

Oleksii Skorykh

Migration of NoSQL (Cassandra) to relational
database (Postgres) on high demanded

distributed system

Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung
im Studiengang Bachelor of Information Engineering
am Department Informations- und Elektrotechnik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr.-Ing. Martin Lapke
Zweitgutachter: Dr. Ivan Morshel

Eingereicht am: 28. November 2019

A B S T R A C T

Oleksii Skorykh

Thema der Arbeit
Migration einer NoSQL (Cassandra) Datenbank zu einer relationalen

Postgres Datenbank in einem verteilten Hochverfügbarkeitssystem

Stichworte
Datenbanken, Postgres, Cassandra, SQL, NoSQL

Kurzzusammenfassung
Die in dieser Bachelor Thesis diskutierte Migration von einer
NoSQL zu einer SQL Datenbank, ins Besondere von Cassandra nach
Postgres, umfasst das Design des relationalen Modells, die technis-
chen sowie die kundenspezifischen Anforderungen und den Migra-
tionprozess.

Oleksii Skorykh

Title of Thesis
Migration of NoSQL (Cassandra) to relational database (Postgres)

on high demanded distributed system

Keywords
Databases, Postgres, Cassandra, SQL, NoSQL

Abstract
In this bachelor thesis discussed migration of the critical system

from NoSQL to SQL database, in particular from Cassandra to Post-
gres, In the course of the work covered all important steps, like the
design of the relational model, defining technical and customer re-
quirements and migration process

iii

C O N T E N T S

i introduction and theory 1

1 introduction 2

1.1 Motivation . 2

1.2 Goal of the thesis . 2

1.3 Structure of the thesis . 2

2 theory 4

2.1 Relational and Non-Relational Databases 4

2.1.1 Relational Databases concept 4

2.1.2 Non-Relational Databases concept 5

2.2 Comparison of Postgres and Cassandra 5

2.2.1 PostgreSQL . 6

2.2.2 Cassandra . 7

2.2.3 Functional comparison 9

ii the showcase 10

3 requirements 11

3.1 Customer requirements 11

3.2 Technical requirements 11

3.2.1 Software requirements 12

3.2.2 Data team requirements (External requirement,
not in the scope of this thesis) 12

4 design 13

4.1 Database model . 13

4.1.1 Cassandra . 13

4.1.2 Postgres . 14

4.2 High level design . 15

4.2.1 System overview 16

4.2.2 Migration process concept 16

4.3 Software design . 19

5 implementation 22

5.1 Communication between layers 22

5.1.1 Service to Repository layer communication . . . 22

5.1.2 Repository to Database layer communication . . 24

6 test 26

6.1 Test of requirements . 26

6.2 Unit tests . 26

6.2.1 System context test 27

6.2.2 Controller test . 27

iv

contents v

6.2.3 Data access layer test 28

6.2.4 Service layer test 28

6.2.5 Utility layer test 29

iii summary and outlook 30

7 summary 31

7.1 Results . 31

7.1.1 After migration comparison 31

7.2 Outlook . 32

references 33

iv appendix 34

a appendix 35

a.1 Database Model . 35

a.2 Implementation . 41

L I S T O F F I G U R E S

Figure 1 Cassandra database model 14

Figure 2 Postgres database model 15

Figure 3 System overview 16

Figure 4 Initial setup of system before migration 17

Figure 5 First migration step 18

Figure 6 Second migration step 18

Figure 7 Third migration step 19

Figure 8 Last migration step 19

Figure 9 Software top-level overview before migration . 20

Figure 10 Software top-level overview during migration 20

Figure 11 Software top-level overview after migration . . 21

Figure 12 System context test 27

Figure 13 Voucher Controller test 27

Figure 14 Voucher Selection Controller test 28

Figure 15 Voucher Repository test 28

Figure 16 Voucher History Repository test 28

Figure 17 Utility layer test 29

Figure 18 Service layer tests Part 1 35

Figure 19 Service layer tests Part 2 35

Figure 20 Service layer tests Part 3 36

Figure 21 Service layer tests Part 4 36

Figure 22 Service layer tests Part 5 37

Figure 23 Service layer tests Part 6 37

Figure 24 Service layer tests Part 7 38

Figure 25 Cassandra database with all attributes 39

Figure 26 Postgres database with all attributes 40

vi

L I S T O F TA B L E S

Table 1 How NoSQL data modelling differs from SQL 9

Table 2 Comparison of the system to technical require-
ments . 26

vii

L I S T I N G S

Listing 1 Find voucher by code 22

Listing 2 Helper function, to determine to read from
Cassandra or not 23

Listing 3 Save voucher . 23

Listing 4 Get number of voucher codes for voucher in
Cassandra . 24

Listing 5 Get number of voucher codes for voucher in
Postgres . 24

Listing 6 Full example with voucher codes tables 41

viii

A C R O N Y M S

DRY Don’t Repeat Yourself

DB Database

CRUD Create, Read, Update, Delete

API Application Programming Interface

UML Unified Modeling Language

TBD To be discussed

BI Business Intelligence

MVC Model-View-Controller

ix

Part I

I N T R O D U C T I O N A N D T H E O RY

1
I N T R O D U C T I O N

1.1 motivation

Nowadays, it is impossible to imagine a system without a database.
Even when information is stored in files, it can already be consid-
ered as some Database (DB). High demand and usage bring many
challenges in this area, such as: implementing new types of DB, op-
timising existing DB solutions for specific purposes, migrating from
one type to another, and others.
In software it is usually possible to find multiple solutions for a
problem, the same applies to DB. However, they will differ by per-
formance, scalability, efficiency, and what is also crucial for critical
systems — maintainability.

1.2 goal of the thesis

The goal of the thesis is to change the existent architecture of the sys-
tem and start to use a relational database instead of non-relational.
This work will try to give an answer for the question: "When it
makes sense to change the concept of the database in the working
system, and if it worth it?", and will be supported with example
from the industry, as this work is written together with FREENOW.

1.3 structure of the thesis

Here is a brief description of the thesis, providing a short overview
of what each chapter contains.
Chapter 2: "Theory:" this chapter provides a theoretical background
about relational and non-relational databases, and shows a compar-
ison between them with examples.
Chapter 3: "Requirements:" this chapter gives an overview of func-
tional and nonfunctional requirements for the system.
Chapter 4: "Design:" this chapter describes the design of the re-
lational database model, system overview and architecture of the
system, as well as software design.
Chapter 5: "Implementation:" in this chapter, implementation deci-
sions and applied technical solutions are explained.

2

1.3 structure of the thesis 3

Chapter 6: "Test:" this chapter provides an overview of the tests that
were made to validate the correct behaviour of the system and an
explanation of the test results.
Chapter 7: "Summary:" this chapter describes archived results and
future improvements.
Appendix: this chapter contains code listings and some technical
explanations.

2
T H E O RY

2.1 relational and non-relational databases

A database can be of two major types: production-oriented or ex-
ploratory. An exploratory database is designed to explore possibil-
ities (usually in the future) and to plan possible future activities.
Thus, a production-oriented database is intended to reflect reality,
while an exploratory database is intended to represent what might
be or what might happen. In both cases, the accuracy, consistency,
and integrity of the data are essential. Database management in-
volves the sharing of large quantities of data by many users - who,
for the most part, conceive their actions on the data independently
from one another. [2]

2.1.1 Relational Databases concept

The relational model represents the database as a collection of rela-
tions. A relation is nothing but a table of values. Every row in the
table represents a collection of related data values. These rows in
the table denote a real-world entity or relationship.

The table name and column names are helpful to interpret the
meaning of values in each row. The data are represented as a set of
relations. In the relational model, data are stored as tables.

Some terms related to relational model:

1. Attribute: Each column in a Table. Attributes are the proper-
ties which define a relation. e.g., Id, Address, and others.

2. Tables: In the Relational model, the relations are saved in the
table format. It is stored along with its entities. A table has
two properties rows and columns. Rows represent records and
columns represent attributes.

3. Tuple: It is a single row of a table, which contains a single
record.

4. Relation Schema: A relation schema represents the name of
the relation with its attributes.

4

2.2 comparison of postgres and cassandra 5

5. Degree: The total number of attributes which in the relation is
called the degree of the relation.

6. Cardinality: Total number of rows present in the Table.

7. Column: The column represents the set of values for a specific
attribute.

8. Relation instance: Relation instance is a finite set of tuples in
the RDBMS system. Relation instances never have duplicate
tuples.

9. Relation key: Every row has one, two or multiple attributes,
which is called the relation key.

10. Attribute domain: Every attribute has some pre-defined value
and scope which is known as an attribute domain.

2.1.2 Non-Relational Databases concept

A non-relational database is a database that does not use the tabular
schema of rows and columns found in most traditional database
systems. Instead, non-relational databases use a storage model that
is optimised for the specific requirements of the type of data being
stored. For example, data may be stored as simple key/value pairs,
as JSON documents, or as a graph consisting of edges and vertices.

What all of these data stores have in common is that they do
not use a relational model. Also, they tend to be more specific in
the type of data they support and how data can be queried. For
example, time-series data stores are optimised for queries over time-
based sequences of data, while graph data stores are optimised for
exploring weighted relationships between entities.

The term NoSQL refers to data stores that do not use SQL for
queries, and instead use other programming languages and con-
structs to query the data. In practice, "NoSQL" means "non-relational
database," even though many of these databases do support SQL-
compatible queries. However, the underlying query execution strat-
egy is usually very different from the way a traditional Relational
Database Management System (RDBMS) would execute the same
SQL query. [1]

2.2 comparison of postgres and cassandra

In this section, PostgreSQL and Cassandra will be discussed more
closely and compared with each other. However, it is difficult to

2.2 comparison of postgres and cassandra 6

compare these databases because they belong to different groups,
this chapter will try to cover the pros and cons of both databases.

2.2.1 PostgreSQL

PostgreSQL is an open source relational database management sys-
tem that began as a University of California, Berkley project. It has
enterprise class features such as SQL windowing functions, the abil-
ity to create aggregated functions and also utilise them in window
constructs, common table expressions, and streaming replications.
What sets it apart from other databases is the ease with which user
can extend it without changing the underlying base - and in many
cases, without any code compilation. [6]

PostgreSQL has earned a strong reputation for its proven architec-
ture, reliability, data integrity, robust feature set, extensibility, and
the dedication of the open source community behind the software
to consistently deliver performant and innovative solutions. Post-
greSQL runs on all major operating systems and has powerful add-
ons such as the popular PostGIS geospatial database extender. [4]

2.2.1.1 Pros of PostgreSQL

1. Scalable. Vertical scalability is a hallmark of PostgreSQL. Con-
sidering that almost any custom software solution tends to
grow, resulting in database extension, this particular option
certainly supports business growth and development.

2. Support for custom data types. PostgreSQL natively supports
a large number of data types by default, such as JSON, XML,
H-Store, and others. PostgreSQL takes advantage of it, being
one of the few relational databases with strong support for
NoSQL features. Additionally, it allows users to define their
data types. As software business model may need different
types of databases throughout its existence for better perfor-
mance or application comprehensiveness, this option brings
improved flexibility to the table.

3. Easily-integrated third-party tools. PostgreSQL database man-
agement system has the strong support of additional tools,
both free and commercial. The scope of these includes exten-
sions to improve many aspects. For example, ClusterControl
provides impressive assistance at managing, monitoring, and
scaling SQL and NoSQL open source databases. In case of

2.2 comparison of postgres and cassandra 7

heavy load, there are possibilities of using built-in backup and
restore utilities.

4. Open-source and community-driven. Postgres is entirely open-
source and supported by its community, which strengthens it
as a complete ecosystem. Additionally, developers can always
expect free and prompt community assistance.

2.2.1.2 Cons of PostgreSQL

1. Changes made for speed improvement requires more work
than in other databases as PostgreSQL focuses on compatibil-
ity.

2. On performance metrics, it is slower than for example MySQL.

2.2.2 Cassandra

Apache Cassandra is a free, open source, distributed data storage
system that differs sharply from relational database management
systems. Cassandra first started as an incubation project at Apache
in January of 2009. Cassandra is being used in production by some
of the biggest properties on the Web, including Facebook, Twitter,
Cisco, Rackspace, Digg, Cloudkick, Reddit, and more. Cassandra
has become so popular because of its outstanding technical features.
It is durable, seamlessly scalable, and tuneable consistent. It per-
forms blazingly fast writes, can store hundreds of terabytes of data,
and is decentralised and symmetrical so there’s no single point of
failure. It is highly available and offers a schema-free data model.
[5]

2.2.2.1 Pros of Cassandra

1. Write Speed. It is able to handle such a large volume of writes
by first writing to an in-memory data structure, then to an
append-only log. These data-structures are then "flushed" to a
more permanent and read-optimised file at a later time. The
logs are simply used for recovery of the in-memory data when
an outage occurs.

2. Multi-DC Replication. Out of the box, Cassandra comes with
multi data center replication. This replication will copy the
information to any number of instances of the Cassandra pro-
cess. These can be used for geographical performance or for

2.2 comparison of postgres and cassandra 8

disaster recovery or both. The multi-datacenter setup is as sim-
ple as changing a single line in a configuration file and updat-
ing your schema.

3. Tunable Consistency. When it comes to replicated data, there
should be a way to decide what happens when an outage oc-
curs in one, or more of the nodes. Cassandra allows, on a
query-by-query basis, to decide how to handle potential is-
sues.

4. JVM Based. Apache Cassandra is written in Java. This means
that it can integrate tightly with other JVM based applications.
In addition to this, the JVM has massive amounts of support
and tools to troubleshoot different problems that may arise.

5. CQL. CQL (Cassandra Query Language) is a familiar way of
querying Cassandra. It is a subset of SQL and has many of
the same features, making the transition from an SQL based
RDBMS to Cassandra less complicated.

2.2.2.2 Cons of Cassandra

1. No Aggregations. Because Cassandra is a key-value store, do-
ing things like SUM, MIN, MAX, AVG and other aggregations
are incredibly resource intensive if even possible to accom-
plish.

2. No Ad-Hoc Queries. Beneath the covers, the Cassandra data
storage layer is basically a key-value storage system. This means
that designing how data model should look, depends on the
queries that is going to be executed, rather than the structure
of the data itself. This can lead to storing the data multiple
times in different ways to be able to satisfy the requirements
of the system.

3. Unpredictable Performance. Because Cassandra has many dif-
ferent asynchronous jobs and background tasks that are not
scheduled by the user, the performance can be unpredictable.
This means that it is possible to see performance impacts that
may not be related to a query, or volume of queries. This can
make troubleshooting performance issues rather difficult.

2.2 comparison of postgres and cassandra 9

2.2.3 Functional comparison

In this subsection, there is a sum up of the information discussed in
previous chapters. In the table presented functional comparison of
PostgreSQL and Cassandra.

Features PostgreSQL Cassandra

Tables or Collections X X

Primary Key X X

Partition Key X X

Foreign Key X 7

Global Secondary Indexes X 7

Integrity Constraints X 7

Single-Key & Multi-Key X 7

JOINs X 7

Data Auto-Expiry 7 X

Data Volume Stored Medium Large
Aggregations Built-in External Frameworks

Data Types Stored Structured Data Unstructured Data
Data Organisation Normalised Denormalised

Fault Tolerance Manual Failover Automatic
Use Case Complex Relational Simpler Non-Relational

Table 1: How NoSQL data modelling differs from SQL

Part II

T H E S H O W C A S E

Actual design, implementation and test

3
R E Q U I R E M E N T S

3.1 customer requirements

Migration from Cassandra to Postgres should be done on an exis-
tent critical system, and this implies certain restrictions. The current
system supports the creation, storage and managing vouchers that
are used by different parties, and a new solution should be able to
do the same operations. These vouchers can be used during pay-
ment for taxi trips, so having hundreds of thousands trips every
day and thousands users every minute that can manage vouchers
in their profile, create a significant load for a system and requires it
to run without interruptions. So one of the main technical require-
ment is smooth migration without direct influence on the running
system.
All in all, customer requirements can be presented as a list:

1. Support of all operations with vouchers from the old DB solu-
tion.

2. Migrate all old information from existing data storage to a
new one.

3. Switch to a new solution should be done without any impact
on the running system.

4. The migration process should be reliable and safe.

3.2 technical requirements

With defined customer requirements, technical one can be derived.

1. Support of Create, Read, Update, Delete (CRUD) operations in
new system.

2. New relational schema should be created.

3. All data from Cassandra should be transferred to new Post-
gres DB.

4. There should be no interruption in work, during migration.

11

3.2 technical requirements 12

5. Every step during migration should be revertible.

6. In every moment, switch to old system should be possible.

3.2.1 Software requirements

To be aligned with current technical stack, developed solution should
use Java 8/11, desired DB is Postgres with version 11.

3.2.2 Data team requirements (External requirement, not in the scope of
this thesis)

Data team would like to consume information from data storage, to
process information about vouchers and share it with the Business
Intelligence (BI) department. During a discussion with stakeholders,
it was decided that the newly developed system will have a func-
tion to emit events, that will be later on consumed by Data team.
This change will ensure that the system has no direct dependencies,
and future changes to architecture can be done with no harm to
consumers of data.

4
D E S I G N

4.1 database model

In this section, old and new database models will be presented, with
description and explanation of the tables. Diagrams are in simpli-
fied form, with only primary and foreign keys, because they contain
much information and will make the reading process more difficult.
Full diagrams can be found in the appendix section A.1 in the Fig-
ure 25 and Figure 26.

Diagrams contain some terms that are related to vouchers, that
better to explain now.

1. Deposit voucher - is a process when a passenger adds the
voucher to his account to use in future taxi trip.

2. Voucher redemption - is a process when voucher used during
payment for the trip and is deducted from passenger account.

3. Referral vouchers are vouchers that every passenger can give
to his friend that does not have an account yet, to have a dis-
count on their first trip.

4.1.1 Cassandra

In this subsection, the non-relational model can be found, and it is
presented in Figure 1. It has a set of tables that stores different data.
The main advantage of this model is quick to search, the ability to in-
sert a significant amount of data simultaneously in an asynchronous
way. The disadvantage of this model is a big amount of repetitive
information in the tables, that leads to a problem that if an error oc-
curred during saving to one of the tables, there would be different
data for the same object, that makes information unreliable.

1. Voucher_by_code, Voucher_by_id, Voucher_by_media_code - these
tables store voucher entity, and contains the same information,
but have a different primary key. This can be explained as a
drawback of the non-relational model that information have
to be duplicated in order the system to have a quick search for
different fields.

13

4.1 database model 14

Figure 1: Cassandra database model

2. media_codes - this is a special table that stores vouchers, that
are created for marketing purposes via an appropriate web
system.

3. voucher_templates_by_id - this table used as a storage for voucher
templates, this templates used for creation referral vouchers.

4. deposits_by_passenger_id_and_code - this table keeps track of all
deposits of the vouchers done by passengers.

5. voucher_redemptions_by_code_and_passenger_id - this table stores
information about redemptions of the vouchers.

6. history_by_code_and_passenger_id, history_by_id_and_passenger_id
- these two tables store the same information about historical
data, when voucher was deposited, when redeemed, what pas-
senger used it, and so on.

4.1.2 Postgres

This subsection presents a relational model in Figure 2, and it is
developed as a new solution for the system.

1. voucher - this is a main table in the relational model, it stores
voucher information and identified by media_code.

2. voucher_codes - this table stores voucher codes, that are associ-
ated with voucher table. It can be multiple voucher codes that
are related to the same media_code.

3. voucher_templates - this table used as a storage for voucher tem-
plates, this templates used for creation referral vouchers.

4.2 high level design 15

Figure 2: Postgres database model

4. voucher_deposit_history - this table keeps track of all deposits of
the vouchers done by passengers.

5. voucher_redemption_history - this table stores information about
redemptions of the vouchers.

6. referral_passenger_vouchers - this table stores information related
to referral vouchers that are given from one passenger to an-
other, such as name of the passenger and ID of the voucher.

7. referral_driver_vouchers - this table stores information related to
referral vouchers that are given from driver to passenger.

8. rules - this table stores information about validation rules, that
are used to validate a voucher. For example, COUNTRY_RULE
- checks that country code in the voucher is the same as coun-
try code where passenger currently tries to use it.

9. voucher_rules - this table stores connection between voucher
and rules associated with it.

4.2 high level design

This section describes the design and overview of the system, from
different prospectives as well as a migration process diagram where
is explaination in details what is the plan for migration.

4.2 high level design 16

4.2.1 System overview

In this subsection is presented a system overview diagram. In the
Figure 3 is a current system overview. It contains several elements:

1. Voucher Service: this is the main block of the diagram in the
middle, it represents microservice that handles all functions
related to the vouchers, such as creation, deletion, edition, de-
positing to passenger account, using during the payment, and
others.

2. Cassandra Database: the component on the right side of the
voucher service is data storage that keeps information about
the vouchers.

3. Others: on the left side of the vouchers service, there are exam-
ples of other components that connect to the voucher service
to get information from it. For example, Marketing Web Tool
is web application to create vouchers, Passenger App is the
primary client of the system and sends a request to deposit
voucher, or to redeem it during the payment for the tour.

Figure 3: System overview

4.2.2 Migration process concept

This subsection covers the topic of migration from the old database
to a new one. Migration plan contains four steps, and all of them
presented in the diagrams with explanation. There is a short legend
for the diagrams presented in this subsection.

4.2 high level design 17

1. An arrow from Voucher Service to Database - represents write
operation, it is also marked with blue colour.

2. An arrow from Database to Voucher Service - represents read
operation, it is also marked with red colour.

The Figure 4 shows an initial state of the system before the migra-
tion. Voucher Service is connected only to Cassandra database, it
writes and reads all information from it.

Figure 4: Initial setup of system before migration

The Figure 5 shows the first step of the system migration. The
Voucher Service is connected to both Cassandra and Postgres databases
and writes information to both of them. At this step, information is
only read from Cassandra, and data in Postgres should be closely
monitored to see if there is any inconsistency between Cassandra
and Postgres.

4.2 high level design 18

Figure 5: First migration step

The Figure 6 shows a second step of the system migration. Voucher
service connected to both Cassandra and Postgres databases, and
writes information to both of them. In this step, information is read
from both databases, and this behaviour is adjustable, the plan is to
read 80% from Cassandra and 20% from Postgres.

Figure 6: Second migration step

The Figure 7 shows a third step of the system migration. Voucher
Service is connected to both Cassandra and Postgres databases and
writes information to both of them. At this step, Voucher Service
start to read 100% from Postgres, and we keep writing information
to Cassandra to have ability immediately switch databases in case
of errors.

4.3 software design 19

Figure 7: Third migration step

The Figure 8 shows a last step of the system migration. Voucher
Service is connected only to the Postgres database. At this step, the
Voucher Service communicates only to Postgres. All write and read
operations performed using a new setup. Furthermore, old Cassan-
dra will be shutdown.

Figure 8: Last migration step

4.3 software design

In this section, the superior software design is presented. Several di-
agrams show software design overview in different stages: before
migration, during and after migration. An explanation supports

4.3 software design 20

them, more implementation details are in Chapter 5. The general
architecture of the system follows a Model-View-Controller (MVC)
pattern. MVC offers architectural benefits — it helps to write better
organised, and therefore more maintainable code. [3]

Figure 9: Software top-level overview before migration

In Figure 9 is presented software architecture design before the
migration. It contains several components:

1. Controller: In this component, Application Programming In-
terface (API) for the entire system is defined. It is the entry
point, and all requests for the system are handled in the con-
troller layer.

2. Service: this component layer contains all business logic, does
manipulations with objects.

3. Model: Model layer contains all objects that are used in the
system.

4. Repository: This component is the interface for database com-
munication.

5. Cassandra Database: Database where objects are stored.

Figure 10: Software top-level overview during migration

In Figure 10 is presented software architecture design during the
migration. It has more components than before, but the controller

4.3 software design 21

and service stay almost untouched. The main benefit for all exter-
nal system, they API is not changed. An architecture change is using
Repository Interface, and this is a component that handles which
data source should be used for storing and reading data. This archi-
tecture gives the flexibility to use not only different data sources but
also different frameworks for communication to DB. Added compo-
nents:

1. Cassandra Model: Contains all objects related to Cassandra
Database.

2. Postgres Model: Contains all objects related to Postgres Database.

3. Repository Interface: As described above this components do
routing between different data sources.

4. Cassandra Repository: This component is the interface for Cas-
sandra database communication.

5. Postgres Repository: This component is the interface for Post-
gres database communication.

6. Postgres Database: Database where objects are stored.

Figure 11: Software top-level overview after migration

In Figure 11 is presented software architecture design after the
migration. All parts related to Cassandra are removed. Moreover,
the repository interface is staying, in case other data sources will be
connected in the future.

5
I M P L E M E N TAT I O N

5.1 communication between layers

This section covers all implementation details and changes during
migration. There are no changes between controller and service
layer communication, and major changes are from service to repos-
itory interface, which makes decisions what data source Postgres
or Cassandra to use. In the subsection, 5.1.2, is described the im-
plementation of communication to the database. Migration brings
space to small improvements, so it was decided to use a modern
framework(JPA) for all database communications to Postgres, to
make maintaining and future development more straightforward.

5.1.1 Service to Repository layer communication

In this subsection, communication between service and repository
layer is described. There are a lot of different classes because sys-
tem accesses different tables in the database. In this part will be pre-
sented examples of implementation of read and write operations for
one table, but it looks similar for other tables as well. Read exam-
ple in listing 1 shows function to find a voucher or list of vouchers
by voucher code. In the beginning, the value from the configura-
tion is stored in the variable, what percentage of requests should
get data from Cassandra, the value can be from 0 to 100. And then
helper function is used, see Listing 2, to determine should request
use Cassandra or Postgres. Implementation of a helper function is
straightforward; it generates a random value between 0 and 100 and
compares to the value that was taken from configuration.

1 public List<VoucherByCode> findByCode(final String code) {

2 Long readRatio = config.getCassandraPostgresReadRatio();

3 if (isCassandra(readRatio)) {

4 return voucherByCodeRepositoryCassandra.findByCode(

code);

5 }

6 else {

7

8

22

5.1 communication between layers 23

9 return voucherByCodeRepositoryPostgres.findAllByCode

(code)

10 .stream()

11 .map(voucherCodesMapper::mapVoucherCodes)

12 .collect(Collectors.toList()); } }

Listing 1: Find voucher by code

1 private boolean isCassandra(Long ratio) {

2 return (getRandomNumberInRange() <= ratio);

3 }

4

5 private static int getRandomNumberInRange() {

6 return (int) (Math.random() * ((100) + 1));

7 }

Listing 2: Helper function, to determine to read from Cassandra or not

Listing 3 shows an example of saving voucher to the database.
At the beginning of the method, in two variables, configuration val-
ues are stored , isCassandraEnabled and isPostgresEnabled. And
then there is a check, should data be saved to one database or both.
There is no need to have percentage values like in reading example
because data should be consistent in both databases. Otherwise, the
split-brain situation can happen, when part of the data is stored in
one database, and part in the other one. And then attempt of the
system to find particular information will be unsuccessful.

1 public void save(VoucherByCode voucherByCode) {

2 boolean isCassandraEnabled = config.isCassandraEnabled()

;

3 boolean isPostgresEnabled = config.isPostgresEnabled();

4 if (isCassandraEnabled) {

5 voucherByCodeRepositoryCassandra.save(voucherByCode)

;

6 }

7 else if (isPostgresEnabled) {

8 voucherByCodeRepositoryPostgres.save(

voucherCodesMapper.mapVoucherByCode(

voucherByCode));

9 }

10 }

Listing 3: Save voucher

5.1 communication between layers 24

5.1.2 Repository to Database layer communication

This chapter provides comparison of the same functionality when
system communicates to Cassandra or Postgres, to show improve-
ments in readability and maintainability of the code.

1 public class MediaCodeVoucherCountRepositoryCassandra {

2 private final CachingPreparedStatementCreator stmtGetCount =

new CachingPreparedStatementCreator(

3 "select voucher_count from media_code_voucher_count

where media_code = ?;");

4 private final Session session;

5

6 public MediaCodeVoucherCountRepositoryCassandra(Session

session) { this.session = session;}

7

8 public Long getCount(String mediaCode) {

9 try {

10 BoundStatement statement = stmtGetCount.

createPreparedStatement(session).bind(mediaCode)

;

11 ListenableFuture<ResultSet> resultSet = session.

executeAsync(statement);

12 ListenableFuture<Long> voucherCount = Futures.

transform(resultSet, (Function<ResultSet, Long>)

rs -> {

13 assert rs != null;

14 Row row = rs.one();

15 return row == null ? 0 : row.getLong("

voucher_count");

16 });

17 return voucherCount.get();

18 } catch (InterruptedException | ExecutionException e

) {

19 throw new RuntimeException("", e); } }

Listing 4: Get number of voucher codes for voucher in Cassandra

Listing 4 and 5 shows an implementation of function to get the
number of the voucher codes for a particular voucher. From com-
plex function using old technologies, it becomes an understandable
and small piece of code.

1 public interface VoucherRepositoryPostgres extends JpaRepository

<Voucher, Integer> {

5.1 communication between layers 25

2 @Query(value = "select count from voucher where media_code = ?"

, nativeQuery = true)

3 Long getCount(String mediaCode); }

Listing 5: Get number of voucher codes for voucher in Postgres

6
T E S T

6.1 test of requirements

This section is about checking technical requirements, and how they
are fulfilled in the new system.

1. Support of CRUD operations in new system.

2. New relational schema should be created.

3. All data from Cassandra should be transferred to new Post-
gres DB.

4. There should be no interruption in work, during migration.

5. Every step during migration should be revertible.

6. In every moment, switch to old system should be possible.

Req. # Result

1 Common repository interface has all functions as old system
2 A new database model is created and described in section 4.1.2
3 This step is not finished completely due to difficulties

4, 5, 6 Enabling and disabling of the database is controlled by configuration

Table 2: Comparison of the system to technical requirements

6.2 unit tests

This section shows test results of unit tests. System contains 365, that
covers all layers. UNIT TESTING is a level of software testing where
individual units/ components of a software are tested. The purpose
is to validate that each unit of the software performs as designed. A
unit is the smallest testable part of any software. It usually has one
or a few inputs and usually a single output.

26

6.2 unit tests 27

6.2.1 System context test

General tests that checks if system can startup, handle single or
multiple requests, Figure 12

Figure 12: System context test

6.2.2 Controller test

Controller layer tests to check main functionality to get, deposit,
redeem vouchers, Figure 13, and to select and deselect them, Figure
14

Figure 13: Voucher Controller test

6.2 unit tests 28

Figure 14: Voucher Selection Controller test

6.2.3 Data access layer test

Tests to check operations with database. For example history tables
Figure 16, or table to get voucher information Figure 15.

Figure 15: Voucher Repository test

Figure 16: Voucher History Repository test

6.2.4 Service layer test

This layer responsible for all business logic in the system, so it has
195 tests. To make it more readable, service layer test results are in
the Appendix A in Figure 18, 19, 20, 21, 22, 23, 24

6.2 unit tests 29

6.2.5 Utility layer test

Tests that check helper functions, Figure 17.

Figure 17: Utility layer test

Part III

S U M M A RY A N D O U T L O O K

7
S U M M A RY

7.1 results

The topic of this thesis is the migration of the non-relational database
to relational one in a critical system. In the fast-growing system, it is
crucial to have the ability to debug, change and add new functional-
ity without problems and significant developer effort. Migration to
Postgres, is an excellent example of it, at the start of the migration,
old architecture had many dependencies between components that
provide more technical depth. After several iterations of refactoring
that have been made in a scope of the bachelor thesis, the system
now has flexible and scalable architecture, increased performance
and less points of failure. Furthermore, this improvements and ex-
tended documentation made system easier to understand to other
developers.
Answer to question raised at the beginning of the thesis: "When it
makes sense to change the concept of the database in the working
system, and if it worth it?" is :

1. All stakeholders must have a clear picture of what result they
want to achieve.

2. All technical steps and architecture decisions should be sorely
discussed together with alternatives.

3. There must be full control during migration to have the ability
to revert the process in case of any errors. Error tracing brings
an important point, that system should provide a sufficient
amount of logs and metrics to see the state of it, and identify
problems as soon as possible.

7.1.1 After migration comparison

The main difference is the use of a relational database model that
gives the flexibility of creating and editing entities(vouchers). There
are more points to mention:

1. One constraint that was in an old system is the possibility to
create a voucher with a maximum of 50 thousand voucher
codes, due to faulty architecture of the database model and

31

7.2 outlook 32

process around it. Using Postgres, this limitation is removed,
and it gives flexibility for marketing managers.

2. As discussed in previous chapters in Cassandra information
is stored in multiple tables, that creates difficulties when there
is a need to delete or change many rows. For vouchers, infor-
mation must be changed in 3 tables where the main voucher
object is stored, and then in all history tables and respectively
in tables that store redemption and deposits. In Postgres, to
do the same operations, just one table should be changed -
voucher.

3. Usage of modern frameworks reduces code complexity, and
new system architecture provides flexibility and scalability for
future growth.

7.2 outlook

This section covers future steps and what is need to be done to finish
the project.

1. Migrate data from the old database to a new one. During im-
plementation of this task, some problems were faced.

a) Cassandra does not support most of the SQL queries such
as aggregations and search using a not primary key, that
makes challenging to migrate many data.

b) Implementation of the custom solution takes much time
and goes beyond the scope of the thesis.

The solution is to use the help of the data team because they
have experience to solve similar problems.

2. Create dashboard and track metrics to identify issues with
database and system.

3. Add fallback to critical parts of the system.

4. During the migration to a new system, more features have
been added, that should be adopted to a new database model.

R E F E R E N C E S

[1] Microsoft Azure. Non-relational data and NoSQL. https://docs.
microsoft.com/en-us/azure/architecture/data-guide/big-

data/non-relational-data. Accessed on 2019-09-25. 2018.

[2] E. F. Codd. The Relational model for Database Management. 2nd.
Boston, MA, USA: Addison–Wesley, 1990.

[3] Google. MVC Architecture. https://developer.chrome.com/
apps/app_frameworks/. Accessed on 2019-10-30.

[4] The PostgreSQL Global Development Group. What is PostgreSQL?
https://www.postgresql.org/about/. Accessed on 2019-10-
27.

[5] Eben Hewitt. Cassandra: The Definitive Guide. 1st. O‘Reilly Me-
dia, 2011.

[6] Regina Obe and Leo Hsu. PostgreSql: Up and Running. 1st. O‘Reilly
Media, 2012.

33

https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/non-relational-data
https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/non-relational-data
https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/non-relational-data
https://developer.chrome.com/apps/app_frameworks/
https://developer.chrome.com/apps/app_frameworks/
https://www.postgresql.org/about/

Part IV

A P P E N D I X

A
A P P E N D I X

Figure 18: Service layer tests Part 1

Figure 19: Service layer tests Part 2

35

bibliography 36

Figure 20: Service layer tests Part 3

Figure 21: Service layer tests Part 4

bibliography 37

Figure 22: Service layer tests Part 5

Figure 23: Service layer tests Part 6

bibliography 38

Figure 24: Service layer tests Part 7

bibliography 39

Fi
gu

re
2
5
:C

as
sa

nd
ra

da
ta

ba
se

w
it

h
al

la
tt

ri
bu

te
s

bibliography 40

Fi
gu

re
2
6
:P

os
tg

re
s

da
ta

ba
se

w
it

h
al

la
tt

ri
bu

te
s

bibliography 41

1 public class VoucherCodesRepository {

2 private VoucherByCodeRepositoryPostgres

voucherByCodeRepositoryPostgres;

3 private VoucherByCodeRepositoryCassandra

voucherByCodeRepositoryCassandra;

4 private VoucherCodesMapper voucherCodesMapper;

5 private VoucherGenerationConfig config;

6

7 public List<VoucherByCode> findByCode(final String code) {

8 Long readRatio = config.getCassandraPostgresReadRatio();

9

10 if (isCassandra(readRatio)) { return

voucherByCodeRepositoryCassandra.findByCode(code); }

11 else {

12 return voucherByCodeRepositoryPostgres.findAllByCode

(code)

13 .stream()

14 .map(voucherCodesMapper::mapVoucherCodes)

15 .collect(Collectors.toList()); } }

16

17 public void save(VoucherByCode voucherByCode) {

18 boolean isCassandraEnabled = config.isCassandraEnabled()

;

19 boolean isPostgresEnabled = config.isPostgresEnabled();

20 if (isCassandraEnabled) {

21 voucherByCodeRepositoryCassandra.save(voucherByCode)

;

22 }

23 else if (isPostgresEnabled) {

24 voucherByCodeRepositoryPostgres.save(

voucherCodesMapper.mapVoucherByCode(

voucherByCode));

25 }

26 }

27

28 private boolean isCassandra(Long ratio) {

29 return (getRandomNumberInRange() <= ratio); }

30

31 private static int getRandomNumberInRange() {

32 return (int) (Math.random() * ((100) + 1)); }}

Listing 6: Full example with voucher codes tables

Erklärung zur selbstständigen Bearbeitung der Arbeit

Hiermit versichere ich,

Name:

Vorname:

dass ich die vorliegende Bachelorarbeit mit dem Thema:

Migration of NoSQL (Cassandra) to relational database (Post-
gres) on high demanded distributed system

ohne fremde Hilfe selbständig verfasst und nur die angegebenen
Quellen und Hilfsmittel benutzt habe. Wörtlich oder dem Sinn nach
aus anderen Werken entnommene Stellen sind unter Angabe der
Quellen kenntlich gemacht.

Ort Datum Unterschrift im Original

42

	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction and Theory
	1 Introduction
	1.1 Motivation
	1.2 Goal of the thesis
	1.3 Structure of the thesis

	2 Theory
	2.1 Relational and Non-Relational Databases
	2.1.1 Relational Databases concept
	2.1.2 Non-Relational Databases concept

	2.2 Comparison of Postgres and Cassandra
	2.2.1 PostgreSQL
	2.2.2 Cassandra
	2.2.3 Functional comparison

	The Showcase
	3 Requirements
	3.1 Customer requirements
	3.2 Technical requirements
	3.2.1 Software requirements
	3.2.2 Data team requirements (External requirement, not in the scope of this thesis)

	4 Design
	4.1 Database model
	4.1.1 Cassandra
	4.1.2 Postgres

	4.2 High level design
	4.2.1 System overview
	4.2.2 Migration process concept

	4.3 Software design

	5 Implementation
	5.1 Communication between layers
	5.1.1 Service to Repository layer communication
	5.1.2 Repository to Database layer communication

	6 Test
	6.1 Test of requirements
	6.2 Unit tests
	6.2.1 System context test
	6.2.2 Controller test
	6.2.3 Data access layer test
	6.2.4 Service layer test
	6.2.5 Utility layer test

	Summary and outlook
	7 Summary
	7.1 Results
	7.1.1 After migration comparison

	7.2 Outlook

	References

	Appendix
	A Appendix
	A.1 Database Model
	A.2 Implementation

