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Abstract 

With increasing computing power and advances in electronic technology, embedded systems 

which consist of a combination of hardware and software to perform a certain function, can 

nowadays execute more sophisticated software, leading to the implementation of more 

functions and capabilities. Systems with high functionality, such as autonomous systems, are 

unfortunately often also safety-critical systems. In safety-critical systems, failures can cause high 

costs and even endanger human lives. Experience has shown that the impact of software failures 

can range from minor inconvenience to catastrophic consequences, such as the explosion of the 

Ariane 5 heavy lift launch system. The high complexity of the software system makes it 

extremely difficult to detect subtle errors or to replicate them during testing or prior to 

deployment. The concept of verifying the correctness of software or hardware through testing 

has often proven inadequate for these complex systems.  

In this paper, the focus is placed on the Product Engineering Processes (PEP) of the automotive 

industry, in particular on discrete manufacturing, in which goods, e.g. automobiles, are 

produced that consist of many individual parts that must be assembled along a production line. 

The need to ensure the reliability and integrity of the embedded software systems in the 

automotive industry has led to the introduction of the Automotive Software Performance 

Improvement and Capability dEtermination (A-SPICE) standard, which supervises the 

manufacturing and operation of software systems and requires verification of the correctness of 

these systems. Essentially, A-SPICE provides guidelines and best practices for automotive 

suppliers to ensure safety and thus prevent the occurrence of catastrophic events. 

One method of ensuring safety of embedded systems, preventing errors and defects in software, 

and thus, complying with the A-SPICE standard, is the formal verification technique such as 

model checking. Model checking is a method of verifying the correctness of a system by 

considering all possible behaviours of a system. Probabilistic model checking, a mature 

technique that evolved from model checking, extends conventional model checking with tools 

and techniques for analysing systems that exhibit random or stochastic phenomena. 

Unfortunately, although model checking is a powerful tool for verifying the correctness of a 

system, its complex language and unfamiliar specification methods make it difficult for an 

organization to fully implement it or for auditors to assess compliance of the systems with A-

SPICE. 

Therefore, this work is concerned with the development of a digital assistant that reduces the 

difficulty and effort to perform model checking and thus facilitates model checking for 

everyone. In its development, the digital assistant applies state-of-the-art methods of Natural 

Language Processing (NLP), which is part of Artificial Intelligence that makes natural texts in 

human language understandable to computers and machines. The process begins with the user 

asking the digital assistant for a specific model checking result such as probability, duration or 

cost. The digital assistant then sends the data to the Probabilistic Symbolic Model Checker  

(PRISM) on the backend to compute the results based on the user's request. The digital assistant 

then retrieves the results from PRISM and sends the requested answer back to the user. 
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1. Introduction 

 

This chapter first presents the motivation and problem statement of this thesis, then describes 

the related previous work that preceded this thesis, followed by the objectives of this work, and 

concludes with an overview of the structure of the entire thesis. 

 

1.1 Motivation 

In 1965, Intel co-founder and chairman Gordon Moore discovered that the number of transistors 

in a dense integrated circuit doubled every eighteen months. This meant that computers were 

becoming twice as powerful every year and a half, but their cost remained the same, which 

indicates an exponential rate of growth.  Moore found this quite astonishing and predicted that 

this trend might continue for a few more years, maybe five, maybe ten. Well, that was twenty, 

forty, soon to be sixty years ago. Moore's Law is the reason why the smartphone in our pockets 

is a thousand times smaller, a thousand times cheaper, and a million times more powerful than 

a supercomputer from the 1970s. However, Moore’s Law has been slowing down over the past 

recent years and its exponential growth has decelerated mainly due to the physical limits of 

transistor growth. In particular, the number of transistors that can be integrated per unit area 

of a chip has reached its limit. While it is true that the number of transistors per chip no longer 

doubles every eighteen months, Moore's Law has led to tremendous advances in technological 

improvements and continues to drive innovation and progress to this day.   

One of the alternatives to Moore's Law that has emerged in recent years is quantum computing. 

Quantum computers harness the laws of quantum mechanics, e.g. superposition, entanglement, 

and quantum interference, to solve problems that are too complex for classical computers, 

which includes performing complex computations, processing multiple data sets, and handling 

numerous variables. In 2002, Geordie Rose, founder of the early quantum computing company 

D-Wave, introduced the quantum computing version of Moore's Law, now known as Rose's 

Law. The idea is similar: the number of qubits in a quantum computer doubles every year. Yet, 

Rose's Law is considered far more impactful than Moore's Law because qubits in superposition 

are far more powerful than binary bits in transistors (Diamandis & Kotler, 2020). To put this in 

perspective, if the development of classical computers had followed Rose's Law (rather than 

Moore's Law), today's laptops and smartphones would have been available by 1975. Quantum 

computing is gaining momentum over the years, and the Figure 1 illustrates the growth in 

processing power of quantum computers between 1998 and 2020 (Mazhandu, 2021). 
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Figure 1: The growth in processing power of quantum computers between 1998 and 2020 (Mazhandu, 2021) 

 

As shown in Figure 1, the first quantum computer tested in 1998 by the researchers from Oxford 

University has grown from a computational power of 2 qubits to a computational power of 128 

qubits, developed in 2019 by Rigetti Computing, a start-up company in Berkley, California, 

whose mission is to build the world's most powerful quantum computer in order to solve 

humanity's biggest problems. With the rapid increase in computing power and advances in 

electronic technology, the embedded system, which can be broadly defined as a device 

consisting of a combination of computer hardware and software designed for a specific function, 

is able to execute more sophisticated software, leading to the implementation of more features 

and capabilities. However, there is a downside to all of this. Systems with high functionalities 

are unfortunately also often safety-critical system. In safety-critical systems, failures can cause 

high costs and even endanger human lives (Drechsler, 2017). 

Consider autonomous system, e.g. driverless cars and autonomous mobile robots, as an example 

of embedded system with high functionalities. Autonomous systems are a class of software 

capable of sensing the environment and responding automatically to real-world conditions 

without human intervention. They operate in complex and open environments with a high 

degree of independence and self-determination. They perceive, learn, think and act with self-

awareness and respond intelligently to unforeseen changes in the environment. This differs 

from traditional automation, which requires predictable conditions to function (Choi, 2013). 

Observing the development of self-driving cars over the past decades, the performance doubles 

roughly every 16 months, which also indicates an exponential growth. It is therefore safe to 

suggest that the development trends for most embedded systems are moving from automated 

to autonomous systems (Zhao, 2016). 
 

Problem Statement 1: Safety Concerns 

As various tasks of autonomous systems get introduced, safety concerns to the operations have 

been raised because autonomous systems can be out of control enough to cause loss, injury, or 

death to persons or property (Choi, 2013). Safety cannot be guaranteed simply by good design 

because any behaviour of the system may be upset by mistakes made during its production, 

installation or use. Furthermore, to apply autonomous systems to execute more complex 

missions, the structure of systems has to become more complicated, which makes it more 

difficult to detect errors during testing phase, thus increases the possibility of malfunctions in 

the real-world.   
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In general, (Zhao, 2016) stated that a (distributed) computer system can fail for external and/or 

internal reasons. External reasons are related to the system specification itself or to the 

operating environment, e.g., mechanical stress, incorrect inputs, temperature, and so on. The 

main internal reasons for failure can be (𝑖) random physical errors in hardware; (𝑖𝑖) design errors 

in hardware and/or software; or (𝑖𝑖𝑖) communication errors in a distributed environment. 

Software failures are usually caused by the unmanaged complexity of the system design. The 

increasing complexity of embedded software makes it extremely difficult to discover subtle 

faults or to reproduce them in a laboratory environment. Although safety-critical systems are 

usually designed to be fault-tolerant, experience shows that software errors are nevertheless 

unavoidable.  

System failures can jeopardize human lives or result in high financial losses. The Ariane 5 heavy-

lift space launch vehicle, which caused a financial loss of more than $370 million, was one of the 

famous fatal failures and is still remembered today. At an altitude of about 3700 m, the launcher 

deviated from its trajectory, began to disintegrate under the high aerodynamic forces, and 

eventually went into self-destruct mode and exploded. The failure was caused by a software 

error in the inertial reference system: a 64-bit floating-point number (representing horizontal 

velocity) was converted to a 16-bit signed integer. As a result, the conversion failed and the 

information about flight direction and altitude was lost. The program was the same one that 

had worked perfectly in Ariane 4, while the continuous dynamic systems around it had changed. 

Unfortunately, in the new physical environment, the trusted code led to disaster (Zhao, 2016). 

Another example, considered one of the most famous fatal software errors in history, is an error 

in the control system of the Therac 25 radiation therapy machine. The accident caused the 

deaths of six cancer patients between 1985 and 1987 due to their exposure to massive overdoses 

of radiation. During the two-year period, the machine occasionally gave its patients radiation 

doses that were hundreds of times greater than normal, resulting in death or serious injury. 

During the investigation, it was determined that the root cause of the problem was twofold. 

Firstly, the software controlling the machine contained errors which proved to be fatal. 

Secondly, the design of the machine relied on the controlling computer alone for safety. There 

were no hardware interlocks or monitoring circuits to ensure that software errors could not 

cause catastrophic failures (Leveson, 1993). 

These accidents have highlighted the dangers of software control of safety-critical systems and 

have become a standard case study in the fields of health informatics, software engineering, and 

computer ethics. Ensuring that the complex hardware and software components of these 

systems are developed with an appropriately high level of confidence in their correctness and 

integrity is in this respect a particularly important task (Drechsler, 2017). Therefore, 

communities in most countries have focused on regulatory authorities, certifications and 

standards to supervise the manufacturing and operation of embedded software systems. This 

has led to the introduction of a standard, Automotive Software Process Improvement and 

Capability Determination (A-SPICE), which evaluates development factors that enable assessors 

to determine an organization's ability to effectively and reliably deliver software products for 

the automotive industry (Automotive SIG, 2015). Essentially, A-SPICE provides guidelines and 

best practices for automotive suppliers to ensure safety and thus prevent the occurrence of 

catastrophic events. 
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To ensure the correctness of the system, classical testing approaches based on simulation or 

emulation have been used in the past. In some cases, it is still common practice to write software 

first and test it (perhaps) later. But these techniques do not scale well and reach their limits 

(Drechsler, 2017). The problem with these methods is that there are still undetected scenarios 

that can show up as errors later in practice. Some undiscovered errors at the deepest corners 

don't show up during testing, but can show up during system execution. Even if an error is found 

during testing, it is usually difficult to figure out the cause(s) of the error (Zhao, 2016). The 

formal verification technique may be a more suitable solution to ensure the correctness and 

integrity of systems. It provides techniques to verify that a system conforms to its specification 

and that it satisfies safety properties. Unlike testing, formal verification considers all possible 

behaviours of a system. The state-of-the-art formal verification method is model checking. 

Model checking is a mathematically based technique that helps in ensuring the correctness of 

systems and is capable of analysing the quality of service properties of such systems. It is an 

automated verification method that systematically checks whether concurrent systems meet 

the specified properties (Drechsler, 2017). The model checking technique evaluates safety 

properties that guarantee that a particular behaviour can always or never occur under all 

possible situations. This is done in such a way that a model checker accepts the formal system 

model and the formal property as inputs and reports that the property is either satisfied or 

violated. This could therefore play a major role in ensuring the safety of large complex systems 

and help prevent accidents and catastrophic events due to software malfunction. Probabilistic 

model checking, a mature technique that evolved from model checking, extends conventional 

model checking with tools and techniques for analysing systems that exhibit random or 

stochastic phenomena such as message loss, unpredictable environments, errors, and delays. 
 

Problem Statement 2: Language Barrier 

However, the complex language of model checking is usually not easily understood by people 

who are not familiar with this method. In order to perform model checking, one must be familiar 

with the concepts of model checking functions and know how to properly specify a property 

function. Usually, only developers or people familiar with model checking have the knowledge 

and experience to perform such tasks. This is unfortunate since model checking is such a 

powerful tool for verifying the correctness of models, which can ultimately reduce safety-related 

accidents and catastrophes due to system failures. At the very least, every member of an 

organization, as well as the auditors responsible for evaluating the correctness of a system based 

on the guidelines of the A-SPICE standard, should be able to easily verify a process of a software 

system. Therefore, a solution is needed to facilitate the process of model checking and thus 

encourage its implementation and dissemination for everyone. 

In order to make human languages understandable to machines for performing a specific 

functionality, research in the field of Natural Language Processing (NLP) has been conducted 

since the late 1940s. In the early days of NLP, machine translation was the focus of research. 

Nowadays, more and more research is being conducted in the areas of NLP and machine 

learning due to the boom in Deep Learning, which is driven by improvements in the 

performance of computing power, the increasing availability of data, and advances in research. 

NLP enables the development of technologies such as virtual assistants, e.g., Apple's Siri, Google 

Assistant or Amazon’s Alexa, which are driven by innovative trends. Many currently emerging 

technologies are impossible to use without the application of NLP and almost every interaction 

between humans and machines has some relation to NLP (Blanck, 2019).  
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In this work, a new method is proposed using a digital assistant, which is developed with the 

help of state-of-the-art NLP and Deep Learning techniques to facilitate the model checking 

process and enable anyone, regardless of experience, to perform model checking. The process 

begins with the user asking the digital assistant for a specific model checking result, such as 

"what is the probability that a process will reach the final state without delay?" or "what is the 

total duration for the processes to reach the final state?". The digital assistant then sends the 

questions as data to the probabilistic model checking tool, PRISM at the backend, which 

performs model checking based on the user's request. The digital assistant then retrieves the 

result from the PRISM tool and returns it back to the user. 

 

1.2 Related work 

This section describes the previous work conducted by researchers from studies (Hage, et al., 

2020) and (Hage, et al., 2022), which preceded this thesis. The work focuses on the Product 

Engineering Processes (PEP) of the automotive industry, in particular on discrete 

manufacturing in which goods, e.g. automobiles, are produced that consists of many individual 

parts that must be assembled along a production line. The processes in discrete manufacturing 

are not continuous in nature, in the sense that each process can be started or stopped 

individually and can run at different production rates. 

PEP typically involve the processes of product development and production control. The 

processes can be modelled according to the Business Process Model and Notation (BPMN) 

standard, which is a well-known and widely used modelling language for processes in industrial 

PEP. This allows organizations to understand their internal process workflows in a graphical 

notation and to visualize the communication and dependency between different departments 

within the PEP (Allweyer, 2016). Essentially, BPMN enables organizations to examine the 

processes in their current state and determine what needs to be improved. Figure 2 shows an 

example of the two BPMN process models, namely product development and production 

control, and illustrates the interaction between these two departments and the parties involved 

starting from product specification up to product delivery. 

 

 

Figure 2: Process model of Product Development and Production Control (Roller & Engesser, 2014)  
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The first pool shown in Figure 2 shows the BPMN process model for product development. 

Firstly, a process request message with the product specification is sent. The first human task 

starts once the product specification is received and makes the variant construction of 

components by Computer-aided design (CAD). The data object of product specification is an 

input which describes, e.g. product forms, sizes, functionalities, and propositions. The designed 

component construction is the input for the human task construction of component assemblies 

and modules. The next human task integrates the modules into the product construction. A 

service task follows, which analyses and simulates the product construction. If the result returns 

any errors, the previous tasks were informed and corrected. Finally, the data objects of product 

construction and analysis results are sent back as response message. 

The second pool in Figure 2 shows the BPMN process model of a production control workflow. 

The part, assembly, module, and product design are sent from product development to the 

production control workflow. The first human task is the production planning. Production 

processes and production equipment such as robots and assembly lines are planned. Computer-

aided manufacturing (CAM) systems are used for this purpose. Order requests are received from 

distributors. The human task order sequencing creates the sequence of production orders. The 

next service task calculates component demand and sends a request to suppliers. After receiving 

the components, the next task produces the product. The next task checks the product quality. 

If there are any quality defects, rework has to be performed. Finally, the produced product is 

delivered to the distributor (Roller & Engesser, 2014). 
 

Overview of previous work 

This paper is an extension of a series of work conducted in the past. A summary of this work is 

shown in Figure 3. 

 

 

 

Figure 3: An overview of the previous work 
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In previous works, as can be seen in Figure 3, PEP of an automotive manufacturer were initially 

modelled according to the BPMN standard. This constructed BPMN model of the existing 

processes can also be referred to as the pool-based BPMN. The pool-based BPMN is 

subsequently re-designed and converted into an optimized BPMN process model (also referred 

to as event-based BPMN). This step removes redundant processes in the PEP and enables 

interchange between different levels of process abstraction to ensure consistency and 

traceability of processes in the PEP, as specified in the A-SPICE standard (Hage, et al., 2022). 

Using the Stochastic Model Checking of Product Engineering Processes (SMC4PEP) tool, the 

revised BPMN process model or the event-based BPMN is then converted into a stochastic 

control process called the Markov Decision Process (MDP) model, described by the syntax of 

the PRISM language, in order to capture the stochastic properties of the PEP, and consequently 

ensure consistency and enable automated verification of the correctness of the processes using 

the probabilistic model checking tool, PRISM with respect to the requirements of the A-SPICE 

standard. With the help of the PRISM tool, processes can be simulated and analysed to 

determine, among other parameters, the probability of reaching the final state of the process, 

the duration of the processes, and the total number of process transitions and states. 

 

1.3 Thesis Objective 

The main objective of this work is to use a digital assistant with the help of NLP to reduce the 

difficulty and effort in applying the model checking method and to enable anyone, regardless 

of experience, to perform the method. This could encourage the implementation and 

dissemination of model checking, reduce software system failure and thus help in compliance 

with the A-SPICE standard. 
 

Further objectives 

In addition to the main objective, this work aims to achieve other side benefits by implementing 

the digital assistant in an organization. Firstly, the digital assistant can help to perform model 

checking at any time of the day or night, 24/7 (Han, 2019). The user is able to pose a model 

checking query to the digital assistant and receive instant results. Therefore, any member in the 

organization, including the assessor of the A-SPICE standard, who wishes to verify that a process 

has no deadlocks or delays, can use the digital assistant for this purpose at any time without 

having to wait for the next responsible developer to be available. 

This in turn can lead to another advantage when using the digital assistant. Since the program 

is available at any time of the day, developers who are normally responsible for verifying 

processes by performing model checking do not have to be present at all times. Therefore, the 

time a developer normally spends in an organization verifying processes can be shortened and 

utilized for other more business-critical tasks. The extra cost of hiring or assigning new 

developers to perform such tasks can also be reduced (Han, 2019). 
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Furthermore, provided that the digital assistant program is well developed and works exactly as 

it is intended, mistakes that could potentially be committed by the developers can be avoided. 

Computers are inherently more precise than humans, as they work exactly as they are 

programmed, assuming there are no errors in the code. They tend to perform tasks more 

efficiently and with consistent accuracy, unlike humans who tend to make mistakes and errors 

(Nocks, 2008). This is especially detrimental when it comes to verifying processes that deal with 

safety-critical systems, where a small error can have major consequences. The use of digital 

assistants can therefore help to solve this issue. 

The following section describes what the program should ideally do to achieve the objectives of 

this thesis. Ideally, the program should: 

• Flawlessly understand all the intentions of the questions posed by the user, provided 

that the question falls within the scope of the specified and trained program parameters. 

• Successfully exchange data and information with the probabilistic model checking tool, 

PRISM. 

• Load and read MDP model file uploaded by the user and display error if there is no MDP 

model uploaded. 

• Be visualized on a web-designed front-end with user-interface. 

• Automatically extract all states and transitions and determine the final state of each 

variable from the uploaded MDP model. 

• Perform all model checking functions based on properties specified by the A-SPICE 

standard and return accurate results back to users in the shortest amount of time. 

• Share list of Generic Practices of the highest achievable process capability level of A-

SPICE. 

• List all variables and modules names of the MDP model, build the model and provide 

the model construction time. 

• Be designed such that model checking can be performed with minimal effort, with 

additional help from a template of question examples provided on the home screen to 

avoid errors in predicting the answer to the question asked. 

• Be designed to be deployable on multiple platforms and operating system with minimal 

effort. 

• Process the extracted data into a suitable format for machine learning solutions.  

• Provide a scalable machine learning pipeline for the system’s models, starting from the 

raw intent data. 
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1.4 Thesis Structure 

This section describes the structure and organization of the thesis. The thesis is structured as 

follows: The first chapter deals with the motivation and problem statement of this work, 

previous related works, and the objectives of the work. Chapter 2 deals with the theoretical 

foundations and general theory of the various concepts, methods and models used in this work. 

This includes chapters on Business Processes, Model Checking, Natural Language Processing 

(NLP), Deep Learning and Application Programming Interface (API). Chapter 3 deals with the 

methodology used in the development of the program. This includes the software and hardware, 

as well as the technologies and frameworks that were used in the construction of the program, 

including the connection architecture of the different programming languages. Chapter 4 

presents the final outcome of the program and discusses the results of the message predictions 

from the program. Chapter 5 provides a conclusion and outlook that can be drawn from the 

results and the ability to achieve the objectives of the thesis. 
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2. Theoretical Foundations 

 

This chapter describes the theoretical foundations and general theory of the various concepts 

relevant in this thesis. The chapters start with Business Processes, followed by Model Checking, 

Natural Language Processing (NLP), Deep Learning and conclude with Application 

Programming Interface (API). 

 

2.1 Business Process 

The goal of this section is to provide an overall understanding of the concepts and technologies 

that are relevant in business processes. The section begins with the definition and examples of 

business processes, then it briefly outlines the business process lifecycle, subsequently describes 

the modelling techniques of business processes, e.g. BPMN, the concepts of BPMN, its symbols 

and elements, as well as examples and descriptions of simple and multiple process 

implementations.  This section also provides an overview of the business process applied as a 

use case in this thesis, namely the Product Engineering Processes (PEP). It then discusses the 

challenges of business processes and concludes by describing the A-SPICE standard, which was 

introduced primarily to address these challenges.  

  

2.1.1 Introduction 

“A business process consists of a set of activities that are performed in coordination in an 

organizational and technical environment. These activities jointly realize a business goal 

(Weske, 2012). ” 

 

A business process can be described a set of related, structured activities and steps performed 

by the people or equipment in an organization in order to achieve the basic organizational goals 

such as profit maximization and customer satisfaction. 

 

Business Process Example 

Business processes occur at all organizational levels, and they differ from one industry to 

another. For example, business processes in mining differ from those in finance, healthcare, 

aviation, security, etc., due to the varying nature of these industries. Examples of business 

processes in some of the well-known industries are presented in Table 1. 
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Figure 4: Business Process Lifecycle (Weske, 2012) 

 

Design and Analysis  

The lifecycle begins with the design and analysis phase, in which surveys of the business 

processes and their organizational and technical environment are conducted. Based on these 

surveys, the business processes are identified, reviewed, validated and represented by business 

process models. The business process is designed as it ideally should be, and the process is 

examined in its current state to determine what needs to be improved. Business process 

modelling techniques as well as validation, simulation, and verification techniques are 

employed in this phase. Once an initial design of a business process is developed, it must be 

validated. Simulation techniques can be used to support validation because certain undesirable 

execution sequences can be simulated that reveal deficiencies in the process model. Business 

process simulation also enables stakeholders to walk through the process step by step and verify 

that the process actually exhibits the desired behaviour (Weske, 2012). 
 

Configuration 

Once the business process model has been designed and reviewed, the business process must 

be implemented. It can be implemented through a set of policies and procedures that must be 

obeyed by the company's employees. The implementation of the business process must be 

tested once the system is configured. Traditional testing techniques from the software 

engineering field are used at the process activity level to check, for example, whether a software 

system exhibits the expected behaviour (Weske, 2012). 
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Enactment  

Once the system configuration phase is complete, the business process instances can be put 

into effect. The process implementation phase comprises the actual runtime of the business 

process. Business process instances are initiated to meet an organization's business objectives, 

which typically occurs after a defined event, such as the receipt of an order from a customer. A 

monitoring component of a business process management system visualizes the status of 

business process instances. Process monitoring is an important mechanism for getting accurate 

information about the status of business process instances. During the execution of business 

processes, valuable execution data is collected, usually in the form of log files. These log files 

consist of ordered sets of log entries that indicate events that occurred during business 

processes. The beginning and end of an activity are typical information stored in execution logs. 

The log information is the basis for evaluating processes in the next phase of the business 

process lifecycle (Weske, 2012). 
 

Evaluation 

In the evaluation phase, available information is used to assess and improve business process 

models and their implementations. Execution logs are evaluated using business activity 

monitoring and process mining techniques. These techniques aim to determine the quality of 

business process models and the suitability of the execution environment. Similar 

considerations apply to process mining, which has several possible applications. When the 

execution logs of traditional information systems are generated, they can be used collectively as 

a starting point for developing business process models. Evaluation of existing business process 

models is another application area of process mining (Weske, 2012). 

 

2.1.2 Modelling Business Processes 

This section introduces the foundation of business process modelling concepts specifically, the 

BPMN model and introduces the subdomains of BPMN, namely modelling functions, processes, 

core elements, and operation. 

Process modelling is the graphical representation of business processes or workflows. Similar to 

a flowchart, the individual steps of the process are drawn so that a continuous overview of the 

tasks of the process in the context of the business environment is created (IBM, 2022). A process 

model enables the visualization of business processes so that organizations can gain a better 

understanding of their internal business processes for management and efficiency. 

Organizations are able to understand how processes work in their current state and how they 

can be improved (Allweyer, 2016). The Business Process Model and Notation (BPMN) has been 

developed as a dedicated language for the modelling of business processes and is also used as a 

process modelling language in related previous work. 
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Business Process Model and Notation (BPMN) 

“The primary goal of BPMN is to provide a notation that is readily understandable by all 

business users, from the business analysts that create the initial draft of the processes, to the 

technical developers responsible for implementing the technology that will perform these 

processes, and finally to the business people who will manage and monitor those processes 

(Rosemann & vom Brocke, 2010).” 

 

BPMN is originally developed by the Business Process Management Initiative (BPMI), which 

published BPMN 1.0 in May 2004. In 2005, BPMI merged with Object Management Group 

(OMG), which has since continued to develop BPMN and released the current version 2.0 of 

BPMN in 2011. The objective of BPMN is to support business process management for both 

technical and business users by providing a notation that is intuitive to business users and yet 

can represent complex process interpretation. The main goal of BPMN is to provide a standard 

notation that can be easily understood by all business stakeholders (Allweyer, 2016). 

 

Core elements of BPMN 

The BPMN language is based on flowcharts and graphical notations. Different types of BPMN 

flow object symbols and connecting objects are visualized in Figure 5. 

 

 

Figure 5: BPMN flow object symbols and connecting objects (Suchenia, et al., 2017) 

 

Essentially, a process model is a graph with nodes and edges, where the nodes can be activities 

representing a task, the events representing relevant events that influence the process, and the 

gateways representing branches in the process execution (Weske, 2012). Typically, processes are 

triggered by a start event, have activities or tasks and gateways (decision points) in the middle, 

and finish with an end event. Complex processes also contain sub-processes and intermediate 

events, as well as different types of gateways to show how the workflow progresses through the 

diagram. For example, an exclusive gateway has only one option for movement, an inclusive 

gateway has options based on the decision made at the gateway, and parallel gateways represent 

two simultaneous tasks in a workflow. Symbols are used to connect flow objects such as 

sequence flows, message flows, and associations. Flows are represented by dashed or straight 

lines with arrows, while associations use a dotted line to show that certain documents or 

artifacts are associated with an event or gateway (IBM, 2022).  
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Process Model 

A process model is used as a blueprint for a set of process instances that represent the individual 

executions of that process. Each process instance consists of multiple activity instances. These 

activity instances go through different lifecycle states. Once the process is instantiated, each 

activity is initialized. This puts the activity instances into the “init” state. Once the incoming 

flow of an activity is triggered, it activates the instance and changes the state to ready. When 

the execution of the activity starts, the state changes to activity life cycle running. Finally, the 

activity instance is terminated once execution is complete.  In some cases, the process execution 

chooses another path while the activity has not started yet. This causes the activity to enter the 

"skipped" state. Also, a running activity may enter the terminated state due to an exceptional 

situation. During the execution of a process instance, an activity can be instantiated again after 

it has been terminated or cancelled (Weske, 2012). 
 

Single process implementation 

 

 

Figure 6: Process of placing an order of a buyer (Weske, 2012) 

 

An illustration of a business process of a buyer placing an order is shown in Figure 6. The process 

starts with the placement of an order from the buyer, before two parallel branches are opened. 

In one branch, the invoice is received and settled. In the other branch, the product is received. 

When both branches are completed, the buyer's business process is complete. 
 

Multiple process implementations 

The reseller's and the buyer's business processes can possible interact in the following ways. 

First, the buyer sends an order message to the reseller. Second, the reseller receives this message 

in a start event. The order information is then extracted from the message, and order processing 

begins. Third, the reseller sends an invoice and ships the ordered products. Forth, the buyer 

receives the invoice. Fifth, the buyer pays and settles the invoice. Finally, the buyer receives the 

ordered products. The interacting business processes are shown in Figure 7. 
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Figure 7: Interacting multiple business processes (Weske, 2012) 

 

The interacting activities of the reseller's business process and the buyer's business process are 

connected by dashed arcs representing the message flow. The message flow can represent 

electronic messages sent and received as well as the transport of physical objects, such as 

ordered products. The interactions of a set of business processes are described in a process 

choreography, which indicates that there is no central agent controlling the activities in the 

involved business processes. Interaction is achieved only by sending and receiving messages. In 

order to achieve correct interactions, the interacting business processes must agree on a 

common choreography before they start to interact (Weske, 2012). 

 

Use Case: Product Engineering Process (PEP) 

The use case for this work stems from a problem in the automotive industry of Product 

Engineering Processes (PEP). PEP, a term which is fairly common in the automotive and 

avionics industries, is used to describe a business process that involves the design, development, 

and transition to manufacturing of products such as devices, assemblies, or systems (Feldhusen 

& Grote, 2013).  

 

Phases of Product Engineering Processes (PEP) 

 

 

Figure 8: Phases of Product Engineering Processes (PEP) (Grochowski, et al., 2015) 
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Various PEP models exist in the literature. These are mainly subdivided into the idea, product 

planning, concept development, product development, prototype testing and production 

resource development phases as can be seen in Figure 8. In the first phase, ideas are generated 

and new approaches are developed. The focus of this phase is on idea generation and evaluation. 

It serves to define the task and to determine the product function, basic design principles and 

manufacturing processes. In the planning phase, a specification and a product design are 

developed and product planning, detailing and design are carried out. During concept 

development, the product concept is defined on the basis of the selected product ideas. Here, 

the focus is placed particularly on the product features and characteristics that are valuable to 

customers. Tools for evaluating the concepts are sampling and competitor comparisons. This 

phase also includes the drafting of a requirements specification. The subsequent product 

development phase influences the structure, design and manufacture of the final product. It 

includes development, design and the formation of multidisciplinary working groups. In order 

to validate product development processes and to verify the results of the phases with regard to 

their quality and integrity, the department of product control defines several product quality 

criteria that the product must meet before a new process step can be started (Grochowski, et 

al., 2015).  

 

Challenges of Business Processes 

PEP are usually involved in developing complex products or providing complex services, such 

as manufacturing highly engineered products or fulfilling extremely dynamic customer needs. 

The business processes and consequently, embedded software system of these organizations 

often exhibit a high degree of complexity. In these environments, creating safe, reliable yet 

efficient processes is a major challenge. The complexity makes traditional manual validation 

difficult and error-prone. Real-world processes are even more complex because they can interact 

with elements that are beyond the control of the processes and whose behaviour is unknown. 

This motivates the need for probabilistic decision points when modelling business processes, 

since the outcomes of complex decisions within a process can be random and/or unpredictable. 

They can usually be determined using probabilities (Herbert, et al., 2014).  

The prevailing approach to develop business processes is to construct conceptual process 

models, which then lead to a design where the process is analysed to see if it meets its objectives 

and where any necessary adjustments can be made before a costly implementation (Herbert, et 

al., 2014). Typically, the design should satisfy complex categories of properties, such as:  

• Validation properties: testing whether the business process behaves as expected in a 

particular context; e.g., does the traceability of process comply with A-SPICE?  

• Performance characteristics: Assessing the ability to meet requirements in terms of 

processing times, service levels, and resource utilization or other quantitative factors; e.g., 

how long does it take to deliver a product?  

• Stochastic properties: Assessment of the probability of behaviour within the system; e.g., 

is there a greater than 98% probability that the product will be delivered in 2 weeks? 

 

The need for safety and reliability of business processes specifically in automotive industry has 

led to the introduction of the A-SPICE standard, which is explained in more detail in the next 

section.  
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2.1.3 Automotive-SPICE Standard 

Automotive Software Performance Improvement and Capability dEtermination (A-SPICE) was 

developed on the basis of ISO 15504 by the Automotive Special Interest Group, an organization 

consisting of Audi AG, BMW Group, Daimler AG, Fiat Auto S.p.A., Ford Werke GmbH, Jaguar, 

Land Rover, Dr.Ing.h.c. F. Porsche AG, Volkswagen AG and Volvo Car Corporation (Automotive 

SIG, 2015). The first draft was published in 2005, with final approval in 2008 as a “Verband der 

Automobilindustrie” (VDA) standard. The major German Original Equipment Manufacturers 

(OEMs) Audi AG, BMW Group, Daimler AG, Porsche AG and VW AG formed an additional 

group called “Hersteller Initiative Software” (HIS). SPICE, and later Automotive SPICE, has been 

a mandatory requirement of HIS for mechatronics suppliers since about 2005, which led to a 

rapid expansion in their supplier base (Spork, 2011). 

A-SPICE is used as a framework for process evaluation to determine an organization's ability to 

effectively and reliably deliver software products for the automotive industry. The standard can 

be considered a representative model for software process assessment, as assessors evaluate 

indicators and metrics that measure software process performance. It specifies requirements for 

process reference models and process assessment models. The process reference model includes 

several key components, namely: lifecycle processes from several process categories for the 

process dimension and six competence levels for the process capability dimension (Automotive 

SIG, 2015). 

 

Process Capability Level  

The process capability level is a central idea of the A-SPICE standard. The levels enable the user 

to evaluate the process capability and improve it accordingly. The suppliers attest to the 

customer a certain degree of process capability or maturity from A-SPICE. This process 

capability level is determined in supplier assessments and put to the test. In this context, 

compliance with the selected processes is decisive. In order to achieve a certain level of process 

capability, defined model elements must be implemented in the own process environment. A-

SPICE defines six levels of process capability from level 0, being the lowest, to level 5, being the 

highest (Wilfinger, 2017). 

 

 

Figure 9: Process Capability Level according to A-SPICE (CiGi Technology Limited, 2022) 
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Since A-SPICE is not only concerned with compliance with the required processes, but also with 

maturity and process capability for improvements and process innovations, the degree of 

compliance is described analogously to the Figure 9:  

Level 0 (Incomplete) describes an incomplete process. The process is not implemented, or the 

purpose of the process is not fulfilled. Project successes are quite possible, but are a result of 

coincidence.  

Level 1 (Performed) is defined as a state where everyone is clear on what needs to be done. 

This can be described in terms of Basic Practices. Each process has its own set of Basic Practices 

that should be mastered at Level 1. The implementation of these practices leads to intermediate 

deliverables, the so-called work products.  

Level 2 (Managed) signifies that everyone understands what is good and what is not good. In 

particular, there are document templates and checklists for the work products to be produced 

in the project. Responsibilities are clarified and team members receive proper training regarding 

their role in the project. All actions and work steps are planned and their execution is verified. 

It is no longer a matter of individual Basic Practices of the individual processes, since from stage 

2 onwards a large number of Generic Practices must be fulfilled.  

Level 3 (Established) describes the realization that it is good to record the positive experiences 

made. This is done in the form of process definitions. In this way, improvements can be made 

across project boundaries. The process definitions are continuously adapted for use in projects, 

so that there is also room for improvement. In particular, experience from past projects is 

factored in.  

Level 4 (Predictable) assumes that the defined process has already been carried out several 

times and that figures and data are therefore available to describe process performance. 

Statistical observations can be conducted on the processes carried out and defined upper and 

lower limits exist for the individual process parameters. This enables preventive process 

maintenance.  

Level 5 (Optimizing) describes the continuous improvement of processes. Technological 

innovations are researched, their usability with the applied process is evaluated and 

implemented for optimization. This level has the highest requirements and is rarely certified. 

 

Generic Practices 

A-SPICE outlines Basic Practices (BP) and Generic Practices (GP) as evaluation benchmarks for 

an organization's compliance with the standard. The team of auditors documents and evaluates 

the processes according to the BP and GP (Automotive SIG, 2015). Currently, the highest 

achievable process capability level of the use case in this work is level 2. For this reason, only 

GP level 2 processes are described in this section. 

  



 

20 | P a g e  
 

Part 2.1: Performance management process attribute  

• GP 2.1.1 Identify the objectives for the performance of the process. 

Performance objectives are identified based on process requirements. The scope of the process 

performance is defined and assumptions and constraints are considered when identifying the 

performance objectives. 

• GP 2.1.2 Plan the performance of the process to fulfil the identified objectives. 

Plan(s) for the performance of the process are developed. The process performance cycle, key 

milestones for the performance of the process and process activities and tasks are defined. 

Schedule is also defined and aligned with the approach to performing the process.  

• GP 2.1.3 Monitor the performance of the process against the plans.  

The process is performed according to the plan(s). Process performance is monitored to ensure 

planned results are achieved and to identify possible deviations.  

• GP 2.1.4 Adjust the performance of the process. 

Process performance issues are identified. Appropriate actions are taken when planned results 

and objectives are not achieved. The plan(s) are adjusted, as necessary. Rescheduling is 

performed as necessary.  

• GP 2.1.5 Define responsibilities and authorities for performing the process. 

Responsibilities, commitments and authorities to perform the process are defined, assigned and 

communicated. Responsibilities and authorities to verify process work products are defined and 

assigned. The needs for process performance experience, knowledge and skills are defined.  

• GP 2.1.6 Identify, prepare, and make available resources to perform the process 

according to plan. 

The human and infrastructure resources necessary for performing the process are identified 

made available, allocated and used. The individuals performing and managing the process are 

prepared by training, mentoring, or coaching to execute their responsibilities.  

• GP 2.1.7 Manage the interfaces between involved parties. 

The individuals and groups involved in the process performance are determined. 

Responsibilities of the involved parties are assigned and the interfaces are managed. 

Communication is assured between the involved parties. Communication between the involved 

parties is effective. 

 

Part 2.2: Work product management process attribute  

• GP 2.2.1 Define the requirements for the work products.  

The requirements for the work products to be produced are defined. Requirements may include 

defining contents and structure. Quality criteria of the work products are identified. 

Appropriate review and approval criteria for the work products are defined.  
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• GP 2.2.2 Define the requirements for documentation and control of the work 

products. 

Requirements for the documentation and control of the work products are defined. Such 

requirements may include requirements for (1) distribution, (2) identification of work products 

and their components and (3) traceability.  

• GP 2.2.3 Identify, document and control the work products. 

The work products to be controlled are identified. The work products are documented and 

controlled in accordance with requirements. The work products are made available through 

appropriate access mechanisms. The revision status of the work products may readily be 

ascertained. 

• GP 2.2.4 Review and adjust work products to meet the defined requirements. 

Work products are reviewed against the defined requirements in accordance with planned 

arrangements. Issues arising from work product reviews are resolved. 

 

The next subchapter discusses methods to validate the correctness and integrity of the software 

systems and thus, comply with the GP outlined in A-SPICE.  
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2.2 Model Checking 

 

2.2.1 Formal Verification Method 

Formal verification techniques, in particular model checking, provide a powerful and rigorous 

approach to establish the correctness of complex systems. Improvements in the efficiency and 

usability of this technology mean that it can now be applied to the design phase of a wide range 

of computer systems, from microchips to device drivers. In the past, classical approaches based 

on testing with simulation or emulation have been used. However, these techniques do not scale 

well and reach their limits. Correctness can only be guaranteed by using formal methods 

(Drechsler, 2017).  

 

Formal Verification vs. Statistical Simulation  

One of the approaches to testing systems is to predict their behaviour through statistical 

simulations, such as a Monte Carlo simulation. A statistical simulation typically uses statistical 

sampling, where the problem is analysed using a set of randomly generated samples and 

measuring what fraction of the random set satisfies a property to determine the probability of a 

property. When analysing a business process, a simulation approach involves developing a 

model that reflects the behaviour of a process, including data and resource information, and 

then conducting simulation experiments to better understand the effects of running that 

process. The main difference between simulation-based verification and formal verification is 

that the former requires input vectors while the latter does not. The approach in simulation-

based verification is to first generate input vectors and then derive reference outputs. In formal 

verification, the thought process is reversed. The user first specifies what output behaviour is 

desired, and then leaves it to the formal verifier to prove or disprove it. The user is not concerned 

with the input specification at all (Herbert, et al., 2014).  

Although statistical simulation can be useful in some cases, only formal verification is complete, 

in the sense that it does not exclude any point in the input space of a problem. Statistical 

simulation can examine some situations but cannot observe all behaviours. Safety properties 

that guarantee that a particular behaviour can always or never occur must be evaluated under 

all possible situations, which is simply not possible with the simulation method (Herbert, et al., 

2014). 

 

2.2.2 Model Checking 

Model checking is a technique used to prove the correctness of hardware or software systems 

in an automated way. The goal of this technique is to predict the system behaviour, or more 

precisely, to formally prove that all possible executions of the system meet specified 

requirements. In contrast to testing, model checking examines all possible behaviours of a 

system. While testing can only find errors, model checking can also prove their absence. It 

allows to express properties to which the answer is "yes" or "no", such as: It is never the case 

that, traffic lights "A" and "B" are red at the same time (Oldenkamp, 2007).  
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Model Checking Approach 

An overview of the model checking approach can be seen in Figure 10. A model checker accepts 

the formal system model and the formal property as inputs and returns, slightly simplified, one 

of these three results. It either reports that the property is satisfied or violated, and these reports 

are guaranteed to be correct, provided the implementation is done correctly, or reports the third 

result, which is that the model checker has run out of computing resources (Hensel, et al., 2022).  

 

 

Figure 10: Overview of the model checking approach (Hensel, et al., 2022) 

 

Applications of model checking 

Typically in model checking, the structures to be checked are hardware or software systems, 

and the specification includes safety requirements such as the absence of deadlocks and similar 

critical conditions that might lead to the system crashing. However, the flexibility of the general 

approach has resulted in model checking being successfully applied to systems as diverse as 

(Herbert, et al., 2014): 

• Biological systems where the specification may express required physical properties of 

chemical interaction and these are found to agree with observed biological data.  

• Robotics where foraging robot swarms are analysed using probabilistic model checking to 

ensure properties, e.g. collision avoidance, timing of operations, and power consumption, 

are verified and that global swarm behaviour will indeed function as required.  

• Sociology where assumptions used in models of the voting patterns for different ethnic 

groups in New York City, and of the effect of radon on lung cancer in the United States, are 

checked to see if they can be falsified by the data on which they are based. 
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Challenges for verification 

While model checking focuses on the absolute correctness of systems, which allows the 

expression of properties to which the answer is "yes" or "no," such inflexible requirements are 

difficult or impossible to guarantee in practice. Instead, systems are subject to various stochastic 

phenomena such as message loss, unpredictable environments, errors, and delays. Correctness 

of systems is therefore less absolute. Therefore, instead of checking whether system failures are 

possible or impossible, it is more realistic to determine, for example, whether "the probability of 

failure is at most 0.01%" (Oldenkamp, 2007). 

 

2.2.3 Probabilistic Model Checking 

The verification of systems involving stochastic uncertainty is a prominent research challenge. 

Among the many techniques researched is the probabilistic model checking, a mature 

technique that evolved from model checking. Probabilistic model checking extends 

conventional model checking with tools and techniques for analysing systems that exhibit 

random or stochastic phenomena, or other forms of behaviour that can be approximated by 

randomization. Distributed algorithms and communication protocols are main examples, as 

they often use randomization to efficiently break symmetry. Another example is cyber-physical 

systems that tightly integrate software and hardware such as sensors, actuators, and 

microcontrollers. In particular, sensor readings can be noisy, actors may not always have the 

same effects, and physical components can fail. Other areas that lead to models with 

probabilistic aspects include randomized safety protocols and systems biology processes 

(Hensel, et al., 2022). 

Unlike model checking, probabilistic model checking allows quantitative requirements to be 

specified, which enables the determination of quantitative outcomes, such as "how reliable is 

my car's Bluetooth network?", "what is the probability that the process will complete without 

delay?", or "how secure is my bank's web service?" (Parker, 2011). 

 

Overview of Probabilistic Model Checking 

An overview of probabilistic model checking process can be view in Figure 11. 

 

 

Figure 11: An overview of probabilistic model checking process (Parker, 2011)  
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Probabilistic model checker requires two inputs (Kwiatkowska, et al., 2009): 

• System model description of probabilistic model, which is a description of the system 

to be analysed, typically given in some high-level modelling language e.g. Markov chain or 

Markov process.  

 

• Probabilistic temporal logic specification, which is a formal specification of 

quantitative properties of the system that are to be analysed, usually expressed in variations 

of temporal logic such as:  
 

Informally:  

• “probability of delivery within time deadline is …”  

• “expected time until message delivery is …”  

• “expected power consumption is …”  

Formally:  

• probabilistic temporal logics (PCTL, PRCTL, CSL, LTL, PCTL*, …)  

• e.g. 𝑃0.1 ], 𝑃=? [ 𝐹 ≤ 𝑡 𝑟𝑒𝑝𝑙𝑦_𝑐𝑜𝑢𝑛𝑡 = 𝑘 ] 

 

From the these two inputs, the probabilistic model checker will systematically test the validity 

of the property for the given model. The outcome can either be qualitative or quantitative 

results, or counter-example. 

 

I. System model  

The first input required for the probabilistic model checking process is a system description of 

a probabilistic model. A variety of formalisms have been developed for specifying probabilistic 

models. These include several types of Markov models, including (a) discrete-time models, that 

model the behaviour of a probabilistic system as a sequence of discrete time steps, e.g. Discrete-

Time Markov Chains (DTMCs), Markov Decision Processes (MDPs), or Segala’s Probabilistic 

Automata (PA), or continuous-time models, which model the behaviour of a continuous 

stochastic process, e.g. continuous-time Markov Chain (MC), CTMDP, or Markov Automata 

(MA) (Katoen, 2016). An overview of the models is shown in Figure 12.  
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Figure 12: Overview of Markov models (Katoen, 2016) 

 

In the following section, a brief introduction to the Markov Decision Processes (MDP) is 

provided.  

 

Markov Decision Processes (MDPs)  

MDP is a discrete-time model that allows for both non-deterministic and (discrete) probabilistic 

behaviour. Instead of a single distribution determining the successor states, the system can non-

deterministically choose between multiple actions, each of which identifies a different 

distribution. After a choice is made, the successor states are resolved probabilistically and a new 

selection process is initiated in the successor state. Non-determinism is a valuable tool for a 

modeler and can be used to represent a variety of unknown aspects of a system's environment 

and to model the possible interaction with an adversarial environment (Kwiatkowska, et al., 

2017). 

A well-known example is the randomized consensus algorithm of Aspnes and Herlihy 

(Pogosyants, et al., 2000). In this protocol, participating processes repeatedly change a common 

global counter based on the outcome of a coin flip until the entire system agrees on one of two 

outcomes, i.e., consensus is reached. To accurately model the protocol, non-determinism can 

be used to consider the lack of information about the timing of simultaneous accesses to the 

counter (Hensel, et al., 2022). 

 

MDP Example: Coin flip 

An MDP model can also be described as a probabilistic version of a state-transition system: Each 

state represents a possible configuration of the modelled system, whereas each transition 

represents a possible progression of the system from one configuration to another across time. 

Transitions are labelled with quantitative information about the probability and/or timing of 

the transition's occurrence (e.g., 0.3, 0.5, 0.7, 1) (Kwiatkowska, et al., 2009).  
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Figure 13: MDP model example of a coin flip (Parker, 2011) 

 

Figure 13 shows an example of a simple MDP model. The model represents a process of a coin 

flip with four states (𝑠0, 𝑠1,  𝑠2, 𝑠3). The process initially starts in state 𝑠0. After one step, the 

process is given only one option, to move directly to 𝑠1 (action a). In state 𝑠1, a non-deterministic 

choice is offered between actions b and c; 1) action b gives a probabilistic choice of 0.3 (30%) to 

self-loop or 0.7 (70%) to return back to 𝑠0, and 2) action c gives a 0.5/0.5 random choice between 

heads and tails as an outcome. 

 

MDP Example: Communication Protocol 

 

 

Figure 14: MDP model of a process of sending a message (Parker, 2011) 

 

Figure 14 shows another example of a simple MDP model. The model represents a process of a 

communication protocol that is attempting to send a message with four states (𝑠0, 𝑠1,  𝑠2, 𝑠3).  

The process starts in state 𝑠0. After one step, the process starts trying to send a message. A non-

deterministic choice is then presented between: (a) wait one step because the channel is not 

ready or (b) send the message. If the latter is chosen, the message is sent successfully with a 

probability of 0.99 (99%) and eventually leads to the stopping of the process. On the other 

hand, sending the message fails with a probability of 0.01 (1%), whereupon the process restarts 

and returns to state 𝑠0.  
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Probabilistic modelling language 

A probabilistic model consists of a set of modules representing different components of the 

system being modelled. The state of each module is represented by a set of variables with finite 

range (Kwiatkowska, et al., 2009).  

 

 

Figure 15: Probabilistic model in PRISM modelling language (Kwiatkowska, et al., 2009) 

 

Figure 15 shows an example of the PRISM modelling language: a fragment from the model 

description of a simple reliability case study. The model includes a set of sensors and actuators 

monitored and controlled by an input and output processor, respectively, and a main processor 

that communicates with the other components. In the model fragment, the modules 

representing the sensors and the input processor can be seen. As can be seen from the code 

marking comments, the state of the sensors is simply an integer value between 0 and 3, 

indicating the number of sensors currently operational, and the state of the processor is a value 

between 0 and 2, indicating whether it is operational or whether a transient or permanent error 

has occurred (Kwiatkowska, et al., 2009). The behaviour of a module, i.e., the possible changes 

in its state, is specified by a set of protected commands. These have the form:  
 

[act] guard → rate : update; 
 

where act is an (optional) action label, guard is a predicate over the variables of the model, rate 

is a (non-negative) real-valued expression, and update is of the form:  
 

(𝑥1  =  𝑢1) & (𝑥2  =  𝑢2) & . . . & (𝑥𝑘  =  𝑢𝑘)  
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where 𝑥1, 𝑥2, . . . , 𝑥𝑘 are local variables of the module and 𝑢1, 𝑢2, . . . , 𝑢𝑘 are expressions over 

all variables. 

 

Rewards 

This section discusses the introduction of rewards to a model, which are used to specify 

additional quantitative measures of interest. Rewards are simply labels of states and transitions 

with real values, referred to in PRISM as state rewards and transition rewards (Kwiatkowska, et 

al., 2009). Figure 16 illustrates the specification of rewards in the PRISM modelling language for 

the example model in Figure 15. 

 

 

Figure 16: Rewards specification in PRISM modelling language (Kwiatkowska, et al., 2009) 

 

State rewards typically represent the rate at which rewards are accumulated. For example, the 

first two reward structures in Figure 16 associate a state reward of 1 for all states in which the 

system is operational. This can be used to determine the total accumulated time or the total 

operational time of the system. The third reward structure shows that state rewards can also 

represent an instantaneous measure of interest at a particular point in time. The final example 

in the figure specifies transition rewards that accumulate when a transition between states 

occurs. In this example, transitions marked with the action "reboots" from any state in the model 

receive a reward of 1 and could be used to count the number of entries (Kwiatkowska, et al., 

2009). 

 

II. Probabilistic temporal logic specification 

In order to analyse a system model, a second input, which is the probabilistic temporal logic 

specification, is needed to specify one or more properties. The property specification language 

is based on temporal logic, which offers a flexible and unambiguous means of describing a wide 

range of properties (Kwiatkowska, et al., 2009).  
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In particular, the language contains operators from the Probabilistic Computation Tree Logic 

(PCTL), Continuous Stochastic Logic (CSL) and some of their extensions. These logics have 

already been shown to be capable of specifying quantitative properties and expressing a wide 

range of performance, reliability, and practicability properties. Other logics, such as 

Computation Tree Logic (CTL) and Linear Temporal Logic (LTL), are also currently being 

integrated into the property specification language (Kwiatkowska, et al., 2009).  

 

Probability-based properties 

PCTL and CSL allow the formulation of logical statements to specify properties such as the 

probability of a system reaching a particular state. For example, one can ask, "Is the probability 

of reaching an uncertain state of the system less than 0.1?" or "Is the probability of reaching a goal 

within 20 steps at least 0.9?". In addition, it allows the specification of quantitative properties 

such as the probability that an event will occur either within a specified time period or at any 

time during the lifetime of the system (Kwiatkowska, et al., 2009). Consider a system consisting 

of two components, A and B, each of which can fail independently. This can be expressed by the 

following specifications: 
 

• P=? [ F[0,600] 𝑓𝑎𝑖𝑙A ] - “the probability that component A fails within 10 minutes” 

 

• P=? [ F 𝑓𝑎𝑖𝑙A|𝑓𝑎𝑖𝑙B ] - “the probability that either component A or B fails at some point” 

 

• P=? [ 𝑓𝑎𝑖𝑙A U 𝑓𝑎𝑖𝑙B ] - “the probability that component B fails before component A”. 
 

The 𝑃 operator expresses the probability that the system is in a particular state of interest at a 

specific time instant (transient). The 𝑃 operator is used with the F[t,t] operator to refer to a single 

instant in time. 

 

Reward-based properties 

The property specification language also includes an 𝑅 operator which is used to refer to the 

expected value of a random variable defined in terms of a reward structure. Since a model will 

often be decorated with multiple reward structures, the 𝑅 operator with a label of properties of 

the form R{“𝑡𝑖𝑚𝑒”}=?
 [ … ] is augmented to the expected value of reward structure “time” 

(Kwiatkowska, et al., 2009).  

The first example is the reward accumulated until a particular event occurs. Assume a simple 

reward structure time that assigns a reward of 1 to each state, and a Boolean state variable “fail” 

that is true if a system error has occurred. This can be specified as follows: 
 

• R{“𝑡𝑖𝑚𝑒”}=?
 [ F 𝑓𝑎𝑖𝑙 ] - “the mean-time-to-failure of the system, i.e. the expected amount of 

time that elapses before the first failure occurs”. 
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Another operator to reason in terms of cumulative rewards is the 𝑆 operator, which specifies 

the long-term expected rate of reward accumulation. For example, consider the model of a 

queue that stores jobs to be processed by a server. A reward structure "proc" that assigns a 

transition reward of 1 to each transition corresponding to a job processed by the server shall be 

assumed. Then this can be expressed as follows: 
 

• R{“𝑝𝑟𝑜𝑐”}=?
 [ S ] - “the throughput of the system, i.e. the expected steady-state rate of job 

completion” 

 

State-of-art Probabilistic Model Checking Tools 

The state-of-art probabilistic model checking tools currently available to analyse and verify 

probabilistic models include PRISM, Storm, Modest Toolset (MCSTA), Model Checker for 

Parametric Markov Models (PARAM), and extendible Probabilistic Model Checker (ePMC) 

(Hage, et al., 2022). The choice of selecting the tool is motivated by the following considerations 

(Herbert, et al., 2014):  

I. Support for quantitative and stochastic properties: Model checking provides built-

in native support for verification of quantitative and stochastic properties using the 

PCTL logic. In its extended form, PCTL*, support for verification of qualitative 

properties is also available.  

II. Model size: while models of business processes can have considerable complexity, their 

size is relatively modest compared to the complexity of semiconductors or biological 

systems for which model checking has been successfully used. Therefore, model 

checking is suitable for models that have much higher complexity than business 

processes.  

III. Tool support: A wide range of tools for model checking has been developed, with some 

of the best known tools having more than two decades of development time behind 

them. 

 

The Probabilistic Symbolic Model Checker or PRISM is used as the probabilistic model checking 

tool in this work. Therefore, only this tool is discussed in the following section. 

 

PRISM 

PRISM is an open-source probabilistic model checking program developed first at the University 

of Birmingham and now at the University of Oxford. It provides support for building and 

analysing several types of probabilistic models: discrete and continuous-time Markov chains, 

MDPs, and extensions of these models with rewards (Kwiatkowska, et al., 2009). Figure 17 and 

Figure 18 visualize the user-interface and functionalities of the PRISM tool.  
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Figure 17: PRISM tool display (1) (Kwiatkowska, et al., 2009) 

 

 

Figure 18: PRISM tool display (2) (Kwiatkowska, et al., 2017) 

 

Functionality  
 

User interfaces 

All of PRISM's functionality is available either through a command-line version of the tool or 

through the Graphical User Interface (GUI). The GUI provides a more interactive entry point 

for newcomers to the tools, as well as invaluable functionality for more experienced users 

(Kwiatkowska, et al., 2009). The GUI provides:  

• a model editor for the PRISM modelling language with syntax highlighting and error 

messages 

• an editor for PRISM properties 

• a simulator for exploration and debugging of PRISM models  

• tools for graphical representation   
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Experiments 

PRISM emphasizes the analysis of quantitative properties and able to examine trends in 

quantitative results or identifying abnormal behaviour of the system. Examples include "the 

instantaneous availability of the system at time 𝑡" for a range of time values 𝑡 or "the expected 

throughput of the system" for a range of different component failure rates.  The tool also includes 

an integrated graphing tool to visualize and display the results.  
 

Discrete-event simulation 

PRISM also contains a discrete-event simulation engine that serves two purposes. First, it forms 

the basis for a tool for debugging models. It can be used for either manual examination or 

random trace generation. Second, it enables the generation of approximate solutions to the 

numerical computations underlying the model checking process by applying Monte Carlo 

methods and sampling.  

 

Challenges of probabilistic model checking 

Probabilistic model checking extends the functionality of model checking by allowing the 

specification of quantitative properties such as "the probability of delivery within the deadline" 

or "expected power consumption is ...", instead of properties that only check the absolute 

correctness of systems to which the answer is either "yes" or "no". However, specifying these 

properties in a probabilistic model checking tool requires knowledge of the probabilistic 

temporal logic language and steps to specify them in the proper way. For example, to specify 

the probability of a process reaching the final state ("end_state"), the following PCTL 

specification must be provided for the property in the PRISM tool: 

• P=? [ "𝑒𝑛𝑑_𝑠𝑡𝑎𝑡𝑒"]   

For the reward property, the following must be specified for the property to determine the 

minimum reward of a process reaching the end state ("end_state"): 

• R=? [ "𝑒𝑛𝑑_𝑠𝑡𝑎𝑡𝑒"]  

These property specifications should not be too challenging for developers or people familiar 

with probabilistic model checking. However, the proper specification method of temporal logic 

is usually unknown and not easily understood by the general public, and the language of the 

logic is considered to be relatively complex by individuals who have no prior experience with 

this method. In order to perform model checking correctly, one must be able to correctly specify 

a property function and understand the concepts of model checking functions. Usually, only 

developers or individuals familiar with model checking have the knowledge and experience to 

perform such tasks. This is unfortunate because model checking is such a powerful tool for 

verifying the correctness of models that can ultimately reduce safety-related accidents and 

disasters due to system failures.  

Therefore, a solution that bridges the gap between the programming language of the model 

checking tool and the natural language of humans is needed, to facilitate the process of 

properties specification, thereby encouraging the implementation of model checking and its 

dissemination to everyone. A technique presented in the following subchapter could be helpful 

in achieving this goal.  
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2.3 Natural Language Processing (NLP) 

The section covers the definition, historical development, recent achievements and advances, 

and several applications of Natural Language Processing (NLP) in everyday life. In addition, 

various techniques and methods of NLP are also described. 

 

2.3.1 Introduction 

Making machines capable of processing human natural languages effectively has been a 

research challenge for quite some time. In contrast to formal languages, natural languages 

include all languages that have evolved without formal constructs through daily writing and 

speaking. Natural languages are often not clearly understood because humans have optimized 

communication to use shorter words and to recognize the exact meaning depending on the 

context. This makes it a non-trivial task for machines to extract and process the meaning of a 

word or intent of a sentence from its context. In addition to ambiguous and multi-meaning 

words, linguistic styles such as irony, sarcasm, humour, and metaphors make it even more 

difficult to extract the intended meaning (Horvat, 2021). 

 

Historic Development of NLP  

The historic development of NLP can be described in terms of three major waves: Rationalism, 

Empiricism, and Deep Learning (Deng & Liu, 2018).  
 

The First Wave: Rationalism  

In the first wave, rationalist approaches supported the design of manualized rules to incorporate 

knowledge into NLP systems, based on the assumption that knowledge of language is pre-

determined in the human mind by generic inheritance. The first wave of NLP research lasted a 

long time, back to the 1950s.  

 

 

Figure 19: Turing Test (Kuipers & Prasad, 2022) 

 

In 1950, Alan Turing proposed the Turing Test to evaluate the ability of a computer to exhibit 

intelligent behaviour indistinguishable from that of a human. As shown in Figure 19, this test is 

based on natural language conversations between a human and a computer designed to produce 

human-like responses and assessed by a human interrogator.  
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The Second Wave: Empiricism 

In the second wave, empirical approaches assume that plentiful sensory input and observable 

surface language data are necessary and sufficient for the mind to learn the detailed structure 

of natural language. As a result, probabilistic models have been developed to discover the 

regularities of languages from a large collection. The main approaches developed in this era are 

called empirical or pragmatic approaches. With the increasing availability of machine-readable 

data and the steady increase in computing power, empirical approaches have dominated NLP 

since about 1990. However, the performance was far from human level. 
 

The Third Wave: Deep Learning  

In the third wave, Deep Learning uses hierarchical models of non-linear processing inspired by 

biological neural systems to learn intrinsic representations from language data in a way that 

aims to simulate human cognitive abilities. The machine learning models for NLP in this wave 

have sufficiently large capacity to handle the large amounts of training data. Moreover, the 

learning algorithms, methods, and infrastructures are also powerful enough. Recent successes 

in NLP have shown that it is now possible to successfully perform above the human level. 

 

Recent successes in NLP 

If standard benchmarks are to be believed, NLP systems are now remarkably good at a wide 

variety of language understanding tasks. The rise of Deep Learning, and in particular the success 

of unsupervised pre-training is driven mainly by the following two facts. On one hand, the 

computing power of processors has greatly increased, and on the other hand, by merging 

multiple computer systems, it is possible to further scale performance. The high computational 

effort involved in training artificial neural networks is no longer a problem due to the 

exponentially growth in the performance of computer chips. In addition, the database has 

grown massively due to the customer data collected from large corporations over the years. 

With the huge amount of data, the artificial neural networks could be trained for many more 

different types of input situations, including different writing styles of texts, intonation as well 

as pronunciation of words, which can vary greatly among humans (Horvat, 2021). 

To illustrate the performance progress of NLP over the years, consider the following question 

answering dataset, the Stanford Question Answering Dataset (SQuAD). Given a paragraph from 

Wikipedia and a reading comprehension question, the system must find the word or phrase in 

the paragraph that answers the question (Jia, 2020). The outcome of the performance results 

are as follows: 

I. In the original SQuAD release in June 2016, the best baseline system achieved only 51.0% 

of the F1 score.  

II. Crowdworkers asked to answer the same questions achieved 91.2% of the F1 score, 

indicating significant room for improvement. 

III. In August 2020, the best system on the SQuAD leaderboard achieved 95.4% of the F1 

score, outperforming measured accuracy at the human level.  
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SQuAD is merely one NLP dataset that Deep Learning has solved. In the last few years, neural 

models have achieved near-human or super-human accuracy on many other well-studied NLP 

datasets (Jia, 2020). 

 

Definition and Application  

NLP, which aims to enable computers to intelligently process human languages, is an important 

interdisciplinary field that combines computer science, Artificial Intelligence (AI), and human 

language (linguistics) (Deng & Liu, 2018). The intersection of these various fields are shown in 

Figure 20. 

 

 

Figure 20:  Venn diagram of intersection of NLP with various fields (Ranjan, 2020) 

 

NLP applications such as speech recognition, dialog systems, information retrieval, question 

answering, and machine and language translation have begun to reshape the way people 

identify, acquire, and use information (Deng & Liu, 2018). NLP refers to a set of techniques that 

involve the application of statistical methods to understand text and use it to solve real-world 

tasks. The methods convert unstructured text and language data into structured data. When 

this machine-readable data is passed on, knowledge about the domain is obtained, and the 

semantics of the input is analysed. Based on this information, natural language answers can be 

generated that correspond to the input. 

 

2.3.2 Overview of NLP methods 

 

Figure 21: Overview of the NLP and Deep Learning process (Kaur, 2022)  
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The process of applying the NLP methods proceeds in the following steps. As shown in Figure 

21, the input is first provided to the system in the form of a text file. Then it goes through a pre-

processing step where various NLP methods are applied for feature selection. This is to clean 

the raw text data of unwanted or unimportant texts and characteristics that may affect the 

accuracy of the prediction performance. It then progresses to the Deep Learning phase, where 

it is trained using Deep Learning models to provide experience and learning to the network, and 

finally generates outputs based on the system requirements, where the performance of the 

models is evaluated using appropriate metrics. In this subchapter, only the fundamentals for 

the pre-processing phase are described. The method of model training with Deep Learning will 

be explained in more detail in the next subchapter.  

 

Pre-processing  

Pre-processing or feature selection is an important task in AI and mainly represent the step of 

data preparation. Especially in NLP, this task has a massive impact on the success of text 

analysis. This is mainly due to the unstructured and random nature of text data. In addition, 

machines need structure and numerical data. There are a number of approaches for this 

transformation task, such as the Bag-of-Words model or the vector space model (Blanck, 2019). 

The emphasis of this section is on the simplified methods of NLP pre-processing. In general, 

there are a number of additional pre-processing techniques that will not be discussed in detail 

in this paper. 

 

Overview NLP Pipeline  

The process of pre-processing input in the form of text using NLP methods is shown in the 

Figure 22. The figure is accompanied by the English phrase "is anyone there" as an example to 

illustrate the application of the NLP pipeline. 

 

 

Figure 22: Overview of the NLP pipeline (Loeber, 2020)  
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A raw text phrase in the form of a string value is used as input. In the first step, the string is 

separated according to the sentence boundaries and stored in a list of strings. Then, the 

individual words of each sentence are extracted and tokenized and subsequently, stored 

sentence by sentence in lists. Next, the individual tokenized words are lowercased and stemmed 

to produce the root form of the words. Punctuation marks are then excluded from the word list 

in the next step. Finally, each sentence is transformed into a so-called Bag of Words (BoW) to 

convert the pattern strings into numerical data that the Deep Learning model can understand. 

 

Tokenization 

The first step in a typical NLP pipeline is the so-called tokenization. The goal of this step is to 

extract tokens from a given text, which can be a single word or as a complete sentence. All NLP 

methods start with a text dataset, also called a corpus. A corpus typically contains raw text in 

American Standard Code for Information Interchange (ASCII) or Unicode Transformation 

Format (UTF)-8 format and any metadata associated with the text. The raw text consists of a 

sequence of characters (bytes), but most often it is useful to group these characters into smaller 

units called tokens. In English, tokens correspond to words and numeric sequences separated 

by spaces or punctuation (Rao & Mcmahan, 2019).  

The most common tokenization method is the whitespace/unigram tokenization. In this 

method, the entire text is split into words by separating them with whitespace. Essentially, 

tokenization involves breaking down a sentence, phrase, paragraph, or entire text document 

into smaller units, such as individual words or terms. (Khanna, 2022). As the example in the 

Figure 23 shows, the entire sentence "Natural Language Processing" is split into 3 unigrams or 

tokens, namely "Natural", "Language", and "Processing". 

 

 

Figure 23: Tokenization of the sentence "Natural Language Processing" (Jain, 2021) 

 

After tokenization, there are two possibilities for structural analysis of words represented by 

tokens, namely stemming and lemmatization (Horvat, 2021). Both methods pursue the same 

goal of identifying a base form of a modified word. In this procedure, the rules of the grammar 

of a language must be taken into account. For this reason, language-dependent algorithms exist 

for both procedures. 
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Lemmatization 

Lemmas are root forms of words. Consider the verb fly. It can be applied to many different 

words, etc. flow, flew, flies, flown, flowing, and fly is the lemma for all these seemingly different 

words. Sometimes it may be useful to reduce the tokens to their lemmas in order to keep the 

dimensionality of the vector representation low. This reduction is called lemmatization (Rao & 

Mcmahan, 2019). 

 

Stemming 

Similar to lemmatization, stemming is a normalization technique in which a list of tokenized 

words is converted into shorter stems to remove redundancy. Stemming is the poor man's 

lemmatization. It involves using manually crafted rules to remove endings from words and 

reduce them to a common form, the root word (Rao & Mcmahan, 2019). 

 

 

Figure 24: Comparison between stemming and lemmatization (Turing, 2022) 

 

Both stemming and lemmatization produce the stemmed form of tokenized words. The 

difference is that the stem is not a real word, while the lemma is a real language word. As can 

be seen in Figure 24,  the stem (root) is the part of the word from which suffixes or prefixes such 

as (-e, -ing, -es, -ed, -er) are removed. Chang is then the stem of the word. Thus, stems of a word 

or phrase can result in words that are not actual words. In lemmatization, change, changing, 

changes, changed, changer are all forms of the word change, so change is the lemma of all these 

words. Since lemmatization provides an actual word of the language, it is used where it is 

necessary to obtain valid words (Turing, 2022). Stemming follows an algorithm with steps 

performed on the words, which makes it faster. Lemmatization, on the other hand, uses a corpus 

library to create a lemma, which makes it slower than stemming (Narayan, 2020). 

 

 

  



 

40 | P a g e  
 

Bag-of-Words 

It is not possible to simply provide the neural network with the input set in its current state for 

Deep Learning. The pattern strings must be converted into a number vector that the network 

can comprehend. For this purpose, each sentence is converted into the so-called Bag-of-Words 

(BoW). First, training words are collected, which represent all the words that the model has 

access to in the training data. Based on all these words, BoW is then computed for each new 

sentence. Each position in a BoW contains a 1 if the word occurs once in the new sentence and 

a 0 if none (Thanaki, 2017). 

Consider the following sample document containing a list of words “Hi”, “How”, “are”, “you”, 

“bye”, “see”, “later” as shown in Figure 25. The BoW method is applied by deriving the term 

frequency of each word in the list, which can then be fed into a Deep Learning neural network 

algorithm. It should be noted that the grammar of the sentences and the order of the words are 

disregarded in this method. 

 

Figure 25: Bag-of-Words (BoW) method (Loeber, 2020) 

 

To derive the frequency count of the example sentence in Figure 25, the total number of 

occurrences of a given word in the word list is counted. First, the word, “Hi” is considered, which 

occurs once in the word list. Therefore, the frequency count for “Hi” in the document is given 

as 1. For the second entry, the word "How are you?", contains words that all exist in the 

document, so the frequency count for all words - "How", "are", "you" is 1, respectively. 

 

Natural Language Toolkit  

The Natural Language Toolkit (NLTK) is a platform that supports the development of programs 

that deal with human language data. NLTK is one of the leading open source libraries for Python 

and is used for NLP. It offers various pre-processing methods such as stemming, tokenization 

or classification. The platform provides access to 50 different corpus such as “WordNet” as well 

as other lexical sources through simple interfaces. In linguistics, a corpus is a collection of 

written or spoken data. The data is usually stored digitally in a machine-readable form. Thus, a 

corpus consists of the text or audio data and optionally metadata (NLTK, 2022).  

 

In the next subchapter, the fundamentals of Artificial Intelligence and Deep Learning are 

explained, and the step following the NLP pre-processing phase is described. 
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2.4 Artificial Intelligence: Deep Learning 

 

There has been a lot of hype around Artificial Intelligence (AI) lately. Some express concern 

about the possibility that AI will one day take control of the human civilization, while others 

argue that AI will undoubtedly improve massively the life quality on this planet. In this section, 

some opportunities and risks of AI technology are presented.  

 

2.4.1 Introduction 

In 1956 at Dartmouth College in the United States of America (USA), the term AI was coined for 

the first time at a scientific conference. The initial meeting was organized by John McCarthy, 

then a mathematics professor at the college, who is known as one of the founding fathers of AI 

(Horvat, 2021). In his proposal, he stated the capability potential of AI as following: 

"every aspect of learning or any other feature of intelligence can in principle be so precisely 

described that a machine can be made to simulate it (Nocks, 2008)." 

 

There are now more than 60 years of research in the scientific field of AI. Thus, in theory, 

excellent algorithms and approaches to AI have been published for quite some time. In practice, 

the ideas were partly only suitable for thought experiments due to the low computing power of 

processors of past decades (Horvat, 2021). However, recent advances in computer processors are 

now powerful enough for the complex computations of the training phases of large neural 

networks. 
 

Opportunities  

With the accompanying performance improvements of the computer processors, AI methods 

are gaining practical application in industry. The potential benefits of using AI in the medical 

field are already being explored. The medical industry has a large amount of data that can be 

used to create predictive models for healthcare. AI has also been shown to be more effective 

than physicians in certain diagnostic contexts. In addition, it is already becoming apparent how 

AI will impact the world of transportation and automobiles with the rise of autonomous vehicles 

and autonomous navigation. AI will also have a major impact on manufacturing, including in 

the automotive sector. Furthermore, cyberattacks increased 600% during the pandemic as 

hackers took advantage of people working from home and using less secure tech systems and 

Wi-Fi networks. AI and machine learning will play a critical role in detecting and predicting 

cybersecurity threats. Similarly, in the financial world, AI will be a game changer for security, as 

it can process large amounts of data to predict and detect fraud (Stahl, 2021). 
 

Risks  

Attention should now be directed to the possible risks of AI. After all, it is penetrating more and 

more areas of the economy and human lives. One of the main concerns of AI is the development 

of autonomous weapons using AI systems programmed to cause destruction. In the hands of 

the wrong individual, these weapons could easily lead to mass death.   
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In addition, an AI arms race could unintentionally lead to an AI war, which would also result in 

many casualties. To prevent being disabled by the enemy, these weapons would be designed in 

such a way that they could not be easily "turned off," so humans could possibly lose control in 

such situation (FLI, 2022). Furthermore, some AI errors do not harm humans or the 

environment. However, if a tumour detection AI, for example, misclassifies a malignant tumour 

in an X-ray, chemotherapy could be initiated. The associated risk of such a form of therapy is 

severe organ damage and, in the worst case, death. In general, error rates have been greatly 

reduced over time by new algorithms and learning methods, but completely correct detection 

has not yet been achieved (Horvat, 2021). 

 

2.4.2 Artificial Neural Networks  

Artificial Neural Networks (ANN) or simply Neural Networks (NN), which is a branch of AI, are 

a class of pattern recognition models inspired by the human brain that occupy a large part of 

machine learning research and have been given their own branch in the field called “Deep 

Learning” due to their popularity in many applications (Nielsen, 2017). The biological neuron of 

the human brain and the ANN are shown side by side in Figure 26 to illustrate their 

resemblance. 

 

 

Figure 26: Biological Neuron in comparison to Artificial Neural Network (Kalla, 2021) 

 

The layers in ANN are made up of nodes, which resembles biological neurons in the human 

brain and the connections resembling axons. A node is simply a location where computations 

take place, much like a neuron in human brain that fires when it encounters sufficient stimuli 

(Nielsen, 2017). A node combines the inputs {𝑥1, 𝑥2, . . . , 𝑥𝑛} from the data with a set of weights 

{𝑤1, 𝑤2, . . . , 𝑤𝑛} that either reinforce or dampen these inputs, thereby assigning significance to 

the inputs with respect to the task that the algorithm is attempting to learn (Horvat, 2021). 

These input weighting products are then summed, and the sum is passed through what is called 

a node's activation function to determine whether and to what extent the signal should be 

passed further through the network to affect the final result, i.e., a classification process. When 

the signal passes through, the neuron has been "activated" (Kalla, 2021). The operation of an 

artificial neuron is demonstrated in the following section using a perceptron.  
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Perceptron 

The simplest unit of a neural network is the perceptron, which is the basic building block of 

neural network layers (Horvat, 2021). The perceptron was historically developed on the model 

of a biological neuron (Rao & Mcmahan, 2019). 

 

 

Figure 27: Perceptron unit (Rainergewalt, 2022) 

 

As shown in Figure 27, each perceptron unit has an input (𝑥), an output (𝑦), a set of weights 

(𝑤), and an activation function (𝑓). In some cases, a bias (𝑏) is also present, which is used to 

shift the activation function by adding a constant to the input. The weights and bias are learned 

from the data, and the activation function is chosen based on the network designer's intuition 

for the network and its target outputs. Mathematically, this can be expressed as follows: 

 𝑦 = 𝑓(𝑤𝑥 + 𝑏) (2.4.1) 
   

Equation 2.4.1 shows the corresponding formula for calculating the output of the artificial 

neuron shown in Figure 27. It is usually the case that there is more than one input to the 

perceptron. Therefore, this general case can be represented with the help of vectors. That is, 𝑥 

and 𝑤 are vectors, and the product of 𝑤 and 𝑥 is replaced by a dot product. The activation 

function, denoted here by 𝑓, is usually a non-linear function. In this example, 𝑤𝑥 + 𝑏 is a linear 

function, which is a function where the graph is represented by a straight line. So a perceptron 

is essentially a composition of linear and non-linear functions (Rao & Mcmahan, 2019). 

 

Activation Functions 

An activation function determines how the weighted sum of the input is converted into an 

output from a node or nodes in a layer of the neural network (Horvat, 2021). Basically, it decides 

if a neuron is activated or not by computing the weighted sum and adding a bias. The main idea 

behind applying an activation function is to introduce non-linearity into the output of a neuron 

to detect complex relationships in data (Rao & Mcmahan, 2019). 
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A neural network consists of neurons that operate according to the weighting, bias, and their 

respective activation functions. In the network, the weights and biases of the neurons are 

updated based on the output error. This process is called backpropagation. Activation functions 

enable backpropagation due to the gradients being provided along with the error to update the 

weights and biases. A neural network without an activation function is essentially simply a linear 

regression model. The activation function performs the non-linear transformation of the input 

and allows more complex tasks to be taught and performed (Kalla, 2021). 
 

Rectified Linear Unit (ReLU) 

The Rectified Linear Unit (ReLU) is the state-of-the-art activation function that is arguably the 

most important activation function deployed today. In fact, one could argue that many of the 

recent innovations in Deep Learning would have been impossible without the use of ReLU (Rao 

& Mcmahan, 2019). In particular, ReLUs lead to faster learning time for training Deep Learning 

models. Moreover, it is not prone to a vanishing gradient and is therefore widely used in 

practice. ReLU computes the maximum between 0 and the linear result of a neuron (Blanck, 

2019). This can be seen in the following: 

 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (2.4.2) 

So all a ReLU unit does is clip the negative values to zero, as shown in the Figure 28. 

 

 

Figure 28: Rectified Linear Unit (ReLU) (H. Sultan, et al., 2019) 

 

Deep Learning  

The motivation for Deep Learning stemmed partly from addressing the dimensionality problem 

of machine learning algorithms that arises when working with high-dimensional data. The 

characteristic difference of Deep Learning compared to other smaller neural networks lies in 

the increased number of hidden layers to form a larger network. Individual perceptrons with 

the same input signals are combined into one layer (Horvat, 2021). Figure 29 illustrates the three 

main layers of a neural network of Deep Learning or Deep Neural Network (DNN): the input 

layer (left), the multiple hidden layers (centre), and the output layer (right).  
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Figure 29: Deep neural network (IBM Cloud Education, 2020) 

 

2.4.3 Training of Neural Networks  

Training neural networks is a fundamental part of the Deep Learning process. It introduces 

experience and learning into the network and optimizes the weights in the network with the 

intention of achieving better predictions from the model (Blanck, 2019) (Horvat, 2021).  
 

Supervised Training 

Supervised learning is the problem of learning how to map observations to specified targets 

given labelled examples. Supervised learning requires the following: a model, a loss function, 

input training data, and an optimization algorithm (Rao & Mcmahan, 2019), as can be seen in 

Figure 30. 

 

 

Figure 30: Process of supervised training (Sevarac, 2022) 
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The process of supervised training goes through the following steps (Horvat, 2021):  

1. Forward propagation: computing the output corresponding to a prediction for a sample 

of input data.  

2. Error calculation: computing the error in the discrepancy between the predicted output 

and the target output using loss function.  

3. Backpropagation: the error calculated in the previous step is propagated backwards 

through the output layer to the input layer. In this process, the gradients are calculated 

considering the input value and weights.  

4. Parameter update: the weights of the neuron connections are optimized depending on 

their influence on the error. The goal is to reduce the error for the corresponding input. 
 

Essentially, the main goal of the supervised training is to adjust the parameters of the model 

using a gradient-based optimization algorithm so that losses are as small as possible (Rao & 

Mcmahan, 2019). The following section begins with an explanation of lost functions, followed 

by a description of the optimization method. 

 

Loss Functions 

All training algorithms in Deep Learning are trained with the so-called loss function. The terms 

loss function, cost function, and error function are often used interchangeably. This function 

attempts to match the algorithm's performance to the expected output. The loss function takes 

a true value (𝑦), also called an “error”, and a prediction (ŷ) as input and produces a real value. 

The higher this value, the worse the prediction of the model. The loss function is used in 

gradient descent and backpropagation to automatically update the weights based on the 

measurement performance (Rao & Mcmahan, 2019). The most common loss functions are the 

Mean-Square-Error (MSE) and the Cross-Entropy Loss. 
 

Cross-Entropy Loss 

Cross-Entropy Loss measures the performance of a classification model whose output is a 

probability value between 0 and 1. It is typically used in multiclass classification, where the 

results are interpreted as predictions of class matching probabilities. The target (𝑦) is a vector 

with 𝑛 elements representing the true multinomial distribution over all classes. The output of 

the network (ŷ) is also a vector with 𝑛 elements, but represents the network's prediction for the 

multinomial distribution. The categorical cross entropy compares these two vectors (𝑦, ŷ) to 

measure the loss, as shown in Equation 2.4.3. 

 𝐿𝑐𝑟𝑜𝑠𝑠_𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑦,ŷ) = − ∑ 𝑦𝑖  𝑙𝑜𝑔(ŷ𝑖)
𝑖

 (2.4.3) 

The probability of the correct class should be strived for close to 1, while the other classes should 

have a probability close to 0 (Rao & Mcmahan, 2019).  
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Optimizer 

Optimization is an important concept in Deep Learning and the optimizer selection process is 

a part of hyper-parameter tuning. During the training of the Deep Learning model, the weights 

of each epoch or iteration must be altered and the loss function must be minimized. An 

optimizer is a function that changes the neural network attributes or hyper-parameters, such as 

weights and learning rate. In this way, it helps to reduce the overall loss and improve the 

accuracy (Rao & Mcmahan, 2019). Optimization is usually performed with gradient-based 

optimization algorithms such as gradient descent or Adam optimizer.  
 

Adam Optimizer 

Adam optimization is a stochastic gradient descent method that is based on adaptive estimation 

of first-and second-order moments. It is based on two methods, namely the Adaptive Gradient 

Algorithm (AdaGrad) and the Root Mean Squared Propagation (RMSProp), and is derived from 

Adaptive moment estimation method, hence the name Adam (Keras, 2022). It uses an 

approximation of the first- and second-order moments as moving averages of the gradient and 

of the squared gradient exponentially decaying. In practice, Adam optimizer works best and 

also converges quickly (Mirtaheri & Shahbazian, 2022). According to (Kingma & Ba, 2017), the 

method is "computationally efficient, has little memory requirement, invariant to diagonal 

rescaling of gradients, and is well suited for problems that are large in terms of data and 

parameters". For these reasons, it is currently applied to most datasets. 

 

Auxiliary Training Concepts 

The core idea of supervised learning is quite straightforward: define a model, compute the 

results, use a loss function to compute gradients, and apply an optimization algorithm to update 

the model parameters based on the gradient. However, there are several auxiliary concepts that 

are important to the training process (Rao & Mcmahan, 2019). 
 

Correctly Measuring Model Performance: Evaluation Metrics  

The most important component outside the supervised training loop is an objective 

measurement of performance on data that the model has never been trained on or seen. In NLP, 

models are evaluated using several evaluation metrics, with “accuracy” being the most common 

one. Accuracy is simply the proportion of correct predictions on a dataset unseen during 

training (Rao & Mcmahan, 2019). 
 

Splitting the Dataset  

To achieve better model performance, it is common to split a data set into three randomly 

selected partitions called the training, validation, and test data sets. Splitting into three 

partitions is considered the easiest method to obtain good generalization because it requires 

only a single calculation. It has proven useful to aggregate the data set by class labels and then 

randomly split each set separated by class labels into the training, validation, and test data sets. 

A common split percentage is to allocate 70% for training, 15% for validation, and 15% for testing 

(Rao & Mcmahan, 2019).  
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Finding the Right Hyper-parameters  

As described in the previous sections, the values of the weights are learned from the data, where 

the weights take real values that are adjusted by an optimizer with respect to a fixed subset of 

training data. In contrast, a hyper-parameter is any parameter whose value is used to control 

the learning process. The setting influences the number of parameters in the model and the 

values assumed by the parameters. The selection of the optimal hyper-parameter includes the 

optimal choice of a loss function, the optimizer, the learning rate(s) for the optimizer, the 

number of epochs i.e. number of iterations, the size of the batch and hidden layers, the patience 

for early termination, and several regularization decisions. It is important to note that these 

decisions can have a large impact on the convergence and performance of a model, and 

therefore the optimal choice of the various decisions should be explored systematically (Rao & 

Mcmahan, 2019). 

A model is said to generalize and perform better than another model if it reduces the error not 

only in the samples from the training data, but also in the samples from the unseen distribution. 

A finite sample, which is called the training data, is a distribution of data that is an 

approximation or incomplete picture of the true distribution. As the model works to reduce its 

loss on the training data, it may "overfit" and adjust for characteristics that are not actually part 

of the true data distribution. Overfitting is a phenomenon where the model fits the input 

training data exactly, causing the algorithm to produce inaccurate results on unseen data, 

defeating its purpose (Rao & Mcmahan, 2019). 
 

Regularization  

Regularization, one of the most important concepts in Deep Learning, is a set of methods for 

restricting a models expressiveness in order to prevent it from overfitting. One of the most 

common regularization methods is the weight decay method. The weight decay limits the 

growth of the network parameters and improves the generalization of the network. The growth 

of the parameters is limited by the value of the weight decay. The weights are chosen so that 

the network continues to classify the instance correctly, but does not memorize it. Therefore, 

at each step of updating the weights, all parameters are penalized by a term in the loss function 

(Blanck, 2019). 
 

Early stopping 

A key aspect of properly measuring model performance is using the metric to determine when 

to stop training. Early stopping is an important technique that uses a heuristic to prevent the 

overfitting of the neural networks. In this method, the training phase of the network is stopped 

after a certain number of epochs, which terminates further application to the training data 

(Blanck, 2019). This method tracks the performance of the validation dataset by evaluating and 

monitoring the training and validation error from epoch to epoch and determining when 

performance stops improving. If performance continues to not improve, the training is stopped. 

The number of epochs to wait before stopping the training is referred to as “patience”. In general, 

the point at which a model in a dataset stops improving is called the convergence of the model 

(Rao & Mcmahan, 2019).  
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Figure 31: Early stopping method (Nielsen, 2017) 

 

As can be seen in Figure 31, the "Sweet spot" indicates the convergence point, i.e., the point at 

which the neural network begins to overfit to the training data and at which, training should be 

stopped (Nielsen, 2017). This both prevents overfitting and reduces the training time, however 

at the cost of removing a small portion of the data set. 

 

2.4.4 Technologies and Framework 

In the following section, the PyTorch and TensorFlow Deep Learning frameworks are first 

introduced and the comparison between these two frameworks are subsequently discussed. 

 

PyTorch 

PyTorch is an open source, community-driven Deep Learning framework that supports the 

implementation of Deep Learning models and provides libraries to easily build ANN models. At 

its core, PyTorch has an optimized tensor manipulation library that provides a set of packages 

for Deep Learning. It is based on so-called tensors, a mathematical object that contains multi-

dimensional data which represents multi-dimensional matrices. All calculations are performed 

by tensor operations (Rao & Mcmahan, 2019). As shown in Figure 32, a tensor of order zero is 

just a number, or a scalar component. A tensor of rank one (1st  dimensional tensor) is a series 

of numbers, or a vector. Similarly, a 2nd dimensional tensor is an array of vectors, or a matrix. 

Therefore, a tensor can be generalized as an 𝑛-dimensional array of scalars. 

 

 

Figure 32: Tensors as a generalization of multidimensional arrays (Carlos, 2019) 

 

PyTorch has also implemented support for Graphics Processing Units (GPUs), which makes it 

easier to train and analyse neural network models on GPUs. Because of the many tensor 

operations performed during training, it is reasonable to use them since they are designed for 

matrix computations (Rao & Mcmahan, 2019).  
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TensorFlow 

TensorFlow is an open-source machine learning library developed by the Google Brain team. 

The first version was released in 2015 and is written in Python, C++, and Compute Unified Device 

Architecture (CUDA). Similar to PyTorch, TensorFlow focuses heavily on DNN and allows users 

to create and combine different types of Deep Learning models and build graphs of model 

performance during training (TensorFlow, 2022). 

 

PyTorch vs. TensorFlow 

Both PyTorch and TensorFlow are very popular frameworks for neural network applications. In 

fact, they are often considered by data scientists as the libraries of choice when it comes to 

developing innovative Deep learning applications or for research purposes. The PyTorch and 

TensorFlow frameworks have continued to improve over the years. While TensorFlow is 

considered a more mature library, PyTorch has also proven to be incredibly powerful. PyTorch 

is becoming increasingly popular in the research field, while TensorFlow is more associated with 

the development of AI products (O'Connor, 2022).  
 

Dynamic versus static computational graphs  

TensorFlow is a static framework that requires the computational graph to be first declared, 

compiled, and then executed. Although this leads to extremely efficient implementations that 

are useful in production and mobile environments, it can become quite burdensome in research 

and development. Modern frameworks such as PyTorch, on the other hand, implement dynamic 

computation graphs to allow for a more flexible imperative development style without having 

to compile the models before each execution. Dynamic computation graphs are particularly 

useful in modelling NLP tasks, where any input can potentially result in a different graph 

structure. In addition, unlike TensorFlow, PyTorch implements a tape-based automatic 

differentiation method that allows computational graphs to be defined and executed 

dynamically. This is extremely useful for debugging and also for constructing sophisticated 

models with minimal effort (Rao & Mcmahan, 2019).  

 

Additional Libraries  

In addition to PyTorch or TensorFlow, other libraries are also important for the development of 

a Deep Learning model. One of them is the NumPy library in Python programming language, 

which is briefly described in the following section. 
 

NumPy  

The most commonly used feature of NumPy is the creation of 𝑁-dimensional arrays, since 

Python does not support this basic data structure. It also provides implementations of linear 

algebra and random number generation. In addition, it is used by many other Python packages 

such as PyTorch to implement the tensor data structure (NumPy, 2022). 
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2.5 Application Programming Interface (API) 

 

Definition 

Application Programming Interfaces (APIs) are programming instructions that allow different 

software applications to exchange data and functions easily and securely. APIs help with the 

integration between different applications and devices, and enable a program to share and 

exchange data and functionalities with external third-party developers or entities (Bui, 2018). 

Terms such as libraries, frameworks, development kits, toolkits, and APIs are often used 

interchangeably, and they can all be considered variations of API, as the differences between 

them are rather small (Ala-Ilomäki, 2019). 

According to (Garber, 2013), APIs are on the rise due to the fact that API technology is one of 

the building blocks for cloud computing and mobile technologies. In particular, he also 

highlights the fact that APIs are the easiest way to connect mobile applications to backend 

applications. For example, sharing photos between platforms is made possible through APIs 

(Ala-Ilomäki, 2019). Google also provides APIs for its search engine so that third-party 

developers can integrate them into their websites and applications. 

 

API protocols and architectures 

To enable APIs to exchange data and functionalities, clear protocols and architectures are 

required to represent the rules, structures, and constraints that govern the operation of an API. 

Currently, there are three common categories of API protocols or architectures: 

Representational State Transfer (REST), Remote Procedure Call (RPC), and Simple Object 

Access Protocol (SOAP). 
 

Representational State Transfer (REST) 

The REST architecture is perhaps the most widely used approach to building APIs. REST is not 

an actual software architecture, but "a coordinated set of architectural constraints that attempts 

to minimize latency and network communication while maximizing the independence and 

scalability of component implementations" (Fielding & Taylor, 2002). REST is based on a 

client/server approach that separates the front and backends of the API and provides significant 

flexibility in development and implementation. REST is "stateless", meaning that the API does 

not store data or state between requests. REST APIs, commonly referred to as "RESTful APIs," 

can also communicate directly or work through intermediate systems such as API gateways and 

load balancers. 

 

Interaction process with APIs  

The interaction process with APIs is often the same for most applications. Developers create 

applications that make calls to APIs using HyperText Transfer Protocol (HTTP) in the 

application. The result of the call depends on the HTTP methods used, which includes HTTP 

requests and HTTP responses. The process of interaction between a client application and a web 

server through an API is shown in Figure 33 (IBM, 2020).  
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Figure 33: Interaction process between client and server via APIs (Pelayo, 2022) 

 

1. A client application initiates an API call to retrieve information - also known as a 

request. This request is passed from an application to the web server and contains a 

request verb, headers, and sometimes request text. 

2. After receiving a valid request, the API calls the external program or the web server. 

3. The server sends a response to the API with the requested information. 

4. The API transfers the data to the original requesting application. 

 

Libraries 

Some libraries that provide the functionalities of APIs are described in the following section. 
 

Py4J 

Py4J library allows Python programs running in a Python interpreter to dynamically access Java 

objects in a Java Virtual Machine (JVM). In other words, it enables the connection and exchange 

of data and functions between the Python and Java programming languages. Methods are called 

as if the Java objects were in the Python interpreter, and Java collections can be accessed using 

standard Python collection methods. Py4J also allows Java programs to call back Python objects 

(Py4J, 2009).  
 

Flask 

Flask is a lightweight framework for web applications, which is designed to make getting started 

with web application development quick and easy, with the ability to scale complex 

applications. It has become one of the most popular Python frameworks for web applications in 

recent years and has numerous extensions provided by the community that make it easy to add 

new features. This includes the extension that adds support for quickly building REST APIs. It 

defines the resource class, which contains methods for each HTTP method. (Pallets, 2010). 
 

Flask-CORS 

Flask-CORS is a Flask extension for handling Cross-Origin Resource Sharing (CORS) that makes 

cross-origin possible. To receive data from other applications, CORS must be enabled, otherwise 

the browser blocks the server's response for security reasons. CORS is a mechanism that uses 

additional HTTP headers to inform browsers to allow a web application running at one origin 

to access selected resources from another origin (Flask-CORS, 2022).   
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3. Methodology 

 

This chapter begins with a description of the software and hardware used in the development 

of the program. Then, the technologies and framework applied are presented. It then outlines 

the steps of program development, which involves initially understanding the business 

requirements, subsequently examining the available data, followed by specifying the properties 

that fulfil the business requirements, then modelling the algorithms to perform the required 

functions, and finally integrating different programming languages via APIs. 

 

3.1 Software and Hardware 

The software and hardware used in this work are described in the following section. 

 

3.1.1 Software 

An overview of all software, including the libraries deployed for the development of the digital 

assistant program, is shown in Figure 34. 

 

 

Figure 34: Overview of software of the digital assistant program 

 

The Python programming language is used for the development of the digital assistant, which 

includes the NLP pre-processing methods, supported by the NumPy library, which helps to 

create multi-dimensional arrays of the data, and by the NLTK library, which provides access to 

different corpus and different pre-processing methods. PyTorch is used as a framework for Deep 

Learning neural network modelling, which is also based on the Python language. The PyTorch 

framework is chosen due to the following reasons. PyTorch framework implements dynamic 

computation graphs instead of static graphs to allow for a more flexible imperative development 

style without having to compile the models before each execution. Dynamic computation 

graphs are particularly useful in modelling NLP tasks, where each input can potentially result 

in a different graph structure. In addition, PyTorch also implements a tape-based automatic 

differentiation method that allows computation graphs to be defined and executed dynamically.   
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3.2 Technology and Framework 

An overview of the technology and framework used in the development of the digital assistant 

program is displayed in Figure 35. 

 

 

Figure 35: Technology and Framework used in the program development 

 

1. Markov Decision Process (MDP) model is provided as input into the PRISM tool. 

2. PRISM tool is integrated to Java program via PRISM API. 

3. PRISM tool is connected to the Java's Py4J library via Gateway Server. 

4. PyTorch in Python program has access to PRISM tool on Java using Python's Py4J library. 

5. Python program with the help of Flask library is connected to the front-end visualization 

written with JavaScript, HTML and CSS via REST API. 

 

The process begins by providing the Markov Decision Process (MDP) model, described in the 

PRISM language (. 𝑝𝑟𝑖𝑠𝑚), to the Probabilistic Symbolic Model Checker, PRISM. Using the 

PRISM API written in Java language, the PRISM tool is able to connect to the Java program. The 

next step is to connect the Java program to the Python program, since the digital assistant is 

developed using the PyTorch framework, which is based on the Python programming language. 

The connection between Java and Python programs can be established using the Py4J library 

through the Gateway Server. Once the connection is established, the digital assistant can access, 

send and receive data from the PRISM tool through the API. Lastly, the front-end visualization 

design of the digital assistant is developed using a combination of HTML, CSS, and JavaScript 

languages, and the connection between them are established via REST API with the help of the 

Python's Flask framework. 

 

3.3 Program Development 

This section describes the process of developing the digital assistant from start to finish. The 

process follows the steps shown in Figure 36.  
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Figure 36: Process of digital assistant program development 

 

Initially, the business requirements relevant to the use case of this work are studied and 

understood. Second, the available data in this work are examined and analysed. Third, the 

specification of the properties that meet the business requirements is defined and constructed 

based on the available data. Fourth, the process of modelling the algorithms to develop the 

program is carried out. Finally, the various programming languages used in the construction of 

the program are linked and integrated through the use of APIs or appropriate libraries. 

 

3.3.1 Business Understanding 

As described in Section 2.1.3, Product Engineering Processes (PEP) of the automotive industry 

are usually associated with the development of complex products, such as the manufacturing of 

highly engineered products or the operation of embedded software systems with a high degree 

of complexity. The need for safety and reliability in automotive business processes, especially in 

processes with a high degree of complexity, has led to the introduction of the A-SPICE standard.  

In this work, the correctness and integrity of PEP must be verified to comply with A-SPICE. The 

standard defines six levels of process capability, with each level determining the quality of the 

processes. Currently, the highest achievable process capability level for the use case in this work 

is level 2. Level 2 (Managed) means that everyone in the organization understands the goal and 

the dos and don'ts. Specifically, there are document templates and checklists for the work 

products to be created in the project. In addition, responsibilities are clarified and team 

members receive appropriate training on their role in the project. Furthermore, all actions and 

work steps are planned and their execution is reviewed. From level 2, a large number of General 

Practices (GP) must be fulfilled.  

A-SPICE defines the GP as an evaluation benchmark for an organization's compliance with the 

standard. The assessment team documents and evaluates the processes according to the GP. 

The task of this work is to verify the correctness and integrity of the processes of PEP, which 

were modelled in the form of MDP models, using the probabilistic model checking technique 

via the PRISM tool. This can lead to the satisfaction of the properties specified in the GP of A-

SPICE level 2. There are in particular 4 mandatory properties (𝜑1, 𝜑2, 𝜑3, 𝜑4) that have been 

specified in this work, which can be verified using the PRISM tool. The description of these 

properties and the associated GP are outlined in the following section.  



 

57 | P a g e  
 

Properties 𝝋𝟏, 𝝋𝟐, 𝝋𝟑, 𝝋𝟒 

1. Property 1, 𝝋𝟏: The property 1 verifies GP 2.1.7 of A-SPICE, which ensures consistency and 

no deadlocks in the processes and that, the final state of the process will always be achieved 

with the probability of 100%. The property 1 also verifies GP 2.1.2, which ensures the ability 

of performing the process to fulfil the identified objectives. A better description of the GPs 

are as follows: 

 

• GP 2.1.7 (Manage the interfaces between involved parties) specifies that the 

individuals and groups involved in the process performance are determined. Besides 

that, responsibilities of the involved parties are assigned and the interfaces are managed. 

Communication is assured between the involved parties and the communication is 

assured to be effective.  

• GP 2.1.2 (Plan the performance of the process to fulfil the identified objectives) 

specifies that plan(s) for the performance of the process are developed and the process 

performance cycle, key milestones for the performance of the process and process 

activities and tasks are defined. Schedule is also defined and aligned with the approach 

to performing the process.  

 

2. Property 2, 𝝋𝟐: Property 2 delivers the minimum days (𝑑) for performing the whole process.  

 

3. Property 3, 𝝋𝟑: Property 3 delivers an estimation of expected days for performing the whole 

process obtained in accumulated working days (𝑤𝑑).  

 

4. Property 4, 𝝋𝟒: Property 4 verifies the GP 2.1.3, which ensures that the process does not 

deviate from its original setting according to A-SPICE. It proves the execution of the 

processes based on A-SPICE guidelines. A more detailed description of the GP is as follows: 

 

• GP 2.1.3 (Monitor the performance of the process against the plans) specifies that 

the process is performed according to the plan(s). Process performance is also 

monitored to ensure planned results are achieved and to identify possible deviations.  

 

All the properties 𝜑1, 𝜑2, 𝜑3, and 𝜑4 can be summarised in Figure 37. 

 

 

Figure 37: Description of properties 𝜑1, 𝜑2, 𝜑3, and 𝜑4  
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Figure 41: Module section M0e representing the processes 

 

The process states and transitions of the module can be visualized in form of a figure, as can be 

seen in Figure 42. The figure shows an example of module “M0e” representing processes with 

seven states (𝑠0, 𝑠1,  𝑠2, 𝑠3, 𝑠4,  𝑠5, 𝑠6), where both initial and final states are at 𝑠0. 

 

 

Figure 42: Visual representation of module “M0e” 

 

The process initially starts at state 𝑠0, which is indicated by “init”. From 𝑠0 to 𝑠4, the process is 

given only one option. i.e. with a 100 % probability of moving directly to the next state. After 

step 𝑠4, a non-deterministic choice is offered between two actions: 1) first action gives 𝑠4 a 

probabilistic choice of 0.5 (50%) to move to 𝑠5 and finally return back to 𝑠0, which is also the 

final state, and 2) second action gives 𝑠4 also a probabilistic choice of 0.5 or (50%) to move to 

𝑠6 and eventually return to the final state, 𝑠0. 

The next section describes the property specification process to ensure the compliance of the 

processes of the MDP models with A-SPICE.  
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3.3.3 Property Specification 

In order to analyse the MDP models described in the previous section with the PRISM tool, the 

probabilistic temporal logic specification must be carried out to specify the relevant properties. 

This step specifies the properties that meet the GP requirements of the A-SPICE standard, as 

described in Section 3.1, namely the 4 properties (𝜑1, 𝜑2, 𝜑3, 𝜑4).  

Firstly, in order to verify 𝜑1 and 𝜑4, it is necessary to ensure the consistency and absence of 

deadlocks in the processes (GP 2.1.7), the ability of the process performance to meet the 

identified objectives (GP 2.1.2), and that the process does not deviate from its initial setting 

based on the A-SPICE guidelines (GP 2.1.3). All of these requirements can be verified by proving 

that the final state of the process is always reached with a probability of 100%. If the probability 

is lower than 100%, it implies that there is a bottleneck, deadlocks or delays, which violates the 

GP of A-SPICE. 

 

Probability-based properties 

The probability that the system is in a particular state of interest, can be expressed using the 𝑃 

operator. To determine the probability that the whole process reaches the final state, the 

following property temporal logic is specified in the PRISM tool, as explained in Section 2.2.3: 
 

• Pmin=? [ F "end_state" ] – “the minimum probability that the whole process reaches the 

final state” 
 

Furthermore, there are additional functions that allow users to specify which module or variable 

reaches the final state or which module or variable reaches a specific state. This is helpful to get 

an overall view of the state of the processes, and in case of a delay or deadlock, the exact variable 

or module where the deadlock occurs can be identified. The specifications of the temporal logic 

are as follows: 
 

• Pmin=? [ F x = „end_state“ ] – “the minimum probability that the variable x reaches the 

final state” 

 

• Pmin=? [ F x = y ] – “the minimum probability that the variable 𝑥 reaches the state 𝑦” 
 

Next, in order to verify property 3, 𝜑3 and obtain information about the process duration, 

particularly the expected days of the whole process reaching the final state in accumulated 

working days (𝑤𝑑), the temporal logic of the reward-based properties can be specified in the 

PRISM tool. 

 

Reward-based properties 

The 𝑅 operator is used to denote the expected value of a random variable defined in terms of a 

reward structure. Reward can also be referred to as days or cost in this work. The following 

property specification describes the reward of the process:  
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• Rmin=? [ F "end_state" ] – “the expected minimum rewards (days) that the whole process 

reaches the final state” 
 

Furthermore, similar to the probability-based property, there are additional features that allow 

the specification of the expected minimum rewards (days) for a given module or variable to 

reach the final state, or the expected minimum (days) for a given module or variable to reach a 

given state. The specifications of the PCTL are as follows: 
 

• Rmin=? [ F x = „end_state“ ] – “the expected minimum rewards (days) that the variable 𝑥 

reaches the final state” 

 

• Rmin=? [ F x = y ] – “the expected minimum rewards (days) that the variable 𝑥 reaches the 

state 𝑦” 
 

To verify property 2, 𝜑2, which provides information about the minimum days (𝑑) to complete 

the whole process, a simulation of the minimum reward can be performed using the PRISM 

tool. Alternatively, the minimum days can be determined based on the minimum steps required 

by the variables of a given module of an MDP model to reach the final state starting from an 

initial state. For this purpose, all possible scenarios of process transitions in the MDP model are 

analysed for each module, and only the variables and states that require the fewest steps to 

reach the final state are considered. Ultimately, the corresponding reward of the variables and 

states in consideration are accumulated to obtain the minimum days. 

 

3.3.4 Modelling 

Once the MDP models have been examined and the properties to be verified with the PRISM 

tool have been specified, the development of the digital assistant program with Python can 

begin. The steps taken to model the complete algorithms are described in this section.  

As can be seen in Figure 43, the process of modelling the algorithms for the development of the 

digital assistant goes through three sequential steps. The process starts with the creation of the 

intent data, followed by the implementation of the training pipeline to generate training data, 

and finally launching the program. In the first part, the intent data is generated from the manual 

input of the conversational intents, in which each intent consist of a tag, patterns, and  

responses. In the second part, the generated intent data is used as input to create the training 

data by first being pre-processed using the NLP methods and then trained using the PyTorch 

Deep Learning neural network models. Finally, the generated training file is used as input for 

the program to make predictions and generate results. 
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Figure 43: Steps to model the algorithms for the development of the digital assistant 

 

The input and output of each steps are summarised as follows: 

1. Input: Conversational intents (tag, patterns, and responses), Output: Intent file 

2. Input: Intent file, Output: Training file 

3. Input: Training file, Output: Prediction results 

 

i. Model intent data 

Input data must first be provided to the model, in order for the Deep Learning model to learn  

and perform pattern recognition on the data and thus, compute prediction of an outcome. The 

more data provided, the better the performance of the neural network, as it can be trained for 

many different types of input data, including different linguistic styles of texts, as well as slangs 

of words that may vary from user to user. The intent data is constructed in the form of a 

structure, in which tag, patterns and responses of a conversational intent are manually defined. 

In order to create the intent data, each conversational intent should contain: 
 

• tag  

• patterns  

• response 
 

The digital assistant examines and studies the characteristics of the input patterns specified in 

the intent data and then attempts to predict the correct result to a new input message from a 

user by performing pattern recognition, i.e. attempting to identify the similarities between the 

user's message and the specified patterns. If the similarities match to a certain probability, one 

of the specified responses of the matched patterns is returned to the user as the reply. Each 

patterns and response pair is specified with a tag, which is simply a unique name for each pair. 
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Intent parameters 

In order to specify the tag, pattern, and responses in the intent data, it is first necessary to define 

all the functions and parameters that the digital assistant will base its predictions on. Besides 

performing functions that satisfy the A-SPICE properties 𝜑1, 𝜑2, 𝜑3, and 𝜑4, the digital assistant 

should also be able to compute predictions that return the outcome of other additional model 

checking parameters, and provide other relevant information concerning the processes. All the 

defined parameters are listed in Table 4. 

 

Table 4: All parameters for the digital assistant program 

1 List of A-SPICE Generic Practices (GP) Level 2 

2 Probability of the whole process reaching final state 

3 Probability of a user-defined module reaching final state 

4 Probability of a user-defined module reaching a user-defined state 

5 Minimum days for performing whole process  

6 Estimation of expected minimum days for performing whole process  

7 Estimation of expected minimum days a user-defined module reaching final state 

8 Estimation of expected minimum days a user-defined module reaching a user-defined 

state 

9 Total number of transitions 

10 Total number of states 

11 Value of initial state 

12 Building model time 

13 Model checking time 

14 List of modules names 

15 List of variables names 

 

Now that all the parameters are defined, the intent data, which consists of tags, patterns and 

responses based on the parameters can be constructed. All parameters with the corresponding 

tag, patterns and responses are presented in the form of tables in the following section. 

 

• A-SPICE Generic Practices (GP) 

Table 5 lists the tag, patterns and responses specified for the parameter A-SPICE Generic 

Practices (GP). 

 

Table 5: Tag, patterns and responses for parameter A-SPICE Generic Practices (GP) 

Tag operation 

Patterns 
"What is the highest reachable A-SPICE level?", 
"What is the highest A-SPICE level that we can currently achieve?", 
"Highest A-SPICE level?" 

Responses 
"As of right now, Level 2 is the highest reachable A-SPICE Level. Should I list 
down all the Generic Practice of A-SPICE level 2?” 
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• Probability of the whole process reaching final state 

Table 6 shows the tag, patterns and responses specified for the parameter probability of the 

whole process reaching the final state. 

 

Table 6: Tag, patterns and responses for parameter probability of the whole process reaching the final state 

Tag one_one 

Patterns 
"What is the probability of the whole process?", 
"Please verify if GP 2.1.7 is met", 
"Please verify if GP 2.1.3 is met" 

Responses The probability of the whole process reaching the final state is: { results }  
 

• Probability of a specific module reaching final state 

Table 7 displayed the tag, patterns and responses specified for the parameter probability of a 

specific module reaching the final state. 

 

Table 7: Tag, patterns and responses for parameter probability of a specific module reaching the final state 

Tag one_two 

Patterns 
"Please verify the probability of a specific module reaching final state", 
"What is the probability of a specific module reaching final state?" 

Responses The probability of { module } reaching the final state of the process is: { results } 
 

• Probability of a specific module reaching a specific state 

Table 8 lists the tag, patterns and responses specified for the parameter probability of a specific 

module reaching a specific state. 

 

Table 8: Tag, patterns and responses for parameter probability of a specific module reaching a specific state 

Tag one_three 

Patterns 
"Please verify the probability of a specific module reaching a specific state", 
"What is the probability of a specific module reaching a specific state?" 

Responses The probability of { module } reaching the { state } of the process is: { results } 
 

• Minimum days for performing whole process 

Table 9 displays the tag, patterns and responses specified for the parameter minimum days for 

performing the whole process. 
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Table 9: Tag, patterns and responses for parameter minimum days for performing the whole process 

Tag two_one 

Patterns 
"What is the minimum days for performing whole process?", 
"Please tell me how long is the duration of the whole process?" 

Responses The minimum days for performing whole process is { results } days. 
 

• Estimation of expected minimum days for performing whole process 

Table 10 shows the tag, patterns and responses specified for the parameter estimation of 

expected minimum days for performing the whole process. 

 

Table 10: Tag, patterns and responses for parameter estimation of expected minimum days for performing the whole 
process 

Tag three_one 

Patterns 
"What is the expected minimum days of my whole process?", 
"How long is the expected minimum days of whole process?" 

Responses 
The estimation of expected minimum days for performing whole process is { 
results } days. 

 

• Estimation of expected minimum days a specific module reaching final state 

Table 11 lists the tag, patterns and responses specified for the parameter estimation of expected 

minimum days a specific module reaching the final state. 

 

Table 11: Tag, patterns and responses for parameter estimation of expected minimum days a specific module reaching 
the final state 

Tag three_two 

Patterns 

"What is the estimation of expected minimum days of a specific module reaching 
final state?", 
"Please tell me the estimation of expected minimum days of a specific module 
reaching final state" 

Responses 
The estimation of expected minimum days for { module } to reach final state is 
{ results } days. 

 

• Estimation of expected minimum days a specific module reaching a specific state 

Table 12 shows the tag, patterns and responses specified for the parameter estimation of 

expected minimum days a specific module reaching a specific state. 
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Table 12: Tag, patterns and responses for parameter expected minimum days a specific module reaching a specific state 

Tag three_three 

Patterns 

"What is the estimation of expected minimum days of a specific module reaching 
specific state?", 
"Please tell me the estimation of expected minimum days of a specific module 
reaching specific state" 

Responses 
The estimation of expected minimum days for { module } to reach { state } is  { 
results } days. 

 

• Total number of transitions 

Table 13 illustrates the tag, patterns and responses specified for the parameter total number of 

transitions. 

 

Table 13: Tag, patterns and responses for parameter total number of transitions 

Tag transitions 

Patterns 
"What is the total number of transitions in my process?", 
"Please tell me the total number of transitions of the processes?" 

Responses The total number of transitions of the processes is { results }. 
 

• Total number of states 

Table 14 lists the tag, patterns and responses specified for the parameter total number of states. 

 

Table 14: Tag, patterns and responses for parameter total number of states 

Tag states 

Patterns 
"What is the total number of states in my process?", 
"Please tell me the total number of states of the processes?" 

Responses The total number of states of the processes is { results }. 
 

• Value of initial state 

Table 15 shows the tag, patterns and responses specified for the parameter value of initial state. 

 

Table 15: Tag, patterns and responses for parameter value of initial state 

Tag four_three 

Patterns 
"What is the value of initial state of my process?", 
"Please tell me the value of initial state of my processes?" 

Responses The value of initial state of the processes is { results }. 
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• Building model time 

Table 16 displays the tag, patterns and responses specified for the parameter building or 

construction model time. 

 

Table 16: Tag, patterns and responses for parameter building model time 

Tag four_four 

Patterns 
"What is the construction model time of the process?", 
"Please tell me the construction time of the model?" 

Responses Time for model construction is { results } seconds. 
 

• Model checking time 

Table 17 lists the tag, patterns and responses specified for the parameter model checking time. 

 

Table 17: Tag, patterns and responses for parameter model checking time 

Tag five_one 

Patterns 
"What is the checking model time of the process?", 
"Please tell me the checking model time." 

Responses Time for model checking is { results } seconds. 
 

• List of modules names 

Table 18 demonstrates the tag, patterns and responses specified for the parameter list of 

modules names. 

 

Table 18: Tag, patterns and responses for parameter list of modules names 

Tag five_two 

Patterns 
"Please list down all modules name of the model", 
"What is the modules name of the model?" 

Responses The names of the modules are [ results ]. 
 

• List of variables names 

Table 19 lists the tag, patterns and responses specified for the parameter list of variables names. 

 

Table 19: Tag, patterns and responses for parameter list of variables names 

Tag five_three 

Patterns 
"Please list down all variables name of the model", 
"What is the variables name of the model?" 

Responses The names of the variables are [ results ]. 
  



 

71 | P a g e  
 

The pseudo-code in Figure 44 illustrates the programming steps for developing the intent data 

from the manually entered tags, patterns, and responses. 

 

 

Figure 44: Pseudo-code of creating an intent data 

 

ii. Model Training 

Once the intent data have been generated, it goes through pre-processing steps using various 

NLP methods. Then, the data is trained with Deep Learning models which generates the 

training data. This section describes the steps of pre-processing with NLP methods and the 

training process with the neural network. 

 

• Pre-processing with NLP methods 

NLP methods, which include tokenizing, lower casing and stemming, removing of punctuation 

characters and Bag-of-Words (BoW), as explained in Section 2.3.2, are applied to perform pre-

processing of the intent data. The entire pre-processing pipeline is shown in Figure 45. 

 

 

Figure 45: NLP pre-processing pipeline  
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The intent data is used as input in this method. In the first step, all strings contained in the data 

are separated according to the sentence boundaries and stored in a list. Then, the individual 

words of each sentence are extracted and tokenized and then stored sentence by sentence in a 

separate list. Subsequently, the individual tokenized words are lowercased and stemmed to 

obtain the root form of the words. Punctuation marks are removed from the word list in the 

following step. Finally, each sentence is converted into a BoW that counts the total occurrences 

of the words in the list. This converts the pattern strings into numerical data that the Deep 

Learning model can understand. 

In this work, the NLTK and NumPy libraries, as described in sections 2.3.2 and 2.4.4, 

respectively, are applied to assist the implementation of NLP methods in Python programs. 
 

Natural Language Toolkit  

Natural Language Toolkit (NLTK) offers various pre-processing methods applied in this work, 

such as stemming and tokenization. For the implementation of this work, the “punkt“ library is 

used from NLTK. 
 

NumPy  

Additionally, the NumPy library is also used to create multi-dimensional arrays of the data since 

Python does not support this basic data structure. Besides, it provides implementations of linear 

algebra and random number generation and also used together with PyTorch to implement the 

tensor data structure. 

The code to import the NLTK module, specifically the “punkt“ and “PorterStemmer” libraries 

and NumPy module, is shown in Figure 46. 

 

 

Figure 46: Importing the libraries of NLTK and NumPy in Python 

 

Tokenization 

Tokenization is the process of breaking down a sentence or paragraph into smaller units 

called tokens. In order to perform word tokenization, 𝑤𝑜𝑟𝑑_𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒() class from NLTK 

module is applied in Python, as can be seen in the code in Figure 47. 

 

 

Figure 47: Code sample of tokenization in Python  
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Stemming 

Stemming is a normalization technique where list of tokenized words are converted into 

shorten root words to remove redundancy and can be performed by applying the 

𝑠𝑡𝑒𝑚𝑚𝑒𝑟. 𝑠𝑡𝑒𝑚() from “PorterStemmer” class of NLTK module in Python, as shown in Figure 

48. 

 

 

Figure 48: Code sample of stemming in Python 

 

Bag-of-Words 

To feed the text input into the Deep Learning model, the text must first be converted into 

number vectors using BoW. This is done by calculating the total number of occurrence of the 

words in the input list following the previous NLP methods. The NumPy class function 

𝑛𝑢𝑚𝑝𝑦. 𝑧𝑒𝑟𝑜𝑠() is used to create an array filled with zeros. The complete code for applying the 

BoW method is shown in Figure 49. 

 

 

Figure 49: Code sample of Bag-of-Words (BoW) in Python 

 

The pseudo-code in Figure 50 illustrates the programming steps of the complete pre-processing 

sequence using the NLP methods. 
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Figure 50: Pseudo-code of pre-processing with NLP 

 

• Implementation of Neural Network 

After the pre-processing steps have been performed, the data can now be trained with a Deep 

Learning model. The model is implemented using a Feed Forward Neural Network (FNN) model 

with 2 hidden layers. An overview of the steps performed in this phase can be seen in Figure 51. 

First, the pre-processed data is fed into the input layer, and then passes through the 2 hidden 

layers of the model to be trained. Finally, the output layer describes the last layer where the 

predictions are computed. 

 

 

Figure 51: Overview of training process with Deep Learning model  
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The goal of supervised learning is to build a model that makes predictions on the outcomes of 

new data based on a given sample of data. The following procedures are used for supervised 

training of the Deep Learning model, as explained in section 2.4.3. First, a model is defined, 

followed by the activation function, the loss function, and the optimizer. Finally, all the hyper-

parameter values are specified. 

 

Choosing a model 

It is first important to define the model in order to start the supervised training process. As 

mentioned, the model chosen for this work is a FNN with 2 hidden layers. The input size is 

determined by the number of word elements in the pre-processed data. 

 

Choosing activation function 
 

Activation function: ReLU 

The Rectified Linear Unit (ReLU) is arguably the most important activation function in use 

today, as it offers faster learning time and lower probability of gradient vanishing due to sparsity 

compared to other activation functions, as described in Section 2.4.3. For these reasons, the 

ReLU is chosen as the activation function in this work. 
 

The code in Figure 52 presents a Deep Leaning model implementation in PyTorch that takes the 

input and hidden layer size, does the linear transformation, applies ReLU as an activation 

function, and produces a single output. 

 

 

Figure 52: Code for implementation of Deep Learning model on PyTorch  
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PyTorch conveniently offers a 𝐿𝑖𝑛𝑒𝑎𝑟() class in the 𝑡𝑜𝑟𝑐ℎ. 𝑛𝑛 module that applies a linear 

transformation to the incoming data, and does the bookkeeping needed for the weights and 

biases. PyTorch also offers a 𝑅𝑒𝐿𝑈() class that applies the ReLU function element-wise to the 

data (Rao & Mcmahan, 2019). The class 𝑠𝑢𝑝𝑒𝑟() is also applied as it is useful for accessing 

inherited methods that have been overridden in a class.  

After the model architecture has been constructed with the help of an activation function, there 

are two other vital components to consider in supervised training: a loss function and an 

optimizer.  

 

Choosing a loss function  

Loss function attempts to match the algorithm's performance to the expected output. The loss 

function takes a true value (𝑦), also called the “error”, and a prediction (ŷ) as input and produces 

a real value that indicates the performance of the prediction. 
 

Loss function: Cross-Entropy Loss 

Cross-entropy loss is chosen in this work as the loss function because it is mainly used for 

classification problems and for situations, in which the model’s output is a probability, as it 

minimizes the distance between two probability distributions of the predicted and actual, as 

described in Section 2.4.3. The 𝑛𝑛. 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐿𝑜𝑠𝑠() class from PyTorch is applied for the 

Cross-Entropy loss function. The implementation of the class in the code is displayed in Figure 

53. 

 

 

Figure 53: Code for implementation of Cross-Entropy Loss on PyTorch 

 

Choosing an optimizer  

The final selection point of supervised training is the optimizer. The optimizer is used to reduce 

the error rates when training the neural networks by updating the weights of the model based 

on the error signal. The optimizer is associated with the learning rate hyper-parameter, which 

controls the extent to which the error signal affects the updating of the weights.  
 

Optimizer: Adam optimizer 

The Adam optimizer is chosen as the optimizer in this work because this type of optimizer 

currently have better performance, faster computation time, and require fewer parameters to 

tune compared to the other optimization algorithms, as mentioned in Section 2.4.3. PyTorch 

offers the class 𝑡𝑜𝑟𝑐ℎ. 𝑜𝑝𝑡𝑖𝑚. 𝐴𝑑𝑎𝑚() for implementing the Adam optimizer algorithms. The 

code is displayed in Figure 54.  
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Figure 54: Code for implementation of Adam Optimizer on PyTorch 

 

Early stopping 

Early stopping is another technique applied in this work to determine when to stop training in 

order to prevent the overfitting of the neural network. The training phase of the network is 

stopped after a certain number of epochs, which is when the performance continues to not 

improve. This point can also be referred to as convergence. To visualize the convergence point, 

the loss curve is used to analyse the loss of a neural network during training. The loss refers to 

the loss value over the training data after each epoch and gives a snapshot of the training process 

and the direction in which the network is learning. This is the value that the optimization 

process aims to minimize with training, so the lower the better (Sharma, 2019). 

 

 

Figure 55: Loss curve 

 

Figure 55 shows a plot generated with the help of the Matplotlib library in Python, 

demonstrating the influence of an increasing number of epochs on the loss value of the training 

model. It can be seen that the performance does not improve, i.e. the loss value stops decreasing 

after approximately 1000 epochs, indicating that the training phase of the network should be 

stopped at this point, as suggested by the early stopping method to avoid overfitting of the 

network. The number of epochs set at this point can also be referred to as “convergence”. The 

value of 1000 epochs is therefore used as the hyper-parameter value for the optimal number of 

epoch in the next section.  
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Once the training is complete, the training data is stored in the “𝑑𝑎𝑡𝑎. 𝑝𝑡ℎ” file. This file is 

subsequently used by the model to calculate predictions and return outputs in the step 

described in the following section.  

  

iii. Launching 

Once the training has been completed and training data (𝑑𝑎𝑡𝑎. 𝑝𝑡ℎ) has been created, the 

algorithms to launch the program is now developed, in order for the program to make 

predictions and return results. The training data can be imported in the program by the code 

shown in Figure 57. 

 

 

Figure 57: Importing training data 

 

• MDP File Upload 

For the program to be operational, it must first be ensured that an MDP model with the correct 

file extension is uploaded to the program. Either the ".prism" or ".txt" file extension is permitted 

for the model. If no MDP model with the correct file extension is uploaded, an error message is 

displayed until the model with the correct format is uploaded. The pseudo-code in Figure 58 

illustrates the programming steps to implement this functionality. 

 

 

Figure 58: Pseudo-code of uploading MDP file 

 

• Computing predictions 

The next step is to develop the algorithms to compute predictions based on the training data 

generated in the training phase, as described in the previous section. In this phase, the digital 

assistant program's algorithm is constructed to first receive the user's message, predict its 

intent, and then send a query based on the predicted intent to the PRISM tool on the backend. 

Here, the results are computed, then received back by the program, and finally delivered to the 

user as a response. The graphical representation of the process of computing predictions and 

data exchange between the users, the digital assistant program and the PRISM tool is shown in 

Figure 59.  
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Figure 59: Graphical representation of the process computing predictions and data exchange 

 

Data exchange on the conversational front-end 

The process of computing predictions and data exchange on the conversational front-end 

between the user and the program involves the following steps. The program is provided with 

an input, which can be either a string of characters or numbers representing the message sent 

by the user. The Deep Learning model of the digital assistant then tries to predict the correct 

desired response to this input message from the user based on the generated training data by 

performing pattern recognition on the intent, i.e., by trying to identify the similarities between 

the user's message and the patterns specified in the intent data. If the similarities match with a 

probability of 75% or higher, the response of the corresponding matched patterns in the intent 

data is returned to the user as a reply. On the other hand, if the message from user does not 

match any of the specified patterns in the intent data with a probability of at least 75%, the 

program will tell the user to rephrase the input message by returning "I don't understand, please 

rephrase the question". 

 

Data exchange at the backend 

The data exchange process between the digital assistant program and the PRISM tool at the 

backend is only executed if the input message matches the patterns in the intent file with a 

probability of higher than 75%. If this is the case, the corresponding PRISM class of the 

matching tag is called via the Java API on the backend. The results are computed by the PRISM 

tool and then returned by the class to the digital assistant program, and subsequently appended 

to the response of the matching tag. Table 21 lists all parameters and the corresponding PRISM 

class functions. 
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Figure 60: Data exchange between the digital assistant program with the back-end PRISM tool 

 

The pseudo-code in Figure 61, Figure 62 and Figure 63 illustrate the programming steps of the 

entire implementation of the prediction algorithms. 

 

 

Figure 61: The pseudo-code of implementation of the prediction algorithms (1)  
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Figure 62: The pseudo-code of implementation of the prediction algorithms (2) 
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Figure 63: The pseudo-code of implementation of the prediction algorithms (3) 

 

iv. Model front-end visualization 

Now that the program algorithms have been constructed, the development of the front-end 

visualization design of the digital assistant will begin. The design includes a display panel to 

visualize the exchange of messages between the user and the digital assistant, a text input 

placeholder for the user to enter the message, a button for the user to send the message, and a 

file upload function that allows the user to browse the MDP model and upload it to the program. 

 

• User-interface 

The front-end visualization functionalities (display panel, placeholder for text input, send and 

upload file function) are developed using a combination of HyperText Markup Language 

(HTML), Cascading Style Sheets (CSS), and JavaScript (JS).  
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• HTML is used to structure and define the contents of the web page. 

• CSS is a style sheet language used to describe the presentation and define the layout of 

the web page written in HTML and the JavaScript language. 

• JavaScript is used to program the behaviour and functionality of the web page. 

A template of the original structure of the front-end visualization design is provided on the 

GitHub page of (Nacario, 2020). 

 

• Upload file function 

The file upload function consists of a button to browse and select the MDP model, permitting 

only the . 𝑡𝑥𝑡 or . 𝑝𝑟𝑖𝑠𝑚 file extension, and another button to upload the model. A message 

notifying the user that the model has been successfully uploaded to the program is also 

provided. To develop the file upload function, the codes are written in both Python and 

JavaScript. The implementation of the code for both languages are described in the following 

section. 

 

Python 

Once the user has done selecting and submitting an MDP file, the route  “/upload_static_file” 

receives a POST request and the uploaded file from JavaScript. The underlying function “f.save” 

then performs a save operation. The code in Figure 64 creates a Python server for the function.  

 

 

Figure 64: Code of implementing upload file function in Python 

 

JavaScript 

On a button click from user, the function “uploadFile” is called from the JavaScript file. The 

complete form is passed in the function parameters, as can be seen in Figure 65. At the 

beginning of the function, a new object of “FormData” is created and subsequently, the “form” 

received from the HTML file is passed. After that, a new “XMLHttpRequest” object i.e. “oReq” is 

created in order to send the form data to the Python server. The statement “oReq.open("POST", 

"upload_static_file", true)” mentions the request type and the route for the server.  
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Figure 65: Code of implementing upload file function on JavaScript 

 

3.3.5 Integration of Programming Languages 

Finally, this section describes the process of connecting all different programming languages 

used in the development of the program. APIs and other relevant libraries are applied to support 

integration between different applications by allowing a program to share and exchange data 

and functionalities with other external third parties.  

In this work, 4 different languages are used to develop the program. The PRISM language is 

used by the PRISM tool to perform model checking functions, Java language is used to write the 

PRISM API, which allows the execution of model checking tool functions on Java program, 

Python language is used to develop the digital assistant program and to construct Deep Learning 

models using the PyTorch framework, and lastly, JavaScript, including HTML and CSS are used 

to develop the front-end visualization design. PRISM and Java are linked together via an API to 

provide a programmatic connection to the PRISM functions on Java. Java and Python are 

integrated to allow exchange of the requests and results of model checking functions. PRISM 

and Python cannot be integrated directly because the API to programmatically connect to the 

PRISM tool is only available in Java language. Therefore, Java is used as an intermediate program 

to link PRISM and Python. Python and JavaScript are connected together to allow the front-end 

visualization of the program. The whole interchange between the different programming 

languages can be seen in Figure 66. 

 

 

Figure 66: Interaction between different programming languages  
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I. Connecting PRISM and JAVA via JAVA API 

PRISM and Java are integrated to allow the execution of model checking tool functions on Java 

program. The programmatic connection between the PRISM tool and Java is established via an 

API, as illustrated in Figure 67. 

 

 

Figure 67: Interaction between PRISM and Java program via API 

 

The API is written in Java language and is available on the PRISM's GitHub page of (Parker, 

2022). To establish the connection, a copy of the PRISM source code is first downloaded and 

constructed by cloning the “prism” folder and running the "make" command in the interpreter's 

terminal. Then, the “prism-api” folder is cloned up one level from the directory where the PRISM 

source distribution is located, and finally, the "make" command is executed again. More detailed 

instructions can be found on the GitHub page. 

 

II. Connecting Java and Python via Py4J library 

Java and Python are integrated to allow the exchange of requests and results of model checking 

functions. Py4J is used as a library to enable the connection between Java and Python 

programming languages. Specifically, it allows the Python program to dynamically access Java 

objects in a Java Virtual Machine (JVM), which includes the PRISM functions written as Java 

objects. The methods are called as if the Java objects were in the Python program. Py4J also 

allows Java programs to call back Python objects. Before running Py4J in Python, it is necessary 

to ensure that the Py4J library is installed in the Python libraries by running the "pip install py4j" 

command on the interpreter's terminal. The architecture of the data exchange between Python 

and Java via the Py4J library can be seen in Figure 68. 

 

 

Figure 68: Interaction between Python and Java program via Py4J 

 

The following section describes the code implementation of the Py4J library in both Python and 

Java (Py4J, 2009).  
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Python 

When a GatewayServer instance is started, Python programs can connect to the JVM by calling, 

gateway = JavaGateway(). The entryPoint passed to a GatewayServer can be accessed with 

the entry_point member: gateway.entry_point. The implementation code for Py4J module in 

Python is shown in Figure 69. 

 

 

Figure 69: Implementation code of Py4J Python 

 

JAVA 

It is to note that the Java program must be started before executing the Python code in Figure 

69. In other words, the Py4J does not start a JVM. A Java GatewayServer is the main interaction 

point between a Python Virtual Machine (VM) and a JVM. Python GatewayServer class enables 

Python programs to access a Java program. The implementation code for Py4J module in Java is 

shown in Figure 70. 

 

 

Figure 70: Implementation code of Py4J Java 

  

III. Connecting Python and JavaScript, (CSS, HTML) via REST API 

The connection between Python and JavaScript, CSS and HTML programs is established via 

REST API architecture, as shown in Figure 71. 

 

 

Figure 71: Interaction between Python Flask and JavaScript, CSS, HTML 
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Flask, a Python web framework, is used to retrieve and exchange data between Python and 

JavaScript via REST API. In order to use Flask, the library is first installed in Python by executing 

the command “pip install Flask” on the interpreter’s terminal. The implementation of the code 

for both Python and JavaScript are described in the following section. 

 

Python 

The POST function within the REST API can be used to enable the exchange of data. POST 
refers to sending information and data to a specific location. The POST call returns a response 
from Python, and the page is redirected to the result page with the specified unique ID. A URL 
for POST requests is created in Python, and the code implementation is shown in Figure 72. 

 

 

Figure 72: Code of implementing Flask in Python 

 

JavaScript 

After the server side in Python is set up, the fetch command on JavaScript can be used to retrieve 

the data from Python Flask. The code implementation in JavaScript is shown Figure 73. 

 

 

Figure 73: Code of fetching data from Python in JavaScript 

 

After the implementation of the codes, the process of developing the whole digital assistant 

program is now complete. All steps are performed and the user interface of the digital assistant 

can be viewed on the front-end of a web browser. This can be done by launching the program 

and navigating to “https://127.0.0.1:5000/” in the browser to view and start using it.  
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4. Results and Discussion 

 

In this chapter, the outcomes of the work are presented and discussed. The outcomes are 

divided into two sections: a) the final product of the front-end user-interface design and, b) the 

prediction results from the digital assistant program. 

 

4.1 User Interface 

The final product of the front-end development design of the digital assistant program can be 

seen in Figure 74.  

 

 

Figure 74: Front-end visualization of the digital assistant program 

 

In the upper part of the program, the icon of the digital assistant is displayed, followed by a 

welcome message. “Cubot” is given as the name of the digital assistant. The lower part of the 

program first displays the placeholder for message entry and then the “Send” button next to it 

to send the message entered in the placeholder. Below that is the file upload function, which 

consists of the “Choose File” button to browse and select the model file to be analysed in the 

program and the “Upload File” icon to upload the selected model file. The exchange of messages 

between the user and the digital assistant is displayed in between the upper and lower parts of 

the program.  
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4.2 Questions and Answers 

The following section displays the prediction results of the program based on the message input. 

The messages or questions were not given exactly as the specified patterns in the intent data, 

although similar. This is to ensure that the model can perform predictions of the desired 

response on unseen data or message structure. 

The following section displays all the answers to the messages given to the digital assistant.  

 

• A-SPICE Generic Practices (GP) 

Table 22 lists the message input and response prediction for getting information on the A-SPICE 

Generic Practices (GP). 

 

Table 22: Message input and response prediction of the A-SPICE Generic Practices (GP) 

Message: Hi, I would like to know the highest reachable A-SPICE level. 

Answer: As of right now, Level 2 is the highest reachable A-SPICE Level. Should I list 
down all the Generic Practice of A-SPICE level 2? (Yes / No) 

 

Figure 75 shows the message exchange between the user and Cubot as displayed in the digital 

assistant program. 

 

 

Figure 75: Message exchange between user and Cubot of A-SPICE Generic Practices (GP) 

 

The user is then presented with two choices, “Yes” or “No”. All the GP of A-SPICE level 2 is listed 

if “Yes” is chosen, as shown in Table 23. 
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Table 23: Message input and response prediction of the A-SPICE Generic Practices (GP) if “Yes” is selected 

Reply: Yes 

Answer: GP 2.1.1 Identify the objectives for the performance of the process 
 
GP 2.1.2 Plan the performance of the process to fulfil the identified 
objectives 
 
GP 2.1.3 Monitor the performance of the process against the plans 
 
GP 2.1.4 Adjust the performance of the process 
 
GP 2.1.5 Define responsibilities and authorities for performing the process 
 
GP 2.1.6 Identify, prepare and make available resources to perform the 
process according to plan 
 
GP 2.1.7 Manage the interfaces between involved parties 
 
GP 2.2.1 Define the requirements for the work products 
 
GP 2.2.2 Define the requirements for documentation and control of the 
work products 
 
GP 2.2.3 Identify, document and control the work products 
 
GP 2.2.4 Review and adjust work products to meet the defined requirement 

 

Figure 76 shows the message exchange between the user and Cubot on the program if “Yes” is 

chosen. 
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Figure 76: Message exchange between user and Cubot of A-SPICE Generic Practices (GP) if “Yes” is chosen 

 

Table 24 shows the response if “No” is chosen. 

 

Table 24: Message input and response prediction of the A-SPICE Generic Practices (GP) if “No” is selected 

Reply No 

Answer: Alright, please let me know if you need my assistance. 
 

Figure 77 shows the message exchange between user and Cubot if “No” is chosen. 

 

 

Figure 77: Message exchange between the user and Cubot of A-SPICE Generic Practices (GP) if “No” is chosen  
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• Probability of the whole process reaching final state 

The message input and response prediction for getting information on the probability of the 

whole process reaching the final state is demonstrated in this section. Three different variations 

of message formulation are possible to achieve this. Table 25 demonstrates the message 

exchange using the first variation. 

 

Table 25: Message input and response prediction of first message formulation of probability of the whole process 

Message: Could you please verify the GP 2.1.7? 

Answer: GP 2.1.3 and GP 2.1.7 are satisfied because we have no deadlocks in the 
process. The probability of reaching the final state is 100.00%. All interfaces 
are managed well. 

 

Figure 78 shows the message exchange between the user and Cubot using the first variation as 

displayed in the digital assistant program. 

 

 

Figure 78: Message exchange between user and Cubot of probability of the whole process using first formulation 
variation 

 

Table 26 shows the exchange using the second formulation variation. 

 

Table 26: Message input and response prediction of second formulation variation of probability of the whole process 

Message: Could you please verify the GP 2.1.3? 

Answer: GP 2.1.3 and GP 2.1.7 are satisfied because we have no deadlocks in the 
process. The probability of reaching the final state is 100.00%. All interfaces 
are managed well. 

 

Figure 79 shows the message exchange between the user and Cubot using the second 

formulation variation. 
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Figure 79: Message exchange between user and Cubot of probability of the whole process using the second variation 

 

Table 27 lists the third message formulation variation. 

 

Table 27: Message input and response prediction of third message formulation of probability of the whole process 

Message: I would like to know the probability of the whole process reaching final 
state 

Answer: GP 2.1.3 and GP 2.1.7 are satisfied because we have no deadlocks in the 
process. The probability of reaching the final state is 100.00%. All interfaces 
are managed well. 

 

Figure 80 shows the message exchange between the user and Cubot using the third formulation 

variation. 

 

 

Figure 80: Message exchange between user and Cubot of probability of the whole process using the third formulation 
variation 

 

All three formulation variations returned the same response as specified in the patterns of the 

intent data. This is due to the fact that all three formulations intend to obtain information on 

the same desired parameter, namely the probability of the whole process reaching the final 

state, and a probability of 100% leads to the compliance of GP 2.1.3 and GP 2.1.7 of A-SPICE. 

Furthermore, the following section shows the prediction results of additional functions that 

allow users to determine the probability of a particular module or variable reaching the final 

state or the probability of a particular module or variable reaching a particular state. 
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• Probability of a specific module reaching final state 

Table 28 demonstrates the message input and response prediction for getting information on 

the probability of a particular module or variable reaching the final state.  

 

Table 28: Message input and response prediction of the probability of a variable s2b reaching final state 

Message: Could you please tell me the probability of a specific module reaching final 
state? 

Answer: Please enter variable number: 

Reply: s2b 

Answer: The probability of P=? [F s2b = 0] reaching the final state of the process is: 
100.00%. There are no deadlocks and therefore, the final state can always 
be reached and proves the compliance with A-SPICE Level 2 of GP 2.1.3 and 
GP 2.1.7 

 

The command P=? [F s2b = 0] displayed in the answer shows the temporal logic specification, 

which indicates the probability of user-defined variable s2b reaching the final state of 0. The 

probability of 100% is obtained in this example proves the compliance with the A-SPICE level 2 

of GP 2.1.3 and GP 2.1.7.  Figure 81 shows the message exchange between the user and Cubot as 

displayed in the digital assistant program. 

 

 

Figure 81: Message exchange between user and Cubot of probability of a specific module reaching the final state 
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• Probability of a specific module reaching a specific state 

Table 29 displays the message input and response prediction for getting information on the 

probability of a particular module or variable reaching a particular state.  

 

Table 29: Message input and response prediction of the probability of a variable s0d reaching state 0 

Message: Could you please say the probability of a specific module reaching a specific 
state? 

Answer: Please enter variable number: 

Reply: s0d 

Answer: Please enter the state number: 

Reply: 0 

Answer: The probability of variable s0d to reach state 0 of the process is: 100.00%. 
There are no deadlocks in the processes and thus proves the compliance 
with A-SPICE Level 2 of GP 2.1.3 and GP 2.1.7 

 

The probability of user-defined variable s0d reaching user-defined state of 0 is 100% and this 

proves the compliance with the A-SPICE Level 2 of GP 2.1.3 and GP 2.1.7. Figure 82 shows the 

message exchange between the user and Cubot for determining the probability of a variable 

s0d reaching state 0. 

 

 

Figure 82: Message exchange between user and Cubot of probability of a variable s0d reaching state 0 

 

Table 30 illustrates the response of another user-defined variable and state. 
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Table 30: Message input and response prediction of the probability of a variable s0h reaching state 3 

Message: Tell me the probability of a specific module reaching a specific state. 

Answer: Please enter variable number: 

Reply: s0h 

Answer: Please enter the state number: 

Reply: 3 

Answer: The probability of variable s0h to reach state 3 of the process is: 0.00%. 
Unfortunately, there are deadlocks in the processes. The A-SPICE Level 2 
of GP 2.1.3 and GP 2.1.7 are not complied. 

 

The probability of the user-defined variable s0h reaching the user-defined final state of 3 is 0%. 

This indicates that there are deadlocks in the processes and the A-SPICE Level 2 of GP 2.1.3 and 

GP 2.1.7 are therefore not met. 

Figure 83 shows the message exchange between the user and Cubot to get information on the 

probability of a variable s0h reaching state 3. 

 

 

Figure 83: Message exchange between user and Cubot of probability of a variable s0h reaching state 3 

 

Next, two options are possible to obtain information about the minimum days (𝑑) for the 

completion of the whole process. First, through a simulation of the minimum reward performed 

with the PRISM tool. Alternatively, the minimum days can be determined based on the 

calculation of accumulated reward of the minimum steps taken by the variables of an MDP 

model to reach the final state starting from an initial state. 
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• Minimum days for performing whole process 

Table 31 depicts the message input and response prediction for getting information on the 

minimum days for performing the whole process. The user is then offered two choices: “one”, 

which returns the result from the PRISM simulation or “two”, which returns the result from the 

accumulated rewards of the MDP model. If “one” is selected, the user is also offered an 

additional possibility to open the file containing the simulation data for reviewing purposes. 

Table 31 lists the response if “one” and subsequently “Yes” are selected. 

 

Table 31: Message input and response prediction of the minimum days for performing whole process if “one” and “Yes” 
are selected 

Message: Hi, I would like to know the minimum days for performing whole process. 

Answer: Please choose: (one/two) 
one) from PRISM Simulation 
two) from Rewards of MDP Model 

Reply: one 

Answer: The minimum days for performing whole process is 213.0 days. Would you 
like me to open the simulation data file? 

Reply: Yes 

(Simulation file opens in a new window) 

Answer: File opened... 
 

Figure 84 shows the message exchange between the user and Cubot as displayed in the digital 

assistant program if “one” and subsequently “Yes” are selected. 

 

 

Figure 84: Message exchange between user and Cubot of minimum days for performing whole process if “one” and 
“Yes” are selected 
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Table 32 shows the response if “two” is chosen. 

 

Table 32: Message input and response prediction of the minimum days for performing whole process if “two” is selected 

Message: Tell me the minimum days for performing whole process. 

Answer: Please choose: (one/two) 
one) from PRISM Simulation 
two) from Rewards of MDP Model 

Reply: two 

Answer: The minimum days for performing whole process from Rewards of MDP 
Model is 145.67 days. 

 

Figure 85 shows the message exchange between the user and Cubot as displayed in the digital 

assistant program if “two” is selected. 

 

 

Figure 85: Message exchange between user and Cubot of minimum days for performing whole process if “two” is 
selected 

 

It is to note that the results of “one” are not consistent, but produces a different outcome every 

iteration. This is due to the fact that the results are computed with the simulator of the PRISM 

tool, which produces a different result for each simulation, although with only a slight 

difference. Option “two”, on the other hand, always gives a consistent result, since it only 

depends on the calculation of a fixed set of rewards of a given MDP model. 

 

• Estimation of expected minimum days for performing whole process 

The message input and response prediction for getting information on the estimation of the 

expected minimum days for performing the whole process is demonstrated in this section. This 

parameter verifies the property 3, 𝜑3 of A-SPICE. Table 33 lists the message exchange.  
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Table 33: Message input and response prediction of the estimation of expected minimum days for performing whole 
process 

Message: Could you please tell me the estimation of expected minimum days for 
performing whole process? 

Answer: The estimation of expected minimum days for performing whole process is 
254.85 days. 

 

Figure 86 shows the message exchange between the user and Cubot as displayed in the digital 

assistant program. 

 

 

Figure 86: Message exchange between user and Cubot of estimation of expected minimum days for performing the 
whole process 

 

Furthermore, similar to the probability-based property, there are additional features that allow 

the user to specify the expected minimum rewards (days) for a particular module or variable to 

reach the final state, or the expected minimum (days) for a particular module or variable to 

reach a given state. 

 

• Estimation of expected minimum days a specific module reaching final state 

Table 34 shows the message input and response prediction for getting information on the 

expected minimum days of a particular module or variable reaching the final state. 

 

Table 34: Message input and response prediction of the estimation of expected minimum days variable s1a reaching the 
final state 

Message: I would like to know the estimation of expected minimum days of a specific 
module reaching final state. 

Answer: Please enter variable number: 

Reply: s1a 

Answer: The estimation of expected minimum days for variable s1a to reach final 
state is 18.17 days. 

 

The expected minimum days for the given variable s1a to reach the final state is returned as the 

answer. Figure 87 shows the message exchange between the user and Cubot in the program. 
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Figure 87: Message exchange between user and Cubot of estimation of expected minimum days for variable s1a 
reaching the final state 

 

• Estimation of expected minimum days a specific module reaching a specific state 

Table 35 presents the message input and response prediction for getting information on the 

expected minimum days of a particular module or variable reaching a particular state. 

 

Table 35: Message input and response prediction of the estimation of expected minimum days variable s1e reaching the 
state 3 

Message: Please share with me the expected minimum days of a specific module 
reaching a specific state? 

Answer: Please enter variable number: 

Reply: s1e 

Answer: Please enter the state number: 

Reply: 3 

Answer: The estimation of expected minimum days for variable s1e to reach state 3 
is 24.17 days. 

 

The expected minimum days for the given variable s1e to reach the given state of 3 is returned 

as the answer. Figure 88 shows the message exchange between the user and Cubot in the digital 

assistant program. 
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Figure 88: Message exchange between user and Cubot of estimation of expected minimum days for variable s1e 
reaching the state 3 

 

• Total number of transitions 

Table 36 displays the message input and response prediction for getting information on the total 

number of process transitions in the MDP model. 

 

Table 36: Message input and response prediction of the total number of transitions 

Message: Could you tell me the total number of transitions? 

Answer: The total number of transitions of the processes is 352892. 
 

Figure 89 shows the message exchange between the user and Cubot as displayed in the digital 

assistant program. 

 

 

Figure 89: Message exchange between user and Cubot of total number of transitions 

 

• Total number of states 

Table 37 shows the message input and response prediction for getting information on the total 

number of process states in the MDP model. 
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Table 37: Message input and response prediction of the total number of states 

Message: Share with me the total number of states. 

Answer: The total number of states of the processes is 73102. 
 

Figure 90 shows the message exchange between the user and Cubot. 

 

 

Figure 90: Message exchange between user and Cubot of total number of states 

 

• Value of initial state 

Table 38 displays the message input and response prediction for getting the value of the initial 

state of the processes in the MDP model. 

 

Table 38: Message input and response prediction of the value of initial  state 

Message: I would like to know the value of initial state. 

Answer: The value of initial state of the processes is 1. 
 

Figure 91 visualizes the message exchange between the user and Cubot in the program. 

 

 

Figure 91: Message exchange between user and Cubot of value of the initial state 

 

• Model construction time 

Table 39 shows the message input and response prediction for getting information on the MDP 

model construction time. 

 

Table 39: Message input and response prediction of the model construction time 

Message: What’s the construction model time? 

Answer: Time for model construction is 0.824 seconds. 
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Figure 92 shows the message exchange between the user and Cubot as displayed in the digital 

assistant program. 

 

 

Figure 92: Message exchange between user and Cubot of the model construction time 

 

• Model checking time 

Table 40 lists the message input and response prediction for getting information on the MDP 

model checking time. 

 

Table 40: Message input and response prediction of the model checking time 

Message: I would like to know the model checking time. 

Answer: Time for model checking is 1.124 seconds. 
 

Figure 93 shows the message exchange between the user and Cubot. 

 

 

Figure 93: Message exchange between user and Cubot of the model checking time 

 

• List of modules names 

Table 41 displays the message input and response prediction for getting the complete list of 

modules names of the MDP model. 

 

Table 41: Message input and response prediction of the list of modules names 

Message: Could you please list down all modules name. 

Answer: The names of the modules are [M0a, M0b, M0c, M0d, M0e, M0f, M0g, M0h, 
M0i, M0j, M1a, M1b, M1c, M1d, M1e, M2a, M2b, M2c, M2d, M2e, M3, M4, 
M5a, M5b, M5c, M5d]. 

 

Figure 94 illustrates the message exchange between the user and Cubot for requesting the list 

of modules names.  
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Figure 94: Message exchange between user and Cubot of the list of modules names 

 

• List of variables names 

Table 42 displays the message input and response prediction for getting the complete list of 

variables names of the MDP model. 

 

Table 42: Message input and response prediction of the list of variables names 

Message: List down all variables name please. 

Answer: The names of the variables are [s0a, s0b, s0c, s0d, s0e, s0f, s0g, s0h, s0i, s0j, 
s1a, s1b, s1c, s1d, s1e, s2a, s2b, s2c, s2d, s2e, s3, s4, s5a, s5b, s5c, s5d]. 

 

Figure 95 shows the message exchange between the user and Cubot for requesting the list of 

variables names. 

 

 

Figure 95: Message exchange between user and Cubot of the list of variables names 

 

All the predictions of responses were accurate even when the messages given were not 

formulated exactly as specified in the patterns of the intent data. This shows that the Deep 

Learning model has been successfully developed to make correct predictions of the desired 

results from unseen message structures. 

Through multiple trial and error, the keywords of all patterns of each tag were determined. It 

was found that, as long as the keyword is present in the user's message, the program always 

returns an accurate desired response to that message. The keywords represent the most 

frequently occurring words in the patterns of a tag in the intent data, as determined from the 

BoW method. 
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5. Conclusion and Outlook 

 

This chapter summarizes the content of all previous sections in order to recap and outline what 

has been accomplished. It gives an overall view of the completed work, highlights some of the 

limitations of the work and provides pointers for future developments. 

To recap, model checking is a technique for verifying the correctness of a software system in 

order to ensure safety, avoid errors and defects in the system, and thus comply with the A-SPICE 

standard of the automotive industry. Unlike the conventional testing method for verification, 

model checking considers all possible behaviours of a system. Unfortunately, although model 

checking is a powerful tool for verifying the correctness of a system, its complex language and 

unfamiliar specification methods make it difficult for organizations to fully implement it and 

for auditors to evaluate an organization's compliance with A-SPICE. Therefore, this work dealt 

with the development of a digital assistant that facilitates model checking for everyone. In its 

development, the digital assistant applies state-of-the-art NLP methods, which is part of AI that 

makes natural texts in human language understandable to computers. The focus of this work is 

on the PEP of the automotive industry, but the program can also be applied in any other industry 

that implements embedded software systems, robotics or biological systems. For instance, 

model checking is increasingly being applied in industries involving (safety) critical systems 

such as process plant control or railway systems (Per, et al., 2001). 

The process of developing the digital assistant program goes through the following steps. First, 

the business requirements were studied and understood. This includes defining the 

requirements of the A-SPICE standard, which can be verified with the PRISM tool. Second, the 

available data in this work were examined and analysed. The data available in this work are 

multiple MDP models of a general workflow process of "testing an autonomous parking pilot" of 

PEP of an automotive supplier. The process first describes the main steps of starting with the 

requirements for the test area, and subsequently the testing phase. Third, the formal 

specification of quantitative properties of the system being analysed (MDP models) were 

constructed and prepared to perform probabilistic model checking. Fourth, the process of 

modelling the algorithms to develop the program were carried out. The modelling process can 

be divided into four parts: a) creation of the intent data, b) implementation of the training 

pipeline, c) launching of the program, and d) development of the front-end visualization design. 

Finally, the various programming languages used in the development of the program were 

integrated together through the use of APIs or appropriate libraries. This involves the 

connection of PRISM and Java languages via an API, connection of Java and Python languages 

via Py4J library and connection of Python and JavaScript, CSS, and HTML via REST API. 

Several considerations were taken into account during the development of the program to 

ensure the accuracy of the predictive models. One of them is the prevention of overfitting. 

Overfitting is a phenomenon where the model is fitted exactly to the training data, which causes 

the algorithm to produce inaccurate results on unseen data and thus defeats its purpose. 

Therefore, it is important to avoid overfitting the data. To achieve this, the early stopping 

method was used in this work. Early stopping is a technique to determine when to stop training, 

thus prevents the overfitting of the neural network. The training phase of the network is stopped 

at the point of convergence, i.e. after a certain number of epochs, when the performance no 

longer improves. The corresponding number of epochs was then used as the optimal hyper-

parameter value for the training process.   
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Based on the results, this work can be considered a success, as the main objectives have been 

achieved. The digital assistant program has been properly developed in both the front-end and 

the backend, and the data have been successfully exchanged between the digital assistant and 

the PRISM tool. Besides that, all the questions from the user have been answered correctly by 

the digital assistant, provided that the questions did not fall far outside the patterns defined in 

the intent data. Furthermore, the objective of reducing the difficulty and effort in performing 

model checking can be considered to be achieved, as the user only requires to ask a simple 

model checking question in natural human language and the digital assistant will provide the 

accurate desired answer to this question with the help of the PRISM tool. In order to make the 

implementation of model checking even simpler, a list of parameters that the digital assistant 

can perform and a template of sample questions were created and provided on the program's 

homepage to assist the user in obtaining a certain result and to ensure that the user receives the 

most accurate result to their question. Certainly, the user is free to formulate the question in 

any way he/she prefers, as long as the keyword is present and the question falls within the scope 

of the specified patterns, but in order to always get the most accurate answer to the question, it 

is recommended that the user follows the question examples provided in the template. 

In order to even increase the performance of the digital assistant, especially for prediction of 

questions that fall outside of the question patterns in the intent data, much more data needs to 

be provided and collected by the program because Deep Learning works better with increasing 

amounts of data, since it can perform better pattern recognition and thus, provide a more 

accurate prediction. A feedback feature needs to be developed and deployed during the testing 

period where users can give feedback in a form of a thumbs up click if the digital assistant 

returns the correct answer to their question, or otherwise, a thumbs down click if the digital 

assistant returns an incorrect answer. If a thumbs up is given, the question asked by the user is 

added to the list of question patterns of the respective tag in the intent data. If a thumbs down 

is given, a similar question is removed from the list of question patterns of the respective tag. 

This can help optimize the program and reduce the amount of time and effort required to 

constantly update and provide new input data to the program manually. 

Another possibility to further increase the performance of the program is to apply alternative 

or additional NLP methods. In addition to the NLP pre-processing applied in this work, other 

additional methods such as Parts-of-Speech (POS) tagging and Stop-Words Removal can be 

used in the future work, which could potentially improve the quality of the pre-processed data. 

The methods used in this work are rather simplified, since the amount of data processed is not 

too large. For work with much larger data sets, the additional NLP pre-processing methods 

could be very helpful. Firstly, POS tagging is a method for describing the grammatical function 

of a word. It involves augmenting the input text with additional information about the 

grammatical structure of the sentence. This helps in forming named units (nouns) and 

extracting relationships between words. On the other hand, Stop-Words-Removal is simply the 

process of removing words that occur frequently in all documents in the corpus, including 

articles and pronouns. In this way, redundant low-level information is removed from the text to 

bring the important information to the focus (Sreemany, 2021).  
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In addition to the PyTorch framework, future work could instead apply the TensorFlow 

framework to develop the Deep Learning models for the program. Some of the advantages of 

TensorFlow are that it provides a flexible, extensive ecosystem of community resources and 

libraries that facilitate the development and deployment of machine learning applications. It is 

also an open-source platform, available to all users, and can be developed on any system. 

TensorFlow is also compatible with the Keras library, which allows users to code some high-

level functional sections. Keras provides TensorFlow with system-specific functionality, such as 

pipelining, estimators, and eager execution. For these reasons, a comparison of predictive 

performance between TensorFlow and PyTorch framework would be of interest. 

However, it must be noted that the digital assistant has certain limitations that could be 

improved. First of all, although the digital assistant returns one of the responses specified in the 

intent data, it is not possible to return a response that does not already exist in the dataset, i.e. 

the response which will be returned for a given question is only limited only to the list of 

responses specified in the intent data. This limitation may not be a problem if the goal is only 

to verify the process and obtain the accurate model checking results, but if one intends on 

making the digital assistant more intelligent, interactive and human-like, this limitation should 

be overcome. 

Another limitation of the digital assistant is that, however good its performance may be from 

this work, the digital assistant still in general has a high likelihood of misunderstanding the 

user's intent. This is especially the case when it has to deal with messages that have a completely 

different language style or structure than the one it has normally been trained with. 

Furthermore, occasionally the message provided by the user is not very clear, too specific, or 

given in a foreign language, making it difficult for the program to understand the intent. In this 

case, the user experience with the program will not be very pleasant and can have a negative 

impact on the verification process. Overall, the answer prediction of the digital assistant should 

have flawless accuracy to ensure that the user receives the most accurate model checking results 

at all times, especially when dealing with safety-critical software systems. Therefore, it is 

recommended to always have a redundant model checking tool or assistant available to validate 

the answers given by the digital assistant. Alternatively, a program could be developed in future 

work that automatically validates the correctness of the answers given by the digital assistant, 

which can be considered as a form of a verification system for the digital assistant. 
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