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Abstract

Multilinear systems are an extension of linear systems and are an active field of re-
search in control systems. Tensors algebra enables compact and efficient computation
of multilinear systems analogous to how linear algebra is used in the context of linear
systems. This work develops a method of extracting multilinear parameters in canonical
polyadic decomposition from standardised nonlinear systems in MATLAB. This proce-
dure is applied to an existing model of a heating system of a non-residential building
and subsequently evaluated for accuracy of the resulting model.
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1 Introduction

Models of complex physical systems are a vital tool in control engineering for reliable
and energy-efficient operation, i.e. when being used in model predictive controllers which
rely heavily on both the accuracy and performance of the supplied model.
Within the field of control systems, linear models have always played a significant role
as the tools of linear algebra are paramount to problem-solving in this field. [6]

Multilinear models are a superset of linear models, while still offering tools to be effi-
ciently computed via tensor algebra analogously to linear functions and linear algebra.
This makes them a interesting field of research for control as they have the potential to
enable efficient computation of systems previously categorised as non-linear and thereby
computationally expensive. [2, p. 17]

This thesis aims to ease the process of finding possible multilinear representations of
existing standardised models and thereby lowering the barrier of entry for this active
field of research.
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2 Background

2.1 Mathematical background

2.1.1 Multilinear functions

Multilinear functions are a subclass of non-linear functions, extending the class of linear
functions. Figure 2.1 shows a visualisation of different function classes, with multilinear
functions being a superset of linear and binary functions.

Figure 2.1: Classes of functions
Source:[3, p. 2]

A function f(x) with x = (x1, . . . ,xn) is called multilinear, if the function is linear in
each individual variable xi, meaning it behaves linearly when all other variables are held
constant. From this follows, in a multilinear function all variables can be multiplicatively
combined while this property still holds true.
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2 Background

All possible combinations of scalars can be generated by a so called monomial vector
m(x), which is given by

m(x) =
(

1
xn

)
⊗ ... ⊗

(
1
x1

)
(2.1)

where ⊗ denotes the Kronecker product. [3, p. 3]

2.1.2 Tensor representation

Tensors are n-dimensional arrays to store numerical data. Matrices, used in linear alge-
bra and many other fields of mathematics and engineering are a subset of tensors with
two dimensions, vectors are thereby one-dimensional tensors.
The multi dimensionality of tensors is what makes them useful in representing multilin-
ear functions, as the possibility of every variable of interacting with any other variable
in itself is a property of multidimensional space. [2, p. 13]

With the introduction of tensors as mathematical constructs corresponding mathemat-
ical operations need to be defined. An overview of the field of tensor algebra can be
found in [2, p. 16-21], the operation used in this thesis is the contracted product of two
tensors A and B notated by ⟨A|B⟩ . When A contains all parameters of the model and
B is given by the monomial tensor such as (2.4), this operation can be used to represent
a state transition equation using tensors. In depth information about this operation can
be found in [5, p. 86].

Tensors can have very high storage demands as the number of elements increase expo-
nentially with additional dimensions. To mitigate this issue several tensor decomposition
methods have been developed over the years. [1]
One of those decomposition methods is the canonical polyadic decomposition. Using
this method the elements of the tensor are computed by summing the outer products of
the column vectors of so called "factor matrices" Xi ∈ Ri x r. Introducing a weighting
vector λ ∈ Rr allows normalization of the column vectors. The variable r is the rank of
the resulting tensor. A visualisation of a CP decomposition of a 5 x 4 x 3 tensor can be
seen in Fig. 2.2.
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2 Background

Figure 2.2: CP Decomposition of a tensor with dimensions 5 x 4 x 3
Source:[3, p. 8]

2.1.3 Multilinear models

When modelling real world systems, multilinear functions represented by tensors can be
a useful tool. A state space model

ẋ = ⟨F|M(x, u)⟩ (2.2)

y = ⟨G|M(x, u)⟩ (2.3)

can be formulated, where x ∈ Rn represents the states of the system and u ∈ Rm the
inputs. The monomial tensor M has the decomposition

M(x, u) =
[(

1
x1

)
, . . . ,

(
1

xn

)
,
(

1
u1

)
, . . . ,

(
1

um

)]
. (2.4)

The transition tensors can be decomposed into its factor matrices Fi, Gi ∈ R2 x r with
i = 1, . . . ,(n + m) and scaling matrices Fϕ ∈ Rn x r and Gϕ ∈ Rp x r, where p is the
number of outputs of the system. [3, p. 20-21]

Determining the values within these matrices, is a crucial part in describing the dynamics
of the system and the main focus of this thesis.
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2 Background

2.2 Technical background

2.2.1 Simulink S-Function

The well known programming language MATLAB and its graphical programming envi-
ronment Simulink are widely used tools within science and engineering. [4]
Within Simulink it is possible to write custom models which integrate seamlessly into the
Simulink environment using the programming languages C, C++, Fortran or MATLAB.
This is advantageous, as it allows users to implement arbitrarily complex models, which
can interact with native graphical Simulink components.
This integration is achieved by enforcing the model to communicate with the Simulink
environment via callback methods that will be invoked by Simulink. Some of these call-
back methods are mandatory to implement such as mdlInitializeSizes for initialisation
of variable inputs and outputs. Other callback are optional an can be implemented if
the model calls for it - such as mdlDerivatives for calculating a current derivative of a
time-continuous system.
A diagram containing possible callback methods and their order of invocation during
simulation can be seen in Fig. 2.3.

Figure 2.3: Order of invocation of S-Function callbacks
Source:[7]
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3 Procedure

3.1 Overview

The procedure described in this chapter is designed to determine whether a given set of
differential equations can be represented multilinearly, determine all multilinear terms
present in the set and subsequently extract the parameters of each multilinear term. A
simple flow diagram illustrating the process can be seen in Fig. 1.1.

Prerequisites

Start

Extraction and ordering of coefficients and terms

System multilinear? Error

Filling the factor matrices

Filling the phi matrix

Human error?

End

No

Yes

No

Yes

Figure 3.1: Flow diagram of the procedure
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3 Procedure

The results of this procedure are then organised and stored in CP representation of a
tensor. To illustrate the working principle of the procedure, a simple example will be
used in this chapter to show the application of the procedure.

3.2 Implementation

This sections contains a sequentially ordered description of the procedure. The singular
steps are labelled with roman numerals for easier reference.

Prerequisites
The starting point for this procedure is a nonlinear state space model of the system
implemented in MATLAB with the symbolic toolbox as seen in Lst. 3.2 .

This procedure does not require the differential equations to be in any particular
form. It is advised to keep logical connections such as physical constants within
their logical context, as this can enable more intuitive adjustment even if the
multilinear parameters are already extracted. The system

ẋ1 = ax1 + bx2 + cu (3.5)

ẋ2 = x1x2(du + e

x1
) | for x1 ̸= 0

= dx1x2u + ex2

(3.6)

is comprised of the states x1, x2 and one input u. The parameters chosen here are
symbolic for readability, they can be substituted for numeric values at any point
during the procedure.

Eqn. 3.6 is intentionally represented in a form from which the multilinear terms
and parameters can’t be extracted directly by visual inspection (in contrast to
Eqn. 3.5).

Listing 3.1: Example differential equations

1 % Define the differential equations
2 syms x1 x2 u a b c d e
3 dT_x1 = a*x1+b*x2+c*u;
4 dT_x2 = x1*x2*(d*u+e/x1);

7



3 Procedure

I Extraction and ordering of coefficients and terms
The Matlab command coeffs returns all occurring terms and coefficients in respect
to a given set of independent variables in a polynomial. By combining the terms
of all differential equations into one array and applying the unique command, an
ordered list of all unique combinations of states and inputs can be obtained. This
order should stay unchanged, as it will be used as a reference to order the columns
of the factor- and phi-matrices.

Listing 3.2: Defining states and inputs ; Extracting terms and coefficients

1 % Define states and input
2 states = [x1 x2];
3 inputs = [u];
4
5 % Get the coefficients of the multilinear terms
6 [x1_coeffs , x1_terms ] = ...
7 coeffs ( expand (dT_x1) ,[ states inputs ]);
8 [x2_coeffs , x2_terms ] = ...
9 coeffs ( expand (dT_x2) ,[ states inputs ]);

10
11 % Get multilinear terms from all diff equations and

order them
12 u_seq = unique ([ x1_terms x2_terms ]);

II Checking for non-linearities
When executing the code above, an error "Polynomial expression expected." will
occur if one of the equations can not be parsed as a polynomial i.e. when one of the
states or inputs occur in the denominator of the polynomial. This is seemingly the
case for (3.6) since x1 is present in a denominator, but after all terms are expanded
by using expand as seen in line 10 of Lst. 3.2, x1 is only present in the numerator
of the polynomial. This simplification is trivial in this case but goes to show how
this procedure offers a way to ease the evaluation of the multi-linearity of systems
programmatically.
By manually inspecting the u_seq array, further non-linearities can be identified
such as higher powers of states or inputs. If the resulting terms of the equations
are exclusively linear multiplications of states and inputs proceed to the next step.

8



3 Procedure

This can be confirmed by visual inspection of the terms for smaller systems, for
larger systems programmatic solution should be considered.

III Manually setting the factor matrices
A row vector F ∈ Bj representing the minimal normalised form of the factor ma-
trix for each state and input should now be created, j being the length of u_seq.
The array u_seq contains all multilinear terms of the system, as seen in the follow-
ing table. Each column of the factor matrices should be set to 1 if the corresponding

Index 1 2 3 4
Value u x1 x2 u*x1*x2

Table 3.1: Contents of u_seq

column of u_seq contains the respective term. All other values should be 0. The
resulting vectors for the example system can be seen here:

Listing 3.3: Factor matrices in MATLAB

1 % Manually set the factor matrices according to u_seq
2 F_X1 = [0 1 0 1];
3 F_X2= [0 0 1 1];
4 F_U = [1 0 0 1];

IV Assembling the Phi matrix
For reliable assembly of the phi matrix, a function was developed in order to assign
the extracted factors according to the terms occurring in the differential equations.
This function makes use of logical indexing to find pairs of corresponding terms
and coefficients and subsequently assigns them along the vectors according to the
original equations. The matrix Fϕ is a n times j matrix, where n = length(states)
and j as previously defined. The matrix Fϕ is implemented in MATLAB as a
symbolic array and subsequently filled with either 0 or coefficients of the respective
terms.

Listing 3.4: Function for assembling the phi matrix

1 % Create empty symbolic phi matrix
2 F_Phi = sym('phi ' ,[ length ( states ) length (u_seq)]);
3
4 % Fill the phi matrix

9



3 Procedure

5 F_Phi = fillPhi (F_Phi ,{ x1_terms , x2_terms }, ...
6 {x1_coeffs , x2_coeffs },u_seq);
7
8 function r = fillPhi (phi ,terms ,coeffs ,seq)
9 for j=1: size(phi ,1)

10 for i=1: length (phi(j ,:))
11 coeff = coeffs {j}( terms{j} == seq(i));
12 if isempty (coeff)
13 phi(j,i) = 0;
14 else
15 phi(j,i) = coeff;
16 end
17 end
18 end
19 r = phi;
20 end

V Review the generated data
Due to the high degree of user interaction with raw data in this procedure it is
advised to review generated data at this point. Especially the factor matrices are
prone to errors but can easily be checked for oversights.
The command table is used here, to present the data in a visually accessible way.
The array useq is used to label the columns, the arrays states and inputs for labelling
the rows.

Listing 3.5: Table creation for review

1 % Convert to Tables for inspection
2 F_Phi_table = array2table (F_Phi ,'RowNames ',string ( states

),'VariableNames ',string (u_seq));
3 F_table = array2table ([ F_X1;F_X2;F_U],'RowNames ',string

([ states inputs ]),'VariableNames ',string (u_seq));

The F_Table representing the minimal normalised factor matrices is deemed valid
in this context if every column contains a one in each row corresponding to a term
in the columns name. The rest of the table should be zero.

10



3 Procedure

Listing 3.6: Review of factor matrices

1 F_table =
2
3 3x4 table
4
5 u x1 x2 u*x1*x2
6 _ __ __ _______
7
8 x1 0 1 0 1
9 x2 0 0 1 1

10 u 1 0 0 1

The F_Phi_Table represents the differential equations the procedure started with.
By multiplying each cell with its column name and adding them together, the
original differential equations

ẋ1 = cu + ax1 + bx2 + 0ux1x2 = ax1 + bx2 + cu (3.7)

ẋ2 = 0u + 0x1 + ex2 + dux1x2 = x1x2(du + e

x1
) (3.8)

can be reconstructed.

Listing 3.7: Review of Phi matrix

1 F_Phi_table =
2
3 2x4 table
4
5 u x1 x2 u*x1*x2
6 _ __ __ _______
7
8 x1 c a b 0
9 x2 0 0 e d

11



3.2.1 Higher powers of binary variables

As mentioned in Sec. 2.1.1 multilinear systems can include binary variables. (See also
[3, p. 3]) Binary variables B ∈ {0, 1} stay unchanged when multiplied by itself. When
the differential equations contain binary variables bm with m > 1 , they can be substi-
tuted by b1. This can lead to substantially simplified multilinear terms and should be
considered when higher powers of binary variables occur.

The function in Lst. 3.8 is included in the template of the procedure, automating the
substitution of higher powers of a symbolic variable.

Listing 3.8: Substite powers of symbolic variable

1 function s = substitute_powers (eq ,term , powers )
2 arguments
3 eq (1 ,1) sym
4 term (1 ,1) sym
5 powers (1 ,:) int32
6 end
7 for i=1: length ( powers )
8 eq = subs( expand (eq),term^ powers (1,i),term);
9 end

10
11 s = eq;
12 end

4 Application Example

In this section an existing model of the heating system of the CC4E, implemented in
Simulink, will first be converted into a system of differential equations. Afterwards the

12



4 Application Example

procedure described in Chapter 3 will be applied in order to represent the system as a
tensor in CP decomposition.

4.1 Existing thermal model of the CC4E campus

The heating system of the CC4E Campus is modelled in Simulink, consisting of a con-
sumer of energy, a combined heat and power plant (CHP) and a water heat storage ele-
ment. The CHP and the consumer are modelled using native Simulink building blocks,
whereas the heat storage is implemented in C and embedded within the model using the
Matlab Executable (MEX) file format.
The system is laid out as such, that the only inputs of the system are the heat transferred
out of the heating system and the control signal to the CHP.

4.2 Extracting differential equations from vanilla
Simulink

In order to formulate the equation describing the change of a state with a model con-
taining one integrator at the output, it needs to be converted into its mathematical
representation. Each node represents either a variable or an operator, the arrows de-
termine their relationship to each other. By following each path of the model from the
integrator in direction of the inputs an equation can be extracted. A simple example of
the Simulink and mathematical representation can be seen in Fig. 4.1 and Lst. 4.1.

Figure 4.1: Simulink model of the consumer

Listing 4.1: Differential equation of consumer block

1 syms Q_ab T_Verbraucher T_Rl

13



4 Application Example

2 dV_Verbraucher = 5.5e -05;
3 c = 4182;
4 rho = 1000;
5 V_Verbraucher = 0.054;
6
7 dT_Rl = (c*rho* dV_Verbraucher * T_Verbraucher - Q_ab - T_Rl*c*

rho* dV_Verbraucher )/(c*rho* V_Verbraucher );

The example seen above is simple because the only operations within are addition,
subtraction, muliplication and division. Other models containing non-linearities such as
saturation or binary switches require the introduction of binary variables conditionals.

4.3 Extracting differential equations from C S-Function

Figure 4.2: Simulink Block
containing the
storage S-Function

In this section the process of extracting a nonlinear
state space model from a Simulink S-Function will be
described. The S-Function is embedded in a Simulink
block, which receives two volume flows (dV1, dV2) and
a temperature for each volume flow (T1ein,T2ein) as in-
put. The Simulink block with inputs and outputs can
be seen in Fig. 4.2.

S-Functions in MATLAB can be written in native
MATLAB code, Fortran, C or C++. In either case
the S-Function implements a set of callback methods,
one of which can be "mdlDerivatives". This callback

method will be called by the Simulink engine if the model is registered as a continuous-
time function.

As this is the case for the model of the storage, it is the location from which the state
equation of the state space model can be extracted from. This particular model is writ-
ten in a fairly generic manner, so in order to extract concrete equations this genericity
must in turn be concretised. This model is designed to model a storage tank in up to 100
layers, the concrete implementation at CC4E only uses three layers. Those three layers

14



4 Application Example

will subsequently be referred to as Top, Mid and Bot. When inspecting mdlDerivatives,
the equations

dTT op = aTT op + cTMid + d (4.9)

dTMid = aTMid + bTT op + cTBot + d (4.10)

dTT op = aTBot + bTMid + d (4.11)

for the uppermost, lowermost and interjacent layers can be extracted.
The coefficients a,b,c,d, are defined as

a = −
m1out + mBdwn + mTup + As U

Cp + Acup Keff
Cp H + Acdwn Keff

Cp H

M
(4.12)

b =
mTdwn + Acup Keff

Cp H

M
(4.13)

c =
mBup + Acdwn Keff

Cp H

M
(4.14)

d =
Tin m1in + As Tenv U

Cp
M

. (4.15)

These coefficients are calculated for every call of mdlDerivatives and for every layer sep-
arately. Note that, in the source code the layers (i.e. Top,Mid,Bot) are implemented
using arrays. The necessary indexing is omitted here for readability and replaced with
representative subscripts in the case of the states and derivatives. All variables in the
coefficients are also stored in arrays per layer, but since they always reference the layer
currently being calculated, the subscripts are omitted for readability.

The variables introduced in (4.12),(4.13),(4.14) and (4.15) can be categorised as constant
(set by parameters), linearly and nonlinearly dependent on inputs.
A majority of nonlinear behaviour of the model can be attributed to the transition
between charging and discharging of the tank, i.e. when dV1 surpasses dV2 or vice versa.
This behaviour can be encapsulated within the variable charge, which is defined by

charge =

1 for dV1 ≥ dV2

0 for dV1 < dV2
. (4.16)
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4 Application Example

An overview of how the variables for the coefficients are calculated can be found in Table
4.1.

Table 4.1: Dependencies of variables in differential coefficients in S-Function source code
Variable Linear relationship Nonlinear relationship Subroutine

As Const. Htank, Vtank, N
Acdwn Const. Acdwn
Acup Const. Acup
Keff Const. Keff
Tenv Const. Tenv
Cp T getCp()
M Const. VTank T getRho()

m1in dV1, dV2 charge, T setInputFlows()
m1out dV1, dV2 charge, T setInputFlows()
mBup dV1, dV2 charge, T setFlowDirection()

mBdwn dV1, dV2 charge, T setFlowDirection()
mTup dV1, dV2 charge, T setFlowDirection()

mBdwn dV1, dV2 charge, T setFlowDirection()
Tin T1ein T2ein charge setInletTemperatures()

The nonlinearities in relation to temperature are due to the density (rho) and specific
heat capacity (Cp) being approximated using third and fourth degree polynomials re-
spectively. In order to simplify a multilinear representation a fixed value from within
the operating range for Cp and Rho is chosen. (See Appendix A.2) This eliminates all
nonlinear dependencies on temperature.

The binary variable charge is implemented as

charge = dV1
2dV2

. (4.17)

Using an external quantising routine before every evaluation it shall be set to 1 if the
numerical value is equal or above 0.5. Otherwise it shall be set to 0. Although this seem-
ingly adds complexity to the implementation it separates the the binary and non-binary
logic and thereby enables the multilinear tensor-based representation of the system.
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4 Application Example

4.4 Building the Factor matrices

4.4.1 Finding non-multilinearities

With the differential equations now extracted from the existing model the procedure
introduced in chapter 3 can now be applied.
After following step I (and thereby also step II) for all components of the system
(CHP,consumer and storage) it becomes apparent, that the CHP is not multilinearly
representable.
After investigating through the use of the numden() as seen in Lst. 4.2 command it
becomes apparent, that the differential equation describing the CHP contains variables
in a denominator which disqualifies it for multilinear representation.
By examining the terms present in the denominator of the polynomial in question as
seen in Lst 4.2 and subsequently Tbl. 4.2.

Listing 4.2: Examining the denominator of the CHP for nonzero terms

1 [N, D] = numden ( dT_BHKW );
2 [BHKW_Dc , BHKW_Dt ] = coeffs (D);
3 [BHKW_Nc , BHKW_Nt ] = coeffs (N);

Note: BHKW_an_above_half is a binary variable introduced during the manual ex-
traction of the differential equation. It represents the Switch3 seen in Fig. 4.3. The signal

Table 4.2: Contents of BHKW_Dt
Index 1 2 3 4
Value BHKW_an_above_half*T_Rl BHKW_an_above_half T_Rl 1

path making the model non-multilinear can be seen highlighted in blue in Fig. (4.3).
In the highlighted pathway the signal T_Rl goes through the divisor node Divide1 and
afterwards through threshold-switch Swich1, explaining the denominator terms found in
the differential equation.

A MATLAB script documenting the process up to this point can be found in appendix
A.4. As this thesis is focussed on viable multilinear models, modelling the CHP will not
be investigated further.
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Figure 4.3: Non-multilinear part of the CHP model

4.4.2 Detailed modelling of the storage in isolation

With the aspiration to model the complete system multilinearly put aside, the focus
remains on modelling the storage. In order to compare the multilinear model with the
original a Simulink model is created with only the storage as can be seen in Fig. 4.4.

Figure 4.4: Storage in isolation in Simulink

The inputs are the two input flows and the associated temperatures, the states are the
temperatures of the three layers of the storage and the additional charge-state as defined
in (4.16).
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Listing 4.3: Defining the inputs and states of the storage system

1
2 % Get the differential equations
3 dT_StoTop = getStorageEq ('Top ');
4 dT_StoMid = getStorageEq ('Middle ');
5 dT_StoBot = getStorageEq ('Bottom ');
6
7 % Declare the states and inputs
8 syms charge T_Top T_Mid T_Bot dV_BHKW T_BHKW T_Rl dV_Rl rho

Cp
9 states = [T_Top T_Mid T_Bot charge ];

10 inputs = [ dV_BHKW T_BHKW T_Rl ];

When inspecting the differential equations of the storage it is apparent, that charge oc-
curs in powers up to three. To simplify the resulting terms the helper function described
in 3.2.1 is applied. The function calls can be seen in Lst. 4.4.

Listing 4.4: Substitution of higher powers of charge

1 syms charge
2 dT_StoTop = ...
3 substitute_powers (dT_StoTop ,charge ,[ int32 (2) int32 (3) ]);
4 dT_StoMid = ...
5 substitute_powers (dT_StoMid ,charge ,[ int32 (2) int32 (3) ]);
6 dT_StoBot = ...
7 substitute_powers (dT_StoBot ,charge ,[ int32 (2) int32 (3) ]);

When going through the remaining steps of the procedure no further problems arise and
the tensor in minimal CP representation can be obtained.

4.5 Testing the model

To compare the model against the original S-Function identical time-bases and inputs
and a similar solver is chosen. (Ode45 for the tensor based model, Ode8 Dormand-Prince
within Simulink) When plotting different responses of both models with static inputs,
it becomes apparent that the resulting model behaves similar to the S-Function but the
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final stable values differ as well as the responsetime of the system. Different inputs and
the respective responses can be seen in Fig 4.5. Depicted are the temperatures of the
three layers for the two respective models.

Figure 4.5: Comparison of multilinear model and Simulink model

4.6 Troubleshooting

To achieve a better understanding of the discrepancy between the multilinear model and
the Simulink model a manual review of the C code was carried out and some internal
variables were inspected during simulation via console outputs. This lead to the following
two observations:

Error in absolute value calculation
The C code contains a line of code which calculates the absolute value of the
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difference between input flows. Since the information of the relation between these
flows is already known through the charge variable, this is seemingly trivial to
implement. Nonetheless an error occurred here, which was subsequently fixed, see
Lst. 4.6. This fix improved performance of the model but a discrepancy remained.

Listing 4.5: Absolute value of floating number in C

1 m = fabs(m1 -m2); /* work only with positive flow
internally */

Listing 4.6: Corrected error in differential calculation in MATLAB

1 % m = charge *m1 + (1- charge )*m2; This was wrong
2
3 m = m1 -m2;
4 m = charge *m - (1- charge )*m;

Inconsistent temperatures around the S-Function
After inspecting values within the C code during the simulation, it became appar-
ent that the mass flow itself is much lower than expected in the C file. The C
function calculates the density and specific heat capacity of the water being stored
using polynomials with temperature in °C as the independent variable. The model
of the CC4E only handles temperatures in Kelvin and thereby these polynomi-
als evaluate to significantly divergent values as the assumptions made during this
work(See Section 4.2). A table showing the discrepancies for Cp and Rho and a
fix to the isolated model can be seen in Tbl. 4.3 and Fig. 4.6.

Table 4.3: Discrepancy between °C and K in Cp and Rho Polynomials
Input temp Cp (|Cp - 4200|/ 4200)*100 Rho (|Rho - 1000| / 1000)*100

70 4189 0.25% 977.75 2.22%
70 + 273.15 14971 256.45% 871.10 12.89%

4.7 Limitations

Due to time constraints during this thesis the resulting model could not be further
refined to exactly match the original Simulink model. Additionally a few limitations to
this work should be stated:
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Figure 4.6: Fixing the temperature inputs and outputs of the storage model

Output of the Simulink model
The Simulink model contains a function in mdlOutput, which simulates mixing of
the layers. This is equivalent of a having a tensor other than the identity tensor
for G in (2.3) and was intentionally omitted. It was therefore removed from the C
model during the comparisons in section 4.5.

Binary States
As mentioned at the end of section 4.2, an external routine is needed to evaluate
the real-valued intermediary values of the binary state to a binary value. As this
was not implemented due to time constraints, the charge variable was implemented
as a constant in the multilinear model and initiated with the valid value. Due to
the tests not varying the input values and charge only depending on inputs this
does not compromise the results.

Static input values
The validation with static input values only allows for limited insight in a sys-
tem’s behaviour. With more time, dynamic analysis would yield more detailed
information about the system.
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5 Conclusion

The procedure described in this thesis is intended to ease the evaluation of system for
multilinearity, enable programmatic extraction of multilinear parameters while keeping
the original systems editable. By applying the procedure to the existing model of the
CC4E it was shown, that not only evaluation of multilinearity is possible, but concrete
inferences on the variables causing the incompatibility can be made (See Sec. 4.4.1).
Keeping the original system equations editable in their human comprehensible form,
while evaluating the multilinear model proved useful in tracing errors. The possibility
of being able to tweak physical constants while evaluating the resulting model proved
especially useful in Sec. 4.6.

Regarding the accuracy of the resulting model, the application example did not yield
conclusive results within the time constraints of this work. The resulting multilinear
model did increasingly resemble the original, as errors from the manual reading of the
source code were found and remedied.
This, however, can not be seen as proof for the accuracy of the proposed procedure.
The multilinear sample system introduced in Chapter 3 contrawise could be fully recon-
structed after application of the procedure (See (3.7) and (3.8)). The proof of recon-
struction of state space models from CP decomposed tensors is given in [5, p. 72-76].
In conclusion the procedure proposed in this can aid in evaluating the multilinearity of
standardised non-linear models and extracting multilinear parameters from said systems.
Future refinements of this procedure such as automated detection of different kinds of
multilinearities and the automation of manual steps could further simplify this process.
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A Appendix

A.1 Example Code

1 % Define the differential equations
2 syms x1 x2 u a b c d e
3
4 dT_x1 = a*x1+b*x2+c*u;
5 dT_x2 = x1*x2*(d*u+e/(x1));
6
7
8 % Define states and input
9 states = [x1 x2];

10 inputs = [u];
11
12 % Get the coeffieicients of the multilinear terms
13
14 [x1_coeffs , x1_terms ] = coeffs ( expand (dT_x1) ,[ states inputs

]);
15 [x2_coeffs , x2_terms ] = coeffs ( expand (dT_x2) ,[ states inputs

]);
16
17 % Get multilinear terms from all diff equations and order

them
18 u_seq = unique ([ x1_terms x2_terms ]);
19
20 % Optional : If the differentials contain binary states ,

you can substitute all powers of it with a power of one
21
22
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23
24
25
26 % Manually set the factor matrices according to u_seq
27 F_U = [1 0 0 1];
28 F_X1 = [0 1 0 1];
29 F_X2= [0 0 1 1];
30
31
32 % Create empty symbolic phi matrix
33 F_Phi = sym('phi ' ,[ length ( states ) length (u_seq)]);
34
35 % Fill the phi matrix
36 F_Phi = fillPhi (F_Phi ,{ x1_terms , x2_terms },{ x1_coeffs ,

x2_coeffs },u_seq);
37
38
39 % Convert to Tables for inspection
40 F_Phi_table = array2table (F_Phi ,'RowNames ',string ( states ),

'VariableNames ',string (u_seq));
41 F_table = array2table ([ F_X1;F_X2;F_U],'RowNames ',string ([

states inputs ]),'VariableNames ',string (u_seq));

A.2 Storage differential equations in MATLAB

1 function eq = getStorageEq (type)
2 % GETSTORAGEEQ Returns any of the three Storage

differential equations
3 arguments
4 type (1 ,:) char { mustBeMember (type ,{ 'Top ','Middle ','

Bottom '})}
5 end
6 T_env = 295;
7 switch type
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8 case 'Top '
9 syms dV_BHKW T_BHKW T_Rl T_Top T_Mid charge

rho %dV_Rl Cp
10 dV_Rl = 5.5e -05;
11 Cp = 4182;
12 m1 = dV_BHKW * rho;
13 T1 = T_BHKW ;
14 m2 = dV_Rl * rho;
15 T3 = T_Rl;
16 V_TANK = 0.946;
17 H_TANK = 2;
18 U = 2.62;
19 K_eff = 0.003;
20 n = 3;
21 H = H_TANK / n;
22 T_in= T1* charge +(1- charge )*T3;
23
24
25 AC_UP = V_TANK / H_TANK ;
26 Ac_dwn = AC_UP;
27 PER = sqrt (4* pi*AC_UP);
28 H_NODE = 3;
29 AS = PER* H_NODE ;
30 As_cap = AS + AC_UP;
31 M = V_TANK *rho/n;
32 m = m1 -m2;
33 m = charge *m - (1- charge )*m;
34
35
36
37 m1out = (1- charge )*m;
38 m1in = charge *m;
39 mBup = (1- charge )*m;
40 mBdwn = charge *m;
41
42
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43 a = (-m1out -mBdwn -K_eff* Ac_dwn /(Cp*H)-U* As_cap
/Cp)/M;

44 c = (mBup+K_eff* Ac_dwn /(Cp*H))/M;
45 d = (m1in*T_in+U* As_cap *T_env/Cp)/M;
46
47 eq = a*T_Top+c*T_Mid+d;
48
49 case 'Middle '
50 syms charge T_Mid T_Top T_Bot dV_BHKW T_BHKW

T_Rl dV_Rl %rho Cp
51 dV_Rl = 5.5e -05;
52 m1out =0;
53 m1in = 0;
54 rho = 857.89;
55 Cp = 4182;
56 K_eff = 0.003;
57 V_TANK = 0.946;
58 H_TANK = 2;
59 Ac_up = V_TANK / H_TANK ;
60 Ac_dwn = Ac_up;
61 n= 3;
62 H = H_TANK / n;
63 U = 2.62;
64 PER = sqrt (4* pi*Ac_up);
65 H_NODE = 3;
66 As = PER* H_NODE ;
67 M = V_TANK *rho/n;
68
69 m1 = dV_BHKW * rho;
70 m2 = dV_Rl * rho;
71 T1 = T_BHKW ;
72 T3 = T_Rl;
73
74
75 m = m1 -m2;
76 m = charge *m - (1- charge )*m;
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77 T_in= T1* charge +(1- charge )*T3;
78 mTup = (1- charge )*m;
79 mTdwn = charge *m;
80 mBup = (1- charge )*m;
81 mBdwn = charge *m;
82 a = (-m1out -mTup -mBdwn -K_eff*Ac_up /(Cp*H)-

K_eff* Ac_dwn /(Cp*H)-U*As/Cp)/M;
83 b = (mTdwn+K_eff*Ac_up /(Cp*H))/M;
84 c = (mBup+K_eff* Ac_dwn /(Cp*H))/M;
85 d = (m1in*T_in+U*As*T_env/Cp)/M;
86
87 eq = a*T_Mid + b*T_Top + c*T_Bot + d;
88 case 'Bottom '
89 syms T_Bot T_Mid charge dV_BHKW T_BHKW T_Rl %

dV_Rl rho Cp
90 dV_Rl = 5.5e -05;
91 rho = 857.89;
92 Cp = 4182;
93 K_eff = 0.003;
94 V_TANK = 0.946;
95 H_TANK = 2;
96 Ac_up = V_TANK / H_TANK ;
97 n= 3;
98 H = H_TANK / n;
99 U = 2.62;

100 PER = sqrt (4* pi*Ac_up);
101 H_NODE = 3;
102 As = PER* H_NODE ;
103 As_cap = As + Ac_up;
104 M = V_TANK *rho/n;
105
106 m1 = dV_BHKW * rho;
107 m2 = dV_Rl * rho;
108 T1 = T_BHKW ;
109 T3 = T_Rl;
110
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111
112 m = m1 -m2;
113 m = charge *m - (1- charge )*m;
114 T_in= T1* charge +(1- charge )*T3;
115 m1out = charge *m;
116 m1in = (1- charge )*m;
117 mTup = (1- charge )*m;
118 mTdwn = charge *m;
119
120 a = (-m1out -mTup -K_eff*Ac_up /(Cp*H)-U* As_cap /

Cp)/M;
121 b = (mTdwn+K_eff*Ac_up /(Cp*H))/M;
122 d = (m1in*T_in+U* As_cap *T_env/Cp)/M;
123
124 eq = a*T_Bot + b*T_Mid + d;
125
126 end
127 end
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A.3 Full Simulink model of the CHP

A.4 Script modelling the system including storage and
CHP

1
2 %[sys ,x,y,str ]= minimalmodell_V7 (0 ,[] ,[] ,0);
3 dT_BHKW = getBHKWEq ();
4 dT_Rl = getConsumerEq () ;
5 dT_StoTop = getStorageEq ('Top ');
6 dT_StoMid = getStorageEq ('Middle ');
7 dT_StoBot = getStorageEq ('Bottom ');
8
9 [N, D] = numden ( dT_BHKW );

10 [BHKW_Dc , BHKW_Dt ] = coeffs (D);
11 [BHKW_Nc , BHKW_Nt ] = coeffs (N);
12
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13 [Rl_coeffs , Rl_terms ] = coeffs (dT_Rl);
14
15 [ StoTop_coeffs , StoTop_terms ] = coeffs ( dT_StoTop );
16
17 [ StoMid_coeffs , StoMid_terms ] = coeffs ( dT_StoMid );
18
19 [ StoBot_coeffs , StoBot_terms ] = coeffs ( dT_StoBot );
20
21 Fx = 3;
22 Fy= 2;
23 kombis = 19;
24 % REIHENFOLGE : T_RL Q_ab T_Verbraucher (= T_Top ?) T_Mid T_Bot

(= T_Rl_BHKW ?) dV_BHKW charge
25
26 syms T_Rl Q_ab T_Top T_Verbraucher T_Mid T_Bot dV_BHKW

charge T_BHKW BHKW_an_above_half BHKW_an_above_zero
T_BHKW_above_low T_BHKW_above_upper Vstrom_above_low
Vstrom_above_upper

27
28
29 F_Rl = zeros(Fy , kombis );
30 F_Qab = zeros(Fy , kombis );
31 F_Top = zeros(Fy , kombis );
32 F_Mid = zeros(Fy , kombis );
33 F_Bot = zeros(Fy , kombis );
34 F_dV_BHKW = zeros(Fy , kombis );
35 F_T_BHKW = zeros(Fy , kombis );
36 F_charge = zeros(Fy , kombis );
37 F_mod = zeros(Fy , kombis );
38
39
40
41 F_Rl (2 ,1: end) = [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0];
42 F_Top (2 ,1: end) = [0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0];
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43 F_Mid (2 ,1: end) = [0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0];

44 F_Bot (2 ,1: end) = [0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0
0];

45 F_dV_BHKW (2 ,1: end) = [0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 1 1 0
0];

46 F_T_BHKW (2 ,1: end) = [0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0];

47 F_charge (2 ,1: end) = [0 1 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1
0];

48 F_mod (2 ,1: end) = [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0];

49 F_Qab (2 ,1: end) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1];

50
51
52 % T_RL

T_BHKW * charge

T_Top/ T_Verbraucher T_Mid
T_bot

dV_BHKW
T_BHKW

charge mod
T_Mid* charge

T_Mid* charge * dV_BHKW

T_BHKW * charge * dV_BHKW

T_Top* charge

T_Top* charge * dV_BHKW
T_Bot* charge

T_Bot* charge * dV_BHKW
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T_Rl* charge * dV_BHKW

T_Rl* charge

Q_ab
53 F_phi (1 ,1: kombis ) = [ Rl_coeffs ( Rl_terms == T_Rl)

0

Rl_coeffs ( Rl_terms == T_Verbraucher ) 0
0

0
0
0
0
0

0

0

0

0 0

0

0

0

Rl_coeffs ( Rl_terms == Q_ab)];
54 F_phi (2 ,1: kombis ) = [0

0
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StoTop_coeffs ( StoTop_terms == T_Top) StoTop_coeffs (
StoTop_terms == T_Mid) 0

0
0
0
0
StoTop_coeffs ( StoTop_terms ==

T_Mid* charge ) + StoTop_coeffs ( StoTop_terms == T_Mid*
charge ^2) StoTop_coeffs ( StoTop_terms == T_Mid* charge ^2*
dV_BHKW ) + StoTop_coeffs ( StoTop_terms == T_Mid* charge *
dV_BHKW ) StoTop_coeffs ( StoTop_terms == T_BHKW * charge
^3* dV_BHKW )

StoTop_coeffs ( StoTop_terms == T_Top* charge )

StoTop_coeffs ( StoTop_terms == T_Top* charge * dV_BHKW ) 0

0

0

0

0];
55 F_phi (3 ,1: kombis ) = [0

0

StoMid_coeffs ( StoMid_terms == T_Top) StoMid_coeffs (
StoMid_terms == T_Mid) StoMid_coeffs ( StoMid_terms ==
T_Bot) 0 0

0
0
StoMid_coeffs ( StoMid_terms ==

T_Mid* charge )
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StoMid_coeffs ( StoMid_terms == T_Mid* charge * dV_BHKW )

0

StoMid_coeffs ( StoMid_terms == T_Top* charge ) +
StoMid_coeffs ( StoMid_terms == T_Top* charge ^2)
StoMid_coeffs ( StoMid_terms == T_Top* charge ^2* dV_BHKW )
StoMid_coeffs ( StoMid_terms == T_Bot* charge ) +
StoMid_coeffs ( StoMid_terms == T_Bot* charge ^2)
StoMid_coeffs ( StoMid_terms == T_Bot* charge ^2* dV_BHKW ) +
StoMid_coeffs ( StoMid_terms == T_Bot* charge * dV_BHKW ) 0

0

0];
56 F_phi (4 ,1: kombis ) = [ StoBot_coeffs ( StoBot_terms == T_Rl)

StoBot_coeffs ( StoBot_terms == T_BHKW * charge ^3) +
StoBot_coeffs ( StoBot_terms == T_BHKW * charge ^2) +
StoBot_coeffs ( StoBot_terms == T_BHKW * charge ) 0

StoBot_coeffs (
StoBot_terms == T_Mid) StoBot_coeffs ( StoBot_terms ==
T_Bot) 0 0

0
0
StoBot_coeffs ( StoBot_terms ==

T_Mid* charge ) + StoBot_coeffs ( StoBot_terms == T_Mid*
charge ^2) StoBot_coeffs ( StoBot_terms == T_Mid* charge ^2*
dV_BHKW )

StoBot_coeffs ( StoBot_terms == T_BHKW * charge ^3* dV_BHKW ) +
StoBot_coeffs ( StoBot_terms == T_BHKW * charge ^2* dV_BHKW )
0

0
StoBot_coeffs ( StoBot_terms == T_Bot* charge )
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StoBot_coeffs ( StoBot_terms == T_Bot* charge * dV_BHKW )

StoBot_coeffs ( StoBot_terms == T_Rl* charge * dV_BHKW ) +
StoBot_coeffs ( StoBot_terms == T_Rl* charge ^2* dV_BHKW ) +
StoBot_coeffs ( StoBot_terms == T_Rl* charge ^3* dV_BHKW )
StoBot_coeffs ( StoBot_terms == T_Rl* charge ) +
StoBot_coeffs ( StoBot_terms == T_Rl* charge ^2) +
StoBot_coeffs ( StoBot_terms == T_Rl* charge ^3) 0];

57
58
59 F_Rl = invertsecondrow (F_Rl);
60 F_Qab = invertsecondrow (F_Qab);
61 F_Top = invertsecondrow (F_Top);
62 F_Mid = invertsecondrow (F_Mid);
63 F_Bot = invertsecondrow (F_Bot);
64 F_dV_BHKW = invertsecondrow ( F_dV_BHKW );
65 F_T_BHKW = invertsecondrow ( F_T_BHKW );
66 F_charge = invertsecondrow ( F_charge );
67 F_mod = invertsecondrow (F_mod);
68
69 function prod = easykron (in)
70 res = 1;
71 for i=1: length (in)
72 col (2 ,1) = in(1,i);
73 col (1 ,1) = 1;
74 res = kron(res ,col);
75 end
76 prod = res;
77 end
78
79 function mat = invertsecondrow (in)
80 for i=1: length (in)
81 in(1,i) = abs(in(2,i) -1);
82 end
83 mat = in;
84 end
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85
86 function [dT_Rl] = getConsumerEq ()
87 syms Q_ab T_Verbraucher T_Rl
88 dV_Verbraucher = 5.5e -05;
89 c = 4182;
90 rho = 1000;
91 V_Verbraucher = 0.054;
92
93 dT_Rl = (c*rho* dV_Verbraucher * T_Verbraucher - Q_ab - T_Rl*c*

rho* dV_Verbraucher )/(c*rho* V_Verbraucher );
94 end
95
96 function dT_BHKW = getBHKWEq ()
97
98 syms T_Rl T_BHKW BHKW_an_above_half BHKW_an_above_zero

T_BHKW_above_low T_BHKW_above_upper Vstrom_above_low
Vstrom_above_upper

99 mod = sym('mod ');
100 V_BHKW_laden = 0.052;
101 V_BHKW_entladen = 0.075;
102 P_min = 19;
103 P_max = 36;
104 k_BHKW_laden = 50.46;
105 k_BHKW_entladen = k_BHKW_laden ;
106 c = 4182;
107 rho = 1000;
108
109 T_Umgebung = 295;
110
111 % Saturation Boundaries
112 Vstrom_min = 1.38e -4;
113 Vstrom_max = 5.55e -4;
114 T_BHKW_min = 273;
115 T_BHKW_max = 353;
116 %
117
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118 % BHKW_an_aus
119 % BHKW_an_above_half = heaviside ( BHKW_an - 0.5);
120 % BHKW_an_above_zero = heaviside ( BHKW_an - 1.0e -6); % TODO

more beautiful solution
121
122
123 V_BHKW =((1 - BHKW_an_above_half )* V_BHKW_entladen + (

BHKW_an_above_half )* V_BHKW_laden );
124 k_BHKW = ((1- BHKW_an_above_half )* k_BHKW_entladen + (

BHKW_an_above_half )* k_BHKW_laden );
125
126 Q_zu= BHKW_an_above_zero * (( P_max -P_min)*mod + P_min) *1000;
127 %
128
129 % Saturation T_BHKW
130 % T_BHKW_above_low = heaviside (T_BHKW - T_BHKW_min );
131 % T_BHKW_above_upper = heaviside ( T_BHKW - T_BHKW_max );
132
133 T_BHKW_Term = ((1 - T_BHKW_above_low ) * T_BHKW_min + ... %

Lower limit
134 T_BHKW_above_low * (1 - T_BHKW_above_upper ) * T_BHKW +

...% Gain 1 Zone
135 T_BHKW_above_upper * T_BHKW_max ); % Upper limit
136 %
137
138 % Saturation VStrom
139 Vstrom = (mod*P_max *1000) / ...
140 ((353 - T_Rl)*c*rho) ;
141
142 % Vstrom_above_low = Vstrom /(2* Vstrom_min ); %% binary
143 % Vstrom_above_upper = Vstrom /(2* Vstrom_max ); %% binary
144
145 Vstrom = ((1 - Vstrom_above_low ) * Vstrom_min + ... %

Lower limit
146 Vstrom_above_low * (1 - Vstrom_above_upper ) * Vstrom +

...% Gain 1 Zone
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147 Vstrom_above_upper * Vstrom_max ) * ... ; % Upper limit
148 BHKW_an_above_half ; % ON/OFF
149
150 %QVl -Q_Rl
151 Q_VLQ_Rl = (( T_BHKW_Term - T_Rl) * Vstrom )*c*rho;
152
153
154 Q_Verlust = ( T_BHKW_Term - T_Umgebung ) * k_BHKW ;
155
156 dT_BHKW = ( Q_zu - Q_VLQ_Rl - Q_Verlust ) / ( V_BHKW *c*rho);
157
158
159 end

A.5 Model of storage in isolation

Listing A.1: Model of the storage in isolation, simulation in comparison with simulink

1
2 % Get the differential equations
3 dT_StoTop = getStorageEq ('Top ');
4 dT_StoMid = getStorageEq ('Middle ');
5 dT_StoBot = getStorageEq ('Bottom ');
6
7 % Declare the states and inputs
8 syms charge T_Top T_Mid T_Bot dV_BHKW T_BHKW T_Rl dV_Rl rho

Cp
9 states = [T_Top T_Mid T_Bot charge ];

10 inputs = [ dV_BHKW T_BHKW T_Rl ];
11
12 % Optional : If the differentials contain binary states , you

can substitute all powers of it with a power of one
13 syms charge
14 dT_StoTop = ...
15 substitute_powers (dT_StoTop ,charge ,[ int32 (2) int32 (3) ]);
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16 dT_StoMid = ...
17 substitute_powers (dT_StoMid ,charge ,[ int32 (2) int32 (3) ]);
18 dT_StoBot = ...
19 substitute_powers (dT_StoBot ,charge ,[ int32 (2) int32 (3) ]);
20
21 % Get the coeffieicients of the multilinear terms
22 [ StoTop_coeffs , StoTop_terms ] = coeffs (dT_StoTop ,[ states

inputs ]);
23 [ StoMid_coeffs , StoMid_terms ] = coeffs (dT_StoMid ,[ states

inputs ]);
24 [ StoBot_coeffs , StoBot_terms ] = coeffs (dT_StoBot ,[ states

inputs ]);
25
26 % Get multilinear terms from all diff equations and order

them
27 u_seq = unique ([ StoTop_terms StoMid_terms StoBot_terms ]);
28
29
30 % Manually set the factor matrices according to u_seq
31 F_Top = [0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1];
32 F_Mid= [0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0];
33 F_Bot = [0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0];
34 F_charge = [0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1];
35 F_dV_BHKW = [0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1];
36 F_T_BHKW = [0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0];
37 F_T_Rl = [0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0];
38
39
40 % Create empty symbolic phi matrix
41 Phi = sym('phi ' ,[ length ( states ) length (u_seq)]);
42 % Automatically fill the phi matrix
43 F_Phi = fillPhi (Phi ,{ StoTop_terms , StoMid_terms , StoBot_terms

,[]} ,{ StoTop_coeffs , StoMid_coeffs , StoBot_coeffs ,[]} , u_seq
);

44 udv = 5.5e -5;
45 F_Phi = subs(F_Phi ,[ dV_Rl rho Cp],[ udv 1000 4200]) ;
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46 % Convert to Table for inspection
47 F_Phi_table = array2table (F_Phi ,'RowNames ',string ( states ),'

VariableNames ',string (u_seq));
48
49 % Simulation Inputs and Time - vector
50 u0 = 0:20:15 e4;
51 u0 = u0.';
52 u1 = zeros( length (u0) ,1);
53 u1 (:) =7e -05;
54
55 u2 = zeros( length (u0) ,1);
56 u2 (:) =273.15+60;
57
58 u3 = zeros( length (u0) ,1);
59 u3 (:) =273.15+45;
60
61
62 u = [u0 u1 u2 u3];
63
64 ntype =1; %norm 1
65 x0 =[341;310;304; u1 (1 ,1) >=5.5e -05]; % initial states
66 Ts =0; % continous time system = 0, discret time =1
67 n=4;
68 m=3;
69
70 F=[ F_Top;F_Mid;F_Bot; F_charge ; F_dV_BHKW ; F_T_BHKW ; F_T_Rl ;

F_Phi ];
71 F = double (F);
72 mod= mticpn (F,x0 ,Ts ,ntype ,n,m);
73 si1= simulateMTI (mod ,u);
74 si2 = sim('only_storage ');
75
76 tic;
77 simContOde45Mti (si1 ,u(: ,1)); %for discrete simDiscMTI (sys ,

Tend)
78 tsi=toc;
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79 % plotSim (si1)
80 clf;
81 hold on;
82 xlabel ('Time [s]')
83 ylabel ('Temperature [K]')
84 title('Heat storage Simulation ( Multilinear v Simulink )')
85 p1 = plot(u0 ,si2. logsout {2}. Values .Data ,'green ');
86 plot(u0 ,si2. logsout {1}. Values .Data ,'green ');
87 plot(u0 ,si2. logsout {3}. Values .Data ,'green ');
88 p2 =plot(u0 ,si1.xsim (: ,1) ,'red ');
89 plot(u0 ,si1.xsim (: ,2) ,'red ');
90 plot(u0 ,si1.xsim (: ,3) ,'red ');
91 hold off;
92 legend ([p1 p2],{'Simulink model ','Mulitlinear model '},'

Location ','northeast ')
93 str = { strcat ('dV_{BHKW} = ',string (u1 (1))),strcat ('T_{BHKW}

= ',string (u2 (1))),strcat ('dV_{Rl} = ',string (udv)),
strcat ('T_{Rl} = ',string (u3 (1)))};

94 text (10e4 ,330 , str);
95 function r = fillPhi (phi ,terms ,coeffs ,seq)
96 for j=1: size(phi ,1)
97 for i=1: length (phi(j ,:))
98 coeff = coeffs {j}( terms{j} == seq(i));
99 if isempty (coeff)

100 phi(j,i) = 0;
101 else
102 phi(j,i) = coeff;
103 end
104 end
105 end
106 r = phi;
107 end
108
109 function s = substitute_powers (eq ,term , powers )
110 arguments
111 eq (1 ,1) sym
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112 term (1 ,1) sym
113 powers (1 ,:) int32
114 end
115 for i=1: length ( powers )
116 eq = subs( expand (eq),term^ powers (1,i),term);
117 end
118
119 s = eq;
120 end
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