
MASTERTHESIS
Julius Weyl

Developing a generic
multi-agent car model to
simulate road traffic with
MARS

FAKULTÄT TECHNIK UND INFORMATIK
Department Informatik

Faculty of Computer Science and Engineering
Department Computer Science

HOCHSCHULE FÜR ANGEWANDTE
WISSENSCHAFTEN HAMBURG
Hamburg University of Applied Sciences

Masterarbeit eingereicht im Rahmen der Masterprüfung
im Studiengang Master of Science Informatik
am Department Informatik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Thomas Clemen
Zweitgutachter: Prof. Dr.-Ing. Marina Tropmann-Frick

Eingereicht am: 19. Juni 2019

Julius Weyl

Developing a generic multi-agent car model to
simulate road traffic with MARS

Julius Weyl

Thema der Arbeit

Developing a generic multi-agent car model to simulate road traffic with MARS

Stichworte

Verkehrssimulation, Multi-Agenten Modell, MARS

Kurzzusammenfassung

Die vorliegende Arbeit beschreibt die Entwicklung eines generischen, agenten-basierten
Auto Modells für das MARS System. Aufbauend auf dem Intelligent Driver Model wird
eine Reihe von Agentenregeln entworfen die es den autonomen Agenten erlaubt in zwei
verschiedenen Teilen der Welt zu fahren. Das erste Szenario liegt in Hamburg Altona
wo, basierend auf demografischen Daten über die Bevölkerung, der Verkehr im Verlauf
eines Tages simuliert wird. Für das zweite Simulationsszenario wird das Modell and die
Verkehrsregeln von Südafrika angepasst. Die Ergebnisse der beiden Simulationsszenarien
werden analysiert um herauszufinden ob das Modell wirklich generisch entwickelt wurde.

Julius Weyl

Title of Thesis

Developing a generic multi-agent car model to simulate road traffic with MARS

Keywords

Traffic Simulation, Multi-Agent Model, MARS

Abstract

This thesis describes the development of a generic, agent-based car model for the MARS
system. Based on the Intelligent Driver Model a set of agent rules is designed to allow
autonomous car agents to drive in two distinct parts of the world. The first scenario
is located in Hamburg Altona where the traffic over the course of a day is simulated
based on demographic data about the people living there. For the second simulation

iii

scenario the model is adapted to the traffic rules of South Africa. The results from the
two simulation scenarios are examined to assert whether the model has been build truly
generic.

iv

Inhaltsverzeichnis

Abbildungsverzeichnis viii

1 Introduction 1
1.1 Traffic research with MARS . 2
1.2 Hypotheses . 3
1.3 Structure Outline . 4

2 Methodology 5
2.1 History of traffic research . 5
2.2 Models used in traffic research . 5
2.3 Microscopic models . 6

2.3.1 Cellular automata models . 6
2.3.2 Agent-based models . 7

2.4 Intelligent Driver Model . 7

3 Analysis 9
3.1 Environment requirements . 9

3.1.1 Road network . 9
3.1.2 Intersections . 10
3.1.3 Traffic lights . 11
3.1.4 Traffic signs . 11

3.2 Agent requirements . 12
3.2.1 Longitudinal movement . 12
3.2.2 Lateral movement . 13
3.2.3 Traffic code . 13
3.2.4 Further regulations . 15
3.2.5 Routing . 16
3.2.6 Non-functional agent requirements 16

v

Inhaltsverzeichnis

3.3 Model requirements . 16
3.3.1 Virtual population . 16
3.3.2 Creating agents during simulation 17

4 Experiments 18
4.1 Setting One: Hamburg Altona . 19
4.2 Setting Two: Kruger National Park . 19
4.3 Experiments for Hypotheses One . 20

4.3.1 Basic driving . 21
4.3.2 Speed Limits . 23
4.3.3 Traffic lights . 24
4.3.4 Intersections . 27
4.3.5 Multilane roads . 30

4.4 Experiments for Hypotheses Two . 30
4.4.1 Altona traffic counts . 30
4.4.2 Simulating Altona’s virtual population 32

4.5 Experiments for Hypotheses Three . 33

5 Design and Implementation 35
5.1 Environment modeling . 35

5.1.1 Road network . 35
5.1.2 Intersections . 39
5.1.3 Traffic counts . 40
5.1.4 Traffic signs . 40
5.1.5 Traffic lights . 41

5.2 Car agent modeling . 46
5.2.1 Constructor . 47
5.2.2 Intelligent driver model . 50
5.2.3 Agent rules . 50

5.3 Scenario modeling . 57
5.3.1 Virtual population and day plans 57

5.4 Implementation anecdotes . 59
5.4.1 Figuring out directions . 59

6 Results 60
6.1 Hypotheses One . 60

6.1.1 Basic driving . 60

vi

Inhaltsverzeichnis

6.1.2 Speed limits . 62
6.1.3 Traffic lights . 65
6.1.4 Intersections . 68
6.1.5 Multilane roads . 69

6.2 Hypotheses Two . 70
6.3 Hypotheses Three . 74

7 Discussion 77
7.1 Hypothesis One . 77

7.1.1 Basic driving . 77
7.1.2 Speed limits . 78
7.1.3 Traffic lights . 78
7.1.4 Intersections . 78
7.1.5 Multi-lane roads . 79
7.1.6 Summary . 79

7.2 Hypothesis Two . 79
7.3 Hypothesis three . 80
7.4 Final conclusion . 81

8 Future Work 83

Literaturverzeichnis 84

Selbstständigkeitserklärung 88

vii

Abbildungsverzeichnis

4.1 Locations of Hamburg (left) and the Kruger National Park (right) on their
respective continent (source: OpenStreetMap) 18

4.2 Location of Altona in Hamburg (source: OpenStreetMap) 19
4.3 Location of the Kruger National Park in South Africa (source: OpenStreet-

Map) . 20
4.4 Veddeler Damm in the south of Hamburg (source: OpenStreetMap) 21
4.5 Setting for the traffic light experiments in Mundsburg (source Google maps) 25
4.6 Four way intersection in Winterhude, Hamburg 28
4.7 Locations of traffic counts in Altona . 31
4.8 Main roads in Altona . 32

5.1 Abstract graph environment . 36
5.2 Spatial graph environment . 37
5.3 Traffic light positions in Altona . 42
5.4 Class diagram of the traffic light layer with the involved interfaces 44
5.5 UML diagram of the agents classes for SmartOpenHamburg 46
5.6 Activity diagram of car-agent . 51
5.7 Purpose of making a trip in relationship to the time of day 58

6.1 Car acceleration from 0 m/s to 13.89 m/s 61
6.2 Car braking from 13.89 m/s to 0 m/s within 100m 61
6.3 Car braking from 13.89 m/s to 0 m/s within 27m 62
6.4 Car following the curvature of Vogt-Groth-Weg in Altona 63
6.5 Car following the curvature of Plöner Straße in Altona 63
6.6 Car adopting its velocity to increasing speed limits. 64
6.7 Car adopting its velocity to reduced speed limit. 64
6.8 Harsh braking to comply with reduced speed limit 65

viii

Abbildungsverzeichnis

6.9 Velocity and the distance to the red traffic light in relationship to the
current simulation tick on the left and acceleration/ distance to the traffic
light in relation to the simulation step on the right. Velocity in m

s , distance
in m, acceleration in m

s2
. 66

6.10 Velocity and the distance to the red traffic light in relationship to the
current simulation tick on the left and acceleration/ distance to the traffic
light in relation to the simulation step on the right. Velocity in m

s , distance
in m, acceleration in m

s2
. 67

6.11 Velocity and the distance to the green/ yellow traffic light in relationship
to the current simulation tick on the left and acceleration/ distance to the
traffic light in relation to the simulation step on the right. Velocity in m

s ,
distance in m, acceleration in m

s2
. 67

6.12 Locations of the three counting points discussed in detail 71
6.13 Schenefelder Landstraße northbound traffic from Elbchaussee 71
6.14 Stresemannstraße eastbound intersection Tasköprüstraße 72
6.15 Klopstockstraße/ Kaistraße in south-west direction 73
6.16 Simulating the whole Kruger National Park 76

ix

1 Introduction

Traffic research been a vital field of study over decades and reaches back as far as 1934
[7]. As road traffic evolved from horse carriages to cars, its volume climbed steadily over
the past centuries. With the rise and growth of large cities, traffic is now gaining even
more importance. Today, more people than ever live in urban areas and the trend keeps
up [27]. At the same time the amount of car ownership isn’t declining but rather growing.
The total amount of cars owned in Germany has risen to 46 million. The expansion rate
of 2017 alone, accounted for more than 500.000 cars [3]. The amount of traffic that arises
from that trend overwhelms the traffic infrastructure increasingly. Especially cities are
effected where space is inherently limited.

The town of Hamburg as Germanys second biggest city, experiences these problems on
a regular basis. Despite a wide ranging network of public transportation and a growing
amount of bike paths, the road traffic exceeds the capacities which leads to constant traffic
jams. Solving these complex issues is by no means an easy task but one that cannot be
ignored. For now, the existing network of roads has to be used to its maximum. For the
future, new ways of traffic research have to be applied so that a modern network can
be developed that balances traffic and living quality. While this topic isn’t new, the way
city planners do this has to change.

One way of planning changes to the road network are simulations. They are an essential
part in traffic research and have been applied to traffic planning in various levels of detail.
Depending on the use-case, either macroscopic, mesocopic or microscopic models are used
to re-create common traffic situations. To this day, most traffic models in use work on
a macroscopic scale that aim at emulating real-life measurements on roads as streams
of cars. Once the flow of traffic has been measured, these models try to reproduce it
by modeling streets as entities with a certain flow capacity. As long as the flow is lower
than the capacity no jam occurs, once this limit is exceeded the traffic comes to a halt.
This technique works well to study a known traffic network under known conditions as it
emulates the measured streams. It is impossible though, to predict future conditions or

1

1 Introduction

calculate future traffic volume since the model operates based on a status quo. There is
no information about individual behavior involved so that the model only works as long
the traffic patterns stay the same.

Microscopic models, on the other hand, try to assess traffic from the bottom up. Instead
of modeling traffic as a stream and roads as pipes with flow capacities, every traffic
participant is brought to life. The traffic itself is thereby comprised of individuals that act
and react to current conditions. Agent based simulations are a natural fit for tasks where
intelligent behavior has to be resembled since they allow for dynamic changes during the
simulation [11, 21, 2]. For traffic simulations that means that once the conditions change,
the traffic participants adapt their behavior and alter the course of the simulation. This
dynamic allows to answer questions that couldn’t be answered with models that merely
recreate bygone conditions [8].

Creating microscopic models requires a lot of information about individual driving beha-
vior in order to resemble such during a simulation. Before an agent can drive on virtual
roads, all aspects of driving, including the abidance of traffic code, have to be modeled.
For agent-based simulations this means translating driving behavior in a set of rules that
the agents can follow. Once these rules have been established, they have to be implemen-
ted in a multi-agent framework like the MARS system.

1.1 Traffic research with MARS

MARS is the abbreviation for ’Multi-Agent Research and Simulation’ and the name of a
research group located at the University of Applied Sciences Hamburg. The groups focus
is on agent-based modeling and simulation where they worked on different topics ranging
from socio-ecological work, over pedestrian evacuation scenarios to disease spread models
[10]. Traffic research has become part of the groups focus in 2017 where the first steps
were taken towards implementing a traffic model for Hamburg. Today, the MARS group
is working on traffic related issues as part of the Smart open Hamburg project (http:
//www.smartopenhamburg.de/). In the long term the objective is to develop a multi-
modal model of Hamburgs traffic with pedestrians, bikes, public transport and street
traffic. With the framework initially lacking means of simulating streets, new components
were developed to enable this. The Spatial Graph Environment, a data structure based
on a custom graph representation was developed and integrated into the MARS System.

2

http://www.smartopenhamburg.de/
http://www.smartopenhamburg.de/

1 Introduction

After developing this required component and publishing the first results [26] the project
is now becoming due for new extensions.

A prototype was designed as performance test for the newly developed Spatial Graph
Environment. Looking into existing models [4, 12] for traffic simulations, a car-following
approach was chosen. One of the most renowned ways to simulate individual traffic be-
havior in terms of driving physics is the so called Intelligent Driver Model [23]. It was
selected from a group of car-following models capable of reproducing realistic driving be-
havior. Over the past decades many models were proposed with the IDM currently being
the most accurate in relation to the amount of input variables. The first implementation
was a simplified version of the Intelligent Driver Model with static values for accelera-
tion, breaking and safe headway. When approaching an intersection, the agents chose a
random adjacent road and continued driving there. Even though this model didn’t re-
produce realistic driving, it was detailed enough to be used in benchmarking scenarios
for the Spatial Graph Environment.

During the design phase of the Smart Open Hamburg project, the goal was set do research
around urban mobility. With the initial prototypes in place, the project evolved into
aiming at simulating selected parts of Hamburg. This model would include the cities
modal split consisting of public transport, pedestrians and street traffic. Since this is a
comprehensive undertaking it was decided split the agent-based model three-ways into
the described modes of transport. The purpose of this thesis is to develop a generic car
model for the MARS system that can be used in the Smart Open Hamburg project to
simulate road traffic.

1.2 Hypotheses

The Intelligent Driver Model was developed by Martin Treiber et al. in 2000 [23] and
has been used extensively in microscopic traffic simulations. Being a car-following model
the main influence is the car driving in front, the velocity, safe headway and individual
parameters for acceleration and deceleration. It has its limitations though. Besides the
movement in longitudinal direction it doesn’t incorporate any rules for lane-changing or
traffic code. This leads tho hypothesis one:

H1 The Intelligent Driver Model can be used as foundation to build a rule-based agent
model that follows the traffic code

3

1 Introduction

The first hypothesis will test the model in specific scenarios to make sure that the agents
behave correctly. For the second hypothesis, the model will be applied to a real setting,
namely Altona, where the car-agents will drive on Hamburgs streets. Based on census
data, a virtual population is created whose citizens move around the city running errands,
working or enjoying their free time. The trips, done by car, will be simulated and the
resulting traffic compared to traffic counts from the city of Hamburg. This will be a
case study to test whether the combination of data coming from a developed day-plan
generator (created by Andreas Löffler) and the implemented traffic model are sufficient
to recreate the traffic volume measured through traffic counts.

H2 Using the car-model in conjunction with census data can reproduce traffic volumes
as measured in traffic counts

Building a model for a specific area means incorporating certain aspects that only apply
to said region. When a generic model is to be developed, it must be easily applicable
to different settings. Every country has its own peculiarities like left-hand driving and
a custom traffic code that must be taken into account. Therefore the generic car model
must be tested in different scenarios with varying conditions.

H3 The model was implemented in a generic way so that it is applicable to simulate the
traffic of different countries

To test the third hypothesis, the traffic model will be adapted to the conditions in South
Africa. Simulations of the Kruger National Park will show whether the model can easily
be adapted to the local traffic code.

1.3 Structure Outline

Chapter 2 (Methodology) extends the introduction in terms of the involved topics and
the related work. Before the agent model can be designed, an analysis of the required
contents will be performed in chapter 3 (Analysis). Chapter 4 (Experiments) will describe
how the model behavior is going to be examined. With the analysis completed and the
experiments formulated, the model will be designed and its implementation characterized
in chapter 5 (Design and Implementation). Chapter 6 (Results) will present the outcomes
of the experiments and discussion will take place in chapter 7 (Discussion). Finally an
outlook on potential further development is given in chapter 8 (Future Work).

4

2 Methodology

This chapter is an in depth introduction to the field of traffic simulations. At first,
the history of this discipline will be highlighted to better understand the aspects and
especially the level of details. Not all traffic simulation models are equal and therefore
differ in their applicability to certain scenarios. This distinction will be part two of this
chapter.

2.1 History of traffic research

Understanding traffic has been part of research for many decades now. Starting with
studies of traffic capacities in the 1930s [7], this field kept growing as the amount traffic
increased. Induction loops hadn’t been invented so these first investigations were carried
out with stop watches and manual counts. After initially studying the behavior of traffic
as a total system [13], the focus began to turn towards the small details of why things like
traffic jams occur. These can often be found on roads where the mere capacity cannot
account for it as there is more than enough space available. Still, the affects of individual
behavior lead to jams that can grow into large obstructions [17]. To further examine
the understanding, the first simulation models were created. Over the course of the past
decades numerous approaches were developed that could be divided into macroscopic,
mesoscopic and microscopic models [19]. Based on these models, multiple frameworks
have been build that simulate the traffic in different level of detail with MATSim [5, 9],
SUMO [15], PTV Vissim [5] and TRANSIM [20] being the most renowned ones.

2.2 Models used in traffic research

The distinction of macroscopic, mesoscopic and microscopic models is done based on the
level of detail the traffic is modeled at [22]. Macroscopic simulations describe traffic as

5

2 Methodology

gas kinetic model where streets have certain capacities and the cars ”flow” through them
[19]. Actions of individuals like, for example lane changes, are not taken into account.
Microscopic models on the other hand incorporate individual traffic participants like cars,
buses and pedestrians. The traffic in itself is thereby comprised of a multitude of entities
and their actions in contrast to a mathematical description of the overall system. [21].
The third option to describe traffic are so called mesoscopic models. They combine the
aforementioned techniques to gain a very detailed view on certain parts of the simulated
area through microscopic models while keeping the computational requirements in check
by simulating the rest on a macroscopic scale [24].

2.3 Microscopic models

Microscopic simulations can further be distinguished into agent-based models and cellular
automata [23]. Both model types simulate each entity contained in the simulation. This
leads to very detailed simulation results since the cars don’t just drive on their own but
also interact with each other as they would in real traffic. In the past the cellular automata
models were used to a great extend since they require less computational resources. In
contrast to multi-agent simulations, they discretize both space and time while agent-
based models only discretize time. Recent advances in computational power now allow
for bigger scenarios; even with more demanding agent-based models [22, 6, 26].

2.3.1 Cellular automata models

The most prominent example of cellular automata traffic simulations is the so called
Nagel-Schreckenberg model which is both time and space discrete [16]. This approach
which originally has been designed as sinlge-lane model, divides the simulated lane into
segments of usually 7.5m length. Each segment can either contain no car or exactly
one car. Speed of the cars is given in integers, denoting the amount of cells crossed in
each simulation time step. A safe headway gap is kept so that the cars don’t collide.
Random braking noise is part of the model too so that the simulated cars don’t behave
perfectly, leading to jams that otherwise wouldn’t occur. Even though this is a rather
strong simplification the model includes the major aspects of traffic and has been used
extensively in the past [5].

6

2 Methodology

2.3.2 Agent-based models

Agent-based models can be thought of as extended cellular automata where each indi-
vidual agent interacts on a broader scale or farer distance. While CA usually interact
with their immediate neighbors, agents explore and interact over bigger distances. When
agent-based models are applied to traffic simulations, usually so called car-following mo-
dels are being used. These models calculate motion equations for each individual car in
the simulation. They are influenced by different factors like speed differences, velocity,
distance to the car ahead or desired deceleration values. Over the years many models
have been developed, all taking into account different stimuli [19, 25, 5].

The first car-following models developed were applied to very specific situations. They
were aimed at replicating highway traffic and even there they could only be applied to
certain conditions. For free flowing traffic the models weren’t able to calculate realistic
acceleration if no car was ahead that one could follow. In dense traffic where the speed
differences are very small, they didn’t advocate to brake or to increase/ decrease the gap.
This led to cars keeping a fixed distance even though their speed increased. The models
simply couldn’t detect it since the speed difference itself was constant which was the
most influential factor [23].

2.4 Intelligent Driver Model

The Intelligent Drive Model has been chosen from the class of car-following models and
will be the foundation for the rule-based agent model that is being build. It was published
by Martin Treiber, Ansgar Hennecke and Dirk Helbing from the University of Stuttgart,
Germany in 2000. In their initial paper the state that ”it is simple, has only a few intuitive
parameters with realistic values, reproduces a realistic collective dynamics, and also leads
to a plausible "microscopicäcceleration and deceleration behaviour of single drivers” [23].
The IDM was designed as collision-free, single-lane model. Avoiding collisions was made
possible by including the relative velocity to the car-ahead which exerts a growing impact
with decreasing car-to-car gap. In comparison to other car-following models, the IDM
has only a few parameters which make it easy to use.

The main factors of the Intelligent Driver Model are the cars own speed (vn), the gap
between cars (sn) and the speed difference (∆v) to the car ahead [19]. The motion
equation has been divided into three parts and is shown in equations 2.2, 2.1 and 2.3.

7

2 Methodology

The change in velocity (v̇n) is calculated in every simulation step by solving the three
equations.

sn = xn+1 − xn − ln+1 (2.1)

s∗(vn,∆vn) = s′n + s′′n

√
vn
v0

+ Tvn +
vn∆vn

2
√
ab

(2.2)

v̇n = a

[
1−

(
vn
v0

)δ
−

(
s∗

sn

)2]
(2.3)

The first equation (2.1) calculates the distance to the car ahead sn by subtracting the
cars current position xn from the position of the car ahead (xn+1), minus the length of the
car in front (ln+1). In the second equation, the desired gap s∗ is calculated based on the
desired distance in congestion (s′), distance in convoy (s′′), velocity difference, safe time
headway (T), maximum acceleration a and the comfortable deceleration b. Inserting the
results into the third equation finally allows to calculate the optimal change in velocity
while also incorporating the acceleration exponent (δ). Table 2.1 shows the default values
for the IDM as they have been used in this thesis.

parameter default value
desired velocity v0 13.89 m/s
safe time headway T 1.6 s
maximum acceleration a 0.73 m

s2

comfortable deceleration b 1.67 m
s2

acceleration exponent δ 4
distance in congestion s′ 2 m
distance in convoy s′′ 0 m
car length l 5 m

Tabelle 2.1: Default values for the Intelligent Driver Model [19]

8

3 Analysis

This chapter covers the analysis and collects requirements for the agents and the overall
traffic simulation. First the requirements for the simulated environment will be analyzed,
the second part is about the agents that make up the traffic. To resemble real driving,
the car-model will have to take a multitude of aspects into account. These facets will
be collected and shall serve as basis for the implementation. Third the required data for
running the model will be specified.

3.1 Environment requirements

Before an agent model can be build that resembles cars driving, the environment has to
be set up. The requirements for doing so will be collected in this section.

3.1.1 Road network

Integral part of every environment is the road system otherwise the cars wouldn’t have
something to drive on. The information needed to make the road network usable by an
agent can be divided into several groups. Basics are the streets in themselves where for
each road the start and endpoints have to be known with their respective geo location.
This would be the equivalent of connecting intersections by straight lines wherever there
is a road. Letting the agents drive on such a rudimentary road system would lead to cars
driving through houses or other obstacles when printing the agent positions on a map. To
solve this issue, the curvature of the road has to be taken into account too. Combining
all of this information leads to a basic road network that, on its own, can be used to
build a traffic simulation.

This would be the minimal set to represent the road network considering its physical lay-
out. What that network is missing, is detailed information about things like speed limits,

9

3 Analysis

width, traffic signs and turning lanes. Without these details, the simulation will only be
able to reproduce traffic to a certain degree. If these limitations should be overcome, the
required information about conditions found in cities has to be included as well. When
extending the road information, the lanes are one of the most important aspects since
they determine the streets capacity. Knowing how many lanes exist per road is of great
importance. If a major road in the simulation would have only one lane while it has three
lanes in reality, this surely would change the simulation results.

3.1.2 Intersections

Depicting intersections is by no means an easy task. There is a wide variety of shapes
they come in, each bearing their peculiarities. When combining intersections with traffic
signs or lights, the amount of types grows extensively. This section will remove the aspect
of lights and signs and will only discuss the intersections itself to clarify the challenges
involved. In the next sections, these left out topics will be discussed in detail.

To start off the intersection topic, one has to look at the way streets and crossings are
modeled in the MARS system. The Spatial Graph Environment is a custom graph imple-
mentation which is used to represent the street data downloaded through OpenStreetMap
while managing the agents on top of it. Basic graph specifics apply in the way that the
graph is composed of edges (streets) and nodes (intersections). At this point an approa-
ching car can perceive the outgoing roads and continue its journey. The intersection itself
has no spatial extend and each node in the simulation specifies the centre of a crossing.
Each outgoing road has a starting point (the intersection) and an end point where it
usually meets the next intersection. If one calculates the bearing and compares that with
the current driving direction one is able to make out what cardinal direction these streets
lead. This allows to distinguish the various directions for standard situations with up to
eight streets per intersection. Judging the direction from an incoming perspective is a ba-
sic requirement to plan and execute the agents driving maneuvers. The cardinal direction
aside, the agents miss another fundamental piece of information: the connections between
the current road and the adjacent ones on the intersection. When the agent approaches
the crossing, it can only ’see’ that there is number of n streets it can continue driving
on. What it doesn’t know, is whether the current lane leads to the desired road.

10

3 Analysis

3.1.3 Traffic lights

Traffic lights are tailored to the very crossing they are standing on. Factors like the
amount of incoming and outgoing roads, the shape/ angles at which the crossing is set
up, signals for various traffic participants, the amount of passing traffic etc. varies from
intersection to intersection. This leads to the first requirement: The implemented traffic
lights have to represent the circumstances of the intersection and take incoming and
outgoing roads into consideration. One after another the different streets have to be
signaled so that cars can cross the intersection.

For the first scenario set in Hamburg, the traffic light details of Germany have to be inclu-
ded. These traffic lights can generally be operated in two modes: The first one are fixed
schedules where every signal is timed following a rigid scheme. For the programs duration
the involved lights have their individual schedule that prescribes when they switch from
green, to yellow, to red and back. Secondly the lights can operate dynamically thereby
reacting to influences like the amount of incoming traffic. They still operate in bounds
but they have room to maneuver to adapt their behavior to the current circumstances.
Both modes of operation have a schedule that sets how long different light phases last
and how they are coordinated. So for every phase for every individual light signal there
is a clearly defined program that determines when and how long they show which signal.
Inside these programs the process repeats over and over again until a different program is
being executed. Typically there is different programs for rush-hour traffic, regular traffic,
weekend traffic and one for the lights at night. This requires that the traffic lights adapt
their behavior over the course of the day when different programs are run. Rush hour
traffic in the mornings and afternoon has to be treated different from the rest of the day.
For weekends, the traffic lights will also have to act different than during nights.

3.1.4 Traffic signs

Traffic signs play a major role in guiding the traffic. Besides traffic lights, they are the
main way of telling drivers how fast they are allowed to go, who has right of way or where
they are and aren’t allowed to drive. Therefore the traffic signs have to be incorporated
into the model so that it contains as much data on the traffic code as possible. In an
ideal scenario, every traffic sign that has been placed in the city should be part of the
simulation. Additionally the traffic signs must be inserted into the simulation in a way
that the agents can sense them and adjust their behavior. For them, all the signs should

11

3 Analysis

be visible when they are driving around without any group of signs being prioritized.
After sensing the information, the agents must determine what is important or not on
their own.

3.2 Agent requirements

Microscopic simulation models are build by giving the agents a set of rules that define
their behavior [21]. Formulating these rules is a complex process that includes multiple
steps of refinement until the agents behave in the desired way. This section will collect
the required high-level goals of agent behavior so that the reader can understand the
dynamics involved in the model.

One general requirement for all following agent behaviors is that they must be integrated
in a modular and dependency-free fashion. The car-agents must be able to interpret
unknown traffic situations and still be able to act accordingly. The agents will have to
sense their surroundings to get a clear picture of the current situation. This exploration
muss reach far enough to include all information that might be relevant to the decision
making process of the agent. At the same time it must be just big enough to catch all
relevant information while staying small enough to keep the performance at a reasonable
level All information has to be sensed as part of the agents tick/ reason method. In a
second step the agent processes the input and decides (on its own) what to make of it
until finally an action is decided on and performed. The agents actions might consist of
multiple steps at times but for every part of it, the decision on doing it must come from
the agent.

3.2.1 Longitudinal movement

Most basic part of driving is the movement in longitudinal direction. Accelerating to gain
momentum, driving straight and finally breaking are the fundamentals of this kind of
movement. A most basic version of a microscopic traffic model would be a car following
a route without minding other traffic participants or any traffic rules. The functional
requirement arising is the agents capability to perform this task so that a real drivers
behavior is resembled. This includes accelerating in a realistic way as human drivers would
do as well as decelerating appropriately. Carrying out these actions requires information
about the current circumstances/ the environment.

12

3 Analysis

3.2.2 Lateral movement

In addition to moving straight, the agents have to perform movements in lateral direction.
This is composed of two aspects: following the course of roads by cornering and changing
lanes if appropriate. The first one, means following a road by cornering when the course
of the road dictates. If the road has a curvature, the agent must follow its path so that
the agent actually drives the whole distance of the route. In respect of nodes and edges
of a road network this forbids going straight from intersection to intersection. Obligation
number two are lane changes and bypassing maneuvers. These are necessary to include
so that cars don’t make turns from the leftmost lane to right or vice versa.

Lane changing

The agents will have to plan their movement on the streets so that they choose lanes
based on their route. Without this planning they won’t be able to move to the right lane
prior to turns for example. It is therefore necessary to incorporate lane-planning that
takes care of the agents lane changing behavior. This involves everything from complying
with the german ’Rechtsfahrgebot’ to timely pulling in the correct lane for turning or
drive-off maneuvers.

Turning maneuvers

When agents reach an intersection they can go straight or perform a turning maneuver
that either points them to the right, left or back. While the agent can go straight without
reducing its speed, this isn’t realistic for changing directions. Depending on the turning
angle, the agents have to adapt their velocity to a safe speed prior to executing the
movement. Braking must be executed in a controlled way so that the maneuver as a
whole resembles realistic driving. Once the agent approaches an intersection it must
reduce its speed in time so that it can either come to a stop, should the need arise, or to
make its turn. After turning the agent can proceed with its regular behavior.

3.2.3 Traffic code

With the aforementioned requirements in place, the driving agent will be equipped with
the basic movement schemes to follow a set of rules. These rules consist mainly of the

13

3 Analysis

traffic code which has to be respected by the agents. These traffic rules have to be
incorporated in the model and therefore real-world situations have to be translated into
code. Depending on the location (meaning city or country) which the model resembles,
these might differ heavily. This can be rudimentary differences like right-hand versus left-
hand driving and spans to most diverse right-of-way scenarios found in countries around
the world. It is important that the traffic code can be switched out so that the model is
applicable to different scenarios.

Traffic signs

When driving around the simulated area the agents have to react to traffic signs. These
might give them information about the right of way, warn about dangers, limit the speed
or tell them where they are allowed to drive. All this information has to be considered
when deciding on the next action to perform.

Traffic signs that belong to the right of way category are of great importance as they dic-
tate the behavior at intersections. Agents have to follow their guiding rigidly as negligence
would lead to accidents in the simulation. These regulations differ in the simulated areas
so there must be dedicated logic for dealing with it based on the simulated country.

Roads have speed limits that determine how fast traffic participants are allowed to go.
This varies from country to country but the overall concept is the same. For the simulation
model this means that speed limits have to be respected by the agents. They have to
sense the current limits and adapt their speed accordingly. If new speed limits apply, the
agents have to change their driving parameters and act according to the new maximum
velocity. For scenarios where the new limits are higher, the agents can accelerate until
they reach the now higher speed limit. If the limit gets reduced, the agents have to slow
down.

Intersection behavior

When approaching intersections the agents first have to determine the type of intersection
they are facing. In general this is one of two situations: Either there is a traffic light, or
there isn’t. This subsection starts with the former and in the seconds half deals with the
latter.

14

3 Analysis

When an intersection has traffic lights, the agents have to follow their signaling and
ignore other traffic signs. Not all traffic signs, but those that deal with the right of way
as they only apply if the traffic lights are switched off. The basics in dealing with traffic
lights is that cars stop at red lights and drives when signaled a green light. If the light
turns yellow, the agents have to decide whether there is enough space to come to a halt
in time or if they are too close already. If they can stop, they must do so, otherwise they
continue at their current velocity and cross the intersection.

The second type of intersections (those without traffic lights) requires a more complex
treatment since there are many factors that have to be considered. In situations where
no traffic signs are present, the car must execute a default behavior, based on its current
location. In Germany, that would mean left yields to right, while other countries have
different regulations. For example in South Africa and the US it is customary to come
to a complete stop and then proceed in the order of arrival (4 way stop). If traffic signs
regulating the right of way are present, the car must follow their ruling. As before these
signs are subject to local legislation and vary from country to country so that there is
no one-fits-all solution to it. Since this model is meant as a generic model, the behavior
must be adaptable depending on the simulated environment.

3.2.4 Further regulations

Road behavior beyond these requirements depends on the simulated country. The car
agent must be usable in a variety of scenarios that include changing local restrictions as
well as modes of operation. For this thesis there will be two countries of interest since the
two proof-of-concept scenarios are located there. Germany will be looked at first, with
the second scenario being situated in South Africa. To incorporate such divers traffic
codes, the simulation model will have to be build in a way that allows for swopping of
components. Depending on the research question, the model must be easily adaptable
so that the respective question can be answered. In addition to the requirement of being
interchangeable, these traffic-rule components must be build in a modular way so that
parts can be reused. For example four-way stop crossings can be found both in the US
and in South Africa. If one were to create a new scenario in North America, then it
must be possible to use the already existing module for four-way stops from South Africa
instead of programming it a second time.

15

3 Analysis

3.2.5 Routing

The last requirement in terms of driving is routing. This defines which roads the agents
follow to reach their destination. Before the agents can head off towards their destination,
they will have to plan how to get there. During the drive the agents have to manage that
route in a way that they always know their current position on it. Depending on the
encountered traffic conditions the agents might re-plan and change their route as well.

3.2.6 Non-functional agent requirements

The model developed in this thesis will establish a baseline and will be extended over
the years. It is therefore critical to choose an extensible architecture capable of evolving
with future requirements. Every aspect of the model whether it is calculating the current
speed or deciding on right-of-way has to be easily manageable, reusable and extensible.

3.3 Model requirements

The agents in themselves must be able to follow a set of rules, i.e. the traffic code, in order
to be used in a traffic simulation. The closer this behavior resembles that of a real driver,
the more accurate the results and therefore more significant. These agent-requirements
have been formulated in the last sections since they lay the foundation before the bigger
picture can be taken into consideration. Besides technical aspects like routing, the agents
actually have to go somewhere. If the goal is to recreate the traffic of Hamburg, the car
agents must follow the movement patterns of actual human beings. Even though cars
don’t drive around on their own, at least not officially here in Germany, the model must
do exactly that.

3.3.1 Virtual population

Running simulations of Altona not only requires data about the area, but also about
its population. Each citizen and/ or commuter makes trips throughout Altona which
make up its total traffic. If the simulated traffic should resemble the real system, it must
depict these trips made through its traffic participants. For simulations on a microscopic
level this means that each individual trip of each individual traffic participant has to

16

3 Analysis

be modeled. This includes all the trips made, like going to work, driving home, running
errands, going to the gym and many more. As this thesis specifically looks at car traffic,
only the trips made by car have to be recreated.

3.3.2 Creating agents during simulation

When running a traffic simulation there will be an initial set of agents that gets created
and inserted into the simulation at startup. This typically involves the desired amount of
cars that should be driving around at that points in time. What each car does, is up to
the specified logic but they will have an origination and a destination once the simulation
starts. Over the course of the simulation the agents will eventually reach that destination
which leads to the question what to do then? There are many ways of handling that but
for this thesis the desired behavior is as followed: Car agents are on the road because
it was derived from the virtual population that a real human being would, statistically
speaking, take its car to go somewhere. Once this task has been completed, the car
doesn’t matter anymore and must be removed from the simulation. At some point in the
simulation all agents would have finished their trip and the simulation would be empty
since there were no agents added during runtime. In the real world, there are always
people who get into their car and start driving somewhere. The virtual population must
do so too. Throughout the day this substitute must produce trips that resemble the real
dynamics seen in everyday traffic. Streets are more crowded in the morning hours and in
the afternoon (rush hour). Mid-day and in the evening the traffic density decreases until
it is at its lowest during the night hours. Based on these dynamics, new agents must be
created and added to the simulation over the course of the day so that the simulation
never runs out of agents.

17

4 Experiments

To test the formulated hypothesis, a range of experiments is devised. This chapter collects
these experiments and describes each of the simulated scenarios as well as the expected
outcomes. The results will be shown in chapter 6 (Results) and discussion will take place
in chapter 7 (Discussion).

The experiments are carried out in two geographic locations: Setting one is Hamburg,
Germany where the models capabilities to comply with the german traffic code and the
models validity will be tested. Hamburgs location is shown in figure 4.1 on the left. The
second location, the Kruger National Park (shown on the right of figure 4.1), will be used
to examine the third hypothesis. Both sites are described further below.

Abbildung 4.1: Locations of Hamburg (left) and the Kruger National Park (right) on
their respective continent (source: OpenStreetMap)

18

4 Experiments

Abbildung 4.2: Location of Altona in Hamburg (source: OpenStreetMap)

4.1 Setting One: Hamburg Altona

Scenario number one is located in Altona, a borough of Hamburg (Germany). This district
which is located in the west of the city, spans an area of 77 square kilometers and has
a population of 270263 people [1]. Out of all Hamburgs neighborhoods, this one was
chosen because of its current changes. There is a significant amount of construction
zones where the cities traffic system is reshaped to fit its modern demands. Additionally
new boroughs are created and new public transport stations are build from scratch to
extend the network. There is a lot going on so that the SmartOpenHamburg project
decided to make it one of its study sites. Population-wise there are 270.263 citizens living
in Altona (effective 31.12.2016) [1].

4.2 Setting Two: Kruger National Park

The second scenario was chosen to test the model in a completely different surrounding.
Instead of Hamburgs busy streets this setting comprises the tar and gravel roads of
one of Africas most famous national parks. This setting was chosen to test the models
adaptability to different traffic rules. The parks roads come by without traffic lights and
rely mostly on four way stops. On of the biggest differences between Hamburg and South
Africa is that road-users drive on the left-hand side.

As part of the EMSAfrica project this traffic model is being developed to provide decision
support in the Kruger National Park. Managing visitors becomes a very important topic

19

4 Experiments

Abbildung 4.3: Location of the Kruger National Park in South Africa (source: Open-
StreetMap)

for the park since their numbers are increasing steadily [18]. Especially during peak
times, traffic amounts inside the park grow and will turn into a problem if the main
roads get congested. Developing an agent-based simulation model to investigate road
traffic in the park will help dealing with these issues. With this thesis, a foundation
should be established where the model developed for Hamburg is being adapted to the
parks rules.

4.3 Experiments for Hypotheses One

The first hypotheses states that The Intelligent Driver Model can be used as foundation
to build a rule-based agent model that follows the traffic code. Examination will take place
through simulating situations, typically found in urban street traffic. These scenarios will
test the agents capabilities of correctly recognizing the current circumstances. In a second
step, their reactions to these situations will be examined. Since the implementation of the
car model extends the Intelligent Driver Model, it is also tested if the original model still
produces the correct results in situations where the added rules don’t apply or interfere.

20

4 Experiments

4.3.1 Basic driving

The first group of experiments will test the basic driving capabilities to make sure that
there is a solid foundation to build the rule-based agent model. Setting for the following
experiments is the Veddeler Damm, a perfectly straight road in Kleiner Grasbrook, a
borough in the south of Hamburg. This street has been extracted from OpenStreetMap
and the resulting graph has been modified so that only required data is contained. Some
of the following experiments make changes to this setup which will be stated there.

Abbildung 4.4: Veddeler Damm in the south of Hamburg (source: OpenStreetMap)

Acceleration and breaking

This agent model uses the Intelligent Driver Model as foundation. To make sure that it
has been implemented correctly, the following experiments will examine acceleration and
deceleration values calculated through the IDM implementation.

Experiment: ”Accelerating”

This experiment will test the car-agents acceleration behavior from a standing position
to the maximum speed of 13.89 m/s (50 km/h). The setting is the Veddeler Damm which
has no curvature so that the cars behavior can be examined clear of any influence. No
agent rules concerning the traffic code apply and there are no other cars, traffic lights,
traffic signs. etc. involved in the experiment.

21

4 Experiments

Expected outcome: With every simulation step the car will incrementally increase its
velocity until the maximum speed is reached. During the acceleration the increase per step
will start with the maximum acceleration value (0.73 m

s2
) as defined through the IDM’s

parameters. From there, the acceleration will decrease slowly until the maximum velocity
is reached in simulation step 38 at which the car stops accelerating. The acceleration seen
will be the exact values as calculated through the IDM since none of the agents other
rules apply here.

Experiment: ”Regular deceleration”

Basic deceleration has to be tested in order to ensure the cars braking, using a realistic
deceleration behavior. This experiment tests a situation where the agent has enough time
and space available to come to a complete stop without the need to brake very hard. The
car agents starts with an initial speed of 13.89 m/s (50 km/h) and an obstacle at 50 m
distance.

Expected outcome: The car will instantly begin to reduce its velocity and keep the
deceleration high with up to -1.67 m

s2
as defined through the IDM comfortable deceleration

parameter. This continues until the speed has decreased enough so that the remaining
distance can be used to reduce the remaining velocity by minor brake application. Finally
the car comes to a complete stop 2m before the obstacle since this is the safety distance
kept by the IDM.

Experiment: ”Intense deceleration”

To test the cars deceleration behavior in a scenario where severe breaking is mandatory,
a stop for an obstacle within 25m is being simulated. The car will use the same setting
as in the acceleration experiment. The starting velocity will be 13.89 m/s (50 km/h) and
the task is to stop in time so that there is no collision with the obstacle that is 25 m
away. This distance was calculated following the default formula taught in driving school
where the braking distance is calculated by dividing the velocity by ten multiplied with
the velocity divided by ten (velocity10 ∗ velocity10). For a car driving at 13.89 m/s this solves to
a breaking distance of 25 m while not executing an emergency braking maneuver. Since
the IDM takes a 2m safety distance into account, the actual distance to the obstacle is
set to 27m.

22

4 Experiments

Expected outcome: The car starts with an initial speed of 13.89 m/s (50 km/h) and
will immediately decelerate strongly. High deceleration values will be seen for the whole
experiment that will exceed the comfortable deceleration parameter specified in the IDM.
After braking strongly for a couple of seconds, the car will come to a stop within the 25
meter. There will be no collision since there is enough space to brake.

Experiment: ”Driving on a road”

Once the car is able to accelerate and brake, the next step is to test its capability to
drive on a road. The main objective is to see if the car follows the course of the road
and doesn’t cut corners or drives through buildings. As setting a road with a l-curve has
been chosen (Vogt-Groth-Weg, Altona) where the car has to follow the streets geometry.
This experiment was added since the cars initially drove straight from the edges origin
to the destination without following the actual road.

Expected outcome: The car will start with increasing its velocity to the specified
maximum speed at which it will keep its velocity throughout the simulated scenario.
Right at the beginning, the agent will read the roads geometry to get a clear picture of
the environment. After 150m the curve is reached whose geometry is available through
the SGE. As the agents progresses, it keeps adapting its bearing and follows the actual
geometry of the road. The experiment results will be judged visually.

4.3.2 Speed Limits

The speed limits of streets are set through the authorities and are shown to the drivers
either through traffic signs or road markings. Each agent derives its own desired top
speed from that and constantly tries to reach it as long as the conditions allow for it. In
the default configuration each agent has a desired top speed of 50 km/h (13.89 m/s) as
it is common on german roads. For the following speed limit tests this is changed.

Experiment: ”Increasing speed limits”

The setting is again the Veddeller-Damm since it has no curves. A car agent drives on
that road which has sections with different speed limits. At the intersection in the middle

23

4 Experiments

of the road the speed limit is increased. The intersection itself is being ignored so that
the agents behavior isn’t altered by other rules. The scenario is configures so that the
speed limit increases from 30 km/h to 50 km/h. The agent starts from stand with its
maximum velocity set to 30 km/h so that the increase can be monitored once it enters
the zone with higher speed limits.

Expected outcome: The agent accelerates to the initial speed limit of 30 km/h. After
reaching this limit it continues driving until the intersection is reached. Once the agent has
passed, it should detect the new speed limit. Incorporating the now changed maximum
speed into its movement calculation, the agent should accelerate until the new limit
is reached. To determine whether the experiments were successful, the velocity of the
car, extracted from the result data will be compared to the speed limits. It will be
examined whether the car agent followed the instructions, came below the limits or
exceeded them.

Experiment: ”Decreasing speed limits”

As with the previous experiment the setting is a street with no curves (Veddeler Damm).
This time the opposite is tested with speed limit decreasing from 50 km/h to 30 km/h.
The car starts from standstill with its initial speed limit set to 50 km/h. After 1150 m
the intersection will be crossed at which point the limit decreases.

Expected outcome: After driving at a speed of 50 km/h, the agent reaches the 30 km/h
zone. The car calculates the desired deceleration and reduces its speed to comply with the
new speed limit. The measured velocities and deceleration maneuvers will be extracted
from the result data and compared to the ideal values derived from the Intelligent Driver
Model. It will be examined whether the car agent sensed the changing speed limits and
how it obeyed them.

4.3.3 Traffic lights

The third group of experiments will test the agents ability to deal with traffic lights. It
will be examined if the three phases are recognized and how the agents react to them.
The scenarios include the stopping in front of red lights and the proper behavior in
green light situations. Yellow phases are treated separately to determine whether the
agents make the right decisions about coming to a halt or continuing. For these scenarios

24

4 Experiments

Abbildung 4.5: Setting for the traffic light experiments in Mundsburg (source Google
maps)

a special graph was created that includes three crossings in Hamburg-Wandsbek. The
agent starts out at the crossing of Hamburger Strasse and Wagnerstrasse before driving
to the intersection on Winterhuder Weg and Hamburger Strasse (south-west direction).

Experiment: ”Stopping at red lights”

The car-agent will drive on the Hamburger Straße which has a traffic light at the first
intersection. The agent will approach the traffic light after 200 meters where it will
encounter a red signal, forcing it to stop.

Expected outcome: The agent will accelerate according to its individual driving para-
meters until it approaches the traffic light. The field of view allows it to see the light in
time to decide on a proper action to perform. It checks the state of the traffic light which
is red and then starts decelerating until coming to a complete stop, two meters before
the traffic light. The two meters derive from the IDM where a certain safety distance is
kept from obstacles.

25

4 Experiments

Experiment: ”Green lights”

As before with the experiment to test the red light behavior, the agent will start with
an initial speed of 0 km/h and drive on Hamburger Straße. The difference to the afore-
mentioned scenario is, that it will encounter a green traffic light which allows the agent
to continue.

Expected outcome: The agent starts with accelerating to its maximum speed of 50
km/h. It approaches the intersection after 200 meters and perceives the traffic light.
Checking its status reveals the green light so the agent proceeds and crosses the inter-
section without decelerating.

Experiment: ”Yellow light - cross intersection”

The setting stays the same as with the experiments before. When the agent approaches
the intersection, the traffic light turns yellow. A german yellow phase lasts 3 seconds for
intersections where 50 km/h is set as speed limit. In that time a car traveling at 13.89
m/s (50 km/h) will have driven 41.67 meters. In the simulated scenario, the agent will
be less than 41.67 meters out so that there is enough time to cross the intersection.

Expected outcome: The agent drives towards the intersection and perceives the traffic
light in its initial green phase. As the agent gets closer, the light turns yellow. Using its
current velocity to calculate the position of the next ticks the agent decides to continue
driving since the speed is high enough and the traffic light close enough. The intersection
is crossed without stopping or changes in velocity.

Experiment: ”Yellow light - stop”

The second yellow light experiment will test whether the car comes to a stop in a scenario
where the car is more more than 41.67 meters away from the traffic light. As it turns
yellow, the car should check its current speed, calculate that there is enough time/ space
to come to a halt and then start to decelerate. The setting is the same as before.

Expected outcome: Driving towards the intersection the agent perceives the traffic
light in its initial green status. During the approach this changes to yellow. As the light
turns, the agent calculates that he is too far out to cross the intersection without running a

26

4 Experiments

red light. After calculating the remaining distance to the traffic light, a controlled braking
maneuver is performed and the agent comes to a stop.

4.3.4 Intersections

At the time of writing this thesis there was no detailed data available on the design of
intersections. The only information that could be obtained through Hamburg’s open data
portal where the positions of traffic lights. For intersections it is therefore known whether
there are lights or not, but it is not known how they are operated. If an intersection has
no traffic lights, usually traffic signs display the right of way regulations. Unfortunately
there was no information available about traffic signs so they aren’t part of the model.
The last detail about intersections are road markings which mark the direction one is
allowed to drive. These couldn’t be acquired either. As a result the experiments for
intersections are limited as the cars don’t have much information available. What is
known, is the amount and direction of incoming and outgoing roads as well as their
orientation. Detailed information about the agent rules at intersections are described in
the next chapter (Car agent modeling).

For intersections without traffic signs or lights it is customary to give way to cars coming
from the right. At least on german roads the left yields to right rule applies. The following
experiments test this kind of intersection in varying scenarios. Setting is an intersection
in Winterhude, one of Hamburgs boroughs in the north. Figure 4.6 shows the crossing
with its four outgoing and incoming roads. In reality the roads have more than one lane
per driving direction but this was changed. For each incoming and outgoing road there
is exactly one lane available and the length is equally set to 100m.

Experiment: ”Approaching alone”

The first simulation scenario depicts an empty intersection with only one car arriving. It
will be examined if the car reduces its velocity prior to crossing the intersection. Since
no other cars are present, the agent is allowed to proceed without coming to a stop.

Expected outcome: After initial accelerating the car approaches the intersection. The
starting distance to the intersection is 100m so the car will not reach its maximum speed
of 50 km/h. Instead it will sense the crossing and will start to reduce its velocity to an
adequate level. During the approach the agent will explore all incoming roads to check

27

4 Experiments

Abbildung 4.6: Four way intersection in Winterhude, Hamburg

if it has to give way. After determining that there is no car approaching, the agent will
proceed to accelerate after crossing.

Experiment: ”Traffic from the right”

In the second experiment for intersections there will be two cars approaching at the same
time. The first agent comes from the south and wants to go north while the second one
comes from the east and wants to go west. For the first agent the second one comes from
the right so that one has right of way.

Expected outcome: After their initial acceleration phase, both cars sense the intersec-
tion and reduce their speed so they could come to a stop. The agent coming from the
east checks the other incoming roads, detects agent number one and ignores it since it
has the right of way. Agent number two has right of way so he proceeds to cross. At the
same time the car coming from the south senses agent number two and realizes that he
has to yield. As a result the first agent reduces its velocity further until the second car
has crossed. Only then he proceeds on its way north.

Experiment: ”Turning left with approaching traffic”

Besides the rule to give way to traffic coming from the right there is another regulation
making left turns. These are allowed as long as there is no traffic coming from the front.
If so, that incoming traffic has precedence and the car must stand down. To test if this

28

4 Experiments

behavior was implemented correctly, two agents will approach from opposing directions.
Agent one comes from the south and wants to turn left (west) while the second agent is
southbound.

Expected outcome: Both agents start their trip with accelerating until they approach
the intersection. In order to be able to come to a complete stop, should the need arise,
the cars reduce their speed. The car coming from the north registers the incoming agent
but since he is headed south that doesn’t bother it. For the other car wanting to go left,
the incoming car crosses its path. The southbound car crosses the intersection while the
other one lets him pass. Only then the car turns left and crosses the intersection.

Experiment: ”Deadlock turning left with approaching traffic”

Yielding to incoming traffic from ahead can lead to a deadlock situation if both cars
want to turn left. In that situation, each car must give way to the other one which leads
to no one driving. Turning lights would solve this issue in reality but that is not part
of the model. To test the agents behavior, this experiment puts two of them in such a
situation.

Expected outcome: After reducing their speed while approaching the intersection each
agent senses the other incoming cars. Both agents register the opposing car and since
wanting to turn left, come to a complete stop to give way to the other agent. After
waiting at the intersection with no one moving, one agent starts driving to resolve the
deadlock.

Experiment: ”Complex deadlock situation with four directions”

To test the worst case scenario, a gridlock will be simulated. In that situation cars
approach from all four sides with one going right, one going left two cars going straight.
Even though the car going right could resolve this issue by making its turn, it mustn’t
since all cars arrived at the same time. For such scenarios the german traffic code dictates
the use of hand signals so that one car can proceed, thereby resolving the deadlock.

Expected outcome: After arriving at the intersection all cars come to a complete stop.
To solve the issue, one car will cross the intersection. After this step the process continues
until the intersection has been cleared. Only one car will cross the intersection during
the simulation step.

29

4 Experiments

4.3.5 Multilane roads

The last experiment for hypothesis one is dedicated to multilane traffic. It will be exami-
ned how agents deal with lane choices prior to turning maneuvers.

Experiment: ”Turning lanes”

When cars make turns in reality they don’t cross from the leftmost lane to the right or
vice versa. The usual way to do this is to go right from the right lane and to go left from
the left lane. Road markings indicate this but unfortunately there is no data available on
them. In this experiment it will be tested if two car-agents make turns from the correct
lane. A road with three lanes is simulated so the first agent should go right from the
rightmost one and the second one left from the left lane.

Expected outcome: Once the cars are on the road they will determine the ideal lane
based on their route. They calculate that based on the angle and then proceed to the
desired lane. For the car going right, this will be the right lane and for the other car the
left lane. In the end, the agents make their turns from the correct lane

4.4 Experiments for Hypotheses Two

With the model in place and examined, the next step is to broaden the view from an
individual level to the bigger picture. If one agent can follow the rules, what happens if
many of them come together? In this section the synergy will be examined to see how the
agents interact. More importantly it will be examined whether the interaction of many
individuals resembles the traffic patterns found in Hamburg.

4.4.1 Altona traffic counts

The city of Hamburg uses traffic counts in a variety of ways to gain insights into the
situation on the roads. The first way of gathering are permanently installed counts on
the major roads. These have data available for every hour of the day, both on weekdays
and the weekend. Additionally there are yearly counts that get repeated as regular as
possible. This doesn’t necessarily work every year so there are gaps in the data. The

30

4 Experiments

Abbildung 4.7: Locations of traffic counts in Altona

last kind of counts are being done on demand when certain roads are to be examined in
detail. This only happens when there is a need for it.

For the following experiments the data of years 2016 - 2018 will be used as combining
them covers the simulated area. The resolution is 15 minutes for all counts, no matter
if permanently installed or on demand. It is to be noted that the counts from the same
years weren’t necessarily collected on the same day as this would exceed the staff. Besides
the days/ dates of counting differing, there isn’t always data for every day of the week.
There might be data on road one from a count in March on a Monday while the next
count for road two might be from a Wednesday in October. Permanently installed counts
have data available for every day while the on-demand counts usually only counted on
a specific day. All counts used for the experiments were from weekdays and if possible
from Mondays. If these days weren’t available, another weekday was chosen.

These traffic counts are used as reference for the simulation. Hamburgs LSBG provided
these counts for various intersections throughout the simulated area. Based on the calcu-
lated trips for the virtual population, the agents will go about their days while making
trips throughout Altona. During the simulation, the movements of agents is monitored
by artificial traffic counters just as in the real system. After simulating the area multiple

31

4 Experiments

Abbildung 4.8: Main roads in Altona

times these counts will be compared to the actual traffic counts conducted in Altona.
Figure 4.7 shows the locations of ten selected counting stations, extracted from the availa-
ble set. There were more counts available but only the ones on major roads were chosen.
Figure 4.8 shows these roads for the simulated area. Also the counting positions at the
borders of Altona were neglected since these mainly count traffic entering or leaving the
borough which isn’t part of the simulation.

4.4.2 Simulating Altona’s virtual population

How the virtual population of Altona is created is part of the next chapter that deals
with the implementation. For now, it is sufficient to know that the virtual population
resembles that of Altona, based on demographic data. In that population, citizens make
trips throughout the city and if these trips are made by car, they will be simulated.
The simulation covers the hours from 6am to 7pm which where chosen because there are
traffic counts available for that period. During the simulation, the day-plan generator is
used to derive trips with origins and destinations in Altona for 89705 citizens and execute
these trips. This number was chosen based on the amount of cars registered in Altona

32

4 Experiments

[1]. From a result perspective, the flow of traffic will be examined and compared to the
actual traffic counts described above. This basic but yet very effective comparison will
examine whether the measured simulated traffic corresponds to the amounts of traffic,
measured in real counts.

4.5 Experiments for Hypotheses Three

For the last hypothesis, the model will be examined in a completely different scenario.
Instead of Hamburgs streets, the Kruger National Park will be simulated. Four experi-
ments are conducted to see if the model has been implemented in a generic way so that
only a few changes have to be made. At first, the basic driving behavior will be tested
since the new setting requires a couple of changes to the agent model. Once the basic
experiments have been carried out, the Kruger National Park will be simulated with its
roads, gates and camps.

Experiment: ”Left hand driving in South Africa”

Since the traffic code in South Africa dictates that cars drive on the left side of the road,
the car agents will have to do so too. In terms of the road network this doesn’t alter the
overall behavior of the car. At intersections the behavior will change though. For this
experiment the cars will be configured through a config file to drive on the left side of
the road. Additionally the traffic code parameter is set to ”south-africa” which tells the
model to replace the german traffic code with the South African one. This experiment
will show if the model is truly generic so that these changes can be made solely through
configuration instead of by code.

Expected outcome: The car model has input parameters that decide about the used
traffic code and the side of the road they drive on. Using a configuration file, these
parameters are set during the simulation initialization. A simulation, based on said config
file shows that the parameter has been set correctly and that the agents follows the traffic
rules of South Africa.

33

4 Experiments

Experiment: ”Implementing a new intersection type”

Since the location changes from Germany to South Africa, the traffic code changes too.
During the second experiment a new intersection type will be added to the code. It will
be examined how much effort this takes and where these changes need to be made. This
will determine if the car-agents have successfully been implemented as a generic model
or if they only work on german roads.

Expected outcome: The model itself has been build in a modular way so that the
new rules for the South African traffic code can be added with minimal changes to the
original model. After implementing the desired behavior at intersections, this set of new
instructions can be added to the model without changing anything but the part where
the parameter for the traffic code is checked to determined which one to use. Once this
is done, the model will ignore the german traffic code and work with the South African
one.

Experiment: ”Four way stop”

After examining the amount of changes needed to add a new traffic code, that of South
Africa will be tested in this experiment. A four way stop will be simulated and the
cars behavior will be examined similar to the experiments of hypothesis one. At this
intersection, four cars approach from four directions so that they reach the intersection
one after the other. The traffic code dictates that each car comes to a halt and then
proceeds in the order of arrival.

Expected outcome: Each car approaches the intersection and reduces its speed before
coming to a complete stop. During the approach each car monitors the order of arrival.
After coming to a complete stop, the cars cross the intersection one after the other in
the order they arrived there.

Experiment: ”Simulating the whole park”

The last experiment will simulate the complete national park. Cars are spawned at eit-
her camps or gates and drive around looking for wildlife. Even though this is listed as
experiment, it should be considered a showcase. It will be visually judged whether the
cars drive around where they are supposed to.

34

5 Design and Implementation

This chapter will describe how the different parts of the model have been implemented.
At first the environment with its road network, traffic lights etc. is covered while the
second part deals with the car agent. Lastly the process of creating a virtual population
will be described which is necessary to run the simulation.

5.1 Environment modeling

This part elaborates how the agent environment is set up and how things like the road
network and traffic lights are made available to the agents during runtime.

5.1.1 Road network

To represent the road network, a custom graph implementation has been build. This was
done as part of the Grundprojekt and has been described in detail there. This section will
summarize this and will describe how the so called Spatial Graph Environment is being
used in the simulation.

In general, the custom graph implementation has been split in two projects: the Abstract
Graph Environment and the Spatial Graph Environment (SGE) targeting different use-
cases. To this day the Abstract Graph Environment has only been used as basis for the
spatial extensions but it was build with idea of having a non-specific/ generic graph
implementation that could be used immediately. Simulating social network where agents
are connected through graphs that represent relationships was one of the envisioned
scenarios. Figure 5.1 shows the Abstract Graph Environment’s UML class diagram. The
basics to comprise a directed graph are nodes and edges as represented through the
abstract classes AbstractEdge and AbstractNode. Both have their respective interfaces to
specify the attributes and methods. In order to identify each entity in the graph, both

35

5 Design and Implementation

Abbildung 5.1: Abstract graph environment

classes additionally implement the IGraphEntity interface which gives them a GUID
each. Edges cannot exist without nodes as they can be seen as mere connections of
these. So the most important parameters of an edge are its From and To nodes. To
denote the current status of edges and nodes an IsActive flag has been added which
could later be used to activate/ deactivate certain connections (edges) or nodes. For
each entity a dictionary of attributes (Attributes) is available too, which can be used
to represent a variety of information about the edge/ road. For route finding purposes
the edges also implement a weight attribute and the SetOrUpdateWeight function to
modify them. The INode interface includes a list of all adjacent edges for the node
and methods to access and modify these. This has been build with exploration and
graph modification in mind so that agents can sense their environment and to allow the
graph to be changed at runtime. Managing the nodes and edges is the purpose of the
Abstract Graph Environment. Through the IGraphEnvironment interface it is equipped
with the methods to build, alter and delete a graph which includes adding and removing
nodes. Since edges are connections of nodes, these are being removed if either the origin
or destination is deleted. The last component of the environment is the IRoutePlanner
interface which is implemented by the AbstractGraphEnvironment as well. This allows for
route finding based on various algorithms like for example breadth first search or Dijkstra.
Since they were implemented by Daniel Glake, they will not be discussed further.

36

5 Design and Implementation

Abbildung 5.2: Spatial graph environment

37

5 Design and Implementation

The Spatial Graph Environment extends the abstract graph implementation by spatial
components. Figure 5.2 shows the UML class diagram of it. Main implementation pur-
pose was to depict streets so that it can be used to build traffic simulations. Therefore
the ISpatialGraphEnvironment interface extends the existing implementation with new
functionality to manage agents.

Information about the road network is taken from OpenStreetMap. Daniel Glake build
an integration tool that enriches this data with information from other sources to collect
as much data as possible. This so called OpenData Discovery and Integration tool uses
OWS services and OData endpoints to query information. In a second step this data is
being transformed into a MARS compatible format (GraphML). This file is stored on
disk as input data and gets parsed during simulation initialization. From there a Spatial
Graph Environment is being constructed that represents the data during the simulation
and manages the agents.

The Spatial Graph Environment extends the base implementation by agent functionality
which is needed for simulations. Agents can be added (AddAgent) to the environment
and then use its methods Explore and Move to sense their surrounding and move on it.
Additionally the ISpatialGraphEnvironment interface includes convenience functions like
GetNearestNode which finds the closest contained node in the graph, based on a GPS
position. This is used to make sure that the agents are inserted at the correct position.
Querying an agents position in the SGE is possible too, through the GetGpsPositionO-
fAgent method. The SGE itself forwards the agent responsibility to the Spatial Edges
where they are being managed. Each Spatial Edge contains a list of agents that are
currently on said edge. If agents move through the road network, they are either moved
on an edge or from edge to edge. Crossing an intersection means being removed from
the first edge and getting inserted into the next. The SGE is implemented as collision
free road network so the agents can position and spatial extend are stored as well. When
moving an agent it is checked if the move would result in collisions and if so, it is pro-
hibited. Agents request to be moved, based on their understanding of the environment
which has been explored prior to moving. If that move is valid, the agent gets moved,
otherwise it remains at its position. In both cases the agent is informed about that in
the return arguments.

Intersections are represented through the Spatial Node class which now also have a GPS
position. Additionally they contain a so called Node Guard. This construct was invented
so that the flow of traffic can be managed by a controlling entity; for example a traffic

38

5 Design and Implementation

light. When agents explore the environment this entity gets asked if the intersection can
be crossed in the desired direction. If the intersection has no traffic lights this query will
always be true, otherwise the traffic light checks its current status and then responds
with the current light phase.

5.1.2 Intersections

Following up on the analysis part about intersections (3.1.2) this passage will demonstrate
how the described challenges have been solved to meet the model requirements. Since
this is first and foremost a data problem, a couple of simplifications had to be made.
The city of Hamburg is providing much information about the city as part of their
open data initiative but the road markings aren’t part of it. Since detailed lane data
won’t be available anytime soon (this affects both streets and intersections), the following
simplifications apply: Incoming roads at intersections are connected to every outgoing
street except for the one that leads in the direction where the car came from (backwards).
The lane count itself is known but not the direction where these lanes lead. As a result,
the cars are allowed to continue their way on every adjacent road if the street has only
one lane. For multi-lane roads the model is refined further. Due to the lack of data on
the direction of lanes the following rules will apply: Cars are allowed to turn right only
from the right lane. Same goes for left turning maneuvers which are only permitted from
the left lane. Going straight ahead is allowed from any lane.

Before the agents could use the intersections properly, new functionality to explore in-
coming traffic had to be added. The spatial graph environment only allowed to explore
along the desired route so that other traffic participants could be sensed. If the agent
waited at an intersection, there was no way to obtain information about incoming cars
at crossings. To account for this rather basic but very much need functionality, a new
explore method was added to the SGE interface. This allows to explore an edge at an
intersection and reveals the distance and speed of any incoming cars. Before this functio-
nality could be added, the SGE had to be extended though since there was no concept
like incoming edges at an intersection. As described above, the SGE only manages nodes,
not edges. If information about and edge is needed, this has to be retrieved through the
starting node since that one has a list of all outgoing edges. The other node (incoming
node/ destination) had no such list and therefore only knew about its own outgoing ed-
ges. To make the exploration possible, every node now holds two list for its incoming and

39

5 Design and Implementation

outgoing edges. This extension allows the car to explore both in their driving direction
to sense other cars around them as well as to sense incoming cars at intersections.

5.1.3 Traffic counts

Counting the agents that move through the simulation is required in order to compare the
results to real traffic counts. The measurements from the city of Hamburg are divided into
15 minute intervals so it was decided to follow the same approach. Each traffic count from
Altona specifies the road it was taken on as well as the streets cardinal direction. Since the
traffic in the simulation must be counted for the exact same road, first the representation
in the SGE had to be found. The data used during its initialization contains so called
OSM ID’s that are contained when extracting data from OpenStreetMap. These ID’s are
used to uniquely identify each entity like roads, intersections trees and everything else
there. In order to match the real traffic counts to the simulated street, for each counted
road the corresponding OSM ID had to be found. This was a manual step since there was
no way of doing in in an automated way. Once these ID’s were known, the input file for
the SGE had to be modified. Each edge that is supposed to count traffic was extended
by an attribute called TrafficCount. During the initialization process these attributes are
parsed and if said attribute was present the edge’s counting functionality was activated.
Counting agents is then performed by the Spatial Edge class which has a counter for
passing agents. Each time a new agent is added during a move operation the counter
gets incremented. The results of these counts are collected by the RoadLayer. This layer
is also the base layer for the cars as they live on it. After 15 minutes in the simulation,
all counts are collected and the result persisted to a CSV file. For each counting point
this file contains a line with the timestamp, OSM ID and the number of counted agents.
Once the result have been persisted to disk, the counters are reset and the process starts
over again.

5.1.4 Traffic signs

Information about traffic signs is not widely available at the moment. At least not through
Open Data sources like the GeoPortal of Hamburg or OpenStreetMap. For Germany the
traffic signs include a wide variety of categories to warn of danger, state the right of way,
regulate the speed and tell people where to drive and not to drive. Of all these categories,
only the speed limits could be obtained for the simulated areas as they are contained

40

5 Design and Implementation

in the OpenStreetMap data. The remaining signs therefore have been neglected and the
cars have no rules to react to other restrictions besides speed limits.

OpenStreetMap collects a few key aspects of every street with the speed limit being
on the most important (besides location, length and amount lanes). This information
is available for most streets in Hamburg Altona and is automatically being extracted
through the ODDI tool. As a result these details are contained in the metadata for
edges. During the initialization process of the Spatial graph environment that data is
loaded into the attribute collection of each spatial edge. This is not available for all edges
as they could be as short as a couple of meters but for the most of Hamburg. Agents
can directly access this information for each edge in their surrounding or their route by
checking for the attribute maxspeed.

5.1.5 Traffic lights

At the moment of writing the this thesis the MARS group didn’t have access to detailed
data on traffic lights and their schedules. This will change in the future though. To
prepare the simulation for that case, this model will contain a traffic light prototype that
includes the described behavior. The traffic light system that operates an intersection
has to comprise schedules for the adjacent roads so that the individual signals steer the
incoming traffic over the intersection.

The traffic lights were implemented, following the requirements, formulated in the ana-
lysis section. A dynamic entity is needed to perform the task of signaling the incoming
traffic so that each road gets their turn to cross. For these turns, schedules have to be
made and executed that are tailored to the individual intersection. Throughout the day,
different programs have to run so that rush-hour is treated different from regular traffic.

In MARS simulations, dynamic behavior can be achieved in two ways, either through
agents or layers. On the layer sidee there are a couple of possible ways to incorporate
dynamics. The first layer type are active layers where the layers have a tick method that
can be used to execute code. This is similar to agents who use this method to go through
the sense, reason and act stages. As the agents and layers aren’t triggered in order there
is no way of knowing when the signaling actually takes place. For the simulation this
means that the first executed agents in a simulation step that arrive at an intersection
could see a different signal than ’later’ agents because the tick method of the layer was
executed in the meantime and the lights have been switched. This is very fuzzy and

41

5 Design and Implementation

Abbildung 5.3: Traffic light positions in Altona

could lead to problems like car accidents when different roads are shown the same signal,
therefore this approach isn’t valid and will not be used.

If the traffic lights were implemented as agents, this problem would arise too. Even though
dynamic behavior in a simulation like the switching of lights would be a perfect fit for
the agent concept, the fact that these agents would perform their actions at the same
time as car-agents would blur the simulation. It would be impossible to tell simulation
errors from the dynamics evolving through in-tick changes of the lights.

The next layer option, so called stepped active layers, extend the active layer concept in
the way that they have additional pre-tick and post-tick methods. The order of execution
is 1) pre-tick methods, 2) tick methods of both layers and agents and finally 3) post tick.
One of these methods can be used to perform signal changes prior or after the agents
have executed their actions thereby resolving the ’fuzziness’ issue.

The last layer option for dynamic behavior are GIS layers which come in two forms, GIS-
raster layer and GIS-vector layer. They have the ability to represent either rasterized
or vector-based information and thereby expose it to agents. Vector-based data can be
points, lines or polygons while rasterized data incorporates grid-based information. For

42

5 Design and Implementation

the traffic-lights, a GIS-vector layer can be used to represent the coordinates/ positions of
traffic lights and initialize them in the simulation. Additionally the GIS-layers implement
time-series capabilities that allow to swap information at runtime. This ’information’ can
be of any type, as long as it is linked to a geo-referenced position. In the past this has
been used to include temperature and precipitation data in a simulation but it can also
be used to include switching times for traffic lights. Swapping these files at runtime would
mean switching light programs depending on the time of day.

To sum up the available solutions on the layer site: Stepped active layers can be used
to perform actions before or after the agents are executed so that fuzzy behavior can
be avoided. The GIS-layers have the ability to represent data with spatial reference
and can also exchange that information at runtime. If parts of these two concepts were
combined, the requirement of running different schedules throughout the day could be
met. Additionally the GIS-layers spatial capabilities can be used to import the traffic
light positions into the simulation.

At this point the actual light switching capability is still missing. There is neither an
agent nor a layer that can manage and change the lights according to the schedule. Each
intersection has to be treated as individual entity with its own schedule that is tailored to
that very crossing. Within that management, the system has to map incoming roads to
outgoing roads and assign them an actual light. When car-agents arrive at an incoming
road they check the current status of it and then continue with their activity planning.

Whether intersections have traffic lights or not is determined through data from Ham-
burgs Geo-Portal where open data is made available to the public. The positions of all
traffic lights as of 2018 have been downloaded as shown in figure 5.3. To be more precise,
the geographic locations of all intersections that have traffic lights have been downloaded.
The data allows for a clear distinction between intersections that have traffic lights and
those who don’t. There is no data available on the schedules. To connect this information
with the road system in the simulation, the Spatial graph environment has to be aware of
it since the agents ’drive’ on roads, that are managed there. When building the SGE the
concept of node guards was introduced to resemble controlling entities on intersections.
Node guards can be anything ranging from a barrier, over a traffic policeman to a traffic
light. Agents exploring the environment are automatically informed about the status of
the intersection’s node guard. This object is being asked for its current status and the-
reby, whether the car may pass in the stated direction. The INodeGuard interface was
created to allow objects of different types to implement this behavior.

43

5 Design and Implementation

Traffic light design

Abbildung 5.4: Class diagram of the traffic light layer with the involved interfaces

The traffic lights have be realized as a new custom layer. It was created inside a new mo-
dule so that it can be reused in different models. Figure 5.4 shows the class diagram of the
layer. As described above, the traffic light layer is an ISteppedActiveLayer so that it has
PreTick and PostTick methods where the traffic light changes will be executed. For com-
pleteness the overlying interfaces where the three tick methods originate are shown too.
Per intersection there will be an TrafficLightController that manages all lights on that
crossing. Different lights signal the various incoming roads and the traffic light controller
manages all of them, thereby resembling the control system. This controller implements
the two interfaces ITrafficLightController and INodeGuard. By implementing the latter
it will gain the required signature to be inserted into the Spatial graph environment as
a node guard. On the bottom right of figure 5.4 the Spatial Graph Environment and its

44

5 Design and Implementation

components are depicted to show the relationships. Attributes and operations were left
out on purpose since they aren’t of relevance here. The ITrafficLightController interface
includes the UpdateLightPhase method which will be used to update the currently shown
light phases in the simulation step. Each controller has a cycle length field that represents
the the intersections turnaround time as described in the analysis chapter. With the cur-
rentTick field, the progress is tracked and the value reset, once the cycle has completed so
that the light program runs in a loop. Since data on schedules is currently not available,
the GenerateTrafficLightSchedule method will forge these and populate the individual
traffic lights with an appropriate schedule. At meetings with employees of Hamburgs
LSBG (Landesbetrieb Straßen, Brücken, Gewässer) we learned that the turnaround time
of most traffic lights in Hamburg is 90 seconds. Since more detailed information about
individual intersections is currently not available, the default value is set to that. During
this time, the traffic light controller gives every incoming street the signal for driving one
at a time. The length of each directions driving time depends directly on the amount of
adjacent roads as the turnaround time is divided by their number. The last component
of the layer are the traffic lights themselves. For every connection between an incoming
and an outgoing road there is an individual traffic light that signals the incoming agents.
Each light stores the schedule in which tick it changes the status from green to yellow to
red as well as the current status. The current tick is determined through the traffic light
controller’s current step of program execution. Once the turnaround time of the overall
traffic light system is through (90 seconds), it starts from the beginning. The individual
traffic lights are thereby repeated in a loop until the traffic light controller switches to a
different program.

Since the traffic light system is not the main focus of this thesis, a couple of simplifications
have been made that allow to include the system without over-complicating it. In a later
version of the Altona simulation, a more precise version can be implemented. Hopefully
there will be ground data on light schedules by then.

1) Incoming roads receive the same signal for all directions so there is no separate lights
for right, left and straight ahead. 2) The traffic light system of an intersection gives
way to the incoming streets one at a time so that every road has the same priority. 3)
The turnaround time of each crossing is set to 90 seconds, as described in the analysis
chapter.

45

5 Design and Implementation

Abbildung 5.5: UML diagram of the agents classes for SmartOpenHamburg

5.2 Car agent modeling

In this section the car agent implementation is described. Before the agents get to drive
around they have to be initialized properly. Since this model has been developed as
generic as possible, there are many ways to configure the agents through input data. The
agent (Car) class will be part of the SmartOpenHamburg model for which an inheritance
hierarchy has been set up. Dividing all traffic participants into various categories allows
for an easier implementation later since there is a common set of attributes. It starts
with the most generic form Road User as shown in figure 5.6 which collects the most
common attributes each individual will have. These include spatial extend (length, width,
height), mass, a position and the current movement parameters velocity and acceleration.
From there the right side of figure 5.6 covers the pedestrians which are developed by
Andreas Löffler and the vehicles. These were further divided into motorized vehicles and
non-motorized vehicles of which the bike is the only representative. For the motorized
vehicles there is a distinction between street vehicles and trains, the latter being the basis
for the public transport implementation by Daniel Glake. The cars directly inherit from
the street vehicle class and extend this by the following parameters.

46

5 Design and Implementation

5.2.1 Constructor

Since the model has been implemented with a wide variety of purposes in mind there are a
few required parameters and even more optional ones. Before these get discussed, first the
MARS specific, standard parameters have to be set. The basic parameters for all MARS
agents are the layer on which the agent will be managed and the environment the agent
uses to move around the simulated area. These vary from simulation to simulation and
can be either located in Hamburg or in the Kruger National Park, based on the scenario.
Before and agent is part of any simulation it also received two delegates to register itself
and to unregister itself from the simulation core. If an agent unregisters itself, it gets
removed from the simulation core and will be deleted after the current simulation step
has been completed. This delegate is invoked once the car has reached its destination.
Following up are all available parameters including a description what they are being
used for and whether they are required or optional.

length Denotes the cars length in meters. This is used by in the Spatial Graph Environ-
ment as physical size. When agents move in there this length gets checked so that
cars don’t bump into each other.

height, mass, width These parameters describe the spatial extend of each car. For the
cars driving they don’t play a role as their main goal is to describe the outer shape.

maxAcceleration is one of the most important parameters for the driving physics. This
setting is passed to Intelligent Driver Model to calculate the acceleration/ dece-
leration in each simulation step. Increasing the value leads to faster acceleration
while lowering it mitigates the cars capability to reach its maximum speed.

maxDeceleration states how hard the car should brake in regular situations. This is
mapped to the IDM’s comfortable deceleration parameter. Based on this the acce-
leration/ deceleration is calculated.

maxSpeed specifies initially how fast the car is allowed to drive. This changes during
the simulation when the cars react to speed limits.

velocity (optional) When the cars are created, they are inserted into the environment
with a velocity of 0 km/h. If cars should be inserted at higher speeds, this parameter
can be used and set to the desired velocity.

47

5 Design and Implementation

driveMode sets the desired mode of operation for the agent. The next section describes
each drive mode in detail. In short: the car can operate in different modes that allow
to either drive around randomly, use route finding, start at a designated location
and or with a preset destination.

startLat (optional) The start position is coded as GPS with latitude and longitude com-
ponents. As the mapping only allows for primitive types the coordinate was split
in two parts with this parameter being the latitude.

startLon (optional) is the second part of the starting position. The longitude is coded
as double and inserted into the constructor.

destLat (optional) Latitude part of the destination GPS coordinate. This sets where the
agent is supposed to go in in conjunction with the destLon parameter

destLon (optional) describes the longitude where the agent is supposed to go. To be
used alongside desLat as part of the GPS coordinate.

startingEdge (optional) This parameter can be used to specify a starting edge. The agent
still starts at a node but his first edge in the route will be set to the desired edge.

capacity (optional) of the vehicle meaning how many people fit into the car. Not used
at the moment but important for the later SmartOpenHamburg model.

stableId (optional) For testing purposes the agents can be outfitted with a stable ID
that stays the same in every test. This allows to assert if a certain agent behaves
the desired way and was used a lot in the tests for the intersection behavior.

leftHandDriving determines on which side of the road the agents drive. This can either
be set to 0 meaning right hand driving or to 1 which results in the agents driving
on the left. In the default configuration the cars drive on the right side.

trafficCode tells the model which country it is driving in and thereby which traffic doe
to use. For Germany this has to be set to german while South Africa is coded as
south-african. In the default configuration the cars use the german traffic code.

route (optional) This parameter can be used to pass a pre-computed route to the model
which is only being used in drive mode six. The string must contain a list of OSM
ID’s separated by commas.

48

5 Design and Implementation

Drive modes

In order to run the agent model in various circumstances, a couple of different drive modes
were implemented. These modes allow to use and instantiate the cars in the following
configurations:

• Random driving (1): the car randomly chooses a location in the simulated area
and starts driving there. There is not routing involved and the agent picks its way
randomly at every intersection. This is very useful for benchmarking scenarios where
the route finding shouldn’t influence the results as calculation this for multiple
thousand agents takes its time.

• Random start and goal with routing (2): As before, the car agents starts at a
randomly chosen position in the simulated area. Instead of driving around without
a goal, a random destination is picked and a route calculated that the agent follows.
Once it reaches its destination, the car is being removed from the simulation. This
mode of operation is helpful when data about realistic origins and destinations is
missing. Including route finding between the random start and goal leads to realistic
usage of higher order streets due to the route finding. This mode was used for the
simulations in the Kruger National Park.

• Drive mode three (3): When start and goals are known prior to the agents creation.
This mode was used to run all simulations in Altona as the day-plan generator
provided start and destinations. Route finding takes place in the constructor so
that the agent follows a realistic route. To use this mode the startLat, startLon,
destLat and destLon parameters have to be set while creating the agent.

• Mode number four (4) is a combination of the aforementioned. Based on a known
starting location the agent picks a random goal and uses route finding to get there.
This route is then followed until the goal is reached and the agent removed from
the simulation. This mode was created to insert commuters at the simulated area
which would drive from the known influx point to a random destination. These
experiments will be executed in the future and aren’t part of this thesis.

• Another drive mode (5) was developed to spawn agents in the simulated area. For
scenarios where agents should start at an intersection and head out in a specific
direction (on a specific road) this drive mode expects the starting point and the
desired edge as input parameters. From there, the agent is inserted into the desired

49

5 Design and Implementation

edge, a random destination is picked and the car starts driving based on a calculated
route.

• The last driving mode (6) is targeted at situations where the start, destination and
the route is known. The route is coded as a list of OpenStreetMap ID’s which is
then translated to an actual in-memory route. This is done through the Spatial
Graph Environment which parses the edge attributes to derive the actual route.
This mode was mainly used for testing purposes where the cars had to follow a
certain route.

5.2.2 Intelligent driver model

Following the rules in the next section, the agents will at some point calculate the distance
they want to move (drive). Foundation for all movement/ distance calcuations is the
Intelligent Driver Model as described in the methodology chapter. This model is used
to calculate the overall driving behavior in latitudinal direction. More specifically, it
encapsulates the differential equation, used to calculate acceleration and deceleration.
The car agents call this model component with their individual parameters for max
acceleration, desired gaps etc. and receive instructions on how to adapt their velocity.
The IDM itself has been implemented as separate, static class with a single function
to calculate the acceleration based on input parameters. As such is being used by all
agents. Since the Intelligent Driver Model has been implemented as separate class, it
can easily be replaced. This allows to add other modules or car-following models like the
Wiedemann equation.

5.2.3 Agent rules

Following the high-level goals defined in section 3.2 (Agent requirements) this section
will list the precise agent rules. These rules are derived step by step from the coarser
defined actions. The simulation model consists of multiple functions working together to
allow the cars to process inputs from the environment and decide on the next actions.
Figure 5.6 shows an activity diagram of the agents reason method which determines its
behavior in every tick.

50

5 Design and Implementation

Abbildung 5.6: Activity diagram of car-agent

51

5 Design and Implementation

Explore and agent field of view

The agents have to sense their environment before any actions can be performed. In every
simulation step the agent starts by exploring the road around itself. This is done by using
the Spatial Graph Environment’s Explore method which returns information about the
cars on either side of the agent and in front. The sensing has to obey the non-functional
requirement of not affecting the performance beyond unjustifiable means so the required
distance of exploration had to be calculated. Initially it was set to 30 meters which limited
the field of view at higher speeds too much. The agent had to perform harsh braking
maneuvers as it ”saw” obstacles very late. To overcome this, a dynamic field of view has
been implemented which changes with the current speed. The agent calculates this field
of view by multiplying its current velocity in m/s by six which lets him ”see” far enough
even at high speeds. The minimum field of view is kept at 30 meters as the agents don’t
need to see too far when they are standing still or at an intersection.

The exploration reveals the cars in front, the next intersections and details about the
road the car is currently driving on. This is the basic information used to sense the
current circumstances. Analyzing the explore results starts with calculating the remaining
distance on the road which is used later in the acceleration/ deceleration process. Next,
the intersections up front are stored in a list with the remaining distance to it, the node
which represents the crossing and the current light phase, should there be a traffic light.
After this the same is done for cars around the agent each with the distance, position
and current speed. This concludes the interpretation/ sensing process as the results are
now sorted into categories that the agent uses to plan its next action.

Route and lane management

Routing is a key influence for the car-agents behavior as it defines both the road to take
as well as the lanes to drive in. While the route itself is important, the lanes are the bigger
challenge. Cars are allowed to drive in any lane as long as they go straight at the next
intersection. The turns introduce complexity as the car has to detect them and switch on
the correct lane prior to making its turn. Following this initial step the agent then decides
whether it is going to stay on the same lane or switch based on the exploration results.
If the current lane is valid the agent continues and won’t check the lanes again until it
has progressed to the next road. Should the route require a lane change, the agent will
check the space next to it on the desired lane to see if there is enough space to pull over.

52

5 Design and Implementation

With enough space available, the lane is changed and the car proceeds with its rules.
This process is repeated in every simulation step until the lane change was successful or
the end of the edge is reached. In that case, the agent proceeds in the desired direction
anyway which isn’t ideal but was necessary to prevent deadlocks. One of the next steps
for the agent model, the implementation of a dedicated lane changing is planned. This
should allow for more complex maneuvers like overtaking as well.

Biggest deceleration

Before describing the next processes for dealing with intersections, a fundamental part of
the model has to be explained: the so called biggestDeceleration. In each simulation step,
each agent uses a double field with the specified name to track the hardest braking ma-
neuver. Following the agent rules there are multiple values for acceleration/ deceleration
calculated, based on different data and for different use-cases. This can be explained best
with an example: if an agent was to drive on an empty road, there are no other cars it has
to slow down for. Calculating the desired speed for the current tick based on the IDM
would suggest that the car keeps driving at full speed. At the same time the agent might
be closing in on an intersection which requires him to slow down, leading to a lower value
for acceleration. Comparing these two acceleration/ deceleration values shows that the
second value is lower than the first. If the agent chooses to use the second one to calculate
how far it moves in this step, it automatically does the right thing. The agent naturally
slows down instead of following the guidance of the higher (wrong) suggestion calculated
through the car-following model. Whenever an agent calculates a value for deceleration
it compares that to the currently lowest one and sets the new value as lowest, should
it be even smaller. This way the various agent rules are balanced without the need for
nested if/ else statements.

Intersection behavior

There are many types of intersections, all comprising an individual set of rules. When
agents approach an intersection, they have to find out what to do. Based on the collec-
ted exploration results, the upcoming intersections are processed first. When an agent
approaches an intersection it will slow down as long as the light isn’t showing a green
signal which is the first thing checked in every tick. Then, based on the agents current
road and the next one in the route, the turning angle is calculated to determine the the

53

5 Design and Implementation

optimal speed. The angle is sorted into one of the following categories: backwards, sharp
left, left, wide left, straight, wide right, right or sharp right. For sharp turns (right or left)
the agent reduces its speed to 2.7 m/s, for regular turns to 4.1 m/s and for wide turns to
5.5 meters per scond. If the agents drives straight to the next road, the velocity will not
be reduced (by this part of code). Once the value is known, the required deceleration/
acceleration is calculated and compared to currently biggest deceleration changing it if
the turning value is lower. The agent reduces its speed over multiple ticks so that the
speed is reduced incrementally.

In the next step the intersection itself is checked to see if it has a traffic light or not. For
those crossings with traffic lights, the current light phase is extracted from the exploration
results. If the light is green the agent proceeds with its basic behavior since the he doesn’t
have to stop. For yellow traffic lights the agent asserts whether the required deceleration
exceeds the configured maximum deceleration. This equates to the car checking if it can
come to a stop in time without performing an emergency stop. Should this be possible,
the agent starts braking by setting the biggest deceleration parameter which leads to a
full stop over the next ticks. If the car is too close already, it proceeds at its current
speed and crosses the intersection during the yellow phase. When the agent approaches
red lights it calculates how much it has to brake in order to come to a stop in time and
does so. Should the traffic light status change over the course of the next simulation steps,
then the agent adapts its behavior to the new situation. If the agent was to approach a
red light which then turns green, it would stop braking and start accelerating and vice
versa.

Should there be no traffic light on the intersection, the chosen traffic code is checked
and the respective method used to determine the correct action. For the simulation
in South Africa, the same car-model is used so at this point the differing rules have
to incorporated. Depending on the location and the simulation config this is either the
German traffic code or the one from South Africa. The constructor parameter trafficCode
sets this at initialization.

German traffic code

Before reaching an intersection the speed is reduced so that the car can come to a stop,
should the need arise. After this the incoming traffic at the intersection is checked to
sense other cars approaching the intersection. Traffic from the right has precedence over

54

5 Design and Implementation

the currents agents movements so the agent will stop if an agent approaches from there.
Once the agents from the right have passed, the car continues its drive. The second rule
that applies to left yields to right intersections is that left turning maneuvers are only
allowed if there is no opposing traffic whose path would be cut. If there is coming from
the front, these cars have priority and the car won’t continue until they are out of the
way. For situations where two opposing cars wan’t to go left this would lead to a deadlock
situation that had to be resolved by allowing one car to proceed. Following the described
rules for left turns and incoming traffic from the right, the german intersection type of
left yields to right has been implemented. After going through these rules and deciding on
the correct action, the agent uses the IDM to calculate the required acceleration. This is
then checked against the biggestDeceleration parameter to ensure safe behavior without
collisions.

South African traffic code

As described in the simulation scenarios, the traffic in South Africa drives on the left
side in contrast to Germany. Additionally the default behavior at intersections changes
from left yields to right to so called four way stops. At such intersections the traffic has
to come to a complete stop and then proceed in the order of arrival at the intersection.
The first thing every agent does to follow this rule is to come to a stop, even if there
are no other agents around. During the approach, the incoming cars are tracked by each
car to determine the order of arrival. After coming to a stop the car checks this order to
determine if it is allowed to drive. Based on the exploration the car updates this list in
every simulation step and removes the cars that arrived earlier after they have crossed
the intersection. If it is the cars turn to cross the intersection it does so by calculating
the acceleration through the Intelligent Driver Model. Once the intersection has been
crossed the list with incoming cars is emptied.

Interacting with other cars

After checking the intersections, the next step is to react to cars on the surrounding
lanes. During the initial exploration the positions of the cars left, right and in front of
the agent have been determines as well as their speed. If there is a car ahead, the agent
calculates its next move by incorporating the distance and speed of the agent ahead into
the acceleration/ deceleration calculation. When there is no agent in front or the gap is

55

5 Design and Implementation

big enough the agent drives with up to its maximum speed. Should the next agent be too
close, the car reduces its velocity to prevent the collision. Again the biggest deceleration
mechanism is used to select the maximum required deceleration to behave correctly. The
check for other cars concludes the agents planning phase.

Moving the agent

Now that the agent has checked all relevant details about its surroundings, the perfect
amount of acceleration/ deceleration has already been chosen. This is now added to the
current velocity (deceleration is negative acceleration so this value is reduced) which
is then used as input for the move command. If the calculated distance to drive is
equal to zero the agent stops, otherwise the move command is used to calculate the
new position. Input for the move command is the agent itself as entity to be moved,
the desired driving distance and the route including the lanes. If the move succeeds,
the method returns information about the new position which is processed using another
method (ProcessMoveResult). The move does not necessarily succeed as another car could
have moved to the desired position so there is always the possibility of having to brake.
However this only happens if another car that is being simulated in another thread does
its move on the same road in between the explore and move method of car one. For
positive movements the returned information includes the new the position and lane it
currently occupies. Should the agent cross an intersection, the new edge is returned as
well. Based on this information the car then calculated its current GPS position and sets
this in its parameters so it gets persisted after the simulation step. The GPS calculation
incorporates the edges curvature which is stored as list of intermediary points. Based
on these points, the new position is determined so that the agent drives on the actual
road.

If the car changes the road (crossing an intersection) the following, additional steps are
made: Information about the allowed maximum speed is contained in the data from
OpenStreetMap. The agents can access this information directly through the Spatial
Graph Environment where the downloaded data is being stored in-memory. By reading
the associated attributes of the current edge, the agent adapts its parameter for maxi-
mum speed to the current limit. This parameter is then being used for the acceleration/
deceleration calculation in the next simulation steps. Additionally, the car updates its
route by removing the already driven roads.

56

5 Design and Implementation

5.3 Scenario modeling

Now that the environment has been set and the agent rules are in place, the simulated
scenario has to be modeled. For Altona this means creating a virtual population whose
combined travel activity make up the traffic there.

5.3.1 Virtual population and day plans

Where people come from and where they are going is not the focus of this thesis but it
plays a major role in the simulation. A colleague, Andreas Löffler developed a so called
day-plan generator that is based on demographic data and uses statistics to create travel
patterns. These patterns represent a real humans trips, made throughout a typical day.
Combining these travel patterns from thousands of citizens creates a virtual population
who’s joint travel activities make up the city’s traffic. To simulate traffic in Altona,
the agents have to drive from one point to another. In the beginning these origins and
destinations were picked at random but that doesn’t depict the measured traffic flows.
As a next step it had to be figured out when the agents would drive to which location
to resemble real human behavior. This has been done by Andreas Löeffler as part of his
master research in which he developed mechanism to create day plans for each individual
living in a simulated area. The agents can spend time at home (hometime), go out to
work, eat, run errands or enjoy their free-time. Based on demographic data he determines
the probability for each of those categories and thereby derives behavior schemes for the
agents. Main source for his day-plans is the study "Mobilität in Deutschland"[3] which
covers a wide variety of topics from socio-demographic information about citizens to
their average daily travel patterns. This study that is repeated regularly, published their
results in form of an online tool that allows to directly extract relevant information about
the travel patterns as shown in figure 5.7.

The columns represent the activity categories and the rows are the time slots in these
the activities take place. This shows for example that for the early morning hours from
5am to 8am, 60% of all trips to work are made while only 3% of free-time activities take
place. The columns are independent from each other and only show how many of the
trips belonging to this category (out of 100%) are being made in the respective time
slot. This data is the basis to determine when agents start their activities throughout
the day.

57

5 Design and Implementation

Abbildung 5.7: Purpose of making a trip in relationship to the time of day

Individual factors like sex, occupation, place of residence and availability of a car are ta-
ken into account next to further refine the model. Occupation is one of the main factors
since the travel patterns of full-time workers and part-timers differs strongly from unem-
ployed people or those who work at home. These three categories (full-time, part-time,
unemployed) are coupled with demographic data about the total inhabitants to genera-
te the initial virtual population. The data used for this distinction is the ”Statistisches
Jahrbuch Hamburg”, a report about Hamburgs demographics and socio-economic status
that gets published yearly [1]. At first the occupation distribution among the agents is
being calculated and divided into the three categories full-time, part-time, unemployed
based on the report. Full-time means 39.5 hours per week and part-time is 26 hours per
week on average. The trips made throughout the day are divided into 36% free-time, 37%
errands and 27% work and have been calculated for weekdays, not weekends. Once each
citizen has been assigned its work status, the next step is to generate a chain of actions
that depicts that agents travel pattern. Each action gets a starting time assigned so that
the agents stay at the destination for an appropriate amount of time before making the
next trip [14].

When the amount of trips made by car is to be determined, the biggest influence is car
ownership. Car sharing is increasingly popular and especially citizens in larger cities like
Hamburg have accounts for the ride-sharing services. As of 2017 up to 14% percent of
the large city population is user of car-sharing [3]. Since the data supplied through the
traffic counts and the ”Statistisches Jahrbuch Hamburg” are based on data from 2016, car
sharing will be neglected. For Hamburg Altona there were 89.705 private cars registered
in the beginning of 2017. This equates to 332 cars per 1.000 residents [1]. Citizens, use
cars to get around town so the cars will only be actively driving when such a trip is
to be made. Based on the total amount of cars registered in Altona, trips for 89.705
citizens have been created. Each agent follows his plan, look up a location where his

58

5 Design and Implementation

assignment can be fulfilled and then drives there. When the simulations are initialized,
the first agents are created in the simulated area. These are the agents that are present
there at the the first simulation time step. After this, more agents are inserted based on
the calculated day-plans which contain the time of day they are to be created.

5.4 Implementation anecdotes

5.4.1 Figuring out directions

What is left and what is right? This rather simple issue in real life wasn’t as easy in the
model when it comes to intersections. Every adjacent road either incoming or outgoing
has a direction. The unknown part is their spatial relationship to each other. So when the
agents arrive at an intersection they may know where their route leads, but they didn’t
know whether this involved turning or if it meant going straight.

This implementation detail is being used both by the traffic lights as well as by the car
agents. Car agents, in most situations, have a route that they follow. When they get to
an intersection they naturally don’t know in which cardinal direction the next road leads.
What they know as a route is a list of roads without any information about their angles.
So turning right is the same as going straight ahead. This doesn’t resemble the real world
though and had to be changed. Taking into account the bearing of arrival at the crossing,
the angle to the bearing of the outgoing road is calculated. This angle is then used to
classify the direction to one of eight directions. These are straight on, wide right, right,
sharp right, backwards, sharp left, left and wide left. Depending on these directions the
agents change their behavior and most prominently the speed at which they perform
driving maneuvers. As a result the agents drive with unchanged speed straight ahead
over a crossing with a green light while they decelerate before taking a sharp left. Details
about the car agents driving behavior can be found above.

The traffic lights use the same implementation for a similar purpose. Since there is not
data available that states which roads at an intersection are connected, the traffic light
has to figure that out on its own. Determining the angle between incoming and outgoing
roads, the traffic lights connect only those that would be connected in reality. For example
there would never be a traffic light for making a U-turn while there most likely will be
one for going straight ahead.

59

6 Results

This chapter collects the results from the experiments for hypothesis one to three. The
discussion will take place in the next chapter.

6.1 Hypotheses One

The experiments for hypothesis one aim at answering the question whether the Intelligent
Driver Model can be used as basis to build a rule-based traffic model. Additionally they
allow to assess the agents behavior in typical situations found in urban traffic.

6.1.1 Basic driving

This section collects the results from the basic driving experiments. These test the cars
acceleration and deceleration behavior.

Experiment: ”Accelerating”:
For the first experiment, the agent was tasked to drive on an empty road in order to
assess its acceleration behavior. Figure 6.1 shows both the velocity and the acceleration
over the course of the simulation. As described in the expected outcome part, the cars
velocity increases steadily in the beginning with up to 0.73 m

s2
. Towards the maximum

speed, the acceleration declines as the car reaches its desired top speed of 13.89 m/s (50
km/h). The results represent the exact values as calculated through the IDM. Comparing
them to manual calculations shows no deviation.

Experiment: ”Regular deceleration”
Figure 6.2 shows the progress of velocity and acceleration during the second experiment.
This time the cars deceleration behavior is simulated where the task is to come to a
complete stop within 100 meters. The car starts with an initial speed of 13.89 m/s
(50 km/h) and immediately reduces its velocity. After braking with up to -0.87 m

s2
the

60

6 Results

Abbildung 6.1: Car acceleration from 0 m/s to 13.89 m/s

deceleration is slightly reduced to -0.72 m
s2

in tick three before braking even harder. In
tick nine a maximum deceleration of -1.26 m

s2
can be seen which is lower than the so

called comfortable acceleration parameter specified in the IDM. From tick ten onwards
the deceleration is constantly reduced until the car comes to a halt in tick 22. Calculating
the IDM manually as reference shows no deviation.

Abbildung 6.2: Car braking from 13.89 m/s to 0 m/s within 100m

Experiment: ”Intense deceleration”
In the last deceleration experiment the cars reaction to unforeseen events is tested where
the task is to come to a halt within 25 meters. Since the IDM keeps a safety distance to
obstacles of two meters, the overall distance was increased to 27 meters. Running this
scenario reveales a problem with the Intelligent Driver Model. Looking at figure 6.3 shows
that the agent decelerates from 13.89 m/s to 1.42 m/s within the first simulation step (1
second). The deceleration is as high as -12.47 m

s2
which points to the IDM not calculation

61

6 Results

realistic values anymore. After almost coming to a complete stop in the first simulation
step, the car then accelerates again before stopping when reaching the obstacle after 18
ticks. Since calculating the same scenario manually showed the same results, this shows
a problem with the IDM. The comfortable deceleration value of 1.6 m

s2
exceeded may

times over. Instead of constantly applying the brakes until coming to a stop, the IDM
plans an emergency braking maneuver for one second. That there is enough space left to
accelerate afterwards, shows that deceleration calculated through the IDM is too high in
such situations.

Abbildung 6.3: Car braking from 13.89 m/s to 0 m/s within 27m

Experiment: ”Driving on a road”
In the last experiment of testing the cars basic driving skills, its ability to follow the
curvature of a road is tested. Figure 6.4 shows the GPS positions of the car driving on
Vogt-Groth-Weg in Altona. Starting on the top right corner, the drive connects to the
bottom left one in an L-shape. The dots show the cars positions over the course of the
simulation which align with the shape of the road. It follows the curvature perfectly,
passes the test and concludes the experiment successfully. Figure 6.5 confirms this for
another road with a unique curvature in S-shape.

6.1.2 Speed limits

In this section, the results from the speed limit experiments are be presented. This
includes those simulating an increase as well as those simulating a decrease in the allowed
maximum speed of a road.

Experiment: ”Increasing speed limits”

62

6 Results

Abbildung 6.4: Car following the curvature of Vogt-Groth-Weg in Altona

Abbildung 6.5: Car following the curvature of Plöner Straße in Altona

63

6 Results

Abbildung 6.6: Car adopting its velocity to increasing speed limits.

Abbildung 6.7: Car adopting its velocity to reduced speed limit.

Figure 6.6 shows a the velocity curve for the car from the increasing speed limit experi-
ment. Initially the car accelerates to the currently allowed maximum speed of 8.33 m/s
(30 km/h) as denoted by the lower dotted red line. At simulation step 144 the car crosses
the intersection where the speed limit changes to 13.89 m/s (50 km/h). This is being
picked up by the car (sensing) which then starts accelerating until the new speed limit,
denoted by the upper red line, is reached. The limits are neither exceeded, nor undercut
which ends the experiment successfully.

Experiment: ”Decreasing speed limits”

Figure 6.7 shows the results from the decelerating speed limit test. In the beginning the
car accelerates to the maximum speed of 50 km/h as denoted by the upper dotted line.
Once the intersection is crossed and the speed limit decreased, the car agent incorporates
these new driving parameters and decreases its velocity. After decelerating to 30 km/h

64

6 Results

Abbildung 6.8: Harsh braking to comply with reduced speed limit

(lower dotted line) it continues driving at that speed. Obeying the changing speed limit
works, however the amount of deceleration used to do so is very high. As with the
previous experiments for deceleration, the car reduces its velocity by -4.87 m

s2
in the first

tick after sensing the new limits. Figure 6.8 shows an excerpt from the other figure which
demonstrates this. After an initial very harsh deceleration, the car proceeds to reduce its
speed with minimal brake application until the speed limit is met.

6.1.3 Traffic lights

Experiment: ”Stopping at red lights”:
The results of experiment 4.3.3 are shown in figure 6.9. On the left side the velocity is
depicted in relationship to the ticks of the simulation. The figure on the right shows the
acceleration for the same period. The agent starts with an initial velocity and acceleration
of zero and then increases its speed following the depicted acceleration values until it
reaches 10.8ms . At this point the car hasn’t reached its maximum speed of 13.89ms but
since it is approaching a traffic light, it starts reducing the velocity. Tick 20 marks the
start of the deceleration process where the acceleration changes from positive to negative
values. The deceleration is at its maximum at tick 27 where it reaches −1.25m

s2
. At tick

39 the car has come to a complete stop with a remaining distance of 2m to the traffic
light.

Side-note on the initial results which are shown in figure 6.10. Looking at the course of
the velocity one can see a harsh drop in tick 23 where the agent suddenly decelerates
before slowly coming to halt. This heavy braking is caused by a too low field of view.

65

6 Results

Abbildung 6.9: Velocity and the distance to the red traffic light in relationship to the
current simulation tick on the left and acceleration/ distance to the traffic
light in relation to the simulation step on the right. Velocity in m

s , distance
in m, acceleration in m

s2
.

The agent ’sees’ the traffic light very late and instantly performs an emergency breaking
maneuver to avoid running the red light. Deceleration is as high as −4.37m

s2
at this point.

When encountering this behavior the necessity of a bigger field of view was eminent. See
section 5.2.3 for details about this.

Experiment: ”Green lights”

Figure 6.11 shows the agents velocity and acceleration over the course of simulating the
green light scenario. As before the agent starts out with an initial speed and acceleration
of zero. In contrast to the red light experiment, the car doesn’t reduce its velocity while
approaching the intersection. This time the traffic light is sensed and then green light is
processed as a go signal. The car continues accelerating and increases its speed to the
maximum velocity of 13.89ms . In tick 25 the car passed the light, not having slowed down
in any way.

Experiment: ”Yellow light - cross intersection”

The results for the first yellow light experiment look exactly like the ones for the green
light experiment so figure 6.11 is reused. When the agent approaches the intersection,
the traffic light turns yellow as the agent is 40 meters out. The car calculates that the
intersection will be crossed within three seconds at the current velocity so there is no
deceleration needed. As a result, the intersection is crossed without reducing the velocity

66

6 Results

Abbildung 6.10: Velocity and the distance to the red traffic light in relationship to the
current simulation tick on the left and acceleration/ distance to the
traffic light in relation to the simulation step on the right. Velocity in
m
s , distance in m, acceleration in m

s2
.

Abbildung 6.11: Velocity and the distance to the green/ yellow traffic light in relationship
to the current simulation tick on the left and acceleration/ distance to
the traffic light in relation to the simulation step on the right. Velocity
in m

s , distance in m, acceleration in m
s2
.

67

6 Results

and the car keeps accelerating as the maximum speed of 13.89 m/s has not been reached
yet.

Experiment: ”Yellow light - stop”

Figure ? shows the the cars velocity and acceleration/ deceleration during the approach.
In simulation step 23 the traffic light turns from green to yellow as the car is 42 meters
out. The car senses this change and after calculating that there is enough space/ time to
come to a stop, starts to decelerate. This deceleration is as high as -3.38 m

s2
which again

shows the IDM’s tendency to calculate high values for situations with sudden changes.
In simulation step 39 the car comes to a complete stop, two meters from the intersection
just as expected.

6.1.4 Intersections

Experiment: ”Approaching alone”

The car approaches the intersection with an initial speed of 13.89 m/s. As the intersection
is sensed the car reduces its velocity incrementally to 2.7 m/s so that it could stop at
any time. Since the exploration shows no incoming cars, the intersection is crossed and
the car starts accelerating again. Analyzing the performed simulation showed that the
agent behaves correctly.

Experiment: ”Traffic from the right”

For the second intersection simulation, car one comes from the south and is headed north
while the second car comes from the east and is traveling east. Both cars reduced their
velocity to 2.7 m/s as they approach the intersection where they checked the incoming
traffic. As car two doesn’t have to give way it proceeds and crosses the intersection just
as in the last experiment. The other car senses traffic from the right and further reduces
its velocity to let that car pass. In the next simulation step after car two has passed,
car one starts accelerating again and crosses the intersection as well. Again, both agents
behave in the desired way.

Experiment: ”Turning left with approaching traffic”

The third simulation is a slight variation of experiment two but this time the first car
comes from the south and wants to go east while the second car comes from the north
and wants to cross southbound. Again both cars reduce their speed to 2.7 m/s during

68

6 Results

the approach before the second car crosses the intersection. The first car has successfully
sensed that his left turn crosses the path of car two and that it therefore has to wait until
it passed. Once this has happened, the first car crossed the intersection as well which
concludes the experiment as success.

Experiment: ”Deadlock turning left with approaching traffic”

In the fourth simulated scenario the first car comes from the south, heading west while
the second car comes from the north headed east. In the simulation both cars come to a
complete stop at the intersection as they both want to make a left turn. As the concept
of turning lights is not part of the model, the cars can’t figure out that they both want
to turn left which would work perfectly fine. Both cars wait for a complete second as no
one moves before they start driving again as desired.

Experiment: ”Complex deadlock situation with four directions”

The last simulation includes cars approaching from four directions. Car one comes from
the south and wants to go east while car two comes from the east and wants to go west.
Car three comes from the north and wants to go south while car four comes from the
west and wants to go north. During the first part of the simulation, all cars approach,
sense the other incoming cars and come to a stop as no one has the right of way. This
is the deadlock situation. To solve this issue, a mechanism has been included in the cars
intersection routine that checks for lowest OSM ID. The car on that road then proceeds,
thereby resolving the deadlock. In the simulation this was car three that crosses the
intersection which leads to car two having no traffic from the right which allows it to
cross as well. Now that car one has no cars to its right it makes its turn before finally
car number four can cross the intersection. This concludes the intersection experiment
successfully.

6.1.5 Multilane roads

The experiment has been realized as simulation test where the two car agents have
been used in drive mode number six as described in the implementation chapter. Both
cars start at the same intersection driving north. The route of car one dictates to go
right on the next intersection while second car is tasked to go to the left. During the
first simulation step, both cars change to the correct lanes so that car one drives on the

69

6 Results

rightmost lane while car number two uses the leftmost one. In the last step before making
the turn, this is confirmed again so that the experiment is completed successfully.

6.2 Hypotheses Two

Simulating Altona’s virtual population for the time period of 6am to 7pm took 12 hours
on average. The simulation was repeated 10 times. On this scale and with the used
agent count this is faster than real time so that the model could potentially be used for
predictions into the future. Based on the day-plan generator the agents made their trips
throughout the city while the movements were captured by the traffic counts. The results
from comparing the simulation counts to the traffic counts from Altona show that the
measurements from the simulations are much lower than the real-life counts. Over all
traffic counts and all 15 minute time frames the simulated counts make up only 15.75%
of the actual counts. The counting point which gets closest to the actual counts is at
the intersection of Elbchaussee and Schenefelder Landstraße in the northern direction.
The counts make up 29.76% of the actual traffic measured there. At the intersection
of Stresemannstraße and and Tasköprüsstraße the eastbound traffic is only 2.6% of the
actual counts. This is the biggest deviation seen in the ten counting points that have
been monitored.

To further discuss the results, three traffic count positions have been selected whose
results represent both extremes and the closest resemblence. The counting position on
Elbchaussee and Schenefelder Landstraße is the closest match in terms of amount of
agents counted with 29.76% of the actual counts. Figure 6.13 shows these results over the
course of the day with the blue bars representing the real traffic counts while the orange
bars show the simulated ones. In the morning hours the day-plan generator caused the
most traffic around 8 o’clock with another, smaller peak at 9:30h. After this, the amount
of traffic stays stable with another slight increase around noon. Towards the end of the
day, the amount of cars counted increases slightly without reaching the morning peak.
This is conclusive with the amount of trips produced through the day-plan generator.
The peaks in the morning are caused by agents traveling from the west of Altona with
more residential areas to the northwest. As the counting position is located on a major
road that connects both parts, the amount of traffic during the day stays constant.

The intersection Stresemannstraße/ Tasköprüstraße showed the least traffic of all moni-
tored intersections. Also the results deviate strongly from the actual counts as shown in

70

6 Results

Abbildung 6.12: Locations of the three counting points discussed in detail

Abbildung 6.13: Schenefelder Landstraße northbound traffic from Elbchaussee

71

6 Results

Abbildung 6.14: Stresemannstraße eastbound intersection Tasköprüstraße

figure 6.14 with the blue bars being the actual counts and the orange bars representing
the simulated results. Traffic flowing on the road only accounted for 2% of the actual
counts in Altona. The simulated traffic (orange bars) is barely visible at the bottom
where the counts drop to 0 cars per 15 minute time window on multiple occasions. In the
morning and in the afternoon the simulated traffic goes up during rush hours but even
then it only accounts for up to 10% of the actual counts. These results are difficult to
explain since this is one of the most important roads in Altona with a lot of traffic flowing
in both directions. Even though the peaks in the morning and afternoon are resembled,
the overall amount of counted cars is suspiciously low. The combination of virtual popu-
lation, used traffic model and the environment data should be further examined before
applying it to real world predicitions.

At the third count on the intersection of Klopstockstraße and Kaistraße, the pattern found
in the real traffic is matched closest even though the simulated traffic only accounts for
15.35% of the real counts. Figure 6.15 shows the measured traffic in orange while the
blue bars represent the actual counts. Over the course of the simulation, the measured
traffic copies the actual counts in their characteristic even though accounting for fewer
agents. The peaks in the morning around 8 o’clock as well as those towards the end

72

6 Results

Abbildung 6.15: Klopstockstraße/ Kaistraße in south-west direction

of the day resemble the actual counts very closely. In the morning from 6 o’clock on,
the simulation produces the same incline and in the evening towards the end of day the
traffic stays constant as in the actual counts. Even the slight increase 13:45 has been
reproduced. This does not mean that the simulation is perfectly adjusted or is generally
able to reproduce the exact traffic but it sure demonstrates that it is possible to recreate
the main dynamics only using publicly available data.

Overall the traffic measured is significantly lower than the actual counts. The closest
resemblance can only account for up to 29.76% while the lowest measurements only
makes up 2.6%. That the amount of traffic is generally lower than the actual counts can
be partially explained by the lack of commuters in the simulation. The day-plan-generator
can only generate trips for the people living in the simulated area and even then, only
those starting and ending in Altona are simulated. Commuters that leave Altona or those
coming from outside aren’t part of the simulation so these trips will not occur here. This
leads to the overall traffic being significantly lower than the measured volume which is
being collected through counts. Secondly the model used and the environment it operates
in could be the reason too. The traffic lights are operating on a very simplified schedule
since there is no data available on the actual switching times. This might change in the

73

6 Results

future and the traffic light layer can already handle it but at the moment of finishing this
thesis it was not available. As a result, the overall flow of traffic is slowed down throughout
the city since the simplified lights give way to only one road at a time instead of allowing
straight traffic in opposing directions crossing the intersection at the simultaneously. Also
there are no priority roads which receive longer green phases than others as they would in
reality. Another problem at intersections is missing information about the lane directions
which is missing completely. For any road, only the total amount of lanes is known, but
not where they are leading. Whether the traffic is allowed to turn right from three lanes
or only from the rightmost lane wasn’t contained in the available road data so it had
to be simplified too. This was solved in the way that cars can go right only from the
rightmost lane and go straight from every lane. For situations where more than one lane
of a bigger road leads to the left (or right), the model cannot account for it and naturally
produces jams as the amount of cars going in that direction exceeds the lanes capacity.
As a result, the overall flow of traffic is slower.

6.3 Hypotheses Three

Experiment: ”Left hand driving in South Africa”

The experiment has been tested using a simulation to determine whether the left hand
driving parameter gets set correctly. After reading the agent initialization file the values
are passed through the agent manager and the new agent is created with the left hand
driving enabled which concludes this experiment successfully.

Experiment: ”Implementing a new intersection type”

The design chapter describes how the two traffic codes have been incorporated into the
model. Based on the input parameter trafficCode the desired traffic code is selected. To
test this, another simulation run has been made whose results of the four way intersection
are described in the next experiment. Adding this new type of intersection only required
a minimal change to the model at the point where the currently used traffic code is
checked. Depending on this parameter a dedicated function for the traffic code is called
where the new intersection has been implemented. Only requiring to change two lines of
code proved that the model was implemented in a generic manner so that new types of
intersections or a new traffic code can be implemented easily.

Experiment: ”Four way stop”

74

6 Results

Four cars arrive from four different directions. Car one from the south, car two from the
west, car three from the north and car four from the west. The order of arrival is car
one, then car two, car three and then car four. During the experiment all cars sensed
the intersection and the incoming cars and came to a complete stop. After this, the cars
proceeded in the correct order which concludes this experiment successfully.

Experiment: ”Simulating the whole park”

Figure 6.16 shows a simulation of the whole Kruger National Park. Red dots denote
the park’s camps while the green dots represent the park’s gates. To better visualize the
results, only the tracks of 30 agents have been plotted as they drive around the park. The
orange lines represent the cars paths driven over a time period of 30 minutes. Simulating
the agents in the park has been deemed correct based on the authors knowledge about
the park.

75

6 Results

Abbildung 6.16: Simulating the whole Kruger National Park

76

7 Discussion

The discussion has been divided into multiple parts as there are three separate hypothesis
to evaluate: At first the analysis and implementation is concluded in order to establish
a baseline of what has been implemented and what hasn’t. Once these details have been
laid out, the experiment results for hypothesizes one to three are examined. At last, a
conclusion is being drawn that summarizes the thesis.

7.1 Hypothesis One

All experiments have been carried out and their results shown in the last chapter. Now
the different groups of experiments are discussed with regard to the first hypothesis.

7.1.1 Basic driving

The Intelligent Driver Model has been successfully integrated into the agent model and is
the basis for all calculations concerning changes in speed. After sensing their environment
the agents reason about the information and decide where they go. Based on this decision
they use the IDM module to calculate the change in velocity as input for possible move
actions. Accelerating as well as decelerating has been covered and plotted with the results
for deceleration showing problems as the calculated values are very high. Results from
the acceleration experiments show that the Intelligent Driver Model produces realistic
values for acceleration maneuvers and can be applied without restrictions.

This is not the case for the deceleration experiments though. They show that the IDM
works as long as there is enough space/ time for the car to reduce its velocity. If the
remaining distance to an obstacle is too small or the speed difference is too high, the
IDM calculates unrealistic values for deceleration. When the car agents move within a
controlled environment where they don’t have to react to sudden changes, the IDM will

77

7 Discussion

not be a problem. For scenarios where unexpected things might occur, the IDM will not
be sufficient to calculate realistic deceleration behavior. If, in an integrated scenario with
pedestrians and cars, there was one human to step in front of the car, the car would stop
immediately instead of reacting appropriately. Since the IDM has been build as collision-
free model, this mechanism is embedded by design and the car will brake as hard as it
has to, in order to avoid the crash.

7.1.2 Speed limits

The speed limit experiments show that the agents can identify changing speed limits
by themself and have appropriate rules in place to react to them. Correct reactions to
both increasing and decreasing speed limits were proven with the IDM causing to high
deceleration values when entering a zone with reduced maximum speed. As a result the
current velocity is reduced heavily within the first second instead of slowly decreasing it
as human drivers would do. Still, the cars act by either reducing the current speed to a
lower speed limits or by accelerating until a higher speed limit is met. It was shown that
the agents neither exceed the limits, nor undercut them by more than 1 km/h.

7.1.3 Traffic lights

Traffic lights have been included through the dedicated traffic light layer which manages
their light changes. Linking the traffic lights directly into the spatial graph environment
allows the agents to access the current situation during the explore phase. The experi-
ments for traffic lights show that the agents pick up the current light situations while
approaching the intersection. Based on that information, the agents directly incorporate
the presences/ absence of traffic lights and their current status into their planning and
react accordingly. The traffic light experiments prove that the agents correctly recognize
the three phases red, green and yellow and react accordingly. Red lights are strictly being
followed and green lights seen as a go signal. In situations with yellow the cars decide on
the correct action based on the current velocity and the distance to the traffic light.

7.1.4 Intersections

The experiments at intersections show that the agents know to handle the various situa-
tions found at crossings. When traffic lights are absent, the right of way is determined

78

7 Discussion

based on the driving direction and the angle of incoming roads and cars. Situations where
cars come from the right can be handled correctly as well as the more complex scenarios
where cars come from multiple sides. The only situation that can’t be handled ideally is
when two cars are turning left with incoming traffic since there is no concept like turning
lights. As a result the cars don’t know that the other one desires to turn left too. This
has been solved by neglecting the rule if no one moves for multiple steps which can be
improved in the future. Besides this, even complex deadlock situations can be resolved
and the agents behave as desired at left yields to right intersections.

7.1.5 Multi-lane roads

Driving on the right lane when turning right and driving left when turning left has
successfully been integrated into the model. The experiments for multi-lane roads de-
monstrate how the agents move to the correct lane before making the turn. There is no
moving to the right from any lane but the rightmost and left turns are only performed
from the leftmost lane.

7.1.6 Summary

In conclusion it can be said that hypothesis one holds and that the Intelligent Driver
Model can be used as foundation for an agent-based traffic model. It can calculate reali-
stic acceleration and deceleration values for scenarios without abrupt changes but has its
downsides when it comes to deceleration. In situations where human beings would brake
hard and consistent for multiple seconds, the IDM calculates too high deceleration values
in order to reduce the speed as fast as possible. Since the IDM has been build collision
free, this behavior is by design part of the model and has to be taken into account. Im-
plementing the agent rules on top has been proven possible with the various experiments
showing it.

7.2 Hypothesis Two

Recreating traffic patterns found in real traffic is not an easy task as described in the
analysis chapter. Even taking into account a multitude of data is not always sufficient
which has been proven on other occasions [28]. That the traffic patterns of Hamburg

79

7 Discussion

Altona could only be reproduced to a certain degree is unfortunate but not unexpected. In
microscopic models the resulting traffic is based on the trips made of a virtual population.
If the population resembles the real situation this could lead to the same measurements
at best. Since statistics are only able to depict the reality to a certain level, there is
uncertainty involved per definition. But then, the social science aspect wasn’t the focus of
this thesis. The second variable that has to be taken into account is the agent model itself
as well as the data it is operating on. As described in the Design and Implementation
chapter there a multiple factors that lead to the seen results. The result section for
hypothesis two lists these reason which mainly account to slowing down the overall flow
of traffic through missing data on the simulated area and the resulting simplifications
made to the model.

As a result the traffic patterns in the simulation can differ strongly from the real system
especially if road markings or traffic light schedules apply that contradict the simplifica-
tion. For small scenarios with a limited amount of intersections this could be corrected
manually and is often done so with frameworks like PTV Vissim but for the simulated
scenarios in Altona or the Kruger National Park this approach is not feasible anymore.
Since large scale simulations require a lot information, they can only be as good as the
provided data. Despite the differences in the results, the second hypothesis mustn’t be
seen as complete failure but rather as first step in the right direction that can be improved
upon in the future.

7.3 Hypothesis three

Adapting the model to the South African environment worked with few modifications
to the base implementation. The car which has been build for Altona includes a wide
variety of drive modes which proved as good starting point for the Kruger model. In
the near future the model will be enriched with data about cars traveling through the
park so there will be a similar virtual population. At the time of writing the thesis this
data wasn’t available so drive mode two was used where agents pick random starts and
destinations. With the origin-destination covered, the focus was put on implementing the
remaining changes which mostly covered the intersection behavior.

Left hand vs right hand driving could be solved through adding an input parameter so
that the model can be configured with a config file. This eliminates the need to change
code or to recompile the model when running a simulation in another part of the world.

80

7 Discussion

For the required traffic code the same approach was chosen so that there is another
parameter (trafficCode) to be set from a config file. Using this parameter one can switch
between German and South African traffic code as these are the only ones implemented
at this time. For future scenarios these fields can be extended so that other areas in the
world can be added easily. Since the traffic codes have been separated from the main
agent method, new methods for other traffic codes can be added without the need to
reprogram the main part of the agent. This concludes hypothesis three and it can be said
that the implemented model is generic.

7.4 Final conclusion

Starting out with a rudimentary car agent and the spatial graph environment, a lot of new
things had to be developed. The progress of the car model stopped on multiple occasions
as new concepts had to be added to either LIFE or the encompassing models for Altona
and KNP. Traffic lights were very important for the models but implementing a dedicated
Traffic Light Layer slowed down the progress. This proved as challenge but also allowed
for more realism in the simulation and can hopefully be extended should detailed data
on traffic lights become available. The same is true for the Car Spawner Layer and the
virtual population which had to be invented so that new cars could be inserted into the
simulation during runtime. Before the agents could drive in Altona, the data on traffic
counts had to be obtained as well and a dedicated counting mechanism be developed in
order to make the simulation comparable. Each addition to the car model meant going
back one step to extend something else or invent it from scratch. As a transition to the
future work chapter I must say that building the model was challenging, yet fun but it
also showed how much effort it takes to develop a traffic simulation.

The implemented model works and the agents behave correct in the simulated scenarios
both in Altona in the Kruger National Park. Hypothesis one can be confirmed based
on the seen results with a few remarks to the Intelligent Driver Model. For free flowing
traffic without out sudden changes this model can be used as basis for traffic simulati-
ons without limitations. Should the situation require braking maneuvers that exceed the
comfortable braking limit, the model calculates unrealistically high values for decelerati-
on. This poses a severe problem and other models must be considered to either replace
the IDM completely or at least in such situations. Even though the data on Altona was
limited, the model could reproduce the general dynamics of urban traffic to a certain

81

7 Discussion

level. In total, the counts were significantly lower but there are multiple reasons leading
to this mainly being the absence of commuters and simplifications in the model. For
future simulations, the shortcomings should be examined in detail and more focus been
laid on the demographics behind the virtual population. Altona connects the west of
Hamburg with the city centre and has a lot of passing traffic, not originating in Altona.
This isn’t part of the simulations yet and should certainly be included in the future. Still,
hypothesis two can be seen as partial success as the overall dynamics where recreated.
With more detailed information about the origins and destinations of trips in the future,
the model will certainly be able to get closer to the actual traffic counts.

Lastly hypothesis three can be confirmed as well. The agent model, build for Hamburg,
could be used in the Kruger National Park with only a few extensions. Once the traffic
code had been implemented, the model was usable in the new setting without the need
for further code changes. The MARS specific simulation configuration files now allow to
populate the agent constructors during simulation initialization so that both the traffic
code as well as the parameter for driving on the left side of the road can be configured
from outside. The model has been build truly generic so that components to simulate
the traffic of other parts of the world can be added gradually as the scenarios change in
the future.

82

8 Future Work

For future simulations there are a couple of topics that can be improved upon. First
there is the data aspect which will probably have the biggest impact because most of
the simplifications made to the current model where du to the lack of it. Detailed data
on road markings, traffic light schedules and traffic signs would allow to increase the
degree of realism manifold. Based on such data, a dedicated intersection component
could be implemented that represents the crossings actual spatial extend with all its
turning lanes, dictating the direction of traffic. This would improve greatly on the current
situation where agents can cross intersections in any direction they want. With data on
traffic lights, higher order streets would receive longer green phases so that more traffic
can flow in certain directions. Concepts like these are especially needed if the traffic of
Altona should be recreated more detailed. Once a dedicated intersection module has been
added to the simulation, all the various intersection scenarios could be recreated based
on traffic signs. This data isn’t available at the moment so every intersection has either
a traffic light or the right of way is determined based on left yields to right/ four way
stop rules.

The second improvements can be made to the agent model itself which has been develo-
ped to simulate cars. This implementation will be the basis for busses in public transport
but there are even other types of road users like trucks possible. Since the model has
been implemented as generic as possible only the driving parameters for acceleration,
deceleration, length etc. would have to be altered. In terms of driving physics, the cars
curvature should be part of the movement calculation as well so that cars don’t speed in
places where it isn’t appropriate. Additionally the cars/ trucks mass could be incorpo-
rated into the movement calculation for even more realism. The IDM showed a couple
of disadvantages for the simulation so this model could be replaced with another model
for scenarios where intense braking has to be applied. If these challenges aren’t enough,
one could even set out to include human emotions to incorporate different driving styles
which would probably enable the highest level of realism.

83

Literaturverzeichnis

[1] Statistisches Jahrbuch Hamburg 2017/2018. Hamburg, 2018. – Forschungsbericht

[2] Bazzan, Ana L. ; Klügl, Franziska: A review on agent-based technology for traffic
and transportation. In: Knowledge Engineering Review (2013). – ISBN 1469-8005

[3] BMVI: Mobilitaet in Deutschland 2017 - Ergebnisbericht / Bundesministerium für
Verkehr und digitale Infrastruktur. Bonn, 2018. – Forschungsbericht

[4] Brackstone, Mark ; McDonald, Mike: Car-following: a historical review. In:
Transportation Reserach Part F: Traffic Psychology and Behaviour 2 (1999), Nr. 4,
S. 181–242

[5] Dallmeyer, Jörg: Simulation des Straßenverkehrs in der Großstadt. Springer,
2014. – ISBN 978-3-658-05206-5

[6] Foytik, Peter ; Jordan, Craig ; Robinson, R M.: Exploring Simulation Based
Dynamic Traffic Assignment With A Large-Scale Microscopic Traffic Simulation Mo-
del. In: ANSS ’17 Proceedings of the 50th Annual Simulation Symposium. Virginia
Beach, USA, 2017

[7] Greenshields, B D.: A Study Of Traffic Capacity. In: Proceedings of the Fourteenth
Annual Meeting of the Highway Research Board Held at Washington, D.C. December
6-7, 1934. Part I, Highway Research Board, 1934

[8] Grignard, Arnaud ; Alonso, Luis ; Taillandier, Patrick ; Gaudou, Benoit ;
Nguyen-Huu, Tri ; Gruel, Wolfgang ; Larson, Kent: The Impact of New Mo-
bility Modes on a City: A Generic Approach Using ABM. In: Morales, Alfre-
do J. (Hrsg.) ; Gershenson, Carlos (Hrsg.) ; Braha, Dan (Hrsg.) ; Minai, Ali A.
(Hrsg.) ; Bar-Yam, Yaneer (Hrsg.): Unifying Themes in Complex Systems IX.
Cham : Springer International Publishing, 2018, S. 272–280. – ISBN 978-3-319-
96661-8

84

Literaturverzeichnis

[9] Horni, A ; Nagel, K ; Axhausen, Kay W.: The Multi-Agent Transport Simulation
MATSim. London : Ubiquity Press, 2016

[10] Hüning, Christian ; Adebahr, Mitja ; Thiel-Clemen, Thomas ; Dalski, Jan ;
Lenfers, Ulfia ; Grundmann, Lukas ; Dybulla, Janus ; Kiker, Gregory: Mo-
deling & Simulation as a Service with the Massive Multi-Agent System MARS. In:
Spring Simulation Multiconference, 2016. – ISSN 07359276

[11] Kesting, Arne ; Treiber, Martin ; Helbing, Dirk: Agents for Traffic Simulation.
In: Uhrmacher, Adeline M. (Hrsg.) ; Weyns, Danny (Hrsg.):Multi-Agent Systems:
Simulation and Applications. CRC Press, 2009, Kap. 11, S. 566. – URL http:

//arxiv.org/abs/0805.0300. – ISBN 978-1-4200-7023-1

[12] Li, Li ; Chen, Xiqun (.: Vehicle headway modeling and its inferences in ma-
croscopic/microscopic traffic flow theory: A survey. In: Transportation Research
Part C: Emerging Technologies 76 (2017), mar, S. 170–188. – URL https://

linkinghub.elsevier.com/retrieve/pii/S0968090X17300141. – ISSN
0968090X

[13] Lighthill, M. J. ; Whitham, G. B.: On Kinematic Waves. II. A Theory of Traf-
fic Flow on Long Crowded Roads. In: Proceedings of the Royal Society A: Ma-
thematical, Physical and Engineering Sciences 229 (1955), Nr. 1178, S. 317–345.
– URL http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/
rspa.1955.0089. – ISBN 00804630

[14] Löffler, Andreas: Verfeinerung und Parametrisierung eines Fußgängermodells
durch Anreicherung mit geospatialen und demographischen Daten, Hamburg Uni-
verstity of Applied Sciences, Hauptprojekt, 2019. – 49 S

[15] Lopez, Pablo A. ; Behrisch, Michael ; Bieker-Walz, Laura ; Erdmann, Ja-
kob ; Flötteröd, Yun-Pang ; Hilbrich, Robert ; Lücken, Leonhard ; Rummel,
Johannes ; Wagner, Peter ; Wießner, Evamarie: Microscopic Traffic Simulation
using SUMO. In: 2005 IEEE Intelligent Transportation Systems Conference (ITSC),
IEEE, nov 2018. – URL https://elib.dlr.de/124092/

[16] Nagel, Kai ; Schreckenberg, Michael: A cellular automaton model for freeway
traffic. In: EDP Sciences 2 (1992), Nr. 12, S. 2221–2229

85

http://arxiv.org/abs/0805.0300
http://arxiv.org/abs/0805.0300
https://linkinghub.elsevier.com/retrieve/pii/S0968090X17300141
https://linkinghub.elsevier.com/retrieve/pii/S0968090X17300141
http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.1955.0089
http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.1955.0089
https://elib.dlr.de/124092/

Literaturverzeichnis

[17] Newell, G. F.: Nonlinear Effects in the Dynamics of Car Following. In: Operations
Research 9 (1961), Nr. 2, S. 209–229. – URL http://pubsonline.informs.

org/doi/abs/10.1287/opre.9.2.209. – ISBN 0030-364X 1526-5463

[18] Sanparks: Kruger National Park - Management Plan / South African National
Parks. 2018. – Forschungsbericht. – 243 S

[19] Schadschneider, Andreas: Physik des Straßenverkehrs. 2004

[20] Smith, Laron ; Beckman, Richard ; Baggerly, Keith ; Anson, Doug ; Williams,
Michael: TRANSIMS: Transportation Analysis and Simulation System / Los Alamos
National Laboratory. 1995. – Forschungsbericht

[21] Sokolowski, John A. ; Banks, Catherine M.: Principles of Modeling and Simulati-
on - A Multidisciplinary Approach. Wiley, 2009. – 280 S. – ISBN 978-0-470-28943-3

[22] Tchappi Haman, Igor ; Kamla, Vivient C. ; Galland, Stéphane ; Kamgang,
Jean C.: Towards an Multilevel Agent-based Model for Traffic Simulation. In:
Procedia Computer Science 109 (2017), Nr. 2016, S. 887–892. – URL http://dx.

doi.org/10.1016/j.procs.2017.05.416. – ISSN 18770509

[23] Treiber, Martin ; Hennecke, Ansgar ; Helbing, Dirk: Congested Traffic States
in Empirical Observations and Microscopic Simulations. In: Physical Review E 62
(2000)

[24] Treiber, Martin ; Kesting, Arne: An Open-Source Microscopic Traffic Si-
mulator. 2 (2010), Nr. 3, S. 1–7. – URL http://arxiv.org/abs/1012.

4913{%}0Ahttp://dx.doi.org/10.1109/MITS.2010.939208

[25] Treiber, Martin ; Kesting, Arne: Car-Following Models Based on Driving Stra-
tegies. In: Traffic Flow Dynamics. URL http://dx.doi.org/10.1007/978-

3-642-32460-4{_}11, 2013, S. 181–204. – ISBN 978-3-642-32459-8

[26] Weyl, Julius ; Glake, Daniel ; Clemen, Thomas: Agent-based Traffic Simulation
at City Scale with MARS. In: 2018 Spring Simulation Multiconference, 2018

[27] Zheng, Y U. ; Capra, Licia ; Wolfson, Ouri ; Yang, H A I.: Urban Computing :
Concepts , Methodologies , and Applications. In: ACM Transactions on Intelligent
Systems and Technology (2014)

86

http://pubsonline.informs.org/doi/abs/10.1287/opre.9.2.209
http://pubsonline.informs.org/doi/abs/10.1287/opre.9.2.209
http://dx.doi.org/10.1016/j.procs.2017.05.416
http://dx.doi.org/10.1016/j.procs.2017.05.416
http://arxiv.org/abs/1012.4913{%}0Ahttp://dx.doi.org/10.1109/MITS.2010.939208
http://arxiv.org/abs/1012.4913{%}0Ahttp://dx.doi.org/10.1109/MITS.2010.939208
http://dx.doi.org/10.1007/978-3-642-32460-4{_}11
http://dx.doi.org/10.1007/978-3-642-32460-4{_}11

Literaturverzeichnis

[28] Ziemke, Dominik ; Nagel, Kai: Development of a fully synthetic and open sce-
nario for agent-based transport simulations–The MATSim Open Berlin Scenario /
VSP Working Paper 17-12, TU Berlin, Transport Systems Planning and Transport
Telematics. 2017. – Forschungsbericht

87

Erklärung zur selbstständigen Bearbeitung einer Abschlussarbeit

Gemäß der Allgemeinen Prüfungs- und Studienordnung ist zusammen mit der Abschlussarbeit eine

schriftliche Erklärung abzugeben, in der der Studierende bestätigt, dass die Abschlussarbeit „– bei einer

Gruppenarbeit die entsprechend gekennzeichneten Teile der Arbeit [(§ 18 Abs. 1 APSO-TI-BM bzw. §

21 Abs. 1 APSO-INGI)] – ohne fremde Hilfe selbständig verfasst und nur die angegebenen Quellen und

Hilfsmittel benutzt wurden. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen sind

unter Angabe der Quellen kenntlich zu machen.“

Quelle: § 16 Abs. 5 APSO-TI-BM bzw. § 15 Abs. 6 APSO-INGI

Erklärung zur selbstständigen Bearbeitung der Arbeit

Hiermit versichere ich,

Name:

Vorname:

dass ich die vorliegende Masterarbeit – bzw. bei einer Gruppenarbeit die entsprechend
gekennzeichneten Teile der Arbeit – mit dem Thema:

Developing a generic multi-agent car model to simulate road traffic with
MARS

ohne fremde Hilfe selbständig verfasst und nur die angegebenen Quellen und Hilfsmittel
benutzt habe. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen
sind unter Angabe der Quellen kenntlich gemacht.

Ort Datum Unterschrift im Original

88

	Abbildungsverzeichnis
	Introduction
	Traffic research with MARS
	Hypotheses
	Structure Outline

	Methodology
	History of traffic research
	Models used in traffic research
	Microscopic models
	Cellular automata models
	Agent-based models

	Intelligent Driver Model

	Analysis
	Environment requirements
	Road network
	Intersections
	Traffic lights
	Traffic signs

	Agent requirements
	Longitudinal movement
	Lateral movement
	Traffic code
	Further regulations
	Routing
	Non-functional agent requirements

	Model requirements
	Virtual population
	Creating agents during simulation

	Experiments
	Setting One: Hamburg Altona
	Setting Two: Kruger National Park
	Experiments for Hypotheses One
	Basic driving
	Speed Limits
	Traffic lights
	Intersections
	Multilane roads

	Experiments for Hypotheses Two
	Altona traffic counts
	Simulating Altona's virtual population

	Experiments for Hypotheses Three

	Design and Implementation
	Environment modeling
	Road network
	Intersections
	Traffic counts
	Traffic signs
	Traffic lights

	Car agent modeling
	Constructor
	Intelligent driver model
	Agent rules

	Scenario modeling
	Virtual population and day plans

	Implementation anecdotes
	Figuring out directions

	Results
	Hypotheses One
	Basic driving
	Speed limits
	Traffic lights
	Intersections
	Multilane roads

	Hypotheses Two
	Hypotheses Three

	Discussion
	Hypothesis One
	Basic driving
	Speed limits
	Traffic lights
	Intersections
	Multi-lane roads
	Summary

	Hypothesis Two
	Hypothesis three
	Final conclusion

	Future Work
	Literaturverzeichnis
	Selbstständigkeitserklärung

