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Abstract
Environmental pollution is a serious issue that the world is facing nowadays. A

tremendous amount of waste is generated every year causing irreparable damage and

permanent pollution to the Earth. Moreover, waste generated by humans in public

places shows an uncivilized image of some nations which is why it is very important to

rely on modern solutions to get rid of such issues. This thesis aims to utilize advanced

deep learning and computer vision techniques in order to detect waste in public places

and help getting rid of such waste in an automated way.

Within the scope of this thesis, di�erent approaches of object detection using

pre-trained deep neural networks are discussed. Furthermore, it also comprises the

pre-processing pipeline of collecting potential input data, preparing it and applying

the concept of data augmentation on it.

The �nal assessment includes current results and further development and applica-

tion of the aforementioned object detection model.
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Kurzzusammenfassung
Die Umweltverschmutzung ist ein ernstes Problem, mit dem die Welt heutzutage

konfrontiert ist. Jedes Jahr fallen enorme Abfallmengen an, die irreparable Schäden

und eine dauerhafte Verschmutzung der Erde verursachen. Darüber hinaus ist der

von Menschen an ö�entlichen Orten erzeugte Abfall ein unzivilisiertes Bild einiger

Nationen, weshalb es sehr wichtig ist, sich auf moderne Lösungen zu verlassen, um

solche Probleme zu lösen. Diese Thesis zielt darauf ab, fortgeschrittene Techniken

des Deep Learning und der rechnergestützten Bildverarbeitung zu nutzen, um Abfall

an ö�entlichen Plätzen aufzuspüren und zu helfen, solchen Abfall auf automatisierte

Weise entsorgen.

Im Rahmen dieser Arbeit werden verschiedene Ansätze der Objekterkennung mit

Hilfe von vortrainierten tiefen neuronalen Netzen diskutiert. Darüber hinaus umfasst

sie auch die Vorverarbeitungspipeline der Sammlung potenzieller Eingabedaten, deren

Aufbereitung und die Anwendung des Konzepts der Data Augmentation auf diese

Daten.

Die abschließende Bewertung umfasst die aktuellen Ergebnisse sowie die Weiteren-

twicklung und Anwendung des oben genannten Objektdetektionsmodells.
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1 Introduction

1.1 Problem Statement

The waste humans generate has been detrimental to the environment for quite some

time now. Humans are generating tremendous amounts of trash that cannot be dealt

with in a sustainable way. Waste that is not biodegradable and cannot be properly be

recycled is �lling the oceans and land�lls. A recent study about plastic waste found

that of the 6.3 billion metric tons of plastic waste that has been produced [1], only 9%

of that plastic waste had been recycled and only 10% of which had been recycled more

than once.

Poor waste management contributes to climate change, air pollution, and directly

a�ects many ecosystems and species. Some ecosystems, like the marine and coastal

ones, can be severely a�ected by poor management of waste. Waste impacts the

environment indirectly as well; whatever is not recycled or recovered from it represents

a loss of raw material and other inputs used in the chain, i.e. in the production,

transport, and consumption phases of the product. Environmental impacts in the

life-cycle chain are signi�cantly larger than those in the waste management phases

alone [2].

Waste also represents an economic loss and burden to the society; labor and the

other inputs (land, energy, etc.) used in its extraction, production, dissemination,

and consumption phases are also lost when the ‘leftovers’ are discarded. Moreover,

waste management costs money; creating an infrastructure for collecting, sorting and

recycling is costly, but once in place, recycling can generate revenues and create jobs.

1



1 Introduction

1.2 Objective

A statistical report in 2018 showed that the estimated average waste generated per

person per year in the European Union is 492 kg. According to the report, and as

shown in Figure 1.1, Germany comes in the fourth place in the EU countries with

respect to waste generated per person. It can also be seen that the amount of waste

generated per person per year in Germany has gone from 433 kg in 2005 to 615 kg in

2018 [3].

Even though it has become obvious that producing such amounts of waste ev-

ery year is inevitable, governments are trying to reduce the negative e�ects of the

produced waste on the environment by following some techniques such as waste recy-

cling. And since modern problems require modern solutions, science and technology

have a substantial role to play in helping getting rid of waste in more e�ective and

environment-friendly ways.

Figure 1.1: Generated waste per person in the EU in 2005 versus in 2018 [3].

The goal of this bachelor thesis is to develop a machine learning model that can be

deployed to a drone camera and which is able to detect waste in public places such

as parks and streets in real-time. For that purpose, several deep neural networks for

object detection and computer vision are to be examined to conclude which one �ts

2



1 Introduction

better for the requirements. Such a model would help countries be able to get rid of

public waste in an autonomous way in the future by being capable of detecting trash

in public places and identifying their exact location.

1.3 Document Structure

This document consist of 7 chapters and is structured as follows: chapter 2 gives

and overview of the existing computer vision technologies and state-of-the-art object

detection methodologies.

In chapter 3, analysis of the project requirements is performed and the most im-

portant features of the project are extracted. Chapter 4 then proceeds to explain how

the concluded requirements are met and which technologies are to be used in order to

achieve the required results.

Chapter 5 contains all the technical details of the data preparation and implemen-

tation of the project. In chapter 6, a thorough evaluation of the results is done and

the project’s outcome is discussed. Finally, chapter 7 gives a brief summary of this

document and ideas for further improvements that can be done to the project.

3



2 State of the Art

A waste disposal system is a crucial sector in human civilization and the world is

currently su�ering due to the irresponsible disposal of trash. Nowadays, the workers

assigned to collect and dispose of trash live an inhumane life especially in developing

countries and they also live at the risk of health hazards and infectious diseases [4].

A smart waste collection system can free those people from such a burden and o�er

huge advantages to the whole society.

2.1 Related Work

Researchers have been doing signi�cant e�orts to come up with smart garbage

detection and collection systems, however, there has not been too much attention

given to such projects. For instance, a UNESCO prizewinner from Estonia, the Let’s

Do It Foundation, had the idea to create an image-based trash detection system using

Arti�cial Intelligence (AI) [5]. Their plan was to collect images of trash from various

places around the globe, prepare the images to be fed into a Mask Region-based Con-

volutional Neural Network (R-CNN) to train it for trash detection and �nally validate

and test the results produced by the model to ensure its accuracy and consistency.

Despite the fact that their research was fruitful and they were able to design such a

model, they did not receive much attention neither did they have enough resources to

continue working on their project by achieving an autonomous trash disposal system.

Unfortunately, the project has now stopped, and on their o�cial website, they o�er to

do a project handover for those interested in completing their work[6].

4



2 State of the Art

Another project by Mangusta Technology in the Netherlands involved deploying a

model on a camera on an e-Bike customized for the speci�c purpose of trash detection

in the city of Amsterdam [7]. For their model, they used a modi�ed version of Darknet
1

to train a You Only Look Once (YOLO) [9] object detection system. The bike that is

equipped with the camera tours around the city marking places with trash in them and

sending them to a Google Firestore database
2
. Additionally, they developed an app that

adds pinpoints of trash places on the map. Their idea was to give garbage operators

the capability of monitoring garbage statistics throughout the city in real-time and

from their o�ces.

Additionally, A plethora of research papers has been carried out to try to �nd a

solution to this problem by using di�erent approaches. In Bangladesh, a study by

Hossain et al. implemented a deep learning algorithm deployed on a low-cost robot

with a Raspberry Pi and a camera to create an autonomous trash collector [11]. For

developing the model they used Keras
3

and OpenCV
4

for object detection. No pre-

trained model was used, instead, the model was created from scratch. The model

achieved an accuracy of 96% on the test data. Another study by Liu et al. in Shanghai

used the YOLOv2 model as a pre-trained network for research on developing a garbage

detection system and achieved an accuracy of 89.2% on the test data [14]. Although

those results are promising and may look reliable, they have not yet been seen to be

adopted by any of the countries they were developed in.

2.2 Artificial Intelligence

In the past few years, AI has been a subject of intense media hype. Machine

Learning (ML), Deep Learning (DL), and AI come up in countless articles, often outside

of technology-minded publications. A future of intelligent chatbots, self-driving cars,

and virtual assistants is promised —a future sometimes painted in a grim light and

1
Darknet is an open source neural network framework written in C and CUDA. It is fast, easy to

install, and supports CPU and GPU computation [8].

2
The Firebase Realtime Database is a cloud-hosted database [10].

3
Keras is an open-source neural-network library written in Python [12].

4
OpenCV is a library of programming functions mainly aimed at real-time computer vision [13].

5



2 State of the Art

other times as utopian, where human jobs will be scarce, and most economic activity

will be handled by robots or AI agents [15].

First, the di�erence between AI, ML, and DL and how they are related to each other

need to be clearly de�ned. As shown in Figure 2.1, AI is a general �eld of automating

machine behavior which encompasses ML and DL. A concise de�nition of AI would be

"The e�ort to automate intellectual tasks normally performed by humans", however,

AI does not have to involve any learning. For instance, early chess programs only

involved hard-coded rules crafted by programmers, which is known as symbolic AI

[15].

Figure 2.1: Arti�cial intelligence, machine learning, and deep learning [15].

Machine learning on the other hand is the science of getting computers to act

without being explicitly programmed. It is considered as a set of rules that computers

use to make and improve predictions or behaviors based on previous data. As it can

be seen in Figure 2.2, the system is given a set of previous data relevant to the task

at hand alongside the correct results corresponding to this data as inputs. Based on

those inputs, the system then tries to de�ne a set of rules that can be applied to similar

problems occurring in the future [16].

6



2 State of the Art

Figure 2.2: Machine learning vs classical programming [15].

This set of input data can be in the form of digitized human-labeled training sets or

other types of information obtained via interaction with the environment. In all cases,

its quality and size are crucial to the success of the predictions made by the algorithm.

A machine-learning model transforms its input data into meaningful outputs by �nding

an appropriate representation for the input data and make it more amenable to the

task at hand. This allows for solving a remarkably broad range of intellectual tasks,

from speech recognition to autonomous car driving [17].

A speci�c sub�eld of machine learning is deep learning; putting an emphasis

on learning consecutive layers by introducing representations that are expressed in

terms of other, simpler representations [15][18]. Modern deep learning often involves

tens or even hundreds of successive layers of representations— and they’re all taught

automatically from exposure to training data. Those layered representations are almost

always learned via models called neural networks, structured in literal layers stacked

on top of each other. Neural networks are designed to accomplish one small task with

high e�ciency. They usually consist of an input layer, an output layer, and sometimes

hidden layers [19]. A typical structure of a neural network can be seen in Figure 2.3.

7



2 State of the Art

Figure 2.3: Typical structure of a Deep Neural Network.

2.3 Object Detection and Computer Vision

Computer vision is the automated extraction of information from images and videos.

Information can mean anything from 3D models, camera position, object detection

and recognition to grouping and searching image content [20]. This has proved to be

a surprisingly challenging task; it has occupied thousands of intelligent and creative

minds over the last decades, and despite this, being able to build a general-purpose

“seeing machine” is still a far destination [21].

Object detection is an important research area in image processing and computer

vision. It is the task of classifying and localizing multiple objects in an image or a

video [22]. Interpreting the object localization can be done in various ways, including

creating a bounding box around the object or marking every pixel in the image which

contains the object.

8



2 State of the Art

The performance of object detection systems has signi�cantly improved over the

past decade by applying deep learning methodologies. Throughout the following

sections, some of those systems and methodologies are discussed in a more detailed

manner to provide an overview of the relevant available architectures.

2.3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a special kind of neural networks for

processing data that has a known grid-like topology. Examples include time-series

data, which can be thought of as a 1-D grid taking samples at regular time intervals,

and image data, which can be thought of as a 2-D grid of pixels [18]. Using such

architecture makes CNNs fast to train and this, in turn, helps in training deep, multi-

layer networks that are very good at classifying images [23]. The name “Convolutional"

Neural Network indicates that the network employs a mathematical operation called

convolution
5
. Hence, it can be said that they are simply neural networks that use

convolution in place of general matrix multiplication in at least one of their layers.

The most important building block of a CNN is the convolutional layer which

performs the aforementioned mathematical convolution operation. Neurons in the

�rst convolutional layer are not densely connected to every single neuron in the input

layer as we’ve seen in the classic neural network structure in Figure 2.3, but only

connected to pixels that represent their respective �eld as shown in Figure 2.4. In turn,

each neuron in the second convolutional layer is connected only to neurons located

within a small rectangle in the �rst layer.

This architecture allows the network to concentrate on low-level features in the

�rst hidden layer, then assemble them into higher-level features in the next hidden

layer, and so on. This hierarchical structure is common in real-world images, which is

why CNNs have been tremendously successful nowadays in practical applications for

image recognition.

5
Convolution is a mathematical operation on two functions that produces a third function expressing

how the shape of one is modi�ed by the other. The term convolution refers to both the result

function and to the process of computing it.

9



2 State of the Art

Figure 2.4: CNN layers with rectangular local receptive �elds [24].

One of the biggest advantages of CNNs is that once it has learned to recognize a

pattern in one location it can recognize it in any other location in the image. On the

other hand, once a regular Deep Neural Network (DNN) has learned to recognize a

pattern in one location, it can only recognize it in that particular location. This is due

to the fact that neurons in each of the CNN layers are responsible for a so-called �lter:

that is a speci�c characteristic of the image which is determined by the receptive �eld.

These so-called �lters then output a feature map, which highlights the areas in

an image that activate the �lter the most. Those �lters do not have to be manually

de�ned, rather, the most useful ones for the task at hand are learned automatically

during training through the convolutional layer, and the layers above will learn to

combine them into more complex patterns.

The produced feature map has an important characteristic; it shares the same

weights and parameters for this speci�c �lter across the entire input. Sharing weights

in this way signi�cantly reduces the number of weights the network has to learn,

making it easier to learn very deep architectures and additionally allowing recognizing

the patterns in an image to be position independent [25].

10



2 State of the Art

2.3.2 Fully Convolutional Networks

Fully Convolutional Networks (FCNs) are CNNs in which the dense layers at the

top of the network are replaced by convolutional, fully connected layers. It was �rst

introduced by Long et al. in [26]. The importance of this is that a convolutional layer

will easily process an image of any size, whereas a dense layer expects an input of a

speci�c size. And since FCNs contain only convolutional layers, they can be trained

on inputs of any size [24].

2.3.3 Region-based Convolutional Neural Networks

In [27], Girshick et al. proposed a technique to use selective search in order to

extract a certain number of category-independent regions in an image; an approach

they called region proposals. Each region proposal is then warped into a CNN that

extracts a �xed-size feature vector. Finally, the feature vector is fed into a Support

Vector Machine
6

(SVM) to classify the category of the proposed region.

Figure 2.5: R-CNN: Regions with CNN features [27].

6
A SVM is a versatile ML model that is capable of performing linear or non-linear classi�cation,

regression, and outlier detection [24].
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2.3.4 Fast-er R-CNNs

Ross Girshick, one of the authors of the R-CNN paper, introduced an improved,

faster object detection algorithm to solve some of the drawbacks of the R-CNN in

another paper in 2015; the Fast R-CNN. He claimed that R-CNN is slow due to the fact

that it generates about 2000 region proposals for each image to feed it to the CNN.

Fast R-CNN on the other hand, feeds the input image as a whole to the network in

order to extract a convolutional feature map out of it [28].

Alongside the input image, a set of object proposals is also fed into the network and

for each of the proposals a region of interest layer then extracts a �xed-length feature

vector from the feature map which in turn gets fed into a FCN that �nally produces

two output layers which indicate the classes of the proposed objects as well as the

o�set values for the objects’ bounding boxes.

Figure 2.6: Architecture of a Fast R-CNN [28].

In 2016, Ren et al.[29] came up with yet another improvement to make the Fast

R-CNN even faster; they literally called it Faster R-CNN. As it has been inferred by

Girshick[28], region proposal is an expensive computational operation, and for this

reason, Faster R-CNN introduced a network called the Region Proposal Network
7

(RPN) that shares full-image convolutional features with the detection network, hence

7
A RPN is a FCN that simultaneously predicts object bounds and objectness scores at each position.
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enabling nearly cost-free region proposals. It is trained to generate excelling region

proposals. The Faster R-CNN architecture can be seen in Figure 2.7.

Figure 2.7: Architecture of a Faster R-CNN with the RPN [29].

This RPN is then merged with a Fast R-CNN to form a single network by sharing

their convolutional features. The RPN then directs the uni�ed network on where to

look. Figure 2.8 shows the signi�cant improvements that have been done over the

years to the R-CNNs.

Figure 2.8: Comparison in hours between ordinary, Fast, and Faster R-CNNs trained

on the same set of data[30].
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2.3.5 Single Shot Detectors

A new, improved object detection methodology using a single deep neural network

was introduced by Liu et al.[31] which they called Single Shot Detector (SSD).

As previously discussed, Faster R-CNN uses a RPN to create region proposals

and create object bounding boxes and while it has proved to be excelling in terms

of accuracy, it is still far below what real-time object detection needs. SSDs on the

contrary, eliminate the need of the RPN and use only a single network and only need

a single shot to detect multiple objects within the image, hence the name.

Figure 2.9: Architecture of a SSD object detection model [31].

At prediction time, the network generates scores for the presence of each object

category in each default box and produces adjustments to the box to better match the

object shape. Additionally, the network combines predictions from multiple feature

maps with di�erent resolutions to naturally handle objects of various sizes. All compu-

tation is encapsulated in a single network which makes SSDs much faster than other

approaches.
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2.3.6 You Only Look Once

A yet further-improved approach for object detection was introduced by Redmon

et al.[32]; an approach they called YOLO. The YOLO network has four -o�cial
8
-

incremental versions that will shortly be discussed. YOLO has achieved a huge success

in the �eld of real-time object detection. An overview of the model can be seen in

Figure 2.10.

It is considered as one of the fastest, most e�ective object detection algorithms.

A base YOLO model processes images in real-time at 45 Frames per Second (FPS) in

addition to achieving very high accuracy prediction rates. The idea is to reframe the

object detection as a single regression problem and produce bounding boxes and class

probabilities out of the image pixels.

Figure 2.10: The YOLO object detection system at a glance [32].

The concept of a YOLO network is fairly simple; A single CNN simultaneously

predicts bounding boxes of objects and class probabilities for such boxes. As shown

in Figure 2.11, the architecture of the network is inspired by the GoogLeNet
9

model

and consists of 24 convolutional layers followed by 2 fully connected layers. However,

YOLO uses 1× 1 reduction layers followed by 3× 3 convolutional layers instead of

the inception modules used by GoogLeNet. The �nal output of the network is the

7× 7× 30 tensor of predictions.

8
There is a �fth, unpublished version of YOLO by Glenn Jocher [33].

9
GoogLeNet is a convolutional neural network that is 22 layers deep used for image classi�cation and

object detection. It is able to classify images into 1000 object categories, such as keyboard, mouse,

pencil, and many animals.
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Figure 2.11: Architecture of a YOLO object detection model [32].

The �rst version of YOLO su�ered from several shortcomings relative to state-of-

the-art object detection systems. Analysis of YOLO has proved to be erroneous in

comparison to Fast R-CNN. Additionally, it has relatively low recall compared to region

proposal-based approaches [34]. Therefore, the authors introduced a new version

which further improved the system; YOLOv2. They focused mainly on improving

recall and localization while at the same time maintaining classi�cation accuracy and

speed. They also introduced a real-time framework they called YOLO9000 for detecting

more than 9000 object categories by jointly optimizing detection and classi�cation.

The authors of the �rst two versions did not stop there. In 2018, they were able to

introduce a third version with even more updates and improvements; YOLOv3. They

trained the network on more data that it became a little bigger and more accurate

while maintaining the network speed. As it can be seen in Figure 2.12, YOLOv3 is as

accurate as the SSD network but three times faster [35].
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Figure 2.12: Speed/Accuracy trade-o� of di�erent state-of-the-art object detection

systems [36].

Even though YOLOv3 has had signi�cant success, improvements done to the YOLO

model did not stop at the third version. In [37], Bochkovskiy et al. introduced a

further improved fourth version of the network; YOLOv4. They have added numerous

features in this iteration that made one of the fastest object detection models even faster.

Figure 2.13 shows that YOLOv4 runs twice as fast as E�ccientDet
10

with comparable

performance. It also has a 10% Average Precision (AP) and 12% FPS improvement over

YOLOv3.

Additionally, the new features allowed them to create a model which operates in

real-time on a conventional GPU, and for which training requires only one conventional

GPU. This was a major problem as the most accurate modern neural networks do

not operate in real time and require large number of GPUs for training with a large

mini-batch-size.

10
E�cientDet is a recent family of object detectors that achieved high accuracy and reduced the number

of �ops [38].
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Figure 2.13: Comparison between YOLOv4 and other state-of-the-art object detectors

[37].

A few weeks after [37] has been published, an uno�cial �fth version of YOLO

was released by Glenn Jocher [39]. He introduced a PyTorch version of YOLOv5 with

exceptional improvements but has not released an o�cial paper yet. As shown in

Figure 2.14, YOLOv5 outperforms all the previous versions in terms of AP; it is nearly

as precise as E�cientDet but faster [33].
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Figure 2.14: Comparison between YOLOv5 and E�cientDet [39].

Now, state-of-the-art methodologies in the �eld of computer vision and the algo-

rithms that can be used within the scope of this project have been discussed. In the

next chapters, the requirements of the project work are going to be analysed in order

to come up with an evaluation criteria that is applied at the end of this project.
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De�ning the project’s technical requirements is one of the most important steps

in project planning in order to deliver a functional product. In this chapter, the

speci�c technical requirements of this project and the important aspects of delivering

a functional and reliable model will be de�ned. Based on the methodologies discussed

in the previous section, a clear perspective is now established on what can be used

and after de�ning the project requirements, a decision of which methodologies are

used will be made in order to meet the requirements and achieve the highest possible

outcome.

3.1 Overview

This thesis aims to develop a machine learning model that identi�es garbage in

public places from a video stream provided by a drone camera in real-time. The trash

detection outcome has to be of high accuracy to make sure that the model does not

mistake people or pets for garbage. Additionally, the model needs to be able to identify

garbage from an altitude of approximately 5 meters.

Figure 3.1 illustrates the life-cycle of nearly any machine learning model. First, the

project requirements and the outcome need to be clearly de�ned. Next, enough data

must be collected to train the model on the speci�ed task. This data has to be prepared

in a way the model can understand and make sense of before any training takes place.

Additionally, the data has to be divided into three subsets; a training set, a validation

set and a testing set.
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Figure 3.1: The life-cycle of a machine learning project [40].

Splitting the data is very important for evaluating the model’s performance. The

validation set is required for adjusting the model’s hyper-parameters during training.

However, during testing, the test subset comes in handy as the model has to be tested

on data that was never seen before, otherwise, the evaluation becomes compromised

and inaccurate. The whole data preparation process can be seen in Figure 3.2.

Figure 3.2: Data preparation process [41].

An appropriate model is then chosen and the training process takes place. The

model is automatically tweaked and enhanced by the used neural network throughout

the learning phase and is then validated using the validation data. Finally, the model
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is deployed and, later on, enhanced again and tuned to perform better and produce a

more superior outcome.

3.2 Functional Requirements

First and foremost, the work of this thesis must produce a functional model that

is able to detect garbage in public places and can later be improved to provide better

outcome. Since this model is going to be run on a drone with low computing power,

the model needs to be lightweight and has to have the ability to run on a standard

laptop.

Moreover, the detection will take place in real-time, and thus, the used algorithm

has to prioritize the detection speed over any other parameter. The resulting model has

to run with at least 10 frames per second to satisfy the real-time detection constraint.

This constraint will also play a huge part in choosing the network that will be used

for implementing the model; this will be discussed in detail in the next chapter.

Even though accuracy is not considered the most important parameter within the

scope of this project, it still plays a very important role that shall not be neglected.

It has to be ensured that the model satis�es a certain threshold when it comes to

detection accuracy. The model shall not classify people, pets nor objects that usually

exist in a public places (plants, trees, etc.) as garbage. A summary of the de�ned

functional requirements can be seen in Table 3.1.
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Priority Requirement

1 Model is functional

2 Detection has to take place in real-time

3 Model is able to perform detection at a speed

of 10 FPS on a standard laptop (without GPU)

4 Model can only detect garbage and not other

objects

5 Garbage detection is accurate

6 Model is lightweight

7 Model is able to detect garbage from altitude

of approximately 5m

Table 3.1: Summary of the project’s functional requirements.

3.3 Non-functional Requirements

Machine learning algorithms learn from data. It is crucial to feed them the right

data for the problem at hand. It is also very important to make sure the data at hand

contains the right features and is pre-processed in a way the model can understand

and make sense of. The more relative the data that gets fed to the model, the better

the outcome becomes.
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Furthermore, computer vision tasks tend to require a relatively large amount of data

to be able to perform accurate detection or classi�cation. As it can be seen in Table 3.2,

some architectures are trained on datasets that contain over 1.2 million images and

can classify up to 1000 categories of objects. Hence, a large dataset containing images

of garbage in public places has to be present in order to produce the required model

with high precision rate. The images have to be of size 416× 416 (this is discussed

thoroughly in the development chapter).

Name Dataset size used for training (# images)

Le-Net5 70 K

AlexNet 1.2 M

VGG16 1.2 M

VGG19 1.2 M

GoogLeNet 1.2 M

ResNet-50 1.2 M

DenseNet 1.2 M

Table 3.2: Popular CNN-based architectures used in computer vision applications and

the sizes of the datasets used for their training [42].
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Another important requirement is the availability of a powerful Graphical Pro-

cessing Unit (GPU) during the training process. Usually, training a computer vision

algorithm can be very computing-heavy and may take up to days if not weeks depend-

ing on the size of the dataset hence the need for a powerful GPU during training in

order to speed up the process.

On the development side, the used ML frameworks and computer vision libraries

are chosen according to the aforementioned requirements. Preferably, one tool is used

for as both ML framework and a computer vision library. Additionally, they must

also have good community support and reasonable implementation e�ort. Within

the scope of this thesis, open-source projects are preferred over paid tools. Table 3.3

summarizes the project’s non-functional requirements.

# Requirement

1 Large dataset available

2 Images are of size 416× 416

3 Powerful GPU available during training process

4 Programming language must have large support for

3rd party libraries and has to be suitable for machine

learning and computer vision applications

5 One tool for ML & computer vision

6 Used tool is open-source

7 Used tool has good community support and reasonable

implementation e�ort

Table 3.3: Summary of the project’s non-functional requirements.

In the next chapter, the used technologies and tools are thoroughly discussed and

compared against the requirements de�ned in this chapter.
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Choosing the technologies used within the project and deciding between available

approaches is a major step in the project life-cycle. In this chapter, the methodologies

used to achieve the project requirements de�ned in the previous chapter are discussed

as well as the implementation alternatives for the system and which approach �ts the

requirements the best.

4.1 Network Architecture

In the previous chapter, the requirements needed for this project to come to life

were de�ned. It was made very clear that after delivering a functional model, the

most important requirement of all is the speed of the model. Given that the detection

will take place in real-time, the chosen network architecture shall be the fastest one

available. However, the detection accuracy shall also not be compromised as it plays a

decent role in the model development.

Based on the work of Redmon et al.[9] and as discussd in section 2.3.6, YOLOv3

proved to be as accurate as many of state-of-the-art object detection networks but

much faster. However, this is not the only reason that this approach is chosen for

ful�lling the work of this thesis. As it can be seen in Table 4.1, YOLOv3 is superior in

other aspects as well.

26



4 Conception

Po
in
to

f

C
om

pa
ri
so
n

N
et
w
or
k

A
rc
hi
te
ct
ur

e
T
in
y
YO

LO
YO

LO
v2

YO
LO

v3
YO

LO
v4

YO
LO

v5
SS

D
Fa

st
er

R
-C

N
N

D
et
ec
ti
on

sp
ee
d

S
u

p
e
r
i
o

r
N

e
u

t
r
a
l

S
u

p
e
r
i
o

r
S
u

p
e
r
i
o

r
S
u

p
e
r
i
o

r
N

e
u

t
r
a
l

I
n

f
e
r
i
o

r

D
et
ec
ti
on

ac
cu

ra
cy

I
n

f
e
r
i
o

r
I
n

f
e
r
i
o

r
N

e
u

t
r
a
l

S
u

p
e
r
i
o

r
S
u

p
e
r
i
o

r
N

e
u

t
r
a
l

S
u

p
e
r
i
o

r

Li
gh

tw
ei
gh

tn
et
w
or
k

S
u

p
e
r
i
o

r
I
n

f
e
r
i
o

r
S
u

p
e
r
i
o

r
N

e
u

t
r
a
l

N
e
u

t
r
a
l

N
e
u

t
r
a
l

I
n

f
e
r
i
o

r

C
om

m
un

it
y
su

pp
or
t

S
u

p
e
r
i
o

r
N

e
u

t
r
a
l

S
u

p
e
r
i
o

r
I
n

f
e
r
i
o

r
I
n

f
e
r
i
o

r
S
u

p
e
r
i
o

r
I
n

f
e
r
i
o

r

Im
pl
em

en
ta
ti
on

e�
or
t

S
u

p
e
r
i
o

r
N

e
u

t
r
a
l

S
u

p
e
r
i
o

r
I
n

f
e
r
i
o

r
I
n

f
e
r
i
o

r
N

e
u

t
r
a
l

S
u

p
e
r
i
o

r

T
a
b
l
e

4
.1

:
C

o
m

p
a
r
i
s
o

n
o

f
a
v
a
i
l
a
b
l
e

s
t
a
t
e
-
o

f
-
t
h

e
-
a
r
t

o
b
j
e
c
t

d
e
t
e
c
t
i
o

n
a
r
c
h

i
t
e
c
t
u

r
e
s
.

27
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Not only can YOLOv3 perform the detection faster than other approaches without

compromising the accuracy, it is also widely used for many object detection systems

worldwide. There is a plethora of resources that explain the concept and how to adapt it

to �t one’s own needs. Additionally, plenty of GitHub
1

repositories containing di�erent

implementations of the network using di�erent ML frameworks and computer vision

libraries can also be found.

The approach is simple to implement and the authors provide a way to run a trivial

object detection model in a matter of minutes on their website as a proof of concept

[43]. The trivial model uses pre-trained YOLO weights that are trained on the COCO

dataset
2
. However, further steps can be taken in order to develop a custom object

detection model for more challenging tasks.

4.2 Hardware

4.2.1 Training Hardware

As it has been discussed in section 3.2, a powerful GPU has to be used for training

a computer vision model as processing images is a computation-heavy process and

cannot be performed on a normal device without a GPU if a large dataset is being

used. Hence, a powerful GPU available on the premise of the Hamburg University of

Applied Science was used to perform model training. It was available via accessing a

Virtual Machine (VM) provided by the university.

1
GitHub is a platform that provides hosting for software development and version control using Git.

It o�ers the distributed version control and source code management functionality of Git, plus its

own features.

2
COCO is a large-scale object detection, segmentation, and captioning dataset with around 330K

images containing 80 di�erent object classes [44].
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4.2.2 Detection Hardware

For the purpose of detection, it has been de�ned in this project’s functional require-

ments (see Table 3.1) that the detection has to take place on a standard laptop with

low computing power. The output model has to run at the speed of at least 10 FPS on

a machine without a GPU.

4.3 So�ware Technologies

In this section, the software technologies used to make this project come to life

are elaborated. A comparison of the most used ML frameworks and computer vision

libraries is done in addition to choosing the project’s programming language.

4.3.1 Programming Language

There is a huge variety of programming languages nowadays and almost any of

them can be used for ML applications. However, writing every algorithm from scratch

is a time consuming and error-prone process. This is why the best-suited programming

language is the one that comes with a lot of libraries and has advanced support for AI

applications. According to a report by GitHub[45], the top 3 programming languages

for ML in 2018 were Python, C++ and JavaScript respectively.

Python is one of the most popular programming languages of recent times. In

addition to being the �rst language used for ML, it is also the third most used language

in projects on GitHub. Moreover, Python was one of the �rst programming languages

to get the support for ML via a plethora of libraries and tools that make AI applications

development extremely easier for engineers. In addition to being easy to use, the

neural network and computer vision libraries used in this project -more on that in

the next section- also come with Python support which is why it has proved to be the

most �t programming language for this project’s requirements.
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4.3.2 Machine Learning Framework

Machine Learning is one of the fastest emerging technologies today and this is the

reason behind the large number of ML frameworks that are available. A Machine

Learning Framework is an interface, library or tool which allows developers to build

machine learning models easily, without getting into the depth of the underlying

architecture and the hassle of implementing everything from scratch. Engineers tend

to look for the most suitable framework for their various kinds of ML projects. A few

of those frameworks are thoroughly de�ned in the following sections.

TensorFlow

TensorFlow is an end-to-end open source platform for machine learning built by

Google. It has a comprehensive, �exible ecosystem of tools, libraries and commu-

nity resources that lets researchers push the state-of-the-art in ML as well as giving

developers the ability to easily build and deploy ML powered applications [46].

TensorFlow has been becoming more and more popular over the past couple of

years due to its power and ease of use and is considered one of the most used ML and

DL libraries of this time. It lets developers bring the power of DL to computer vision

applications and has some great tools and libraries to perform image processing and

classi�cation.

Keras

Developed by a Google engineer, François Chollet, Keras is an open-source neural

network library designed to be a high-level Deep Learning wrapper around various

libraries like TensorFlow or Theano
3

in the backend. It strives to provide a simple

Application Programming Interface (API) for working with neural networks and

computer vision applications [12].

3
Theano is a Python library that allows for de�ning, optimizing, and evaluating mathematical expres-

sions involving multi-dimensional arrays e�ciently.
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Keras makes it simple for ML beginners to design and develop a neural network and

DL applications. In addition to its simplicity and ease of use, Keras is also more mature

in terms of community support, available tutorials and the ability to use TensorFlow

in the backend.

PyTorch

PyTorch is an open source deep learning framework built to be �exible and modular

for research, with the stability and support needed for production deployment. It

provides a Python package for high-level features like tensor computation with strong

GPU acceleration and TorchScript for an easy transition between eager mode and

graph mode [47].

PyTorch is developed by Facebook and is also a huge competitor to TensorFlow

in terms of popularity. It is mainly used to train deep learning models quickly and

e�ectively and this is why it is especially popular in the research community.

Conclusion

It is a tough decision to favor any of the previous frameworks over the other since

they are all very powerful in terms of ful�lling the project’s requirements. However,

using Keras (in combination with TensorFlow in the backend) is the �nal decision due

to the fact that they are one of the most required skills in today’s job market for the

�eld of AI and computer vision. A full comparison between the aforementioned ML

frameworks can be seen in Table 4.2.

31



4 Conception

Point of

Comparison

Framework
TensorFlow Keras PyTorch

Open source 3 3 3

Python integration 3 3 3

Computer vision functionality 3 3 3

Easy to use 3 3 3

Community support 3 3 3

Low implementation e�ort 3 3 3

Table 4.2: Comparison of the most popular ML and DL frameworks.

4.3.3 Computer Vision Library

Over the past decade, tools for computer vision have gained noticeable progress

in terms of new libraries and their power. Moreover, improvements in hardware like

GPUs as well as the ML tools and frameworks have made computer vision much more

powerful in the current time. In this section, some of those available tools are discussed

in order to �nd the best one for the project requirements.

Keras API for Computer Vision

As it was mentioned in section 4.3.2, Keras is mainly a DL library that provides

extensive features for developing neural networks and DL application. It is designed to

be simple and easy to use even for beginners in this �eld. Additionally, Keras provides

a lot of features for computer vision applications and is widely used for object detection

networks due to its speed, power and low implementation e�ort.
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OpenCV

OpenCV (Open Source Computer Vision Library) is an open source computer vision

and machine learning software library. It was built to provide a common infrastructure

for computer vision applications and to accelerate the use of machine perception in

the commercial products. Its features allow for processing images and video frames,

detection of certain patterns, identi�cation of required elements present in the photo

or video and classi�cation of objects [13].

Although OpenCV is a powerful and widely-used library, it would be impractical

to use within the scope of this project as there would be a need to use di�erent tool as

a machine learning framework. Additionally, the implementation e�ort of training a

YOLO model in OpenCV is higher than doing it using Keras.

Matlab

Matlab is a great tool for creating image processing applications, data analysis and

visualization and it is widely used in research. It has its own user-friendly Integrated

Development Environment (IDE) which allows for quick prototyping, error tracing,

debugging and a lot of other features. Matlab is heavily used in research topics and

prototyping and its code is quite concise making it easier to read and debug [48].

Despite being a powerful library for computer vision, Matlab is a paid tool and can

also get relatively slow during execution time. As compared to OpenCV and Keras

computer vision API, Matlab fails to meet the requirements for the scope of this work.

ImageJ

ImageJ is an open source image processing program designed for scienti�c multidi-

mensional images. It is highly extensible, with thousands of plugins and scripts for

performing a wide variety of tasks, and a large user community. User-written plugins

make it possible to solve almost any image processing or analysis problem, from

three-dimensional live-cell imaging, radiological image processing, multiple imaging

system data comparisons to automated hematology systems [49].
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ImageJ was designed with an open architecture that provides extensibility via Java

plugins. Custom acquisition, analysis and processing plugins can be developed using

ImageJ’s built in editor and Java compiler. Despite its strength, ImageJ is mainly used in

scienti�c research and requires high implementation e�ort for the scope of the problem

at hand. It is also poor in terms of community support and Python 3 integration.

Conclusion

When comparing the aforementioned computer vision libraries it can be seen that

only of two of them stand out and are able to ful�ll this project’s requirements; Keras

API for computer vision and OpenCV. It would not be fair to favor one of them over

the other as the two are extremely powerful and heavily used accross computer vision

applications. However, Keras meets one extra requirement than OpenCV which is

using one tool as a ML framework and a computer vision library. This is why Keras was

chosen as a better �t for this project. A complete comparison of the aforementioned

libraries can be seen in Table 4.3.

Point of

Comparison

Library
Keras OpenCV Matlab ImageJ

Open source 3 3 7 7

Python integration 3 3 7 3

One tool for ML & computer vision 3 7 7 7

Easy to use 3 3 3 7

Community support 3 3 7 7

Low implementation e�ort 3 3 3 7

Table 4.3: Comparison of the most popular computer vision libraries.
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In this chapter, the technical details of this project’s implementation are discussed.

First, the used data and how it is collected and prepared for training is elaborated.

Afterwards, the implementation details of the model and the training process are

discussed.

5.1 Dataset

The signi�cance of data in developing any machine learning algorithm has already

been established. Machine learning algorithms learn from data, thus, they should be

fed the relevant data for the task at hand in order to perform well when deployed in

real life situations. If the model is fed irrelevant data, it would not be able to extract

features that make sense out of it, which in turn will produce a model that behaves in

other ways than expected.

It has also been elaborated how object detection applications usually tend to require

large amounts of data to produce a decent model in terms of accuracy. A functional

model can be produced with a very small set of data, however, it cannot expected to

perform with high accuracy on objects that it had not seen very often.

Since the model developed within the scope of this work shall not compromise

detection accuracy, data is collected from two di�erent datasets and merged together

to form one larger dataset to ensure data su�ciency for the model.
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5.1.1 Data Collection

Finding the relevant data for a speci�c machine learning problem is usually the

hardest part of the project especially when the problem at hand is infrequent as the

one discussed in this thesis. This is why data had to be collected from two di�erent

datasets.

The �rst source of data is a dataset called trashnet collected by Thung et al. for

their machine learning class project at Stanford University [50]. The dataset consists of

roughly 2,500 images of size 512× 384 containing nearly 10 di�erent object categories.

And although their dataset covers a whole lot of di�erent garbage categories, the

images have been taken from a low altitude and in a closed place as it can be seen

in Figure 5.1. This is the reason why extra data had to be collected from a di�erent

source.

Since the required model needs to perform well from higher altitudes and in public

places, additional images of garbage in those circumstances are collected from another

source; the previously mentioned Let’s Do It Foundation trash dataset [51]. For their

project, they had collected a huge dataset of roughly 28,000 images of trash. However,

most of those images are irrelevant to this project as they are sometimes in seas and

oceans and other times full of trash as in garbage disposal places.

The dataset is �ltered only to the images relevant for the project’s purposes; images

from a high altitude and that contain garbage as part of them. After dataset �ltration,

a small set of roughly 1,000 images were collected and merged to the �rst source of

data to achieve a dataset of approximately 3,500 images. An example of the selected

images is shown in Figure 5.2.

Finally, all the images are resized to the size of 416× 416 as the model expects the

data to be of that size. For that purpose, a python library, python-resize-image[52], is

used to get the desired image sizes.
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Figure 5.1: Samples of images from the trashnet dataset [50].
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Figure 5.2: Samples of collected images from the Let’s Do It Foundation dataset [51].
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5.1.2 Data Pre-processing

In addition to resizing the images to optimize training time, another measures

are taken in order to obtain a larger dataset and prepare the data for training. Data

augmentation is performed on the dataset in order to get more variation in the existing

images. Additionally, all the images in the dataset have to be annotated to indicate the

garbage objects within the image.

Data Augmentation

Data augmentation arti�cially increases the size of the dataset by generating many

variants of each instance in it. Those generated variants should be as realistic as

possible. Ideally, given an image from the augmented set, a human should not be able

to tell whether or not it was augmented. Additionally, the modi�cations done on the

original dataset have to be learnable; the images can be shifted, rotated, resized or

contrast-manipulated. This forces the model to be more tolerant to variations in the

position, orientation, light conditions and size of the objects in the images. An example

of how augmentation can change the images can be seen in Figure 5.3.

By combining these transformations, the size of the dataset can be greatly increased.

This in turn drastically reduces over�tting; that is when a model learns the details in

the training data to the extent that it negatively impacts the performance of the model

on new data. This makes the model achieve outstanding outcome on the training data

and poor results on never before seen data [24].

It was mentioned that the �nal dataset used for this project contains approximately

3,500 images. Data augmentation is performed to introduce rotations, shifts, shearing

and contrast to the original images in the dataset. For that purpose, a python library

called imgaug[53] is used. After introducing data augmentation, the dataset became

twice the size and ended up containing approximately 6,500 images.
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Figure 5.3: An example of augmented images (right) in comparison to original images

(left).
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Data Annotation

Data annotation is the process of labeling the objects of interest in various types

of data like text, images and videos while ensuring the accuracy to make sure it can

be recognized by the machines through computer vision. For almost any ML project,

labeled datasets are required so that the model can easily and clearly understand the

input patterns. Moreover, to train a computer vision model, the data needs to be

precisely annotated using the right tools and techniques.

With respect to image annotation, there are di�erent annotation types that can be

used to indicate the relevant objects in the image. There are some popular methods such

as using 2D bounding boxes, polygon annotation, semantic segmentation, landmark

annotation, polylines annotation and 3D point cloud annotation. Those types can be

seen in Figure 5.4.

Figure 5.4: Some of the popular methods used for image annotation [54].
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Since the images used in this project are not complicated and don’t contain multiple

objects, using 2D bounding boxes is su�cient to produce a decent model. For the

purpose of image annotation, Microsoft’s Visual Object Tagging Tool (VoTT)[55] is

used. The program has a friendly and easy user interface in addition to being open

source.

Spli�ing the Data

As already discussed in section 3.1, splitting the data is crucial for evaluating the

model; the evaluation must be based on data that model has never seen before. Other-

wise, if the model is tested on the same training data, the integrity is compromised

as it will produce good results because it has already memorized the training data.

Additionally, a subset of the dataset has to be set aside for validation; that is the set

required for adjusting the model’s hyper-parameters during training. In this project,

the data is split into 7:1:2 for training, validation and testing respectively.

5.2 Model Implementation

YOLOv3 is one of the most widely used object detection algorithms. Hence, it has

one of the largest online communities that provide a lot of useful implementations

to the network. Plenty of GitHub repositories provide di�erent implementations to

the algorithm using di�erent libraries and frameworks and this is a huge advantage

making YOLOv3 superior to many other algorithms. Despite the availability of such

repositories and implementations, there is almost always some extra features that need

to be added to the existing code depending on the project’s requirements.

In this project, a GitHub repository which provides an implementation of YOLOv3

using Keras and TensorFlow is used. The repository[56] is developed by Anton Muehle-

mann and provides an easy step by step tutorial on how to use and customize it to

the needs of each project. However, the code had to be adjusted and tweaked in some

ways in order to �t the needs of this project.
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Upgrading TensorFlow Version

At the time of writing and implementation, the original code was using an early

version of TensorFlow library (version 1) which caused a lot of errors due to the use

of deprecated methods in addition to being impractical. The code had to be updated

to use TensorFlow 2. This was done by eliminating all the deprecated methods and

introduced errors of using version 1. Additionally, using TensorFlow 2 is more relevant

to today’s job market.

Using Pretrained Layers

It is generally not a good idea to train a very large DNN from scratch, instead, it is

better to �nd an existing network that accomplishes a similar task to the one at hand

and reuse its lower layers; this is called transfer learning. This will not only speed up

the training drastically, but also require signi�cantly less training data. This is why

engineers usually tend to reuse already existing networks. However, some measures

need to be taken in order to adjust the network to the project’s needs.

First, the output layer of the network shall be replaced by a new layer since it is

likely not useful for the new task and may even not have the right number of outputs

of the new task. Additionally, the upper hidden layers are also of low signi�cance

to the new task, since the high-level features of the pretrained network may di�er

to those of the new task. However, the lower layers are really important and can be

reused the help improve the model’s accuracy and performance. This can be done by

freezing the lower layers; that is preventing their weights from being changed during

training [15][24].

The more similar the tasks are, the more lower layers that can be reused. Similarly,

the more training data available, the more layers that can be unfrozen. In this case,

only the top three layers of the model are unfrozen in the beginning and training is

carried out until the results stop improving. Afterwards, all the layers are unfrozen to

allow for a last step of tuning the model’s hyper-parameters and weights and improve

the model’s accuracy even more. An example of unfreezing all the layers can be seen

in Listing 5.1.
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1 for i in range(len(model.layers)):
2 model.layers[i].trainable = True

Listing 5.1: Unfreezing all the layers of the model.

Optimizing Learning Rate

Finding a good learning rate is important because if the model’s learning rate is

too high training may diverge, however, if it is too low, the training will take a large

amount of time. Hence, a trade o� has to be made. In this project, the learning rate

is varying throughout the training process. The training �rst starts with a higher

learning rate and monitors the model’s validation loss. Once the performance stops

improving for three epochs, a callback is called and the learning rate is decreased by

0.1 factor. This tremendously helps in improving the model’s performance and the

hyper-parameter tuning process. Reducing the learning rate callback can be seen in

Listing 5.2.

1 reduce_lr = ReduceLROnPlateau(monitor="val_loss", factor=0.1,
patience=3, verbose=1)

Listing 5.2: Reduce learning rate callback.

Model Training

After de�ning the learning rate and the pretrained layers that will be used, the

model training process takes place. First, the model is trained with the frozen bottom

layers until it reaches a stale point of no improvement for a few epochs. Then, a

callback is used to unfreeze the bottom layers of the model to further �ne-tune the

hyper-parameters. The model has to be compiled again and another Keras callback is

used to �nally stop the training when the results have stopped improving for a few

epochs. This helps in avoiding over�tting during the training process. Due to the

limitation of computation resources and the immensity of the dataset, the training

process takes approximately 3 days. An overview of the training process can be seen

in Figure 5.5.
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Figure 5.5: Flowchart of the training implementation.
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Testing the Model

After the training process is �nished, the model is saved in addition to its weights

and history; that is the values of the monitored metrics throughout the training process.

Additionally, the code also contains a python script that can be run on test images in

order to test the model. The script creates output images with bounding boxes around

the objects that the model predicts to be trash. The model outcome and evaluation

will be discussed thoroughly in the next chapter.
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In this chapter, the performance metrics used for evaluating the model are discussed.

Additionally, di�erent experiments and analyses of the model are done depending on

tweaking the model’s parameters. The �nal outcome is also evaluated and discussed

for di�erent scenarios of implementation.

6.1 Evaluation Metrics

There are many metrics that can be monitored for evaluating machine learning

algorithms, however, there are some speci�c, very important metrics that are relevant

for each di�erent task. Monitoring the training and validation losses are essential to

almost any machine learning model. Monitoring the Mean Absolute Error (MAE) is

also a good idea for most of the models. Additionally, the Average Precision metric is

one of the most used metrics for evaluating computer vision algorithms.

The MAE measures the average magnitude of the errors in a set of predictions. This

means that it calculates the average over the test samples of the absolute di�erences

between predictions and actual observations where all individual di�erences have

equal weights. It is usually a good idea to monitor the MAE of the model to get an

idea of how its prediction accuracy has improved.

As mentioned above, a very important metric to monitor for computer vision models

is the AP, sometimes also called mAP; the Mean Average Precision. This metric is

actually a combination of two things, precision, recall. The precision measures how

accurate the predictions are, i.e. the percentage of correct predictions. The recall
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measures the true positive rate of the model, i.e. how good the model �nds all the

positive values.

There is almost always a trade-o� between recall and precision; the higher the recall,

the lower the precision. But there are sometimes a few points where the precision goes

up and the recall also increases, especially at low recall values. This can be seen in

Figure 6.1. So it simply makes sense to use the point with high precision and high recall.

The AP computes the maximum precision at di�erent recall values and then calculates

the mean of all those values. Now if the model can predict more than two classes, the

AP is computed for each of them and then the mean of those APs is computed; that is

the mAP [24].

Figure 6.1: Precision vs Recall curve [24].
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For object detection systems there is an extra level of complexity; that is if the

model predicts the right class but at a totally di�erent location. This shall not be

considered a correct prediction and that is where the Intersection over Union (IoU)

comes in handy. The IoU measures the overlap between 2 boundaries; that is the

overlap between the predicted bounding box and the true bounding box. Usually,

an IoU threshold is de�ned and the mAP is measured for that speci�c threshold. In

some object detection competitions the threshold is 0.5 (50%) and the mAP is noted

as mAP@0.5 or mAP@50%. In other competitions, the mAP is computed at di�erent

thresholds and the �nal metric is the mean of all these mAPs [24].

Another important aspect that needs to be evaluated for this project is the speed,

in other words, at how many FPS is the model able to run. For this, detection has to

run separately on the test dataset and the taken time for detection has to be calculated.

Those are the evaluation metrics used for this project’s work. In the next section, the

experimentation results are discussed and the output is evaluated.

6.2 Experimentation and Results

It is important to try various implementation scenarios and experiment a few times

with the model parameters in order to �nd the best outcome for the problem at hand.

It is not the best idea to train the model one time and go along with the produced

outcome. In this section, the di�erent scenarios tried during this project work are

going to be evaluated.

Using Constant Learning Rate

The �rst time the model was trained, a �xed learning rate was set while freezing

the bottom layers. The learning rate for the top unfrozen layers was not decreased as

discussed in section 5.2. However, the learning rate is decreased by factor of 0.1 after

unfreezing the bottom layers for the �nal �ne-tuning step. Although this produced a

decent model, there was still room for improvement. The MAE was not monitored

during this training iteration, only the validation and training losses which can be
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seen in Figure 6.2. The model achieved a training and validation loss of approximately

17%.

Figure 6.2: Training vs Validation losses during �rst training iteration.

Optimizing Learning Rate

A second iteration is performed while adjusting the learning rate for the top, un-

frozen layer. As the �owchart in Figure 5.5 shows, the learning rate is decreased by

a factor of 0.1 if the validation loss stops improving for 3 epochs. This improved the

model validation and training loss (12% and 14% respectively) further, however, there

still was an extra room for improvement. During this iteration, the early stopping

callback that is used to unfreeze the bottom layers and stop the model training was

called when the improvement in validation loss was less than 1% for 5 epochs. This

number was very low and caused the model to under�t. This happens when the model

is not trained for enough amount of time. It can be seen in Figure 6.3 that the model

stopped the training after only 19 epochs, which is less than half of the number of

epochs trained in the �rst training iteration. As it can be seen in Figure 6.4, the MAE

values were approximately 8 by the end of training.
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Figure 6.3: Training vs Validation losses during second training iteration.

Figure 6.4: MAE values during second training iteration.
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Optimizing Early Stopping

For the �nal tuning step, two di�erent stopping callbacks are de�ned for the training

process. One is de�ned for when the bottom layers are frozen; training the top layers

takes place until the validation loss improvement is less than 0.5% for 10 epochs (see

Listing 6.1). After the callback is performed, the bottom layers are unfrozen and the

learning rate is decreased by a factor of 0.1 then the model continues training for all the

layers which allows for a last step of �ne-tuning. The second callback (see Listing 6.2)

is called when the improvement in validation loss is less than 1% for 5 epochs. Finally,

the training is stopped and the model is saved.

1 early_stopping_frozen = EarlyStopping(min_delta=0.5, patience
=10,monitor="val_loss", verbose=1)

Listing 6.1: Early stopping callback when the bottom layers are frozen.

1 early_stopping = EarlyStopping(monitor="val_loss", min_delta
=1, patience=5, verbose=1)

Listing 6.2: Early stopping callback when the bottom layers are unfrozen.

Final Outcome

After experimenting with the di�erent parameters, it is deducted that the best

outcome is the one achieved during the �nal tuning step mentioned in the previous

section. That iteration produced a model with validation loss of 7% and training loss

of 10% by the end of the training (see Figure 6.5). Additionally, it achieved a value of

approximately 4 with respect to the MAE (see Figure 6.6).
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Figure 6.5: Training vs Validation losses during �nal training iteration.

Figure 6.6: MAE values during �nal training iteration.
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The AP is then calculated by running the model on the test dataset and comparing

the model predictions to the true values annotated in the beginning of the project. For

this purpose, mAP, a python library is used [57]. The �nal model has a AP@0.5 of

approximately 83%. This is about 25% more than the ordinary YOLO model trained on

the COCO dataset. The comparison can be seen in Figures 6.7 and 6.8.

Figure 6.7: AP@0.5 of the �nal model.

Figure 6.8: mAP of various object detection networks trained on COCO dataset [58].

Despite the fact that this iteration produced a decent model in terms of accuracy,

the model was slow and did not meet the requirements of the project. Detection runs

at 0.6 FPS on a standard laptop with no GPU. However, the produced model is 10 times

faster than the original, unmodi�ed YOLOv3 model. This is due to the fact that the

original model can detect objects of 80 di�erent classes and is trained on a much larger

dataset. The detection is also run using the same GPU used for training the model
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which produced a speed of 1.7 FPS. An example of the model predictions on the test

dataset can be seen in Figure 6.9.

Figure 6.9: Model predictions on some images of the test dataset.
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Tiny YOLO

As the most important metric for this project is the speed of the model, another

experimental iteration is done using the Tiny YOLO architecture which can perform

detection at a higher speed and lower accuracy. The tiny architecture contains fewer

layers and hence has lower weights. This iteration is performed using the same

parameters for the �nal optimized model speci�ed in the previous section. The tiny

version has a validation loss of 8% and training loss of 10% (see Figure 6.10).

Figure 6.10: Training vs Validation losses for Tiny YOLO architecture.
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Additionally, the model is able to run at a speed of 4.5 FPS on a standard laptop

without a GPU, and at a speed of 11.4 FPS on the GPU that is used for training, however,

the accuracy is lower in this case. On the test data, this model has an AP@0.5 of 64%,

which is almost 20% less than the YOLOv3 version (see Figure 6.11). An example of

the tiny model predictions on the test dataset can be seen in Figure 6.12.

Figure 6.11: AP@0.5 of the tiny model.
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Figure 6.12: Tiny model predictions on some images of the test dataset.
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7 Summary

In this thesis, numerous computer vision techniques are investigated and discussed

for the purpose of producing a functional garbage detection model. This chapter sum-

marizes the obtained results, the encountered problems and what future improvements

can be done to the work of this project.

7.1 Conclusion

The evaluation of this thesis’ outcome is thoroughly discussed in chapter 6, however

it is important to stress some conclusions with respect to the requirements of the

project. The work of this thesis produced a functional garbage detection model that

can operate with high accuracy. Additionally, another model is also produced that is

able to perform detection with lower accuracy and at a higher speed.

It has been proven by the work done in this thesis that it is not possible to run a

highly accurate, state-of-the-art object detection model that can perform detection at

a very high speed on a device with low computing power. There are three factors that

in�uence object detection models which cannot exist simultaneously; accuracy, speed,

and computing power. One has to decide which two factors of the three are the most

important with respect to the project’s requirements.

Even though state-of the art object detection architectures can produce extremely

accurate and fast models, they still need to operate on devices with high computing

power which cannot be available in some cases.
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7.2 Future Work

It is up to successors who are going to continue the work of this project to decide

upon which model to use out of the two that were produced. Additionally, data quality

can be increased by training the model again on new data that will be collected by the

drone. The more relevant data that is fed to the model, the higher its performance

can become. Moreover, it is also worthwhile to investigate newer versions of YOLO

(YOLOv4 and YOLOv5) and investigate the performance of such architectures.
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Appendix

The CD attached to this thesis contains this document in a PDF format, the two

produced models in addition to their weights and training histories. The document

can be viewed upon application to the principal examiner of this thesis.

Additionally, the source code can be found on this GitHub repository
1

and the

complete dataset used for training and testing can be downloaded from here
2
.

1
https://github.com/moazelshebly/BachelorThesis

2
https://drive.google.com/�le/d/1fznAYf0CHPEPs3OAf3gNRbktchRnSuXP/view?usp=sharing
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