Examples to 

this, was how much code the previously mentioned algorithms like SAT or the Sutherland – 

Hodgman took in the engine. If one wanted to create such an application without an engine, all 

of these algorithms would have to be coded inside the application itself, amounting to a huge 

increase in the code’s length. 

This also can guide one to the next point of analysis, which is the existence of such engines for 

other platforms. Examples like the afore declared Box2D and dyn4j exemplify the presence of 

a market for such libraries. So, it is only natural to conclude that Dart, and by aggregation 

Flutter, needs such an API. 

However, a pressing argument cannot be denied by a skillful debater: with enough skill, 

knowledge and time one can program such functions by oneself, inside of the app. As shown 

by this thesis, the development of the physical functions can be done having enough experience 
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in the field. This can be claimed because this thesis shows that even an undergraduate can 

achieve such an API, be it a simplified version of one.  

This last point can lead one to another conclusion, being that the time plays an important factor. 

The code that has to be developed is equivalent to the whole engine, which means that if a 

developer needs to create another application that fits the same physical concepts, the same 

code has to be recreated. So, if this is true, why not simply have a program that already deals 

with all the trouble? This is the reason libraries exist for different programming languages, 

providing solutions to almost every problem. 

Together with the aforementioned argument, knowledge is also a huge roadblock. Not only one 

needs to be comfortable with the language one is using, but without a tool that overtakes the 

physical aspect, one needs to also be proficient enough in this aspect of physics. Obviously, 

physics is a whole different field, and a bold statement could be that most programmers lack 

the experience developing physically accurate motion. Because of this, such an engine could 

provide the ideal scenario for app developers, who might be oblivious to the field of physics. 

Nevertheless, with previous daring declarations being potentially true, why aren’t there any 

official implementations of two- or three-dimensional physics APIs in Flutter? A fair argument 

to be made against the creation of an engine might be, that mobile applications do not need one, 

being backed up its lack of existence in this branch of development.  

Mobile applications do not normally have the need for physics to be integrated, because there 

might not be a real point of it. There might be no actual reason to want physical simulation in 

an application only containing formularies, or lists with a couple of buttons, for example. 

But, the human being is always trying to improve. Together with the creation of a physics 

engine, new, attractive animations could be achieved by utilizing physics simulation. One 

should think for a moment back to the example app: Imagine all of the animations accomplished 

there; every single movement does not have to represent an object, it could represent a button, 

a colored division, a two-dimensional scrollbar.  

The previous statement is also not even taking into account that use case scenarios exist where 

physical simulation is needed. Learning applications or games are examples of possible 

products that could be done with such an engine. One could be able to completely design an 

application using Flutter’s material design, while at the same time accomplishing the needed 

physical representations! 
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6. CONCLUSION 

 

All in all, with the long journey finally over, which was meticulously set forth at the beginning 

of this thesis, one needs to turn back and analyze the goals that were seeded; take a look at the 

hypothesis and observe if it still holds true. 

Because of the previous simple inquiry, this last chapter of the thesis will emphasize what can 

be learned from each section of this project, while trying to generate a conclusion. The research 

goals, question and hypothesis will be taken into the spotlight in order to see what went smooth, 

or in which aspects a similar future work can watch upon in order to improve. 

Firstly, an overview of all the chapters in the thesis is in order. During the theoretical 

framework, which of course took a large portion of the thesis, the core principles and algorithms 

were learnt. Without this, the development of the physics engine would have been impossible, 

since not knowing the physical formulas, or the mathematical principles, only would have 

brought speculation. This of course does not exclude the fact that the studied principles might 

not be the most effective, common or efficient ones; they were, though, the ones chosen to 

create the engine. Consequently, a deeper analysis could have brought forth newer algorithms 

unknown to the writer. Nevertheless, since this thesis was planted to be a proof of concept that 

such an engine is both possible and needed; the employed methods were good enough to 

achieve a descent API. 

Examples of algorithms that might perform better in other circumstances could be the GJK 

method for convex polygon collision detection; the usage of AABBs or object-oriented 

bounding boxes for general collision detection. The latter two of these are, of course, extremely 

useful for game development, were a collider for a sprite can either be a rectangle, or an 

amalgamation of several jointed bounding boxes. 

Apart from the already mentioned methods, something that would be good to inform the reader 

is about both concave polygons as well as constraints. The former of the two should be self-

explanatory as to what they are, but what is not as obvious is how they have to be computed 

completely different to convex polygons. Making the algorithms needed for such a collision 

detection completely different to those employed in the thesis. Because of this reason, they were 

excluded. 
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As for constraints, they are basically rigid bodies that kind of stick to each other, allowing for 

the creation of more complex structures. These were also explored during the thesis, but were 

not included in the final product because of both time and complexity. 

However, as seen in the actual length of the thesis adding more aspects to the engine would 

increase the time investment exponentially, while at the same time not furthering the validity 

of the arguments; so, they were decided to be cut off. This does mean, though, that future work 

could involve similar aspects. 

The two final improvements that would be interesting to apply to the developed engine would 

be the separation of the broad phase, as explained in the collision detection chapters; and the 

finding of ways to fix the tunneling problems when objects move too fast. Because of the same 

reasons stated in the paragraph above, this solutions were not implemented. These are, still, 

important factors for further development of the engine. 

Nevertheless, taking this bleak look at what could be improved is not the only factor that will 

be mentioned in this final interpretation of the thesis. Another important facet to take in is how 

the project was developed smoothly.  

When comparing both the chapter providing the concept and the one just directly following it, 

explaining the development, one can easily see how the concept was applied just as planned. 

Both the creation of the engine and the mobile application ended with satisfactory results, which 

can be clearly seen and appreciated when using the created app. Not only this, but the engine 

itself can be employed as planned when programming an application with the Flutter SDK. 

Because of this reasons, it would be fair to state that both the research and development 

elements of the thesis were successful in achieving the goals that were wanted to be met. 

The last aspect that would be crucial to criticize, is about the partial subjectivity of the 

experimentation with the engine. The root to this, is that the person testing the engine was the 

same programmer who developed it, meaning that the engine itself would still need a lot of 

work in order to be commercial or broadly distributed. 

This, however, does not contradict the usefulness of the results. Yes, the developer himself 

tested the engine while creating the application, but the engine was thought to be a prototype. 

It is intended as a proof of concept of the value of one such API, be it a more complete one, for 

the Flutter SDK. Consequently, the fact that at least one such scenario exists, where an engine 
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like this one would be useful, could already be considered an important discovery and an 

argument pro its creation. 

Now then only two core pieces of information remain to be answered: the analysis of both the 

hypothesis and the goals of the thesis. 

First of all, the goals will be observed. As stated before, this thesis serves as a proof of concept 

that a two-dimensional physics simulation engine is needed for the API. This is, of course, 

because it was proven with the experimentation of a possible real-world scenario. This thesis 

did serve to develop the aforementioned engine, plus the implementation of the mobile 

application using it; marking the completion of the primary goal. 

As for the complementary goals, every single one specifying the investigation, exploration and 

study of the physical factors, the needed algorithms for development, the interactions between 

rigid bodies and collision responses, were covered. This includes from the first to the third 

specific goals and can be appreciated all throughout the theoretical framework.  

The implementation of the 2D physics engine into the Flutter SDK, as well as the application 

of the previously mentioned concepts in said engine should be obvious to perceive, because the 

engine was developed and used.  

The sixth goal, the justification and exploration of the developed engine’s architecture, can be 

seen in the chapter explaining the development of such an engine. Moreover, the engine’s 

architecture, methods and functionality are not only explained, but displayed with code 

fragments and diagrams. 

At last, both the integration of the engine and the analysis of this integration can be understood 

while reading the last two chapters before this conclusion; as well as by taking a look at the 

developed application. So, it is not outlandish to state that these goals were also met. 

The final mention would be then to explore what happened to the hypothesis. However, it was 

already mentioned many times before that this thesis does serve as a proof of concept of the 

need of a physics engine for the Flutter SDK. This is, again, reinforced by the fact that during 

the development of the application no physical aspects had to be worked upon; there was no 

need for implementing this physical characteristics manually, just because there was a physical 

simulation API to fall back upon. Furthermore, this also reduced the amount of code and time 

invested in programming the app drastically. 
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In the hypothesis the lack of knowledge was also stated, of both the needed algorithms as well 

as the necessary physics, which can be proven through the amount of work that was invested 

during this thesis in order to create such an engine. Every single concept and algorithm, that 

was applied in order to create the engine, would have to be manually coded by the developer of 

an application, when considering the option of not having this extra tool. 

All in all, this thesis will serve to create a statement: physical engines might be needed in more 

fields that they are, to the current day, used on. Not only this, but the remnants of this thesis 

could already be both utilized for creation of new innovative apps, as well as allowing further 

development of this engine. Hence, before closing this thesis, the writer would like to politely 

address the reader and ask:  

Would you use a physics simulation engine for the creation of mobile apps, 

or would you rather develop everything needed by yourself? 
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APPENDIX 

A1: Complete class diagram of the developed physics API. 
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