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Abstract 

II 

 

Abstract 

The present work investigated the applicability of in-line and off-line Raman spectroscopy for 

the quantification of glycerol, methanol, cell density, and total protein in fed-batch cultivations 

of Pichia pastoris. For assessment of the multivariate Raman spectra, data pre-processing and 

orthogonal projections to latent structures were applied. In the context of this work, the optimal 

pre-processing tools were baseline correction by 1st derivation and linear correction, scatter 

correction by standard normal variate, and noise removal by Savitzky-Golay filter with 9 points 

in each moving polynomial. The models yielded root mean square errors of cross-validation of 

13.7 %, 13.3 %, 6.24 %, and 11.5 % for glycerol, methanol, cell density, and total protein, re-

spectively. The lowest cross-validation errors for in-line as well as off-line were achieved with 

prediction of cell concentration. In contrast, the highest error was obtained by glycerol predic-

tion with 18.8 % by in-line Raman spectroscopy. Overall, the in-line Raman probe demon-

strated more lower cross-validation errors than off-line Raman spectroscopy. Calibration mod-

els were successfully developed for all analytes. 
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1 Introduction 

Since the United States Food and Drug Administration (FDA) has outlined the process analyt-

ical technology (PAT) initiative in 2004, an innovative approach was established for pharma-

ceutical development, manufacturing, and quality assurance (European Medicines Agency, 

2011; U.S. Department of Health and Human Services Food and Drug Administration, 2004). 

The framework aims to further improve process understanding and control, generating a greater 

probability for obtaining high-end product quality (Whelan et al., 2012). Simultaneously, bio-

processes thrive for more advanced, informative, and significant real-time data out of the sys-

tem in order to control it (Abu-Absi et al., 2014). This requires process analysers, either by off-

line, at-line, or in-line measurement approaches. For off-line measurements, the sample is re-

moved and analysed in proximity to the process stream, while in-line measurements are per-

formed within the process without sample removal. Vibrational spectroscopic methods, such as 

near-infrared (NIR) and Raman spectroscopy, have notably increased in applications as process 

analysers. Due to their ability of obtaining direct information, they proved to be a rapid and 

non-destructive analysis method (Nagy et al., 2018). NIR spectroscopy still dominates the phar-

maceutical field. However, Raman spectroscopy is becoming more widespread and has demon-

strated its feasibility during drug manufacturing processes (Buckley & Ryder, 2017; Goldrick 

et al., 2020). 

Raman spectroscopy, which was first described in the 1920s, has emerged as a viable option 

for real-time bioreactor monitoring. This option brings measurements, previously limited to off-

line analysis, to in-situ. The Raman spectroscopy possesses the capability to enlighten the com-

plex bioreactor environment and to measure a number of chemical species simultaneously 

(Nagy et al., 2018). 
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2 Objective 

Today, Raman spectroscopy is an established tool in bioprocess monitoring. However, before 

becoming an accessible tool, studies about the applicability of Raman spectroscopy on the used 

bioreactor system, cultivated strain, and media environment have to be made. In the present 

work, the potential of Raman spectroscopy for quantification of the compounds glycerol, meth-

anol, cell density, and total protein content is demonstrated. 

First, cultivations with the methylotrophic yeast Pichia pastoris are executed in a laboratory 

scale bioreactor. During cultivation, the cells are fed by glycerol, followed by a methanol-fed 

phase. Frequent probing of the cultivation ensures data mining of Raman spectra and reference 

values. Both off-line and in-line Raman spectroscopy are subject of this work. 

Second, multivariate calibration models are developed for the investigated analytes. In the con-

text of this work, optimal pre-processing methods are scrutinised in a weighted sum model. 

Principal component analysis is applied for outlier detection, while orthogonal projections to 

latent structures are employed for regression modelling. The obtained models allow an assess-

ment of the Raman spectra and their potential in monitoring the cultivation of Pichia pastoris 

in a fed-batch culture. 
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3 Theoretical Background 

The following chapter provides scientific and technical fundamentals in order to support the 

understanding of this work. First, the process analytical tools are further introduced before Ra-

man spectroscopy, its function, and applications are elaborated. Then, the background about 

multivariate data analysis (MVDA) is thoroughly explained in order to ensure the comprehen-

sion of the upcoming results. The working cycle of MVDA is illustrated, pre-processing tools 

are presented. Finally, the MVDA tools for outlier detection and multivariate calibration are 

described. 

 

3.1 Process Analytical Tools 

The pharmaceutical industry is one of the most regulated industrial fields. Consequently, its 

production lines must be validated in advance to demonstrate their suitability for commerciali-

sation and for safe human consumption or application (Sandell & Tougas, 2012). This, and the 

requirements of the industry have led to the emergence of the scientific discipline called PAT. 

The industry moved from quality-by-inspection to rather quality-by-design, implying full pro-

cess understanding from development on (Whelan et al., 2012). 

Since the FDA initiated the PAT approach, it also has been supported by the European Medi-

cines Agency (EMA) and by the International Conference on Harmonization (ICH) (European 

Medicines Agency, 2011, 2017). The goal of PAT can be described as the design and develop-

ment of a well-understood process, consistently ensuring a predefined quality at the end of the 

manufacturing process. Following criteria account to a well-understood process: 

1. All critical sources of variability are both detected and explained, 

2. Variability is handled by the process, and 

3. Product quality attributes can be reliably and accurately predicted over an established 

design space for materials, process conditions, manufacturing, and environmental con-

ditions (Rathore et al., 2010). 

For implementation of PAT, three major steps can be defined (Figure 3.1). First, the design of 

the unit operation has to be made in the early phase of process development. Here, the critical 

process parameters (CPP) are determined which influence the identified critical quality attrib-

utes (CQA). Risk assessment tools of ICH guidelines are applied as the understanding of the 

process is the basis of the upcoming phases. Then, suitable analytical methods for real-time 
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monitoring of the CQA and CPP are identified (Rathore et al., 2010). These in-process analysers 

can be either on-line (sample is diverted from process and may be returned to process stream), 

in-line (sample is not removed from process and analyser can be invasive or non-invasive), at-

line (sample is diverted or isolated from process and analysed in close proximity), or off-line 

(sample is removed from process stream and analysed afterwards) (Cervera et al., 2009; Rathore 

et al., 2010; Rathore & Gautam, 2009). 

 

Figure 3.1: Steps for implementation of process analytical technology (Rathore et al., 2010). 

For application of PAT, the analytical results have to be available within a time frame where 

real-time decisions are still possible. This enables a consistent process performance as well as 

a high product quality at the end of the manufacturing process. Afterwards, the design space 

has to be re-evaluated regarding its CQAs and CPPs (Rathore et al., 2010). 

 

3.2 Raman Spectroscopy 

Raman scattering was first discovered by Chandrasekhara Venkata Raman in 1928 (Raman & 

Krishnan, 1928). As an optical method, Raman enables non-destructive analysis of chemical 

composition and molecular structure. Raman applications began to grow in prominence with 

the advances of improved optics and smaller, more powerful lasers and detectors (Abu-Absi et 

al., 2014). 
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785 nm and 830 nm have been widely used in biological studies as these lasers have relatively 

low photon energy and do not cause serious photodamage on viable cells (Shipp et al., 2017). 

As Rayleigh scattering is more intense than Raman scattering, an optical filter is required to 

pass only the more informative signals to the detector (Butler et al., 2016). Two major technol-

ogies are used for collections of Raman spectra (Vankeirsbilck et al., 2002). Dispersive Raman 

spectrometers utilise Rayleigh filters, a single monochromator, or a multistage chromator while 

non-dispersive spectrometers apply Fourier transformation (FT) based on an interferometer. 

The most common filters are holographic notch and dielectric edge filters. Single monochrom-

ators compose a diffraction grating to disperse the Raman scattered light (Butler et al., 2016; 

Shipp et al., 2017). 

 

Figure 3.3: Generalised overview of instrumentation within a dispersive Raman spectroscopy system (mod-

ified after (Butler et al., 2016). 

In order to identify the weak intensity of scattering, the detection system of the spectrometers 

needs to be highly sensitive. Charge-coupled devices (CCDs) are widely integrated in Raman 

systems as they feature high quantum efficiencies with low signal-to-noise ratio. Other detec-

tion systems are photomultiplier tubes and photodiode arrays (Butler et al., 2016). 

For both dispersive and FT Raman spectrometers, different configurations of the detection sys-

tems are available. Configurations can be either backscattering (180° geometry), right-angle 

scattering (90° geometry), or forward scattering (0° geometry), also denoted transmission (Fig-

ure 3.4). Additionally, these configurations can be combined with an optical microscope or 

optical fibres. Another approach to be mentioned is the spatially-offset Raman spectroscopy 

(SORS) (Esmonde-White et al., 2017; McCreery, 2000). 
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Figure 3.4: Schematic representation of configurations in Raman spectroscopy after sample excitation. Solid 

line represents the excitation beam while dashed line depicts the type of signal collection afterwards. SORS: spa-

tially-offset Raman spectroscopy (modified after (Esmonde-White et al., 2017). 

Backscattering has been the main configuration for many years. The laser beam irradiates the 

sample, and the radiation is reflected back to the detector. Here, the small size of laser spot has 

to be considered. As the sampled volume can be small, the acquired spectrum might not repre-

sent the bulk sample. Therefore, it is important to ensure a homogeneous sample or to obtain 

multiple spectra of the same sample. Today, transmission Raman is growing in application. The 

sample is excited by a defocused laser and the signal is collected through the sample. This 

configuration also provides representative sampling and suppresses fluorescence. As backscat-

tering and transmission Raman are used in this work, SORS will not be further described. For 

this, refer to literature of Esmonde-White and collegues (Esmonde-White et al., 2017). While 

backscattering can be applied in-line, on-line, at-line, or off-line, transmission Raman is mostly 

used as an off-line PAT (Esmonde-White et al., 2017). 

 

3.2.2 Applicational Fields 

Raman spectroscopy has demonstrated to be an effective analysis in a range of sciences, such 

as material science, semi-conductor, geology, medicine, and polymer fields. Either solids, liq-

uids or gases can be analysed (Smith & Dent, 2019). Before its technological advances, NIR 

spectroscopy was the state of art for pharmaceutical production. As NIR spectra contain bands 

that are broad and overlapped, Raman spectra show higher specificity (Shipp et al., 2017). Also, 

Raman spectroscopy generates a weaker water signal, making it an interesting alternative for 

the application in culture broth and other aqueous solutions (Buckley & Ryder, 2017). Yet, 

there are shortcomings in the application of dispersive Raman spectroscopy. As Raman scatter-

ing is a low-probability event, weak scattering signals can become an issue, especially when 

working in low concentration ranges of the analyte. Raman signal intensity can be increased by 
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solid) as long as substrate 1 (S1) (green dashed) is available. Due to automatic process control 

of pH and temperature, these process parameters are continuously maintained at its set points. 

However, the DO level (blue dotted-dashed) is exponentially decreasing until falling below the 

set point pO2w. To maintain the set point and DO supply for the cells during the whole course 

of cultivation, agitation (grey solid) controls the DO. The end of the batch phase is characterized 

by a rapid increase of DO as S1 is not extensively available for all cells. A pre-determined 

exponential feeding profile where S1 is continuously added to the process (green solid) is run 

during fed-batch. The feeding enables maintenance of a pre-defined cell-specific growth rate 

µ1w and supervised growth to high cell densities. When a pre-defined cell concentration was 

achieved, the next phase of cultivation was initiated. In production phase, S1 feeding is stopped. 

Instead, substrate 2 (S2) (red solid) is added to the process such that the set point cS2Mw (red 

dotted-dashed) is maintained (El-Mansi et al., 2018). 

 

3.4 Multivariate Data Analysis 

Advances in technology and increasing availability of powerful instruments enable the possi-

bility of obtaining high amounts of data on each sample analysed in a reasonable time frame. 

In spectroscopy, a single rapid analysis on the sample creates multiple informational data. Its 

spectrum can be considered as a data vector where the order of the variables, e.g. Raman inten-

sities measured in arbitrary units at consecutive wavenumbers, has a physical meaning (Danzer 

et al., 2001; Oliveri et al., 2020). Simultaneously, the gathered data is most likely not immedi-

ately interpretable, therefore the information is not directly accessible. Rather, a number of 

steps is required in order to extract and properly interpret the potential information manifested 

in the data (Eriksson et al., 2006b). The science of extracting chemical information out of com-

plex data is called chemometrics. In fact, disciplines such as applied mathematics, computer 

science, and multivariate statistics are required (Wold, 1995). MVDA is a sub-discipline of 

chemometrics and aims to process and evaluate large complex data sets with numerous obser-

vations by extracting the relevant information (Eriksson et al., 2006b). In the following, possi-

bilities with MVDA are elaborated, different pre-processing steps followed by MVDA tools are 

explained before the construction of multivariate models is introduced. 

 

3.4.1 From Data to Information 

Statistics offer helpful tools which can be used to turn data into information. Univariate strate-

gies consider one variable at a time, independently from each other. This strategy has been 
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extensively used for information extraction. However, when intercorrelation between variables 

occur, it comes to its limits (Eriksson et al., 2006b). In contrast, multivariate statistics, can take 

this aspect into account, allowing a more complete interpretation of the data. For this, computer-

based methods are applied as classical approaches are promptly limited by the human three-

dimensional imagination (Danzer et al., 2001). 

 

3.4.1.1 Basic Types of Data Analytical Questions 

MVDA serves as a toolbox for three basic types of data analytical problems (Figure 3.6), also 

representing the major stages of MVDA: 

1. Overview of the data set, 

2. Classification and discrimination of observations, and 

3. Regression analysis between two data blocks (X and Y). 

Due to this, MVDA has been widely used in applicational areas such as process monitoring and 

early failure detection, quality control, data mining, multivariate calibration, and image analysis 

(Eriksson et al., 2013). 

 

Figure 3.6: MVDA toolbox to solve different data analytical questions. A) Overview; B) Classification and 

discrimination; C) Regression modelling between two blocks of data (modified after (Eriksson et al., 2013). 

In the first stage, a data overview can be obtained in an early phase of a project. This overview 

is accomplished with principal component analysis (PCA), a tool of MVDA introduced in 

Chapter 3.4.5. PCA points out how observations are related and if there are any deviating ob-

servations. Also, time trends and sudden shifts in the data are revealed. In the second stage, 

separate models of defined classes can be produced by PCA. Here, PCA aims to predict class 

membership of additional observations which were not previously considered in the data anal-

ysis. In the last stage, often linking two data blocks is desired, referred to as X and Y. This 

regression modelling enables the prediction of Y from X for new observations and can be 

achieved by projection to latent structures (PLS) (Eriksson et al., 2013). This will be further 

elaborated in Chapter 3.4.6. 
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3.4.1.2 Data and Data Structures 

In process modelling and monitoring, the X-variables, also denoted factors or predictors, are 

signals which are measured frequently in order to monitor the process status. In contrast, the Y-

variables, denoted responses, are measured less frequently and represent properties such as 

quality or yield of a product. The Y-variables are often time-consuming, laborious, and expen-

sive to measure compared with the X-variables (Eriksson et al., 2013). 

 

3.4.1.3 Tools for Data Analysis  

With MVDA, different models can be obtained by applying different types of analysis. Some 

analysis techniques, amongst others, are multivariate analysis of variance (MANOVA), multi-

ple linear regression (MLR), linear discriminant analysis (LDA), soft independent modelling 

by class analogy (SIMCA), PCA, and PLS (Eriksson et al., 2006b). The last two methods are 

further introduced in the following chapters as these were subject of this work. 

 

3.4.2 Approach to Data Analysis  

The typical data analytical evaluation is divided into several steps (Figure 3.7). In the phase of 

experimental design, one or more hypotheses are formulated, serving as a basis for data mining 

during experiments. After data collection, the data have to be prepared. Here, the raw data is 

transformed into mathematical structures such as matrices or tables. Then, raw data is turned 

into cleaned data by removing unwanted variations like undesirable scatter effects originating 

from experimental and instrumental artifacts (Danzer et al., 2001; Engel et al., 2013; Rinnan et 

al., 2009). If pre-processing steps were not chosen adequately, the results can also introduce 

unwanted variation. Thus, pre-processing influences the successful outcome of all following 

steps in the pipeline and with this, the entire experiment (Engel et al., 2013). 

After pre-processing, the actual data analysis in chemometrics can be performed. The aim here 

is the design of a mathematical model which describes the inherent structures and relations of 

the data. By this, new observations can be predicted which were not previously considered for 

modelling. The hypotheses originally formulated can then be refuted or substantiated with the 

help of statistics. If necessary, the pre-processing can be changed to obtain a better model result 

(Danzer et al., 2001). 
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Figure 3.7: Typical pipeline for chemometric data analysis comprising design, performance, and analysis of 

experiments. Box: action step; circle: condition of data (modified after (Danzer et al., 2001; Engel et al., 2013). 

The quality of the model can be evaluated by two criteria. First, internal validity should be 

present. This means, the interpretation of the results must be valid and relatable for the prevail-

ing data set, denoted training or calibration set (CS). Second, the results should be transferrable 

and generalisable to future measurements, referred to as external validity with a prediction set 

(PS). An external validation is performed with new, unknown data. In the practical sense, a 

cyclic procedure with alternating model building and validation is typical until the prediction 

is not improving significantly (Danzer et al., 2001). Due to this, a good understanding of the 

characteristics of the methods employed for data pre-processing is advantageous and will be 

further elaborated in Chapter 3.4.4. 

However, there is the chance to overfit the model. Since the data set used for modelling depicts 

a sample of the population, an improved internal validity does not automatically result in a 

higher external validity. In fact, when the model fits exactly against the CS, the model cannot 

perform accurately against unknown data, decreasing the prediction quality. To overcome this 

possibility, a proper validation of models is required (cf. Chapter 3.4.6.5) (Oliveri et al., 2020). 
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3.4.3 Data Preparation 

Before MVDA can be implemented, the measured data is transferred into a (n × m) data ma-

trix X. This data matrix X comprises i = 1, 2, …, n rows and j = 1, 2, …, m columns (Figure 

3.8). In the context of chemometrics, rows and columns are named observations and variables, 

respectively. Observations can be analytical samples, chemical compounds, or process time 

points of a continuous process. To characterize the properties of the observations, the variables 

are measured in form of spectra, chromatograms, or from sensors and instruments in a process 

(Eriksson et al., 2006b). 

 

Figure 3.8: Data table with n observations and m variables. The variables are measurements m made in order 

to capture the properties of the observations n. The data table is transformed into a (n × m) data matrix X. 

 

3.4.4 Data Pre-Processing 

The role of pre-processing for the model outcome is crucial. Furthermore, it deals with chal-

lenging data characteristics such as data artifacts or missing values. Artifacts, in contrast, are 

dependent on the used analytical chemical technique, e.g. baseline shifts in spectroscopy or 

peak shifts in chromatography. In general, both observations and variables can be pre-pro-

cessed. Also, several data pre-processing steps can be consecutively employed (Figure 3.9) 

(Engel et al., 2013). 

 

Figure 3.9: Pipeline for pre-processing of spectral data. Steps in the dashed box can be either skipped, added 

or the order of steps can be changed. Box: action step; circle: condition of data (modified after (Engel et al., 2013). 

Each pre-processing step aims to correct a particular artifact. The choice and order of pre-pro-

cessing steps should be based on the goal of the data analysis. Simultaneously, changing the 

order may result in a change of the final result. When working with large, complex data sets, 
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the effect of each single pre-processing step is not transparent. Due to this, conclusions drawn 

should be robust for the pre-processing method applied on the CS (Engel et al., 2013). 

Many pre-processing methods have been developed for spectral data (Engel et al., 2013; Eriks-

son et al., 2006b; Kessler, 2006; Rinnan et al., 2009). Still, it is not possible to certainly predict 

the output of pre-processed data and there are no clear guidelines for or against the use of certain 

pre-processing methods (Eriksson et al., 2006b). Therefore, different pre-processing methods 

are subject of this work and will be introduced in the following. 

 

3.4.4.1 Baseline Correction 

Baseline removal is useful in eliminating variable background originating from fluorescence or 

interfering ambient light when clear Raman peaks are still present in a spectrum (Huang et al., 

2010). Baseline effects result in signals with a vertical offset or a slope (Engel et al., 2013). 

 

Derivatives 

Derivatives offer an effective method for baseline correction and simultaneously improve the 

spectral resolution. However, the chemical interpretability is impaired as the appearance of the 

spectra is heavily altered (Kessler, 2006). The 1st order derived (1stDer) element xij1stDer, 

 
xij1stDer =

∂dij

∂λexj
≈

dij+1 − dij−1

λexj+1 − λexj−1
 , 

(3.1) 

with dij  value of row i and column j 

λexj  excitation wavelength of column j, 

corresponds to the slope at each point of the original spectrum. It peaks where the original 

spectrum has maximum slope and it passes zero where the original spectrum has peaks (Eriks-

son et al., 2006b). A 1st order derivative eliminates a constant baseline (offset) while a 2nd order 

derivative (2ndDer) also eliminates the baseline slope (Engel et al., 2013).  

The second derivative spectrum shows the curvature at each point in the original spectrum. This 

derivative spectrum is more similar to the original and shows peaks at vicinity as the original 

spectrum, but with an inverse configuration. Higher-order derivatives can amplify unwanted 

noise. One drawback with derivatives is that signals may be reduced and noise may be in-

creased, producing a noisy spectrum (Eriksson et al., 2006b; Huang et al., 2010). 
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3.4.4.2 Scatter Correction 

Signal differentiation can subtract the signal background by scattering, enhancing the visual 

resolution (Danzer et al., 2001). 

 

Standard Normal Variate Filter 

For spectral data, standard normal variate (SNV) filters are often applied as pre-processing step, 

working row-wisely. By SNV-filtering, the spectra are normalised and both baseline and wave-

length-dependent scatter effects are corrected (Kessler, 2006). The SNV-filtered value xijSNV, 

 
xijSNV =

dij − d̅i

sdi
 , 

(3.2) 

 with sdi  standard deviation of row i, 

is calculated by subtracting the row mean d̅i, 

 
d̅i =

1

m
∑ dij

m

j=1

 , 
(3.3) 

 with m  number of variables in row i,    

by the measured value dij and then divided by the row standard deviation sdi, 

 

sdi = √
1

m − 1
∑(dij − di̅)

2
m

j=1

 . 

(3.4) 

 

Multiplicative Signal Correction 

Multiplicative signal correction (MSC) assumes that wavelength-dependent scattering effects 

can be separated from chemical information. It estimates the coefficients ai and bi describing 

the scattering by fitting the spectrum xi, 

 xi = ai + bi ∙ x̅ + ei , (3.5) 

with ai  scatter difference coefficient 

  bi  baseline offset coefficient 

  x̅  mean spectrum 

  ei  polynomial coefficients, 
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to a reference, the average spectrum x̅, by least squares fit. The chemical information is ideally 

incorporated in ei, as scattering and offset are described by ai and bi, respectively.  

For each spectrum, the MSC correction coefficients ai and bi are determined in order to calculate 

the MSC-corrected spectrum xiMSC, 

 xiMSC =
xi − ai

bi
 . (3.6) 

This pre-processing tool is dependent on the mean spectrum as the coefficients are calculated 

by use of these. If observations are excluded from the data set or further observations are in-

cluded, the MSC model has to be recalculated (Kessler, 2006). 

To exemplify the effects of previously introduced pre-processing step, Raman spectra of the 

culture broth during cultivation are depicted (Figure 3.10). 

 

Figure 3.10: Different pre-processing methods of Raman spectra. Spectra are coloured according to glycerol 

concentration cS1M. A) raw data; B) SNV-filtered; C) 1st derivative; D) 2nd derivative. 
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3.4.4.3 Noise Removal  

Noise is prevalent in almost any analytical techniques and the underlying background differs 

per analytical technique. For this, mathematical filters can be applied to improve signal-to-noise 

ratio (Engel et al., 2013). 

 

Savitzky-Golay Filter 

The numerical differentiation of spectral data is mostly done with the Savitzky-Golay (SG) 

algorithm. This filter uses a moving data frame which is consecutively adapted to a polynomial 

based on the least squares fitting. By differentiation of the polynomial, derivatives of different 

orders are obtained. The size of the data frame used determines the level of smoothing. Before 

applying the Savitzky-Golay filter, the data have to be modified to an equidistant time axis 

(Kessler, 2006). 

After setting data frame size, the SG-filtered measured value xkSG, 

 
xkSG =

1

NORM
∑ aj ∙ xk+j

m

j = −m

 , 
(3.7) 

 with k  k-th data point, depending on data frame size 

  NORM  sum of coefficients of Savitzky-Golay filter 

  aj  filter coefficients 

can be calculated. The filter coefficient aj can be extracted from corresponding tables, while the 

norm factor NORM is the sum of coefficients (Otto, 1997). 

 

Moving Average Filter 

Measured values from probes can also be pre-processed by the moving average (MA) filter. 

The averaged value xkMA, 

 
xkMA =

1

2 ∙ m + 1
∑ xk+j

m

j = −m

 , 
(3.8) 

is calculated by the raw data xk within the filter width 2 ∙ m (Ross & Heinisch, 2006). 
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3.4.4.4 Scaling 

While previously described artifacts are all related to analytical techniques, the following pre-

processing steps are artifacts related to the sample (Engel et al., 2013). For scaling, two methods 

are introduced, data mean centring (Ctr) and unit variance (UV). Scaling is also known under 

normalisation (Huang et al., 2010).  

 

Data Mean Centring  

Mean centring is applied to reduce model complexity and improves interpretability of multi-

variate models. This pre-processing step works column-wisely and is mostly applied on spectral 

data (Kessler, 2006). 

For calculation of the centred measured value xijCtr, 

 xijCtr = dij − d̅j , (3.9) 

 with d̅j  column mean value of dj, 

the variable value dij is subtracted by the column mean value d̅j, 

 
d̅j =

1

n
∑ dij 

n

i=1

, 
(3.10) 

 with n  number of observations in column j. 

 

Unit Variance 

When handling data originating from different physical processes, the numerical dimensions 

can differ. Consequently, the variance of the data differs as well. This can lead to false weighing 

of the numerically higher-dimensioned data. To counteract the overweighing, UV (also known 

as autoscaling or standardisation (Engel et al., 2013)) can be applied. This step normalises the 

data to a unit variance of 1 (Kessler, 2006). 

To calculate an auto-scaled measured value xijUV, 

 
xijUV =

dij − d̅j

sdj
 , 

(3.11) 

the mean centred value is divided by the column standard deviation sdj, 
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sdj = √
1

n − 1
∑(dij − dj̅)

2
n

i=1

 . 

(3.12) 

While centring is mostly applied to spectral data, UV scaling cannot be applied here as the high 

variance of the variables corresponds to the chemical information content. However, it can be 

applied to pre-process the response variable Y (Kessler, 2006). 

 

3.4.5 Principal Component Analysis 

The principal component analysis serves as an important tool for MVDA (Wold et al., 1987). 

Depending on the specialised field, PCA has many synonyms. In psychology and chemistry, 

PCA is known as factor analysis, in mathematics as singular value decomposition, and in signal 

processing as Kosambi–Karhunen–Loève theorem (Kessler, 2006). However, all terms aim for 

a reduction of the original dimension to a low-dimensional plane to facilitate analysis and in-

terpretation. For this, a high number of observable variables are reduced to a few latent varia-

bles, denoted factor or principal component (PC), such that the original information of the un-

correlated PCs is largely preserved. This enables an overview of the data and uncovers trends, 

outliers, and groups or relationships of observations (Eriksson et al., 2006b). 

 

3.4.5.1 Mathematical and Graphical Model of PCA 

For explanation of the mathematical model, an example with a data set of m = 3 variables is 

examined first. The variables x1, x2, and x3 represent the columns of the data matrix X and shape 

a three-dimensional coordinate system. Each observation n can be depicted within the three-

dimensional space (Figure 3.11). Prior to PCA, data are pre-processed by mean centring and 

scaling to unit variance into the modified data matrix X. The vector of means is interpretable 

as a point in the space positioned in the middle of the swarm of points, denoted centre of gravity. 

Then, the coordinate system is re-positioned towards the gravity point (Eriksson et al., 2006b). 

The first PC t1 is the line in the m-dimensional space which best approximates the swarm of 

points in the sense of least squares. Each observation is projected onto this line to obtain a new 

coordinate value, denoted score, along the PC-line. The line passes the gravity point and repre-

sents the maximum variance in the scores. Usually, one PC is insufficient to adequately repre-

sent the systematic variation of the data. Thus, a second PC t2 is calculated. This line is orthog-

onal to the first PC and has the maximum variance to the data, passing the gravity point and 

containing the direction of the line. Two PCs define a plane, the sub-space. All projected scores 
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in the sub-space are summarised in the score plot (Danzer et al., 2001; Eriksson et al., 2006b). 

If the residual variance of the data is negligible, there is no more need for calculation of the 

third PC t3 or further PCs. With this, the dimension reduction was successful (Voß, 2017). 

 

Figure 3.11: Graphical representation of PCA. The matrix X with n observations and m variables is interpreted 

as a cluster of n points in a m-dimensional space with the gravity point in the middle of the swarm (dark grey 

circle). PCA fits a line (one-dimensional), plane (two-dimensional), or hyperplane (three-dimensional) to the data. 

Here, a plane is formed (orange dashed square) out of two principal components. Each observation is projected 

onto the plane (orange dotted line), e.g. t11 (orange circle), resulting in a score for each of the calculated dimensions 

t1 and t2. The new coordinates of the observations for the plane are the rows of the score matrix T while the 

directions in space are the m columns of the loading matrix PT (modified after (Eriksson et al., 2006a). 

For the mathematical explanation of a PCA model, the mean centred data matrix X, 

 X = T ∙ PT + E , (3.13) 

 with X  mean centred (n × m) data matrix 

  T  (n × r) score matrix of X 

  r  number of principal components (columns in T) 

  PT  (r × m) transposed loading matrix of X 

  E  (n × m) residual matrix of X, 

can be described by a score matrix T, a loading matrix P, and a residual matrix E (Kessler, 

2006). The residual matrix E is equally dimensioned as the data matrix X and contains the 

remaining variance of the data X which is not described by the uncorrelated PCs (Voß, 2017). 

The score matrix T comprises n rows and l = 1, 2, …, r columns. For each observation, one 

score is assigned to each calculated PC, resulting in a new coordinate system. Often, the term 
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principal component (PC1, PC2, …) is used for the column vectors (tl, t2, …, respectively) of 

score matrix T. In this work, the nomenclature remains at tl. The loading matrix P comprises 

m rows and l = 1, 2, …, r columns. For each variable m, one loading is assigned to each calcu-

lated PC. The loading vectors pl correspond to the direction vectors of the PC in the original 

coordinate system (Voß, 2017). 

 

3.4.5.2 Calculation of Principal Components 

To calculate the PCs of the PCA model, the most commonly used method is the non-linear 

iterative partial least squares (NIPALS) algorithm. This algorithm is an approximation proce-

dure in order to calculate the scores and loadings. The procedure starts with a random value for 

the first PC t1 which is iteratively improved until the value falls below a predefined error thresh-

old Jcrit (Wold, 1973). The exact algorithm steps will be explained in the following.

1) Starting point is the assignment of the temporary score vector tltemp, 

 tltemp = xj , (3.14) 

 with xj  column vector of mean centred data matrix X, 

which index’ starts with l = 1 and increases with each factor by 1 and has the highest vari-

ance sxj
2 , 

 

sxj
2 =

1

n − 1
 ∙ √∑(xij − xj̅)

2
n

i=1

 ,  

(3.15) 

 with xij  column vector of data matrix X, 

of the mean centred data matrix X. 

2) For this score vector, the corresponding temporary loading vector pltemp, 

 
pltemp =

XT ∙ tltemp

tltemp
T ∙ tltemp

 , 
(3.16) 

 with XT  transposed mean centred data matrix X 

  tltemp
T   transposed temporary score vector, 

is calculated by projecting the data matrix X to the sub-space tltemp.  
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The loading vector pl, 

 pl =
pltemp

‖pltemp‖
=

pltemp

√pltemp
T ∙ pltemp

 , (3.17) 

 with pltemp
T   transposed temporary loading vector, 

is normalised to 1, providing the direction vector. 

3) To improve the estimation for the score vector tl, 

 tl = X ∙ pl , (3.18) 

the data matrix X is projected to the new loading vector and simultaneously to the sub-

space pl. 

4) By evaluating the convergence criterium Jl, 

 

Jl = ‖tltemp − tl‖ = √∑(tltemp − tl)
2

n

i=1

 , 

(3.19) 

the difference between temporary and corrected score vector is compared. 

5) When the difference exceeds a predefined value Jcrit, e.g. 10-6, there was no convergence 

reached and the temporary score vector tltemp, 

 tltemp = tl , (3.20) 

becomes the in Step 3) calculated score vector tl. Then, a new iteration procedure starts 

with Step 2). Otherwise, when the difference falls below the predefined value Jcrit, the pro-

cedure did converge. The score vector tl and the corresponding loading vector pl form the 

solution for the l-th PC. Then, the procedure continues with Step 6). 

6) For the calculation of another PC with l = l + 1, the residual matrix E, 

 E = X − tltemp ∙ pl
T , (3.21) 

is calculated by removing the information of the PC tl from the data matrix X. 

7) Lastly, the new modified data matrix X, 

 X =  E , (3.22) 

is assigned to the residual matrix E calculated in Step 6) for the restart of the algorithm at 

Step 1). 



Theoretical Background 

23 

For the NIPALS algorithm, Steps 1) to 7) are repeated such that all potential PCs have been 

calculated or a certain fraction of the population variance is explained by the PCA model. The 

maximum number of PCs conforms the maximum number of observations n or variables m, 

respectively (Kessler, 2006). 

 

3.4.6 Projections to Latent Structures 

The second MVDA tool introduced is the projections to latent structures by means of partial 

least squares, also known as partial least squares regression (PLSR). The aim of PLS is the 

correlation of information in two blocks of variables, X and Y, by linear multivariate calibra-

tion. This enables the prediction of variables which were not previously considered in the 

model. These variables are characterised by noisiness, incompletion, of high number, or labo-

rious to measure (Eriksson et al., 2006b). In this work, Raman spectra were used in order to 

predict bioprocess variables. 

 

3.4.6.1 Mathematical Model of PLS 

In PLS, a multivariate approach is applied with a (n × m) data matrix X containing n observa-

tions. Each observation i corresponds to one target value yi with i = 1, 2, …, n rows, forming 

the vector y. Multiple measured yi result in the respond matrix Y, 

 Y = X ∙ B + G , (3.23) 

with Y  (n × v) mean centred and auto-scaled measurement matrix 

B  (m × v) PLS regression coefficient matrix 

G  (n × v) residual matrix of regression approach, 

consisting of n rows and h = 1, 2, …, v columns. Y is typically the analyte concentration of the 

CS. The resulting model can then be used to predict the analyte concentration from the spectra 

of new samples (Eriksson et al., 2006b; Kessler, 2006). 

The PLS regression is based on PCA. In fact, two PCA models are simultaneously calculated 

for data matrix X (equation 1.13) and measurement matrix Y, 

 Y = U ∙ QT + F , (3.24) 

 with U  (n × r) score matrix of Y 

  QT  (r × v) transposed loading matrix of Y 

  F  (n × v) residual matrix of Y. 
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In order to correlate X and Y, both data spaces need to exchange their information in order to 

project the score matrix T to the score matrix U (Figure 3.12). 

 

Figure 3.12: Schematic representation of projections to latent structures and involved matrices. Aim is to 

correlate data matrices X with Y. For this, the score matrices of both data matrices need to exchange information, 

enabled by the weighted loading matrix W (modified after (Kessler, 2006; Voß, 2017). 

The latent variables calculated by PLS are influenced by both data spaces. Due to this, the score 

vector T and loading vector P are not similar to the scores and loadings of a plain PCA. In the 

context of PLS, the latent variables are denoted PLS-component or factor instead of PC (Voß, 

2017). Before the exchange of information between X and Y is possible, the (m × r) weight 

matrix W is required. This matrix is equally dimensioned as the loading matrix P and is also 

referred to as weighted loading matrix of X, enabling the correlation between both data spaces 

(Kessler, 2006). In the following, the calculation of PLS-components is elaborated. 

 

3.4.6.2 Calculation of PLS-Components 

The regression coefficient matrix B, 

 B = W ∙ (PT ∙ W)
−1

∙ QT , (3.25) 

with W  (m × r) weighted loading matrix of X 

PT  (r × m) transposed loading matrix of X 

QT  (r × v) transposed loading matrix of Y, 

can be calculated from the weight and loading matrices W, P, and Q, respectively (Wold, 1995). 
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To determine the PLS-components, a modified NIPALS algorithm is applied. The so-called 

local models for X, 

 X = T ∙ WT + E′ , (3.26) 

and 

 X = U ∙ WT + E′′ , (3.27) 

and for Y, 

 Y = T ∙ QT + F′ , (3.28) 

are used which also explain the data spaces X and Y. Then, the iterative NIPALS is applied 

until convergence is reached. This will be explained in the following. 

1) Starting point is the assignment of the temporary score vector ultemp, 

 ultemp = yh , (3.29) 

 with yh  column vector of scaled measurement matrix Y. 

2) Then, the local model in equation (3.25) is used and the residual matrix E’’ is neglected in 

order to calculate the temporary weight vector wltemp, 

 
wltemp =

XT ∙ ultemp

ultemp
T ∙ ultemp

 , 
(3.30) 

by a least squares fitting.  

The temporary weight vector is then normalised to 1, turning into wl, 

 wl =
wltemp

‖wltemp‖
=

wltemp

√wltemp
T ∙ wltemp

 . (3.31) 

3) Subsequently, the local model in equation (3.24) is used and the residual matrix E’ is ne-

glected in order to determine the score vector tl, 

 tl = X ∙ wl , (3.32) 

by projecting the data matrix X to the sub-space wl.  
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4) The local model in equation (3.26) is used and the residual matrix F’ is neglected in order 

to calculate the X-loading vector pl, 

 
pl =

XT ∙ tl

tl
T ∙ tl

 , 
(3.33) 

and the Y-loading vector ql, 

 
ql =

YT ∙ tl

tl
T ∙ tl

 . 
(3.34) 

5) A new Y-score vector ul, 

 
ul =

Y ∙ ql

ql
T ∙ ql

 , 
(3.35) 

is determined by projecting the measurement matrix Y to the sub-space ql. 

6) Parallel to the NIPALS algorithm for PCA, the convergence criterium Jl, 

 

Jl = ‖ultemp − ul‖ = √∑(uiltemp − uil)
2

n

i=1

 , 

(3.36) 

is evaluated. 

7) When the difference exceeds a predefined value Jcrit, e.g. 10-6, there was no convergence 

achieved and the temporary score vector ultemp, 

 ultemp = ul , (3.37) 

becomes the in Step 5) calculated score vector tl. Then, a new iteration procedure starts 

with Step 1). Otherwise, when the difference falls below the predefined value Jcrit, the pro-

cedure converged. The score vector tl and the corresponding loading vector pl form the 

solution for the l-th PLS-component and the procedure continues with Step 8). 

8) For calculation of another PLS-component with l = l + 1, a new residual matrix E, 

 E = X − tl ∙ pl
T , (3.38) 

and F, 

 F = Y − ul ∙ ql
T , (3.39) 

are determined by removing the scores and loadings of the data matrices X and Y, respec-

tively. 
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9) Lastly, the matrices X, 

 X = E , (3.40) 

and Y, 

 Y = F , (3.41) 

are assigned to the residual matrix E and F calculated in Step 8) for the restart of the algo-

rithm at Step 1).

The algorithm is repeated such that the desired number of PLS-components is determined, and 

the prediction error is sufficiently low. Then, the coefficient matrix B can be calculated by use 

of equation (3.25) (Kessler, 2006). 

 

3.4.6.3 Detection of Outliers 

Due to the approach of the least squares errors used in PCA and PLS, outliers can have a great 

impact upon the multivariate model (Wold et al., 1987). Due to this, outliers should be excluded 

from the model. In the following, two distinct outlier detection methods are introduced. 

 

Hotelling’s T2 Test 

The first method for outlier detection is the Hotelling’s T2 test. An observation differing 

strongly from others can be detected. The Hotelling’s T2 test is the multivariate generalisation 

of the Student’s t test and examines observations on normal distributions (Hotelling, 1951). 

The Hotelling’s T2 value Ti
2 of an observation i, 

 
Ti

2 = ∑
(til − t̅l)

2

stl
2

r

l=1

 , 
(3.42) 

 with til  score of component l for observation i 

  t̅l  mean of score vector tl 

  stl
2   variance of scores of component l, 

describes the normalised distance of an observation to the centre of the model for all calculated 

PCs. When using centred or scaled data, the mean score t̅l of all components l equals 0. Hereby, 

the model centre is found at the origin (Ross & Heinisch, 2006).  



Theoretical Background 

28 

Observations with a Hotelling’s T2 value above the critical value Tcritα
2 , 

 
Tcritα

2 =
r ∙ (n − 1)

n − r
∙ F(α,r,n−r) , 

(3.43) 

 with α  level of significance 

  r  number of principal components 

  n  number of observations  

  F(α,r,n-r)  critical value of F-distribution with significance level α and r and n–r 

    degrees of freedom, 

embody with a probability as high as the chosen level of significance α an outlier. Commonly, 

α = 5 % is used, resulting in a confidence interval of 95 %. The required critical F(α,r,n-r) value 

is derived from the cumulative distribution function of a F-distribution, depending on α, the 

degrees of freedom n, and n – r, or can be read out from tables (Ross & Heinisch, 2006). 

To visually detect outliers with Hotelling’s T2 test, scores scatter plots are used. Scores of t1 are 

plotted against scores of t2, allowing a straightforward method for the detection of outliers. 

Observations with deviant characteristics occur on the borders of the data points. By displaying 

the Hotelling’s T2 ellipse for the examined PCs, outliers can be detected (Figure 3.13) (Eriksson 

et al., 2006b).  

 

Figure 3.13: Exemplary scores scatter plot with applying Hotelling’s T2 test and a confidence interval of 

95 %. Principal component 1 t1 and 2 t2 are plotted against each other. Green: data points within α; red: data points 

out-side level of significance. Figure produced with SIMCA® 17.0.1.  
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The radius of the Hotelling’s T2 ellipse rTαl, 

 

rTαl = √
2 ∙ (n − 1)

n − 2
∙ F(α,2,n−2) ∙ stl , 

(3.44) 

 with F(α,2,n-2)  critical value of F-distribution with significance level α, 2, and n–2 

    degrees of freedom, 

is calculated by the square root of Tcrit,α
2  (equation 3.41) for r = 2 and the standard deviation stl 

for the examined PCs (Eriksson et al., 2006b). 

 

Distance to Model X 

The other method for outlier detection is the parameter Q residuals, describing the orthogonal 

distance of an observation to the hyperplane in the original data space X. When a data point 

exceeds a certain distance, it may be an outlier (Eriksson et al., 2013). In the environment of 

the software SIMCA® 17.0.1 (Sartorius Stedim Data Analytics, Sweden), the parameter is de-

noted Distance to Model X (DModX) which will be used subsequently in this work. DModX is 

proportional to the residual standard deviation of the model (Eriksson et al., 2006b). 

The absolute distance DModXabsi, 

 

DModXabsi = √
1

m − r
∑ eij

2

m

j=1

 , 

(3.45) 

 with m  number of variables in data matrix X 

  r  number of calculated principal components 

  eij  element of residual matrix E in principal component analysis, 

corresponds to the residual standard deviation of an observation i for all variables.  

The mean distance DModXave, 

 

DModXave = √
1

(n − r − r0) ∙ (m − r)
 ∙ ∑ ∑ eij

2

m

j=1

n

i=1

 , 

(3.46) 

 with n  number of observations in data matrix X 

  r  number of calculated principal components 

  r0  1 for centred models, otherwise 0, 

describes the pooled residual standard deviation of all observations n (Eriksson et al., 2013). 
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For comparison of DModX values of different models, DModX is displayed in normalised 

units. That is DModXabsi divided by the pooled residual standard deviation of the model to 

obtain normalised DModXnormi, 

 
DModXnormi =

DModXabsi

DModXave

!
=

DModXi . 
(3.47) 

In the following, the normalised DModXnormi will be simply denoted DModX. As with the Ho-

telling’s T2 value Ti
2, a critical value Dcritα can be calculated for a chosen level of significance α. 

Dcritα is calculated from the F-distribution and regulates the “envelope” surrounding the data 

points of the CS (Figure 3.14). Observations twice as large as Dcritα are moderate outliers, indi-

cating that these observations are different from the normal observations with respect to the 

correlation structure of the variables (Eriksson et al., 2013). 

 

Figure 3.14: Visualisation of an observation’s distance to model X (DModX) in plane of original data set X. 

A value for DModX can be calculated for each observation. These values can be plotted in a control chart where 

the maximum tolerable distance Dcritα is given in order to reveal outliers. 

 

3.4.6.4 Selection of Variables 

For multivariate models with many components and a multitude of responses, the interpretation 

can be challenging. A metric which summarises the importance of the X-variables, both for X- 

and Y-models, is denoted variable importance in projection (VIP). VIP is a weighted sum of 

squares of the PLS-weights wjlnorm, taking into account the amount of explained Y-variance 

(Wold et al., 2001). 

In order to calculate the metric VIPj, 

 

VIPj = √
m ∙ ∑ (SSYl ∙ wjlnorm

2 )r
l=1

SSYtot
 , 

(3.48) 

with m  number of X-variables 

r  number of calculated PLS-components, 
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of a X-variable j, the fraction of PLS-components l describing Y-variance SSYl, 

 SSYl = cl
2 ∙ tl

T ∙ tl , (3.49) 

with tl  (n × 1) score vector of PLS-component in X 

cl  coefficient of intrinsic relation of the PLS model for component l, 

is multiplied with the normalised PLS-weights wjlnorm, 

 wjlnorm =
wjl

√wl
T ∙ wl

 , (3.50) 

with wjl  weight of component l for variable j 

wl  (m × 1) weighted column vector of component l, 

and divided by the total model-describing Y-variance SSYtot, 

 
SSYtot = ∑ SSYl

r

l=1

 . 
(3.51) 

The intrinsic coefficient cl, 

 
cl =

ul
T ∙ tl

tl
T ∙ tl

 , 
(3.52) 

with ul  (n × 1) Y-score vector of PLS-component l, 

can be calculated with the score vector of both X and Y of the model (Eriksson et al., 2006b).  

All VIP-values larger than 1 indicate an important variable and values lower than 0.5 indicate 

unimportant variables. The interval in-between is a grey area, depending on the data set size 

(Eriksson et al., 2006b). 

 

3.4.6.5 Validation of Multivariate Model 

The process of validation is one of the most important steps in multivariate modelling for eval-

uating the number r of calculated PCs. The portion of model variance X R2X, 

 
R2X = 1 −

1

n ∙ m ∙ sX
2  ∙ ∑ ∑ eij

2

m

j=1

n

i=1

 , 
(3.53) 

of the total variance sX
2, 

 
sX

2 =
1

n ∙ m
 ∙ ∑ ∑(xij ∙ X̅)

2
m

j=1

n

i=1

 , 
(3.54) 



Theoretical Background 

32 

of data matrix X, is a parameter which indicates the quality of the model describing the data 

matrix X, with the mean of the data matrix X̅, 

 
X̅ =

1

n ∙ m
 ∙ ∑ ∑ xij

m

j=1

n

i=1

 . 
(3.55) 

Additionally, the portion of model variance Y R2Y, 

 
R2Y = 1 −

1

n ∙ v ∙ sY
2  ∙ ∑ ∑ fih

2

v

h=1

n

i=1

 , 
(3.56) 

 with fih  element of (n × v) residual matrix F, 

describes the quality of prediction. In PLS, the parameter R2Y is more relevant than R2X, as 

the prediction power is more important than the fit to the model X.  

The quality of prediction RPh
2  for a variable h, 

 
RPh

2 = 1 −
∑ (yVSih − ŷVSih)2nVS

i=1

(yVSih − y̅VSih)2
 , 

(3.57) 

 with nVS  number of observations of validation set (VS) 

  yVSih  measurement value of target variable yh for object i in VS 

  ŷVSih  estimated value of target variable yh for object i in VS 

  y̅VSih  mean value of target variable yh in VS, 

corresponds to the coefficient of determination R2 and uses values of the validation data 

set (VS). This is a parameter for linear fittings of estimated model values plotted against the 

reference measurements. 

The root mean square error of predictions RMSEPh, 

 

RMSEPh = √
1

nVS
 ∙ ∑(yVSih − ŷVSih)2

nVS

i=1

 , 

(3.58) 

is the most important metric for the evaluation of the validation of the model in order to predict 

the target variable yh. In order to compare different models based on different scales, relative 

RMSEP RMSEPrel, 

 
RMSEPrel =

RMSEP

yCShmax − yCShmin
∙ 100 % , 

(3.59) 

 with yCShmax  maximum value of target variable yh in calibration set (CS) 

  yCShmin  minimum value of target variable yh in CS, 
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for external validation of PLS regression models is used. If there is no appropriate validation 

set available, an internal validation is used, also denoted cross validation (CV). Each sample of 

the CS is excluded once from the modelling process, and then predicted with the generated sub-

model. When cross-validating, the introduced metrics for model validation are denoted RCV
2  or 

RMSEcv, respectively (Eriksson et al., 2006b; Martens & Naes, 1989). 

 

3.4.6.6 Check for Overfit 

A model is desired which serves on one side an appropriate goodness of fit R2Y, and on the 

other side an appropriate goodness of prediction Q2 (Figure 3.15). Since the fit is a measure for 

the mathematical reproducibility of the CS, the predictive ability describes the reliability of the 

prediction. With increasing calculated PLS-components, the R2Y usually steadily increases un-

til unity 1. Q2 on the contrary, does not increase continuously and will not automatically ap-

proach 1 with increasing model complexity. In fact, at a certain number of components, the 

predictive ability does not improve any further and reaches a plateau. After this component, the 

Q2 decreases (Eriksson et al., 2006b). The theoretical R2Y = 1 mostly occurs with an overfitted 

model due to systematic variance originating from, e.g. measured noise. It comprises very ac-

curate data description on one side, but a low predictive power RPh
2  on the other side (Eriksson 

et al., 2006a; Eriksson et al., 2006b). 

 

Figure 3.15: Balance between goodness of fit R2Y and goodness of prediction Q2. Vertical axis corresponds 

to the amount of explained or predicted variation, R2Y and Q2, respectively. Horizontal axis displays the model 

complexity, number r of PLS-components. At a certain number of PLS-components the most valid model is ob-

tained with an optimal balance between fit and predictive ability (modified after (Eriksson et al., 2006b). 
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For visual investigation of overfitting or validation, the permutation plot can be used (Figure 

3.16). One limitation of cross-validation is the fact that it assesses only the predictive power, 

while no information about the statistical significance of the estimated predictive power is pro-

vided. In order to obtain an estimate of the significance of a Q2 value, numerous parallel models 

based on fit to randomly reordered Y-data is developed. Then, the real Q2 value is compared 

with distributed Q2 values of the reordered response data Y. In the CS, the X-data are left intact 

while the Y-data are randomly shuffled, appearing in different order. A PLS model is then fitted 

to the permuted data. By using cross-validation, both R2Y and Q2 values are calculated and 

compared with the R2Y and Q2 values of the real model. In the next step, a second PLS model 

is fitted to another permuted version of the Y-data and compared with the real values. By re-

peating this cycle a number of times, ideally between 25–100 times, distributions based on 

random data can be obtained (Eriksson et al., 2006b). 

 

Figure 3.16: Permutation plot for validation and overfit detection. For valid models, R2Y-intercept should not 

exceed 0.3–0.4 and Q2-intercept should not exceed 0.05. 

A permutation plot comprises a vertical scale representing the R2Y and Q2 values of all models 

and a horizontal scale representing the correlation coefficients between permuted and original 

response. The original R2Y and Q2 are located in the right part of each plot at 1. One is the 

coefficient obtained when correlating a variable with itself. A regression line is fitted amongst 

the permuted and original R2Y and Q2 values, respectively. The intercepts of the regression 

lines are interpretable as measures of this plot. R2Y-intercept should not exceed 0.3–0.4 and 
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Q2-intercept should not exceed 0.05. Intercepts below these limits are considered valid and well 

fitted models (Eriksson et al., 2006b). 

Another measure for overfitting is the mean bias error MBE, 

 
MBE =

1

n
∙ ∑(xpi − xoi)

n

i=1

 , 
(3.60) 

 with xpi  predicted value for observation i 

  xoi  observed value for observation i, 

representing the systematic error of a prediction model. The sign indicates the direction of the 

error. Negative MBE implies underprediction and positive MBE indicates overprediction on an 

average (Pal, 2017). 

 

3.4.7 Orthogonal Projections to Latent Structures 

The orthogonal projections to latent structures by means of partial least squares regression 

(OPLS) is a variation of the previously introduced PLS (Wold et al., 1998). This method was 

proposed as a filtration method that could either replace or complement signal correction meth-

ods such as MSC or SNV, facilitating the interpretation of predictive variation. While tradi-

tional filter methods are useful and often also necessary, it is usually not obvious whether pre-

dictive or orthogonal systematic variation is filtered out (Stenlund, 2011). Therefore, its aim is 

to improve the interpretation of PLS models and reduce model complexity (Figure 3.17) (Trygg 

& Wold, 2002). 

 

Figure 3.17: Overview of orthogonal projections to latent structures (modified after (Trygg & Wold, 2002). 

OPLS modelling separates the systematic variation from input data X into a part that is related 

to Y and a part that is unrelated (orthogonal) to Y (X-Y joint variation) (Figure 3.18). The 
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unrelated part originates from experimental or analytical nature, e.g. calibration transfers, de-

tection limits, or time trends. The other part corresponds to variations in identified biochemical 

trends (Stenlund, 2011).  

 

Figure 3.18: Schematic representation of orthogonal projections to latent structures (OPLS). OPLS is an 

extended version of the projections to latent structures. Index o: orthogonal  ̧index p: predictive (modified after 

(Gabrielsson et al., 2006). 

Mathematically, the model for PLS is extended by the calculation of the orthogonal parts to Y. 

This is done by applying the NIPALS algorithm. For further information on the mathematical 

background see literature of Trygg and Wold (Trygg & Wold, 2002).  
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4 Material and Methods 

The cultivations and analysis were executed in the laboratories for bioprocess automation at the 

Hamburg University of Applied Sciences. The following chapter deals with the used materials 

and applied methods. 

 

4.1 Cell Line 

The yeast strain Pichia pastoris (P. pastoris) BSYBG11 was used during this project for pro-

duction of enhanced green fluorescent protein (eGFP). However, the measurement of eGFP was 

not scope of this work. Stock cultures (OD600 = 5.55) of this strain were stored in 25 % glycerol 

at –80 °C. 

 

4.2 Medium 

The cultivations were executed with defined minimal medium FM22 which is described in Ta-

ble 4.1. This medium was modified after Stratton and colleagues (Stratton et al., 1998). 

Table 4.1: Medium composition of FM22. 

Component Article No. Manufacturer Concentration / g L-1 

C3H8O3 3783.2 Carl Roth 20.0(a)/25.0(b) 

KH2PO4 3904.3 Carl Roth 25.79 

(NH4)2SO4 3746.4 Carl Roth 5.00 

K2SO4 P022.3 Carl Roth 8.60 

CaSO4 ∙ 2 H2O P741.3 Carl Roth 1.40 

MgSO4 ∙ 7 H2O T888.3 Carl Roth 16.4 

Na3-citrate ∙ 2 H2O A12274 Alfa Aesar 6.81 

0.2 g L-1 biotin stock 3822.1 Carl Roth 8 mL L-1 

PTM4 stock − − 4 mL L-1 

(a) preculture; (b) main culture 

PTM4 is a trace element solution containing components mentioned in Table 4.2. 

  



Material and Methods 

38 

Table 4.2: Composition of trace element solution PTM4 stock. 

Component Article No. Manufacturer Concentration / g L-1 

CuSO4 ∙ 5 H2O 209198 Sigma-Aldrich  2.00 

NaI 8783.1 Carl-Roth 0.0800 

MnSO4 ∙ H2O 7347.1 Carl Roth 3.00 

Na2MoO4 ∙ 2 H2O 31439 Riedel de Haën 0.200 

H3BO3 31146 Riedel de Haën 0.0200 

CaSO4 ∙ 2 H2O T888.3 Carl Roth 0.500 

CoCl2 ∙ 6 H2O 255599 Sigma-Aldrich 0.500 

ZnSO4 ∙ 7 H2O 221376 Sigma-Aldrich 7.00 

FeSO4 ∙ 7 H2O P015.1 Carl Roth 22.0 

96 % H2SO4  30743 Sigma-Aldrich 1.00 mL 

 

Both PTM4 stock and biotin stock were sterile filtered with 0.22 µm pore size cellulose nitrate 

filters and stored until use at –4 °C. 

For media preparation, FM22 medium was autoclaved (Systec VX-150, Linden, Germany) at 

121 °C for 20 min and both biotin and PTM4 stocks were aseptically combined with FM22 

medium in the laminar flow cabinet (Heraeus Instruments, Germany). The pH value was ad-

justed with 1 M and 25 % ammonium hydroxide to 4.8 in precultures and to 5.0 in the bioreac-

tor, respectively. 

For acid, base, and anti-foam titration during cultivation, the reservoirs and corresponding con-

centrations can be found in Table 4.3. The reservoirs with exception of T2 (ammonia) and R2 

(methanol) were autoclaved at 121 °C for 20 min. 

Table 4.3: Reservoirs for cultivation. 

Reservoir Designation Component Art. No. Manufacturer Concentration 

R1, glycerol cS1R1 C3H8O3 3783.2 Carl Roth 630 g L-1 

R2, methanol cS2R2 CH3OH 4627.1 Carl Roth 790 g L-1 

T1, acid − H3PO4 6366.1 Carl Roth 1.5 M 

T2, base − NH3 5460.3 Carl Roth 25 % 

Anti-foam agent − Struktol®  J673 Schill+Seilacher 100 % 
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4.3 Preculture 

In order to cultivate P. pastoris BSYBG11 to high cell densities, precultures grown in small 

volumes are required for inoculation of the bioreactor. This prevents excessive lag-phases, 

maintains cell viability, and decreases process costs (Keil et al., 2019). 3.00 mL of stock cul-

tures were divided into ten 1 L shake flasks containing FM22 medium such that the inoculum 

volume totals 10 % of the initial bioreactor working volume. The shake flasks were incubated 

at 30 °C and 150 min-1 (Certomat® BS-1, B. Braun Biotech, Germany) for 28 h before they 

were aseptically transferred to the bioreactor via a transfer bottle. Prior to inoculation, the op-

tical density at 600 nm (OD600) of the transfer bottle content was measured. 

 

4.4 Bioreactor System BIOSTAT® C30 

The main cultivation was carried out in the in-situ sterilisable bioreactor BIOSTAT® C30 (Sar-

torius Stedim Biotech, Germany) with a total volume of 42 L and an aspect ratio h/d of 2:1 

(Figure 3.6). The bioreactor is equipped with a stainless-steel lid comprising six 19 mm ports 

for a safety valve, an agitation system with double mechanical seal and 6-blade disk impeller, 

an exhaust cooler, a ring sparger aeration, a level probe, and a sight glass for illumination. The 

ports for acid, base, and anti-foam titration are also located on the lid through connections and 

mountings. The jacketed stainless-steel vessel comprises five 25 mm connection ports for feed-

ing medium such as glycerol and methanol. Also, a longitudinal viewing window is positioned 

on the upper vessel wall. Both sampling and drain valve and another seven ports are located at 

the lower vessel wall for in-line electrodes. These are applied for determination of pH value, 

relative dissolved oxygen, temperature, turbidity, methanol, and for Raman spectroscopy.  

For automatic data acquisition and managing activities of the peripherals, the electrodes, bal-

ances (Sartorius, Germany), peristaltic pumps (Watson Marlow 101U, UK), and off-gas ana-

lyser BlueInOne (BlueSense gas sensor, Germany) are connected to the digital control unit 

(DCU) DCU 3 (Sartorius Stedim Biotech, Germany). The DCU allows manual operation such 

as adjusting set points or controller settings and is connected to a software for supervisory bio-

process control and data acquisition, enabling automatic operation. This software, denoted 

multi-fermenter control system (MFCS/win 3.0 (Sartorius Stedim Biotech, Germany)), will be 

further described in Chapter 4.4.3. The control system Simatic PCS7 (Siemens, Germany) was 

used for emptying the vessel after each run. 
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Figure 4.1: Bioreactor BIOSTAT® C30 and peripherals. 

The double mechanical seal was continuously maintained 0.5 bar above the pressure of the cul-

tivation vessel in order to avoid any fluids entering the seal. Before and after the culture vessel, 

the supply and exhaust air, respectively, were sterile filtered with 0.2 µm Sartofluor® filters 

(Sartorius, Germany). The steam generator Steamboy-9 (ZIRBUS technology, Germany) was 

used in order to allow sterilisation of titration agent ports before the cultivation process and 

frequent sterilisation of sampling valve during cultivation. 

Prior to sterilisation of the culture vessel, pH and methanol probes were calibrated. The pH was 

calibrated with commercial buffer solutions of pH 4.01 and 7.0 (Carl Roth, Germany). Then, 

the fully mounted culture vessel filled with culture medium was in-situ sterilised. Here, the 

zero-point calibration of the pO2 probe was applied. After ending the sterilisation, pO2 slope 

calibration was executed and the heat-labile stocks were aseptically added to the culture me-

dium. 
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4.4.1 Cultivation Conditions 

For cultivation in BIOSTAT® C30, the initial working volume valued 12 L such that all three 

blade impellers were covered with culture broth. The relative dissolved oxygen was controlled 

at 25 % by the agitation master controller (Figure 4.2). 

 

Figure 4.2: Simplified piping and instrumentation diagram and automation tasks of bioreactor system used. 

The batch phase was initiated by addition of the preculture to the cultivation vessel. In this 

phase, the cells were growing with maximum cell-specific growth rate µ1max until glycerol de-

pletion. 

In this work, an automatic batch end detection tool (Voß, 2017) was used, based on the fact that 

substrate depletion causes a decrease of cell growth during pO2/agitation control. With this, a 

lower oxygen is demanded. Therefore, the ongoing stirrer speed causes a sudden pO2 increase 

which in turn means that the stirrer speed is decreased by the controller. The change of both 

process parameters in a pre-defined time interval is observed by the software MFCS-Tool in 

order to induce a change of cultivation phase. 
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In order to determine the end of the batch phase, the maximum cell density cXLmax is required, 

 cXLmax = cXL0 + yX/S ∙ cS1L0 , (4.1) 

 with cXLmax  maximum cell concentration of batch phase g L-1 

  cXL0  initial cell concentration of batch phase   g L-1 

  yX/S  substrate yield coefficient   − 

  cS1L0  initial substrate concentration of batch phase g L-1, 

to calculate the batch end time tbatchend, 

 

tbatchend =
ln

cXLmax
cXL0

µ1max
 , 

(4.2) 

 with µ1max  max. cell-specific growth rate in batch phase h-1, 

After this, the fed-batch phase was started with a pre-defined glycerol feeding rate FR1w. The 

feeding rate was exponentially increased such that a cell-specific growth rate µw1 < µ1max was 

maintained, resulting in a substrate limited growth. 

The relative glycerol feeding rate FR1relw, 

 
FR1relw(t) =

µw(tj) ∙ VL(tj) ∙ cXL(tj)

yX
S

(tj) ∙ cS1R1

 ∙  
100 %

FR1max
 ∙ eµw(tj) ∙ (t−tj) , 

(4.3) 

with µw  set point of cell-specific growth rate  h-1 

  tj  time point of fed-batch start   h 

  VL  volume of liquid phase    L 

  cXL  cell concentration     g L-1 

  yX/S  substrate yield coefficient   − 

  cS1R1  glycerol concentration in reservoir  g L-1 

  FR1max  maximum glycerol feeding rate    L h-1, 

was implemented in the MFCS-Tool in order to control the glycerol feeding pump for the ex-

ponential feeding course. 

The fed-batch phase was then followed by the production phase when cell density reached 

> 40 g L-1. Here, the glycerol feeding pump rate was set to FR1 = 0 L min-1 and the methanol 

feeding pump rate FR2 was initially set to 100 % (= 0.0245 L min-1) for 2 min to induce a me-

tabolism switch of the yeast cells. This led to an initial methanol concentration of 3 g L-1 in the 

culture broth. The methanol concentration set point was maintained at cS2Mw = 1.5 g L-1 by on-

line monitoring with the methanol probe and methanol reservoir pump. Other cultivation con-

ditions can be found in Table 4.4. 
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Table 4.4: Cultivation Conditions. 

Process Set Points Designation Batch Fed-Batch Production 

Methanol concentration cS2Mw / g L-1 0.0 0.0 1.5 

Aeration rate FnGw / vvm 1.5 1.5 1.5 

Pressure  pGw / mbar 500 500 500 

pH value pHw / − 5 5 5 

Relative dissolved oxygen pO2w / % 25 25 25 

Temperature of liquid phase ϑLw / °C 30 30 22 

Cell-specific growth rate µ / h-1 µ1max 0.10 µ2max 

 

For simplification, different cultivations are named after following scheme in this work. The 

first two letters describe the BIOSTAT® C30 bioreactor system, followed by initials of the op-

erator. Then, the calendar week and the year is transcribed, e.g. XXPC0922, describing a culti-

vation with the BIOSTAT® C30 bioreactor by Phoebe Chan in the ninth week of year 2022. 

 

4.4.2 Standard Measurement Systems 

Both on-line and in-line measurement systems were used for the cultivation. Standard meas-

urement probes include relative dissolved oxygen partial pressure pO2 (in the following simply 

denoted dissolved oxygen, DO), pH value, temperature ϑL, and high level and foam alarm (Ta-

ble 4.5). The bioreactor comprises an aeration system (FnAIRmax = 30 L min-1) and an external 

gas mixer in order to allow oxygen sparging (FnO2max = 5 L min-1). The pressure of the bioreac-

tor is monitored via a pressure probe above the exhaust cooler. For determination of oxygen 

and carbon dioxide in the off-gas, the off-gas analyser BlueInOne was used. 

Table 4.5: Process parameters and corresponding measurement systems. 

Process Variables Designation Time Response Measurement System 

pH value pH In-line Redox electrode 

Temperature ϑL In-line Pt-100 

Pressure pG On-line Piezoelectric membrane 

Stirrer speed NSt On-line − 

Volume VL On-line Mass balances 

Off-gas O2 mole fraction  xO2 On-line Galvanic cell 

Off-gas CO2 mole fraction xCO2 On-line Non-dispersive infrared 

High level/foam alarm - On-line Capacitance switch 

Dissolved oxygen pO2 In-line Clark electrode  
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4.4.3 MFCS/win 

MFCS/win 3.0 is a bioprocess data management and automation software (Sartorius Stedim 

Biotech, Germany) for supervisory control and data acquisition (SCADA). This software uses 

International Society of Automation (ISA)-88 recipes, a standardised procedure to integrate, 

communicate, and configure batches. Alarms and set points can be implemented by MFCS/win 

in order to ensure robust automation performance and to minimise batch-to-batch variations. 

The device, which MFCS/win is implemented in, is connected to other physical devices such 

as the DCU, external balances, pumps, and off-gas analysers to allows the control and data 

acquisition. 

 

4.4.4 Turbidity Probe 

For on-line biomass monitoring, turbidity probes are mostly used in bioreactors. The measure-

ment principle is based on the attenuation of light when entering the liquid phase and is depend-

ing on dispersed particles in the suspension. However, there is no distinction between active 

and dead biomass while measuring (Madrid & Felice, 2005). 

The used turbidity probe ASD25-BT-N-5 (optek-DANULAT, Germany) works with an optical 

path length of 5 mm and is a single-channel absorption photometer using light in the NIR spec-

trum of 840-910 nm (Figure 4.3). The signal is transmitted to the transducer Control 4000 

(optek-DANULAT, Germany) for indication, saving, and editing the measured values. The data 

acquisition of the analogue signal Sturb is possible between 0 < AU < 4 by MFCS/win. 

 

Figure 4.3: Used turbidity measurement system. A) Turbidity probe; B) Transducer Control 4000 (optek-DAN-

ULAT, 2022) 
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The cell concentration determined by the turbidity probe cXLturb was calculated by  

 
cXLturb(t) = a ∙ (eb ∙ Sturb(t) − 1) ∙ (

NSt(t)

NStmax
)

c

 , 
(4.4) 

 with a  adaption parameter    g L-1 

  b  adaption parameter    AU-1 

  Sturb  turbidity signal     AU 

  c  adaption parameter    −. 

The adaption parameters were post-experimentally determined by fitting cXLCDW against cXLturb 

by using the simplex algorithm of Nelder-Mead with MATLAB. 

 

4.4.5 Methanol Probe 

For determination of methanol concentration, the on-line probe Alcoline® (Biotechnologie 

Kempe, Germany) was used (Figure 4.4). The probe comprises a permeable silicone membrane, 

allowing volatile substances such as methanol or ethanol to pass the membrane. An inert carrier 

gas transports the volatile substance to a gas sensor, causing a change of electrical capacity. 

Hereby, the electrical resistance of the sensor is decreased and information about the methanol 

content can be read off the Fermentation Mini Computer (FMC) (Biotechnologie Kempe, Ger-

many). The output signal was transmitted to MFCS/win in order to enable methanol concentra-

tion control by the corresponding reservoir pump. 

Prior to cultivation, the methanol probe was calibrated by a three-point calibration at initial 

cultivation conditions. After each addition of defined volume of methanol, the system was 

equilibrated for 10 min before reading off the electrical resistance from the FMC. 

 

Figure 4.4: Used methanol content measurement system. A) Methanol probe; B) FMC Mini (modified after 

(Biotechnologie Kempe, 2022). 
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4.5 Raman Spectroscopy 

In this work, the Raman devices RamanProbeTM (InPhotonics, USA) and tecRaman Sonde 785 

Küvette (tec5, Germany) were used (Figure 4.5). The Raman probe was adapted for insertion 

into a standard 19 mm bioreactor port. Both in-line and off-line devices were coupled to the 

light source MultiSpec® Raman Spektrometer (tec5, Germany), and to the multiplexer MUX-

4P (tec5, Germany), allowing sequential selection of analogue or digital signals of up to four 

different input channels. While the immersion probe is based on Stokes backscattering config-

uration, the off-line spectrometer used transmission Raman. 

The light source comprises a NIR diode laser of class 3B with an excitation wavelength of 

λex = 785 nm. The maximum power values 500 mW. For the in-line Raman probe, the laser 

focus is 5 mm ahead the probe tip. For the off-line probe, however, the focal plane values 

25 mm. The laser output of the probes is collected in a CCD detector for spectra recording in 

the range of 75–3215 cm-1 where a resolution of up to 1 cm-1 is possible. The spectra were 

visually displayed in the corresponding software MultiSpec® Pro II (tec5, Germany). 

 

Figure 4.5: Used Raman spectrometer system. A) In-line Raman probe without bioreactor port mounting (mod-

ified after (InPhotonics, 2022); B) Off-line Raman spectrometer; C) Light source and multiplexer (modified after 

(tec5, 2022)  
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Measurements of the off-line Raman system were carried out in 10 mm layered 3.5 mL quartz 

cuvettes. Both culture broth and supernatant were measured with the off-line system while the 

in-line probe measured only the culture broth. The glass window of the bioreactor was covered 

with a metal cover in order to sustain complete darkness inside the reactor vessel and for safety 

reasons with the laser class 3B. 

 

4.6 Analytical Methods 

During cultivation, samples were taken for analysis on the concentration of cell dry weight 

(CDW), glycerol, methanol, for fluorescence, and for optical density (OD) determination. The 

following chapter deals with the applied methods. 

For measurement of cell density, two distinct methods were used. In order to obtain direct esti-

mation about cell growth, the OD was measured while CDW allows more accurate values due 

to higher independence of external influences. If not mentioned explicitly, all data were meas-

ured in duplicates.  

For probing of the bioreactor, the first 20 mL of cell suspension was disposed before another 

20 mL served as sample to be examined. 

 

4.6.1 Cell Dry Weight Concentration 

To determine the CDW concentration cXLCDW, 1 mL of cell suspension was transferred into a 

dried, weighed microreaction tube and centrifuged for 10 min at 14,462 g (Centrifuge 5417, 

eppendorf, Germany). The supernatant was frozen at –20 °C for determination of metabolites 

and medium components at a later time point. The pellet was put in the drying cabinet (Heraeus, 

Germany) for 24 h at 104 °C until weight constancy was reached and was then weighed. 

The CDW concentration cXLCDW, 

 
cXLCDW(t) =

mXdry(t) − m0

Vsample
 , 

(4.5) 

 with mXdry  weight of loaded tube after drying  g 

  m0  weight of empty tube    g 

  Vsample  sample volume in tube    L, 

was calculated using the quotient of weight difference between before and after loading the 

tube, and the loaded sample volume Vsample. 
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4.6.2 Optical Density Determination 

The OD measurement was executed during cultivation at 600 nm with a spectrophotometer 

(Ultra Spec 3000 pro, Amersham Pharma Biotech, UK) where demineralised water (DW) was 

used as blank. The OD must be in the range of 0.1 < OD < 0.6 in order to be in the linear range 

of the spectrophotometer and to ensure reliable measurement. If the limit was exceeded, the cell 

suspension was diluted with DW. Incorporating the dilution factor, the actual OD600,  

 OD600(t) = DF ∙ ODmeas(t) , (4.6) 

 with ODmeas  diluted optical density at 600 nm  g 

  DF  dilution factor     −, 

can be calculated. 

Based on the correlation factor KX/OD, the cell density cXLOD, 

 cXLOD(t) = KX/OD ∙ OD600(t) , (4.7) 

 with OD600  optical density at 600 nm   − 

  KX/OD  correlation factor between cell density and OD g L-1, 

was determined. 

 

4.6.3 Off-line HPLC for Glycerol and Methanol Determination 

For off-line quantification of glycerol and methanol, the High-Performance Liquid Chromatog-

raphy (HPLC) system LaChrom® (Hitachi High Technologies, USA) was used. The HPLC 

comprises pump system L-7100, autosampler L-7250, column oven L-7360, diode array detec-

tor L7455, and refractive index (RI) detector L-7490. The column RezexTM RHM-Monosac-

charide H+ (8 %) 300 x 7.8 mm (Phenomenex, USA) was utilised with the preceding security 

guard cartridge Carbo-H 4 x 3 mm (Phenomenex, USA) in order to protect the column from 

impurities. 

The working principle is based on ions exchanging on the column where sulfonic groups are 

fixed on the surface of the polystyrene-divinylbenzene resin in order to form a negatively 

charged shield, denoted Donnan membrane. This membrane allows the passing of non-ionic 

particles and therefore the elution from the column (Han, 1999). 

For measurement, both standards and supernatant samples were acidified to a concentration of 

10 mM H2SO4. A mix of glycerol and methanol served as external standard. Then, the samples 
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were centrifuged at 14,462 g for 10 min and the supernatant was filtered using 0.2 µm syringe 

filters (Minisart, Sartorius, Germany) and transferred into single-use glass vials with 200 µL 

micro inserts (VWR, Germany). The column oven temperature was set to 60 °C and 10 mM 

H2SO4 was used as mobile phase. Before sample measurement, the HPLC system was washed 

with mobile phase at 0.1 mL min-1 for > 3 h. For measurement, the flow rate was increased to 

0.6 mL min-1 and each sample was measured for 22 min. 

The outcoming chromatograms were visualised and evaluated by the corresponding software 

D-7000 HSM (Hitachi High Technologies, USA). For peak evaluation of chromatograms, the 

integration of the peak is considered. This area under the curve (AUC) was investigated in order 

to overcome baseline drifts appearing. 

 

4.6.4 Total Protein Concentration Determination 

For quantification of the total proteins in the culture broth, the Roti®-Quant assay (Carl Roth, 

Germany) was performed according to Bradford (Bradford, 1976). The working mechanism is 

based on the interaction between the blue dye Coomassie Brilliant Blue-G250 (Carl Roth, Ger-

many) with primary amino acids of the protein. Upon binding, the ionic state of the dye is 

changed from cationic to anionic form. With this, the absorption maximum is shifted from 

470 nm to 595 nm (Bradford, 1976). 

For high-throughput screening, the microplate reader Infinite® F Plex M200 Pro (Tecan, Swit-

zerland) was used. Bovine serum albumin (BSA) served as standard. All samples were meas-

ured in triplicates in order to compensate pipetting errors in small volumes. The standard and 

sample preparation steps were handled according to the assay’s instructions for microplates 

(Carl Roth, 2021). Finally, the samples were transferred to transparent 96 well plates (Sigma 

Aldrich, Germany) and the absorption was measured at 595 nm.  

 

4.6.5 Fluorescence Determination 

For quantification of fluorescence in the samples, the microplate reader Infinite® NanoQuant 

M200 Pro (Tecan, Switzerland) was used. 200 µL of supernatant were transferred to black 96 

well plates (Sigma Aldrich, Germany). Then, the samples were excited at 485 nm and the emit-

ted light at 535 nm was measured. 
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4.7 Data Evaluation with MVDA 

The gathered data was evaluated using the software SIMCA® 17.0.1 (Sartorius Stedim Data 

Analytics, Sweden). Prior to data import into SIMCA®, the raw data measured was prepared 

with MATLAB version 2022a and Excel. The MVDA-related plots were produced with 

SIMCA®. 

The aim of this work was the comparison of both off-line and in-line Raman spectroscopy by 

using OPLS. For this, the quality of the data set is crucial for the development of a multivariate 

data model. The data set requires representative observations, describing the whole process as 

much as required. E.g., in order to quantify the substrate concentration by an OPLS model and 

to avoid weighing of the data model, the whole relevant concentration range in a uniform dis-

tribution must be included in the data set.  

 

4.7.1 Sample Pool 

Three cultivations, XXPC0922, XXPC1722, and XXPC2622, were used for multivariate cali-

bration. Both off-line and in-line Raman spectra were subject to this work. For in-line, only cell 

suspension (SUS) while for off-line both cell suspension and supernatant (SN) were examined. 

For SUS, the samples were measured as doublets while for SN, only a single measurement was 

executed. 

 

4.7.2 Data Preparation 

Before MVDA was implemented, the measured spectra were transferred into a (n × m) data 

matrix D. The smallest possible technical resolution was used in order to evaluate the necessity 

of the high resolution afterwards. With this, a data set of, e.g. 30 Raman spectra containing a 

wavenumber range of 200−3200 cm-1 is made of n = 30 observations and m = 3000 variables. 

 

4.7.3 Data Pre-Processing 

In order to investigate a set of pre-processing methods, a selection of 12 pre-processing tools 

were used (Table 4.6). For Savitzky-Golay (SG) smoothing, two options were applied. The first 

option included 9 cm-1 (SG9), the second option 15 cm-1 (SG15) points spacing in each moving 

polynomial. Both filters, however, use quadratic polynomials. 
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Table 4.6: Overview about pre-processing tools used in the four pre-processing steps. 

Step 1: Step 2: Step 3: Step 4: 

Baseline correction Scatter correction Noise removal Scaling 

None None None Ctr 

1stDer SNV SG, 9-point, 2nd order  

2ndDer MSC SG, 15-point, 2nd order  

LinC  WDS  

1stDer: 1st order derivative, 2ndDer: 2nd order derivative; LinC: linear correction; SNV: standard normal variate; 

MSC: multiplicative scatter correction; SG: Savitzky-Golay; WDS: wavelet denoise spectral; Ctr: mean centred. 

 

4.7.4 Approach in SIMCA® Environment 

SIMCA® is a MVDA software for data mining, multivariate calibration, and predictive model-

ling. In the version 17 and above, spectroscopy modelling for PAT was improved, enabling 

more data pre-processing for pharmaceutical quality control. SIMCA® allows data analysis of 

multiple Y-variables simultaneously. In this work only single response evaluation was used. 

The software offers the opportunity to easily pre-process data via the Preprocessing wizard. 

Four sections can be found comprising various pre-processing tools. The four sections are de-

noted Smoothing, Baseline correction, Normalization, and Other (Table 4.7). 

Table 4.7: Overview about pre-processing methods offered in SIMCA® 17.0.1. 

Category Tool 

Smoothing Savitzky-Golay filter (SG) 

 Exponentially weighted moving average 

 Wavelet denoise spectral (WDS) 

 Moving window 

 Asymmetric least squares smoothing 

Baseline correction Row-centre 

 Offset 

 Linear correction (LinC) 

 Asymmetric least squares smoothing correction 

Normalization Standard normal variate (SNV) 

 Peak height  

 Peak area 

Other Multiplicative signal correction (MSC) 

 Derivatives (1stDer or 2ndDer) 

 

An overview explains the analysis cycle in SIMCA® environment and will be further described 

in the following (Figure 4.6). A practical demonstration will be introduced in Chapter 5.1. 
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Figure 4.6: Flow-chart of multivariate data analytics in SIMCA® environment. Italic words describe 

menus/actions in SIMCA® environment (modified after (Eriksson et al., 2006b). 
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pre-processing steps can be executed under Data/Data Preprocessing (cf. Table 4.7). The pre-

processed data is then stored in a new data set. Then, a new model was developed from the data 

set in the Workset menu. Desired variables and observations of the data set can be either ex-

cluded or included for the new model. Also, the scaling (UV or mean centring) and model type 

(PCA, PLS, or OPLS) can be chosen. Spectral data was mean centred while responses were 

auto-scaled. After choosing the desired settings, a new work set is created.  

Then, the number r of components is chosen. Here, SIMCA® offers the opportunity to either 

process an Autofit, to use the Two first components, or to manually adjust the desired number 

of components (Figure 4.7). The number r can be changed again afterwards and becomes an 

inherent factor for the iterative modelling in OPLS. 

 

Figure 4.7: Graphical user interface of SIMCA® in the version 17.0.1. 

An outlier can be further interpreted by double clicking on it. This action is denoted drill-down 

in SIMCA® environment and opens up the corresponding score contribution plot. When an 

outlier was detected, it was excluded from the work set. This can be conveniently executed by 

clicking on the observation to be ignored and the marked item can be excluded in a pop-up 

menu. When doing so, a new model is automatically produced without the excluded observa-

tion. Then, the number r of components had to be chosen again. 

After data preparation, pre-processing of the spectral data is a common practice. In SIMCA® 

environment, the Calibration wizard eases the procedure of applying a number of different pre-

processing methods onto the same work set. In the first tab, the data sets have to be chosen. 
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Then, the variables and observations could be chosen, when exclusion of wavenumbers or sam-

ples was desired. Here, the choice of variables and observations can be copied of already exist-

ing models, avoiding to have to exclude each previously detected outlier of the PCA by hand 

again. Also, the number of observations n can be randomly split into CS (80 %) and VS (20 %), 

resulting in n ∙ 0.8 observations for CS and n ∙ 0.2 observations for VS. Finally, in the next tab 

Filter & compare, a set of 14 different pre-processing steps can be applied and chained. This 

tab automatically compares and highlights the best RMSEcv values of the created OPLS mod-

els. 

 

Figure 4.8: Graphical user interface of Calibration wizard in SIMCA 17.0.1®. 

 

4.7.5 Preliminary Studies on Data Pre-Processing Methods 

To limit the number of applicable pre-processing methods on all four analytes, a set of methods 

was examined in advance. The 12 introduced pre-processing tools were chained such that in 

total 48 different pre-processing methods were applied (Table 4.8). Ctr was not explicitly men-

tioned in the table as scaling was always applied to spectral data in the last step. Other scaling 

methods were not applied for spectral data due to the loss of information (cf. Chapter 3.4.4.4). 

The off-line Raman spectra were used for prediction of glycerol concentration cS1L in the cell 

suspension. Cultivations XXPC1722 and XXPC2622 were used as CS while XXPC0922 was 

used as PS. 
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Table 4.8: Combining pre-processing tools into pre-processing methods with one to four pre-processing 

steps. Different pre-processing tools were chained, expressed by a hyphen between the corresponding abbrevia-

tions. Not explicitly mentioned here, the last step always comprises mean centring. 

No. Method No. Method No. Method 

1 Unfiltered 17 2ndDer-SG9 33 LinC-SNV-SG15 

2 1stDer 18 2ndDer-SG15 34 LinC-SNV-WDS 

3 1stDer-SNV 19 2ndDer-WDS 35 LinC-MSC-SG9 

4 1stDer-MSC 20 2ndDer-SNV-SG9 36 LinC-MSC-SG15 

5 1stDer-SG9 21 2ndDer-SNV-SG15 37 LinC-MSC-WDS 

6 1stDer-SG15 22 2ndDer-SNV-WDS 38 SNV 

7 1st-WDS 23 2ndDer-MSC-SG9 39 SNV-SG9 

8 1stDer-SNV-SG9 24 2ndDer-MSC-SG15 40 SNV-SG15 

9 1stDer-SNV-SG15 25 2ndDer-MSC-WDS 41 SNV-WDS 

10 1stDer-SNV-WDS 26 LinC 42 MSC 

11 1stDer-MSC-SG9 27 LinC-SNV 43 MSC-SG9 

12 1stDer-MSC-SG15 28 LinC-MSC 44 MSC-SG15 

13 1stDer-MSC-WDS 29 LinC-SG9 45 MSC-WDS 

14 2ndDer 30 LinCSG15 46 SG9 

15 2ndDer-SNV 31 LinC-WDS 47 SG15 

16 2ndDer-MSC 32 LinC-SNV-SG9 48 WDS 

1stDer: 1st order derivative, 2ndDer: 2nd order derivative; LinC: linear correction; SNV: standard normal variate; 

MSC: multiplicative scatter correction; SG: Savitzky-Golay; WDS: wavelet denoise spectral; Ctr: mean centred. 

Furthermore, three spectral ranges were investigated in the preliminary studies (Table 4.9). 

Wavenumber range A valued 300–1840 cm-1, range B 1841–2973 cm-1, and range C combined 

both ranges, 300–2973 cm-1. 

Table 4.9: Wavenumber ranges investigated in preliminary studies. 

Designation Wavenumbers / cm-1 

A 450−1840 

B 1841−2973 

C 450−2973 

 

In order to guarantee a systematic and reasonable procedure for the selection of the most suita-

ble pre-processing methods, a weighted sum model, also known as weighted linear combination 

or simple additive weighting, was applied (Churchman & Ackoff, 1954; Fishburn, 1967). Fur-

thermore, a rapid screening of all 48 methods per wavenumber range was enabled. 

The decision matrix is based on following three criteria: 

(1) Value of Q2, 

(2) Difference between R2Y and Q2, and 

(3) Number r of OPLS component. 
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In general, all three criteria are mainly based on experience in multivariate calibration (Chin & 

Marcoulides, 1998; Eriksson et al., 2006b; Peng & Lai, 2012). A further differentiation was 

made within the criteria in order to assign each criterium to a corresponding score (Table 4.10). 

Table 4.10: Criteria and assigned scores for weighted sum model. 

No. Criterium Weight / % Sub-criterium Assigned score / - 

(1) Value of Q2 40 Q2 ≥ 0.5 1 
   Q2 < 0.5 6 

(2) Difference between R2Y and Q2 30 |R2Y − Q2| ≤ 0.2 1 
   |R2Y − Q2| < 0.3 2 
   |R2Y − Q2| < 0.5 3 
   |R2Y − Q2| ≥ 0.3 4 

(3) Number r of OPLS components 30 r ≤ 4 1 
   r ≤ 5 2 
   r > 5 3 

 

The highest weight with 40 % was assigned to criterium (1), the value of Q2. With this, the 

predictive power for the model is evaluated and indicates how well VS and PS perform. For 

criterium (2), the lower the difference between R2Y and Q2, the more robust the model. The 

last criterium addresses the likeliness of overfitting the model. With high number r of compo-

nents, the model is more likely to be overfitted. 

For evaluation, the best models yield the lowest sum while the worst models comprise a high 

sum. All models with a sum greater than 1.6 were disposed. E.g., model number 1A addresses 

the unfiltered wavenumber range A. This model comprises 1 + 4 components yielding 

R2Y = 0.730 and Q2 = 0.691. The exemplary calculated weighted sum of 1.6 would consist of 

the following weights: 

(1) Q2 ≥ 0.5   → 1 ∙ 0.4 = 0.4 

(2) |R2Y − Q2| < 0.5 → 3 ∙ 0.3 = 0.9 

(3) r ≤ 4   → 1 ∙ 0.3 = 0.3 
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5 Results and Discussion 

The following chapter deals with the results of the experiments and data analysis introduced in 

Chapter 4. An exemplification of OPLS modelling is introduced first to facilitate the under-

standing of the upcoming results. To evaluate the applicability of in-line and off-line Raman 

spectroscopy, results of the preliminary studies on pre-processing methods are elaborated, fol-

lowed by the results in MVDA for the compounds glycerol, methanol, cell density, and total 

protein concentration. 

Note that due to software issues, plots of SIMCA® and process parameters are displayed with 

decimal comma for decimal separation instead of the decimal point. 

 

5.1 Exemplary Development of an OPLS Model for Glycerol 

The presence or absence of outliers, the selected pre-processing method, the used spectral range, 

and the number of OPLS components are important factors influencing the predictive power of 

a model. The challenge in modelling lies in the fact that all aspects mentioned above are de-

pendent on each other. E.g., the choice of spectral range can influence whether an observation 

is identified as an outlier. Therefore, the development or optimization of an OPLS model with 

the use of spectral data is a sophisticated and most of all iterative process (Buckley & Ryder, 

2017). Consequently, it is hardly possible to follow the same pattern for different analytes as it 

depends on the current problem. However, with knowledge about the prevailing data set and its 

underlying bioprocess, assumptions can be made to ease the process. 

In the following, a general approach for the prediction of glycerol concentration cS1M in the 

supernatant by off-line Raman spectroscopy is introduced in order to have an insight on the 

complex process of OPLS modelling. The demonstrated approach shows a combination of the 

general MVDA pipeline (cf. Figure 3.7) and the flow-chart in SIMCA® environment (cf. Figure 

4.6). 

For multivariate calibration, diverse samples representing the variation of interest are important. 

Thus, more than one cultivation was used during this work. As reference values, HPLC meas-

ured glycerol concentration cS1MHPLC was applied. Raman spectra of cultivations XXPC0922 

and XXPC2622 were used as CS. The third cultivation XXPC1722 should be used for external 

validation as PS. With this, n = 149 observations were available (Figure 5.1). Wavenumbers 

from 75–3215 cm-1 with a resolution of 1 cm-1 were displayed, resulting in m = 3141 variables. 
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However, also samples of the production phase were inside these 149 observations where glyc-

erol concentration valued 0 g L-1. In order to obtain an uniformly distributed data set, only ob-

servations from batch and fed-batch phases were used. Hereby, the number of observations was 

reduced to 86. 

 

Figure 5.1: Exemplary off-line Raman spectra of supernatant in cultivations XXPC0922 and XXPC2622 

with highlighted observation 9 (yellow). Spectra were coloured according to their glycerol concentration cS1M. 

Zoom-in: samples of XXPC0922. 

The spectra were coloured according to their glycerol concentration cS1M. A correlation between 

Raman intensity of the spectra and glycerol concentration can be specifically observed in the 

highlighted area. Also, observation 9 deviates from the other spectra. 

Inspecting the spectra coloured according to their batch number, there are two differently spec-

tral courses visible (Figure 5.2). Between both cultivations, different courses during nearly the 

whole spectral range are visible. Although the integration time for both cultivations is 70 s, 

XXPC2622 shows spectra with a continuously decreasing trend and contains more clear bands. 

This will be further examined in the following sections. 
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Figure 5.2: Exemplary off-line Raman spectra for cell suspension of cultivation XXPC0922 and XXPC2622. 

Spectra were coloured according to batch number. Green: XXPC0922; blue: XXPC2622. 

 

5.1.1 Principal Component Analysis for Outlier Detection 

As the first step, PCA modelling was done to visualise any outliers and overcome false weigh-

ing of the model. As mentioned in Chapter 3.4.4.4, centring was used for spectral data in order 

to preserve the characteristics of bands while Y-variables (responses) were auto-scaled. For 

comparison, both options in SIMCA® environment, Autofit and Two first, is introduced (Figure 

5.3). When autofitting, the addition of seven more PCs resulted in an increase of the explained 

variance, denoted cumulative R2X (R2Xcum) from 0.963 to 0.997. However, PCA models were 

chosen such that at least 95 % of the variance in the spectral data were described in order to 

preserve model complexity. Therefore, PCA modelling was continued with r = 2 PCs.  

After calculating the PCs, the Hotelling’s T2 test was executed. The result is illustrated in form 

of a scores scatter plot with a total of 86 observations where two different PCs are plotted 

against each other (Figure 5.4). Observations close to each other have similar properties, 

whereas those far from each other are dissimilar with respect to spectral profiles. 
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Figure 5.3: Exemplary summary of fit for PCA model with Autofit or Two first. A) Autofit yields nine principal 

components in total, with R2Xcum = 0.997 (green bar) and Q2cum = 0.995 (blue bar); B) Fitting method of Two first 

results in two principal components with a R2Xcum = 0.963 and Q2cum = 0.950. 

In the scores scatter plot, PC2 t2 is plotted against PC1 t1 (Figure 5.4A). Observation 9, repre-

senting tprocess = 4 h of XXPC0922, depicts with a probability of 95 % an outlier as the level of 

significance α = 5 %. This observation pulls the whole model towards itself. Figure 5.4B shows 

the DModX of the last PC plotted against the Hotelling’s T2 range of all PCs. Although there 

are more observations outside Dcrit0.05 = 1.17, not all observations outside this limit were con-

sidered outliers. For DModX, values twice as large as Dcrit0.05 are considered moderate outliers. 

With this, only observation 9 was an outlier whereas observations 114 and 115 were still in a 

reasonable range for this stage of PCA modelling. 

 

Figure 5.4: Exemplary scores scatter plots with Hotelling’s T2 test for PCA model (α = 0.05). A) Scores scat-

ter plot of PCA model with r = 2, R2X = 0.963. Observation 9 (red triangle) possesses a high Hotelling’s T2 value 

far above the confidence interval of 95 %. B) Plot of DModX versus Hotelling’s T2 value with highlighted obser-

vation 9 (red triangle) above 𝑇𝑐𝑟𝑖𝑡0.05
2  and Dcrit0 05. 
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A drill-down of observation 9 was executed (Figure 5.5). The contribution plot shows where a 

point in a Hotelling’s T2 plot deviates from the average or from another point in X-space. The 

plot shows the weighted difference between the data of the point (centred as the work set) and 

the average of the model. The horizontal scale corresponds to the wavenumber, the vertical 

scale to the scaling of X. The dominating variables deviate by greater than three standard devi-

ations (SDs) from the reference point. The sign of the line indicates in which direction the 

variable deviates. 

 

Figure 5.5: Exemplary score contribution plot of observation 9 in a PCA model with r = 2 PCs. Orange: de-

viating from average by three standard deviations (SD). 

In this case, nearly the whole spectrum was contributing to the deviation from the average. In 

fact, the top yellow spectrum represents observation 9 (cf. Figure 5.1). Due to this, observa-

tion 9 was considered an outlier and was consequently excluded from the work set. This process 

of outlier detection was repeated until no more moderate observation remained outside the con-

fidence interval. With a total number of initially 86 observations, there is statistically a value 

of 86 ∙ 0.05 = 4.30 observations expected to be outside the Hotelling’s T2 tolerance ellipse. 

This was achieved after another six exclusion steps (Figure 5.6). In this case, 77 observations 

were remaining and used for OPLS modelling. A clear differentiation between both cultivations 

is visible in the scatter plot. Cultivation XXPC0922 resides on the negative part of t1 while 

XXPC2622 does the opposite. This property can be observed in the original spectrum (cf. Fig-

ure 5.2). By outlier detection, the goodness of fit R2X was increased from initially 0.963 to 
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0.980 while the goodness of prediction Q2 increased from 0.950 to 0.980. Also, exclusion of 

observation 9 prevented pulling the model towards one observation. 

 

Figure 5.6: Final scatter plots after exclusion of moderate or high outliers. A) Scores scatter plot of principal 

component analysis with r = 2, R2X = 0.980. Observation 42 is highlighted as it possesses a fairly high Ho-

telling’s T2 value close to the confidence interval of 95 %. B) Plot of DModX versus Hotelling’s T2 with labelled 

observation 42, resulting not to be an outlier. 

 

5.1.2 Multivariate Calibration with OPLS 

Pre-processing is a crucial step in multivariate modelling as the performance of the model 

stands or falls with a clean dataset (Engel et al., 2013). In this work, several pre-processing 

methods were investigated in order to find the most prominent candidates for this work. How-

ever, for exemplification, it will be continued with non-pre-processed data. 

After construction of an OPLS model, the number r of components had to be set. To evaluate 

this, the root mean square error of prediction RMSEP through an external validation set, the 

PS, is ideally used. However, if there is no prediction set available, an alternative predictivity 

measure can be used through summarising the cross-validation residuals of the observations in 

the work set. 

The root mean square error of cross-validation RMSEcv was calculated for the work set, indi-

cating predictive power. For OPLS models with 1 + r components, the evolution of RMSEcv 

across the model components is displayed (Figure 5.7). OPLS representation comprises follow-

ing components. There is at least one predictive, one orthogonal in X, and one orthogonal in Y 

component. The predictive component captures the variation found both in X and Y, while the 

orthogonal component captures the variation found in X or Y, respectively. When there is one 

response (one Y-vector), there will only be one predictive component. 
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The model with 1 + 4 components was further investigated. Here, RMSEcv valued 2.77 g L-1. 

With increasing orthogonal components, the RMSEcv decreased. However, the decrease was 

negligible as the model would only become more complex. 

 

Figure 5.7: Exemplary prediction error RMSEcv of OPLS model dependent on number of components r. 

In order to avoid overfitting, further investigation on the model with 1 + 4 components was 

necessary. This can be done by evaluating the permutation plot (Figure 5.8). In this work, 100 

permutations were constantly applied onto each investigated model. 

 

Figure 5.8: Exemplary permutation plot for OPLS model with r = 1 + 4 components after 100 permutations. 

Green: R2Y values, blue: Q2 value. 
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R2Y and Q2 of the original model were always higher than the permutated corresponding val-

ues. The intercept of the R2Y regression line was slightly above the proposed limit of 0.4 and 

shows a model which could be overfitted or even not valid (Eriksson et al., 2006b). In contrast, 

the intercept for Q2 was below the proposed limit of 0.05. In general, with increasing compo-

nents, the R2Y-intercept increases as well, indicating an overfit. Therefore, the number of com-

ponents was reduced to 1 + 3 components. This process of permuting data and comparing per-

mutation plots for each relevant component is repeated such that the intercepts were below the 

proposed limits. Simultaneously, the plot for predicted vs. reference was kept in high quality 

which will be addressed later. 

For variable selection, the model’s VIP value was examined, summarising the importance of 

variables both to explain X and to correlate Y. The beginning and the end of the spectra did not 

contribute to the model interpretability as VIP < 0.5 (Figure 5.9). However, the spectral range 

300–1957 cm-1 has a VIP > 1, indicating important variables. In order to overcome overfitting, 

the spectral range was extended to 300–2200 cm-1. With this, the variables could be reduced 

from 3141 to 1901 variables. 

 

Figure 5.9: Exemplary variable importance in projection VIP of 1 + 3 OPLS model. VIP values greater than 

1 imply important X-variables and values lower than 0.5 indicate unimportant X-variables. 
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5.1.3 Prediction and Validation 

For validation, the OPLS model with decreased variables and excluded outliers was further 

investigated in terms of the predicted values. Three different methods of validation are demon-

strated in the following, before giving explanation about the methods.  

First, cross-validated Y-values was plotted against the reference cS1MHPLC in the predicted vs. 

reference plot (Figure 5.10). This option of cross-validation is used when there is no VS neither 

PS available. 

 

Figure 5.10: Exemplary regression line for cross-validation with cross-validated values plotted against ref-

erence of glycerol concentration cS1M. Green: XXPC0922; blue: XXPC2622. 

The second method for validation is applied using the VS which was created by separating 20 % 

of all observations into this sub-group (Figure 5.11). 
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Figure 5.11: Exemplary regression line for internal validation with predicted validation set plotted against 

reference of glycerol concentration cS1M. Green: XXPC0922; blue: XXPC2622. 

The third method is external validation by use of PS XXPC1722 (Figure 5.12). 

 

Figure 5.12: Exemplary regression line for external validation set with prediction set plotted against refer-

ence of glycerol concentration cS1M for XXPC1722. 
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In the ideal case, the points result in a straight line through the origin with the slope of one. 

When the scores imply a non-linear course, following steps can be altered and evaluated: 

change of pre-processing method, need for further OPLS component(s), applying data transfor-

mation (e.g. log-transformation for exponential course), or change of applied regression mod-

elling method (Eriksson et al., 2006b). 

The lowest goodness of prediction was obtained by using the external validation with 

R2Y = 0.0362. There is no correlation between the reference values and prediction. This prop-

erty becomes apparent when plotting both reference and prediction against process time tprocess 

(Figure 5.13). 

 

Figure 5.13: Exemplary prediction of glycerol concentration cS1 in supernatant with external validation set 

XXPC1722. Grey: HPLC reference measurement; orange: off-line supernatant Raman measurement. 

Typically, the cross-validated predictions have a higher goodness of fit R2Y than the predicted 

values of the VS. Working with time-dependent process data typically comes with auto-corre-

lated process data, leading to the fact that the predictive power may not be reliably estimated. 

This is due to observations (time points), adjacent to those eliminated in a CV-round, carrying 

information similar to the eliminated data points. Therefore, CV with auto-correlated process 

data may lead to overrated Q2 values (Eriksson et al., 2006b). This was addressed in this work 

by evaluating the permutation plot (cf. Chapter 5.1.2). Alternatively, raw data can be sorted 

according to their Y-value in order to break up the auto-correlation among neighbouring sam-

ples. For prediction of VS, R2Y = 0.668 and RMSEPVS = 4.21 g L-1. These values were lower 

than the cross-validated values of R2Y = 0.718 and RMSEcv = 3.97 g L-1. Since cell 
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suspension was investigated and no pre-processing method was applied, interfering substances 

in the cell suspension represent a major factor for the moderate predictive power. 

Because both cultivations of the CS were different in spectral data (cf. Figure 5.6A), upcoming 

calibrations are done with all three available cultivations XXPC0922, XXPC1722, and 

XXPC2622. Thus, there is no external validation available but only a PS comprising excluded 

samples of the cultivation phases. 

 

5.2 Preliminary Studies on Pre-Processing Methods 

This section focuses on the evaluation of applied pre-processing methods in order to limit the 

number of pre-processing steps in the upcoming chapters. Also, the range of wavenumber was 

investigated. 144 OPLS model (3 wavenumber ranges ∙ 48 pre-processing methods) were con-

structed. Without the preliminary studies, the number of total OPLS models would exceed the 

scope of this work (144 OPLS models ∙ 4 analytes ∙ 3 measuring types = 1,728 models in total). 

Initially, 48 different pre-processing methods were examined which comprised 12 pre-pro-

cessing tools (cf. Table 4.6). Out of these 12 tools a set of 48 different pre-processing methods 

was constructed (cf. Table 4.8). 

For the evaluation of all models, a catalogue of criteria based on experimental values was de-

veloped which were based on experimental values. It is important to mention that the weighted 

sum model applied here does not allow a proof of concept regarding its evidence on model 

performance. However, these criteria were developed to give an overview on the perfunctory 

performance of a model, allowing a time-effective screening. In parallel, the RMSEcv and 

RMSEP were evaluated. 

The results showed that there are a number of pre-processing methods which fall out of consid-

eration for the upcoming analysis (Table 5.1). It was observed that models with a weighted 

sum ≤ 1.3 yielded a low RMSEcv. Models with a sum between 1.3 < sum ≤ 1.6 needed further 

inspection in terms of permutation plot or predicted Y-value. If the permutation plot showed 

intercepts below the limit, the model was considered well. All models with a sum > 1.9 yielded 

in consequence a high RMSEcv. These models were considered unsuitable for prediction. The 

methods with 1stDer or 2ndDer in combination with MSC failed in correlating Y-value with the 

spectra at all (numbers 11–13 and 23–25). Generally, MSC-based models retrieved high 

weighted sums. In literature, it is proposed that MSC should be applied to smaller and well-
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selected parts of spectral region (Eriksson et al., 2006b; Stenlund, 2011) which was not the case 

in this work. Only the result for range C is shown as exemplification. 

Table 5.1: Results of preliminary studies for wavenumber range C that were applied onto Raman spectra. 

No. r R2Y Q2 Weighted sum No. r R2Y Q2 Weighted sum 

1A 1+4+0 0.750 0.664 1.0 25A 0+0+0 ─ ─ 3.0* 

2A 1+4+0 0.767 0.594 1.0 26A 1+5+0 0.780 0.659 1.3 

3A 1+6+0 0.844 0.637 1.9 27A 1+6+0 0.788 0.702 1.6 

4A 1+0+0 0.039 0.005 3.0 28A 1+5+0 0.688 0.610 1.3 

5A 1+4+0 0.766 0.590 1.0 29A 1+4+0 0.719 0.630 1.0 

6A 1+6+0 0.939 0.736 1.9 30A 1+5+0 0.825 0.678 1.3 

7A 1+5+0 0.674 0.582 1.3 31A 1+4+0 0.653 0.584 1.0 

8A 1+5+0 0.786 0.630 1.3 32A 1+6+0 0.797 0.717 1.6 

9A 1+5+0 0.783 0.628 1.3 33A 1+6+0 0.836 0.719 1.6 

10A 1+5+0 0.718 0.611 1.3 34A 1+6+0 0.661 0.579 1.6 

11A 0+0+0 ─ ─ 3.0* 35A 1+5+0 0.690 0.615 1.3 

12A 0+0+0 ─ ─ 3.0* 36A 1+5+0 0.680 0.621 1.3 

13A 0+0+0 ─ ─ 3.0* 37A 1+5+0 0.625 0.563 1.3 

14A 1+5+0 0.852 0.545 1.9 38A 1+4+0 0.740 0.241 3.6 

15A 1+6+0 0.782 0.531 1.9 39A 1+6+0 0.825 0.777 1.6 

16A 0+0+0 ─ ─ 3.0 40A 1+6+0 0.833 0.752 1.6 

17A 1+6+0 0.915 0.564 2.2 41A 1+5+0 0.676 0.632 1.3 

18A 0+0+0 ─ ─ 3.0* 42A 1+5+0 0.755 0.672 1.3 

19A 0+0+0 ─ ─ 3.0* 43A 1+5+0 0.748 0.687 1.3 

20A 0+0+0 ─ ─ 3.0* 44A 1+5+0 0.738 0.670 1.3 

21A 0+0+0 ─ ─ 3.0* 45A 1+5+0 0.660 0.605 1.3 

22A 0+0+0 ─ ─ 3.0* 46A 1+4+0 0.748 0.666 1.0 

23A 0+0+0 ─ ─ 3.0* 47A 1+4+0 0.762 0.680 1.0 

24A 0+0+0 ─ ─ 3.0* 48A 1+4+0 0.676 0.601 1.0 

* Models could not be calculated for corresponding pre-processing method as there was no correlation at all. 

Bold letters: lowest achievable weighted sum. 

In the Raman spectra of XXPC1722, a baseline shift is evident and follows the time course 

change (Figure 5.14). With increasing time, the baseline shift increases as well. 

Due to this, 1stDer proved to be most accessible for baseline shift correction. SG and SNV, in 

contrast, were the best tools for smoothing and scatter correction, respectively. Since two dif-

ferent Savitzky-Golay filters were examined, no significant differences between 9 points and 

15 points per moving polynomial could be identified. Discrepancies in the order of 10-3 for R2Y 

and Q2 were present. However, SG9 predominantly yielded higher R2Y and Q2 values than 

SG15. Thus, analysis was continued with only SG9. 
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Figure 5.14: Off-line spectra of XXPC1722 suspension coloured according to process time tprocess. 

As a result, the following pre-processing methods could be limited from initially 48 methods to 

12 methods and will be used in the upcoming sections (Table 5.2). 

Table 5.2: Overview of pre-processing methods that were applied for upcoming multivariate calibration. 

Methods were applied upon each analyte. As scaling was included in each method, it was not explicitly mentioned 

in the designation. 

No. 
Step 1: Step 2: Step 3: Step 4 

Designation 
Baseline Scatter Noise Scaling 

1 −  −  −  Ctr Unfiltered 

2 1stDer  −  −  Ctr 1stDer 

3 1stDer  SNV  −  Ctr 1stDer-SNV 

4 1stDer  −  S-G, 9 pt, 2nd ord Ctr 1stDer-SG 

5 1stDer  SNV  S-G, 9 pt, 2nd ord Ctr SNV 

6 LinC  −  −  Ctr LinC 

7 LinC  SNV  −  Ctr LinC-SNV 

8 LinC  −  S-G, 9 pt, 2nd ord Ctr LinC-SG 

9 LinC  SNV  S-G, 9 pt, 2nd ord Ctr LinC-SNV-SG 

10 −  SNV  −  Ctr SNV 

11 −  SNV  S-G, 9 pt, 2nd ord Ctr SNV-SG 

12 −   −   S-G, 9 pt, 2nd ord Ctr SG 

 

During investigation of wavenumber ranges A and B, both yielded higher RMSEcv and RMSEP 

values than C. This was due to dependent variables which are based on overlapping signal bands 
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concentration by Bradford assay cPtotMBrad (blue) are illustrated. 80 % of the used data set served 

as CS, while the other 20 % were randomly grouped into the validation set (VS). The goal was 

to quantify these analytes by Raman spectroscopy. 

 

5.4 Prediction of Glycerol Concentration 

For multivariate calibration, samples from batch and fed-batch phase were used. Reference 

cS1MHPLC values originated from HPLC. For PS, all excluded samples from the production phase 

were used. 

Comparing off-line Raman spectra of the SN (Figure 5.16) with spectra of the SUS (cf. Figure 

5.1), the area around 1000 cm-1 is similar like for XXPC0922. 

 

Figure 5.16: Off-line Raman spectra of calibration set for glycerol determination in cell suspension. Spectra 

are coloured according to the glycerol concentration cS1M. Zoom-in: cultivations XXPC0922 and XXPC1722. 

The most prominent bands for calibration are located at wavenumbers 992 cm-1, 1378 cm-1, and 

1660 cm-1. In fact, the off-line Raman VIP plots of N8 and N12 also show that these wave-

numbers have a VIP > 1, indicating a large influence on the model for glycerol prediction (Fig-

ure 5.17). 
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Figure 5.17: Variable importance in projection (VIP) of models N8 and N12. A) Model N8 with LinC-SNV-

SG; B) Model N12 with SG. The two models yielded lowest prediction errors in off-line glycerol prediction for 

cell suspension. 

For OPLS of glycerol in the SUS, maximal five components were required in order to explain 

approximately 85 % of the spectral information yielding RMSEcv of 13.7–18.8 %, depending 

on data pre-processing (Table 5.3). For a better overview, only the best model of each measur-

ing type is displayed while other model results can be found in the Appendix. 

Table 5.3: Summary of predicted glycerol concentration in cell suspension (SUS) and supernatant (SN) with 

both off-line and in-line Raman spectroscopy. 

    N12 (SG) N1 (Unfiltered) N2 (1stDer) 

Monitoring / − off-line off-line in-line 

Fluid / − SUS SN SUS 

nCS / − 93 47 95 

nVS / − 24 12 24 

r / − 1+4+0 1+5+0 1+3+0 

R2Y / − 0.871 0.865 0.821 

Q2 / − 0.837 0.745 0.740 

RMSEcv  / g L-1 3.16 3.31 3.87 

RMSEcvrel / % 13.7 14.3 18.8 

MBEcv / − 0.0323 0.0670 −0.0311 

RMSEPVS / g L-1 2.58 2.06 3.21 

RMSEPVSrel / % 11.1 8.92 16.1 

MBEPVS / − 0.335 0.223 −0.916 

RMSEPPS  / g L-1 1.58 4.63 4.11 

RMSEPPSrel  / % 6.83 20.1 38.1 

MBEPPS / − −0.85 −2.96 1.43 
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In CV, the off-line suspension N12 performed best for glycerol determination with 

RMSEcv = 13.7 %. However, all three models perform quite similar in CV. The difference of 

RMSEP becomes more apparent for VS and PS. RMSEPVS is for all three models lower than 

RMSEcv, with unfiltered N1 showing the lowest RMSEVS = 8.92 %. When applying the PS, 

the SG-filtered N12 yields the lowest RMSEP = 6.83 % with simultaneously lowest MBEPPS. 

In PS, it is important to consider the influence of fluorescence, especially in the later process 

stages when eGFP was produced. This may explain why N1 and N2 have such high prediction 

errors which were not appropriately compensated by pre-processing, especially for the unfil-

tered model N1. 

The results of all three models demonstrate that only off-line SUS prediction (blue) does not 

follow an exponential decrease during batch-phase while the other predictions adapt well to the 

reference (grey circle) (Figure 5.18). The measurement of SN resulted in a model which per-

formed best without any pre-processing (orange rhombus). This indicates that the cells in the 

cell suspension have an influence on the performance of glycerol prediction. This issue was 

addressed in other works as well (Avila et al., 2012; Voß et al., 2017). 

 

Figure 5.18: Prediction of glycerol concentration with different measuring types. Grey circle: reference by 

HPLC; blue square: off-line Raman spectroscopy with cell suspension predicted by N12; orange rhombus: off-line 

Raman spectroscopy with supernatant predicted by N1; green triangle: in-line Raman spectroscopy with cell sus-

pension predicted by N2. 

Other than in the exemplification, the cultivation XXPC0922 predicted here was partly involved 

in modelling. The exemplification, in contrast, used an external PS which originated from 
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another cultivation not involved in modelling. Thus, the results here show predictions which 

are closer to the reference. 

Overall, the off-line measurement resulted in lower RMSEcv compared to the in-line probe. 

This could also be observed in the work of Voß (Voß, 2017). With both measuring types, the 

determination of glycerol was possible. 

 

5.5 Prediction of Methanol Concentration 

For quantification of methanol, samples of the production phase were used for calibration as 

batch- and fed-batch phase contained no methanol and to ensure uniform distribution. The ref-

erence values were derived from HPLC off-line measurements. 

The VIP plot of the in-line probe shows that only specific wavenumber ranges were significant 

(Figure 5.19). Wavenumbers in the range of 1649–1668 cm-1, at approximately 1978 cm-1, and 

2690–2708 cm-1 comprise a VIP > 1. The spike around 2700 cm-1 is due to the interaction of 

cosmic rays with the sensitive CCD detector and was consecutively excluded in modelling 

(Shaw et al., 1999). Due to the fact that model N8 was pre-processed with 1st derivative filter, 

the VIP plot appears noisy. 

 

Figure 5.19: OPLS model parameters of in-line Raman cell suspension for prediction of methanol of model 

N2. A) Variable in projection (VIP), indicating wavenumbers above 1 being important. Three sharp spikes are 

visible: 1649–1668 cm-1, around 1978 cm-1, and 2690–2708 cm-1; B) Observed vs. predicted cell density by cross-

validation. Green: XXPC0922; blue: XX1722; red: XXPC2622. 
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After exclusion of the band around 2700 cm-1, predictive power did not significantly improve. 

In literature, typical bands for methanol should be around 1035 cm-1, 1450 cm-1, 1461 cm-1, and 

2840 cm-1 (Emin et al., 2020; Voß et al., 2017). However, this could not be detected in this 

work. A reason for this could be the interfering fluorescence which occurs especially in pro-

duction phase where eGFP is synthesized by the cells (Shaw et al., 1999). This could not be 

improved by any pre-processing methods. 

The best methods were obtained when 1st derivative filter was included in pre-processing 

method (Table 5.4). Two to three OPLS components were required to achieve a RMSEcv of 

13.3–16.0 %. The lowest prediction error for methanol concentration was achieved by in-line 

Raman, with RMSEPVS = 7.15 %.  

As it could also be observed for glycerol prediction, in-line Raman performed best with 1stDer 

(cf. Table 5.3). This could be due to technical reasons of the Raman probe. Since the immersion 

probe is based on backscattering measurement, it is prone for fluorescent background. This 

issue is best corrected using the 1st derivative of the original spectra. For both compounds, 

glycerol and methanol, this can be observed for all models based on 1stDer or together with SG 

(cf. Appendix). 

Table 5.4: Summary of predicted methanol concentration cS2M with both off-line and in-line Raman spec-

troscopy. 

    N9 (LinC-SNV-SG) N4 (1stDer-SG) N2 (1stDer) 

Monitoring / − off-line off-line in-line 

Fluid / − SUS SN SUS 

nCS / − 37 29 25 

nVS / − 10 8 7 

r / − 1+3+0 1+2+0 1+3+0 

R2Y / − 0.797 0.427 0.603 

Q2 / − 0.491 0.163 0.348 

RMSEcv  / g L-1 0.849 0.817 0.705 

RMSEcvrel / % 16.0 15.4 13.3 

MBEcv / − 0.0735 −0.0180 −0.00609 

RMSEPVS / g L-1 0.934 0.590 0.380 

RMSEPVSrel / % 17.6 11.1 7.15 

MBEPVS / − 0.225 −0.0396 0.0770 

RMSEPPS  / g L-1 2.86 2.05 2.19 

RMSEPPSrel  / % 53.79 38.5 41.2 

MBEPPS / − 0.271 1.89 2.08 
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It should be noted that OPLS of methanol was restrained by the fact that only 25–37 observa-

tions were available for CS. Furthermore, only two levels of methanol concentration were rep-

resenting CS. First, the time range directly after production phase initiation where methanol 

content valued around 2.5 g L-1. Second, the time during production phase where the set point 

was maintained at cS2Mw = 1.5 g L-1. As sampling frequency was lowered during production 

phase, there was no representative distribution of values for the CS available. Simultaneously, 

the low number of available observations of the VS is not representative for RMSEPVS. 

Evaporation of the volatile methanol during the course of sample handling and measurement 

may have caused deviations between in-line and off-line values, leading to a higher variance of 

RMSEcv and RMSEP. This was observed by comparing RMSEPVS off-line and in-line values. 

For the in-line probe, RMSEPVS = 0.380 g L-1. This value is more than twice the error of the 

off-line suspension measurement of RMSEPVS = 0.934 g L-1. Also, the supernatant has a higher 

RMSEPVS than the in-line measured methanol concentration. Another influence on the differ-

ence between supernatant and suspension could lie in the presence of cells. However, when 

comparing off-line supernatant with off-line suspension, the difference between both RMSEcv 

values is low. 

 

Figure 5.20: Predicted methanol concentration cS2M. Grey circle: reference by HPLC; blue square: off-line 

Raman spectroscopy with cell suspension predicted by N9; orange rhombus: off-line Raman spectroscopy with 

supernatant predicted by N4; green triangle: in-line Raman spectroscopy with cell suspension predicted by N2. 
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Additionally, high discrepancies among RMSEcv and RMSEPPS were observed, implying an 

unstable model when removing single samples. Further investigation with more taken samples 

would be necessary for a final evaluation of the applicability of methanol determination with 

Raman spectroscopy with this Raman probe. However, this potential, was proven in other works 

(Paul et al., 2016; Voß, 2017). 

 

5.6 Prediction of Cell Concentration 

Measurement techniques based on optical approaches are established methods for determina-

tion of cell density. As mentioned in Chapter 4.4.4, an in-line turbidity probe was used in par-

allel during this work. 

For prediction of cell density, all three phases of cultivation were applied for calibration. There-

fore, only CV was available. As there were no cells in the supernatant due to centrifugation, 

only cell suspension was investigated. The reference derived from determination of cell dry 

weight. 

The in-line Raman spectra are inherently different in appearance than off-line spectra (Figure 

5.21) (cf. Figure 5.16). 

 

Figure 5.21: In-line Raman spectra during cultivation XXPC0922. Spectra are coloured according to their cell 

dry weight cXLCDW. 
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The sharp bands at 582 cm-1 and 748 cm-1 correspond to sapphire material interference caused 

by the window of the immersion probe tip (Berry et al., 2015). It could be observed that with 

increase of cell concentration, the relative amount of backscattered light reaching the detector 

also increased due to the accumulation of scattering material in the culture broth. For Raman 

probes based on the backscattering principle, the increased scattering leads to a rise in the over-

all absorption, causing baseline shifts (Cervera et al., 2009). This can be seen when comparing 

the lower concentrated orange spectra with the highly concentrated red spectra. 

In lower cell concentrations, especially XXPC0922 (green circle) shows a non-linear behaviour 

(Figure 5.22B). 

 

Figure 5.22: OPLS model parameters of in-line Raman cell suspension for prediction of cell density of model 

N8. A) Variable in projection (VIP), indicating wavenumbers above 1 being important; B) Observed vs. predicted 

cell density by cross-validation. Green: XXPC0922; blue: XX1722; red: XXPC2622.  

The non-linear behaviour could not be corrected by log-transformation. Thus, the low-concen-

tration range is worse predicted compared to higher values. This can be observed in the pre-

dicted cell concentration plotted against time (Figure 5.23). 
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Figure 5.23: Predicted cell concentration cXL in cell suspension for N8 by cross-validation using off-line and 

in-line Raman spectroscopy. Grey circle: HPLC reference; blue triangle: off-line Raman spectroscopy by cross-

validation; green square: in-line Raman spectroscopy. 

The best OPLS models for cell density cXL was obtained by using a combination of linear cor-

rection and SNV (Table 5.5). Six OPLS components were used to describe about 93 % of the 

spectral variance R2Y and led to a RMSEcv of 4.69 g L-1 and 5.22 g L-1 for off-line and in-line, 

respectively. These correspond to a relative error of 4.69 % and 5.22 %, respectively. 

Table 5.5: Summary of predicted cell concentration in cell suspension (SUS) cXL with both off-line and in-

line Raman spectroscopy. 

    N8 (LinC-SNV) N8 (LinC-SNV) 

Monitoring / − off-line in-line 

Fluid / − SUS SUS 

nCS / − 95 148 

nVS / − 24 37 

r / − 1+6+0 1+6+0 

R2Y / − 0.931 0.929 

Q2 / − 0.909 0.896 

RMSEcv  / g L-1 4.69 5.22 

RMSEcvrel / % 7.05 6.24 

MBEcv / − −0.0270 0.164 

RMSEPVS / g L-1 4.87 9.48 

RMSEPVSrel / % 4.93 9.60 

MBEPVS / − −0.110 3.85 
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Low cell concentrations were generally underpredicted. This was also observed in other works 

(Berry et al., 2015; Voß, 2017; Whelan et al., 2012). Other than the other analytes of this work, 

cell density as such is not a chemical species. However, prediction was still possible. It is likely 

that the model is based on Raman signals of chemical species which are correlated to cell 

growth but not directly measured. As many organic compounds naturally fluoresce, the increase 

of fluorescent background during cultivation may be due to steady accumulation of metabolism 

products (Berry et al., 2015). This may also be the reason why low cell densities are poorly 

predicted compared to higher values due to the lower content of by-products. 

The quality of the models is sufficient over the whole course of cultivation. For this analyte, 

the in-line probe yielded a lower RMSEcv. However, both values, off-line and in-line, are sim-

ilar in value. Therefore, the difference is negligible, resulting in tolerable performance for both 

measurement types. Further investigations on quantification with Raman immersion probe are 

proposed to evaluate whether the Raman immersion probe can become a competitive alternative 

for the turbidity probe. 

 

5.7 Prediction of Total Protein Concentration 

For prediction of total protein concentration cPtotM, two cultivations were used instead of three. 

XXPC2622 was excluded from calibration as the reference measurement by Bradford assay 

was in poor quality (not shown here). All three phases of cultivation were used, batch-, fed-

batch, and production phase. Therefore, prediction with PS was not possible. 

Like the other analytes, RMSEcv yielded in the order of 9.93–12.0 %. A linear correlation can 

be observed between predicted vs. reference (Figure 5.24B). Its sharp band at 1650 cm-1 is typ-

ical for the functional group amide I, indicating the presence of proteins (Figure 5.24A) (Si-

vakesava et al., 2001). 
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Figure 5.24: OPLS model parameters of in-line Raman suspension for prediction of total protein cPtotM of 

model N11. A) Variable in projection (VIP), indicating wavenumbers above 1 being important; B) Observed vs. 

predicted cell density by cross-validation. Green: XXPC0922; blue: XX1722.  

Three to five OPLS component yielded about 83 % of the variation (Table 5.6). As the values 

between RMSEcv and RMSEP have low discrepancies among the models, it is expected that 

the model is stable. SNV was required to achieve lowest error predictions for all models. 

Table 5.6: Summary of predicted total protein concentration cPtotM with both off-line and in-line Raman 

spectroscopy. 

    N10 (SNV) N10 (SNV) N11 (SNV-SG) 

Monitoring / − off-line off-line in-line 

Fluid / − SUS SN SUS 

nCS / − 80 40 87 

nVS / − 21 10 22 

r / − 1+4+0 1+3+0 1+5+0 

R2Y / − 0.784 0.805 0.879 

Q2 / − 0.740 0.728 0.836 

RMSEcv  / mg L-1 10.1 12.0 9.93 

RMSEcvrel / % 11.7 14.0 11.5 

MBEcv / − −0.0715 −0.406 0.0248 

RMSEPVS / mg L-1 14.0 13.8 10.2 

RMSEPVSrel / % 16.3 16.1 11.9 

MBEPVS / − −4.26 −1.85 2.85 

 

It can be observed that SNV was required when using in-line CS based on all phases of culti-

vation (batch, fed-batch, and production phase) (cf. Table 5.5). Comparing this fact with in-line 
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glycerol and methanol prediction, 1stDer was required due to fluorescent background. It can be 

concluded that the scattering effect prevails the fluorescent effect during the whole course of 

cultivation. Thus, SNV filter is required to correct the scatter effects. 

For prediction of the total protein concentration course, all three models perform well. A quan-

tification of the total protein concentration was possible. However, in the higher concentration 

ranges, the model lacks in precision. It is likely that the total protein concentration determina-

tion happens through indirect measurement of another analyte. This could be caused by over-

lapping signals, masking the small signals of this low-concentrated analyte (Paul et al., 2016). 

 

Figure 5.25: Predicted total protein concentration cPtotM by cross-validation using off-line and in-line Raman 

spectroscopy. Grey circle: Bradford assay reference; blue triangle: off-line Raman spectroscopy of suspension; 

orange rhombus: off-line Raman spectroscopy of supernatant; green square: in-line Raman spectroscopy of sus-

pension. 

For prediction of total protein, the in-line probe performed slightly better than the off-line meas-

urement. However, both RMSEcv values are of same order, concluding that both measurement 

types give reason to use Raman spectroscopy for determination of total protein concentration. 

 

5.8 Sources of Error in Methodology 

This chapter deals with potential error sources which occurred especially during MVDA. Also, 

the cultivation XXPC2622 is further described due to its outstanding spectra. 
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5.8.1 Critical View on Executed MVDA 

The Hotelling’s T2 method identifies outliers, removing them prevents skewing of the model. 

However, the threshold for removal must be considered carefully. When sample points at the 

ends of the calibration range are removed, the scope over which the model is valid is reduced. 

Despite the fact that the removal of data outside the 95 % confidence interval adds more re-

strictions on the process ranges where the model is valid, it also increases the model’s adherence 

to these bounds (Berry et al., 2015). 

OPLS modelling procedure is adapted such that it generates models which are most accurate 

during main portion of the run. E.g., for glycerol concentration determination, only batch- and 

fed-batch phases were considered for modelling. However, this led to high RMSEP for produc-

tion phase. This trade-off must be kept in mind and adapted, depending on the current problem. 

Residual data must be considered in model building as these residuals give information about 

which data remains unexplained by the model. Large residuals in X- or Y-data are indicative of 

poor models (Eriksson et al., 2006b).  

Although time-sensitive data was evaluated by use of permutations, the tailored models were 

in contrast sensitive to data outside these models. Errors based on CV displays the simplest 

method for implementation and is least time-consuming. Still, the quality of model evaluation 

is limited. This could be observed in the comparison of RMSEcv and RMSEP. E.g., in Chapter 

5.4, N12 showed the lowest RMSEcv, its RMSEPVS does not remain lowest. Although 20 % of 

the data was left out from modelling, the data remains highly correlated. With this, similar data 

was used for validating the model. It was observed that RMSEcv tends to understate how much 

a model has overfitted the CS. This could be seen by comparing RMSEcv with the correspond-

ing RMSEVS. Most modelling combinations yielded a higher RMSEP than RMSEcv (cf. Ap-

pendix), proposing RMSEcv underestimates the actual error. To counteract this, more cultiva-

tions would be necessary to, 1. have a higher variability of data and, 2. use whole cultivations 

as PS. However, this exceeded the scope of this work. 

The declared PS in this work, meaning all samples excluded within one cultivation, did not 

function as such. As the detection of, e.g., glycerol during production phase or methanol during 

batch phase, should be expectedly 0 g L-1, the inclusion of further cultivations would be inter-

esting to see whether the predictions in these phases are representatively moving in tolerable 

areas. In industry, this is referred to as golden batch. This enables an early failure detection 

during cultivation when certain limits are exceeded. Therefore, the high RMSEPPS are to be 

considered with care in this work. 
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When comparing in-line with off-line Raman spectroscopy, several factors have to be kept in 

mind. In general, the culture broth progresses from translucent to increasingly turbid as the cells 

multiply and by-products or products accumulate. Therefore, light scattering increases which 

could be observed in Raman spectra over time. This effect can be corrected by sampling and 

off-line analysing the supernatant. However, in a bioreactor, centrifugation of the culture broth 

is not possible. Additionally, gas sparging is applied in order to supply the cells with oxygen. 

These air bubbles and the increasing biomass lead to further attenuation of light scattering (Lee 

et al., 2004). This aspect contributes to the discrepancies between in-line and off-line results. 

In Voß’ work, the same pre-processing methods were applied for both off-line and on-line Ra-

man measurements (Voß, 2017). However, this work indicated high discrepancies when apply-

ing the same method for off-line and in-line. Spectra showed that in-line and off-line result were 

in different appearance. These differences originate from gas sparging, agitation, and tempera-

ture maintenance in the bioreactor (Ghita et al., 2018; Lee et al., 2004; Zobeiri et al., 2022). 

Therefore, different pre-processing methods were applied in order to compensate this environ-

ment.  

Another fact to consider is that cultivation XXPC2622 appeared differently in spectra (cf. Fig-

ure 5.2, Figure 5.6). The causes of the difference will be further discussed in Chapter 5.8.2. 

From MVDA view, the difference might have an influence on the model outcome. All RMSEcv 

obtained in this work ranged in the order around 10 %. In other projects with the same bioreac-

tor systems, RMSEcv values of 1–3 % were achieved (Paul et al., 2016; Voß et al., 2017). The 

Raman probe used originated from a different manufacturer. However, it implies that lower 

RMSEcv values are realisable. Therefore, the multivariate calibration with inclusion of 

XXPC2622 could have led to the increased overall prediction error. For further improvement, 

the faulty cultivation should have been already excluded in the stage of PCA to enable repre-

sentation of the relevant variation of the process. 

 

5.8.2 Cultivation XXPC2622 

As previously described, cultivation number XXPC2622 deviated from the other two used cul-

tivations XXPC1722 and XXPC0922. This section serves to describe the prevailing situation 

(Figure 5.26). 

The difference in spectra could already be observed during the first samples of batch-phase (cf. 

Figure 5.2). Consequently, the fault must be prior to inoculation. In fact, due to circumstances, 

the inoculation was executed 1 h later than initially planned. This could imply cells reaching 
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It can be observed that by incorporating the actual stirrer speed, the estimation is more precise. 

This leads to an increase of the goodness of fit R2 from 97.5 % to 98.7 %. The corresponding 

parameters for equation (4.4) can be found in Table 5.7. The cell density estimation by the 

turbidity probe allows a more precise calculation of the feeding pump rate. 

Table 5.7: Parameters for cell density estimation with the turbidity probe. 

Setting a / g L-1 b / AU-1 c / − R2 / − 

Incorporation of stirrer speed 0.0987 2.69 −0.838 0.987 

Exclusion of stirrer speed 0.234 2.51 − 0.975 
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6 Conclusions 

The objective of the present work was to investigate the applicability of both in-line and off-

line Raman spectroscopy for the prediction of glycerol, methanol, cell, and total protein con-

centration. In the context of PAT, cultivations were executed with Pichia pastoris, comprising 

batch, fed-batch, and production phases. The OPLS models were evaluated regarding their pre-

dictive power towards the compounds analysed. 

Application of MVDA demonstrated that correlations between Raman spectra and analytes 

could be made. Preliminary studies on the pre-processing tools using the weighted sum model 

yielded a selection of 12 pre-processing methods. The methods comprised the pre-processing 

tools SG9, LinC, SNV, and 1stDer. Depending on the analyte, different pre-processing methods 

led to variating RMSEcv and RMSEPVS. However, the application of pre-processing method(s) 

is crucial for the extraction of information out of Raman spectra. The most often applied pre-

processing tool was SNV. Its scatter correcting property proved to be very useful for determi-

nation of total protein, cell, and methanol concentrations. 

The lowest RMSEcv with 6.24 % could be achieved with in-line prediction of cell concentra-

tion. However, the highest RMSEcv with 18.8 % was also obtained with the immersion probe 

for glycerol prediction. Throughout the measurement types, in-line Raman probe generated 

more minimum RMSEcv and RMSEPVS values than off-line Raman spectroscopy. Methanol 

prediction demonstrated that a smaller calibration set may lead to instabilities of the model. 

Both off-line and in-line Raman spectroscopy appears to be well suited for predictions of glyc-

erol, methanol, cell density, and total protein in culture broths and supernatant. 
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7 Future Perspectives 

The present work demonstrated that Raman spectroscopy was able to quantify the investigated 

analytes by use of MVDA. Further effort is required in order to develop strategies that result in 

even more reliable and capable models. Here, the step of early outlier detection plays a vital 

role. Within the scope of this work, the secreted protein eGFP was not investigated. This could 

be subject of more research to assess the influence of fluorescence upon Raman spectroscopy. 

Also, further examination on the influence of sparging and agitation in the culture vessel can 

enlighten potential disturbances of Raman spectroscopy. Alternatively, an approach with at-

line Raman can be considered. Here, the culture broth is diverted from the culture vessel and 

may be returned to the process. By this means, potential influences of bubbles and turbulences 

by stirring are prevented. Also, investigations on other medium compounds or metabolites of 

P. pastoris would be interesting such as target protein, amino acids, viable cells, or ammonium 

consumption. 

Subsequently, the process could be adapted even more to PAT approaches by implementing 

on-line monitoring to the bioprocess. The Raman immersion probe could substitute the turbidity 

probe. Instead, the vacant port of the bioreactor could be used for other electrodes where Raman 

comes to its limits. Feed-back loops using Raman spectroscopy for, e.g., glycerol or methanol 

feeding is possible. For this, SIMCA®-online is available. Also, the used process software Mul-

tiSpec® Pro II offers extensions for SIMCA-Q integration. 
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Appendix 

A HPLC Calibration 

Methanol Calibration 

 

Glycerol Calibration 
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B MVDA 

Prediction of Glycerol Concentration with off-line Suspension 

No. r R2Y / - Q2 / - RMSEcv / g L-1 MBEcv / - RMSEP / g L-1 MBEP / - 

1 1+5+0 0.882 0.835 3.19 0.0247 3.05 0.585 

2 1+5+0 0.884 0.727 4.09 0.0263 4.55 -0.704 

3 1+5+0 0.780 0.648 4.65 0.0410 5.68 -0.364 

4 1+5+0 0.886 0.732 4.05 0.0221 4.43 -0.761 

5 1+4+0 0.748 0.642 4.69 0.121 5.17 -0.345 

6 1+4+0 0.844 0.773 3.73 0.0309 4.19 0.542 

7 1+6+0 0.889 0.790 3.59 -0.0607 3.68 0.148 

8 1+5+0 0.895 0.846 3.07 0.0896 3.58 0.289 

9 1+5+0 0.848 0.753 3.89 -0.0563 3.73 -0.0702 

10 1+5+0 0.837 0.764 3.80 -0.107 3.18 -0.0598 

11 1+5+0 0.819 0.755 3.88 -0.0622 3.31 -0.0853 

12 1+4+0 0.871 0.837 3.16 0.0323 2.58 0.335 
 

Prediction of Glycerol Concentration with off-line Supernatant 

No. r R2Y / - Q2 / - RMSEcv / g L-1 MBEcv / - RMSEP / g L-1 MBEP / - 

1 1+5+0 0.865 0.745 3.31 0.0670 2.06 0.223 

2 1+5+0 0.910 0.700 3.59 0.0295 3.42 -0.708 

3 1+6+0 0.909 0.598 4.16 0.1193 5.07 -1.854 

4 1+5+0 0.906 0.705 3.56 0.0198 3.34 -0.615 

5 1+6+0 0.906 0.611 4.09 0.0631 4.91 -1.830 

6 1+5+0 0.856 0.744 3.32 0.0493 2.55 0.172 

7 1+5+0 0.940 0.795 2.97 0.0030 2.77 -0.841 

8 1+5+0 0.867 0.710 3.53 0.0256 3.03 0.350 

9 1+6+0 0.943 0.845 2.58 0.0578 2.53 -0.670 

10 1+6+0 0.838 0.735 3.38 0.1903 2.99 -0.925 

11 1+5+0 0.815 0.711 3.52 -0.0158 2.84 -1.056 

12 1+4+0 0.756 0.638 3.95 0.1833 2.56 -0.184 
 

Prediction of Glycerol Concentration with in-line Suspension 

No. r R2Y / - Q2 / - RMSEcv / g L-1 MBEcv / - RMSEP / g L-1 MBEP / - 

1 1+4+0 0.755 0.707 4.11 0.0612 3.73 -0.625 

2 1+3+0 0.821 0.740 3.87 -0.0311 3.21 -0.916 

3 1+3+0 0.674 0.605 4.77 0.0447 4.38 -0.763 

4 1+3+0 0.816 0.739 3.88 -0.0280 3.32 -0.908 

5 1+3+0 0.682 0.603 4.78 0.0573 4.28 -0.707 

6 1+2+0 0.692 0.674 4.33 0.0191 4.42 -1.064 

7 1+2+0 0.685 0.661 4.42 0.0026 4.61 -1.705 

8 1+2+0 0.690 0.673 4.34 0.0278 4.44 -1.087 

9 1+3+0 0.695 0.666 4.39 0.0084 4.57 -1.518 

10 1+2+0 0.650 0.628 4.63 0.0534 4.50 -1.427 

11 1+3+0 0.676 0.644 4.53 0.1008 4.60 -1.246 

12 1+3+0 0.714 0.698 4.17 -0.0069 4.18 -1.156 
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Prediction of Methanol with off-line Suspension 

No. r R2Y / - Q2 / - RMSEcv / g L-1 MBEcv / - RMSEP / g L-1 MBEP / - 

1 1+1+0 0.356 0.313 0.99 2.28E-04 0.79 0.360 

2 1+1+0 0.394 0.304 0.99 4.71E-03 0.83 0.132 

3 1+3+0 0.777 0.455 0.88 -3.42E-02 1.06 0.156 

4 1+1+0 0.392 0.302 1.00 4.63E-03 0.83 0.138 

5 1+3+0 0.770 0.452 0.88 -3.65E-02 1.05 0.180 

6 1+2+0 0.511 0.415 0.91 1.70E-02 0.69 0.263 

7 1+3+0 0.541 0.390 0.93 6.44E-03 0.57 0.172 

8 1+3+0 0.651 0.455 0.88 2.26E-02 0.76 0.162 

9 1+3+0 0.797 0.491 0.85 7.35E-02 0.93 0.225 

10 1+0+0 0.188 0.161 1.09 1.14E-04 0.96 0.301 

11 1+0+0 0.183 0.160 1.09 9.09E-05 0.96 0.306 

12 1+1+0 0.352 0.315 0.99 2.16E-05 0.80 0.366 
 

Prediction of Methanol Concentration with off-line Supernatant 

No. r R2Y / - Q2 / - RMSEcv / g L-1 MBEcv / - RMSEP / g L-1 MBEP / - 

1 1+1+0 0.346 0.110 0.84 -2.36E-02 0.83 0.574 

2 1+2+0 0.426 0.177 0.81 -8.43E-03 0.60 -0.058 

3 1+1+0 0.261 0.078 0.86 5.02E-03 0.70 0.079 

4 1+2+0 0.427 0.163 0.82 -1.80E-02 0.59 -0.040 

6 1+1+0 0.331 0.098 0.85 -1.94E-02 0.83 0.590 

7 1+1+0 0.382 0.197 0.80 -1.56E-02 0.76 0.445 

8 1+1+0 0.321 0.108 0.84 -1.97E-02 0.84 0.594 

9 1+1+0 0.355 0.188 0.80 -1.18E-02 0.78 0.479 

10 1+1+0 0.390 0.230 0.78 -6.46E-02 0.73 0.355 

11 1+0+0 0.205 0.122 0.84 1.07E-02 0.82 0.587 

12 1+1+0 0.341 0.118 0.84 -2.49E-02 0.83 0.574 

0 0 0.000 0.000 0.00 0.00E+00 0.00 0.000 
 

Prediction of Methanol Concentration with in-line Suspension 

No. r R2Y / - Q2 / - RMSEcv / g L-1 MBEcv / - RMSEP / g L-1 MBEP / - 

1 1+1+0 0.142 0.093 0.83 -6.59E-03 0.70 0.279 

2 1+3+0 0.603 0.348 0.70 -6.09E-03 0.38 0.077 

3 1+2+0 0.401 0.141 0.81 4.86E-03 0.48 0.121 

4 1+2+0 0.533 0.242 0.76 1.16E-02 0.44 0.040 

5 1+3+0 0.499 0.148 0.81 4.44E-03 0.48 0.018 

6 1+0+0 0.143 0.112 0.82 -2.93E-03 0.65 0.324 

7 1+2+0 0.396 0.310 0.72 1.63E-02 0.45 0.028 

8 1+1+0 0.179 0.124 0.82 -8.67E-03 0.71 0.227 

9 1+1+0 0.351 0.265 0.75 3.54E-03 0.56 0.029 

10 1+0+0 0.262 0.232 0.76 -4.30E-03 0.56 0.240 

11 1+0+0 0.257 0.237 0.76 -2.29E-03 0.55 0.240 

12 1+1+0 0.139 0.095 0.83 -6.53E-03 0.70 0.277 
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Prediction of Cell Concentration with off-line Suspension 

No. r R2Y / - Q2 / - RMSEcv / g L-1 MBEcv / - RMSEP / g L-1 MBEP / - 

1 1+1+0 0.803 0.799 7.78 0.0211 10.88 -1.017 

2 1+5+0 0.896 0.847 6.80 -0.0703 12.20 -2.212 

3 1+5+0 0.786 0.665 10.06 -0.0116 11.85 1.310 

4 1+5+0 0.898 0.856 6.59 -0.0754 12.36 -2.019 

5 1+4+0 0.749 0.649 10.29 -0.0755 12.61 0.495 

6 1+6+0 0.932 0.906 5.33 -0.0309 5.58 -0.122 

7 1+1+0 0.710 0.703 9.47 0.0470 10.83 0.077 

8 1+6+0 0.931 0.909 5.24 -0.0270 4.87 -0.110 

9 1+5+0 0.860 0.839 6.96 0.1397 6.48 0.435 

10 1+5+0 0.902 0.887 5.84 0.1701 4.86 -0.289 

11 1+5+0 0.899 0.888 5.81 0.0497 5.03 -0.431 

12 1+5+0 0.925 0.911 5.18 -0.0067 7.15 -0.888 
 

Prediction of Cell Concentration with in-line Suspension 

No. r R2Y / - Q2 / - RMSEcv / g L-1 MBEcv / - RMSEP / g L-1 MBEP / - 

1 1+6+0 0.927 0.894 6.21 0.1745 10.33 3.869 

2 1+3+0 0.884 0.838 7.66 -0.0560 9.31 3.395 

3 1+4+0 0.711 0.634 11.53 -0.4063 12.47 0.366 

4 1+3+0 0.884 0.846 7.49 -0.0432 9.29 3.546 

5 1+4+0 0.715 0.643 11.39 -0.3548 12.36 0.721 

6 1+5+0 0.868 0.832 7.81 0.2057 10.48 3.874 

7 1+7+0 0.928 0.885 6.46 0.1967 10.51 3.733 

8 1+6+0 0.929 0.896 6.16 0.1637 9.48 3.855 

9 1+6+0 0.923 0.882 6.55 0.0317 11.03 3.656 

10 1+6+0 0.902 0.881 6.57 0.1767 9.88 1.697 

11 1+6+0 0.913 0.896 6.14 0.0906 9.70 2.615 

12 1+4+0 0.840 0.811 8.29 0.1977 11.33 3.785 
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Prediction of Total Protein Concentration with off-line Suspension 

No. r R2Y / - Q2 / - RMSEcv / g L-1 MBEcv / - RMSEP / g L-1 MBEP / - 

1 1+2+0 0.774 0.715 10.56 -0.3291 14.57 -5.212 

2 1+3+0 0.736 0.570 12.96 -0.1930 15.43 -5.655 

3 1+2+0 0.331 0.170 18.02 -0.0819 23.28 -0.271 

4 1+3+0 0.748 0.599 12.53 -0.1662 14.99 -5.519 

5 1+1+0 0.243 0.180 17.91 -0.1512 26.22 0.313 

6 1+3+0 0.755 0.683 11.13 -0.3156 14.93 -4.649 

7 1+3+0 0.673 0.583 12.77 0.2053 17.26 -3.303 

8 1+3+0 0.756 0.681 11.18 -0.3418 14.82 -5.027 

9 1+3+0 0.686 0.589 12.68 -0.1433 17.31 -3.035 

10 1+4+0 0.784 0.740 10.09 -0.0715 14.04 -4.257 

11 1+4+0 0.782 0.741 10.06 0.0195 14.27 -3.281 

12 1+1+0 0.735 0.702 10.79 -0.1819 15.76 -4.625 

 

Prediction of Total Protein Concentration with off-line Supernatant 

No. r R2Y / - Q2 / - RMSEcv / g L-1 MBEcv / - RMSEP / g L-1 MBEP / - 

1 1+3+0 0.739 0.642 13.82 0.0124 17.48 -1.300 

2 1+1+0 0.314 0.179 20.93 -0.4330 27.00 -0.589 

3 1+0+0 0.087 0.049 22.52 -0.2951 28.98 -5.136 

4 1+1+0 0.315 0.178 20.94 -0.4087 27.06 -0.678 

5 1+3+0 0.704 0.275 19.67 -0.7451 19.09 -1.702 

6 1+3+0 0.688 0.589 14.80 0.4721 20.13 -2.499 

7 1+1+0 0.603 0.537 15.72 -0.1956 20.68 -4.155 

8 1+2+0 0.628 0.514 16.09 0.5408 21.36 -1.773 

9 1+3+0 0.787 0.634 13.97 -1.0016 14.20 -3.883 

10 1+3+0 0.805 0.728 12.05 -0.4062 13.82 -1.851 

11 1+3+0 0.803 0.738 11.81 -0.3382 14.38 -2.616 

12 1+2+0 0.675 0.588 14.83 0.1562 19.65 -0.810 
 

Prediction of Total Protein Concentration with in-line Suspension 

No. r R2Y / - Q2 / - RMSEcv / g L-1 MBEcv / - RMSEP / g L-1 MBEP / - 

1 1+4+0 0.786 0.744 12.39 0.0726 9.73 0.547 

2 0+0+0 0.000 0.000 0.00 0.0000 0.00 0.000 

3 0+0+0 0.000 0.000 0.00 0.0000 0.00 0.000 

4 0+0+0 0.000 0.000 0.00 0.0000 0.00 0.000 

5 0+0+0 0.000 0.000 0.00 0.0000 0.00 0.000 

6 1+4+0 0.779 0.734 12.63 0.0537 10.54 0.075 

7 1+5+0 0.887 0.831 10.06 -0.0948 10.88 -0.250 

8 1+4+0 0.779 0.733 12.65 0.0926 10.44 0.845 

9 1+5+0 0.887 0.831 10.06 -0.0438 10.99 0.337 

10 1+3+0 0.804 0.781 11.45 -0.2364 12.30 3.266 

11 1+5+0 0.879 0.836 9.93 0.0248 10.23 2.849 

12 1+3+0 0.749 0.722 12.90 0.0364 10.29 1.921 
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C Parameter Estimation 

1.1) MAIN-FILE 

% Goal:                 Determination of correction factor for Sturb 

% Description:          Simple regression with NSt consideration 

% Author:               Phoebe Chan 

% Date:                 18.08.2022 

% Version:              4.0 

% Related files:        funSturbNSt.m 

  

clc, clear 

clf 

  

% Data point of CDW mustn't be at t0 = 0 h but must be a number > 0! 

dtpth  = '3 Forschungsdaten\XXPC0922_FBII\Cultivation Data\'; 

CDW    = dlmread([dtpth 'BTM_part.txt'],'\t',[1 0 22 1]); 

z      = CDW(:,2); 

Sturb  = dlmread([dtpth 'Sturb_processed.txt'],'\t',[1 0 11847 1]); 

ty     = Sturb(1:3661,1); % Data points from batch and fed-batch phase 

y      = Sturb(1:3661,2); 

NSt    = dlmread([dtpth 'NSt_processed.txt'],'\t',[1 0 1101 1]); 

tx     = NSt(1:584,1); 

x      = NSt(1:584,2); 

  

% plot(t,y,'ko') % first, plot data to have an idea about initial values for param-

eters 

  

% Interpolation of Sturb and NSt for equidistant time points  

Sturbi = interp1(ty,y,CDW(:,1),'linear'); 

NSti = interp1(tx,x,CDW(:,1),'linear'); 

 

% Optimisation and regression function 

F_opt = @(c) fun_SturbNSt(Sturbi,NSti,CDW(:,2),c); 

C0 = [0.03 3.5 5.1]; % Enter intial guessing values for parameters 

C_opt = fminsearch(F_opt,C0); 

  

% Regression function: c_XLturb = a*(e^(b*S_turb)-1)*(N_St/N_Stmax)^c 

F_reg = @(C_opt,y,x) C_opt(1).*(exp(C_opt(2).*y)-1).*(x./800).^C_opt(3); 

Sturbs = (0:0.14:3)'; % smooth interval of Sturb for plotting 

NSts = (300:23:800)'; % smooth interval of NSt for plotting 

cXLturb = F_reg(C_opt,Sturbs,NSts); 

  

figure(1) 

hold on 

plot(Sturbs,cXLturb,'r','LineWidth',1) 

hold off 

xlim([0 2.5]) 

ylim([0 30]) 

box on 

  

% Legend formatting 

xlgnd = Sturbs(1)+0.2; % offset in x-dir. for legend 

ylgnd = max(CDW(:,2))-3; % offset in y-dir. for legend, can be alternated 

text(xlgnd,ylgnd,{'c_{XLturb} = a*(e^{b*S_{turb}(t)} - 

1)*(N_{St}/N_{St,max})^c',... 

    'with',['a = ',num2str(C_opt(1)),' g L^{-1}'],... 

    ['b = ',num2str(C_opt(2)),' AU^{-1}'],['c = ',num2str(C_opt(3))]}) 

  

% Title formatting 

% Enter here Cultivation No. (and cultivation phase): 

CultNo = XXPC0922; 

xlabel('S_{turb} / AU') 

ylabel('c_{XL} / g L^{-1}') 

title(['Nelder-Mead Algorithm for Determination of S_{turb} Parameters'],... 

    ['Cultivation No.: ', num2str(CultNo)]) 

  

% Set ticks outside 

set(gca,'TickDir','out'); % The only other option is 'in' 
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% Interpolation of Sturb_whole and NSt_whole for equidistant time points for Sa-

vitzky-Golay filter 

ti_turb = (min(Sturb(:,1)):0.478:max(Sturb(:,1)))'; 

ti_NSt = (min(NSt(:,1)):0.476:max(NSt(:,1)))'; 

Sturbwi = interp1(Sturb(:,1),Sturb(:,2),ti_turb,'linear'); 

NStwi = interp1(NSt(:,1),NSt(:,2),ti_NSt,'linear'); 

  

% Set smooth time interval for plot 2 

F_regwhole = @(C_opt,Sturb,NSt)  C_opt(1).*(exp(C_opt(2).*Sturb)-

1).*(NSt./800).^C_opt(3); 

W = F_regwhole(C_opt,Sturbwi,NStwi); 

  

figure(2) 

clf 

hold on 

plot(CDW(:,1),CDW(:,2),'ko') 

plot(ti_turb,W,'r','LineWidth',1) 

hold off 

box on 

xlim([0 80]) 

ylim([0 50]) 

 

% Title formatting 

xlabel('t_{process} / h') 

ylabel('c_{XL} / g L^{-1}') 

  

% Set ticks outside 

set(gca,'TickDir','out'); % The only other option is 'in' 

 

 

 

1.2) FUNCTION-FILE 

function S = fun_SturbNSt(X,Y,Z,c) 
%Revised FUNCTION FILE with consideration of Stirrer speed 
%Version 1 
fun = @(Sturbi,NSti) c(1).*(exp(c(2).*Sturbi)-1).*(NSti./800).^c(3); 
x = X; 
y = Y; 
z = Z; 
plot(x,z,'ko') 
S = sum((fun(x,y)-z).^2); % Sum of squared residuals 
SStotal = (length(fun(x,y))-1)*var(fun(x,y)); % Sum of S 
% Calculate Goodness of Fit R^2 
Rsq = 1 - S/SStotal; 
text(0.2,max(Z)+2.5,{['R^2 = ',num2str(Rsq)]}) 
end 

 




