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rekomponenten anwenden lassen. Es wird dafür eine Machine Learning Applikation
mittels OPC UA und AutomationML beschrieben und ein Konzept für die Integration
in einen Automatisierungsprozess vorgestellt.

Julian Bonas

Title of the paper
Conceptual Process Integration of a Machine Learning Applications with Automa-
tionML and OPC UA

Keywords
Industry 4.0, OPC UA, AutomationML, Machine Learning, Automation, Skill-Base En-
gineering

Abstract
The idea of Industry 4.0 pursues the vision of production systems whose components
are fully interconnected and integrated into their environment. This enables these
systems to share their information and capabilities. In this thesis it shall be illustrated
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1. Introduction

Since 2011 the term Industry 4.0 (I4.0) has been minted. Its vision is to enable future sys-
tems within the manufacturing domain to be fully integrated and interconnected within its
environment. Thus these systems are enabled to share their information and capabilities.

In recent years, researchers have made many efforts to enable these systems. One aspect of
these efforts is the aggregation and creation of information. They rely on different information
modeling techniques to describe productions systems, processes, and products. The main
goal of this is to create models that describe and relate all parts in a production systems, so
machines can interpret these, and enriched with information that can ultimately be utilized
throughout the value-chain, from the supplier to manufacturers and customers, accessible
through a digital representation of these models.

Another aspect is the effort to create a standardized communication that utilizes the com-
ponent models and make them easily accessible. Today many communication protocols and
standards are utilized in production systems and are widely varying between manufactur-
ers. While each protocol has its advantages, most of them lack the capability of embedding
information, that enables, for instance, application engineers to access the communication
participants and explore their functionality. This lack results in great efforts during the inte-
gration of new components into a production system.

To provide consistency throughout these efforts, is it required, that resulting models are de-
tained in standards. This is essential in order to provide interoperability within an I4.0 sys-
tem, participating enterprises and overlapping domains. Resulting I4.0 components should
become easily accessible, systems scalable, and the integration of new devices less time-
consuming. Future Cyber Physical Production System (CPPS) will be created this way, that
are ultimately enabled to dynamically adapt to changes, in order to fulfill quickly changing
market needs and product customization requests.

1.1. Motivation

Within the automation domain, many efforts have been made, in order to describe hardware
components and their capabilities, utilized in automation systems. The goal is to classify
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the Product-Process-Resource (PPR) relationships and capabilities of devices. As a result,
products, processes and resources should become easily interchangeable by other products,
processes, and resources with the same classifications. Therefore the flexibility of the overall
systems increases, as well the ability of the system to determine if all resources are available,
needed to accomplish a particular process, in order to create a product.

Overall less effort has been made to describe purely software applications that are not di-
rectly related or assigned to any particular kind of hardware. For instance, the capabilities of
a robot are mainly described by its ability to move inside its working area. By invoking the
movement command on the robot control, the goal pose and type of movement is passed.
Subsequently, the robot is moving from its current position to its goal in the given way. There-
by the movement command is directly related to the hardware configuration (kinematics) of
the robot. However, while executing the movement, the robot is not aware of its surrounding.
This is adequate for static environments and tasks.

Nevertheless, if a robot should be able to work in a dynamic environment, it needs to become
aware of what is happening around it and adapt its movements if necessary. Consequently,
additional information from sensors is needed to map the environment of the robot. To incor-
porate the sensor information and generate an appropriate path, additionally, a dynamical
path planning program is required. Unlike the moving command, path planning is not cons-
trained to the configuration of one robot and usually cannot be found onto a robot control.
The capability of planning the path is not matched with the robot and rather described as an
independent thing that is depending on the input of certain chunks of information, coming
from different sensors, as well as a start and target pose. As a result, one receives several
points, which can be approached by the robots movement command successively.

While the capability of the robot to move can be easily classified as a movement in gene-
ral, the path planning software application has not yet been approached, to be classified or
described in the context of an automation system, and so to enable the flexible integrati-
on into systems. Neither have been other pure software applications. That is why, this work
will focus on describing a Machine Learning (ML) application in order to integrate it within
an automation system, by means of Automation Modelling Language (AML) and Open Plat-
form Communications Unified Architecture (OPC UA), under the considerations of an overall
flexible production system.
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1.2. Structure of this work

To give an overview of the topics discussed within this work, the main chapters are briefly
described below.

Related Work gives an overview of related work regarding I4.0, skill-based engineering,
AML, and OPC UA. These define some of the central concerns of this work. Also,
the latest research regarding these topics is discussed. Furthermore, a more detailed
description of the openMOS project is given, since here are most of the described
concepts are already adopted.

Fundamental Principles discusses the fundamental principles of I4.0, skill-based enginee-
ring, the PPR relations, OPC UA, AML, and ML. These are fundamental for the sub-
sequent chapters, where these principles are adopted to construct a concept for the
integration of a machine learning application into an automation process.

System and Concept describes the system and its context, which will supply the use-case
of this work. Also, the current implementation of the ML application is described, as well
as the problems that are resulting from this implementation. Based on this explanation,
a concept for the integration of the application is proposed.

Modeling here, the previously described concepts are adopted to model all required com-
ponents that are essential for the integration of the application into the process. It will
encompass the creation of a common semantic model. Based on this model, the pro-
cess is modeled in AML, and then the application models are created based on OPC
UA.

Client Implementation demonstrates how an OPC UA client can utilize the information em-
bedded into the AML and OPC UA models. Therefore a simple client implementation
in C, based on the OPC UA library open62541, is envisaged.

Discussion and Further Work recapitulates the presented models and implementations.
Problems and benefits of these are discussed. Furthermore, objective for future imple-
mentations based on the proposed concepts are introduced.



2. Related Work

The current trend in the manufacturing industry is showing a strong trend to flexible com-
ponent integration, away from fixed shop floor setups. In Germany, this idea is reflected
in the concept of I4.0. Here one of the main participants in the group represented by the
Plattform-I4.0, accounting for the problems raising with the idea of an I4.0. It is a collective
of many industrial companies, societies and research institutes, backed by the German Fe-
deral Ministry of Economic Affairs and Energy as well as the Federal Ministry of Education
and Research. One of the main concerns is the comprehensive standardization required to
provide the flexible structure of future production systems. For the standardization process
of I4.0 systems, the Reference Architectural Model for Industrie 4.0 (RAMI) has been intro-
duced by the interdisciplinary workgroup [1]. Based on that, further concerns are directed to
the Asset Administration Shell (AAS). The AAS is the basic concept to represent physical
objects in the real world, in the digital world. In order to provide interoperability between ob-
jects from different vendors, the AAS, as well as the information represented within, should
apply the standardization resulting from the RAMI. In order to describe the structure of the
AAS universally, the Plattform-I4.0 introduced the overall structure of the AAS as reference
for future implementation [2]. Further, it has been described how relationships between I4.0
components can be expressed by means of the different models and information embedded
into the AAS [3].

A generic skill model has introduced a common approach of how to describe the functional
aspects of I4.0 components in the AAS. While this approach is not new, it comes with chal-
lenges regarding the standardized skill models. These challenges have been shown by [4].
Among the first initiatives aiming at standardization of skills for commercial use is the Skill-
Pro Project [5][6], which established the formal definition of skills as executable processes.
These ideas have been progressed by [7], describing skills as a link within the description
of relations between products, process, and resources. [8] created a taxonomy to descri-
be capabilities of automation devices, considering assembly and handling operation, as well
as sensory processes. Especially the necessity of standardization of the input and output
parameters for invoking skills is stated. The SemAnz project [9], provided a more general
description of these relations, not focusing on skills. It provides a semantic framework for
modeling within taxonomies for physical resources, function descriptions, and behavior spe-
cification, where skills can be seen as elements of the functional description. While most of
the approaches focusing on the skill parameter description by means of the process, [10]
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introduced a product-oriented approach for matching skills by the parameters included in the
product description. The objective of this approach is to reduce the required domain know-
ledge when describing a process since the parameters required to describe the process are
already stated in the product description.

While the approaches mentioned above rely on the use of AML for the description of capa-
bilities of devices, it is also carried unanimously that Open Platform Communications Unified
Architecture (OPC UA) is the communication protocol supplying the required functionality.
Nevertheless, some of them rely on the generation of OPC UA servers, based on the AML
description, to ultimately implement the skills. On the device level, however, this is not com-
patible with the standardization effort made by the OPC Foundation to describe and access
devices. [11] and [12] therefore made an effort to describe skills by means of OPC UA. Both
define skills as OPC UA programs, which enable a generic way to execute skills and monitor
the execution state.

2.1. OpenMOS

The open Manufacturing Operation System (openMOS) project is a research project funded
by the European Commission under the Horizon 2020 program and fulfilled by a consortium
of companies from different domains [13]. Its goal is to develop an accessible Plug-and-
Produce (P&P) system, in order to allow quick and efficient integration of machines and
automation systems within production environments as a prerequisite for the implementation
of I4.0 solutions. Therefore the openMOS deliverables consolidate general known ideas for
a flexible manufacturing system and assemble these to an overall view of their architecture.
The general openMOS architecture is depicted in figure 2.1 and described below. With this
description, an overall view of a possible manufacturing system is provided that includes the
ideas of a flexible production system. This should give an idea of how the overall architecture
of these systems could look like.

There are three main elements in this architecture. The Agent Cloud Platform, the Manufac-
turing Service Bus, and the Device Adapters. In the Agent Cloud Platform, different kinds of
agents can be deployed to serve different tasks within the production. They are accountable
for the overall process control and manage the production, transportation, optimization, and
resources. The Agent Cloud is, therefore, segmented into three main modules. First of all, the
execution layer. Here, for instance, instances with the cyber-physical internal abstraction of
devices and resources are deployed as resource agents. It is activated when a new device is
plugged into a system and stopped when removed. While it is plugged in, maintenance and
other data can be collected and updated within its digital representation. Secondly, there is a
repository layer, where historical data from the processes are aggregated for later use of opti-
mization and maintenance prediction. Furthermore, thirdly, there is the, communication layer.
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Figure 2.1.: openMOS architecture overview [14]

Within this layer communication for Human-Machine-Interfaces and Manufacturing-Service-
Bus-to-Agent communication is managed.

As a link between resources and the cloud, providing the necessary functionalities for task
execution and discovery serves the Manufacturing Service Bus. It is separated into three
main modules as well. The first module concerns network interfaces employing the provision
of required protocols, service, and device communication. The second module is providing
some core functionalities for a production system. These are the recipe execution, manage-
ment of the connected devices, orchestration tasks, and others. At last, there is the database
interface module. Its purpose is to store data from processes temporarily, so that it can be
post-processed by agents in the cloud. Also, it prevents the loss of data and ensures the
continuous operation.

On the lowest level and third main module of the openMOS architecture are the Device Ad-
apters. These wraps the functionalities of the associated devices into an OPC UA server and
exposes the devices self-description to the Manufacturing Service Bus. The self-description
contains the capability model and configurations, modeled in AML, and then converted to
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OPC UA. During conversion, the openMOS project converts the capabilities or skills to OPC
UA methods and is thus an extension to the DIN SPEC 16592, which defines the combi-
nation and transformation of AML and OPC UA. These methods are allocated in the Task
Execution Table and then triggered by the Task Executor from the Manufacturing Service
Bus. In order to allocate the Task Execution Table, the process is described by means of Skill
Requirements resulting from the Product description. This is done in AML and includes the
semantic description of processes, equipment, execution models, and products [15] [16].



3. Fundamental Principles

3.1. Industry 4.0

Industry 4.0 is a term minted by the German government, describing the aspects of industrial
production regarding the fourth industrial revolution. Internet of things, digital production, and
smart, adaptable processes are part of the vision, a digitized and fully interconnected value
chain. New emerging technologies in machine learning and computer hardware enable this
vision. However, there is still some effort required in order to determine on how these future
systems will emerge.

3.1.1. Reference Architecture Model

The RAMI has been introduced in order to provide a comprehensive reference architecture
for the structural description of I4.0 ideas and concepts to integrate I4.0 components [18]. A
working group of more than 400 participants from industrial partners and research institutions
collaborated to build this model.

The model aims to deliver an overview of the different levels that have to be considered while
describing an I4.0 system. As shown in figure 3.1 the RAMI has three axes. A "Layer” axis,
that represents different layers of digital representations a “Hierarchy Levels axis“, that de-
scribes different levels within a fabric or plant, specified by IEC 62264 and complemented
by "Product” and "Connected World”; and a "Life Cycle & Value Stream” axis, covering the
life cycle of plants and products. With a fixed scale between the different levels from enter-
prises, automation systems to life cycle management, interoperability should be guaranteed.
By interpolating the terminology and different aspects of different domains, a common lan-
guage to describe things within an I4.0 system can be created. With a common language,
manufacturers, customers, and suppliers are enabled to interconnect their systems beyond
a companies border and maintain information regarding products and services.

A base for the common language is provided by national and international standards that are
already available. These standards are not always well suited in order to describe products,
components, and systems, and in some aspects, these are not complete or interfering with
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Figure 3.1.: RAMI [17]

each other on different levels. To classify these standards and check for inconsistency and
interference with other standards, the RAMI model provides a fundamental base. Nevert-
heless, for many aspects, new standards will be created, to interpolate between available
standards or to fill missing information to apply new I4.0 concepts.

3.1.2. Asset Administration Shell

An I4.0 component is an item that is unambiguous identified and able to communicate. It
consists of an asset and an associated administration shell. An asset is an item that has a
certain value for an organization and, therefore, a need for individual management. Theses
items can be of physical or virtual nature, such as devices, software, plans, and others [17,
S. 12, def. Gegenstand]. Regarding I4.0 components, assets are usually referred to physical
objects, with the need of life cycle management.

The Asset Administration Shell (AAS) is the digital representation of an asset. Here all
information for communication, usage, maintenance, and others is embedded. Depending on
the asset, the AAS can be embedded onto the asset (e.g. device) itself or be only available
in a companies cloud. Also, a separated AAS is imaginable, where functionality of assets
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is provided in an AAS on a process controller in the field, while the business and life cycle
information is managed in an AAS deployed into a cloud platform.

In order to describe the required information regarding an asset, the AAS is thus made up of
a series of sub-models [18, S. 112]. These sub-models represent different aspects of the as-
sets, like security, condition monitoring, or functionality. Sub-models should be standardized
throughout industry domains and enterprises, as well as the overall functionality of the AAS.
An overview of possible sub-models and associated standards is given in figure 3.2.

Figure 3.2.: Administration Shell sub models overview [2]

3.2. Information Modeling

An information model is a representation of concepts and the relationships, constraints, ru-
les, and operations to specify data semantics for a chosen domain of discourse [19]. Data
models are the least sophisticated way to represent a model for a particular problem. It des-
cribes different context entities as objects. Attributes add additional properties and characte-
ristics. More complex than the data model is an information model. The difference between
the data and information model is that the data model defines objects and their attributes,
while an information model describes the relations between the objects in the data model
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and therefore providing them a meaning. Consequently, a data model is completed by the
information model. Further, on the highest level of complexity, there is knowledge. Knowled-
ge is derived from the information model and is not only the knowledge of objects and their
relations but how to utilize this information. Ultimately knowledge is the ability to reason on
given information [20].

In the software domain, information models describe abstract types of objects and their re-
lations, that enables users to utilize and interpret these types in a consistent way. To be able
to create such a model, a certain degree of abstraction and structuring is required, to enable
the decomposition of a problem to a more manageable size, and enable computer programs
to process the described information. The decomposition of a problem usually takes place
in a specific application domain. Therefore the resulting models are also called domain mo-
dels. Equal named objects with similar named relations to other objects, in different domain
models, can have a different meaning in one domain model than it has in another. However,
widely known modeling language to create these information models are Unified Modeling
Language (UML) and Systems Modeling Language (SysML).

3.2.1. Semantics

Semantic describes the meaning of signs, characters, words, and things in a given context.
The semantics of a modeling language can be expressed in an informal manner or as an
expression in a mathematical structure. However, in computer science, the objective is that
each object or thing within a model has a meaning that is ultimately open to interpretation
by machines. This enables new semantic technologies to process information more auto-
nomously and dynamically. Semantic Web is one of these technologies, an idea of a future
World Wide Web in which all information may be linked to each other, and in which machines
may process all information. Today it is more or less only possible for humans to process
the information on the Web and give meaning to it by interpretation since all information is
embedded in natural language. Nevertheless, by enable machines to understand the con-
tent of the Web, leads for instance to more efficient search within the Web, since undesired
information can be filtered out by considering the context of the search request [21].

Depending on the technology used to describe the semantics of an object within an infor-
mation model, objects or things names become secondary. Instead, the meaning is given by
the relations to other objects. Other objects can be classes and types of objects, but also a
hierarchical relation can give an object a different meaning.

Therefore types and relations are first defined in a meta-model. Especially the meta models
need to be clear and well defined so that each relationship and consequently, the meaning
of an object can be described unambiguous. Models based on a given meta-model can
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then be validated based on the knowledge of a meta-model to eliminate the possibility of a
misinterpretation.

3.3. Product, Process and Resource concept

The PPR concept describes the relationship between products, process, and resources wi-
thin a manufacturing system. An overview of the underlying relationships is shown in 3.3.
Each of the parts is characterized by its feature attributes, that are then provided in the
AAS. With these features, requirements for a particular product, process steps, or required
resources can be derived and consequently define the relationships between these.

Product Process Resource

produced by

changes executes

utilizes

Figure 3.3.: PPR concept [10]

Utilized features should be preferably selected from the manuals or standards, like the
ecl@ss catalog. In case that there is no standard to choose from yet, a standardization
process should be conducted, or an industry-specific feature catalog consulted [22, S. 10].
Below the components of the PPR concept are further described.

Products Unlike may considered, products do not necessarily represent a finished product.
During the production process, a starting product, like a blank steel bar, will be further
processed until it reaches its final state. With each process step, it will be transfor-
med into an intermediate product. Also, additional products, like screws and nuts, can
be introduced into the process. Thru the changes throughout the process, characte-
ristics, like geometry and other features, change and define the characteristics of the
intermediate product.

Processes A process defines how a product is processed. Usually, a process consists of
several process steps. It is not required that a process step changes the geometry of
a product. Instead, it can be a change in position or change other features defined by
the product. Sometimes several process steps can cause the required effect on a pro-
duct. In this case, a consideration regarding the demanded product quality, cost and
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production time has to be made. These factors belong to the Key Performance Indi-
cators (KPIs) and can be utilized for process optimization and adjustment of costumer
requests. KPIs, therefore, are defined among others by features of a process.

Resources Resources represent the abilities of a process to affect a product - for instance,
a drill. As a drill is a resource, it can be utilized in a drilling process, in order to drill
a hole into a product. The features, defined by the resource, define how the process
affects the product. In the case of the drilling process, the drill diameter would define
the diameter of the hole, which is added to the product.

3.4. Skill-based Engineering

Skill-based engineering provides a fundamental approach in order to implement flexible pro-
duction systems. A skill is defined as the potential of a production resource to archive an
effect within a domain [4]. Ultimately skills are methods or programs on software-side or
manual tasks executed by a machine operator. In a domain context, these can be typed by
functionality and hierarchically ordered for each process.

Probably the most comprehensive approach to tackle this for the assembly domain has been
made by the openMOS project. Here, skills are considered to be either atomic or composite.
Atomic skills represent basic capabilities of resources, like the moving command of a robot or
the ability of a sensor to sense. Composite Skills represent a set of atomic skills composed
as one. An example is the pick and place capability of a robot. The skill is composed of
a sequence of movement and grasping commands. As a result, the composite skill in the
openMOS implementation has at least two skill requirements defined in order to resolve the
dependencies of the required atomic skills in a composition. Skill requirements are fulfilled
in skill recipes, where recipes represent the process and product skill requirements as a
sequence of skills [23, S. 27]. Finally, skill requirements can then be matched against skill
types. In this way, the system gains the ability to check whether it can produce a particular
product or to fulfill a stipulated process step.

Even if the above described concepts are described with the terminology defined by open-
MOS, they are generally valid. In general, the skill model can be considered the link between
the process and resources in the PPR model [7]. Skill models are usually represented in a
taxonomy, where the only relation between skills is represented hierarchically. These taxo-
nomies can be derived from an existing standard like [24] for joining and [25] for handling
tasks. However, even that this concept is not new, there is still a lack of standardized skill
taxonomies. Especially purely software-based skills are rarely considered.
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(a) openMOS skills derived from AML roles (b) Example skill hierarchy from [4]

Figure 3.4.: Two excerpts in UML for example skill hierarchies

Two skill taxonomies shown in figure3.4, represent different approaches, on how do derive
a skill hierarchy. While in 3.4a), the considered skills are required to describe an assemb-
ly process, the hierarchy in 3.4b) provides a more generic way. Depending on the domain
or situation, either of these descriptions could be sufficient to describe skills required in a
process. Nevertheless, the more generic way of describing skills, as in 3.4b), provides more
possibilities to extend it for the description of sensing and software skills.

3.5. OPC Unified Architecture

The Open Platform Communication (OPC) standards exist since 1996 and since has been
used for communication in industrial automation applications. Because the OPC standard is
limited to Windows platforms, the OPC Unified Architecture (OPC UA) has been developed.
With the implementation of OPC UA, limitations regarding the OPC standard have been
overcome. Besides, several of the OPC standards, like OPC Historical Data Access (OPC
HDA), are now included within the OPC UA standard.

With OPC UA, a versatile standard for communication has been created. It offers fundamen-
tal functionality and advantages for I4.0 systems. Among others, a state of the art security
model and a fault-tolerant communication protocol is included. Also, it comes with an infor-
mation modeling framework that allows developers to represent data in a way that makes
sense to them [26, S. 14]. Notably, the information modeling aspect enables to create sys-
tem and hardware models that can easily be reused. This facilitates to describe automation
systems and components with a generally valid semantic and therefore creates the possibi-
lity of uniform access to well-known components. Information presented by these systems
through an OPC UA server, are contained in information models that are layered on top of
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the OPC UA infrastructure. The core capabilities of this infrastructure, as well as base infor-
mation models, are specified in the OPC UA Specifications IEC 62541. These Specifications
are divided into 13 parts, as shown in figure 3.5.

Figure 3.5.: OPC UA Specifications overview [27]

Based on core concepts, additional information models can be created and specified by
a Companion Specification. The Companion Specifications addresses dedicated industry
problems in order to enable interoperability at the semantic level [28]. An example is the
Companion Specification for Robotics. It detains a description of common functionality and
assets within a robotic system. This allows access to control functions and maintenance
information with a generally valid and well known semantic.

To distribute the models created by the specification, as well as custom models,OPC UA
supports to export these in an XML format. This facilitates the exchange and creation of
information models since this text format can easily be edited in a simple text editor. Based
on the XML representation of the information models, it is also possible to generate program
code that represents the basic structure of an information model in the desired programming
language. This reduces the programming effort immense. All a developer has to implement,
is the servers logic, like filling OPC UA variable with values or implementing the logic of an
OPC UA method.
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3.5.1. Core Concepts

The OPC UA communication is based on a service orientated Server-Client mechanism,
where a server displays information to clients in an object-orientated manner. Services pro-
vided by the server allow clients to read, write, browse, and manipulate the objects within a
servers address space. Thereby a server can be accessed, by using the discovery service
and resolve a server by its discovery URL or connect directly to a provided endpoint. End-
points can be resolved by the endpoint URL, whereas multiple endpoints can be provided
which provide communication based on different protocols, like TCP and HTTP.

In OPC UA, each object in the address space is represented as a node, which is typed
according to its use and meaning, and described by its attributes and references. Attributes
and references enable clients to find specific nodes within a server and to put different objects
into relation. As shown in figure 3.6, the BaseNode has several attributes that each derived
node in the address space inherits.

Figure 3.6.: OPC UA meta model in UML

Also shown are the base node types, fundamental node types that are derived from the Base-
Node defining the meta-data for the OPC UA address-space. ReferenceType, VariableType
and ObjectType define the base classes for type definitions of nodes. Custom types can be
derived from this node classes. DataType defines a type that is associated with the value of
variable nodes. The value of a variable node is included in this type of node as an additional
attribute. All types known by a server are saved within the Types folder that is located in the
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Root object of the servers namespace, as shown in the example object tree in figure 3.7,
where custom definitions are depicted in red.

Next to the types folder is the objects folder. The server object within this folder contains the
server configurations, standard methods, and other information. Each other custom defined
object, representing a real-world object, will be contained in the objects folder as well. While
instantiating objects and variables nodes in the objects folder, each must be associated with a
type from the types folder. By typing the objects, they are ultimately provided with semantic.

Server Namespace Concept

Root

Objects

Server

ProductionPlant

Types

DataTypes

EventTypes

InterfaceTypes

ObjectTypes

SensorTypes

ReferencTypes

VariableTypes

Figure 3.7.: Example server object
tree

Within a servers address-space, each node is un-
ambiguously identified by its node ID Attribute.
The node ID is declared as a combination of a
namespace-index and an identifier, and looks like
ns=<namespaceIndex>;i=<identifier>. Here the
identifier is numeric, signified by the i. It can also be
a string typed identifier, in which case it is stated as
s=<identifier>. Unlike the numeric identifier, the
string typed identifier has additional sub-types. For in-
stance, the sub-type GUID can specify a string typed
identifier in the form of a unique ID that is not just un-
ique within a server, rather than a whole production
plant or company.

The identifier identifies a node within a defined name-
space, and the namespace-index defines in which na-
mespace the node is contained. In each OPC UA ser-
ver, the BaseNodeSet is defined by the namespace-
index 0. Here all definitions stated in the core spe-
cifications are stored. Composed information models
have additional namespaces where additional node
types and model hierarchies are contained. Usually,
each namespace represents a different model view inside the address-space information
model. So, for instance, different sub-models of the AAS would be defined by different name-
spaces.

The namespace-index is assigned to a corresponding namespace-Uniform Resource Iden-
tifier (URI). While the numeric namespace-index is to permit more efficient transfer and pro-
cessing, the namespace-URI identifies common knowledge beyond several OPC UA ser-
vers. A client, therefore, should always request the namespaces defined by a server first



3. Fundamental Principles 18

and match the required namespace-URIs in order to map the namespace-indexes. In this
way, a client can ensure to access the desired information. For instance, a client needs to
access the DeviceSet object, defined in the Companion Specification for devices. To do so,
it first requests the servers namespace table and looks up the required namespace-URI de-
fined by t he Companion Specification. In table 3.1, such an example namespace table is
shown, were the namespace-index for the device Specification is ns=1. Together with the
identifier, specified for the DeviceSet as i=5001 [29] [30], the client can access the object
on a server. Therefore the full node ID should be ns=1;i=5001 for the DeviceSet object.
Another sever may assigned a different namespace-index to the device namespace, but thus
the namespace-index was assigned by the namespace-URI required device objects can be
accessed in the same way. Consequentially the namespace-index can change within the
address space, while the URI ultimately identifies the namespace within explicit.

Index URI Description
0 http://opcfoundation.org/UA Namespace for standard definitions of

the OPC UA specifications
1 http://opcfoundation.org/UA/DI Namespace with the definitions from

the OPC UA Device Companion Spe-
cification

2 http://opcfoundation.org/UA/Robotics Namespace with the definitions from
the OPC UA Robotics Companion Spe-
cification

3 http://example.ns/SensorTypes Namespace with custom sensor type
definitions

4 http://example.ns/ProductionPlant Example namespace, where definitions
from the namespaces above are utili-
zed

Table 3.1.: Namespace example

Browsing

Due to the fact that the node ID can have a string typed identifier, it is tempting to choose
the nodes name as an identifier. But since the identifier should be conclusive within a given
namespace, is it not practicable. Considering the namespace table from 3.1, if there where
several sensors, monitoring environment data inside the production plant, for instance, tem-
perature and humidity, the environment sensor type would be defined in the SensorTypes
namespace, as shown in figure 3.8a. Using this definition and instantiate two environment
sensors within the production plant would lead to an object tree, as shown in figure 3.8b.



3. Fundamental Principles 19

If the node identifier is chosen the same as the names in the tree, a client accessing the
data could not distinguish between the humidity nor the temperature sensor in environment
sensor one and two.

SensorTypes

TemeratureSensorType

HumiditySensorType

EnvironmentSensorType

TemperatureSensor

HumiditySensor

(a) Example sensor type definitions

ProductionPlant

EnvironmentSensor1

TemperaturSensor

HumiditySensor

EnvironmentSensor2

TemperatureSensor

HumiditySensor

(b) Example plant object tree

Figure 3.8.: Example object tree with type definitions and instances

So instead of using an objects name as an identifier, each Node has an additional Brow-
seName Attribute, with which the objects name is specified. The BrowseName can be used
to navigate within a servers-address space. Other than the node ID it is not unambiguous. A
client, looking for temperature sensors in the production plant, not given any node IDs, would
use the servers browse service to browse the address-space for the temperature sensors.
Thereby the given starting node for the browse request would be the production plant node. If
no further restrictions are made, the request will return all nodes within the production plant,
and ultimately, these can be filtered to find the two temperature sensors.

The browse service is specified in [31]. Next to the browse service, an additional
service is specified, that allows to translates a given browse path to a node ID.
So instead of browsing the whole namespace for a given BrowseName, this ser-
vice enables to find the unique ID of a node by passing it its browse path. For
the temperature sensor within the environment sensor two, this path would look like
ProductionPlant/EnvironmentSensor2/TemperatureSensor.

References

A browse service request can further be constrained, so it will return only the nodes with a
given NodeClass or following only nodes with a given reference. References relate nodes
with each other, and same as Attributes, they are defined as fundamental components of
nodes. They are either hierarchical or non-hierarchical, where hierarchical references are
used to create the structure of objects and variables, while non-hierarchical are used to
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create arbitrary associations. The node containing a reference is referred to as source node,
and the node the reference is pointing referred to as the target node. It is not mandatory that
the target node is within the same address space as the source node, it can also be located
in the address space of a different OPC UA server.

Moreover, references can be symmetric or not, as well as inverse or not. If a reference sym-
metric, this means that the reference has the same meaning when observed from the source
to target and vise versa. Otherwise it could it is given a new meaning by its InverseName
attribute.

Considering the example from figure 3.8, the SensorTypes object has three hierarchical re-
ferences of type HasSubtype, since it specifies three sensor types derived from the parent
sensor type object. On the other hand, the environment sensor type has two components, a
temperature sensor, and a humidity sensor, and therefore, two hierarchical references of type
HasComponent. Besides, the ProductionPlant object includes two EnvironmentSensors, its
typed defined as a sub-type of the SensorTypes object. Thus the two EnvironmentSensors
within the ProductionPlant object have a non-hierarchical reference each of type HasType-
Definition.

MonitoredItems and Subscriptions

MonitoredItems are entities in the server that usually clients create by invoking the CreateMo-
nitoredItems service. These items are configured to generate a notification that is ultimately
transferred back to clients that subscribed to these items. Notifications are generated when
a data change, event, or alarm occurred. The item to be monitored may be any node attri-
bute. However, the server can also use local MonitoredItems to monitor events that are then
handled by some internal server logic. In that case, the notification is not managed by Subs-
cription. Instead, a callback is attached to the notification generated by a MonitoredItem.

A client can create a Subscription to any MonitoredItem. With Subscriptions clients are ena-
bled to monitor specific values, without polling it. They are independent of the actual commu-
nication connection and, therefore, independent of a session created between the server and
client. A Subscription can be configured to value changes of Variables or Events that are trig-
gered by a server. To each Subscription a callback will be assigned. Notification messages
and transmitted values can then be utilized within the callback.

Ultimately, each MonitoredItem is used to generate notifications, while Subscriptions are
used to report notifications back. Every MonitoredItem is attached to exactly one Subscripti-
on, and a Subscription can contain many MonitoredItems.
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Events and Alarms

Events represent specific occurrences within the server. Subscriptions, for instance, can be
attached to a value change Event of Variable. Nevertheless, a server can create an Event
to inform about any condition that may occur within a system. Clients can subscribe to the
events to be notified if they occur.

Alarms are a special kind of Events, with conditions attached. A condition could be, for instan-
ce, a temperature exceeding a configured limit. Depending on the configuration of Alarms,
the handling of an Alarm occurrence may differ, if the Alarm is set acknowledgeable. In that
case, the server can be configured to take a particular state until the Alarms cause was
handled and acknowledged by a client.

Interfaces

Interfaces are defined in an amendment of the OPC UA specification part five. It represents
a generic functionality, usable by different object types or objects [29]. Interfaces are defined
by modeling an interface description as a type with which a specific object structure is descri-
bed. Object supporting a particular interface, define a HasInterface reference, pointing to the
defined interface type. This genuinely means that the object with the HasInterface reference
defines the same structure as in the interface type definition.

3.5.2. Publish Subscriber Mechanism

The Publish-Subscriber (PubSub) mechanism is an additional expansion to the service ori-
entated Server-Client mechanism of OPC UA. PubSub communication is loosely coupled,
meaning that the publisher that is providing data does not need to know about the subscri-
bers listening to messages [32]. The number of subscribers is not affecting the performance
of the publishing server. This makes it versatile for monitoring and logging data where high
data rates are required. Strictly speaking, it is recommended by the OPC Foundation to use
the PubSub for data rates higher than 100Hz [33].

PubSub as to OPC UA is designed to be flexible and is not bound to a particular messa-
ging system. In the specification, three PubSub transport protocols specified that can be
used alongside the Server-Client communication. Message Queuing Telemetry Transport
(MQTT) and Advanced Message Queuing Protocol (AMQP) are standard messaging pro-
tocols supported. Both require an additional middleware. This middleware is also called a
Broker. However, that means, next to the publishing OPC UA server, an additional server, for
implementing the protocols middleware, is required. Subscribers are then enabled to connect
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to this middleware and receive data from the publisher server. As a result, the messages will
take a detour over the middleware before arriving by the subscribers. It is not required that
the subscribers support the use of OPC UA instead utilize existing implementation of the
particular protocols.

Next to the standard messaging protocols, OPC UA supports User Datagram Protocol (UDP)
for publishing data. It is a core member of the internet protocol suite and can be referred to
as a connectionless communication. Unlike with the Server-Clint mechanism or the middle-
ware based PubSub protocols, this protocol does not need to exchange any information with
communication partners to configure the communication. In the OPC UA, PubSub communi-
cation messages send with UDP will be binary encoded. As a result, the receiver only needs
to know the encoding schema. This makes it the most efficient way to transfer data with high
data rates.

Which data will be published is defined by a DataSet object within the namespace of the
server. Here already existent variables from the servers namespace can be referenced. Pu-
blishing rate and additional parameters of the PubSub mechanisms are specified by the
PubSub configuration model in [34].

3.5.3. Programs

Methods defined in OPC UA enable to execute simple functions, like setting a counter or
perform a simple calculation. These are stateless and limited to an execution time of ten se-
conds. Within this time, a Method should return a result. OPC UA Programs are utilized for
more complex, stateful tasks than Methods, like the execution of a machine tool program or
manage a file transfer. A ProgramFinitieStateMachine is a subtype of the FinitieStateMachi-
neType, defined in the OPC UA Specifications Part 5 [27, Annex B]. The difference between
OPC UA programs and state-machines is that a Program has a standard set of base states,
transitions, and methods predefined. Sub-types of the ProgramFinitieStateMachine can ex-
pand this structure and add additional methods, transitions and states. Program methods
cause the state to change by triggering the predefined transitions. Consequently, a client is
enabled to call a servers program method and thus triggering a state transition. The cause
of a state transition can also be an internal Server event. Transitions, on the other hand, can
trigger OPC UA events, to that clients can subscribe. If the program finished its execution, a
FinalResultData object within the program object preserves possible result data [27].
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3.5.4. Notations

Because the visualization of address space models in common markup languages like UML
or SysML is somewhat confusing, the OPC Foundation introduced a dedicated notation for
OPC UA. With these notations, it is more convenient to display the structure and relations
within an information model. An overview of these notations is given in figure 3.9.

Figure 3.9.: OPC UA notation overview

Namespaces in these kinds of diagrams can be depicted by additional borders around the
nodes related to a specific namespace. The namespace-index or -URI can be depicted so-
mewhere within the border. To visualize complex server address-spaces could become con-
fusing, especially if many namespaces are present. However, to represent model excerpts
and ideas, it is quite suitable.

Considering the example from 3.5.1, the example model is visualized with the OPC UA no-
tations, as shown in figure 3.10. Also, the type definition of the TemperatureSensorType has
a variable defined. The variable typed is defined as and AnalogItemType.
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Figure 3.10.: Example Namespace in OPC UA notation

3.6. AutomationML

Automation Modelling Language (AML) has been developed as a neutral data exchange for-
mat based on XML to gather and exchange relevant plant and production data focusing on
the domain of automation engineering. It is standardized in the IEC 62714. The goal is to
interconnect the heterogeneous tool landscape of modern engineering tools in different dis-
ciplines. Therefore it describes plant and system components in an object orientated manner,
encapsulating different aspects. Typical aspects in plant automation comprise information on
topology, geometry, kinematics, communication, and logic [35]. Resulting documents from
different engineering tools can further be referenced within an object and enhanced with
additional data, e.g., for configuration and documentation. Regarding the RAMI, it can be
assigned to the information layer.
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An AML file can be created in the AML Editor, shown in figure 3.12, where the five main com-
ponents of each AML file are depicted. The AML roles in the RoleClassLibrary (1), interfaces
in theInterfaceClassLibrary (2), standard system units in the SystemUnitClassLib (3), and
the InstanceHierarchy (4). These will be further described below. Also, there are attributes
(5), which define additional properties of objects that are not directly visible in an AML object
tree. The arrows indicate the overall workflow. Primary roles and interfaces are defined or
included, whereby several libraries are defined by the AML specifications and best practice
recommendations. After all required roles and interfaces are available, standard system unit
classes can be defined. To each class, a role can be assigned, or interfaces can be added.
Finally, an instance hierarchy can be created by instantiating the predefined system unit clas-
ses. Instances are refereed to as internal elements because classes are instantiated within
a instance hierarchy or within other classes.

Different classes and objects can be related with each other within the models. Depending
on the usage, these have different meanings and restrictions. Parent-child-relations between
AML object instances are used to represent hierarchical object structures. These are pri-
marily found in the instance hierarchy. Parent-child-relations between AML classes is when
different system unit classes are encapsulated. It is no more than a hierarchical neighbor-
hood without further semantic. However, in the AML editor this relation would look like similar,
if only the arrangement of classes id considered because inheritance relations do not look
different, except for the parent class definition, which can be turned of in the AML editor.
Figure 3.11 shows how these relations would look like in the SystemUnitClassLib tab of the
editor. In the ParentChild library folder the different parent child relations are shown, while
the inheritance folder does only contain inheritance relations. However, it is also possible to
relate instance-instance relations through the usage of interfaces and internal links.

Figure 3.11.: Parent-child and inheritance relations between classes and objects.

Usually, different model views are contained in different AML files, similar to the namespaces
in OPC UA. These files can be combined in so called AML containers, described in a best
practice recommendation [36]. This enables to exchange the gathered information, compri-
sing of AML and other files from different engineering tools.
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Figure 3.12.: AML Editor main components and workflow

3.6.1. Instance Hierarchies

In the Instance Hierarchy, the actual system that is to described is represented. It is not
required to define the system unit classes first and instantiate these in the Instance Hierarchy.
Instead, an instance can be created and edited directly. However, the best practice is to first
define reusable component classes inside a SystemUnitClassLib before instantiating these
in the Instance Hierarchy.



3. Fundamental Principles 27

3.6.2. System Unit Classes

Within the SystemUnitClassLib, custom objects can be created. Unlike interfaces or roles,
AML does not predefined any system unit classes. System unit classes represent reusable
resources, that can be combined in the instance hierarchy to build up a model representation
of a production system.

3.6.3. Roles

A role in AML is a class that describes an abstract functionality without defining the under-
lying technical implementation. By associating an AML object with a role, the object gets a
semantic [35]. An object can also be associated with several roles or define supported ro-
les, depending on its use and the model view. For instance, a robot controller in an AML file
describing the system topology could be associated with the Controller role from the Auto-
mationMLCSRoleClassLib for control equipment. In a different model view, as an example,
describing the communication of a system, this controller may require a role from the AML
CommunicationRoleClassLib, defined by the communication specification. Therefore it will
be associated with the LogicalDevice role.

Roles are defined in the RoleClassLibrary. AML already defines different role classes, that
can be utilized within a project. If custom roles are created, these have to be derived from
roles within the AutomationMLBaseRoleClassLib.

3.6.4. Interfaces

Interfaces enable to relate instances within the Instance Hierarchy with each other or refe-
rence external documents. An instance-instance relation, created by connecting two Interfa-
ces, is referred to as an internal link. Relations to external documents, however, are referred
to as external links. In the AML standard interfaces are defined in the AutomationMLInterfa-
ceClassLib. Same as AML roles, custom-defined interfaces have to be derived from these
standard types.

Attributes can be added to the interfaces and define additional configurations. For the Com-
munication interface, defined as a base interface, these parameters can be used to configure
a communication, like a port or IP for Ethernet communication.
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3.6.5. Communication Modeling

The AML whitepaper for communication [37] specifies different aspects for the modeling of
communication networks, e.g., communication topology and configuration. Depending on the
use-case, is it possible to depict hardware as well as logical communication within an AML
model.

3.6.6. Data Variables

In the best practice recommendation for DataVariables, AML defines a concept for accessing
concrete data elements inside communication networks. These networks are described by
logical devices responsible for communication, e.g., OPC UA servers [38]. A DataVariable
would describe a variable by means of the underlying communication technique. For instan-
ce, a DataVariable described by means of OPC UA is unambiguous identified by its node
ID. The DataSource role, also defined in the best practice recommendation for DataVaria-
bles, would, therefore, define an object in AML as a logical device. For OPC UA, this device
is identified by the servers discovery or endpoint URL. An additional DataVariable attribute
would define the node ID. With the information of server URL and node ID, it is possible
to access the requested information. In combination with the conversion of AML models to
OPC UA servers, described below, it is possible to create an aggregated server that subscri-
bes to desired DataVariables on other servers in the network and shows the live value in its
namespace.

3.7. AutomationML and OPC UA

Since AML as well as OPC UA models have a XML representation, it is possible to con-
vert AML models to OPC UA information models. The rules for this conversion are specified
in DIN SPEC 16592 and also available in the OPC UA and AML specifications. This ena-
bles the possibility to model all required information in AML and transfer it to OPC UA for
communication. An OPC UA object tree, resulting from the conversion AML to OPC UA is
shown in figure 3.13, where the OPC UA default nodes are depicted in black, standard no-
des specified by the conversion rules in blue and custom defined objects in red. Basically,
AML objects and instances, as well as Interfaces, will become OPC UA objects and attribu-
tes will become OPC UA properties. If an instance has a class type definition, the resulting
object will have a HasTypeDefinition reference pointing to the associated system unit class
in the SystemUnitClassLibs folder in the OPC UA namespace. Roles will be depicted with
a HasAMLRoleRequirement reference, pointing to the associated role in the RoleClassLibs
folder.
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Figure 3.13.: Example OPC UA server object
tree generated from AML

This conversion promises to create OPC UA
servers, based on may already existing in-
formation in AML and operationalise the-
se. This could facilitate the creation of OPC
UA servers for devices and systems. One
other opportunity is the loss less exchange
of OPC UA system configuration. By descri-
bing a communication system according to
the AML specification, the systems configu-
ration to configure servers and clients can
be embedded. Making it available as a OPC
UA server within the communication system,
enables to configure all the communication
participants based on the information, mo-
deled in AML. This allows a automatic confi-
guration of servers and clients in a network
by accessing the configuration server.

However, the resulting models will be com-
pliant to the rules of the specification in DIN
SPEC 16592 but not to the modeling ru-
les by the Specifications of OPC UA. This
means, that the structure of the server, as well as the types used to describe things are not
unified. An entity relying solely on the OPC UA specification to access devices in a commu-
nication network, would fail, if the device server was created based on a AML model.

3.8. Machine Learning

Machine Learning (ML) is the scientific study of algorithms and statistical models that com-
puter systems use to perform a specific task without using explicit instructions, relying on
patterns and inference instead [39]. To rely on these patterns, an ML algorithm needs input
data to learn these patterns from. The output generated based on the data could be a clas-
sification, regression, or even new data, like image or audio data. Classification problems
are often implemented for pattern and object recognition in computer vision applications and
natural language processing. Regression techniques are sometimes used in control enginee-
ring, to approximate plant functions. The overall goal is to make a prediction with available
input data and therefore predict a class, number, state, word, or action.

In general, it is distinguished between three types of machine learning. Supervised learning,
unsupervised learning, and reinforcement learning. Supervised learning relies on prepro-
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cessed data, meaning segmented and labeled, to provide the algorithm during training with
input and the desired output data. During training, the selected algorithm will adapt its in-
ternal mathematical representation, e.g., weighting factors, depending on the outcome of a
prediction, to ultimately reduce the error rate on its predictions. Unsupervised learning ap-
plications, however, are used to cluster disordered data, and find noticeable, but otherwise
not obvious, patterns in usually big data set. This enables to utilize unsupervised learning for
the perpetration of data for supervised learning applications. By using clustering techniques
it is possible to conduct an automated segmentation of the data by segmenting each data
point depending on the related cluster, the data is in. Reinforcement learning techniques
are concerned with how software agents ought to take action depending on its environment
or current state. Therefore they are using cost and reward functions to score their actions.
Depending on the score, the algorithm is en- or discouraged to repeat the action, if similar
states appear again on the input.

In the context of I4.0, ML is often mentioned in context of process optimization and machine
maintenance prediction [40]. These tasks require big amounts of data and rely on different
supervised and reinforcement learning techniques. Because of the significant amount of data
these models have to process, they are usually deployed inside a cloud system as agents or
services. However, other fields of application regarding these algorithms, is to improve the
cognition of robots and machines. Therefore they have to be deployed onto, e.g. a controller
inside the production plant. In each case, to further improve the algorithms, new data is
required, that has to be collected and segmented during operation. With each new model
training, the model improvement is evaluated. Depending on the outcome, the new models
can be deployed.

Figure 3.14.: ML pipeline by Microsoft Azure [41]

The process of gathering data, preparing data, model training, evaluation, and deployment
is commonly referred to as ML pipeline. A proposed pipeline from the Microsoft Azure ML
tool is depicted in figure 3.14. Pipeline does not mean, the work-flow is always one-way, from
start to beginning, rather it is an iterative process, where new data is generated, the model
trained and eventually its parameters adapted before it is trained again and finally deployed.
Depending on the application, this pipeline sequence can variate, but all steps have to be
available when deploying a model into production [42].



4. System and Concept

To provide a better understanding of the implementation goal, the current system, and appli-
cation utilized, is described. Further, based on these descriptions, the problem is described,
and the use case application set into context. Besides, requirements and an objective for
further implementation are derived.

4.1. Task Description

The program, utilized to illustrate the integration, is part of a system, that task is to screw
so-called Hi-Lok Collars, in order to perform the assembly on a circumferential joint of two
aircraft fuselage parts. Different fuselage sections are shown in figure 4.1. Each section is
connected at the circumferential joint. At each joint, two to three rows of Hi-Loks have to be
placed.

Figure 4.1.: Structural design of aircraft fuselages [43]
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Hi-Lok collars are part of the rivet connection, connecting the fuselage parts. Collars have an
inner thread and a nut that wrenches of after assembly. The counterpart of these connection
elements is the collar pin. Collar pins have an outer thread and are placed through a hole
in the fuselages that are to be joined. After the pins have been placed, Hi-Lock collars are
screwed onto the pins in order to fulfill the connection. The riveting process of one rivet is
considered successful if the predetermined breaking point of the collar breaks (see Figure
4.2). As a result, the collar wrenching is a remnant of the Hi-Lok that is not further needed.
Through the deformation of the collar during the screwing process, it results in a positive-fit
connection.

(a) Hi-Lok fastening, adapted from [44] (b) Hi-Lok connection, adapted from [45]

Figure 4.2.: Hi-Lok connection principle

4.2. Riveting System Description

The process of placing the pins has been automated and is described in detail in [44]. It uses
non-collaborative robots that are stationed at the outside, around the fuselages on two floors,
and additional linear movement systems (see figure 4.3). Equipped with an appropriate end-
effector, these robots drill, place, and seal the rivets around the circumferential joint. During
the drilling and pin placing operation, nobody is allowed to be inside the fuselages.

The system, providing the use case for this work, is another robotic system. Its task is to
screw the collars onto the pin from the inside of the fuselages. The system is part of a re-
search project promoted by the German Federal Ministry for Economic Affairs and Energy
and is conducted by the Fraunhofer IFAM and several other participants. The project is cal-
led MFlex and a goal is to research how such a system can be made modular so that each
component becomes easily exchangeable. For the riveting system, this means each device
and each program is considered to be a module that can be exchanged by a module with
the same type. For instance, if a modular system contains a collaborative robot, it should
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Figure 4.3.: Robotic system placing the Hi-Lok pins [46]

become exchangeable by any other thing that is typed as a collaborative robot. In the fu-
ture, this should make automation systems more flexible and components in these systems
better reusable. This is essentially the idea that supported by the idea of an I4.0 and P&P
systems.

The collar screwing automation system is composed of several hardware modules that are
described briefly. An Universal Robot 10 (UR10) that is placed on top of a wheeled table
so that an operative can move it to its working area. A pneumatic Hi-Lok collar feeder tool
is attached to the end-effector. This tool is, in fact, a handhold manual tool used by the
operatives within the production. With this collar feeder, the robot can screw the collars onto
the pins. The tool is controlled by switching on and off the electromagnetic pneumatic valve,
the collar feeder is connected to. The collars are stored in a tube, from where they are fed
by compressed air to the collar feeder. Next to the feeder, a 2D profile or laser line sensor
is mounted, to scan the circumferential joint and calculate the pin poses from the resulting
data. Also, a Bosch XDK, an embedded microcontroller board, is mounted at the bottom of
the end-effector. The process is controlled by an Industrial PC (IPC) that is placed below
the table. Robot, profile sensor and valves are connected via Ethernet to the controller. The
Bosch XDK is connected via USB. The whole system is shown in figure 4.4.

The procedure of screwing the collars can be divided into five steps. First, the system is
moved by an operative to its working position where compressed air and power supply are
connected. Second, the robot is moved to an initial pose from where it can start its scanning
task, third. The scan will take place in a section between two Stringers (see figure 4.1). After
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the scanning is done and the pin poses are calculated from the scanning data, the robot will
start with screwing the collars by approaching the points calculated before, fourth. Because
the pneumatic cannot sense the break of the collar, a predetermined time has been set that
the robot will take before moving to the next pin. Fifth, the robot will move to the next section
and repeating the scanning and screwing process. The fifth step will repeat until the robot is
unable to reach another section.

The predetermined time for screwing the collar is not appropriate for screwing several hun-
dred collars, because the time needed would increase massively if the collar break occurs
with high variance within this time window. One way to tackle this problem would be to use an
electric feeder that can sense the falling turning moment when the collar breaks. But since
there was none available during the phase of development, another solution was proposed,
by utilizing the acceleration sensors that are contained in the robot and the Bosch XDK.

By evaluating the acceleration data logged while screwing the collars, it was apparent that
it is not possible to simply use a threshold on the data. This is why a machine learning
application was developed in order to detect the break of the collar. That application is a pure
software application and the central concern of this work.

(a) Riveting system overview (b) Riveting system inside the fuselages

Figure 4.4.: Riveting system
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4.3. Current Implementation

The machine learning application for the detection of the collar break, has already been
implemented and tested. It underlying algorithm and the scenarios it has been tested in,
should be briefly elucidated here.

4.3.1. Break Detection Algorithm

For the implementation of the machine learning application, a statistical method, the so-
called Random Forest Classifier (RFC), has been utilized. The RFC is a meta estimator that
fits a number of decision tree classifiers on various sub-samples of the data set and uses
averaging to improve the predictive accuracy and control over-fitting [47]. Generally, it can
be assigned to the supervised learning methods. So that the RFC can detect the break of a
collar, it is fed with data from an acceleration sensor to train it. The sensor is attached close to
the Tool Center Point (TCP) of the robot. It is configured to stream the acceleration with a rate
of 125Hz. That is then aggregated throughout 50 samples, in order to form a window over
the acceleration signal. The acceleration window then serves as input for the classifier. As
an additional input for the classifier the time since the feeder start signal occurred is utilized.
It is assumed that the feeder is started at the same time the break detection is invoked. With
the acceleration window and the feeding time, the resulting input dimension of the classifier
is 51 data points. Furthermore, the acceleration data is normalized between zero an one. On
the output, the classifier provides a binary signal that classifies whether the break event is
occurring or not.

Because of the high sampling rate and the low input dimension, the output from the classifier
is further processed. This is done within a state machine, checking the output of the classifier
and generating a break signal, as soon the event occurrence happened over a specified
period. Otherwise, if the predefined time for screwing the collar exceeds, the state machine
will reset.

4.3.2. Possible Integration Scenarios

Figure 4.5 and 4.6 show two possible configurations for the integration of the break detection
application into the process. It is a simplified view in a UML component diagram. Each modu-
le is displayed as a component. Components that are stereotyped with SoftwareModule are
programs that run independently on the RivetProcessController. The controller is displayed
as a UML node. Devices are stereotyped with HardwareModule. Each module encapsulates
the functionality of the module and provides it by an interface. These are either depicted by
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the “lollipop” symbol or as a “flow” dependency. The “lollipop” represent complex interfaces
that enable method calls, subscriptions, and others, while the “flow” dependency describes
a data stream without further interaction. This modeling approach is adapted for Service
Oriented Robotics Architecture (SORA) and is described in detail in [48].

Figure 4.5.: Break detection configuration with Bosch XDK

In the first configuration, the Bosch XDK is utilized as a source for the acceleration signal. It
is connected via USB to the process controller, and the application reads the signal directly
from the appropriate serial port. The second configuration utilizes an acceleration sensor
integrated into the UR10. This sensor can be accessed by utilizing one of the provided in-
terfaces of the UR10. In this case, the application is utilizing the UR10s Real-Time Data
Exchange (RTDE) interface.

Components depicted in the diagrams are described in the following:

LocalJobControl controls the procedure of the riveting process. Its task is to move the robot
to the rivets and start the collar feeder. It also invokes the collar break detection. The
break event generated by the break detection will indicate when to continue with the
next collar. Next to the collar break detection, the LocalJobControl is to be considered
a software module.

UniversalRobot10 is the robot controlled by the job controller. It has the collar feeder, the
Bosch XDK, and a 2D profile sensor attached. The UR10 supports different interfaces
that can be used to control the robot and receive data. The acceleration from the
integrated sensor can be accessed with a sampling interval of 125Hz .
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Figure 4.6.: Break detection configuration with UR10

BoschXDK is the embedded microcontroller device attached to the end-effector of the robot.
It is programmed to stream the acceleration data from its included acceleration sensor
over the serial interface.

4.3.3. Parameters and Application Settings

The application has to be configured to connect to the appropriate sensor and instantiate the
required interface. Besides, the parameters for the classifier and the detection state machine
have to be set. Default values are set within the program. Sensor dependencies can be
passed by the program start or set as environmental variables. Also, a configuration file is
available, where all settings can be edited. The break detection settings are described briefly
in Table 4.1.

4.4. Problem Description

Based on the current implementation, several difficulties arise that complicated the integrati-
on and deployment of the application. Some of the problems are also true for other applica-
tions. These are to be solved and are described in detail below.
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Table 4.1.: Parameter setting of the break detection
Parameter Description Default

WindowSizeAcc Sets the number of samples that are included within
the acceleration window. This value has to be adapted,
if the input dimension of the classifier is change, for
instance, to improve the performance of the classifier.

50

DataMax The maximal value of the acceleration data that is used
during the training of the classifier. It is later used, to
normalize the acceleration data before it is fed into the
classifier. This value can change, if the classifier is im-
proved by new training data.

m

s
2

DataMin The minimal value of the acceleration data used during
the training of the classifier. Same as the data_max

value, it is used for the normalization.

m

s
2

DataMean The average value of the train data. It is also used for
the normalization.

m

s
2

DataStdderiv The standard derivation of the train data. It is also used
for the normalization.

m

s
2

timeout The predefined timeout value, the robot will try to
screw a collar. Within this time the detection is acti-
ve. Otherwise it will resume into a read state before it
is invoked again by the LocalJobControl.

10s

Sensor This parameter will determine if the sensor from the
Bosch XDK or the UR10 is utilized for the detection.

xdk

RobotIp The IP address of the robot, the application will
connect to if the sensor parameter was set for the use
of the UR10.

10.4.2.50

RobotPort The port of the endpoint the robot provides its RTDE
interface.

5001

SensorSerial The path for the serial port the Bosch XDK is connec-
ted to. It is used, if the sensor parameter was set for
the Bosch XDK.

/dev/ttyACM0

4.4.1. Device Dependencies

Mostly the acceleration sensor, required by the break detection, can be replaced by every
sensor available and attached close to the TCP of the UR10. It is only required to add some
additional training data from a new sensor to adjust the existing classifier. Notwithstanding,
the problem of switching to a different sensor, is that with each different sensor, almost gua-
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ranteed, a new interface has to be implemented. This reduces the flexibility of the application
since, for each sensor, the application needs adaptation to support a new sensor.

This problem does not relate only to this particular application. Exceptionally pure software
applications like the break detection or the path planning application from chapter 1.1 are
confronted with this problem. Even if these applications can be versatile usable, the limitation
arise from incompatibly of the different interfaces that hardware components from different
vendors provide.

4.4.2. Application Configuration

As described, each module interacting with the application is an independent running com-
ponent communicating by some interface. Therefore, each module needs a way to be confi-
gured. In the case of the break detection, several options to configure different parameters
have been offered.

The configuration is especially challenging for modular, independent, and distributed app-
lications because they are comprised of multiple services and dependencies. Technologies
like the Robot Operation System (ROS) or Docker offer the possibility to deploy modular soft-
ware systems like the riveting system. With these, module configurations are usually stored
in one or more files that. These, however, are stored somewhere on the controller onto the
software is deployed. To find these files and navigate within is often tricky for people how are
not familiar with the system.

Either way, if the applications are configured and deployed individual or in with the mentioned
technologies, this process often requires advanced knowledge and reduces the ability to
exchange components easily.

For ML applications, in particular, there is a need for tracking the configuration an version
of the models used. Over time more and more training data is generated that is used to
improve the models. Consequently, the models have to be replaced in the actual applications
they are deployed in. Improvements may lead to changes in the model and, therefore, the
configurations. This makes it especially hard to track if several ways of configurations and
configuration files are available.

4.5. Implementation Objective

To facilitated the exchange of modules and configuration of applications, several princip-
les should be adapted for the implementation of the break detection application. These are
described here. Because some of these principles and concepts are not and will not be
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implemented within the scope of this work, these account for the conceptual nature of this
work.

4.5.1. Modularization

The overall modularization concept is based on the SORA and is extended to define not only
different types of software modules but also hardware modules. A SORA groups software
module in three different types of modules:

Hardware software modules are in charge of communication with physical sensors and ac-
tuators. Consequently, these are restricted to a particular type of hardware that func-
tionality is implemented. Essentially, these modules map the device interface provided
by manufacturers to a uniform interface based on an agreed communication proto-
col. This concept has already been adapted by the openMOS as DeviceAdapter, as
shown in figure 2.1. It should facilitate the replacement of devices without adapting the
interface implementation of depending modules that utilized the devices functionality.
Overall the DeviceAdapter can be considered the functional sub-model of the AAS
because it is associated of a specific asset or device and only should describing its
functionality.

Software modules or services in charge of data processing and high-level algorithms for
autonomy and control. These are not restricted to one particular kind of hardware Ins-
tead, they mostly depend on a specific class or type of hardware. This means they can
utilize the functionality of different hardware modules, as long as they implement the
same functionality, for instance, cameras from different manufacturers, that implement
the same functionality that is made available by DeviceAdapter modules with the same
interface implementation.

Infrastructure modules that are performing tasks ranging from audible notifications over
bandwidth management to the provision of common information and configurations.

Based on this concept, each software application and device is to be considered as a mo-
dule. For now, it should be differentiated between hardware and software modules, while
software modules should be further specialized as hardware depended modules, thus Devi-
ceAdapters, and infrastructure modules.

4.5.2. Information Modeling

In an I4.0 all I4.0 components should embed information to allow more autonomous acting
in changing circumstances. This means that common information model has to be created.
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Information from this model is to embedded into models of devices and applications to make
their information interpretable by machines. This reduces the manual effort that is usually
required to change and configure automation systems. By providing information on the nature
of different modules and their capabilities, a system, as a combination of several devices and
software applications, becomes aware of its overall capabilities and can decide on its own if
it is able to execute a specific job.

4.5.3. Uniform Access of Skills

The skill model described in chapter 3.4, essentially classifies capabilities. This enables to
resolve individual skills within a system. Together with the DeviceAdapter model, which em-
beds and provides the skills, more or less unified access of skills is possible. However, de-
pending on the type of skill, it is possible to implement a skill as a simple method. Other
skills may only provide a published sensor value, and even others may have a more complex
invocation scheme, conditioned by the nature of the skill. The variety of skills implementati-
ons would induce difficulty in accessing skills. An inconsistency could lead to trouble when
exchanging devices or modules, when the implementation of skills differ. To prevent this in-
consistency, each skill should be implemented based on the same patterns. Also, each skill
should provide information about its type and parameters that are needed to utilize it.

4.5.4. Configuration

Running systems with multiple independent services and modules requires maintaining con-
figuration settings across different environments and updating them in production deploy-
ments. It is also essential to have the ability to quickly and easily roll back in case of an
unintended or unexpected result. This is especially hard if configurations have to be edi-
ted in several places. Therefore all configurations should be provided to the modules in the
same way, easily accessible and trackable. This should reduce the configuration effort and
configurations better traceable.

4.5.5. Proposed Integration Concept

Based on the described principles, ideas, and concepts, the break detection application
should be integrated into the process. Means, the break detection is to be considered a
software module according to the modularization concept of a SORA since it provides high-
level data processing for more autonomy. The information of its nature as a software module
and all the information needed to integrate it into the process, should be embedded into
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the module. Therefore it should contain information about its capabilities and dependencies
based on a common information model that also each other module has to rely on. The in-
formation should be embedded employing OPC UA, whereas OPC UA enables to provide
this information on a communication level and is considered the communication standard of
choice for an I4.0. This communication standard also has to be adapted by the device adap-
ters that provide the functionalities of connected devices to the software modules within the
system.

Furthermore, the capability of detecting the Hi-Lok break should be provided by a state of
the art approach introduced by [11]. This approach utilizes OPC UA programs to make capa-
bilities of modules available in a unified way. Each capability provided this way is considered
a skill and thus is to be classified as one. Therefore each module should provide its skills this
way and share the information of skill types embedded into their information models.

To configure the break detection application, the configuration should be embedded into an
AML model that is based on the same information as the OPC UA models and created by
utilizing the AML information modeling mechanism. The AML model should also contain the
configurations of all other modules deployed within the riveting system. This way it should be
ensured that the system configuration can be reliable handled and tracked. Additionally, this
way of managing the configurations enables the possibility to make available the configurati-
ons to all modules using OPC UA.

Figure 4.7 shows how the integration of the break detection should look like, according to
the described concept. It provides its BreakDetectionSkill to the LocalJobControl. The Uni-
versalRobot10 provides the AccelerationSensingSkill to the break detection, whereby this
skill could also be provided by the Bosch XDK, which is not depicted in this configuration.
However, the AccelerationSensingSkill defines a requirement of the break detection, just
as the BreakDetectionSkill and the MoveSkill define requirements of the LocalJobControl.
For the break detection and additional requirement is introduced by the ClassifierDownload
from the ClassifierDatabase, which should be considered when modeling the break detection
application. The ClassifierDatabase is the only module not deployed within the RivetingPro-
cessControler, but rather in a CloudSystem, where also the classifier for the break detection
should be trained and improved. Ultimately each module deployed on the RivetingProcess-
Controller should refer to the AMLProcessModelServer for its configuration, indicated by the
named config dependency.
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Figure 4.7.: Break detection concept



5. Modeling

The implementation has four main parts. First, a common semantic model is created. Based
on this model, the AML model derived, which contains the required configuration of modules.
The OPC UA model incorporates the information on a communication level. Finally, an OPC
UA client is implemented to use the information stored in the models to resolve configurations
and dependencies.

5.1. Common Semantic Model

To provide the information to the different modules and navigate the information, it needs a
common understanding each module can share. Thus a simple, common semantic model
based on the skill, PPR, and modularisation concept is created in UML. This model provides
the information that each other information model, either in AML or OPC UA, should incor-
porate to derive the common knowledge. Based on this model, each application should be
possible do derive the knowledge needed, to resolve dependency and configurations.

5.1.1. UML Model

As shown in figure 5.1, the semantic model describes modules as some kind of resource.
Each module, either hardware or software module, can have several skills and requirements.
Skills are specialized to be either atomic or composite. Requirements are specialized to be
either a device requirement or a skill requirement. Composed skills are a composition of
several atomic or also composite skills, which means that each composite skill has to have
at least two skill requirements that resolve the dependency on the underlying skills. Device
adapters, however, have precisely one device requirement. This requirement describes the
dependency regarding the hardware module of which the functionality it implements. Besi-
des, each requirement and skill could provide a parameter set. For a device requirement, this
contains the necessary device setting, like the sampling rate of a sensor. A skill requirement,
however, stores the required parameters that have to be passed, similar to method parame-
ters in a method call. Therefore, the parameter set in the skill requirement should match the
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Figure 5.1.: Semantic model in a UML class diagram

parameters defined by the skill. Same for the device requirements, where the values stored
in the parameter set should match the property of the associated device.

5.1.2. Skill Taxonomy

In addition to the semantic model, a skill taxonomy is defined, defining a set of skill types.
The taxonomy is comparatively simple since it only covers the skill set of the break detection
application. The acceleration sensing skill accommodates for the acceleration sensing, sup-
plying the input data for the classifier. It is a specialization of a general sensing skill. As an
additional example the image sensing skill is shown. For The break detection itself, a signal
generating skill is defined as a specialization of logical skill. Additional logical skill can be
defined if needed. For instance, into planning skills, which would accommodate a skill type
for path planning as described in the example from 1.1.

5.2. AutomationML Model

The AML model should provide the required configurations of the system. References to
dependency, like hardware and other, should be contained. Based on this, each application
should be able to resolve its requirements and access its configurations. This is done by
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Figure 5.2.: Skill taxonomy in UML

converting the AML model to an OPC UA server. The general modeling approach is adapted
and simplified from the modeling approach of the openMOS project.

5.2.1. Role Definitions

The semantics defined in the UML model has to be embedded in the AML model. This can
be done, either by defining the classes of the UML model as system unit classes in AML or
define appropriate AML roles. In this case, both options are used. This results in a certain
degree of redundant information.

First, an appropriate set of roles is defined in an example riveting role class library, as shown
in figure 5.3. Skills, modules, and requirement rules are defined. Roles provide semantics
without defining the underlying technical implementation. However, while the redundancy
is given, which will become evident if later on, the system unit classes are defined, the skill
roles, in this case, does not define atomic or composite skills. This would indicated a technical
implementation of skills. Instead, the skill role definitions define the type of the skills defined
by the skill taxonomy, as shown in 5.2.

OPC UA Servers

In AML description of OPC UA servers has been presented in the best practice recommen-
dation for data variables [38]. The OPC UA server role is defined as a specialized type of



5. Modeling 47

Figure 5.3.: Excerpt from the role definition of data variables

data sources. An excerpt of the data source definition is shown in figure 5.4a. It also defines
a set of attributes. These attributes are shown in 5.4b and ultimately provide the required
information to identify and connect to a server.

(a) Excerpt from the role definition of data varia-
bles (b) OPC UA server role attributes

Figure 5.4.: OPC UA server definition in AML

5.2.2. Interface Definitions

For now, only one custom interface type is defined, as shown in 5.5. The requirement in-
terface will connect requirements and their dependencies by creating internal links within
the instance hierarchy. Within a requirement, it can be seen as a required interface, while in
skills and others, it is instead a provided interface, requirements can connect to. In context
to the UML semantic model, the interface would define the “resolve” dependencies between
requirements and their targets.
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Figure 5.5.: AML requirement interface.

5.2.3. System Unit Class Definitions

The system unit classes defined, define reusable classes that later can be instantiated in the
instance hierarchy. Also, each class defined can be added as an internal element to another
class definition. This allows, to build a library of classes that can be reused and combined for
the modeling of any other process or system.

Skills and Requirements

Skills and requirements represent the modules capabilities and their dependencies.
The system unit classes for skills and requirements are defined in the RivetingExam-
ple_Skills_UnitClassLib, as shown in 5.6. Skills are specialized as atomic and composite
skills. Each of these skills will have at least one requirement connector that later allows
resolving these skills.

Figure 5.6.: AML system unit classes for skills and requirements

Requirements, however, are specialized in resolving skill, device, database, and adapter
requirements. Skill requirements will be resolved by connecting to the requirement connector
of the associated skill. The device and adapter requirements are complementary. A device
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will define an adapter requirement, while a device adapter will contain a device requirement.
This way, devices and associated adapters are connected.

Moreover, the skill and requirement classes will define a parameter set attribute, to define
parameters that have to be configured to accommodate configurations provided by skills,
devices, or other. Parameters will be added to the parameter set when instantiating these
classes, which means when creating internal elements from the defined classes.

Modules

In figure 5.1, the model defines software and hardware modules. These will be created as
system unit classes in the RivetingExample_Modules_UnitClassLib. In the UML model, only
device adapters are defined as a specialized type of software modules. This does not mean
that additional types can be derived because, ultimately, every program or application can be
categorized as some kind of software module.

Figure 5.7.: AML system unit classes for modules

As shown in figure 5.7, the break detection application is defined as a software module. The
break detection provides an atomic skill which is named DetectingHiLokBreak and typed by
associating the internal skill element with the SignalGeneration role. The AcclerationSensing
internal element is a skill requirement, that is typed by associating it with an AccelerationS-
ensing role. It defines a dependency to an acceleration sensor with the acceleration sensing
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skill. To enable the adaption of the classifier during run-time, the classifier DatabaseRequi-
rement defines the associated database where the classifier can be downloaded.

Also defined are the device adapter software modules for the Bosch XDK and the UR10.
These usually would provide more skills, but for the scope of this work, only the acceleration
sensing skill is defined within each. Further, the device adapter class has a device requi-
rement defined to accommodate for the device dependency. Devices would be categorized
and defined in the hardware module class. However, these would not be considered within
this model, since all dependencies are resolved by the device adapters, and are therefore
unimportant for the scope of this work.

5.2.4. Process Instance Hierarchy

The defined system unit classes can now be utilized to create an instance hierarchy. For
each configuration of the break detection application, one separated instance hierarchy will
be constructed and saved in separated AML files.

Figure 5.8.: Instance hierarchy with the UR10 as an acceleration source.
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Instance Hierarchy with UR10

Since the software modules are deployed on the IPC, a runtime is defined, within the mo-
dules are deployed. In this configuration, an instance of the break detection and the UR10
device adapter are created, as shown in figure 5.8. Additionally, a cloud system is created,
where the database with the classifier could be deployed. After instantiating the required mo-
dules, dependency could be resolved by creating the internal links between the requirement
connectors and the targets. The acceleration sensing skill requirement of the break detecti-
on is resolved by the acceleration sensing skill of the UR10 and the database requirement is
connected to the requirement connector of the classifier database.

Finally, the OPC UA server and parameter and parameter settings of the requirements and
skills are edited. For each server, the discovery URL, endpoint URL, and the namespace
table attributes are added. In the namesspace table, only the application namespace is ad-
ded with the index one. This way, each server can be resolved by a client browsing the later
generated AML server. The namespace entry of the namespace table ensures a client can
access the custom application objects. All other namespaces are considered standard na-
mespaces containing type definitions and nodes that are shared and well known by each
client and server in the network.

For the classifier requirement the parameters of the break detection according to the para-
meter definition from table 4.1 are set. The define parameters for the classifier are shown in
5.9a. These are assigned to the classifier since they affect its behavior. This is because the
parameters have to be calculated during the training of the classifier. Therefore they will be
contained in the classifier database, together with the classifier itself.

For the acceleration sensor dependency only the sampling time and measurement range are
added. as shown in 5.9b. The acceleration sensor should ultimately provide the sensor data
with a publishing rate of 125Hz and a range from �32m=s2 to 32m=s2.

(a) Classifier parameter set (b) Sensor parameter set

Figure 5.9.: Parameter definitions for the application requirements
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Instance Hierarchy with Bosch XDK

As an alternative sensor, the device adapter of the Bosch XDK can be added from the sys-
tem unit class library to the instance hierarchy, instead of the UR10. The parameter setting
remains the same, only the OPC UA server parameters of the Bosch XDK device adapter
server have to be added. The resulting instance hierarchy is shown in figure 5.10.

Figure 5.10.: Instance hierarchy excerpt with the Bosch XDK instead of the UR10.

5.2.5. Model Conversion to OPC UA

The resulting model can be converted to OPC UA, following the rules specified in the DIN
SPEC 16592. To do so, the Fraunhofer IOSB provides a web-based tool [49] where models
can be uploaded and converted to OPC UA. Resulting files can be downloaded, and for the
server an executable file is included. Also, the generated code is delivered and can be edited
and recompiled. Unfortunately, this tool is not based on the latest version of AML specification
nor the OPC UA specification. For this application, it is acceptable, since the generated server
is running as an independent instance, and the client application introduced in 6.2 can be
adapted to follow either the newest specification or the outdated.

In figure 5.11a, an excerpt from the resulting address-space of the OPC UA is shown. Next
to the OPC UA base name-space, the AML name-space with the type definition from the DIN
SPEC 16592 and the actual model name-space will be available. Within the model name-
space, the definitions from the AML file are available. It is placed in the AutomationMlFiles
folder object. Here the instance hierarchy and the type definitions are available. Further-
more, the instance hierarchy will be available in the AutomationMLInstanceHierarchies fol-
der. The instance hierarchy is placed by a HasComponent reference, in the RivetingPro-
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(a) AML file in OPC UA object tree.
(b) Break detection and accelerati-

on sensing parameters.

Figure 5.11.: Resulting object tree in the OPC UA server.

cess_Communication_new.aml object and referenced with an Organizes reference from the
AutomationMLinstanceHierarchis folder.

Figure 5.11b shows the resulting object of the break detection application, with the expanded
acceleration sensing requirement. Parameters defined in the parameter set of the require-
ment will be available in the OPC UA server as OPC UA variables, typed as AMLVariableType.
The requirement connector of the acceleration sensing requirement is converted to an OPC
UA object. It has a non-hierarchical reference of type HasAMLInternalLink, referencing the
node ID of the requirement connector of the Bosch XDKs acceleration sensing skill.

5.3. OPC UA Models

The OPC UA models describe the actual, reusable modules. Here all configuration, data, and
functionality are contained and accessible. Fist, the models, are created, and the resulting
XML file is used to generate the server code. Then the generated code can be used to
implement the actual server logic or just deployed.
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5.3.1. Modeling Software

To model the information models of applications and devices, the Siemens OPC UA Modeling
Editor (SiOME) can be utilized [50]. This editor was initially intended to create models based
on the OPC UA companion specification and mapping values within the models to the logic
controller of the SIMATIC family. However, the creation of OPC UA information models can
be utilized without the need to connect any logic controller, and the ability to export the
information models in an XML format makes it a general-purpose OPC UA modeling editor.
Figure 5.12 gives an overview of the editor.

Figure 5.12.: Overview SiOME

5.3.2. Type Definitions

Before starting to model the actual information model of any application, a set of types has
to be defined, based on the common semantic model.

Modules

As described in the semantic model, it is distinguished between hardware and software mo-
dules. Dependent on the module type, different module properties are represented. In the
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OPC UA specification for devices, the TopologyElementType is defined. From it, the Com-
ponentType is derived. Modules, however, could be seen as components, without further
specialization. The OPC UA device specification defines DeviceTypes and SoftwareTypes as
components. Each component could have an AssetId. The SoftwareType definition is shown
in figure 5.13.

Nevertheless, since the semantic model defines modules as a type, it would be unappropria-
ted to go with the different ComponentType definitions, since the semantic model defines the
information that should be shared between models and modeling languages. Therefore the
ModuleType is defined as a specialized type of ComponentType. These types are defined in
the http://ifam.fraunhofer.de/UA/ModuleTypes/ namespace.

Figure 5.13.: Module types defined in OPC UA

Requirements

Requirements will be directly derived from the BaseObjectType, as shown in figure 5.14.
These should resolve requirements that are contained in different OPC UA server. Conse-
quently, requirements will contain a node ID and discovery URL as properties. Later on, this
information can be resolved from the AML server and be used to access the requirements
on the appropriate server in the network.
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To uniformly access the requirements of modules, a requirement interface is defined. The
interface defines a requirements object, which on the other hand, organizes the requirements
of the whole server by referencing the requirements in the address-space with an Organizes
reference.

Furthermore, the custom reference type HasRequiredType is defined. This reference could
accommodates, for instance, for the skill type of a defined skill requirement. It would be
defined by the requirement and point to the required definition of the skill type. The same
was done in the AML model by adding the role of the required type to the requirement.

Figure 5.14.: Requirement types defined in OPC UA

Skills

Skill types are derived from OPC UA ProgramStateMachineType, as shown in figure 5.16.
Here, only methods and states are defined. These are mandatory for every skill. Usually, the
program would contain state-transitions, but these are omitted for clarity. A view of the skill
definition object tree can be found in A. Transitions, however, are displayed in state machine
diagram of the program in figure 5.15. The transition arrows between the states include the
method name that triggers the transition and the name of the transition itself. Some of the
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transitions are not triggered by any method. Instead, they are triggered by an internal server
event. These are the ReadyToHalted and SuspendedToReady transitions. Moreover, each
transition is an event source that will be generated if these transitions are triggered.

Figure 5.15.: Skill state machine

The approach of describing skills as OPC UA programs has been introduced by [11], and
[12], while [4] used OPC UA state-machines. The approach of representing skills as OPC
UA programs will be adapted here. With this approach, it becomes possible to access and
control each skill more or less the same way and facilitates the execution of various skills that
may have to be executed in parallel. First, the client who wants to invoke the skill, would, if
required, write the skill parameters into the parameter set object and subscribe to the event,
which is triggered by the RunningToReady transition. Then it can start the skill execution
by invoking the start method. If the skill finished its execution, it would change the state
from running to ready. Internally the associated event would be triggered. Since the client
subscribed to this event before starting the skill, it would be notified that the skill execution
finished. If the skill program defines a result data object, the client could now read the result
data or continue with its task.

For the sensing skill, the program has to be customized to include an object SensorValue-
DataSet of type PublishedDataItemsType. This object will ultimately contain the sensor data
that is to be published by the PubSub mechanism. In a way, this approach has been pro-
posed by [4] who added the ability to publish skill execution information to provide better
real-time performance for skill execution and monitoring. However, instead of adopting this
approach for the whole state machine, in this case, it is only relevant for the SensorValueDa-
taSet. Together with the program state machine, it should be possible to control the publisher
by the defined methods of the program. Since the sensing skills would never trigger the Run-
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ningToReady event, it would continue publishing data until a client terminates or pauses the
skill by invoking the halt or suspend method. So instead of subscribing to the RunningTo-
Ready event, the client would subscribe to the published sensor value defined within the skill
program.

Figure 5.16.: Skill types defined in OPC UA

To facilitate the access of skills, the same way as for requirements, an ISkillControllerType
interface is defined, as shown in figure 5.16. This is an OPC UA interface that each module
that offers skills should define to make skills easy accessible. It will be indicated by the
containing module typed object ba a HasInterface reference, the same way as it has been
done for requirements. The skill object is defined by the controller interface and will organize
all skills that are available in the servers address-space.

Skill types defined here, have neither a parameter set or a result data object defined. The-
se are optional, depending on the skill, and can be added after instantiating a skill or while
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defining a new skill type. Skill types defined here accommodate for the break detection app-
lication.

Furthermore, there is again no distinction made between atomic and composite in the type
definitions of skills. However, a composite skill would be a skill, according to the common
semantic model, that has at least two skill requirement defined. Therefore there is no need
to distinguish it further by type.

Machine Learning Classifier Type

Finally, an ML type is defined. More precisely, an ML classifier. This type is defined in the
application namespace. It defines the structure of a classifier that each classifier could re-
ceive. The classifier model variable contains the classifier as a byte string. Depending on
the programming language the server is implemented in, it is a byte string of the classifier
object that is serialized or a file of a dynamic library. In the case of the break detection, the
classifier would be received as a dynamic library, since the application will be implemented
in C/C++.

The predict method represents the method that is ultimately used to make a prediction based
on the given input data. By representing it within the server, it also could be utilized by a client.
However, it will not be used by the server implementation.

The parameter set is defined within the classifier too. For the break detection application
it contains the attributes defined in the AML model as AML variables. These have to be
resolved from the classifier database.

5.3.3. Break Detection Application Model

With the defined types, all information is available to create the information models of the
actual applications. Figure 5.18 shows a simplified representation of the break detection ap-
plication. It consists of the ML classifier and the signal generating skill program, detecting the
Hi-Lok collar break. It utilizes the type definitions from the previously defined namespaces.
The break detection program DetectingHiLokBreak is typed as a SignalGenerationSkillTy-
pe while the HiLokBreakDetection application object is typed as a SoftwareModuleType and
the Classifier object as a ClassifierType. A detailed representation, with child variable and
objects, like states and program methods, is omitted for clarity. A full overview of the address-
space, however, can be found in B.

In addition to the underlying functional object, the required dependencies are defined. These
are placed within the associated objects. Therefore the DetectingHiLokBreak skill program
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Figure 5.17.: ML type in OPC UA

defines the AccelerationSensing object as a SkillRequirement, resolving the required skill
type by the custom-defined HasRequiredType reference. In the Classifier, the ClassifierDa-
tabase is defined as a DatabaseRequirement, resolving the classifier source.

Another part of the application, the DetectedHiLokBreaks variable, is defined, to allow clients
to monitor the performance of the application.

The shown model in figure 5.18 does not displays the entirety of the application. For clarity,
most of the objects, variables, and properties are omitted. However, the Skills object con-
tains one hierarchical Organizes reference to the DetectingHiLokBreak skill program, since
this is the only skill defined by the application. The Requirements contains two Organizes
references to the ClassifierDatabase and AccelerationSensing requirements. Furthermore,
the HiLokCollarBreakDetection module object defines two HasInterface references. One for
the ISkillControllerType and one to IRequirementsTypes.

5.3.4. Sensor Models

The sensor model is an excerpt of the appropriate device adapter. In figure 5.19, it is shown
for the UR10. Same as the break detection application, it uses the previously defined ty-
pes. Usually, the device adapter would contain additional skills and variables to control and
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Figure 5.18.: Simplified view on the break detection server

monitor of the robot. However, for the integration of the break detection, only the Accelera-
tionSensing skill is required. It is defined as a child of the UR10Adapter and typed as the
AccelerationSensingSkillType.

The skill contains the same parameter set as previously defined in the AML model and by the
acceleration sensing skill requirement of the break detection program. Also defined are the
skills and requirements interfaces, which references are also omitted in the representation of
the model. Therefore, different than previously in the representation of the break detection,
the Skills object has the Organizes reference defined, targeting the AccelerationSensing
skill.

5.3.5. Model Conversion to C Code

The created model can be exported in an XML format. Based on these files, it is possible
to generate the program code. Depending on the OPC UA implementation and program-
ming language used, there are several options available. For this work, the open-source
open62541 [51] library will be utilized. It is an OPC UA C library that also provides Python
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Figure 5.19.: UR10 sensor model

scripts to generate the servers C code. This Python application is also called a nodeset
compiler.

Nevertheless, since the library is open-source and some the of OPC UA specifications have
been released only in the last month, not all of the specifications have been realized within
the library. Consequently resulting OPC UA programs, for instance, will define the structure
of the address-space, but not the actual mechanisms that should be given by the program,
like the triggering of events or transitions when calling a method.

However, when exporting the XML files from the SiOME editor, created namespaces could
be exported apart to separated files or all into one file. While the export of separated files
facilitates the distribution of common types and creation of new server models, the export
of one fused file facilitates the work with the nodeset compiler. Usually, each existing node-
set needs to be included during the compilation of the nodeset by the --existing option.
Although, since all definitions are included within one file, the command for compiling the
nodeset simplifies to the command shown below.
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Listing 5.1: Compiling the nodeset
python ./nodeset_compiler.py --types-array=UA_TYPES \\

--existing Opc.Ua.NodeSet2.xml \\
--xml ifam.breakdetection.xml breakdetection

This will create a breakdetection.c and breakdetection.h file, containing the code that
ultimately creates the structure of the servers address-space. Therefore all is left to do, is to
create a server struct and pass it to the generated breakdetection function. This will add
all previously defined nodes to the server, as shown in listing C.1.

Listing 5.2: Server creation from generated code
#include <signal.h>
#include <stdio.h>
#include <open62541.h>
// Including the generated header
#include "breakdetection.h"

UA_Boolean running = true;
static void stopHandler(int sign) {

running = false;
}

int main(int argc, char **argv){
// Creating the server configurations
UA_ServerConfig *config = UA_ServerConfig_new_default();
// Creating a default server
UA_Server *server = UA_Server_new(config);
// Adding the nodeset to the server
UA_StatusCode retval = breakdetection(server);
if(retval != UA_STATUSCODE_GOOD){

UA_LOG_ERROR(UA_Log_Stdout, UA_LOGCATEGORY_SERVER,
"Unable to add the nodeset.");

retval = UA_STATUSCODE_BADUNEXPECTEDERROR;
} else {

retval = UA_Server_run(server, &running);
}
UA_Server_delete(server);
UA_ServerConfig_delete(config);
return (int) retval;

}



6. Client Implementation

With the information embedded into the models, a simple OPC UA client application should
show how to utilize the information to configure the application and resolve its dependency.
Therefore several browse requests are defined to browse the AML server. With the browse
results, it is then possible to connect to the appropriate server and access skills, databases,
and other requirements. How an OPC UA client can be utilized to resolve requirements is
shown here only for skills. In particular for the acceleration sensing skill of the break detection
application.

To hold all information needed, to connect to skill, a SkillClient struct is defined. This struct
is to be filled with the information from the defined information models by using the browse
functionality of OPC UA. The SkillClient struct is shown in listing 6.1.

Listing 6.1: SkillClient struct
typedef struct SkillClient{

UA_Client *client;
UA_String endpointUrl;
UA_ExpandedNodeId skillId;
UA_String skillType;

}SkillClient;

The struct holds the client that will be connected to the server, providing the skill. To connect
the client to the right server, the endpoint URL of the server is included. To resolve the skill
within the server, the node ID is needed. It is saved as an expanded node ID. Expanded node
IDs do hold not only the namespace index and ID but also the associated namespace URI.
Endpoint URL and namespace URI have been included into the AML model. The node ID
has to be resolved from the server that is providing the skill, and the skill type is provided by
the server, which requires the skill.

6.1. Resolving Skill Requirements from theAML Server

To resolve the requirements from the AML server, an OPC UA client is created, that is will
then connect to and browse the AML server. All information that is ultimately needed to
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resolve dependencies is the AML server endpoint URL and the discovery URL of the module
server whose dependencies are to be resolved.

In order to navigate the server, a number of browse requests are defined. The functions are
described in the following:

getUAServerIdByDiscoveryUrl(*client, url, *serverId) resolves the OPC UA
server by its given discovery URL. This function follows the inverse references of the
OPC UA-Server role type definition. For each result, it reads the discovery URL varia-
ble and compares it with the passed discovery URL. If both match the servers node ID
is saved in passed node ID reference.

readUAServerDiscoveryUrl(*client, serverId) reads and returns the discovery
URL of the given OPC UA server node in the AML server.

readUaServerEndpointUrl(*client, id) reads and return the endpoint URL of the gi-
ven OPC UA server node in the AML server.

isOpcUaServer(*client, id) checks if the given node ID belongs to an OPC UA server
node object, based on the OPC UA server role type definition from AML .

getModuleUaServerId(*client, id, *result) finds the associated OPC UA server of
a module in the AML server by checking recursive for each object within the module is
a server.

isSkillRequirement(*client, id) checks if the node with the given ID is a skill requi-
rement, based on the type definition from the AML system unit class library.

isRequirement(*client, id) checks if the node with the given ID is a requirement,
based on the type definition role definition for requirements from AML role class library.

isObjectSubType(*client, type, node) checks if the given node is a sub-type of the
type ID passed.

isSoftwareModule(*client, id) check if the node with the given ID is a software mo-
dule, based on the role type definition for software modules from the AML role class.

getContainingModule(*client, id, *result) gets the node ID of the module that
contains the node with the given ID. The result is saved in the result reference.

getModuleSkillRequirements(*client, id, *requirements, size) finds all skill
requirements of a module and saves them in the requirements reference.

resolveAmlInternalLink(*client, id, *result) resolves the node the internal link
reference is pointing to. If the requirement is a skill requirement, the resulting ID of the
target node would be the ID of a skill type node.
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resolveRequirement(*client, id, *result) finds the requirement connector of the
node with the given ID. If the requirement connector has a hasAMLInternalLink refe-
rence, it uses the resolveAmlInternalLink function to get the node ID of the target
node.

The browse request for the resolveRequirements function is shown in detail in Listing 6.2.
It shows the basic concept of how to browse to utilize the browse functionality. First, the
browse request is created. Afterward, the service function UA_Client_browse is used to
make the service request at the connected AML server. Finally, the references returned by
the browse request can be used in the for loops to check if the returned reference satisfies
the required condition. If so, the referenced node ID required is returned.

Listing 6.2: Resolving module requirements
UA_StatusCode resolveRequirement(UA_Client *client, UA_NodeId *id,

UA_ExpandedNodeId *result){

// The node ID of the requirement connector type
UA_NodeId requirement_connector = UA_NODEID_STRING(process_idx,

AML_CLASSTYPEDEFINITION_REQUIREMENTCONNECTOR);

// Creating the browse request
UA_BrowseRequest req;
UA_BrowseRequest_init(&req);
req.nodesToBrowse = UA_BrowseDescription_new();
req.requestedMaxReferencesPerNode = 0;
req.nodesToBrowseSize = 1;
req.nodesToBrowse[0].browseDirection = UA_BROWSEDIRECTION_FORWARD;
req.nodesToBrowse[0].nodeId = *id;
req.nodesToBrowse[0].resultMask = UA_BROWSERESULTMASK_ALL;
req.nodesToBrowse[0].includeSubtypes = true;
req.nodesToBrowse[0].referenceTypeId = UA_NODEID_NUMERIC(0,

UA_NS0ID_HASCOMPONENT);

// Using the server browse service to answer the browse request
UA_BrowseResponse resp = UA_Client_Service_browse(client, req);
for (size_t i=0; i<resp.resultsSize; ++i){

for(size_t j=0; j<resp.results[i].referencesSize; ++j){
UA_ReferenceDescription *ref =

&(resp.results[i].references[j]);

// If the returned node reference is typed as a requirement
// connector, the requirements internal link is resolved.
if(UA_NodeId_equal(&requirement_connector,

&ref->typeDefinition.nodeId)){
resolveAmlInternalLink(client,

&ref->nodeId.nodeId, result);
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return UA_STATUSCODE_GOOD;
}

}
}

return UA_STATUSCODE_BADNOMATCH;
}

These browse requests can then be utilized to get the discovery, endpoint URL, and applica-
tion namespace URI for the module server that provides the required dependency. In Listing
6.3, a sequence of the previous defined browse request is shown. At the end o this sequence
the endpoint URL and namespace URI of the server providing the acceleration sensing skill
to the break detection are recovered.

Listing 6.3: Finding the OPC UA servers with the break detection dependencies
// Find the server of the break detection application in the AML server
getUAServerIdByDiscoveryUrl(client,

UA_STRING(
"opc.tcp://0.0.0.0:5003/RivetingProcess/HiLokBreakDetection"),
&serverId);

// Get the node ID of the break detection module in the AML model
getContainingModule(client, serverId, &moduleId);
// Get all skill requirements of the break detection module
getModuleSkillRequirements(client, &moduleId, requirements, 1);
// Get the requirement connector node ID of the targeted skill
resolveRequirement(client, &requirements[0], &dependencyId);
// Get the node ID of the module with the targeted dependency
getContainingModule(client, skillId.nodeId, &targetModuleId);
// Get the node ID of the OPC UA server object of the module
getModuleUaServerId(client, targetModuleId, &targetServerid);
// Get the server discovery URL
UA_String targetUrl = readUaServerDiscoveryUrl(client, targetServerId);
// Get the namespace URI of the target server application
UA_String targetUri = readUAServerNamespaceUri1(client, targetServerId);

6.2. Resolving the Acceleration Sensing Skill

With the known endpoint URL, application namespace, and skill type, it is possible to connect
to the server and resolve the skill within the targeted server. This is done by connecting to
the server and browse it in order to find all objects that have the HasInterface reference that
is pointing to the ISkillControllerType. Since the ISkillControllerType defines the interface by
defining a Skills object within the object that is referencing the interface, all known skills
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should be contained within the Skills object. Therefore, it is possible to browse the Skills
object that is organizing the skills and find the skill with the required type.

Because it is not possible with the current implementation of the AML to OPC UA converter
to export the defined library in a separated file, it is therefore not possible to share type
definitions between the AML generated OPC UA server and the custom OPC UA server.
This is why, for now, the type of skills required is checked by the names of the skill types. By
comparing the defined AML role skill types with the OPC UA skill program name types, the
types can be matched. It is not the optimal way to do so. Superior would be to share type
definitions of skills between the AML server and the custom module servers, associate the
skills with these types, and ultimately match skill type by their node IDs.

However, to find the right skill within the target server, an additional browse functions are
defined, that utilizes the skills type name as a string to find the targeted skill in the device
adapters. These functions are described in the following.

getSkillByTypeName(*client, type, *result) will resolve the skill by the skill type
provided as a string. The delivered client is the SkillClient that is already connected to
the target server. It is used to search for the objects reference the ISkillControllerType
interface by following nodes with the HasInterface. If a node has this interface, it will
search the Skills object for skills with the type definition of the type provided to the
function.

findSkillsObject(*client, *result) finds the Skills interface object, organizing the
servers skills and returns saves its node ID in the provided result reference.

6.3. Test Case

To test the resolution of the acceleration sensing skill of the break detection application, the
AML, generated OPC UA server and the appropriate device adapter is deployed. First of
all, the AML server created from the model in chapter 5.2.4, containing the break detection
application, resolving its acceleration sensing skill requirement to the UR10, and the device
adapter, created according to the OPC UA model from chapter 5.3.4, are deployed. Then the
same is done for the Bosch XDK AML and OPC UA model.

In both cases, a configuration client program is started. The code of this program can be
found in C. It will first create an AML client that connects to the AML server and resolves the
acceleration sensing skill, using the functions described in 6.1. With the results from the AML
client, a second client is created that connects to the server with the resolved endpoint URL.
It will then resolve the acceleration sensing skill in the appropriate device adapter server,
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using the functions defined before in chapter 6.2. All information is saved in the SkillClient
struct.

In either case, the acceleration sensing skill is resolved, without changing the configurati-
on client program. It shows that by embedding the right information into the AML and OPC
UA models, software modules become more autonomous. The configuration client can po-
tentially be used in every software module that is to be configured by accessing an AML
configuration server without any need to change the module nor the configuration client im-
plementation. All that is needed, is the modules own discovery URL and the endpoint of the
AML server.

Furthermore, in combination with the skills implemented as a OPC UA program, the usage
of sensors and other device functionality enables more flexibility when changing the configu-
ration of a production system.



7. Discussion and Further Work

This work demonstrated a concept on how a pure software application represented by a ma-
chine learning application, for the detection of the break of Hi-Lok collars, can be integrated
into an automation process by utilizing AML and OPC UA. Therefore the application and de-
pendent components have been modeled with the information modeling techniques by both
AML and OPC UA. A common semantic model, defined in UML, provided the common know-
ledge that is shared between different models. The common semantic model was based on
different principles, which have been adapted. A modularization concept based on the SO-
RA principle was used to describe the machine learning application and other components
as independent modules. Also, the idea of skill-based engineering has been adopted. Base
on this, each module was modeled to provide its capabilities as skills. Therefore, skills have
been considered to be OPC UA programs, that have been typed according to a previously
defined skill taxonomy. Furthermore, the application dependencies have been included in the
module models in the form of requirements.

The information model in AML has been adapted to provide the application configuration and
resolve its requirements to other modules. This model has been converted to an OPC UA
server and therefore been made available for the different modules in the system to com-
municate. By the implementation of an OPC UA client, it has been demonstrated how the
information embedded into modules, can be utilized to navigate and resolve server configu-
rations and dependencies in an autonomous way.

However, difficulties arise when relying on information that is modeled not considering any
standards. This is especially the case for applications as discussed within this work, where
pure software modules, machine learning application and domain-specific tasks are discus-
sed. For instance, skills have been discussed in research for over a decade, but there is
no standard to standard available to classify or describe even non-domain-specific skills.
The problem that is arising with that, that models from different vendors and developers will
consequently inconsistent with their information description.

Moreover, the exchange and share of common information between different modeling fra-
meworks is an obstacle. In the case of AML and OPC UA, it is not possible to rely on type
definition from OPC UA when modeling in AML and vise versa. That is why [52] introduced
an ontology, in which information is aggregated and then accessed from OPC UA and AML
the same way. This would create a common knowledge base that both modeling frameworks
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could rely on and therefore provide more consistency when modeling the same modules in
both frameworks.

Therefore in future work, a common base for information has to be created based on which
common data each model can rely on. Furthermore, the configuration client has to be ad-
apted and integrated into modules. Also, additional clients have to be implemented that are
then provided for the development of new modules. These should enable to access skills and
other requirements in a more generic way. Of course, the base for all of this is common and
standardized information that is shared and adapted by manufacturers and developers. This
will may result from the efforts made around the RAMI.
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A. Skill Type Definition in OPC UA

Figure A.1.: Object tree of the skill type definition in OPC UA



B. Break Detection Definition in OPC UA

Figure B.1.: Object tree of the skill type definition in OPC UA



C. Configuration Client Program

Listing C.1: Server creation from generated code
/*
* main.c

*
* Created on: 26.11.2019

* Author: jbonas

*/

#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include <assert.h>

#include "open62541.h"
#include "aml.h"
#include "util.h"

static UA_UInt16 amlIdx;
static UA_UInt16 processIdx;
static UA_Client *amlClient;
static UA_ExpandedNodeId *ua_server_ids;

typedef struct SkillClient{
UA_Client *client;
UA_String endpointUrl;
UA_ExpandedNodeId skillId;
UA_String skillType;
UA_NodeId parameterSet;

}SkillClient;

int main(int argc, char *argv[]) {

// Node IDs for saving the the results from AML address space.
UA_NodeId bdServerId;
UA_NodeId bdModuleId;
UA_NodeId skillServerId;
UA_NodeId skillId;
UA_NodeId dependencyModuleId;
UA_NodeId bdRequirements[2];

// Create a skill client struct to hold the skill informations
SkillClient accSensingSkill;

// Initialize the node IDs
UA_NodeId_init(&bdServerId);
UA_NodeId_init(&bdModuleId);
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UA_NodeId_init(&skillServerId);
UA_NodeId_init(&skillId);
UA_NodeId_init(&dependencyModuleId);
UA_NodeId_init(bdRequirements);

// Create and set the AML client configuration.
UA_ClientConfig *config = UA_Client_getConfig(amlClient);
UA_ClientConfig_setDefault(config);

// Connect to the AML server
amlClient = UA_Client_new();
UA_StatusCode retval = UA_Client_connect(amlClient,

"opc.tcp://localhost:16664");
if (retval != UA_STATUSCODE_GOOD) {

UA_Client_delete(amlClient);
return EXIT_FAILURE;

}

// Resolve the required namespace indexes from the AML server.
UA_String amlNs = UA_STRING("http://opcfoundation.org/UA/AML/");
UA_String processNs = UA_STRING("http://www.iosb.fraunhofer.de/

RivetingProcess_Sensor_UR10.aml");

// Get the index for the AML index with definitions from
// specification.
retval = UA_Client_NamespaceGetIndex(amlClient, &amlNs, &amlIdx);
// Get the index for the previously created AML model namespace
retval = UA_Client_NamespaceGetIndex(amlClient,

&processNs,
&processIdx);

// Check if both namespaces are there, otherwise quit the program.
if(amlIdx == 0 || processIdx == 0){

printf("Faild to find namespaces");
return EXIT_FAILURE;

}

printf("Found AML index ns=%d\n", amlIdx);
printf("Found process index ns=%d\n", processIdx);

// Find the server of the break detection application in the AML
// server
getUAServerIdByDiscoveryUrl(amlClient,

UA_STRING(
"opc.tcp://localhost:5002/
RivetingSystem/
HiLokCollarBreakDetection/"),
&bdServerId);
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// Get the node ID of the break detection module in the AML model.
getContainingModule(amlClient, bdServerId, &bdModuleId);

// Get all requirements of the break detection module.
getModuleSkillRequirements(amlClient, &bdModuleId, bdRequirements, 2);

// Get the requirement connector node ID of the targeted
// dependency/requirement connector.
resolveRequirement(amlClient, &bdRequirements[0], &skillId);

printQualifiedName(amlClient,
bdModuleId,
UA_STRING("Found Module: "));

printQualifiedName(amlClient,
bdRequirements[0],
UA_STRING("With requirement: "));

// Get the node ID of the module with the targeted dependency.
getContainingModule(amlClient, skillId, &dependencyModuleId);

// Get the node ID of the OPC UA server object of the targeted module.
getModuleUaServerId(amlClient, dependencyModuleId, &skillServerId);

// Save the endpoint url for the skill
accSensingSkill.endpointUrl =

readUaServerEndpointUrl(amlClient, skillServerId);
accSensingSkill.skillId.namespaceUri =

readUaServerNamespace1(amlClient, skillServerId);

printf("At server %.*s\n",
accSensingSkill.endpointUrl.length,
accSensingSkill.endpointUrl.data);

// Create a new client to connect to the skill and connect
accSensingSkill.client = UA_Client_new();
config = UA_Client_getConfig(accSensingSkill.client);
UA_ClientConfig_setDefault(config);
retval = UA_Client_connect(accSensingSkill.client,

(char*) accSensingSkill.endpointUrl.data);

if (retval != UA_STATUSCODE_GOOD) {
printf("Failed to connect to server at %.*s\n",

accSensingSkill.endpointUrl.length,
accSensingSkill.endpointUrl.data);

UA_Client_delete(accSensingSkill.client);
return EXIT_FAILURE;
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}

// Resolve the required skill by its type name from the targeted
// server containing the skill
getSkillByTypeName(accSensingSkill.client,

UA_STRING("AccelerationSensing"),
&accSensingSkill);

printQualifiedName(accSensingSkill.client,
accSensingSkill.skillId.nodeId,
UA_STRING("Skill"));

return EXIT_SUCCESS;
}
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