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Abstract 

This thesis focuses on the implementation and design of convolutional neural networks 
for image classification and object detection. It describes the process starting from data 
collection and manipulation, to creation of simple CNNs with a few layers, as well as a 
more complex implementation of a Residual Network which uses 50 layers for 
classifying images into predefined categories. The object detection algorithms use pre-
trained models and transfer learning to create models for bicycle localization and 
detection.   
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Kurzzusammenfassung 
Gegenstand dieser Arbeit ist das Design und die Implementierung von 
faltungsneuronale Netze zur Klassifizierung von Bildmaterial und dem Erkennen von 
Objekten. Angefangen mit Ausführungen über das richtige Zusammenstellen und 
Bearbeiten der Daten, werden alle Schritte erläutert, welche diese Aufgabenstellung 
mit sich bringt. Dies beinhaltet Erläuterungen über den Aufbau kleinerer CNNs mit nur 
wenigen Schichten, sowie Ausführungen über den Bau eines aus 50 Schichten 
bestehenden Residual Network. Die angewandten Algorithmen zur Objekterkennung 
verwenden bereits trainierte Modelle und das Konzept des Transfer-Learnings, um 
Modelle zur Lokalisierung und Detektion von Fahrrädern zu erstellen.
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1 INTRODUCTION 
 

In this era of technology, an enormous amount of data in the form of images, sound or 

text is available on the internet, with its size increasing with each passing day. It is impossible 

however for humans to process and use all this data. For this reason, the field of machine 

learning has had an exponential increase in popularity. It allows people to create programs 

that are processing all this data for them and minimizing the human effort needed. Machine 

learning models are continuously integrated into industry-level software, allowing for an 

automated decision making and problem solving.  

 The thesis described in this document, experiments with convolutional neural 

networks of different architectures used for image classification and object detection, 

specifically for images containing bicycles. It starts with describing in theory what a machine 

learning model is and how it works, the data collection and its curation that needs to be 

performed and how the architectures of the networks are. Additionally, it explains the 

training process of the models and reports on their results.  

This thesis is part of a bigger project being developed in the University of Applied 

Sciences Hamburg, which attempts to create a cheap solution for a bicycle counting system. 

The hardware part of this project will include a Raspberry Pi for computations and storage, 

attached with a camera. On the software part of the device, a program will detect passing 

bicycles through a live-feed from the camera. The software will consist of a trained neural 

network able to accurately detect bicycles and counting their number depending on their 

direction. The work that has been performed in this thesis is partly based on the work of 

Kaloyan Dimitrov [1]. 
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2 MACHINE LEARNING 
 

Machine learning is an application of artificial intelligence, which focuses on reducing 

the human intervention required to make a system learn to identify patterns and make 

decisions, depending on streams of data that it analyses beforehand.  

Using the data provided by the user, also called the “training data”, a machine learning 

algorithm builds a mathematical model which is capable of making predictions or decisions 

on its own. The accuracy of the predictions or decisions that the model performs, depends on 

several factors the most important of which is the training data. The training data contains 

examples of the objects that need to be identified and used to fit the parameters of the 

models. [2] 

Machine learning models are nowadays used for a wide variety of applications, 

including computer vision, speech recognition, social network filtering and even for medical 

diagnoses. 

 

2.1 Types of machine learning algorithms 
  

Machine learning algorithms are divided into categories depending on the human 

intervention needed, the way that data is received and processed and how a program can 

adjust its own parameters in order to achieve better performance. The main types of machine 

learning algorithms are supervised learning, unsupervised learning, semi-supervised learning 

and reinforcement learning. 

 

2.1.1 Supervised learning 
 

A supervised learning is a type of machine learning, where the data used for training 

the network is already labeled or classified. When the system begins to train, it immediately 

has an answer on how both the input and the output should look like. The data is prepared 

by the user and then fed into the system. The system then starts to recognize patterns that 

exist in the input data and correlate to the desired output. By doing this, the system with react 

accordingly to new input given to it, based on the training data that it has received. Supervised 

learning algorithms are useful in use-cases like object recognition, spam detection or pattern 

recognition. [3] 

 

2.1.2 Unsupervised learning 
 

Unlike supervised learning, unsupervised machine learning models receive data and 

understand patterns without the help of the user. The data fed to the network is neither 

classified nor labeled, and the output values are unknown. The algorithm analyses the 
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information received from the data and groups them depending on similarities or differences 

that may exist between them. Unsupervised learning algorithms are used for clustering data   

into categories, applications of which can be performed in the fields of human behavior or 

visual recognition. [3] 

 

2.1.3 Semi-supervised learning 
 

Semi-supervised learning algorithms use the ideas of both supervised and unsupervised 

machine learning. Semi-supervised learning algorithms are using both labeled and unlabeled 

data for the training process. Such algorithms have the advantage that they do not require an 

expensive and time-consuming process of acquiring data and labeling them and often result 

in higher accuracy results on the output, because it removes the human biases that may be 

imposed on the model. Well-known applications of semi-supervised machine learning 

algorithms include webpage classification and speech analysis, among others. [4] 

 

2.1.4 Reinforcement learning  
 

In reinforcement learning algorithms, the system interacts with its environment and 

receives a reward or a penalty. When the algorithm performs an action correctly, it is awarded 

with a reward, otherwise it receives a penalty. The algorithm is not explicitly told how to 

perform actions by the user, but it rather works by analyzing and working through the 

problem on its own, trying to achieve its maximum success. Application of reinforcement 

learning algorithms can be seen in the field of robotics or advertisement. [5] 

 

2.2 Deep learning 
 

Deep learning is a subset of machine learning which mimics the way the human brain 

works for decision making. A deep neural network processes data and creates patterns which 

sometimes outperforms the capabilities of humans. It utilizes a hierarchical level which is built 

on simplifications based on the human brain with neuron nodes that connect and 

communicate with each other.  

A deep learning model takes raw data in the form of images, sound or text which have 

already been labeled by the user and learns to classify them in specific categories.  
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2.2.1 Neural network architecture 
 

 

 

Figure 1: Structure of a neural network [6] 

 

2.2.1.1 Neurons, Synaptic Weights and Biases  
 

 

Figure 2: Inputs received by neuron and calculated output 

 

A neuron (sometimes also referred to as unit or node) is a computational unit of a neural 

network, which receives several inputs and outputs a single value. Each node trains on a 

distinct set of features depending on the values received from the previous layer.   

For an artificial neuron to calculate its output value, each of its inputs is multiplied with 

a weight and then they are summed together.  The summation of the values is then passed 

through an activation function. [7] 

𝑓(𝑥, 𝑤) = 𝜑 (𝑏 +  ∑(𝑥𝑖 ∗ 

𝑝

𝑖=0

𝑤𝑖)) 
 
(Eq. 1) 
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The equation above shows the calculations that take place in each node in order to 

produce its output. The x represents the input passed to the node and w the synaptic weight 

(usually referred to as weight) that it is multiplied with for a p number of inputs. The activation 

function is denoted as 𝝋 and the bias as b. 

 

Figure 3: Synaptic weights for each input (values are used as an example) 

 

The number of synaptic weights that exist for each node is proportionate to the number 

of its input vectors. The weights are the connections that exist between neurons and they 

highlight the importance of each input connection. The higher the value of the weight for an 

input, the higher the importance of that input, which forms the “decision” of the node for 

that particular feature of the model. The weights are selected randomly at the initial layer 

and they are calibrated after each output node. 

The bias is a special neuron called bias neuron which stores a constant number, usually 

the value of 1, and it also carries a weight. The bias neurons are not connected to any previous 

layer and they are added to all neurons in all layer, except the output layer. This allows us to 

shift the activation function to the left or right (see 2.2.1.3).  

 

2.2.1.2 Layers 
 

A set of different nodes is called a “layer” of the network. Depending on the 

implementation of the model, a deep neural network can contain from two to hundreds of 

layers. Each layer of the network receives information about different features of the input 

data from its previous layer and deconstructs the received information into more detailed 

information and outputs it to the next layer. Every layer between the input layer and the 

output layer is called a “hidden layer”. The input layer is the first contact of the model with 

the data to be analyzed and feeds information to the rest of the network, while the output 

layer collects and gives the information that was calculated.  



Machine learning 
 

13 
 

2.2.1.3 Activation functions 
 

In neural networks, activation functions are used to calculate the weighted sum of input 

and biases and decide if a neuron should be activated or not. If we consider the part of the 

equation (Eq. 1) without the activation function, it is as follows: 

We can see that the equation (Eq. 2) can contain any number between negative infinity 

to positive infinity. The neuron on its own does not have any limitations as to the value that 

it holds and for that reason, the use of activation functions is needed in order to set a 

threshold where its decided if the neurons containing each value should be activated or not 

and pass their value as input to the next layer neurons. The activation function also provides 

non-linearity to the model. If we do not use an activation function the values would simply be 

a polynomial, which are easy equations to solve for the system, but they are not able to 

describe complex operations and thus the system is limited to the power that it has and 

cannot learn complex functional mappings from complex input data such as images, videos 

or audio. [8] 

Neural networks are considered Universal Function Approximators, which means that 

they should be able to calculate and learn any function and that is why they contain an 

activation function. The activation functions are residing within neurons for all layers, except 

for the input layer. The input layer simply passes the information received from the raw data 

and does not perform any computations, so an activation function is not needed. 

Any non-linear function can be used as an activation function, with the most widely 

used to be the ReLU activation function and the graphs of some functions are shown below. 

[9] 

 

 

 

Figure 4: ReLu Activation function
     

Figure 5: Sigmoid Activation function 

𝑌 = 𝑏 +  ∑(𝑥𝑖 ∗ 

𝑝

𝑖=0

𝑤𝑖) 

 

(Eq. 2)  
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Figure 6: Leaky ReLU Activation function Figure 7: Tanh Activation function 

 

 

2.2.1.4 Loss functions and cost functions 

 

With the help of loss functions (sometimes referred to as error function), a model has a 

way of evaluating how accurate its predictions are for a single training sample. The bigger the 

output value of the loss function, the worse the predictions of the model are and vice versa.  

A cost function on the other hand, is a generalization of the cost functions and it holds 

the value for the average loss of the model for the entire training dataset. By minimizing the 

value of the cost function, a model is learning better from the information provided by the 

raw data. [10] 

 

2.2.1.5 Backpropagation and gradient descent  
 

A gradient is a vector-valued derivative, which indicates the slope of the cost function. 

In a machine learning model, the optimization algorithm used to minimize the value of the 

cost function is called gradient descent. Gradient descent enables a model to learn the path 

it should follow to reduce its cost function, which means that it better modifies its parameters 

and variables. [10] 

Backpropagation uses the technique of gradient descent to optimize the overall model. 

Backpropagation informs the network after each iteration though it, if its prediction was 

correct or not. By doing this, backpropagation enables the model to fine-tune the weights of 

its neurons based on the error rate obtained from the previous iteration. When this process 

is iterated and with proper tuning of the weights, the error rates are reduced and the model 

is increasing its generalization, making the performance of the network better. [11] 
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2.3 Convolutional Neural Network 
 

A convolutional neural network (CNN) is a deep learning network similar to the neural 

networks described above. The name convolutional neural network takes its name from the 

operations that are performed in its hidden layers. Typically, CNNs have multiple hidden 

layers, which include convolutional layers, pooling layers, fully connected layers and 

normalization layers. What distinguishes a CNN however from other neural networks is its 

ability to analyze visual imagery. A CNN receives an image as input and assigns weights and 

biases to different features of the image, making it capable of effectively recognizing patterns. 

[12] 

 

2.3.1 How does a CNN see an image? 
 

 

Figure 8: How a CNN sees an image [13] 

 

An image, when captured from a digital camera contains a wide number of pixel values 

which represent the RGB values that are present in the image. Instead of the actual image, a 

computer reads the information of the pixels in the form of arrays, containing the values for 

the image’s width, height and depth [13]. When an image is grayscale, it does not contain any 

color other that white and black, along with different mixtures of the two colors. Then it is 

said that the depth (or channel) of the image is 1. This allows the computer to know in 

advance the processing of channels that will take place. If an image contains colors however, 

the channel of the image is set to 3, containing RGB array values in the scale of 0 to 255. [14] 
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2.3.2 The Convolution operation 
 

The convolution layer is where the extraction of features from an input image is 

performed. A convolution is a linear operation that multiplies an array of input data (as 

explained in 2.3.1) with a 2D array of weights, also referred to as filter. The input matrix is 

read from the top left of the image and the filter is moving along the input image, performing 

the multiplications, resulting in a matrix called “Feature Map” [13]. When the filter is applied 

systematically on the input image and is designed to recognize a specific pattern, then the 

filter can effectively find the pattern anywhere in the image.  [15] 

 

2.3.3 What is Max-pooling? 
 

After the convolutional layer has performed its calculations, its output is passed to the 

pooling layer. The limitation of the output of the convolution layer is that it is very precise to 

features of the input image. This means that with distortions to the image, the model would 

not be as robust as to the patterns it recognizes. In order to optimize the output of the 

convolution layer, a pooling process is used, which is a sample-based discretization process, 

aiming to down-sample the input image, reducing its dimensionality and allow the mode to 

generalize more on patterns [16]. 

 

 

Figure 9: Example of the Max-pooling operation [17] 

 

 A Max-pooling layer allows the model to take the maximum value of each cluster of 

neurons from the previous layer. By performing this process, the spatial size is reduced in 

regard to the number of parameters and calculations in the network. Max-pooling also helps 

to avoid overfitting in the model, by providing an abstracted form of the representation.  

 

2.3.4 Dropout 
 

Dropout is a regularization technique in which some neurons of each layer are 

“disconnected” temporarily and randomly from the neural network. The neurons that are 
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dropped-out of the network keep changing for each training example, thus giving a different 

model structure for each iteration. This helps the model prevent overfitting and becoming 

too dependent on the current dataset that is used, and it helps the model to generalize. [18] 

 

2.3.5 Batch Normalization 
 

For a neural network to learn patterns and features, its weights must be calculated at 

each layer, which implies that their activation functions will also change continuously in the 

training process. The distributions of the input data are also changed at each layer, since the 

output of the activation functions becomes the input of the next layer. This is referred to as 

internal covariate shift [19]. The convept of batch normalization is to limit the covariance shit 

by normalizing the activations of each layer [20]. This enables a better performance, 

improvements in speed and more stability in the model. 

 

2.3.6 Learning Rate 
 

The learning rate of a network is a hyperparameter used for fine-tuning a model. The 

learning rate informs the model how fast or slow the adjustments of the weights in the 

network should take place for moving towards a minimum value of the loss function. [21] 

 

2.3.7 Fully connected layers 
 

In a convolutional neural network, we have the convolutional layers which are 

responsible for extracting features and patterns from an image, or other raw data. This 

however does not correspond to the output result of the overall network that we can have. 

In order to receive a prediction dependent on the number of classes that are available, a fully 

connected layer (which has exactly the same number of neurons as the available classes in 

the network) is added to the end of the network, which takes the output of the convolutional 

layers and converts it into a prediction that can be translated into an output class. All the 

neurons of the last convolutional layer are directly connected to all the neurons of the fully 

connected layer.  

 

2.3.8 Transfer Learning 
 

Transfer learning is a machine learning method based on the idea that an already 

trained network can be reused to classify or detect objects in a new network. This gives the 

new model a head start and speeds up the process of training and developing models, by 

using the knowledge acquired from one task and applying it on the other. It enables the user 

to also train deep neural networks with less data, since typically a network requires a large 
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amount of data for training. Transfer learning is mostly used for computer vision and natural 

language processing. [22] 

A CNN consists of multiple layers, where each layer contains its own filters. These filters 

contain information regarding the input image received by the network. The filters depending 

on the stage they are placed in, read different information and learn features about the 

current image. The first few layers of a CNN usually learn to recognize parts of the image such 

as colors, edges or certain lines. The following layers then receive the information learned 

from previous layers, such as colors and lines, and are able to learn to recognize trivial shapes, 

forming bigger objects as the network goes deeper. When performing transfer learning, the 

model keeps the information learned in layers regarding general features intact and fine-

tunes the deeper layers with more specific information about features regarding the task at 

hand. [23] 

 

2.4 Over- and Underfitting 
 

 Overfitting appears when a model trains itself on the training data too well. The model 
captures the noise and inaccurate data entries of the training data, causing it to have a 
negative effect on its performance. Overfitting can occur when too much training data is fed 
into a shallow network, making the model memorize the data points, instead of trying to 
recognize and predict patterns in new data points. 

 

In contrast to overfitting, an underfit model is unable to model the training data and 
generalize on new data. Underfitting occurs when the training data is not sufficient for the 
machine learning algorithm to build an accurate model, or when the training process is 
interrupted too early. This can cause the model to have poor performance on predicting 
classes for previously unseen data. 

 
 

2.5 Residual Network 
 

2.5.1 Vanishing Gradient Problem 
 

In artificial neural networks with gradient based learning methods and backpropagation 

a problem occurs when the gradients of loss with respect to weights are moving from the last 

layers of the networks to the first layers of the networks. The problem is that when 

performing backpropagation in a network with many layers, the gradients tend to get much 

smaller with each iteration, which means that the neurons learn very slowly in the initial 

layers compared to the later layers. When the initial layers of the model learn slowly, the 

model is having difficulties recognizing simple patterns which is the building block of the 

neural network, causing the training process to be very time-consuming and have a very low 

accuracy of its predictions. [24] This problem is referred to as the vanishing gradient problem. 
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2.5.2 Structure of a residual network 
 

It is widely observed, that the deeper a convolutional network is, the better its 

performance. When a user however designs a network and keeps adding layers to it, 

eventually the problem of the vanishing gradient appears, and the accuracy of the model 

becomes saturated. This occurs because the network keeps getting bigger, and the gradients 

that are used for the loss function calculation are reaching towards zero, and therefore the 

weights of the network do not update, causing the network to not learn [25]. Residual 

networks solve this problem by using skip connections to connect layers at different depths 

of the model and allow the gradients to flow through the network without passing through 

non-linear activation functions. 

 

 

Figure 10: Example of a Residual Network architecture with 34 layers [26] 

 

In Figure 10, the structure of a residual network is displayed. Typically, residual 

networks consist of residual blocks stacked up, which are implemented with skip connection 

over 2 or 3 layers that contain convolutional layers, poolings and batch normalizations.  



Machine learning 
 

20 
 

A residual network has the capacity to include hundreds of layers into its architecture, 

without having the problems of performance degradation or increased difficulty in training. 

 

2.6 Data augmentation 
 

Training complex machine learning algorithms requires the user to collect data that can 

be used from the system to learn to recognize the patterns its intended to. However, the 

collection of data can be very expensive and time-consuming. The technique of data 

augmentation gives a limited solution to this problem by increasing the number of data points 

that can be used for training. 

 

   

Figure 11: Image augmentation examples [27] 

 

In terms of images, data augmentation takes the original image and performs 

modifications on it, thus significantly increasing the number of samples and enabling diversity 

of images that can be used for training. Data augmentation on images can have many forms, 

such as rotation of image, modification on the lightning conditions, different cropping of the 

images, translation on x- or y-axis, adding noise in the images, etc. [27] 
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3 REQUIREMENTS AND THESIS WORK 
 

The requirements of this thesis work can be split into two sections: implementation of 

machine learning models and administration of the workstation (located in the University of 

Applied Sciences Hamburg) where the models should be trained. 

 

Machine learning: 

1. Collection of images with and without bicycles 

2. Application of data augmentation of the overall dataset to expand its size 

3. Curation and labeling of images to be ready for training 

4. Implementation of convolutional neural networks for classification with different 

depths and evaluation 

5. Reporting of classification networks using TensorBoard 

6. Implementation of a residual network, testing and comparison to simple classification 

networks 

7. Implementation and evaluation of object detection models for bicycle detection 

 

System Administration: 

1. Configuration of Secure Shell connection for remote access 

2. Setup of remote power-on of workstation  
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4 COMPUTATIONAL ENVIRONMENT 
 

This chapter introduces in detail the computing machine specifications, hardware setup 

as well as used software tools and applications that were utilized for the implementation and 

evaluation of deep neural networks for image classification and bicycle detection. 

 

4.1 Main Libraries 
 

For the implementation of the object detection and image classification, many libraries 

and frameworks have been used. However, the two main libraries are explained in the 

subsections below, which are TensorFlow [4.1.1] and Keras [4.1.2]. 

 

4.1.1 TensorFlow 
 

TensorFlow is an open source artificial intelligence suite of software created by the 

Google Brain team [28] for numerical computations and large-scale machine learning 

applications. With the use of TensorFlow, developers are able to create deep learning models 

which express arbitrary computations as graphs of dataflows. TensorFlow is an ecosystem 

which delivers the tools needed for a full-scale deployment [29]. The three main components 

of TensorFlow are: 

 

TensorFlow API 

 

The TensorFlow API contains all the toolkits that are used to define models and train 

them. The core of the API has been written in the programming language C++, in combination 

with Nvidia’s CUDA, which enables very high-performant and efficient code available both for 

CPU as well as GPU for faster computations. Most operations that are performed with C++ 

are however done on the back-end. The programming part of the code, which is developed 

by the user, is available in several programming languages, with the most used one being 

Python. This allows the user to write code in a user-friendly and easy language such as Python, 

while simultaneously taking advantage of the speed of C++. [30] 

 

TensorFlow Serving 

 

TensorFlow Serving is a high-performance and flexible serving system which has been 

created for an easier deployment of the machine learning models created. It allows the 

trained models to be available for prediction requests directly in the production 

environments. [31] [32] 
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TensorBoard 

 

Figure 12: Example of a TensorBoard visualization of a model 

 

TensorBoard is a tool used for the visualization of the attributes of the machine learning 

models. It allows the user to track the information of the model and to visualize them in the 

form of graphs in order to understand, debug and optimize the model. [33] [34] 

The TensorBoard interface allows the user to display the graphs while simultaneously 

training the model. The information that it displays are separated into tabs, some of which 

can be seen in Figure 12 and are as follows: 

 

Scalars 

 

Figure 13: Display of information about the training loss of a model 
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The Scalars tab shows graphs related to the training information received from the 

model. It displays graphs about the accuracy and loss of the model, training speed, learning 

rate, etc. on the y-axis, and the global step (i.e. iteration of the model) on the x-axis.  

 

Graphs 

 

Figure 14: Structure of a 5-layer classification model 
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The Graphs dashboard maps the relationships among the layers and their function in 

the model on a conceptual level. By reviewing the structure of the model, the developer can 

inspect any unwanted connections inside the model and change them for better 

performance.  

 

Distributions and Histograms 

 

 

Figure 15: Example of a histogram of a model from TensorBoard 

 

The Histogram and Distribution dashboards display the statistical distribution of a 

Tensor and how it has changed over time. The difference between the two is that Histograms 

display the same information as a 3D representation of the data across iterations. [35] 

 

4.1.2 Keras 
 

Keras is an open-source neural network library that runs on top of Tensorflow, among 

others, and is written in the programming language Python. Keras has been designed to be 

user-friendly, modular and fast. Keras is a high-level API wrapper, which uses low-level APIs 

to handle computations. This allows for a faster definition and training of models, with a 

minimalistic style of code required from the user and can run on both CPUs and GPUs. To 

build a model with Keras, one must decide between one of two ways of implementation: 
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Sequential Model API 

 

 

Figure 16: Structure of the Sequential model in the form of a path graph [36] 

 

The Sequential model is the simplest way to create neural networks. It works by having 

layers one after another in a linear manner. The Sequential model has the restrictions that it 

does not allow the user to have multiple inputs or outputs, which can sometimes be needed 

depending on the problem at hand. [37] 

 

 Functional Model API 

 

 

Figure 17: Structure of a Functional model in the form of a directed acyclic graph [38] 

 

The Functional API allows for a more complex definition of models, which provides more 

flexibility as for the implementation of the algorithms at the cost of simplicity and readability. 

In contrast to the Sequential model, the functional model can handle multiple inputs and 

outputs, as well as models that share layers. In addition, the Functional model is based on the 

idea that a deep learning model is often a directed acyclic graph, while the Sequential model 

follows the idea of a path graph. [39] 
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4.2 Hardware 
 

The training and implementation of deep neural networks requires a powerful 

computer due to the complex and long calculations that need to be performed. If the 

computer is not powerful enough, these calculations can take hours or even days to be done, 

thus being very time-consuming.  

All the implementation that has been performed for this thesis, has been done on a 

CADnetwork Deep Learning desktop computer specifically designed for deep learning 

applications. The desktop computer runs on an Ubuntu OS and has 2 very powerful Nvidia 

GPUs (GeForce RTX 2080 Ti), 64 GB RAM memory and 28 processors (Intel Core (TM) i9-7940X 

CPU), among other components. This enables for very fast computations for deep learning on 

the computer, especially when TensorFlow has been configured to use the GPUs for 

calculations, instead of the CPUs. GPUs are designed to process graphics extremely fast in 

modern technology and they are capable to use their resources to perform operations on 

multiple vector data in parallel. The architecture of CPUs on the other hand allows them to 

process one operation at a time, which reduces their effectiveness for deep learning in 

comparison to GPUs. 

 

4.3 Docker 
 

The development of software often results in execution problems when transferred 
from one computer environment to another, due to different configurations, operating 

systems, etc. Docker is a tool developed for an easier creation, deployment and execution of 

applications with the use of containers. A container allows the developer to package up an 
application and all its parts (libraries, configuration files, dependencies) and have it ready for 
deployment.  Docker containers have the advantages that are lightweight, standalone and 
executable packages that make the containerized software run the same in every 
environment, regardless of the infrastructure or the operating system used. [40] 

 

 
Figure 18: Structure of Docker containers [40] 
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A container can be thought of as a virtual machine (VM). Virtual machines are created 
and run on hypervisor environments, which are computer software, firmware or hardware 
that manage the execution of the VM. Each VM requires its own guest operating system, 
along with its related binaries, libraries and application files, which consumes a large amount 
of processing power and resources from the host machine. Each Docker container however, 
shares the operating system with its host machine, which significantly reduces its size and 
boosts performance, while maintaining their own executables, code, libraries, tools and 
configuration files. [41] 

 
As part of the implementation phase of this thesis, a Docker environment was used in 

order to have a containerized environment, which includes all the necessary files and libraries. 
The container included an installation of the TensorFlow library, which was required to train 
models and test their accuracies, alongside with required dependencies from TensorFlow 
such as Python, NumPy and more. This allowed for a centralized source of information, where 
all the computations and experimentations were taking place. 
 

4.4 Remote access with Secure Shell 
 

The computer used for this thesis is placed in a secure location at the University of 
Applied Sciences, due to its high cost and the operations that it performs. Physical access to 
this computer is not always possible, so a method needed to be found to be able to access 
the computer at anytime from anywhere. For this reason, the employment of the Secure Shell 
(SSH) was used. 

 

SSH is a cryptographic network protocol which provides a secure channel over an 
unsecured network in a client-server architecture. The SSH provides a secure way of executing 
commands, making changes and configuring services remotely using a text-based interface 
by spawning a remote shell.   

 

The SSH authentication that has been implemented is using an RSA cryptographic 
algorithm and is performed with an SSH key pair consisting of a public and a private key, which 
are secure keys used to authenticate a client to an SSH server. [42] 
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Figure 19: SSH operations [42] 

 

The public key needs to be uploaded to the SSH server and can be shared without any 
risks. In contrast, the private key is used and retained by the client and it should not be shared. 
The private key is the only key that can decrypt any messages encrypted by the public key and 
any compromise to it can allow a third-party access to the server. The authentication of the 
SSH connection will be successful only if the client can prove to the server that it is in 
possession of the private key. [42] 

 

4.5 Remote power-on of workstation 
 

For the SSH connection to be successful as described in chapter [4.4], the computer 
would need to be constantly turned on. This would cause the computer to consume a large 
amount of power, even while it is not being used. To avoid such a case, two methods for 
powering on the workstation have been researched and implemented, which are explained 
below. 

 

4.5.1 Wake-on-Lan 
 

WoL (also known as “Power on by PCI/PCIe”) is an Ethernet networking standard that 
allows a user to send a network message to power up a computer from a low power mode 
remotely [43]. A computer even when shut down, while still connected to a power source, 
uses a very low amount of power. When the BIOS or the network adapter settings (depending 
on the type and configuration of the computer) for WoL are turned on, the computer provides 
the network card with a sufficient amount of power to remain in standby mode and actively 
listens to the predefined ports for a “magic packet”. A packet can be considered “magic” when 
it contains 6 bytes of the largest possible byte value (FF FF FF FF FF FF), also known as the 
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synchronization stream, followed by 16 repetitions of the target computer’s MAC address. 
The last 6 bytes of the data are reserved for an optional password set on the configuration 
phase which can be used to increase the security of the system. [44] 

 

When all the configurations needed have been performed, the user is able to use any 
website or application developed for sending a “magic packet” to power on the computer. 

 
 

 
Figure 20: Magic packet example [45] 

 

The WoL feature does not pose a security vulnerability to the system. It allows the user 
to only turn on the computer, but it does not allow any other activity to take place through 
it.  
 

4.5.2 Smart-Plug 
 

Another way to power on a computer while it is turned off is by modifying the BIOS 
settings. Most computer contain a setting under the “ACPI Configuration” tab called “Restore 
on AC/Power Loss” (sometimes it may be named “AC Power Recovery” or “After Power Loss”). 
By default, this setting is turned off, however when enabled and after loss of power it allows 
the computer to automatically turn on when the power is restored.  

 

This configuration can be combined with the technology of the Smart-Plugs. A Smart-
Plug is a plug that connects to a traditional electrical outlet. Contrary to the traditional 
electrical outlet, a Smart-Plug can be configured to connect to a Wi-Fi connection and allow 
access to it from a smartphone or a computer. It enables the user controlling it to allow or 
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block alternating current passing through it and accordingly turn on or off the device 
connected to it. Depending on each model and type of Smart-Plug, it can have a wide range 
of analytics and function in the respective mobile application such as measurements of power 
consumption, set schedules for powering on or off the device, voice control of the device and 
more. The model of the Smart-Plug used for this implementation is the D-Link DSP-W 215/E 
Home. 

 
 

 
 

Figure 21: User Interface of smart-plug application [46] 

 

By combining the “Restore on AC/Power Loss” setting and the Smart-Plug, we can turn 

on the computer simply by first blocking the AC passing through the Smart-Plug and then 

allowing it which will automatically trigger the aforementioned BIOS setting to turn on the 

computer. This allows us to turn off the computer when it is not in use, and remotely power 

it on when access is required, thus eliminating the amount of power that the computer would 

need to be constantly in standby mode.    
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5 IMPLEMENTATION AND RESULTS 
 

5.1 Data Curation 
 

Before training the network, there is a process of gathering and manipulating images, 

which would be used as a blueprint for the model to recognize bicycles. These images 

contained bicycles moving either on the left or the right direction, always with a rider on the 

bicycle. Images were provided by Prof. Dr. Klaus Jünemann, some of which were captured 

from students during projects of similar manner, and the dataset was further developed 

during this thesis. Previous students that contributed to the creation of the dataset include: 

Jeonghyun Son, Sami Ullah, Raihan Maksud, Akibur Rahman and Kaloyan Dimitrov. 

 

5.1.1 Data gathering and separation 
 

For capturing images of bicycles while in motion, videos were recorded from different 

perspectives and different backgrounds. The videos were then being split into frames and 

saved as images. The images that were captured in this thesis work make up for 1001 images 

from the complete dataset.   

When the network is being trained, the search window always includes some part of 

the background for the detection of the bicycles. For this reason, the background of the 

images had to vary so that the model does not index parts of the background as features of 

the desired outcome.  Examples of images with different backgrounds can be seen in Figure 

22. 

 

 

Figure 22: Bicycles with different backgrounds 

  

The images that were gathered, also needed to be split into three categories. The 

classification that the network was required to perform should be able to recognize and 

classify a picture that was fed into the network into one of the following categories:  
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• “bike_left” - bicycle moving from right to left 

 

Figure 23: Bicycle of class "bike_left" 

 

• “bike_right“ - bicycle moving from left to right 

 

Figure 24: Bicycle of class "bike_right" 

 

• “no_bike“ - picture without any bicycle in it 
 

 

Figure 25: Bicycle of class "no_bike" 
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For the classification network to be able to assign labels to each training image that was 

used, the training dataset was split into three folders, each containing the respective images.  

 

              

 

Figure 26: Separation of images depending on their content 

 

5.1.2 Data Clean-Up 
 

The images that were extracted from the videos, contained snapshots that would not 

have been useful to the model and had to be removed from the overall dataset. These images 

could potentially diverge the model from its intended purpose and cause it to malfunction by 

feeding it false data. Such images can be seen in Figure 27. 

 

 

Figure 27: Ineffectual images 

  

For a better structure and for an easier manipulation of the dataset, different Python 

scripts were created to perform actions on the images. The following script is a very simple 

tool which helps in the creation of a unified image type in the dataset. It simply selects all the 

images that have a “.png” extension and converts them to an image file of the “.jpg” type.  

 

Dataset

bike_right bike_left no_bike
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1. from PIL import Image 
2. import glob, os 
3.   
4. directory = "bike_right/" 
5.   
6. for infile in glob.glob('*.png'): 
7.     file, ext = os.path.splitext(infile) 
8.     im = Image.open(infile) 
9.     rgb_im = im.convert('RGB') 
10.     rgb_im.save(directory + file + ".jpg") 
11.  

 Several scripts were created, each one with its own functionality, which include: 

• The renaming of the images 

• Renaming of the tags in the respective XML files (see (5.1.3)) 

• Resizing the images  
 

5.1.3 Labeling 
 

The task of object detection requires some additional input from the user. For an object 

detection model to use the images for training, the user first must label them with the 

category that each image belongs to. This has been done with using the LabelImg tool which 

can be seen in Figure 28.  
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Figure 28: Labeling of an image in the LabelImg tool [47] 

 

LabelImg makes it easy for the user to go through the folder containing the images that 

need to be labeled and manually specify the position of the particular object that will later be 

recognized (in this thesis, the bicycles). When the user positions the bounding box (blue box 

seen in Figure 28) and clicks on the “Save” button, LabelImg automatically generates an XML 

file containing information about the image.  

 

1. <annotation> 
2.  <folder>bike_left</folder> 
3.  <filename>left (1).jpg</filename> 
4.  <path>C:\Users\AlexSid\Desktop\Alex\Studies\Bachelor  
   Thesis\bike_left\left (1).jpg</path> 
5.  <source> 
6.   <database>Unknown</database> 
7.  </source> 

8.  <size>   
9.   <width>176</width> 
10.   <height>176</height> 
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11.   <depth>3</depth> 
12.  </size> 
13.  <segmented>0</segmented> 
14.  <object> 
15.   <name>bike_left</name> 
16.   <pose>Unspecified</pose> 
17.   <truncated>0</truncated> 
18.   <difficult>0</difficult> 
19.   <bndbox> 
20.    <xmin>28</xmin> 
21.    <ymin>77</ymin> 
22.    <xmax>102</xmax> 
23.    <ymax>147</ymax> 
24.   </bndbox> 
25.  </object> 
26. </annotation> 

  

The XML files create a hierarchical structure with the use of tag elements, which makes 

it readable and easy to manipulate. The most important tags are explained below: 

 

Tag Description 

<folder> The folder name where the image and the XML file is stored 

<filename> States the name of the image that the XML file should be 
linked to 

<size> Describes the size of the image in width, height and depth 

<name> Annotates the label given to the object while labeling 

<bndbox> Contains the start and end point of the bounding box. It is 
described by using the minimum and maximum values for the 
x and y axis 

 

Table 1: XML tags and their information 

 

5.1.4 Dataset expansion 
 

For our model to be able to predict the class of the image fed to it or the position of a 

bicycle in an image more accurately, the number of images in the dataset had to be increased. 

For this reason, the concept of data augmentation was employed. The data augmentation 

that was performed in this thesis, was to simply convert the images in the class folder 

“bike_left” in order to fit the images in the class folder “bike_right” and vice versa. The 

operation includes the conversion of the image by flipping it horizontally across its middle 

vertical axis and then changing accordingly the information contained in the respective XML 

file. This is performed by a Python Script which can be seen in Appendix B.  

The code in Appendix B, iterates through the folder (in this case the “images” folder) and 

first selects the files with the “.jpg” extension. It continues by flipping the image horizontally 
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and then modifying its name to a predefined image name convention set by the user. The 

modification of the name has been created in order to have consistency in the dataset, with 

a unified name variable for each class followed by an ascending index. The script then selects 

the XML file related to the currently processed image and performs modifications on it. These 

modifications are: 

• Renaming the XML file 

• Changing the <filename> tag to include the name of the flipped image 

• Alters the <name> tag which states the label of the image 

• Refactors the <xmin> and <xmax> tags of the file to change the position 

of the bounding box 

Since the images are only flipped horizontally, the y-axis values of the bounding box 

remain the same as the original image. Also, some additional tags can be omitted, as they 

have no effect in the training process. The final result can be seen and compared in Figure 29. 

 

Figure 29: Comparison of original (left) and flipped (right) images 
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The same action is performed also for the classification task, excluding the manipulation 

of the XML files, since the XML files are not used for classification. By performing this data 

augmentation on the dataset, the number of images that can be used for training a network 

are automatically doubled. The complete dataset at the time of writing this thesis has the 

following number of images: 

 

Class Number of images 

bike_left 2746 

bike_right 2746 

no_bike 1548 

 

Overall Dataset 7040 
 

Table 2: Number of images in the dataset 
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5.2 Classification 
 

The convolutional neural networks for classification have been done with the help of 

TensorFlow and Keras and the work described in (5.2.1) is based on the work of Kaloyan 

Dimitrov [1]. Multiple CNNs have been designed, each with a different number of layers and 

filters, as to be able to see the improvements or deteriorations when the network is 

expanded. For the classifications the dataset described in (5.1) has been used with an overall 

number of images being 7040. From the dataset, some random images were extracted from 

each class in order to use them as test data and these images were not used in the training 

process. The following networks also restrict a number of images from the remaining dataset 

to use for validating the accuracy of the predictions from the network. The proportion of the 

dataset used for training the network is 70%, while the 30% left is used for validation. 

 

5.2.1 Simple convolutional neural networks 
 

The process of training the CNN starts with converting the raw images into a format 

that can be used by TensorFlow. The Python file “create_dataset.py” (see Appendix D) is 

performing this task by taking images from the subfolders as seen in Figure 26, retrieving its 

information and assigning a label to it depending on its parent folder. All this information is 

then converted into a TensorFlow specific file system called “TFRecords”, which is a binary 

representation of the images and their labels. Two different TFRecords files are created from 

the Python script, one containing information about the images to be used for training and 

another one for validating. The TFRecords files are then ready to be used from the TensorFlow 

problem for training and evaluating the network.  

The graphs displayed in the figures below, display the accuracies and losses of each 

model. The lines on the graphs displayed in orange color show information regarding the 

training losses, while the lines in blue color are displaying the information of the evaluations 

regarding losses and accuracies. As it can be seen from the figures below, the training 

accuracies are not displayed on the graphs. This is because we are interested in seeing how 

well the network actually performs on data not available for training (from the validation 

dataset). Also, for each model below there is a description of its training time, as well as the 

number of filters used for each layer. Each network was trained for a global step between 

30000 and 35000 and contains a dropout regularization of 0.5. While training the models, an 

average GPU utilization value of 85% was observed. The TensorFlow models were not enabled 

to use 2 GPUs that were available in the desktop computer.  

The following code shows how a layer is defined in TensorFlow. The number of filters of 

each layer can be changed by changing the number of the “filters” parameter in line 2. A 

convolutional neural network can be expanded by stacking the code below one after the 

other.  
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1. net = tf.layers.conv2d(inputs=net, name='layer_conv2', 
2.                    filters=64, kernel_size=3, 
3.                    padding='same', activation=tf.nn.relu) 
4. net = tf.layers.max_pooling2d(inputs=net, pool_size=2,                       

                 strides=2)   

 

After the training of the network was finished, the networks were tested on 74 images 

that were not included in either the training or the validation dataset. The script that tests 

these images, first loads the model that has been trained, and then passes the images through 

it and makes a prediction about each image. The predictions are split into 3 parts, storing 

values about how accurate each class prediction is. After the predictions for all the images is 

finished, the script sums up the percentage of the accurate predictions for each class and 

divides it by the number of classes (there are 3 classes for this implementation) to form an 

overall accuracy percentage of the network.  

The images that were used to test the network are of increased difficulty to test how 

the network performs when the images are not exactly like the images that were used for 

training or validation. These images have either a bicycle in a different angle towards the 

camera, distortion on the images, contain only small parts of a bicycle in them or have 

multiple bicycles included in one capture. Some examples of the test images can be seen in 

Figure 30. The same images were used to test all networks and the results of the prediction 

can also be seen for each developed network.  

 

 

Figure 30: Examples of images used for testing 
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3-Layer network   

 

Figure 31 and Figure 32 show the information retrieved in the training process of a 

model containing 3 layers with a sequence of 32/64/64 filters. The training process reached 

the global step of 32000 in 15 minutes with a maximum accuracy of 88%.   

 

 

Figure 31: Training and evaluation loss of a 3-

layer network 

 

Figure 32: Evaluation accuracy of a 3-layer 

network 

 

 

Testing this network on new images resulted to an overall accuracy of 56% across all 

classes and images as it can be seen in Figure 33. 

 

 

Figure 33: Testing accuracy of 3-layer network 
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4-Layer Network 

 

The 4-layer model from Figure 34 and Figure 35 contains a filter sequence of 

64/128/128/64. The time needed to reach the step 32000 was 21 minutes and the maximum 

accuracy reached in the validation was over 92.5%.  

 

 

Figure 34: Training and evaluation loss of a 4-

layer network 

 

 

Figure 35: Evaluation accuracy of a 4-layer 

network 

 

If Figure 33 and Figure 36 are compared, one can already see that the accuracy 

increased to 71% by adding 1 additional layer to the network. 

 

 

Figure 36: Testing accuracy of a 4-layer CNN 
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5-Layer Network 

 

The 5-layer network reached the global step of 33000 in 17 minutes with a filter 

sequence of 32/64/64/32/64. The maximum validation accuracy reached was just below 92%. 

 

 

Figure 37: Training and evaluation loss of a 5-

layer network 

 

Figure 38: Evaluation accuracy of a 5-layer 

network 

 

 

The test images applied on this network, result in the accuracy of the model being 

68%. 

 

 

Figure 39: Testing accuracy of a 5-layer CNN 
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7-Layer Network 

 

Lastly, the 7-layer network was designed with the filter sequence 

32/64/64/128/128/64/64 and it was able to reach a validation accuracy of over 92%. The 

training time for reaching the global step 33000 was 18 minutes. 

 

 

Figure 40: Training and evaluation loss of a 7-

layer network 

 

Figure 41: Evaluation accuracy of a 7-layer 

network

 

Figure 36, Figure 39 and Figure 42 show that the accuracy of the network does not 

increase drastically as more layers are added. This occurs because some information is lost 

from the input images, while being processed by the network. 

 

 

Figure 42: Testing accuracy of a 7-layer network 
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5.2.2 Residual Network 
 

The implemented residual network is a much deeper network than the ones described 

in (5.2.1). This network consists of 50 layers, in a combination of convolutional layers, pooling 

layers, fully connected layers and normalization layers. The structure of this network follows 

the architecture in Figure 43.  

 

Figure 43: Structure of the residual network [48] 

The information from the images passes first through a convolutional layer, then batch 

normalization and then through an activation function. However, every three consecutive 

layers, the output information of the third layer is  added with a shortcut connection to the 

information used as input in the first of the three layers. The implementation of a residual 

block in code can be seen in below: 

1.      # Save the input value 
2.      X_shortcut = X 
3.   
4.   
5.      ##### MAIN PATH ##### 
6.      # First component of main path  
7.      X = Conv2D(filters = F1, kernel_size= (1, 1), strides = (s,s), 
8.    padding="valid", name = conv_name_base + '2a',

   kernel_initializer = glorot_uniform(seed=0))(X) 

9.      X = BatchNormalization(axis = 3, name = bn_name_base + '2a')(X) 
10.     X = Activation('relu')(X) 

11.   

12.     # Second component of main path  

13.     X = Conv2D(filters = F2, kernel_size=(f,f), strides=(1,1), 

   name = conv_name_base + '2b', padding="same", 

   kernel_initializer = glorot_uniform(seed=0))(X) 

14.     X = BatchNormalization(axis = 3, name= bn_name_base + '2b')(X) 

15.     X = Activation('relu')(X) 

16.   

17.     # Third component of main path  

18.     X = Conv2D(filters = F3, kernel_size=(1,1), strides = (1,1), 

   name= conv_name_base + '2c',padding="valid",  

   kernel_initializer=glorot_uniform(seed=0))(X) 
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19.     X = BatchNormalization(axis=3, name=bn_name_base + '2c')(X) 

20.   

21.     ##### SHORTCUT PATH ####  

22.     X_shortcut = Conv2D(filters = F3, kernel_size= (1,1),  

   strides=(s,s), name=conv_name_base + '1', 

   padding="valid",kernel_initializer=   

   glorot_uniform(seed=0))(X_shortcut) 

23.     X_shortcut = BatchNormalization(axis=3,   

   name=bn_name_base+'1')(X_shortcut) 

24.   

25.     # Final step: Add shortcut value to main path, and pass it

     #through a RELU activation  

26.     X = Add()([X_shortcut,X]) 

27.     X = Activation("relu")(X) 

28.      

As it can be seen from the code above, the last layer of the residual block (named “third 

component”) as well as the shortcut path do have have any activation function applied to 

them. The activation function is later applied to the ouput of the concatenation the two 

layers. 

Figure 44 shows a sample of information retrieved from the network regarding its 

structure and layer connections.  

 

 

Figure 44: Network information received after training 

 

The model is training for 50 epochs. An epoch is the number of times the network goes 

through the entire dataset to learn and recognize patterns that exist in the images. The 
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training process lasted 57 minutes, which is a relatively fast procedure, considering the 

number of layers and images that needed to be processed.  

 

 

Figure 45: Start of training process for residual network 

 

Figure 45 shows the beginning of the training process. The network records and prints 

information about the training and loss accuracy, as well as evaluation loss and accuracy 

reached. The information in Figure 45 shows a very high number of validation losses and a 

very low number of validation accuracy. This appears because the network is just starting to 

calibrate and adjust its weights depending on features that it learns and correct predictions 

that it makes.  

 

 

Figure 46: Finishing steps of training and evaluation 

 

As it can be seen from Figure 46, the evaluation of the network on the test data reaches 

an astonishingly high number, getting up to 100% on validating test images, while finishing 

the training process. This shows that the model performs very effectively on classifying 

images that are not used in training.  

When the training is finished, the program saves a version of the current status of the 

model as “.h5” extension file. This file can be used for further training of the network or for 

predicting the classes of images.  

In the end of the program, the network reports as to how many parameters were used 

for training through the whole process. Figure 47 shows the results of this implementation.  
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Figure 47: Parameters of Residual Network 

 

As it can be from Figure 47, the network used over 15 million parameters for the 

training. The non-trainable parameters of the network mean that there are 50048 weights 

that were not systematically updated and did not contribute to the overall training of the 

model.  

The comparison between the simple convolutional neural networks and the residual 

network created shows that the residual network has a much higher prediction rate. Its 

structure allows it to be a stable network and have a large number of layers (in this case 50 

layers), without degradation of the output accuracy. 
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5.3 Object Detection 
 

To train models to detect bicycles when images are passed through them, pre-trained 

models and the topic of transfer learning has been used. The models [49] are pre-trained on 

multiple categories and objects, and they are further trained to detect bicycles in this 

implementation. The models used are the “ssd_mobilenet_v1_coco” and the 

“faster_rcnn_resnet101_coco”. The difference in speed on these two models can be seen in 

the following table. 

 

Model Speed (ms) 

ssd_mobilenet_v1_coco 30 

faster_rcnn_resnet101_coco 90 
 

Table 3: Speed comparison of pre-trained models 

 

 As it can be seen from Table 3], the “ssd_mobilenet_v1_coco” is the faster option. In 

fact, as of the time of writing this thesis, the “ssd_mobilenet_v1_coco” is one of the fastest 

models for TensorFlow. The reason why the “faster_rcnn_resnet101_coco” was chosen is to 

be able to compare the actual time needed for both models to reach the same training global 

step and to test their accuracy. 

For the models to be able to learn from the images that are fed to them, the images 

need to be converted into a format that is easy to process from TensorFlow. This requires 

some manual execution from the user. First the XML files of the images need to be converted 

into a CSV file format file. This is performed by running the script “xml_to_csv.py” (see 

Appendix D), which takes the image name, width and height of the image, the class it belongs 

to and the maximum and minimum values of the drawn bounding box in the x- and y-axis and 

converts them into the CSV format. When the script is finished, a file will automatically be 

created with the name (in this example) “bike_labels.csv”.  After the file is created, the script 

“generate_tfrecord.py” (see Appendix D) needs to be executed. This script receives as input 

the previously CSV file created and the images and creates a “.record” file, which is a 

TensorFlow specific file used for object detection models. The same process has to be 

performed twice, one to create a “.record” file for training and one for evaluation. The training 

process can then be started by using the “train.py” script and consequently the “eval.py” 

script for evaluating the model (see Appendix D). 
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Faster-RCNN 

 

 

Figure 48: Total loss of faster_rcnn_resnet101_coco 

 

The “faster_rcnn_resnet101_coco” was trained for 25000 steps, with a learning rate of 

0.0003 and a batch size of 1. The batch size states how many images should be passed through 

the network for each iteration. The time needed for the training to reach 25000 steps was 

approximately 3.5 hours.  

 

 

Figure 49: Evaluation example of Faster R-CNN model 
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SSD 

 

Figure 50: Total loss of ssd_mobilenet_v1_coco 

 

The SSD model is a way faster solution compared to the Faster R-CNN. The time required 

for training the model up to the global step of 24000 was 1.40 hours, which means it was 

approximately 2.5 times less. The learning rate used was 0.004 and the batch size 24.  

 

 

Figure 51: Evaluation example of SSD model 

 

Both models have an excellent accuracy on detecting bicycles in images and are able to 

place the bounding box correctly, even when the bicycles have an angle towards the camera 

or are tilted (as seen in the left image of Figure 51). The SSD is trained in a much faster way 

than the Faster R-CNN. The Faster R-CNN has however a much less loss compared to the SSD, 

as it can be seen from Figure 50 and Figure 51. This is related to the parameters of the 

network, since the learning rates and batch size for both models are different.  
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6 CONCLUSION AND FUTURE WORK 
 

The work explained in this thesis includes both theory as well as practical 

experimentation on image classification and detection specifically for bicycles. Multiple 

convolutional neural networks are explained and implemented for bicycle classification, 

resulting in an increase of over 15% accuracy on the test data with the addition of only 1 extra 

layer in the network. The implementation of a residual network shows that it is a very 

powerful and interesting network that should be considered, and it is capable of reaching 

over 95% accuracy on test data, compared to simpler convolutional neural networks, with the 

advantage of receiving very low losses for image classification due to its architecture with skip 

connections.  

 The pre-trained object detection models used in this thesis, result in an easy 

implementation of effective models that can recognize bicycles even when the conditions of 

the test images fed into the network are not of the exact same conditions as the training 

images. Some of the test images used contained noise or tilted bicycles, but the models were 

still able to reach accuracies on average above 90%. The experimentation with the SSD and 

the Faster R-CNN models, showed a 2.5 times faster training in favor of the SSD.   

 The bicycle dataset used has been developed during other projects of the University 

of Applied Sciences Hamburg and was further developed in this thesis. The concept of data 

augmentation was introduced and applied on the overall dataset, enabling an increased 

number of images.  

The further development of this work might include the increase of layers and 

experimentation on residual networks, with an increased number of images included in the 

dataset. The dataset should also be further developed with data augmentation to introduce 

the images to color variations, images of bicycles with rotations and different perspectives in 

respect to the camera. Additionally, the networks should be configured to test data retrieved 

from a live-feed of a camera. This will provide an approximation of the end result of the 

project.  
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7 GLOSSARY 
 

SSH – Secure Shell 
VM – Virtual Machine 
RSA – Rivest–Shamir–Adleman 
WoL – Wake-on-LAN 
LAN – Local Area Network 
BIOS – Basic Input/Output System 
MAC  – Media Access Control 
ACPI – Advanced Configuration and Power Interface 
AC – Alternating Current 
Wi-Fi – Wireless Fidelity 
API – Application Program Interface 
CUDA – Computer Unified Device Architecture 
GPU – Graphics Processing Unit 
XML – Extensible Markup Language 
CPU – Central Processing Unit 
CNN – Convolutional Neural Network 
ReLU – Rectified Linear Unit 
SSD – Single-Shot Detector 
RGB    – Red-Green-Blue 
CSV – Comma-Separated Values 
RAM – Random Access Memory 
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9 APPENDICES 
 

9.1 Appendix A 
 

The implementation of the SSH requires access to the server computer and the client computer. 

To allow access to the from a client to the server, the following procedure must be followed:  

• Generation of keys. The client must generate a private and a public key which will be used to 

authenticate the access to the computer. This is done by using an SSH command in the 

command prompt: “ssh-keygen”. This automatically generates a new combination of public 

and private key. The user is also able to select where this file containing the private key should 

be stored. It is recommended however to leave the path to its default settings. 

• Enter a password. This is an optional step which adds an extra layer of security to the 

connection by encrypting the private key on the disk.  

• Store the public key on the server. On the client computer with a Windows OS, the file 

containing the public key can be sent to the server by using the following command: 

scp <PATH_TO_FILE>/id_rsa.pub username@<IP_Address>:~/.ssh/authorized_keys 
  

If everything is setup in the correct way, then the user is able to access the remote server by 

using the following command: 

ssh -X username@<IP_Address> -p <PORT_NUMBER> 
  

The default port number for SSH is 22, however when the configuration of the server has been 

changed and a specific port has been set for SSH connections, then it needs to be included in the 

command for a successful connection. 
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9.2 Appendix B 
 

1. import cv2 
2. import glob 
3. import xml.etree.ElementTree as ET 
4. import os 
5.   
6. folder_path = "images/" 
7. xml_ext = "xml" 
8. jpg_ext = "jpg" 
9. asterisk = "*" 
10. dot = "." 
11. image_size = 176 
12. category = 'bike_right'  # Change this depending on what the label in the XML file should be 
13. direction = 'right'  # Name of the files 
14. last_number = 1289  # Number on the name of the last picture in final image dataset (in order to have 

consistency) 
15.   
16.   
17. def xml_file(img): 
18.     xml = folder_path + img.split('\\')[1].split(dot + jpg_ext)[0]  + dot + xml_ext 
19.    
20.     tree = ET.parse(xml) 
21.     root = tree.getroot() 
22.   
23.     for f in root.findall('object'): 
24.         name = f.find('name') 
25.         bndbox = f.find('bndbox') 
26.   
27.         xmin = bndbox.find('xmin') 
28.         xmax = bndbox.find('xmax') 
29.   
30.         name.text = category 
31.   
32.         delta_x = int(xmax.text) - int(xmin.text) 
33.   
34.         xmax.text = str(image_size - int(xmin.text)) 
35.         xmin.text = str(image_size - int(xmin.text) - delta_x) 
36.   
37.     tree.write(xml) 
38.   
39.     return img.split('\\')[1].split(dot + jpg_ext)[0] 
40.   
41.   
42. def xml_file_change_name(img, new_name): 
43.     xml = folder_path + img.split('\\')[1].split(dot + jpg_ext)[0] + dot + xml_ext 
44.   
45.     tree = ET.parse(xml) 
46.     root = tree.getroot() 
47.   
48.     for filename in root.findall('filename'): 
49.         filename.text = new_name 
50.   
51.     tree.write(xml) 
52.   



Appendices 
 

60 
 

53.   
54. def get_name(filename): 
55.     xml = folder_path + filename 
56.     tree = ET.parse(xml) 
57.     root = tree.getroot() 
58.   
59.     for filename in root.findall('filename'): 
60.         text = filename.text 
61.   
62.     text = text.split(dot + jpg_ext)[0] + dot + xml_ext 
63.   
64.     tree.write(xml) 
65.     return text 
66.   
67.   
68. def convert_name(): 
69.   
70.     images_path = folder_path + asterisk + dot + jpg_ext 
71.     image_files = glob.glob(images_path) 
72.     i = last_number 
73.     for img in image_files: 
74.         i = i + 1 
75.         new_name = direction + " (" + str(i) + ").jpg" 
76.         os.rename(img, folder_path + "/" + new_name) 
77.         xml_file_change_name(img, new_name) 
78.   
79.     for filename in os.listdir(folder_path): 
80.         if filename.split(dot)[1] == xml_ext: 
81.             name = get_name(filename) 
82.             os.rename(folder_path + "/" + filename, folder_path + "/" + name) 
83.   
84.   
85. def convert(): 
86.   
87.     images_path = folder_path + asterisk + dot + jpg_ext 
88.     image_files = glob.glob(images_path) 
89.     for img in image_files: 
90.         image = cv2.imread(img) 
91.         image = cv2.flip(image, 1)  # Flip the image horizontally 
92.         image_name = xml_file(img) 
93.         cv2.imwrite(os.path.join(folder_path, dot.join([image_name, jpg_ext])), image) 
94.   
95.     convert_name() 
96.   
97.   
98. convert() 
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9.3 Appendix C 
 

The user can record the utilization of the GPUs by executing the following command: 

 

while true; do nvidia-smi --query-gpu=utilization.gpu --format=csv >> 

  gpu_utillization.log; sleep 1; done 

  

This command will automatically create a file and continuously write the percentage 

of the GPUs used until it is stopped. The following is an example of how the output looks 

like: 

 

utilization.gpu [%] 

56 % 

32 % 

utilization.gpu [%] 

84 % 

37 % 
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9.4 Appendix D 
 

Description of software on CD-ROM 

 

The CD-ROM attached to this thesis contains software that related to the implementation 

and development of this thesis.  

 

 

Figure 52: Folder structure on CD-ROM 
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The folder “Alexios_Sidiropoulos_Bachelor_Thesis” contains three folders, “Dataset”, 

“Models” and “Scripts”, and an PDF file named “Alexios_Sidiropoulos_Bachelor_Thesis.pdf”.  

The file “Alexios_Sidiropoulos_Bachelor_Thesis.pdf” is a digital copy of this bachelor thesis. 

The “Dataset” folder contains all the images that were curated and used during this thesis. It 

contains 3 sub-folders, where each contains a class of the images that can be used for 

classification or bicycle detection, namely “bike_left”, “bike_right” and “no_bike”. The folders 

contain also the related XML files of the images.  

The “Models” folder contains the files needed for training networks for classification or object 

detection. In the “classification” folder, there exist 2 sub-folders, one containing a program 

for training a simple CNN and the other the program for training a residual network for image 

classification. In each folder, one can find the scripts for training and testing the neural 

networks, along with some examples of images and TFRecords files that need to be used. In 

the folder “7_layer_network”, there exists also a file named “create_dataset.py”, which 

converts the images into TFRecords files to be used by TensorFlow. The “object_detection” 

folder also contains 2 sub-folders, one for an implementation of the SSD model and one for 

the Faster R-CNN model. Each of these folders contains its configuration file, training script, 

script to convert the image and XML files into the required formats and the evaluation script 

for testing the networks. 

The “Scripts” folder contains scripts that can be used to manipulate the dataset. The 

“ConvertPNGtoJPG” contains a simple script that allows the user to convert images from the 

“.png” file extension into the “.jpg” file extension. The “ImageAugmentation” contains a script 

that allows the user to flip images in order to expand the dataset. The script requires the user 

for some input regarding the naming convention of the images that will be created, and it 

automatically refactors the bounding box of the XML files of the images. It additionally 

performs all the necessary modification of the XML files, like changing the class of the image, 

filename, etc. Lastly, the folder “ResizeImageAndRefactorXML” contains a script which, as the 

name implies, resizes the images into the specified dimensions and refactors the bounding 

box of the XML files to fit in the new dimensions after the conversion. 
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