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Abstract: This paper proposes an efficient hybrid analytical-computational approach for the simula-
tion of mechanical vibrations and sound radiation in wind turbine drive trains.The computational
procedure encompasses the detailed modeling of vibrational sources and structural sound paths as
well as the major panels of airborne noise radiation. The angle-varying mesh stiffness is obtained
from a series of quasi-static finite element simulations. A novel procedure is proposed to obtain
the time-varying mesh stiffness at fluctuating speed. The varying mesh stiffness is introduced as
a parametric excitation in an analytical gear model, and the Fourier-transformed results are used
as vibrational sources in a finite-element-based harmonic response analysis of the drive train. The
present paper focuses on the modeling of gear contact and gearbox vibrations. The models and
procedures are outlined, and computational results are compared to physical measurements on a
2.5 MW wind turbine. The results are in good qualitative agreement at tonal frequencies. This is
particularly the case at fluctuating speed, where both the simulation and the measurement show the
characteristic effect of frequency modulation. The computational procedure has been expanded to
the whole drive train and is effectively applied in the conception and evaluation of design measures
for the reduction of tonal amplitudes.

Keywords: hybrid approach; gear-induced vibrations; gearbox structure; FEM; varying operating
speeds; structure-born sound path

1. Introduction

Noise emission from wind turbines is a critical issue that limits the social acceptance
of the green technology [1–10]. Wind turbine manufacturers are particularly concerned
with narrow band amplitude peaks called tonalities [11,12]. It is generally accepted that
most tonalities in the radiated spectrum can be traced back to gear noise; i.e., parametric
mechanical vibrations caused by gear interaction in rotating machinery [13]. The gear
vibrations are transmitted via several structural sound paths to radiating structural panels,
such as the gearbox walls or the nacelle. The tonal amplitudes can be ameliorated by
technical design measures, either at the source, or on the transfer paths, or both. Sound is
most effectively controlled at its sources but, in many practical cases, the sources are not
accessible to design changes and noise reduction measures must be introduced along the
sound paths. Computational simulation is the tool of choice for the vibroacoustic evaluation
and optimization during the design stage. In order to predict the effects of design changes
on the acoustic characteristics, the computational models should, on one hand, include the
vibrational sources with sufficient accuracy but must, on the other hand, reach beyond the
sources and include the major transfer paths. We demonstrate in this paper how these two
goals can be achieved with an efficient hybrid analytical–computational multistep approach.
We focus here on gear interaction and gearbox vibrations, but the computational efficiency
of the procedure allows for further expansion onto the complete driveline, including
the girder, the nacelle and other parts of wind turbines. Thereby, the present procedure
significantly expands the scope of true-to-detail modeling in comparison with previous
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approaches. Furthermore, a novel procedure for calculating the frequency response at
fluctuating operational speed is presented. It is demonstrated by comparison to physical
experiments that the computed frequency response functions (FRF) are in good qualitative
agreement with the measurements at major meshing frequencies. Comparing the results
of test runs with fluctuating and constant speed, the well-known effect of “frequency
smearing” [14,15] due to frequency modulation by fluctuating speed is observed, both in
simulation and in measurement.

Gear vibrations are parametrically excited by the temporal variation of the contact
configurations in gear pairings [16,17]. This effect of time-varying mesh stiffness [18–20] has
been widely studied in the literature; see [21] and references therein. Chen [22] compares
several meshing characteristics of helical gears, using both analytical and Finite Element
(FE) methods. A number of other investigations, e.g., [23–25], compare numerical results
from FE models with different analytical approaches. The computational models account
for the flexibility of the components and represent in detail their geometric and material
properties. They may, however, contain a large number of degrees-of-freedom (DOF),
and transient simulations can be very costly. The accuracy of the FE results strongly
depends on the modeling parameters, e.g., the element size, the contact tolerance or the
selected element types [26]. In this context, Dai [27] emphasizes the inefficiency of pure FE
models for the simulation of dynamic gear processes. Alternatively, Lumped Parameter
(LP) models provide a computationally efficient option for dynamic simulation. Here,
the components are included as rigid bodies, which are idealized as point masses and
connected via discrete spring-damper elements. Such models contain significantly fewer
DOF than FE models. A large variety of lumped parameter simulations for gear systems
has been published [11,28–34]; see also the review papers [16,35–38]. The majority of these
investigations deal with single-stage gear systems. Planetary or multi-stage gear systems
are considered in [39–45]. The LP models do not, in most cases, include the gearbox housing
and further components of the drive train. Luo [46] represents the gearbox housing by a
set of lumped mass and stiffness parameters.

Many investigations are based on a combination of LP and FE modeling [40,43,47].
Hybrid computational models that encompass tooth contact, elastic foundations, bearings
and pinions by combining finite element/contact-mechanics (FE/CM) with multibody
dynamics formulations can be found in [27,48–57]. Most models and procedures in the
literature focus on the gear-shaft-bearing connection. Only a few studies consider the
vibrations of the entire gear-bearing-housing system [21,58]. Guo et al. [58] have developed
a multistep computational procedure for determining the vibro-acoustic propagation of
gear vibrations. The dynamic bearing forces and moments are calculated using either
an LP or an FE/CM gearbox model. These forces are then applied as excitations in an
FE model of the gearbox housing. The normal velocities on the surface elements are
subsequently used for the acoustic simulation of the sound radiation with the boundary
element method. Sound pressure results for unit bearing forces and moments are combined
with separately computed bearing loads to determine the overall far field sound pressure.
Zhou et al. [28] have presented a hybrid approach for the steady-state dynamic response
of a single-stage gearbox. Using a series of static-structural FE simulations, the angle-
dependent mesh stiffness is calculated and applied in a gear dynamic model with three
degrees of freedom. The transient bearing forces from this model are applied as dynamic
excitations in a structural FE model of the gearbox housing. The FE model is solved in the
time domain to obtain the vibration response, which is subsequently used to calculate the
acoustic radiation with a boundary element model. Helsen, Vanhollebeke et al. [10,59–64]
have studied wind turbine drive trains with a flexible multibody technique. Their approach
also includes vibroacoustic simulations for a wind turbine gearbox, where the bearing
forces from the multibody model are applied to a flexible FE model of the gearbox housing.
More recently, Xu et al. [47] have developed a dynamic FE/LP model for a helicopter
gearbox that accounts for the flexibility of both the shafts and the housing. Based on this
model, a time-domain method for identifying the resonance paths of a multistage gearbox
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was proposed. The entire model is simulated in the time domain in order to calculate the
response to operating conditions, including varying speeds. Speed fluctuations are also
considered by Sika et al. [65,66], who investigate the numerical stability of a gear contact
model in the time domain.

In the computational approach presented herein, the frequency response for arbitrary
measuring points, surfaces, and volumes of the gearbox and the drive train is obtained as
the final result of an integrated multistep procedure. The computational chain starts from
the calculation of the angle-varying mesh stiffness, using a series of static FE/CM analyses
of all relevant gear pairings (spur and helical). Then, the time-varying mesh stiffness
(TVMS) is computed from the angular variation of mesh stiffness. A novel technique is
introduced here that accounts for temporal variations of the operating speed. Transient
simulations with rigid-body models of gear pairings yield the dynamic transmission errors
for the multi-stage gear system. The Fourier transforms of the transmission error are
used as excitations for the harmonic FE analysis of the gearbox. The present FE model
also includes the internal components (shafts, gears, etc.) of the gearbox, which are often
neglected in related contributions [28,58,62]. Including the internal components not only
increases the model accuracy, but allows also to apply the harmonic excitation precisely
at the locations of gear contact. The gearbox mounts are represented in the FE model by
six-dimensional stiffness and damping matrices.

In summary, our computational procedure significantly expands the range of true-to-
detail modeling for the vibroacoustic simulation of wind turbines. The hybrid approach
combines the transient analysis of the major sound source with the FE-based frequency
response analysis of structural vibrations along the sound paths. A novel methodical
feature accounts efficently but realistically for the influence of speed fluctuations on the
frequency response. The vibroacoustic model is successfully validated by comparison to
physical measurements. Sound radiation from vibrating panels can be readily evaluated by
standard measures such as the equivalent radiated power, or by vibroacoustic structure-
fluid coupling. A new effcient approach for the FE-based simulation of far-field acoustic
radiation has been proposed by the authors in [67].

The remainder of this paper is organized as follows. The details of the hybrid computa-
tional procedure are outlined in Section 2. Section 3 describes the vibroacoustic simulation
of a wind turbine gearbox and the comparison with physical measurements. We discuss the
influence of varying operational speed and different load levels as well as the sensitivity
of simulation results to the modeling of internal components. Detailed information is
given about the computational cost and efficiency for the large-scale application. The main
conclusions of the investigation are drawn in Section 4.

2. Hybrid Analytical-Computational Procedure

The proposed integrated computational procedure for the calculation of the opera-
tional response of wind turbine gearboxes consists of five sequential steps, shown in a
schematic plot in Figure 1. In the first step, a series of static 3D FE simulations is performed
to obtain the varying mesh stiffness at the gear contact for a number of meshing configura-
tions over one mesh cycle. Using the results of the first step and the operating speeds of
the gears, the time variation of the mesh stiffness is computed analytically in the second
step. In the third step, the TVMS is used as an input for an analytical two-body model of
a gear pairing which yields the transmission error (TE) δ at gear contact. The fourth step
involves harmonic finite element analyses for constant TE amplitudes over the frequency
range of interest for a detailed model of the gearbox and the drive train. The results are
dynamic transfer functions from the gear contact to all points and measures of practical
interest. The results of the third and fourth steps are combined in the fifth step to compute
analytically the operational response of the gearbox and the drive train for arbitrary points,
surfaces, and volumes of interest.
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Figure 1. Schematic overview of the integrated computational procedure. In the first step, static
FE simulations of gears in contact provide the angle-dependent mesh stiffness km(ϕ). The angle-
dependent mesh stiffness is then transformed to the TVMS km(t), while varying operating speeds
are considered by both kinematic and kinetic effects. The TVMS km(t) is applied in an analytical
two-body model of the transient gear dynamics to obtain the dynamic transmission error δ. The
frequency spectra of the operational gearbox response are calculated by an analytical combination of
the excitation spectra δ(ω) and transfer functions, which have been computed independently using a
detailed FE model of the gearbox.

2.1. Angle-Dependent Mesh Stiffness (Step 1)

The rotation of gears in contact during operation leads to a continuous change of the
instantaneous meshing configuration. Hence, the gear mesh stiffness varies continuously
within a mesh cycle. This applies in principle to both spur and helical gears, although
different gear properties result in different mesh stiffness fluctuations. Figure 2 compares
the relative variation in the mesh stiffness over one mesh cycle for a spur and a helical gear.
For better comparability, the values are related to the respective average value over one
mesh cycle km. Figure 2a shows the results for the spur gear investigated by Zhou [28]. This
gear has a low contact ratio (LCR), which is the standard case for spur gears. In LCR gears,
the number of tooth pairs in contact varies between one and two. Therefore, the formation
or loss of contact between a specific tooth pair leads to an abrupt and significant increase
respectively, and decrease in the mesh stiffness. In contrast, in high contact ratio (HCR)
helical gears, such as those typically used in wind turbine gearboxes (see Section 3), two or
more pairs of teeth are in contact at any point in time. Hence, the load is distributed over
several pairs of teeth and contact changes of individual pairs of teeth have less impact on the
overall mesh stiffness. As a result, there are significantly smaller relative fluctuations in the
mesh stiffness within a mesh cycle for HCR gears. Apart from these different characteristics,
the angle-dependent variation in mesh stiffness is a significant cause of gear vibration in
both cases. The following procedure for determining the angle-dependent mesh stiffness is
equally applicable to spur and helical gear configurations.

The mesh stiffness can be determined as the slope in the non-linear force-deflection
curve of mating gear teeth by either analytical, experimental or computational methods.
For a discussion of the nonlinear aspects and corresponding models, see, e.g., Cooley [24].

The contact force at the tooth flanks of two mating gears is denoted as the mesh force
Fm. It can be calculated from the two acting torques T1,2 and the base circle radii rb1,b2 of
the two gears as

Fm =
T1

rb1
=

T2

rb2
, (1)

where the indices 1, 2 refer to the driving and the driven gear, respectively.
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Figure 2. The angle-dependent variation in the mesh stiffness is a significant cause of gear vibration
and depends on the specific gear properties, as the comparison for a spur gear, see subplot (a), and
a helical gear, see subplot (b), over one mesh cycle shows. For better comparability, the values are
related to the respective average value over one mesh cycle km. Spur gears generally have a low
contact ratio, caused by alternating single and double tooth contact, leading to an abrupt change
in the mesh stiffness. Helical gears, in contrast, generally have a high contact ratio due to multiple
simultaneous tooth contacts at all times, and thereby an angle-dependent mesh stiffness variation
with relative fluctuations of a smaller magnitude.

The mesh deflection qm describes the displacement of the meshing gears due to elastic
deformation under load, expressed as a tangential displacement at the base circle radius

qm = rb1θ1 + rb2θ2 − ε , (2)

where θ1, θ2 denote the absolute rotational deflection of the gears and the unloaded trans-
mission error ε reflects relative errors between the gears due to deviations from the ideal
involute shape by intentional modifications or unintentional errors, e.g., pitch, profile,
pressure angle or run-out errors [11,68,69].

The mesh stiffness km is determined as the ratio of the mesh force Fm and the mesh
deflection qm as

km =
Fm

qm
. (3)

Equations (1)–(3) represent the governing equations for the mesh stiffness, which are
frequently used in the literature, see, e.g., [24,28,56,70–72].

The angular variation of the mesh stiffness during one mesh cycle is obtained from a
series of static FE computations. The FE model of a helical gear pair is shown in Figure 3.
The driving gear is loaded with the torque T and the driven gear is fixed in space at the
inner cylindrical surface. Contact elements are applied to the element surfaces along the
tooth flanks. The FE solution provides the absolute rotational deflections θ1 and θ2 under
the torque load T, so that the mesh stiffness km can be obtained from Equations (1) to (3) as

km =
T

rb1 · (rb1θ1 + rb2θ2 − ε)
. (4)

The mesh is refined in the zones of potential contact in order to ensure accurate contact
detection and to capture small profile modifications and errors.
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Figure 3. Schematic overview of the finite element setup to determine the mesh stiffness of two
mating helical gears in a specific angular position within a mesh cycle.

A number of n static simulations is performed for n equally spaced angular positions

ϕcycl = [ϕ1, . . . , ϕi, . . . , ϕn](1×n) ,

where the final position ϕn = 2π/N equals the physical size of a mesh cycle in radians and
N indicates the number of teeth on the driving gear. The simulations yield a set of n values

km,cycl = [km(ϕ1), . . . , km(ϕi), . . . , km(ϕn)](1×n) (5)

for the mesh stiffness. The index “cycl” refers to angle-dependent results within one mesh
cycle. To illustrate the procedure, the black line in Figure 4 shows the mesh stiffness of
a spur gear pair obtained with an angular resolution n > 100. For better visibility, the
markers and the notations refer to a coarse resolution with n = 13. The approach for step 1
is intended to provide a versatile and flexible way of calculating the angle-dependent mesh
stiffness km(ϕ) for a wide range of gear types and specific gear characteristics such as
pressure angle, profile modifications, gear tooth errors and similar.

0.25 0.5 0.75 1
Mesh cylce

Double tooth contactSingle toothM
es

h
st

iff
ne

s
k m (ϕi ,km(ϕi))

(ϕi−1,km(ϕi−1)) (ϕi+1,km(ϕi+1))

contact

(ϕn,km(ϕn))

Single tooth
contact

Figure 4. For a sequence of n different angular positions ϕi, static FE simulations of a gear stage are
performed, in order to obtain a set of n corresponding mesh stiffness values km(ϕi).
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2.2. Consideration of Time-Varying Operating Conditions (Step 2)

The angle-dependent results km(ϕ) from step 1 are used to determine the time depen-
dence of the mesh stiffness km(t). For a constant operating speed Ωd, the transient mesh
stiffness vector for one mesh cycle km,cycl(t) can be obtained simply as

km,cycl(t) = [km(t1), . . . , km(ti), . . . , km(tn)](1×n) , (6)

with the kinematic relation
∂ϕ

∂t
= Ωd, so that ti =

ϕi
Ωd

. In the case of a time-varying

operational speed Ωd = Ωd(t), a discrete set of operational speeds

Ω =
[
Ωd(t1), . . . , Ωd(tj), . . . , Ωd(tm)

]
(1×m)

(7)

is extracted for m time instances, and time-varying mesh stiffness vectors according to
Equation (6) are calculated for each component of Ω. Figure 5 shows a distribution of
the operating speeds both for a fine and a coarse resolution of the time interval. The
time-dependent variation of mesh stiffness is displayed in Figure 6.

tend

Time t

O
pe

ra
ti

ng
sp

ee
d

Ω
d

(tj,Ωd(tj))
(tj−1,Ωd(tj−1))

(tj+1,Ωd(tj+1))

(tm,Ωd(tm))

t0

Figure 5. The operating speed Ωd(t) during a considered time range is defined at m discrete time
steps tj.

Writing the sets of angular positions ϕj and corresponding mesh stiffnesses km,j as
row vectors, the overall result of the simulations for the whole vector Ω of operating speeds
in Equation (7) can be written as a set

km =
[
km,1, . . . , km,j, . . . , km,m

]
(1×m·n) , (8)

corresponding to a set of angular positions

ϕ =
[
ϕ1, . . . ,ϕj, . . . ,ϕm

]
(1×m·n) , (9)

where for j > 1 the angles of rotation are augmented as

ϕj =

{
ϕcycl if j = 1
ϕcycl +ϕj−1(n) if j > 1

, (10)

and the vectors km,j are given by the results from step 1 as

km,j = km,cycl . (11)

A sequence of discrete time steps t corresponding to the m mesh stiffness cycles is
defined as

t =
[
t1, . . . , tj, . . . , tm

]
(1×m·n) , (12)



Acoustics 2023, 5 8

where
tj =

ϕj

Ωj
(13)

contains the time steps corresponding to the j-th mesh cycle, while it is assumed that
∂Ωd

∂t
is sufficiently small so that Ωd can be assumed to be constant within a mesh cycle.

k m
(ϕ

)

2ϕn

ϕn
Ωd(t1)

k m
(t
)

tsim

ϕn
Ωd(t2)

ϕn
Ωd(tj)

mϕn

Angular Position ϕ

Mesh cycle 2nd cycle jth cycle mth cycle

ϕm
Ωd(tm)

jϕn

t1(n)t1(1) t2(n)
Time t

ϕnϕ1

Results from
step 1

1st cycle, with
Ωd = Ω(t1)

2nd cycle
(Ωd = Ω(t2))

Periodic extension to m cycles with n discrete
angle-dependent stiffness values each

jth cycle
(Ωd = Ω(tj))

mth cycle
(Ωd = Ω(tm))

tj(n)
= tm(n)

Conversion to time-dependent km(t) by using dϕ
dt = Ωd = const.

with different operating speeds Ωd ∈ Ω for each cycle

Figure 6. Procedure to determine the time-varying mesh stiffness km(t) using km(ϕ) from step 1
and time-depending operating speeds Ωd ∈ Ω, where Ω contains the operational speed at m time
instances of a pre-defined speed profile. Therefore, the angle dependent mesh stiffness km,j(ϕ) is
expanded cyclically to m cycles with j = 1, 2, . . . , m. Subsequently, the angle-dependent description
of the mesh stiffness can be converted into a time-dependent relationship km(t) with the kinematic
relation ∂ϕ

∂t = Ωd(tj) and the assumption of a constant rotational speed within each mesh cycle.

As result of step 2, the time-varying mesh stiffness km(t) can be determined for any
point in time with the discrete sets t and km and linear interpolation. The conversion from
angular to time-dependent mesh stiffness is illustrated in Figure 7, comparing a case of
constant operating speed to a case of variable speed.

2.3. Transient Gear Dynamics (Step 3)

The time-varying mesh stiffness km(t) is used as input data for a two-body model of a
gear pairing, shown in Figure 8. This model has been frequently used in the literature, see,
e.g., [11,18,56,73–76]. It includes the most important effects of gear excitation, including
varying mesh stiffness, mesh damping, and gear errors [11].

The two-body model consists of two rigid discs representing the moment of inertia of
the two mating gears I1,2 with the torsional degree of freedoms, θ1,2. The angular velocities
of the vibrating discs are the sums of the rigid body velocity and the velocity of vibration,
i.e., Ω1 + θ̇1 and Ω2 + θ̇2, respectively. The discs are connected at the corresponding
base circle radii rb1,b2 by a spring element with the mesh stiffness km(t), and a viscous
damper representing the mesh damping with the damping coefficient cm(t). The gears can
be excited additionally by prescribed displacements due to a time-dependent unloaded
transmission error ε(t). The loads are the time-invariant driving torque T1 and the driven
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torque T2. High torque conditions are assumed, therefore the backlash is neglected. The
effect of sliding friction is also neglected. The equations of motion are [65,73]:

I1 θ̈1 + rb1cm(t)
(
rb1 θ̇1+rb2 θ̇2 − ε̇

)
+ rb1km(t) · (rb1θ1(t)+rb2θ2(t)− ε(t)) = T1−I1Ω̇1 (14)

I2 θ̈2 + rb2cm(t)
(
rb2 θ̇2+rb1 θ̇1 + ε̇

)
+ rb2km(t) · (rb2θ2(t)+rb1θ1(t) + ε(t)) = T2−I2Ω̇2 . (15)

k m
(ϕ

)

R
ot

.S
pe

ed
Ω

k m
(t
)

k m
(t
)

Angular Pos. ϕ Time t

Time tTime t

Transient mesh stiffness km(t)

Angle-dependent mesh
stiffness km(ϕ)

Consideration of the
operating speed Ωd

Ωd=const.

Ωd(t)

Ωd=const. Ωd(t)

Figure 7. Schematic illustration of the conversion from angle-dependent mesh stiffness km(ϕ) to time-
dependent mesh stiffness km(t) for constant (lower left) and varying operating speed (lower right).

km
cm

ε(t)

Gear 1

Gear 2

rb1

rb2

θ1, Ω1

θ2, Ω2

I1

I2

T1

T2

Figure 8. Gear dynamic model consisting of two rigid discs, representing the moments of inertia,
connected at the corresponding base circle radii rb1 and rb2 by a spring element representing the
mesh stiffness km(t), and a viscous damper representing the mesh damping with the damping
coefficient cm(t).

Note that the inertia terms on the right vanish for Ω = const. Neglecting dissipative
effects, the total energy of rigid body motion is constant, which leads to the power balance
equation [34]

I1Ω1Ω̇1 + I2Ω2Ω̇2 = T1Ω1 + T2Ω2 . (16)

Introducing the transmission error as

δ(t) = rb1θ1(t)+rb2θ2(t) (17)
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and using Equations (1) and (16), the system of Equations (14) and (15) can be reduced
to [65,66]

meδ̈ + cm
(
δ̇− ε̇

)
+ km(δ− ε) = Fm+i

I2Ω̇1

rb2
(18)

with the equivalent mass me =
I1 I2

r2
b2 I1 + r2

b1 I2
and the gear ratio i =

rb1
rb2

= −Ω2

Ω1
. Assuming

a constant damping ratio ζ, the damping coefficient is obtained as

cm(t) = 2
√

km(t)meζ . (19)

This approach has been widely used in the literature, see [11,28,74,77–79], applying
damping ratios in the range from 3 to 10%.

Equation (18) is a linear ordinary differential equation in time with periodic coefficients
and can be characterized as Hill equation with damping, see Cattani et al. [80]. It can
be solved by standard numerical approaches. The transient solution δ(t) is then Fourier-
transformed to obtain the transmission error δ(ω) in the frequency range, where ω denotes
the (angular) excitation frequency. In the final step 5 of the hybrid approach, the results
for δ(ω) are applied as an excitation spectrum to calculate the operational response spectra
of the gearbox and the drive train. This approach is based on the engineering experience
that gear vibrations, as a major vibrational source in industrial drive trains [11,12], which
can be traced back to the transmission error at gear contact [18–20].

Computational results for the system discussed by Zhou et al. [28] are shown in
Figure 9. The values ε = 0, ζ = 0.03, and a constant operating speed are assumed. The
transmission error δ is displayed both as a function of time and frequency. The dominant
thin-banded peaks in Figure 9b occur at the constant meshing frequency ωm = Ωd · z and
its multiples, where z is the number of teeth of the driving gear.

0 5 · 10−2 0.1 0.15 0.2

2

4

6
·10−6

Time [s]

δ
[m

]

(a) Detail of transient result

0 500 1,000 1,500
0

1

2

·10−7

Frequency [Hz]

δ
[m

]

(b) Frequency spectrum
Figure 9. Numerical results for the dynamic transmission error δ for the gear system discussed by
Zhou et al. [28]. Subplot (a) shows the obtained transient results. Due to the constant operating
speed, the TE frequency spectrum is characterized by narrow banded peaks at the gear meshing
frequency orders, see subplot (b).

2.4. Structural Response and Transfer Behavior Using Dynamic Finite Element Analysis (Step 4)

In step 4 of the procedure, a detailed FE model of the gearbox is used for the calculation
of structural dynamic transfer functions. An overview of the FE model is shown in Figure 10.
The model consists of the gearbox housing and internal components, such as shafts, gears,
planet carrier with shrink disc, etc. A model cutout displaying the internal components is
shown in Figure 11.
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Figure 10. Overview on the finite element model of the gearbox housing and supporting components.
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Figure 11. FE model with internal components of the three-staged gearbox with a low-speed (LS)
planetary stage and a intermediate speed (IS) as well as a high-speed helical stage.

The main components of the cast gearbox housing are the high speed (HS) cover, the
internal gear of the planetary stage, and the torque arms, which are connected via two
pins to the gearbox mounts. These mounts consist of two solid blocks per side with pins
attached. Multiple elastomer layers are applied between the pins and the blocks. This
setup is modeled by a 6× 6 stiffness matrix Kc as

Kc =




kxx kxy kxz kxθx kxθy kxθz

kyx kyy kyz kyθx kyθy kyθz

kzx kzy kzz kzθx kzθy kzθz

kθxx kθxy kθxz kθxθx kθxθy kθxθz

kθyx kθyy kθyz kθyθx kθyθy kθyθz

kθzx kθzy kθzz kθzθx kθzθy kθzθz




, (20)

where x, y are the in-plane directions and z the axis direction of the cylindrical pins, θx
and θy denote the out-of-plane angular deflections, and θx the angular deflection around
the pin axis; see Figure 12. This description contains radial, axial, and tilting stiffness on
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the diagonal terms, as well as cross-coupling at the off-diagonal-terms. A diagonal 6× 6
damping matrix

Cc = diag(cxx, cyy, czz, 0, 0, 0) (21)

is used to approximate the damping effects between pin and mount block through the
elastomer.

Housing support
surface

Shaft support
surface

Relative motion
coupled with Kb

Housing

Shaft
y

xz

Figure 12. Bearing approximation by Kb to couple the relative motion of the interfaces on shaft (red)
and housing (red), lumped with RBE (green).

To reduce the computational effort, the internal components are modeled as flexible
bodies with simplified geometries such that the inertia and stiffness properties are correctly
reflected. The rotational motion of these components and the associated dynamic effects
are neglected. The internal components of the gearbox are connected by bearings to the
gearbox housing. The vibration transmission behavior of these bearings has a significant
influence on the propagation of gearbox vibrations into the flexible housing and other
connected components. Since it is not possible to include detailed FE models of each
bearing, reduced-order models are applied. For each bearing position, the shaft and the
housing bearing support surface are assumed to be rigid. All nodes on these surfaces
are connected separately with rigid body elements (RBE). The independent nodes are
described with six DoFs each, see Figure 12. Several studies have demonstrated that the
cross-coupling effects in bearings have a significant impact on the vibration transmission
in gearboxes [81,82]. Therefore, the translational and rotational DOFs in the independent
nodes of either RBE are coupled by 5× 5 stiffness matrices Kb for each bearing connection,
as discussed in, e.g., [83]. The matrices Kb are defined analogously to Kc in Equation (20),
except that they do not contain stiffness components related to the bearing axis. The entries
of the stiffness matrices Kb and Kc can be obtained by experimental measurements or
detailed numerical submodels of the mounts and bearings.

Özgüven has shown in [11], that the analytically calculated gear excitation can be
introduced to the dynamic simulation of gears in contact by combining a constant mesh
stiffness with a displacement excitation at the contact point. In the FE model, the gears are
therefore approximated by circular discs whose radii are equal to the base circle radii rb.
The gear contact of each gear pairing is represented by spring elements that are attached to
the gears along the line-of-action, as shown in Figure 13. The spring elements are equipped
with the averaged stiffness

k̄m =
z

2π

∫ 2π
z

0
km(ϕ)dϕ , (22)

where ϕ is the angular position in the mesh cycle and z is the number of teeth.
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Figure 13. Approximation of internal components and gear contact, excited by harmonically varying
transmission error δharm(ω).

In order to represent the vibration excitation that emerges from the gears under
operating conditions, the gearbox is excited by a small displacement amplitude in the
direction of the transmission error. Thus, at each stage s, the structure is excited by a lateral
displacement

δharm,s = cs · eiωt for ω ∈ R+ , (23)

with |cs| � rb,s in order to satisfy the assumption of small displacements. In the same
way, transfer functions are computed for all gear stages that are considered as potential
excitation sources for the vibroacoustic simulation.

The size of the finite elements is adapted to the highest frequencies of interest in
order to guarantee a numerically sufficient resolution of the bending waves in the gearbox
housing. A coarser mesh density is sufficient for the internal parts.

Assuming a time-harmonic excitation with driving frequency ω, the complex-valued
nodal amplitudes û of the FE model can be determined for steady-state conditions from the
linear algebraic system (

K−ω2M + iωC
)

û = f̂ , (24)

where K, C, and M denote the time-invariant stiffness, damping, and mass matrix. The
vector of complex-valued load amplitudes f̂ contains pseudo-force terms originating from
the non-zero prescribed displacements corresponding to the transmission error, see the
standard references [84,85] for details. It is assumed that nonlinear parameters have been
linearized around the operating point. The time-harmonic solution of Equation (24) is
significantly less expensive than a transient simulation for comparable model size, as has
been shown in [86].

The dynamic FE simulations are used to obtain transfer functions

Hsr(iω) =
Yharm,r(iω)

δharm,s(iω)
, (25)

where δharm,s(iω) denotes the complex amplitude of the imposed displacement at DoF s
in Equation (23), and Yharm,r(iω) is the frequency response of a result quantity r obtained
from the solution of Equation (24) over a frequency band.

The presented FE modeling approach is also suitable for the application of component
mode synthesis (CMS) reduction techniques, which can provide a further reduction of the
calculation effort [87].

2.5. Response at Operating Conditions (Step 5)

The dynamic response spectra to specific operating conditions is calculated by an
analytical combination of precomputed excitation spectra and transfer functions. The pro-
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cedure for single and multistage gear excitation is shown in Figure 14. The response under
operating conditions is computed using the excitation spectra δs(ω) from Equation (18)
and the transfer functions Hsr(iω) from Equation (25). The response spectrum Yr(ω) of
any linear response quantity r (e.g., dynamic displacement, velocity or acceleration) to an
excitation by the s-th gear stage is given by

Yr(ω) = Hsr(iω) · δs(ω) . (26)

In case of multiple gear vibration sources, the procedure is performed for every
source separately. The operational response Yr(iω) to an excitation by l gear stages is then
calculated by superposition

Yr(iω) =
l

∑
s=1

Hsr(iω) · δs(iω) , (27)

where the phase shifts φδ,s between the gear excitations at the separate stages are included
in the complex amplitudes as

δs(iω) = Re{|δs(ω)| · ei(ωt+φδ,s)} . (28)

Excitation spectrum δs(ω) of gear
vibration source s

Transfer function Hsr(ω)
Source s→ Receiver r

Operational Response Yr(ω) to source
s, with

Yr(ω) = Hsr(ω) · δs(ω)
Operational Responses Yr to add.

sources s+1 . . . l

Analog procedure

Operational Response at receiver r to l different sources Yr(ω), by
superposition as:

Yr(ω) = ∑l
s=1(Hsr(ω) · δs(ω))

|Y
r(

ω
)|

ω

|Y
r(

ω
)|

ω

|Y
r(

ω
)|

ω

TE
δ(

ω
)

ω

|H
sr
(ω

)|
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Figure 14. Approach for the dynamic response of any DoF r under operating conditions to l different
gear-induced vibration sources. The dynamic transmission error spectra δs(ω) of the the s-th gear
stage is calculated from an analytical model of the transient gear dynamics. A finite element model
of the gearbox is used for harmonic response analyses, to obtain transfer functions Hsr(iω) from
TE excitation of the s-th gear stage to the r-th DoF of the gearbox, as shown in Equation (25). The
response under operating conditions of the r-th DoF Yr(ω) is calculated as a linear combination
of excitation spectra and transfer functions. In case of multiple excitation sources, the operational
response spectrum is obtained by superposition of the specific source spectra.
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3. Numerical Results and Experimental Validation

The hybrid multistep approach of vibroacoustic simulation is applied to a multi-
stage wind turbine, and computational results are compared to experimental data. The
vibroacoustic measurements were carried out in an Indian semi-desert on a 2.50 MW
wind turbine in full operation. Correspondingly, the computational model encompasses
the complete drive train, including the rotor hub and the generator, the main bearing,
mainframe and girder, and the nacelle. The evaluation and validation in this paper is
focused on gearbox vibrations.

3.1. Application of the Integrated Computational Procedure

In the first step of the integrated computational procedure, the mesh stiffness is
calculated for the helical intermediate and high speed stages at n = 75 equidistant angular
positions within a mesh cycle. The wind turbine also contains a planetary gear stage, but
experience [10] has demonstrated that the vibro-acoustic response is dominated by the
intermediate and high speed stages.

The angle-dependent mesh stiffness results are shown in Figure 15. Since the IS and HS
gear stages are high-contact-ratio helical gear stages, the fluctuation of the mesh stiffness
over a mesh cycle is significantly lower and less rapid than for spur gears.

The angle-dependent mesh stiffness from step 1 is transformed to TVMS in step 2 of
the integrated procedure, which are then used in step 3 as input for the transient two-body
model simulation of gear contact. In step 2, the operating conditions are represented by a
set of m = 480 discrete operating speeds. Hence, the transient mesh stiffness km is defined
for m = 480 mesh cycles according to Equations (7)–(12).

Within step 3, Equation (18) is solved with the explicit forth order Runge-Kutta scheme.
The unloaded TE ε is neglected. The calculated results for the TE excitation spectra for both
the IS and HS stage are shown in Figure 16. The TE spectrum of the IS stage contains a
number of frequency peaks that can be associated with the gear mesh orders of this stage.
None of these peaks are dominant enough to be a possible reason of tonal effects in the
radiated spectrum. The spectrum of the HS stage is characterized by three dominant peaks
at the meshing frequency ωm,HS and its first two multiples. The vertical lines indicate the
average mesh frequency of the HS stage ωm,HS and its multiples. The average frequency is
related to the average operating speed of the HS stage Ωd by

ωm,HS = Ωd · z , (29)

where z denotes the number of teeth on the HS driving gear. Previously published experi-
ence [10] shows that most tonalities in the radiated spectrum can be traced back to the first
few orders of the HS stage mesh frequency. The results obtained in this work, both from
measurements and the computational procedure, confirm this effect, which underlines the
special significance of the frequency ranges around ωm,HS and their first few multiples.

Comparing to the results at constant speed in Figure 9b, the peaks of the present
response are more broadband, since the values of the instantaneous meshing frequen-
cies ωm,IS and ωm,HS and their multiples vary with time.

In step 4, the dynamic FE simulations are performed based on the FE model shown
in Figures 10 and 11. The FE model of the gearbox is fixed to the ground on the bottom
side of the gearbox mounts. The internal components are connected by 14 rolling-element-
bearings to the gearbox housing (two each at the planet carrier, at LS shaft, at IS shaft, at
HS shaft, and at the three planet shafts). The components of the stiffness matrix Kc for the
mounts were determined from experimental data, while the components of the stiffness
matrix Kb for the bearings were obtained from computational simulations with detailed
FE models of the bearings. The internal components are modeled with average element
lengths of 6 mm, while the average element length of the housing parts is 3 mm. The model
order is reduced by creating superelements with the Craig-Bampton method. The model is
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simulated separately for excitations at the IS and HS stage, resp., with excitation frequencies
ω from 0 to 12,570 rad s−1 using a step size ∆ω = 2π rad s−1.
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Figure 15. Results for the varying mesh stiffness of the IS (left) and HS gear stage (right), obtained
from series of static simulations using detailed FE-models of the specific gear stages.
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Figure 16. Angular frequency spectra of the transmission error δ for the IS (left) and HS stage (right),
with vertical lines indicating the average mesh frequency of the HS stage ωm,HS and its multiples.

The final step 5 of the integrated procedure involves the analytical computation of
the vibrational response to true operating conditions, combining the results of steps 3 and
4 in Equation (27) with l = 2 gear sources. The computational results are discussed and
compared to experimental results in the following subsection.

3.2. Computational Costs

In this subsection, some benchmark analysis is presented for the 2.50 MW WT gearbox.
Table 1 shows the computational time required for each step of the procedure on a PC
workstation equipped with two Intel XEON Gold 5115 CPU v2 (10 cores, 20 threads,
2.40 GHz each), a memory of 192 GB RAM, and an SSD hard drive. All FE simulations were
performed using the commercial software Ansys 2020 R2.

The FE models for the calculation of the angle-varying mesh stiffness in step 1 consist
of approx. four million quadratic tetrahedral elements with 1.78× 107 DoFs in both stages.
Mesh sizes were determined by examining the convergence of the rotational deflection,
with a particular focus on the regions of potential contact with significantly smaller element
sizes. The average duration of the calculation is about 10 minutes per angular position,
using preconditioned conjugate gradient solvers and parallel computations on 16 cores.
As described above, both gear stages are analyzed in 75 equidistant angular positions,
with a total computational time of approx. 25 h for the 150 separate FE simulations. The
computational time to obtain the TVMS for varying operational speeds in step 2 amounts to
about 0.5 s. The transient simulation of the gear dynamic model in step 3 takes approx. 10 s.
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The FE model of the gearbox structure in step 4 consists of 463,034 quadratic hexahedral,
tetrahedral, and wedge elements with 796,539 nodes and 2.39× 106 DoFs in total. The mesh
sizes were determined here by evaluating the quantitative assurance of the operational
deflection results for each frequency response with a reference model with very fine mesh
size (2,227,510 nodes). This new approach will be described in more detail in a future
publication. The time-harmonic analysis is performed for TE excitation at IS and HS stage
with 2000 frequency increments each. The solution of the reduced FE model requires
6.70 GB RAM and 40.50 min of computing time, while using distributed sparse matrix
direct solvers and parallel computations on 16 cores. The creation of the reduced model
takes additional 26.25 min. In the fifth step, the calculation and output of the operational
response spectra for 84 considered degrees of freedom takes about 12.09 s. From the above,
it can be observed that the execution of the entire proposed sequential procedure has a total
duration of approx. 26.80 h for the presented benchmark analysis.

Table 1. Computational time required for each step of the integrated procedure for an application to
a 2.5 MW wind turbine gearbox.

Step Analysis Task Method Time

1 Angle-varying mesh stiffness Static FEM 10 min
2 Time-varying mesh stiffness Analytical 0.5 s
3 Transmission Error (TE) Runge-Kutta scheme 10 s
4 Frequency Response Time-harmonic FEM 61.1 min
5 Linear Combination and Superposition Analytical 12.1 s

3.3. Comparison with Measurements

Multiple accelerometers were distributed on the gearbox housing and mounts; see
Figure 17. Acceleration response spectra were obtained from 186 transient acceleration
signals during regular operation. To cover as many positions as possible, multiple mea-
surement runs with changing sensor positions and one permanent reference sensor were
carried out. The operating speeds were recorded with a sampling frequency of 1 Hz.

Figure 17. Response spectra are measured using accelerometers on a wind turbine gearbox dur-
ing operation.

The calculated and measured operational response spectra are compared in detail for
a representative selection of sensor positions (SP); see Figure 18. SP A is close to a bearing
seat of the HS stage and in close proximity to the vibration sources. SP B is located centrally
on the top of the HS cover. SP C lies on the opposite side to the vibration sources, while
SP D is situated at the top of the ring gear close to the planetary stage. The SP E and SP F are
located on the back and front side of the gearbox, respectively. The structure-borne sound



Acoustics 2023, 5 18

path between these SPs and the vibration sources is significantly longer than the paths
from the SPs A to D. The locations for SP G and SP H are close to the interface between the
torque arms and gearbox mounts. SP G is on the pin and SP H is located on the top of a
mount. Hence, the transfer path between the vibration sources and SP H runs through the
elastomer damping elements, which were modeled using 6× 6 coupling matrices. For each
SP, the acceleration in one specific direction is considered, i.e., in x-direction for SPs E,F,
and G, y-direction for SP A, and z-direction for SPs B,C,D, and H, where the axial directions
refer to the reference coordinate system at the reference sensor R, as shown in Figure 18.
The temporal variation of the operating speeds during the different runs is displayed in
Figure 19.
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Figure 18. Operational shape to TE excitation at HS stage with ω = 6300 rad s−1 and selected sensor
positions A-H (order in increasing distance to vibration sources).
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Figure 19. Operating speed of the HS shaft during measurement runs with different operating condi-
tions.

In this subsection, the results for the first run are discussed, while in the following
subsection the influence of different operating conditions is evaluated. The spectra for the
SPs A to H are shown in Figure 20. Both measurement and model results show several
conforming properties across all spectra. In all cases, the major response peaks are “smeared
out” around ωm,HS and 2ωm,HS. The peak at 3ωm,HS is lower and broader.

In general, the response spectra obtained with the hybrid multistep approach are
in good agreement with the measured spectra in terms of the absolute magnitudes and
qualitative comparison. All results are displayed at their absolute magnitudes, without
any scaling or normalizing. The model results correspond particularly well with the
measurements at the most dominant peaks around 2ωm,HS, regarding both the magnitude
and the width of the peak. The agreement of the peak magnitudes is less satisfactory at
the average meshing frequency ωm,HS, except for the SPs B and C. The broadband peak
in the range of 3ωm,HS is also calculated in good agreement with the measurements for
all SPs. Regarding the high-frequency range above 3ωm,HS, the computed response level
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is significantly lower than the measured one. It should be noted that the simulations
consider only the gear-induced vibrations, while the measurements contain also the effect
of generator-induced vibrations, which typically occur in the high-frequency range.

The agreement between calculated and measured spectra is quantified using the
frequency response assurance criterion (FRAC), which is an established frequency-domain
correlation criterion [88,89] defined as

FRAC =
|YH

b Ya|2(
YH

b Yb
)
(YH

a Ya)
, (30)

where Ya and Yb denote two column vectors of response spectrum values. The FRAC
values can be computed either as a function of the measured DoFs or as a function of
the measured frequencies. In the first case, Ya and Yb contain the data for all measured
frequencies in successive order and the scalar products in Equation (30) are computed for
each DoF, while in the second case, the data are reshaped into a column vector containing
all DoFs and the scalar products are computed for each frequency.
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Figure 20. Influence of sensor position: Response spectra from measurement (grey) and simulation
(black) for SPs A to H, corresponding FRAC values and dashed vertical lines for the average mesh
frequency of the HS stage ωm,HS and its multiples. The spectral results are compared over a frequency
range of more than 10,000 rad s−1.
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A comprehensive assessment of the obtained results is achieved by considering the
FRAC for all SPs covered in the first run. For each SP, the response spectra along all three
axes are taken into account. Therefore, the FRAC is evaluated in dependence to the model
degrees of freedom, which are associated with measured acceleration signals, see Figure 21
(left). As a function of the DoF, the FRAC values vary in the range from 0.5 to 0.9 with an
average FRAC of 0.7. Referring to the FRAC values indicated in Figure 20 it is concluded
that the SPs A-H are representative for the correlation of measurement and computation in
all SPs.

Subsequently, the dependence of the FRAC value on the frequency is evaluated; see
Figure 21 (right). Again, the response spectra in all three spatial directions for all SPs
covered in the first run are considered. The FRAC values vary between approx. 0.6 and 0.8
over wide ranges of the frequency range. The average over the frequency range is 0.7. A
major decrease in correlation is observed at the average meshing frequency ωm,HS. This
corresponds to the underestimation of the frequency peak in this range. Smaller decreases
in the FRAC-values can be found around the multiples of the average mesh frequency
2ωm,HS and 3ωm,HS.
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Figure 21. FRAC for the response spectra regarding the first run, considering all SPs and axes,
evaluated in dependence on the DoF and frequency.

3.4. Influence of Varying Operating Conditions

Gear systems in operation are subject to variations of their torque load and angular
velocity. The influence of these variations on the vibrational response is explored in
the present subsection. Regarding the load level, it is well known that the size of the
contact areas, and hence the mesh stiffness, may change significantly with the torque
magnitude [24]. To check the sensitivity of the present gear setting, the mesh stiffness was
computed for different loads T ranging from −75% to +100% compared to the nominal
operating torque Tnom. The mesh stiffness results within a mesh cycle for these different
loads are shown in Figure 22a, where the relative difference to the results for Tnom ranges
between +2.2% and −1.6%. The variation of the mesh stiffness over a mesh cycle is very
similar for all torques.

In order to evaluate the effect of varying load levels on the frequency response,
Equation (18) is solved for each load case while all parameters are identical except that km
corresponds to the results obtained for each specific load. The results for the TE excitation
spectra are shown in Figure 22b. It can be observed that different meshing stiffnesses do
not have a significant effect on the excitation spectrum δ(ϕ) of the dominant high-speed
gear stage.
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Figure 22. The angle-dependent mesh stiffness km(ϕ), see subplot (a), and the corresponding
excitation spectra δ(ω), see subplot (b), of the HS stage are calculated for different loads T. The
variation of the load level does not significantly influence the frequency spectrum δ(ω) of the
transmission error. (a) Angle-dependent mesh stiffness km(ϕ) for different torques T. (b) Excitation
spectra resulting from the different km(ϕ) of subplot (a). Vertical dashed lines indicate the average
meshing frequency ωm,HS and its multiples.

However, the characteristics of the response spectra depend significantly on the
variation of the operational speed. Meanwhile, steep peaks or “needles” are observed in the
response to constant speed (cf. Figure 9b); the peaks are smeared out around the average
meshing frequencies for varying speeds in Figure 20. This observation is confirmed in
Figure 23, which shows details of the operational spectra around the dominant peak at
2ωm,HS. Here, the measured and computed spectra at the reference sensor R are compared
over a range of 1000π rad s−1 for the different environmental conditions in the test runs
1–3. The focus is on the dominant peak around 2ωm,HS and its dependence to the different
operating speeds, which fluctuated significantly during the first and second run, while
calm wind conditions lead to a relatively constant low-level speed during the third run.
The mean values Ω̄d, standard derivation σΩ and range RΩ, all being highest in the
second and lowest in the third run, are shown in Table 2. The mean values and the
standard deviation are highlighted in the response spectra of Figure 23. The coefficient
c accounts for the conversion from the average operating speed (in RPM) to the second
order meshing frequency (in rad s−1) of the HS stage. Within the proposed integrated
procedure, only step 2 needs to be adapted in order to calculate the TVMS for the different
environmental conditions.

The relatively constant operating speed in the third run corresponds to a narrow-
banded frequency peak at 2ωm,HS, both in the physical measurement and computational
simulation. In comparison to run 3, the peaks around the second order meshing frequency
of the HS stage are more broad banded for runs 1 and 2. This effect of ”frequency smearing”,
which corresponds to the speed fluctuation during these two runs, is clearly visible both
in the measured and in the computed spectra. Moreover, the comparison of the plot
reveals the frequency shift of the average frequency, corresponding to the different average
speeds in the second column of Table 2. The measured and computed spectra are in good
agreement regarding this effect. The simulated spectrum of the third run (for a relatively
small and constant operational speed) shows small-banded peaks at the first five gear
mesh orders. Except for the second order, these peaks do not appear in the measured
spectrum. This can be possibly explained by masking effects from structural noise sources
other than gear noise. It should be noted that the measurements were carried out in an
industrially operated WT, and hence the measured spectrum contains the combined effect
of all vibrational sources on the drive train, whereas the simulation considers only the
meshing errors of the two major gear stages as sources of gearbox vibrations.
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Figure 23. Influence of the operating speed: The dominant frequency peak at 2ωm,HS for different
speed profiles and comparison of measurement (grey) and hybrid approach (black) results for the
response spectra at the reference position R in a frequency range of 1000π rad s−1. Of particular
interest is the frequency range 2ωm,HS ± 2σΩ · c around the peak, where c = 4π N

60 s min−1 accounts
for the transformation from operational speed to the second order meshing frequency of the HS
stage. Despite a negative offset for run 1 and 2, the model results are in good agreement with the
measurement results regarding the position, width and relative shape of the dominant frequency peak.

Table 2. Operating speeds Ωd of the HS stage during measurement runs 1–3, regarding mean value
Ωd, standard derivation σΩ, and range RΩ.

Run Ωd σΩ RΩ

[min−1] [min−1] [min−1]

1 290.1 9.6 42.3
2 315.7 14.6 48.2
3 280 0.6 2.2

3.5. Influence of the Internal Components

The FE gearbox model contains coarse submodels of the internal components, which
are often neglected in the literature. In this subsection, the response functions of the
full model are compared to those of a reduced model that does not contain the internal
components. Both configurations are equally excited by a unit bearing force along the
line-of-action distributed over the surfaces of the bearing seat on the rotor-side bearing of
the HS shaft. The details of either modeling approach are displayed in Figure 24, and the
resulting frequency spectra are compared in Figure 25 at six measuring points, A–F.

Clearly the influence of the internal components on the resonance spectrum increases
with the distance of the SP from the sound source. The curves are almost identical over
the whole range in SP A, which is situated closest to the vibrational source. The farther the
SP position is from the excitation source, the larger the discrepancy between the response
spectra of the full and the reduced model become. Although the results are relatively
similar in all cases at the medium frequencies, the curves differ significantly from each
other in the higher frequency range. This is particularly the case at the second and third
meshing orders 2ωm,HS and 3ωm,HS of the HS stage.

Summarizing the above, the internal components can significantly influence the fre-
quency response of the gearbox to gear excitation. The dynamic effect of the internal
components increases with the length of the structure-borne sound path from the source to
the measuring point. In the present model, the influence is most marked around the higher
order gear meshing frequencies.
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Figure 24. Calculation of the response of the housing to a unit bearing force with (top) and without
(bottom) consideration of internal components.
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Figure 25. Influence of the internal components: Dynamic transfer functions H(ω) at the sensors
positions A–F for an excitation by a bearing force FB, calculated with (grey) and without (black)
internal components. The comparison shows significant influence of the internal components. Dashed
lines indicate ωm,HS and its multiples.
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Leaving out the internal components may be a good option for quick estimates of the
response amplitudes of gearboxes, but certainly the inclusion of the internal components is
advised for detailed dynamic analyses of the frequency response. For future investigations
of this aspect, it is also recommended to compare the coarse modeling of the present
investigation to results obtained with detailed models of the internal parts.

4. Conclusions

A hybrid multistep computational procedure for a true-to-detail vibroacoustic sim-
ulation of vibrations and structural sound in a wind turbine gearbox is presented. The
approach combines detailed FE-based static calculation of gear interaction with transient
lumped parameter simulations of gear vibrations and FE frequency response analyses of
complex structures. The efficiency of the procedure allows for a significant expansion of
the modeling range compared to previously published hybrid models.

With a focus on gearbox vibrations, the relevant state-of-the-art is reviewed and
governing equations are provided. Based thereupon, the computational and modeling
aspects of the present integrated multistep procedure are detailed. The procedure is
applied to the simulation of a 2.5 MW wind turbine gearbox. The computational results are
compared to data gained from experimental measurements on an industrially operated
turbine under different operating conditions. The computational results agree well with
the measured data at the major tonal peak, which corresponds to the second gear mesh
order of the high-speed stage. Both the measured and the computed spectra reflect the
frequency modulation due to fluctuating speed, compared to the spectra at constant speed.

The steps of the integrated procedure can be carried out independently. The com-
putational approach is devised with an eye on overall efficiency, particularly considering
the application in the design process. Model changes due to design modifications are
accounted for only at one specific step, while the results of all other steps can be reused
without modification.

A more detailed verification and validation of the FE-based gear contact analysis is
presented in [87,90]. The paper [91] discusses a heuristic method for transfer path analysis.
A new efficient approach for the simulation of far-field acoustic radiation from vibrating
structures is proposed in [67]. The computational procedure presented herein has been
successfully applied to the systematic conception and evaluation of design measures for
noise reduction, using a computational model that includes the complete drivetrain and
the nacelle. The methodology and computational results of design optimization will be
presented in a forthcoming publication.
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