
Bachelor Thesis

Catherine Mathieu

Development of animated visualizations of code execution
using abstract syntax tree transformations

and web technologies

Faculty of Computer Science and Engineering
Department of Information and Electrical Engineering

Fakultät Technik und Informatik
Department Informations- und Elektrotechnik

Bachelor Thesis based on the examination and study regulations

for the Bachelor of Engineering degree programme

Bachelor of Science Information Engineering

at the Department of Information and Electrical Engineering

of the Faculty of Engineering and Computer Science

of the University of Applied Sciences Hamburg

Supervising examiner: Prof. Dr. Klaus Jünemann

Second examiner: Prof. Dr.-Ing. Karin Landenfeld

Day of delivery: July 1st 2020

Catherine Mathieu

Development of animated visualizations of code
execution using abstract syntax tree transformations

and web technologies

Catherine Mathieu

Title of Thesis

Development of animated visualizations of code execution using abstract syntax tree

transformations and web technologies

Keywords

Abstract Syntax Tree, Algorithm, Code Transformation, Debugging, E-learning,

JavaScript, Memory Management, Web

Abstract

The work presents a prototype of an interactive e-learning platform for exploring pro-

gramming and algorithms. The application aims to support the user to understand a

code by illustrating its variables and creating graphical visualizations from input code.

The approach explored in this work is based on code transformation and generation using

abstract syntax tree techniques.

Catherine Mathieu

Titel der Abschlussarbeit

Entwicklung animierter Visualisierungen der Codeausführung mit Hilfe von abstrakten

Syntaxbaumtransformationen und Webtechnologien

Stichworte

Abstrakter Syntaxbaum, Algorithmus, Quelltexttransformation, Debugging, E-Learning,

JavaScript, Memory Management, Web

Abstrakt

Die Arbeit stellt einen Prototyp einer interaktiven E-Learning-Plattform zur Erkundung

von Programmierung und Algorithmen vor. Die Anwendung zielt darauf ab, den Be-

nutzer dabei zu unterstützen, einen Code zu verstehen, indem er seine Variablen an-

schaulich identi�ziert und gra�sche Visualisierungen aus dem Eingabecode erstellt. Bei

dem in dieser Arbeit behandelten Ansatz handelt es sich um eine Quelltexttransformation

und -generierung, die abstrakte Syntaxbaumverfahren verwendet.

iii

Contents

List of Figures vii

List of Tables ix

List of Codes x

Acronyms xi

Glossary xii

1 Introduction 1

1.1 Intention . 1

1.2 Vision . 2

1.3 Content . 2

2 Requirements 3

2.1 Product requirements . 3

2.1.1 Accessibility . 4

2.1.2 User experience . 4

2.1.3 Target language . 4

2.2 Architectural requirements . 5

2.2.1 Extensibility . 5

2.2.2 Testability . 6

2.3 Functional requirements . 6

2.3.1 Common programming concepts 6

2.3.2 Set of basic code examples . 7

2.3.3 Code edition . 8

2.3.4 Variable visualization . 8

2.3.5 Custom graphical visualization . 9

2.3.6 Code execution navigation . 10

iv

Contents

2.3.7 User interface feedback . 10

2.4 User interface . 11

2.4.1 Application bar . 12

2.4.2 Code library . 12

2.4.3 Playback . 13

2.4.4 Code editor . 14

2.4.5 Variable visualization . 15

2.4.6 Graphical visualization . 16

2.5 Approaches for code execution visualization 17

2.5.1 Scripted animation . 18

2.5.2 Tracing instruction . 18

2.5.3 Debugger supervision . 19

2.5.4 Code transformation . 20

3 Theory 22

3.1 Abstract syntax tree (AST) . 22

3.1.1 Code parsing . 23

3.1.2 Anatomy of an AST . 23

3.1.3 AST traversal . 24

3.1.4 AST transformation and generation 25

3.2 Advanced programming concepts . 25

3.2.1 Memory management . 25

3.2.2 Variable scope . 26

3.2.3 Variable hiding . 26

3.2.4 Closure . 26

4 Design 28

4.1 Technologies . 30

4.1.1 Web platform . 30

4.1.2 User interface library . 31

4.1.3 User interface style library . 33

4.1.4 Open source . 34

4.1.5 Text editor library . 34

4.1.6 Test libraries . 34

4.1.7 Module bundler and package manager 35

v

Contents

4.2 Target language . 36

4.2.1 Language comparison . 36

4.2.2 JavaScript . 39

4.2.3 Babel . 39

4.2.4 AST Explorer . 40

4.3 Architecture . 41

4.3.1 Modules . 41

4.3.2 Process data �ow . 44

5 Implementation 48

5.1 Parse code . 48

5.2 Augment AST . 50

5.3 Generate augmented code . 53

5.4 Generate execution steps . 53

6 Test 55

6.1 Unit tests . 55

6.2 Integration tests . 56

6.3 End-to-End tests . 59

6.4 Code testability . 61

7 Conclusion 62

7.1 Accomplishments . 62

7.2 Future works . 63

Bibliography 64

A Appendix 69

B Appendix 70

C Appendix 74

D Appendix 76

Declaration 77

vi

List of Figures

2.1 User interface layout overview. 11

2.2 Mockup of the application bar section. 12

2.3 Mockup of the code library section. 13

2.4 Mockup of three di�erent states of the playback section. 13

2.5 Mockup of the code editor section. 14

2.6 Mockup of the variables visualization section. 15

2.7 Mockup of the graphical visualization section. 16

2.8 User interface overview. 17

2.9 Screenshot of an example in Python Tutor. 20

3.1 AST of an array declaration constructed by the JavaScript parser Baby-

lon7 used by Babel. 24

4.1 Use case diagram of a user examining a code fragment execution. 29

4.2 Screenshot of an abstract syntax tree transformation example taken from

AST Explorer. 41

4.3 Component diagram from a high level structure perspective. 42

4.4 Activity diagram of the operational �ow for building a visualization. . . . 45

4.5 Data representation at each step of the process �ow. 46

5.1 Example of an abstract syntax tree created with the parser Babylon7. . . 49

5.2 Structure of a simple Abstract Syntax Tree (AST) generated with Babel. . 50

5.3 Structure of a simple augmented AST generated by Babel. 52

5.4 Example of an execution steps array. 54

6.1 Result of multiple unit tests for clamp function. 56

6.2 Summary of all Jest tests. 56

6.3 Result of tests for a variable declaration. 57

6.4 Result of tests for all code fragments. 59

vii

List of Figures

6.5 Result of puppeteer tests for the playback controls. 60

6.6 A verbose explanation of a failed test from Puppeteer. 61

A.1 Example of a cluttered code taken from Algorithm-visualizer[56]. 69

C.1 Advanced memory visualization of a function call that will generate a closure. 74

C.2 Advanced memory visualization of a closure. 74

C.3 Advanced memory visualization of an object with values and references. . 75

viii

List of Tables

2.1 Comparison of approaches to visualize code execution. 17

4.1 Comparison of popular web frameworks relative to custom criteria. 31

4.2 Comparison of popular programming languages relative to custom criteria. 36

B.1 Variable visualization for block scopes. 70

B.2 Variable visualization for object. 71

B.3 Variable visualization for recursion. 71

B.4 Variable visualization for variable hiding. 72

B.5 Variable visualization for closure. 72

B.6 Variable visualization for graph. 73

ix

List of Codes

3.1 Simple array declaration. 23

5.1 Example of a simple code fragment. 48

5.2 Import and function call of babel/parser. 49

5.3 Import and function call of babel/traverse. 51

5.4 Code transformation of a variable declaration. 51

5.5 Import and function call of babel/generator. 53

5.6 Example of an augmented code fragment. 53

5.7 Code handling of a variable declaration. 53

6.1 Code example of a unit test. 56

6.2 Code example of an integration test. 57

6.3 Integration test code for validating all code fragment outputs. 57

6.4 Code example of a E2E test. 60

D.1 Example of a code to be used in AST Explorer website using babelv7 parser. 76

x

Acronyms

API Application Programming Interface.

AST Abstract Syntax Tree.

CSS Cascading Style Sheets.

CST Concrete Syntax Tree.

DOM Document Object Model.

E2E End-to-End.

ES ECMAScript.

HTML HyperText Markup Language.

IDE Integrated Development Environment.

JSX JavaScript Extensible Markup Language.

KB Kilobyte.

MVC Model-View-Controller.

NPM Node Package Manager.

OS Operating Systems.

UI User Interface.

xi

Glossary

augmented code The code transformed by the code generation pro-

cess.

execution steps List of variables states and meta-programming in-

formation at each point of the execution of a code.

modules Parts of a JavaScript program that can be imported

or exported when requested.

target language The coding language used by the user and to be

analyzed by the application.

tracing instructions Functions that are added to a code in order to dis-

play a visualization.

xii

1 Introduction

"Tell me and I forget, teach me and I may remember, involve me and I learn."

-Benjamin Franklin

1.1 Intention

Learning to code is a great challenge for novice software developers and engineers. It is

an enterprise that requires a lot of practice, precious time and e�orts. The main intention

of this work is to provide a new tool to help ease the steep learning curve of coding by

complementing the currently available resources.

To learn a coding language, various resources are available. Books are good because they

are usually detailed and contain a lot of explanations. They often have the advantage of

using pseudo-code to smoothly explain the programming concepts, or even be available

in a lots of speci�c programming languages. Yet, not everyone can learn with only books.

Another traditional way is to attend a lecture that usually comes with both theory and

practical component. Some �nd more useful to follow online tutorials at their own pace.

There exists some great learning platforms like Khan Academy[24], where thousand of

online videos are available. More speci�c to algorithms and data structure, there exist

multiple websites and mobile applications that teach with visual representations. Overall,

everyone has its own way to learn and it often involves a mix of multiple mediums.

Despite all the available resources, novices in software development will eventually face

a code that they don't understand. Some will try to simplify the code by separating

it into smaller pieces. Others might use the console to print the variables or just use a

debugger and go through the code. Although, using a debugger sometime requires non-

trivial knowledge about the functionalities of an Integrated Development Environment

(IDE).

1

1 Introduction

Would it be enlightening to have someone or something that would guide and explain

the code? The helper could highlight the code step by step as the execution process at

desired speed. The value of each variable could be displayed aside from the code and

dynamically updated. As a �nal touch, a visual animation of what happens in the code

could be displayed. And what if this helper was a software platform that could analyze

any code you throw at it and teach you interactively how it is executed?

1.2 Vision

The aim of this work is to create a simple and intuitive prototype tool that would help

people to learn basic programming concepts and understand various algorithms through

an interactive platform. The tool should present a collection of popular code fragments

and allow code edition and copy-pasting. It seems that this idea wasn't yet implemented

and the goal of this work is to create a prototype to evaluate how realizable it is to build

such a tool.

The mantra of this project is synergy between two important concepts: explanatory

power and simplicity. The power to explain can often bring complexity, while simplicity

is needed to avoid confusion and avoid learning barrier. There is a danger awaiting any

e-learning platform like this one, which is to incorrectly assume what the learner already

knows or understand. It is important to get into the skin of a beginner (rather than to get

under their skin) and consider that they might know very little about programming.

1.3 Content

After the introduction, a requirements section describes the speci�cations for creating this

prototype. Then, a theory section clari�es some advanced concepts to better understand

the following design and implementation sections. Next is a section describing how tests

support the prototype. Finally, the conclusion summarizes the accomplishments and

proposes an opening to further works.

2

2 Requirements

The main objective of the expected application is to guide the user through the step by

step execution of a code fragment. The application should divide the code execution into

steps and display the variables states for each of them. This guidance should include

dynamic highlight of the code fragment and visual animation of the variables values to

help the user understand the execution.

In this section, requirements are presented in a general to speci�c order. They are sepa-

rated into three categories: product, architecture and functionality. A level of importance

is assigned to each requirement to indicate their priority. This level considers the e�ort

required to work on a requirement and the added value for the application relative to

the work of this thesis. A reasonable scope for a minimal viable solution would include

all high priority requirements. Any medium requirement completion would be a bonus.

Low requirements are out of scope, but would be valuable in the long term development

of the application.

A later segment of this section illustrates how each part of the User Interface (UI) should

look like and describes them in detail.

Finally, one of the challenges of creating such an application is the analysis of code. The

last section presents various approaches to achieve visualization of code execution and

explains the selected one.

2.1 Product requirements

The product requirements describe what the user should experience, how the application

should be used and what are its general characteristics.

3

2 Requirements

2.1.1 Accessibility

The targeted users of this application are students and novice in software development

�eld. If the application would need multiple steps of installations, it could discourage

many users to use it. Hence, the access to the application should be simple and direct.

ID Requirement Priority

1.1 Be easy to access or install High

1.2 Support Microsoft Windows, macOS and Linux platforms High

2.1.2 User experience

The UI should be self-explanatory. It should not be overloaded with options, comments

and components. A clean design is required to avoid confusion and provide a frictionless

experience.

ID Requirement Priority

1.3 Have a simple and intuitive UI Medium

1.4 Support code fragment handling without additional tracing in-

structions

High

1.5 Provide convenient and non-intrusive help to explain how to use

the application

Medium

1.6 Have a fast UI without waiting time High

2.1.3 Target language

The target language refers to the code language in the code editor part of the UI. It is

the coding language of code fragment provided or chose by the user and to be analysed

by the application. As the application could be adapted to handle multiple programming

languages, only one language is required to reduce the scope of the solution.

4

2 Requirements

ID Requirement Priority

1.7 Target a simple and easy to learn language High

1.8 Target a popular and widely used language High

1.9 Support most common features of general coding language (eg. in

contrast to non-general usage language like VHDL)

High

1.10 Target a language with good support for code analysis and code

generation tools (eg. AST tools)

High

2.2 Architectural requirements

The architectural requirements refer to the construction design of the application. They

detail the constraints and the motivations for further development and improvement.

2.2.1 Extensibility

The project size of this application is meant to grow regularly and inde�nitely. Mainly,

the application requires to run di�erent code fragments to represent as many features of

a language as possible, which can lead to considerably large input domain. It need to

be �exible enough for continuous improvements and to handle a large collection of code

fragments. For example, the application should be extensible to support an additional

coding language in future development. Also, the application should support a growing

number of graphical visualizations to represent further algorithms, coding features and

data structures.

ID Requirement Priority

2.1 Use popular, well supported and modern technologies High

2.2 Support adding more coding language (eg. JavaScript, C, C#,

Java)

Low

2.3 Support adding more custom graphical visualization (eg. graph,

tree, bar, diagram, pie chart, linked list, grid)

Medium

2.4 Support adding a large number of code fragments Low

5

2 Requirements

2.2.2 Testability

Even a simple algorithm such as Bubble sort with an input of 10 numbers needs more

than 200 steps and multiple states of variables. It does involve multiple language features

such as loop, conditional, variable, array and expression, which increase signi�cantly the

number of execution paths and the complexity of the task. Unit and integration testing

can be very useful to prevent errors and avoid application system failure. Also, End-

to-End (E2E) tests are useful for testing the UI and to validate its interaction with the

Document Object Model (DOM) components.

ID Requirement Priority

2.5 Include at least one test per feature listed in Subsection 2.3.1 Com-

mon programming concepts

High

2.6 Be testable by integration tests to validate the correct interpreta-

tion of the code fragments

Medium

2.7 Have a UI testable with E2E tests Medium

2.3 Functional requirements

This section lists all requirements that describe the expected functionalities of the solu-

tion. Also, the functional requirements detail the UI components.

2.3.1 Common programming concepts

In this section, a detail list of requirements describes the most popular features that the

application should support. The system should recognize these features and be able to

display them in a simple and explanatory layout.

6

2 Requirements

ID Requirement Priority

3.1 Handle loop statements (eg. for, while) High

3.2 Handle conditional statements (eg. if, else-if) High

3.3 Handle operators (eg. assignment, comparison, arithmetic, logical,

string)

High

3.4 Handle primitive type (eg. integer, string, boolean, character, dec-

imal)

High

3.5 Handle primitive array collection High

3.6 Handle advanced collections (eg. set, map, dictionary) Medium

3.7 Handle comments High

3.8 Handle function (eg. declaration, parameter, calls) Medium

3.9 Handle function recursion Medium

3.10 Handle custom data structure (eg. struct, class, object) Medium

3.11 Handle variable scopes Medium

3.12 Handle closure Medium

3.13 Handle variable hiding / shadowing Medium

3.14 Handle assignment expressions (eg. ++, +) Medium

2.3.2 Set of basic code examples

The application should provide to the user a default list of various basic code fragments.

These codes represent the most common features of a programming language, various

type of algorithms and data structures.

7

2 Requirements

ID Requirement Priority

3.15 Include at least one example for each main feature listed in Sub-

section 2.3.1 Common programming concepts

High

3.16 Include basic data structure operations (eg. Stack, Queues, Lists) Medium

3.17 Include sorting algorithms (eg. Selection sort, Bubble sort, Merge

sort, Quick sort, Shell sort)

High

3.18 Include indexing algorithms (eg. Binary Search Trees, Red-Black

Trees, Hash Tables)

Low

3.19 Include graph algorithms (eg. Graph search, Dijkstra's, A*) Low

3.20 Include dynamic programming algorithms (eg. Calculating nth

Fibonacci number)

Low

2.3.3 Code edition

The code editor is the UI section where the code fragment will be inserted. The user

should be able to clearly read, modify and work with the code.

ID Requirement Priority

3.21 Allow copy-paste of code fragment High

3.22 Allow to modify any code fragment example already available High

3.23 Highlight the active expression being executed in the code fragment High

3.24 Display a syntax coloration of the corresponding coding language High

3.25 Handle invalid code and display gutter-markers Medium

3.26 Support basic auto-completion Medium

2.3.4 Variable visualization

All variables are displayed and updated for a certain time during the execution of the

code. Their values are shown along the name of the variable. Only active data is

displayed and depends on the current step of the code execution. For example, if a

variable is outside the scope of the current step, it should be disabled. Finally, each

value should be updated for every step.

8

2 Requirements

ID Requirement Priority

3.27 Display all variables name and value existing in the scope for a

given step

High

3.28 Display variable of primitive type (eg. integer, string, boolean,

character, decimal)

High

3.29 Display variable of type array and list Medium

3.30 Display variable of custom data structure (eg. struct, class, object) Medium

3.31 Display the updated value for each variable for a given step High

3.32 Highlight variable and value when they are updated in a given step High

2.3.5 Custom graphical visualization

This section de�nes the options for the graphical visualization. The bar diagram repre-

sents the values of variables such as arrays and lists. It updates the values every new step

and can handle multiple visualizations at the same time. For example, a bar diagram can

be displayed to help to understand how the Bubble sort algorithm is sorting the array.

Also, for each code fragment example available, a preset of the variable to be shown in

a diagram should be already de�ned. Alternatively, the user should have the option to

choose the visualization he wants to see.

Some algorithms previously mentioned in Requirement 3.18 and 3.19, would certainly

bene�t from additional graphic types such as graph, tree, linked list and grid. However,

the e�ort to implement them would be too important to consider it a requirement with

High priority.

9

2 Requirements

ID Requirement Priority

3.33 Support the display of multiple custom graphical visualization si-

multaneously

Medium

3.34 Provide a way for the user to de�ne which graphic visualization to

display

Low

3.35 Have a default preset of graphic visualization per code fragment Medium

3.36 Display the updated value for each custom graphical visualization

for a given step

High

3.37 Highlight part of the custom graphical visualization that changes

at a given step

High

3.38 Support the display of bar diagram High

3.39 Support the display of tree diagram Low

3.40 Support the display of graph diagram Low

3.41 Support the display of memory layout (Stack and heap) Low

2.3.6 Code execution navigation

This section gives to the user the full control over the execution steps of the code fragment.

A playback toolbar contains all basic commands such as the Play button to start the

code execution. The Build command is used to start the whole code analysis process and

can be used every time a change appears in the code fragment. A slider widget should

be available to navigate to any steps.

ID Requirement Priority

3.42 Provide a slider High

3.43 Provide playback options (eg. play, forward, backward, jump step) High

3.44 Display the current execution step and the total step count High

3.45 Provide a Build Visualization button when the code fragment has

changed

Medium

2.3.7 User interface feedback

Considering a reasonable scope, this application cannot handle all possible features.

Many di�erent languages with an almost in�nite possibility of code and feature arrange-

10

2 Requirements

ments make the task unrealistic. The application should instead handle unsupported

features and communicate clearly to the user. Moreover, outstanding variable values and

complexity of a code can lead to strange behavior and wrong graphical representations.

Hence, limits should be established to avoid error and system failures.

ID Requirement Priority

3.46 Indicate unsupported features Medium

3.47 Handle run time error and notify the user (eg. in�nite loop, null

pointer exception and reference error)

Medium

3.48 Handle outstanding variable values (eg. display of values 1, 2,

3000, 4 in a bar diagram)

Low

3.49 Limit code complexity to a speci�c number of steps or number of

lines

Low

2.4 User interface

The following sections describe each part of the UI highlighted in the layout overviews

from Figure 2.1.

Figure 2.1: User interface layout overview.

11

2 Requirements

2.4.1 Application bar

The application bar section displays the icon, the title and a short description of the

application. It also holds option buttons on the right side.

Figure 2.2: Mockup of the application bar section.

The About option is there to explain the reason and purpose of this application. It also

shares a link to the git repository project source code.

The settings enclose all options that will be needed in future development of the appli-

cation such as the selection of the coding language.

The help option displays a popup with instructions on how to use the application. This

way, it doesn't bother the user if help is not needed and ful�ll Requirement 1.5. To

accommodate the Requirement 3.46, another responsibility of the help section is to com-

municate to the user all unsupported features.

2.4.2 Code library

The code library is a collection of code fragments provided by the application. To satisfy

the requirements from Subsection 2.3.2 Set of basic code examples, it contains a set of

basic code fragment examples such as the Bubble sort algorithm or smaller code feature

like a for loop. A drop-down list displays the name of all available code fragments. Once

the selection is done, the list collapse and the name of the example appears on the box.

This choice of design only partially ful�ll the Requirement 2.4. Supporting a large number

of code fragment implies a better structure, organisation of the code and a way to navigate

easily through all samples. A drop-down list is a simpler solution, but would need

adjustment later.

12

2 Requirements

Figure 2.3: Mockup of the code library section.

2.4.3 Playback

All requirements of Subsection 2.3.6 Code execution navigation are taken into account.

The Playback area displays a slider that gives the user the control on the navigation of

the code execution. He can jump to any step or reach the end of the execution in one

click using the slider.

Figure 2.4: Mockup of three di�erent states of the playback section.

The section also contains a counter to indicate the total number of steps and the current

step progression of the code execution. Every new step or uses of the slider triggers an

update of the current step.

The Playback area consist of buttons for the navigation through the code execution. The

standard playback buttons provide a more granular way to navigate the code execution

steps. The Play button goes automatically through the steps one by one at a speci�ed

speed. When the user presses the Play button, it toggles to a Pause button. The Previous

13

2 Requirements

button rewinds to the previous step and the Next button advances to the next step. The

First and the Last buttons jump to the respective step.

As soon as a modi�cation appears in the code editor, the Pause button toggles to Build

Visualization button. This button restarts the code analysis and generate the visualiza-

tion, reset the current step to one and toggle back to the Play button.

2.4.4 Code editor

This area displays the code fragment example selected by the user and to be executed

by the application. The code editor has a clean design and common features like line

numbers and syntax coloration according to the target language. This code editor follows

the requirements from Subsection 2.3.3 Code edition.

Figure 2.5: Mockup of the code editor section.

If an invalid code is inserted, a symbol corresponding to the error is displayed next to the

error location until correction. For a runtime error or an unexpected behavior, a warning

message appears to meet Requirement 3.47.

To satisfy the Requirement 1.4, at no point the application displays additional instruc-

tions to the initial code fragment. An example of cluttered code that is unwanted is

shown in Appendix A. The screenshot shows how a simple Bubble sort algorithm can

become di�cult to read when cluttered by many tracings.

14

2 Requirements

2.4.5 Variable visualization

Keeping in mind that this section is a support for reading a code, the design must stay

as simple as possible. Contrary to other applications that try to reproduce the memory

of a computer, this area's only concern is to expose a simple list of variables with their

values. It abstracts the complexity of the memory management such as the local and

global scope, stack and heap. The display does not show all variables in the code fragment

at the same time, but reveals only the variable existing in the current execution scope,

refreshing their values at every new step. As expected, this section grows and shrinks for

every variable creation or deletion.

The Figure 2.6 shows the variable's name and values of a Bubble sort code at a speci�c

moment of the execution code.

Figure 2.6: Mockup of the variables visualization section.

More examples of variable visualizations are displayed in Appendix B and give a general

idea of how to handle the requirements of Subsection 2.3.2 Set of basic code examples.

Each represents a snapshot of a speci�c step during the code execution and illustrate

di�erent coding features.

While this type of visualization focuses on simplicity, it reveals some limitation for more

complex features. For example, an object that contains references to itself or to other

properties is not adequately represented with this visualization. Such cases would require

a more advanced visualization such as the one illustrated in Appendix C, but is not

covered in the current e�ort.

15

2 Requirements

2.4.6 Graphical visualization

This section illustrates a graphical visualization to complement the variables visualization

for more complex types of variables. For example, sorting algorithms can be better

understood if the values are represented by a bar diagram. As shown in Figure 2.7,

the user has the option to add a variable of his choice and associate it to a type of

graph that he want to see. For a code fragment provided by the application, a preset

set the default graphical visualization to display. This feature is optional and extend

the functionality of the application to meet Requirement 3.34 and Requirement 3.35.

Ultimately, various types of graph such as trees, histogram, chart and diagram will

available in the application, but to ful�ll Requirement 3.38, only the bar diagram type

is supported. Moreover, multiple variables can be displayed simultaneously. They are

updated and partially highlighted at every step.

Figure 2.7: Mockup of the graphical visualization section.

16

2 Requirements

Finally, gathering every parts described in this section produce the �nal result of the UI

shown in Figure 2.8.

Figure 2.8: User interface overview.

2.5 Approaches for code execution visualization

There are di�erent ways to realise a visual from a piece of code. Based on similar ap-

plications found on the web, four approaches are worth considerations. The Table 2.1

compares them based on important properties. The following sections discuss the poten-

tials and the possible issues for each of the approaches.

Approaches vs criteria Scripted

animation

Tracing

instruction

Debugger

supervision

Code

transformation

Developer can add code

fragment easily

Limited Good Very goodX Very goodX

User can add code frag-

ment easily

No Limited Very goodX Very goodX

Scalability of language

feature support

Very goodX Very goodX Good Limited

Code highlight support Very goodX Limited Limited Very goodX

Table 2.1: Comparison of approaches to visualize code execution.

17

2 Requirements

2.5.1 Scripted animation

A naive brute force way to think about creating a visual from a code is simply to hard-

code it. With this approach, visualizations are custom-scripted for each code fragment.

The majority of the platforms currently on the web use this option.

Since the code is static and cannot be altered at any point by the user, it is easier to test

and prevent almost any error and implementation complexity. Also, there is no barrier

to adapt the visual to any code language.

However, the user cannot paste his own code neither modify the code fragment. The

developer needs an extensive amount of time to produce each example and users are

limited by those examples. Yet, the potential quality of the visual can be impressively

good and code highlight can be set as desired. A good website that seems to implement

visualizations for algorithms in such a way is visualgo.net[55].

2.5.2 Tracing instruction

Algorithm Visualizer[4] is the name of a similar interactive online platform to visualize

algorithms. However, it adopts a di�erent approach that allows more interactivity and

options for the user. The application uses custom tracer libraries to derive the visual

features from the code fragment. The developer provides tracing instructions to be added

in the code fragment. Which means that the initial code contains additional instructions

and from this combination, the system extracts the necessary data for the visualization.

The platform is compatible with C++, Java and JavaScript, and more languages are pos-

sible. A developer can create animated visual more freely thanks to the common tracing

instructions, but each type of graphical visualization needs its own speci�c instructions.

This approach is a major improvement compared to the scripted animation style in term

of �exibility for the user, since he can directly modify code inside the code editor to see

its graphical representation.

On the down side, the tracer instructions produce noise in the reading of the code frag-

ment. The code editor section shows the full code including all tracers functions. It

makes the logic of the initial algorithm code and the variable update harder to follow.

18

2 Requirements

Moreover, the user cannot simply copy-paste his own code, but need to add some tracer

commands in order to trigger the visualization. In other words, the user need to learn

how to use the custom library of the application which can overwhelm a novice and limit

the usability of the application.

At last, precise highlight in the code is not available since no instructions can provide

the exact location of the code section currently active.

2.5.3 Debugger supervision

Another very interesting approach is used by Python Tutor[38]. The main idea is that a

debugger executes the algorithm and outputs the relevant frame information for each code

step. In order to display a visual from a code fragment, this application uses an existing

compiler and a back-end server. For example, with Javascript, the application uses the

open source engine of Google called V8[53] to execute and extract all data from the code

fragment. With Python language, it uses DBD[18] module to handle the execution via

the debugger. With Java, it works directly with the Java Development Kit (JDK). And

�nally, it bases the dynamic analysis of C and C++ code on a tool called Valgrind[54].

The uses of these compilers and debuggers is a time saver for the development of new

languages.

This platform is compatible with di�erent languages such as C, C++, Java, Python,

JavaScript, TypeScript and Ruby. Even if the application grants a good scalability to add

more language, it is bound by the amount of work required per language implemented,

but not per features of the languages. Nevertheless, troublesome language features like

the concept of pointers and scopes are handled surprisingly well. As illustrated in the

Figure 2.9, the visual displays the swap of two variables using pointers from a C code.

The display also separates the stack and heap memory for the variable.

As a �rst disadvantage, the compile time for getting the result is signi�cant since it needs

to send the code to a server, run it on the back-end side and return it after extracting all

information necessary for the execution. The application needs around 10 to 20 seconds

to execute a simple code fragment of 20 lines.

The visual quality is limited to the information obtained from the debugger, which mean

that the program could lack data in order to highlight the code fragment at the good

place.

19

2 Requirements

Figure 2.9: Screenshot of an example in Python Tutor.

2.5.4 Code transformation

The last approach presents a new idea which is the selected approach for this application.

Yet, previous research shows that no other application is using this method. It uses the

transformation of an AST to dynamically display a visual from the executed code.

The work�ow involves six main steps that require to parse, modify, generate and execute

code. More explanations are detailed in Subsection 4.3.2 Process data �ow.

1. Get a code fragment from user.

2. Convert the code fragment into an AST.

3. Augment the AST with inspection method calls.

4. Use augmented syntax tree to generate an augmented version of the code fragment.

5. Execute the augmented code fragment to generate execution steps data.

20

2 Requirements

6. Use the execution steps data to visualize the code fragment execution.

Each feature listed in the requirement Subsection 2.3.1 Common programming concepts

need to be implemented only once for the AST to automatically transform its code. The

application must cover all existing features of a language to support it. Consequently, it

makes it harder to support additional languages and ful�ll Requirement 2.2. Additional

language would need major adaptation and di�erent tools.

Amongst all advantages, this approach makes it very simple for both the developer and

the user to write code fragment. Also, the AST contains the precise locations of each

part of the code. The application uses these location data to highlight directly in the

code, and make it easier for the user to follow the execution steps.

Considering the granular and custom handling of each language feature, the potential for

the quality of the visualization and good user experience seems to be maximized with

this approach.

21

3 Theory

The theory chapter clari�es technical concepts required for a better understanding of

the application's structure and foundation. The �rst part describes the AST anatomy

and functionalities. It is necessary to understand the syntax analysis process since it

is the approach selected in Subsection 2.5.4 Code transformation for the application to

transform the code. The section also depicts some useful use cases of the AST.

The second part explains some speci�c advanced programming features. These features

introduce some challenges in the development when it comes to visually illustrate them.

They are portrayed with simple examples.

3.1 Abstract syntax tree (AST)

In order to understand what is an AST, lets examine each of its term separately.

In computer science, a tree is a collection of data organized in a nonlinear data structure

that includes a root value at the top and subtrees of linked nodes. It can represent an

ordered collection of nodes, where each child node has at most one parent node.

The syntax is simply a set of rules used by a program to de�ne a combination of symbols

to represent a language or data. By opposition to the semantic concept that re�ect

the meaning of the code, the syntax only validates the grammar of the language. From

this perspective, a syntax tree or also called a Concrete Syntax Tree (CST) is a strict

grammatical representation of the source code in a treelike form. It shows how a parser

understands the code.

Contrary to a CST, an AST is used to analyse the code and thus does not need syntactic

details such as semicolons, parentheses and commas. The concrete syntax tree has gen-

erally more details and is more complex to read. In comparison, an AST will be smaller

and simpler because it abstracts all unnecessary information.

22

3 Theory

As demonstrated in this work, it is possible to use an AST to inspect and modify a source

code. The magic comes with a process �ow of three main operations explained in the

following sections: parse, traverse and generate.

3.1.1 Code parsing

The process of parsing is simply explained by detailing the �rst two phases done by

a compiler. The �rst phase consists of a lexical analyzer scanning a source code and

splitting it in atomic parts called lexemes. Then, a lexer, also called tokenizer, takes

these lexemes, removes unnecessary symbols such as space characters and comments and

converts them into tokens.

In the syntax analyzer phase, the parser creates a syntax tree using the list of tokens

created in the previous phase.[33] The parser's job can be either to create a CST if

all tokens are used, or to create an AST if some unnecessary tokens are omitted. It is

important to mention that a parser will always generate an AST, but the CST is optional

and depend on the parser usage. In the end, an AST is a subset of its CST counterpart

and results to a simpli�ed tree as it abstracts away all super�uous leaf nodes.

3.1.2 Anatomy of an AST

Before undertaking any transformation on an AST, it is necessary to understand how it

is constructed. The tree is made of linked nodes that has exactly one parent node each,

except for the root node. Also, they can have sibling and child nodes. For example,

the root node of an AST with Babel will be named Program and will consist of all

top statements of the program. The Figure 3.1 displays an AST of a simple array

declaration.

1 const items = [8, 5];

Listing 3.1: Simple array declaration.

23

3 Theory

Figure 3.1: AST of an array declaration constructed by the JavaScript parser Babylon7
used by Babel.

All nodes of the tree have a type name in relation to their functionality and these names

are de�ned by the parser. Each type of node has a speci�c list of additional properties.

For example, with the parser Babel, a node that represents a declaration of variable

has the name VariableDeclarator and the property Identi�er. There exist many more

types[10] in order to fully cover the complexity of one language.

3.1.3 AST traversal

Traversing an AST is the second main operation and refers to the exploration of the

AST. It is now possible to navigate, analyse and potentially extract data from the tree.

To explore an AST, each node is visited in order, starting with the root node.

24

3 Theory

To manually �nd a speci�c node, the path must be known. Some tools such as AST

Explorer[8] exist and can help to see directly the AST from a source code. It is also very

helpful to �nd the path to access a node.

3.1.4 AST transformation and generation

The manipulation of the AST is not mandatory, but it is very important to understand

in the context of the current work since it is the heart of the application process. The

main idea is to transform an AST into another AST by adding, replacing or removing

nodes. This manipulation can be complex since it requires a good knowledge of the AST

structure, the types and properties available to use.

This transformation leads to a change of the source code, such as changing the behavior

of a method or the output value. The transformation of an AST can be used to create

a custom JavaScript syntax. Once an AST has been modi�ed, the usual next step is to

convert it back to code by a process called generate.

3.2 Advanced programming concepts

To explain a simple code fragment, it can be su�cient to visually represent a list of

variables. However, this approach has its limits when it comes to explain more advanced

programming concepts. The challenge resides in the balance between the simplicity and

the more accurate explanation of the memory management. These concepts and their

challenge for the visualization are explained in this section.

3.2.1 Memory management

When visually listing variables involved in a source code, it is important to consider how

a computer is managing the memory. Some data is allocated on the stack, other on the

heap. For advance concepts such as the closure concept, it is needed to give a better

representation of the code logic and this involves a good understanding of the stack and

the heap.

A stack operates in First-In-Last-Out (FILO) mode. The memory from the stack cannot

be fragmented or resized. Thus, it is usually much faster, because it has a linear data

25

3 Theory

structure. The stack memory can only access the local variables and is safer than the

heap.

The heap is a large region where data is stored in a seemingly random way. It allo-

cates dynamic data, allows access to global variables and the variables can be resized.

Consequently, the heap requires manual variable de-allocation, or more complex memory

garbage collection system, hence is considered less safe and less performant than the

stack.

3.2.2 Variable scope

For a variable to be reachable, it needs to be used in its active region where it is located

and only exists within the block where it is declared. If the variable is global, then it can

be used anywhere and by every function. If it is a local variable, then the variable will

be deleted as the code execution exits its scope block.

To sum up, if a list of variables must be illustrated, some variables need to disappear when

they become inactive. As shown in the Table B.1 of the Appendix B, the visualization

displays the variables as the execution of the code is at the line 17. It displays in blue

the active variables and in red the variables that do not exist in the current scope.

3.2.3 Variable hiding

Variable hiding happens when a variable is de�ned in a scope that is inside another scope

block, and a variable with the same name already exists in a parent scope. While this child

scope is active, the new variable overrides the previous variable from the parent scope

which cannot be referenced by any mean. This can lead to error during the execution

of the code without warning. The Table B.4 from Appendix B shows that the variable

a can print to the console di�erent values, depending only on the scope of the function

that uses the variable.

3.2.4 Closure

When a variable is declared in the scope of a function, it exists only while the function

is active, and is erased from the memory when the code execution exits the function.

Closure is a technique that allows to have persistent local variable scopes. It allows to

26

3 Theory

keep in memory variables, even outside of their scope. The binding of the variable is

done as long as the function persists.

JavaScript is one of the languages that support the closure concept and thus, the visual-

ization of the variable with closure should be kept active, even after the execution of the

code has �nished the block of scope of this variable. As shown in the Table B.5 of the

Appendix B, the display doesn't represent well the value of the inner variable. A more

complex visual of the same code variable is done in the Figure C.1 and Figure C.2 of

the Appendix C. It shows an attempt to display a closer representation of the memory

storage.

27

4 Design

This section describes the design choices leading to a candidate solution. The �rst section

refers to the choice of the tools and libraries. A comparison of di�erent technologies based

on previous researches explains their functionalities and uses. The second section of the

design explores various pros and cons of the target language. This language refers to the

code fragments that will be analyse by the application. Finally, the last section brings

up the application architecture and how all the modules interact together.

Before diving into these speci�c parts, a use case diagram shown in Figure 4.1 illustrates

a situation between the user and the application.

28

4 Design

Figure 4.1: Use case diagram of a user examining a code fragment execution.

29

4 Design

The main functionality of the application is to analyse a code fragment and display the

code execution with graphical visualization. From the user perspective, two actions are

possible. First, the user can select a code fragment provided by the application or write

a code in the code editor. Writing can consist of modifying a code fragment provided by

the application, adding from scratch a new code or copy-pasting a source code. Second,

the user can observe the code execution and control the work�ow with the playback

commands.

On the application side, three functions are processed in order. The application gets the

code fragment, transforms it and generates the visualization.

4.1 Technologies

The choice of technologies is based on the Requirement 2.1, which relate to popular,

well supported and modern technologies. In contrast to the Section 4.2 Target language

which focuses on the target language of the code fragment examined by the user, this

part of the design refers to the code language and tools used to build the application.

4.1.1 Web platform

The selected platform for this application is the web. Assuming that most people have an

Internet connection and an operational browser, the web is the most accessible platform

for a computer. As speci�ed in Requirement 1.1, it does not require the user to install or

download any software or plugin. To follow Requirement 1.2, it is also possible to adapt

the application for di�erent browser versions and Operating Systems (OS).

The choice consequently involves HyperText Markup Language (HTML), Cascading Style

Sheets (CSS) and JavaScript technologies. While other languages have been considered,

JavaScript is the most widely used for front-end web application. Popular websites

such as Google.com, Facebook.com, YouTube.com, Amazon.com and many more use

JavaScript[34]. Furthermore, some of the most recent statistics from GitHub and Stack

Over�ow show that JavaScript is one of the most popular programming languages[44].

Finally, TypeScript is also considered since it helps to write better, safer and more

organized code and is more scalable. The main advantages of TypeScript in comparison

with JavaScript is that it handles additional useful features like the static typing and

30

4 Design

generics. To limit the scope of the current project, TypeScript will not be used, but

reconsidered in the future.

4.1.2 User interface library

Without proper tools and methodologies, the UI can be challenging to create. There

exist many libraries that can help to build and organize the view code. They provide a

component based structure that wraps part of the UI into dynamic components. There-

fore, the developers can manage and test components more easily and avoid to write hard

to maintain vanilla JavaScript and HTML code.

Also, the operations done on the DOM are slow. Manual changes of the document struc-

tures, style and content usually do not lead to optimized code. Libraries can minimize

the operations done on the DOM and improve the performances of the rendering, which

contribute to ful�ll the Requirement 1.6.

Among the best and most popular tools to be used alongside with JavaScript, three

libraries stand out: Angular, React and Vue.[7]

Angular[5] was the �rst among these Web frameworks and was released in 2010 by Google.

React[42] was released in 2013 by the Facebook team. The youngest of all three frame-

works is Vue[57] and was released in 2014 by the community.

The table Table 4.1 and the following sections compare these tools based on di�erent

criteria and con�rm the choice of selecting React as the main UI library for this applica-

tion.

Criteria Angular React Vue

Feature set vs �exibility[1] Opinionated Flexible X Flexible X

Learning Curve[15] Steep Smooth X Smooth X

Popularity Good Very good X Good

Table 4.1: Comparison of popular web frameworks relative to custom criteria.

31

4 Design

Feature set vs �exibility

Angular is more than just a UI library, it is a heavy web framework that contains a

complete solution, with lots of built-in features. Its download size of 500 Kilobyte (KB)

is massive compared to React with 100 KB and Vue with 80 KB. Hence, the applications

developed with Angular usually need more memory space and time to download.

Angular is opinionated, constraining the development in a speci�c direction. It provides

lots of features, some are completely optional, but others, such as injectables and module

structures, forces the developer to use them even if not needed. It uses the Model-View-

Controller (MVC) structure concepts and speci�c directives for its components, structures

and attributes. It o�ers considerably less �exibility than the other alternatives.

On that front, both React and Vue are very similar, they can be customized by adding

third-party tools for advance features and to scale up as the project grows.[58] They pro-

vide a �exible way of organizing components, but can also introduce a state management

library (Redux and Vuex).

Learning Curve

Learning Angular is harder than its competitors because it is a large framework with

many features. Considering the relatively small scope of this application, Angular does

not align well with the requirements.

Vue uses its own pre-processors rather than normal CSS. It has its own template directives

and custom options for the component that need to be learned and memorized.

For a minimal usage, React has a very small Application Programming Interface (API)

surface that allows to use its functionalities with a least amount of e�ort.[47] It uses a

syntax extension of JavaScript called JavaScript Extensible Markup Language (JSX) that

allows to write markup inside a JavaScript code to produce React elements. React uses

props to map and render the component's properties while Vue uses additional options

such as slot content, a built-in template loop function.[19] The concept encouraged by

both React and Vue is the Component-Based Architecture (CBA) and di�ers from the

more conventional MVC architecture by o�ering a less coupled and easy way to reuse

existing components.[12] Also, a fairly new feature in React called hooks allows functional

32

4 Design

components to have a state and be updated when modi�cations occur. While the UI and

the behavior of the components are separated in Vue, it is combined in React.

To summarize, React follows more closely the JavaScript and HTML languages than its

competitors. It is the one with the smallest API surface for minimal usage and suits

better the needs of this project.

Popularity

Since popularity is debatable, multiple metrics should be considered. Both Vue and React

have high popularity on GitHub such as the amount of stars and forks they have. React

stands out for the trends in the job market, for the number of Node Package Manager

(NPM) download count and for its GitHub contributors.[32][43] Furthermore, based on

the recent StackOver�ow survey of nearly 65,000 developers, React is the most popular,

loved and wanted among all three frameworks.[49]

In conclusion, even if Vue would certainly ful�ll the requirements of this project, React is

chosen for its additional maturity, simplicity, popularity among professionals and because

it is developed by the solid company Facebook.

4.1.3 User interface style library

This application needs a simple and intuitive UI. Many CSS frameworks and libraries

can facilitate the process of creating user-friendly, simple and stylish user interface. Fur-

thermore, they can help to develop sophisticated design as the application grows and

becomes more complex. Among the best and most popular tools, Bootstrap is the most

widely used and can provide good quality front-end components to a web page. With

React Bootstrap, developers can access thousands of di�erent themes. Unfortunately, this

framework is heavy and can encumber the application with functionalities that are not

necessary.

There are many other options of CSS libraries that would certainly ful�ll the needs of

the current application. Also, considering the choice of React as the main UI library, the

CSS library should go along it pretty well.

Google has identi�ed a set of guidelines for the visual design of UI called Material

design[27]. They improve greatly the quality of a UI and following these guidelines aligns

33

4 Design

well with Requirement 1.3. These concepts can be better implemented with the library

Material-UI[28], which includes React components. It also o�ers many optional themes,

including Google's theme. Finally, this library is smaller and have a good support from

the community. Thus, Material-UI is the selected style library for this application.

4.1.4 Open source

As mentioned previously, the application mainly serves academic purposes. The main

goal is to help learning code or give a simple tool to analyse a code. The product need

to be accessible, free and available. The Open-source model shares these requirements

and o�ers many more advantages. Mainly, the capacity of maintenance and the support

of the community. Also, the code get fully visible to everyone, hence the solution get

better security, robustness and the code is much more tested. In summary, delivering the

application as an open-source software will allow the community to contribute to further

development and enhance the solution for di�erent purposes.

4.1.5 Text editor library

ACE editor[2] is one of the most popular and used code editor for the Web[22]. For

instance, it powers Wikipedia and Khan Academy. It is written in JavaScript and sup-

ports most common source code editor features such as copy-paste, syntax coloration,

code highlight, line numbers, auto-completion and noti�cations for coding errors via

ESLint[20].

There are other suitable code editors available such as CodeMirror. The �nal decision to

use ACE is arbitrarily based on its popularity and its capacity to support all requirements

from Subsection 2.3.3 Code edition.

4.1.6 Test libraries

The application needs di�erent technologies for di�erent type of tests with JavaScript

code.

For unit and integration tests, Jest[23] is the most popular testing framework to use

with JavaScript. It has a clever parallel testing, is simple to install and have a good

compatibility with React and Node.js. Compared to other similar libraries like Mocha

34

4 Design

or Jasmine, Jest o�ers more functionalities. For example, Jest is a test runner like

Mocha[29], it executes the tests and gives a summary of the results. It is also an assertion

library like Chai[13] that de�nes the testing logic and the conditions of a test. It is open

source, has a great community support and Facebook recommends it. Hence, Jest is a

great choice to ful�ll both Requirement 2.5 and Requirement 2.6.

For E2E test, Puppeteer[35] uses a headless browser, which simulates browser interaction.

It can mimic commands that the user would do on a web page and test the application

with the results.

4.1.7 Module bundler and package manager

The more an application grows, the more code and �les are involved. Either one

JavaScript �le contains all the code or multiple scripts contain each part of the code.

Both options bring problems. It is di�cult to work with one big �le, hard to maintain,

prone to bugs and reading from top to bottom is not e�cient. The problem with the

second approach is that all �les need to be included in a speci�c order and this can be

challenging if there are many dependencies. As a solution, a package manager can bundle

all scripts and manage all dependencies without regard to the size of the code. It solves

the problem of scope and readability as the code is kept in small modules.

Webpack[59] is by far the most popular and complete JavaScript modules bundler and

task runner. It takes scripts with their dependencies and packs them into few bundle

assets such as CSS, PNG, JPG and JavaScript �les.

One way to install Webpack is with NPM[31]. NPM is considered the world's largest

software registry. For the JavaScript runtime environment Node.js[30], it is the default

package manager. It acquires libraries and frameworks in a similar way that Advanced

Package Tool (APT) allows to acquire applications for Linux.

Con�guring Webpack to use the library Babel allows the application to support di�erent

versions of browsers. Babel-loader's main role is to transform the source code to convert

into an older compatible JavaScript code such as ECMAScript (ES)5, ES3, and more.

Moreover, Babel is also used to convert the JSX syntax into JavaScript code, which is

convenient when working with React.

35

4 Design

4.2 Target language

The choice of the target language is decisive because it is the coding language that the user

will interact with. The decision of the target language depends on the language features,

the tools available and other properties. Based on Requirement 1.8, an evaluation of the

most popular languages reveals their pros and cons in the current context. As a result,

this comparison leads to a speci�c target language and consequently, compatible tools

and libraries.

4.2.1 Language comparison

The candidate language selected for the comparison are based on the most popular

programming languages as of 2020 Q1. Not all authors agree on the level of popularity

and how to rank them. For example, the RedMonk.com[44] website extracts language

rankings from GitHub and Stack Over�ow, while the Tiobe.com[51] index bases its data

from Google, Bings and Yahoo popular searches, the number of skilled software developers

in the world and courses o�ers.

The Table 4.2 summarizes relevant comparison criteria of the intersection of the top 10

languages from RedMonk.com and Tiobe.com. The following sections reveal details for

each criteria.

Criteria Complexity Features

support

Code analysis tool Can run in

Browser

C Low X Few Moderate No

JavaScript Low X Many X Very good X Native X

C# High Many X Very good X No

Java Medium Many X Limited No

C++ High Many X Limited No

Python Low Many X Good Possible[39]

Table 4.2: Comparison of popular programming languages relative to custom criteria.

36

4 Design

Complexity

Two main reasons makes the complexity an important property. First, the application

needs to be simple, fast and easy to develop. Second, the users likely to use this ap-

plication are expected to have a low level of knowledge and experience in coding. It is

important to �nd out which language is the most suitable for beginner and is a good

entry for learning programming concepts.

Initially, the best language to meet the Requirement 1.7 should be the one that is the

most neutral. Many books and online tutorials use a �avour of pseudocode to describe

code. It is an informal high-level code that details with natural language the operating

principles of a code fragment. It abstracts the implementation details and make it easier

for people to read. However, pseudocode is not a suitable solution in this context since

it is not standard and by de�nition, cannot be built or executed on any platform.

All search results show that people use di�erent metrics to evaluate the complexity of a

code. The number of reserved words in a language is one of the way to measures it[26].

The Table 4.2 shows a ranking level of complexity from low to high for each language.

The ideal result is low level and represents a number of keywords under 50. The bigger

the number is, the greater the size of the language is. For example, C# leads with a score

of 102 reserved words and C++ closely follows with 93. The remaining languages show a

very low number of keywords, hence C, JavaScript and Python are among the list, the

most simple languages.

Features support

The previous section reveals that it is better if the language is simple. However, follow-

ing the product Requirement 1.9, the target language also needs to support the most

common features of general coding languages. One way to compare languages is to count

the number of paradigms they support such as imperative, object oriented, functional,

procedural, generic, re�ective and event driven[25].

Here, the desired languages are the ones with many supported features. All languages

on the list ful�ll this requirement except for the C language, which supports only three

of the paradigms from the list.

37

4 Design

Code analysis tool

The central feature of this application is to analyse a code fragment, hence the language

selected needs to come with good tools and libraries to support this functionality as of

Requirement 1.10. The technologies to parse a code or to transform it into an AST are

not always easily available for all languages. For example, libraries like cppAST[16] for

C++ or Spoon[48] and JavaParser[21] for Java are not so popular and the support for

these libraries seems limited.

Some tools are compatible with multiple languages such as Clang[14] for all C language

family and ANTLR[6] for Python, C# and JavaScript. They are very interesting since

they can handle more than one language, but they do not o�er all the features required

for this application. For example, ANTLR do not include the code compilation. Instead,

developpers mostly use it to create parsers.

For C code, a parser called Pycparser[36] is developed in Python and mostly used by the

C Foreign Function Interface (CFFI) for Python. Its functionalities appear to be very

speci�c and additional libraries would be needed if used.

Python includes a built-in code compiler and parsing tools to generate AST[37]. This

popular library has many contributors and o�ers many features that could ful�ll the

requirements.

For C#, Roslyn[46] has many features to o�er for code analysis. It is an open source .Net

compiler platform developed by the .NET Foundation and has several contributors. It

is a complete solution that could meet the requirements. No other alternative for this

language is as popular as Roslyn.

Compared to all previous tools mentioned, Babel[9] is the most complete tool and is

compatible with JavaScript. It has many purposes and it is mostly used for converting

new JavaScript code into a previous version for compatibility with older browsers and

environments. With many contributors and being open source, Babel has a complete set

of features for code analysis that are constantly updated. Many other libraries are also

possible to use with JavaScript like Acorn[3], but mostly not as complete as Babel.

38

4 Design

Can run in a browser

To meet the Requirement 1.6 to have a fast UI without waiting time, language that can

run on browser are favored. The reason is that compiled languages need a server to

run the code, which mean waiting time for the user. The Web browser runs the whole

application without the help of any server or data transfer and the result is instantaneous.

In that regard, JavaScript is apparently the best options since it is the main interpreted

language used for front-end Web development.

It's worth mentioning that Python could also be a possible alternative. There are di�erent

ways to run Python on the web and could reach the same result as JavaScript, but Python

is mostly used for back-end purposes.

4.2.2 JavaScript

JavaScript is often considered an easy language to learn and is often the entry coding

language for many students in information technology �eld. It is also criticized for

its numerous pitfalls, however most of them can be avoided with proper guidelines and

development tools[17]. Among all popular languages, JavaScript is the one that stands for

the technologies available, the contributors and the information surrounding the language

on the web. Finally, based on the result of the Subsection 4.2.1 Language comparison,

JavaScript is the best choice of language to suit the application requirements.

4.2.3 Babel

This section de�nes the toolchain selected to parse and modify the code fragment with

the help of AST. It is the heart of this application and the application depends heavily on

it. As mentioned in Section 2.5 Approaches for code execution visualization, the selected

approach involves parsing, modifying and generating code.

The best library to ful�ll all the functionalities required is Babel. It is by far the most

popular tool for source code transformations. As indicated in the Subsection 4.1.7 Module

bundler and package manager, the application already uses Babel at build time as a

development tool. Nevertheless, there are some alternatives to Babel that are worth

mentioning.

39

4 Design

Sucrase[50] o�ers a super-fast development build compared to Babel. The library is a

subset of Babel and outperformed it because the scope is limited to the most recent

browser and Node.js. However, it does not o�er all necessary functionalities for the

application.

A new experimental JavaScript toolchain considered is Rome[45]. Like Babel, Rome

seems to o�er many useful functionalities such as code parsing and transformation. An

interesting fact about Rome.js is that it has the same author as Babel and Yarn[60], and

Facebook is the owner. Unfortunately, Rome is a very recent library as of 2020 Q1 and

there is not enough documentation to con�rm that it could replace Babel yet.

4.2.4 AST Explorer

For exploring the AST concept and the results of a transformation, AST Explorer[8] is a

very useful tool. AST Explorer is not meant to be included in the application, but rather

to be used as an external tool to help for inspecting AST.

It allows one to write a code fragment and inspect the AST generated from a selected

parser. In the current version 7 of Babel, Babel-Eslint 9 is used. The Figure 4.2 shows

an example of how to transform an AST to manipulate a code fragment. The code

fragment is located on the top-left and its generated AST is on the top-right. Due to the

transformation via the AST on the bottom-left, the name of the variable is now inverted

and the transformed code can be seen on the bottom-right. This is only a small code

snippet and the result is simple, but it gives an overview of the main steps to transform

a code.

40

4 Design

Figure 4.2: Screenshot of an abstract syntax tree transformation example taken from
AST Explorer.

4.3 Architecture

The architecture section presents a high level structure of the system and explains the

interactions between the modules. Then, the process �ow is explained with the support

of an activity diagram.

4.3.1 Modules

This section details the major parts of the system and the relations between the modules.

As illustrated in Figure 4.3, some modules are part of a greater set and are placed inside

colored rectangles. React components and Jest tests are decoupled from the rest of the

implementation and have no dependencies on other part of the application.

React components

In this section, the modules main role is to create React components to be rendered for

the UI. These components are the only ones visible for the user and some of them are

already described in Section 2.4 User interface.

41

4 Design

Figure 4.3: Component diagram from a high level structure perspective.

42

4 Design

The VariablesVisualization module displays a representation of simple variable and their

values using the Variable components collection. The GraphicalVisualization module is

responsible to create any graphical visualization type to represent a variable with multiple

values such as arrays and lists. It uses multiple components from a collection of Graphical

components in order to build the graphical visualization.

Controllers

The controller modules are the interface between the React components and the code an-

alyzer. Their responsibility is to indicate in the DOM where the components need to be

displayed. They also have to manage these components when an event is triggered. The

ControllerCode module handles and renders the code editor while the ControllerVariable

and ControllerGraphic modules do the same but for the variables. The ControllerPlay-

back module handles keyboard events, the buttons events and renders a slider with the

total number of steps.

Code analyzer

While the previous sections can refer to the body of the application, this part is the brain.

The CodeAnalyzer controls both transformCode and generateExecutionStates modules

to update and transform the code to generate all execution states for a given code frag-

ment.

The transformCode module transforms a code using the AST via Babel library into an

augmented code. The generateExecutionStates module provides all functions needed for

an augmented code to generate the executions states. Which means that for each step,

all states of the code is saved in a array and make possible to update the value of each

variable at a given step as described in Requirement 3.31.

Ensuing Requirement 2.2, additional coding languages could be ultimately implemented

in the application. This is the section of the architecture that would need to be adapted

for each new programming languages. In order words, the work�ow would be similar,

but di�erent tools and libraries would be used. Furthermore, the main operation done

by the codeAnalyzer is asynchronous, thus could take time to execute without blocking

the application. Even if not needed with the current solution, the asynchronicity would

allow the codeAnalyzer to delegate the code processing to a server.

43

4 Design

Moreover, the architecture makes the testing of the application easier since the codeAn-

alyzer section is decoupled from the rest. This is the main relevant section to test and it

is not dependant on the UI. Hence, it supports the Requirement 2.5 and 2.6.

The work�ow to transform a code fragment involves six main steps that is illustrated

and described in the Subsection 4.3.2 Process data �ow. The transformation handles all

features listed in Subsection 2.3.1 Common programming concepts.

Index, utils and code library

Index is the entry point of the application. It creates instances of various controllers and

handles the application main events. It also declares the default code fragment to be

used by the application.

The code library module refers to the collection of code fragments provided by the ap-

plication.

The last set of modules called Utils and shared libraries refers to some tools that are

described in the Section 4.1 Technologies. React, Jest and Material-UI are the main

ones. This set also holds the utils custom library that combines all general-purpose

functions and methods such as math functions. Lastly, the collection of tests include at

least a test for each feature of the coding language as speci�ed in Requirement 2.5.

4.3.2 Process data �ow

This section describes the main process �ow to transform and analyse a code fragment.

The Figure 4.4 shows only the �rst part of the whole process �ow and excludes the last

step which is the visual representation. This activity diagram illustrates the process to

build a visualization. It starts with a code as an input and ends with a visualization

ready to be displayed. If an error exists in the code fragment or the code complexity

limit is exceded as pointed out in Requirement 3.49, the application should notify the

user that the build failed because of invalid code. Additionally, the user can modify any

selected code fragment or paste his own code at any time. Once a modi�cation occurs

in the code editor, the build process is restarted.

44

4 Design

Figure 4.4: Activity diagram of the operational �ow for building a visualization.

At each step of the process �ow, the data is transformed. Figure 4.5 lists the various

shapes of the data from the initial code fragment to the �nal visual representation.

The last step represents the visualization of the whole UI, essentially representing the

highlight of the code fragment, the current step count of the code execution, the variables

and graphical visualization.

45

4 Design

Figure 4.5: Data representation at each step of the process �ow.

46

4 Design

1. Acquire code

The process starts when the application gets a code fragment. The code fragment comes

from the user or is chosen from the code fragment list provided by the application. This

process handles run time errors and the limit of number of lines of code. If an invalid

code is entered, the process is blocked until it is recti�ed.

2. Create AST

In the second step, it converts the code fragment into an AST, a representation of the

code that will allow meta-programming analysis such as extracting the list of variable

names. This part is automatically handled by the library Babel and holds a large amount

of information for each part of the code.

3. Augment AST

Next, the application augments the AST with additional intermediate inspection method

calls. This new version of the augmented AST contains more data like the name of each

variable from the code fragment.

4. Generate augmented code

This step is the reverse process of creating an AST. Instead, the augmented syntax tree

is used to generate a new version of the code fragment. This augmented code contains all

the intermediate inspection methods calls that are intercepting expressions, assignments

or any other relevant code constructs. These inspection methods act as a wrapper or a

decorator.

5. Generate execution steps

Then, the application executes the augmented code fragment which should still produce

the same result as the initial code fragment. In addition, it generates the execution steps

data. All states for the execution steps are contained in a variable, so the data needed

for the meta-programming is available at any step. Each state includes the value of all

variables for that execution step and where it corresponds in the code. For example,

the meta-programming contains all data needed to highlight part of the code fragment

and the visualization and corresponds to the Requirement 3.23, Requirement 3.32 and

Requirement 3.37.

6. Display visualization

The last step of the process is the visualization of the code fragment execution using the

execution steps data. The �nal visualization is composed by the initial code fragment

with colored highlights and the output data state.

47

5 Implementation

A successful implementation of this application will result in a dynamic visualization of

the memory variables. This means that some data is required at each execution step of

the code such as the code range to highlight the current location of the code in the code

editor and the state data for each active variable. The state data contains the variable

name, its value, scope identi�er, parent scope identi�er and a boolean variable to indicate

if the variable was declared during the current step. Finally, while the augmented code

is executed, the state data is extracted in order to display the visual representation.

However, the initial user-provider code fragment and the calculations produced by the

code should remain identical. In order words, the user should not see any modi�cations

or tracing instructions added to its code.

This section exposes the details about the code transformation and how the AST is

augmented. For each step of the process �ow listed in the Figure 4.5, a sample of the

code implementation is given and a simple code fragment is used to illustrate how the

output result of each step looks like.

5.1 Parse code

The �rst step is to acquire a code fragment from the user through a code editor. As an

example, a simple code fragment is given and will be used throughout the process.

1 const code = "const a = 1;";

Listing 5.1: Example of a simple code fragment.

The second step is the creation of the AST from this source code. It is completely done

by a parser called Babylon7, used by the library Babel.

In order to use the parser functionality of Babel, the library need to be imported. The

function to parse the code is then saved in a variable.

48

5 Implementation

1 import {parse} from "@babel/parser";

2 const ast = parse(code);

Listing 5.2: Import and function call of babel/parser.

Generally, the AST is not seen by the developer because it is mainly used by other

programs for analysis or transformation purposes. As the goal is to transform the tree

to add more information, it is important to know the structure and composition of the

AST. From the simple code fragment given as an example, the AST created is shown

in Figure 5.1. This result can be generated on the online tool AST Explorer[8]. Taking

into account that Babel usually contains more information about the program such as

scopes, the example is a simpli�ed version of the complete AST.

Figure 5.1: Example of an abstract syntax tree created with the parser Babylon7.

49

5 Implementation

Another view of this AST can be very useful to understand the connections between

the nodes. The diagram in Figure 5.2 represents the AST of the simple code with the

principal nodes of the program. Since the simple code contains only one line and it is

a variable declaration, the Program node holds only one direct child node. For multiple

lines of code, the tree would grow and include multiple child nodes. The AST is made of

simple building blocks that shows the simplicity of its structure. However, as the code

gets bigger, the structure becomes rapidly more complex and hard to navigate through.

Figure 5.2: Structure of a simple AST generated with Babel.

5.2 Augment AST

In the third step of the process �ow, the AST is transformed to become the augmented

AST. The code to transform the AST have to be carefully developed because it is not

given by any tools or library and impact the whole structure of the code. The Babel

library o�ers a way to traverse and transform the tree using the visitor design pattern.

The traverse function requires an AST and some methods to be added, modi�ed or

deleted. In this case, since the output code must be identical, the functions added

50

5 Implementation

behave as an identity method. The traverse function visits each node of the tree, �nd

the ones needed and modify them to include the new methods.

1 import traverse from "@babel/traverse";

2 traverse(ast, {

3 VariableDeclarator: transformVariableDeclarator,

4 ForStatement: transformForStatement,

5 IfStatement: transformIfStatement,

6 AssignmentExpression: transformAssignmentExpression,

7 });

Listing 5.3: Import and function call of babel/traverse.

The traverse function contains for now only four methods used for di�erent feature of the

code language. Only the VariableDeclarator will be used for the example from step one.

The traverse function will �nd the VariableDeclarator initialization nodes and replace

them with the function transformVariableDeclarator.

1 export const transformVariableDeclarator = (path) => {

2 const variableValue = path.node.init

3 ? path.node.init

4 : identifier("undefined");

5

6 const parentScopeIds = UtilsTransform.getParentScopeIds(path);

7 const parentScopeIdNumericLiterals =

8 parentScopeIds.map(parentScopeId => numericLiteral(parentScopeId));

9 const isDeclaration = true;

10 const variableData = UtilsTransform.getVariableData(

11 path.node.id.name,

12 variableValue,

13 path.scope.uid,

14 parentScopeIdNumericLiterals,

15 isDeclaration,

16);

17 const codeRange = UtilsTransform.getCodeRange(path);

18 const updateCallbacks = UtilsTransform.getUpdateCallbacks();

19

20 path.node.init = callExpression(

21 identifier("handleVariableDeclarator"),

22 [variableData, codeRange, updateCallbacks]

23);

24 };

Listing 5.4: Code transformation of a variable declaration.

51

5 Implementation

The method takes as a parameter the path where the node was found and prepare the

necessary data. The callExpression function replaces the node path of the initialization

with an identi�er called handleVariableDeclarator that will be explained in the following

steps.

Figure 5.3: Structure of a simple augmented AST generated by Babel.

The Figure 5.3 is a simpli�ed version of the real structure and some nodes are missing

such as the scope identi�ers. The red color represents the new added nodes and the blue

color outline the extra data needed for later steps. The purple Numeric Literal node

returns the exact value as an expected output of the original code fragment.

It is possible to test an AST transformation with the AST Explorer web application, but

since it uses Babel core, the usages of the functions are not the same and require minor

modi�cations. The Appendix D shows how to implement the code using the website to

get a similar result.

52

5 Implementation

5.3 Generate augmented code

With an augmented AST, an augmented code can be built. It is the result of generating

the source code from the augmented AST and it can be done using Babel's generate

function. This step is the inverse operation of parsing.

1 import generate from "@babel/generator";

2 const output = generate(ast, code);

Listing 5.5: Import and function call of babel/generator.

The augmented code now contains the handleVariableDeclaration function.

1 const a = handleVariableDeclarator("a", 1, 6, 11);

Listing 5.6: Example of an augmented code fragment.

Just like an identity function f(x) x, the handleVariableDeclarator function will return

the same output value as the original source code and all variables keep their initial

value.

5.4 Generate execution steps

For each step of the code execution, a list of cumulative variables is saved in an array.

This array contains information needed to display the visual of the application. In

order to create this execution states list, the augmented code need to be executed. As

new callExpression functions were added in the previous step, the execution of the code

requires to have access to these handles functions such as the handleVariableDeclarator.

The handles functions create a new state which is added to the list of execution states.

Finally, as previously mention, it returns the initial output value.

1 export const handleVariableDeclarator = (variableData, codeRange, updateCallbacks) => {

2 const {name, value, scopeId, parentScopeIds, isDeclaration} = variableData;

3 const {startIndex, endIndex} = codeRange;

4 const {addExecutionState, updateCumulativeVariables} = updateCallbacks;

5

6 const newValue = Array.isArray(value) ? [...value] : value;

7 const {variables, variableChangeScopeId} = updateCumulativeVariables(name, newValue,

scopeId, parentScopeIds, isDeclaration);

8 const variableChange = {name, variableChangeScopeId};

53

5 Implementation

9

10 const newState = {startIndex, endIndex, variableChange, variables};

11 addExecutionState(newState);

12

13 return value;

14 };

Listing 5.7: Code handling of a variable declaration.

This function is sharing all data required to �ll the executionStates list.

Figure 5.4: Example of an execution steps array.

Figure 5.4 displays an array of only one element because the source code example has

indeed only one step. The states contain all data that is needed for the visual represen-

tation.

To sum up the process, a string containing a code fragment was transformed with the

help of an AST, then executed to construct a list of execution states. These execution

states are then used to display the visualization to the user.

54

6 Test

Testing is one of the most important part of building an application because it leads to

a better quality assurance. When a feature is built, the �rst instinct of a developer is

usually to run the application and have a quick check if the program works as expected.

This testing technique is called smoke testing and is very useful, but has its limits. In

the absence of proper test strategies, it can lead to a situation where the smoke testing

wrongly replaces an exhaustive testing of all features of an application. It is expensive

to manually test features during the development of an application and since humans

are fallible and imperfect, some features will be forgotten during the process. There are

various types of tests, and some of them can even be executed automatically and thus

can save development time. Good tests force the development to search for program

weakness or prevent system failure. It is also useful to insure the functionalities of the

application after modi�cations.

From unit to integration tests, some examples of tests done for this application are shown

and explained. The last part of this section illustrates some testings done on the UI also

called End-to-End testing.

6.1 Unit tests

Unit tests are useful to test only one function at a time. They are usually cheap to create

and test the smallest amount of code possible and are generally numerous in a project.

They are used to verify if the code does as expected and behaves properly. These tests

should be isolated and not rely on other methods. They give instant feedback, help to

reduce debugging time, lower the cost of regression testing and can be run every time a

change happens in the code[41]. Jest tool is used for the unit tests of the application.

Multiple unit tests can be done for a single function. As an example, one of the tests for

the clamp function gives a good idea of a simple unit test.

55

6 Test

1 test('Value is clamp to the minimum value allowed if the value is smaller.', () => {

2 expect(UtilsMath.clamp(-1, 0, 10)).toBe(0);

3 });

Listing 6.1: Code example of a unit test.

All parameters should be at least tested once for the same function. For example, the

clamp function could receive as parameters a number, a string, an object, an unde�ned

variable, a null variable or a Boolean. This way, almost all possible outcomes can be

handled.

Figure 6.1: Result of multiple unit tests for clamp function.

Jest is useful to have a quick overview of all tests ran and which ones have failed. It

o�ers a watch mode that can constantly monitor the code and an option to get the

code coverage of the entire program. It can be useful to see if a function has not yet

been tested. Finally, the overview shows the total time needed to execute all tests. The

summary illustrated in Figure 6.2 also includes integrated and puppeteer tests.

Figure 6.2: Summary of all Jest tests.

6.2 Integration tests

Integration tests cover a larger part of the application than just a single function. They

usually test bundles of functions or subsystems that are depending on each other to

56

6 Test

properly work. Moreover, it can require the entire application to be up and running in

order to execute these tests.

In this application, the integration tests take a major place. All transform and handler

functions required for the code analysis are tested by integration tests. As an example, a

simple source code can be tested by an integration test, but rely on other functions like

transformCodeAndGenerateExecutionStates.

1 test("Variable declaration and assignation with const statement produces execution

states with correct highlight range.", () => {

2 const initialCode = "const a = 1;";

3 const executionStates = transformCodeAndGenerateExecutionStates(initialCode);

4

5 expect(executionStates[0]).toMatchObject({startIndex: 6, endIndex: 15});

6 });

Listing 6.2: Code example of an integration test.

As presented in Figure 6.3, di�erent parameters are used to test the variable declaration

such as the highlight range, the produced execution states and the correct variable data,

etc.

Figure 6.3: Result of tests for a variable declaration.

Integration tests are also useful to test all code fragments of the application and verify

if the transformed code produces the same output values as the initial code fragment.

1 describe("Code Fragment tests", () => {

2 const testTransformedCodeResult = (initialCode, returnValueCode) => {

3 const transformedCode = transformCode(initialCode);

57

6 Test

4

5 const returnValueInitial = eval(initialCode + "\n" + returnValueCode);

6 const returnValueTransformed = evalTransformedCode(transformedCode + "\n" +

returnValueCode);

7

8 return {returnValueInitial, returnValueTransformed};

9 };

10

11 codeFragmentLibrary.forEach(codeFragment => {

12 test("The " + codeFragment.name + " produces correct output values.", () => {

13

14 const {returnValueInitial, returnValueTransformed} =

15 testTransformedCodeResult(codeFragment.code, codeFragment.testReturnValue);

16

17 expect(returnValueInitial).toStrictEqual(returnValueTransformed);

18 });

19 });

20 });

Listing 6.3: Integration test code for validating all code fragment outputs.

The Figure 6.4 exposes failed tests for the code fragment closure and object, which are

not yet correctly implemented in the application. Also, it would be interesting to add

more tests to validate multiple sets of input values for each code fragment.

58

6 Test

Figure 6.4: Result of tests for all code fragments.

6.3 End-to-End tests

End-to-End tests, also called E2E are recording and playback style tests that run in a

web browser. These tests are mimicking actions that a user could do while using the

application. They are testing the functionalities of the HTML and the DOM interaction.

Puppeteer and Jest are used to test the UI of the application. For all tests to be executed,

Puppeteer launches automatically a Chrome browser. The browser opens a page for each

test. Once a test start, it is possible to see all the actions predetermined by the test.

All functions of these tests work with promise object. A promise value is not known

at its creation and need to eventually complete in order to output a value.[11] It is also

possible to turn on the headless option to avoid opening the browser.

The next code test represents a simulation of a user trying to click on the playback

Previous button while the step is already in the �rst step. Many other tests for the same

button are done to test di�erent situations.

59

6 Test

1 test("Clicking on Previous button once while in the first step does not change the

current step.", async () => {

2 const stepCounterIndex = await getCurrentStepIndexAsync(page);

3 await clickDomAsync({dataId: "button-playbackControlPrevious"}, page);

4 const stepCounterIndexAfterPrevious = await getCurrentStepIndexAsync(page);

5

6 expect(stepCounterIndexAfterPrevious).toBe(stepCounterIndex);

7 }, timeout);

Listing 6.4: Code example of a E2E test.

The Figure 6.5 highlights a summary of the successful and failed tests.

Figure 6.5: Result of puppeteer tests for the playback controls.

When a test fails, Jest can provide some verbose help to explain the problem. As an

example, this test reveals that the step counting starts at 0, when it is expected to start

at the index 1.

60

6 Test

Figure 6.6: A verbose explanation of a failed test from Puppeteer.

6.4 Code testability

In order to run valuable and meaningful tests for this application, some refactorisations

were required. In fact, the more tightly coupled the code is, the more di�cult it is to

test[52]. For the application, a �le UtilsTestDom was created to facilitate the creation of

testing. Among other, the common methods to run Puppeteer tests such as beforAllAsync

function to open the page and download the DOM content are contained in this �le.

Consequently, there are fewer lines to write for each test and less code duplication.

Another approach that could have avoided much of the refactorisation is the Test-driven

development (TDD), which is a recommended practice of Agile software development. It

implies to concentrate e�ort on the behavior of the system, instead of focusing on the

methods. The idea is to write the tests focusing on the expected behavior of the program,

and then implementing the method. It requires a di�erent mindset, since the tests are

always one step ahead of the development. It helps to quickly detect if a modi�cation of

the code causes the test to fail.[40]

Lastly, a linter like Eslint is a very useful tool to avoid spelling and syntax errors. It

help to avoid repeatable errors and highlight the weak spot in the code that is prone to

error.

61

7 Conclusion

The initial intention was to develop a proof of concept of a tool to help novice to learn cod-

ing and programming concepts. The application would mainly serve academic purposes

and handle enough features of a coding language to be able to evaluate the feasibility of

this project for future development.

7.1 Accomplishments

From the user perspective, this tool gives a way to debug a code without the help of

another human or a complex debugger. The user can trust the application to read,

highlight dynamic part of the code and display information about the code step by step.

The user has the control over the execution of the code and can take the necessary time

to analyse it. More than 20 code samples are available and the copy-paste feature for

the code editor is functional within the supported feature set. Furthermore, the user

interface is simple and has a professional look.

On the development side, every step of this project required a lot of reading, learn-

ing and thinking. Indeed, the requirements and design sections were carefully based

on many researches about software architecture, memory management, functional and

asynchronous programming. Also, a lot of researches were done for choosing tools and

languages. Then, a deep study of the AST concepts and compiler process was necessary.

Playing with AST Explorer was really helpful and it was a good tool to understand

the JavaScript syntax and AST structure. At the end, the whole project gave a strong

experience for the many popular web tools such as NPM, Webpack, React, JavaScript,

CSS, HTML, Jest, Puppeteer, Babel, ACE editor, Material-UI, Git and more. Not only

these technologies were not trivial to learn, they were challenging to combine together.

The setup of a project has always been di�cult when it is the �rst time. On the other

hand, without those technologies and tools, this prototype would have been unrealistic,

especially without Babel.

62

7 Conclusion

7.2 Future works

All the requirements with High and some with Medium level of priority were ful�lled,

but there are still other requirements remaining. Thus, three main improvements that

could be done are suggested here as possible future works.

First, there are still many features to implement. More graphical visualizations such

as trees and graphs could be created to complement the bar diagram. The UI could

allow the user to add more visualizations and give him the control on which variables are

displayed. More algorithms and code fragments could be added to o�er a better coverage

of the language features.

Second, the user experience could be improved. As an e-learning platform, the application

should have an interface that guides the user through each option. It could o�er a

tutorial to guide the user on how to use the functionalities of the application and learn

the programming concepts in a logical order. Also, code warnings could be added to the

platform to handle unsupported features, edge cases and error to clearly communicate

to the user.

The last major improvement would be to o�er to the user the option to save, share and

create their own custom contents on the platform. For example, a teacher could create

exercises with various types of graphical visualization and share them with their students.

The application is meant to teach, but in the hand of the many users, it might reveals

its full potential and even other unexpected usages.

In conclusion, the development of this proof of concept for a learning platform on pro-

gramming is a clear success. It de�nitively proved that such a tool is feasible and have

a great potential. It highlighted the challenges involved, established the ground base for

building a complete application and provided a direction for future works.

63

Bibliography

[1] Youtube - Angular vs React vs Vue [2020 Update].

https://www.youtube.com/watch?v=lYWYWyX04JI. � Accessed:

2020-06-03

[2] Ace - About. https://ace.c9.io/#nav=about. � Accessed: 2020-04-14

[3] Github - Acorn. https://github.com/acornjs/acorn. � Accessed:

2020-04-14

[4] Algorithm Visualizer - Home. https://algorithm-visualizer.org/. �

Accessed: 2020-04-14

[5] Angular - Home. https://angular.io/. � Accessed: 2020-04-14

[6] Tomassetti - Getting started with ANTLR in C#.

https://tomassetti.me/getting-started-with-antlr-in-csharp/.

� Accessed: 2020-04-14

[7] Ashley Nolan - The Front-End Tooling Survey 2019 - Results.

https://ashleynolan.co.uk/blog/frontend-tooling-survey-

2019-results. � Accessed: 2020-06-03

[8] AST Explorer - Transform. https://astexplorer.net/. � Accessed:

2020-04-14

[9] Babel - Documentation. https://babeljs.io/docs/en/. � Accessed:

2020-04-14

[10] Babel - @babel/types. https://babeljs.io/docs/en/babel-types. �

Accessed: 2020-06-14

[11] Brown, Ethan: Web Development with Node & Express/Leveraging the

JavaScript Stack. O'Reilly Media, 2019. � 51�54 S. � ISBN 9781492053514

64

Bibliography

[12] Medium - Understanding Component-Based Architecture.

https://medium.com/@dan.shapiro1210/understanding-component-

based-architecture-3ff48ec0c238. � Accessed: 2020-06-03

[13] Chai Assertion Library - Home. https://www.chaijs.com/. � Accessed:

2020-04-14

[14] Clang - a C language family frontend for LLVM. http://clang.llvm.org/. �

Accessed: 2020-04-14

[15] Codeinwp - Angular vs React vs Vue: Which Framework to Choose in 2020.

https://www.codeinwp.com/blog/angular-vs-vue-vs-

react/#part-4-working-with-the-frameworks. � Accessed: 2020-06-03

[16] Github - cppast. https://github.com/foonathan/cppast. � Accessed:

2020-04-14

[17] Youtube - Douglas Crockford. Javascript has a good parts.

https://www.youtube.com/watch?v=DogGMNBZZvg. � Accessed:

2020-04-14

[18] DBD - Debugger framework.

https://docs.python.org/3/library/bdb.html. � Accessed: 2020-04-14

[19] Delicious Brains - Vue vs React: Which is the Best JavaScript Framework in 2020?

https://deliciousbrains.com/vue-vs-react-battle-javascript/.

� Accessed: 2020-06-03

[20] ESLint - Home. https://eslint.org/. � Accessed: 2020-04-14

[21] JavaParser - Home. https://javaparser.org/. � Accessed: 2020-04-14

[22] Wikipedia - Comparison of JavaScript-based source code editors.

https://en.wikipedia.org/wiki/Comparison_of_JavaScript-

based_source_code_editors. � Accessed: 2020-04-14

[23] Jest - Home. https://jestjs.io/. � Accessed: 2020-04-14

[24] khan Academy - Computing Computer programming.

https://www.khanacademy.org/computing/computer-programming. �

Accessed: 2020-06-09

65

Bibliography

[25] Wikipedia - Comparison of programming languages. https:

//en.wikipedia.org/wiki/Comparison_of_programming_languages.

� Accessed: 2020-04-14

[26] Medium - How to Measure Programming Language Complexity.

https://medium.com/@richardeng/how-to-measure-programming-

language-complexity-afe4f7e75786. � Accessed: 2020-04-14

[27] Material Design - Home. https://material.io/. � Accessed: 2020-04-14

[28] Material-UI - Home. https://material-ui.com/. � Accessed: 2020-04-14

[29] MOCHA - Home. https://mochajs.org/. � Accessed: 2020-04-14

[30] Node.js - Home. https://nodejs.org/en/. � Accessed: 2020-04-14

[31] Github - NPM. https://github.com/isaacs/npm. � Accessed: 2020-04-14

[32] NPM Trends - @angular/core vs react vs vue.

https://www.npmtrends.com/@angular/core-vs-react-vs-vue. �

Accessed: 2020-06-03

[33] Parr, Terence: Language/Implementation/Patterns. The Pragmatic

Programmers, 2010. � 20�36 S. � ISBN 9781934356456

[34] Wikipedia - Programming languages used in most popular websites.

https://en.wikipedia.org/wiki/Programming_languages_used_in_

most_popular_websites. � Accessed: 2020-04-14

[35] Github - Puppeteer. https://github.com/puppeteer/puppeteer. �

Accessed: 2020-04-14

[36] Github - pycparser. https://github.com/eliben/pycparser. � Accessed:

2020-04-14

[37] Python - AST. https://docs.python.org/3/library/ast.html. �

Accessed: 2020-04-14

[38] Python Tutor - Home. http://pythontutor.com/. � Accessed: 2020-04-14

[39] Anvil - Running Python in the Web Browser.

https://anvil.works/blog/python-in-the-browser-talk. �

Accessed: 2020-04-14

66

Bibliography

[40] Rady, Ben ; Coffin, Rod: Continious Testing with Ruby, Rails and Javascript.

The Pragmatic Programmers, 2011. � 18�23 S. � ISBN 9781934356708

[41] Rasmusson, Jonathan: The Agile Samurai: How Agile Masters Deliver Great

Software. The Pragmatic Programmers, 2010. � 197�206 S. � ISBN 9781934356586

[42] React - Home. https://reactjs.org/. � Accessed: 2020-04-14

[43] Medium - React vs Angular vs Vue.js � What to choose in 2020? (updated in

2020). https://medium.com/techmagic/reactjs-vs-angular5-vs-

vue-js-what-to-choose-in-2018-b91e028fa91d. � Accessed: 2020-06-03

[44] RedMonk - The RedMonk Programming Language Rankings: January 2020.

https://redmonk.com/sogrady/2020/02/28/language-rankings-1-

20/. � Accessed: 2020-04-14

[45] Romejs - Home. https://romejs.dev/. � Accessed: 2020-04-14

[46] Github - Roslyn. https://github.com/dotnet/roslyn. � Accessed:

2020-04-14

[47] Sebastian De Deyne - Why I prefer React over Vue.

https://sebastiandedeyne.com/why-i-prefer-react-over-vue/. �

Accessed: 2020-06-03

[48] Spoon - Source Code Analysis and Transformation for Java.

http://spoon.gforge.inria.fr/. � Accessed: 2020-04-14

[49] Insights StackOver�ow - 2020 Developer Survey.

https://insights.stackoverflow.com/survey/2020#most-loved-

dreaded-and-wanted. � Accessed: 2020-06-03

[50] Github - Sucrase. https://github.com/alangpierce/sucrase. �

Accessed: 2020-04-14

[51] Tiobe - TIOBE Index for April 2020.

https://www.tiobe.com/tiobe-index/. � Accessed: 2020-04-14

[52] Trostler, Mark E.: Web Development with Node & Express: Leveraging the

JavaScript Stack. O'Reilly Media, 2013. � 44�45 S. � ISBN 9781449323394

[53] V8 - Home. https://v8.dev. � Accessed: 2020-04-14

[54] Valgrind - Home. https://valgrind.org/. � Accessed: 2020-04-14

67

Bibliography

[55] VISUALGO - Home. https://visualgo.net/en. � Accessed: 2020-04-14

[56] VISUALGO - Brute Force, Bubble Sort. https://visualgo.net/en. �

Accessed: 2020-04-14

[57] Vue - Home. https://vuejs.org/. � Accessed: 2020-04-14

[58] Vue.js - Comparison with Other Frameworks.

https://vuejs.org/v2/guide/comparison.html. � Accessed: 2020-06-03

[59] Webpack - Home. https://webpack.js.org/. � Accessed: 2020-04-14

[60] Yarn - Home. https://yarnpkg.com/. � Accessed: 2020-04-14

68

A Appendix

Figure A.1: Example of a cluttered code taken from Algorithm-visualizer[56].

69

B Appendix

Visualization Block scope

1 // scope 0;

2 const a = "a";

3

4 { // scope 1, parent 0

5 const b = "b";

6

7 { // scope 2, parents 1, 0

8 const c = "c";

9

10 { // scope 3, parents 2, 1, 0

11 const d = "d";

12 }

13 }

14 }

15

16 { // scope 4, parent 0

17 const e = "e";

18 }

Table B.1: Variable visualization for block scopes.

70

B Appendix

Visualization Object

1 const obj = {

2 name: "allo",

3 items: [1, 2, 3],

4 props: {

5 age: 32,

6 },

7 isValid: true,

8 moreProps: {

9 grade: "A",

10 },

11 identity: x => x,

12 color: undefined,

13 };

14

15 const a = 1;

16 obj.moreProps.a = a;

17 obj.moreProps.self = obj;

18 obj.moreProps.other = obj.props;

Table B.2: Variable visualization for object.

Visualization Recursion

1 const factorial = (n) => {

2 if (n < 0) {

3 return;

4 }

5

6 if (n === 0) {

7 return 1;

8 }

9

10 return n * factorial(n - 1);

11 }

12

13 factorial(3);

Table B.3: Variable visualization for recursion.

71

B Appendix

Visualization Variable hiding

1 const a = 1;

2 console.log(a); // 1

3 if (true) {

4 const a = 2;

5 console.log(a); // 2

6 }

7 console.log(a); // 1

Table B.4: Variable visualization for variable hiding.

Visualization Closure

1 const f = () => {

2 let a = 1;

3 let b = 2;

4

5 return {

6 getA: () => a,

7 setA: (value) => a = value,

8 };

9 }

10

11 const f1 = f();

12 const f2 = f();

13

14 f2.setA(3);

Table B.5: Variable visualization for closure.

72

B Appendix

Visualization Graph

1 const g = new Map();

2

3 g.set(1, {data: "A", ns: new Set([2, 5])});

4 g.set(2, {data: "B", ns: new Set([4])});

5 g.set(3, {data: "C", ns: new Set()});

6 g.set(4, {data: "D", ns: new Set([3, 5])});

7 g.set(5, {data: "E", ns: new Set([3])});

Table B.6: Variable visualization for graph.

73

C Appendix

Figure C.1: Advanced memory visualization of a function call that will generate a closure.

Figure C.2: Advanced memory visualization of a closure.

74

C Appendix

Figure C.3: Advanced memory visualization of an object with values and references.

75

D Appendix

1 export default function (babel) {

2 const { types: t } = babel;

3

4 return {

5 name: "ast-transform", // not required

6 visitor: {

7 VariableDeclarator: function(path) {

8 const startIndexNode = babel.types.numericLiteral(path.node.start);

9 const endIndexNode = babel.types.numericLiteral(path.node.end);

10

11 if(path.node.init){

12 const callExpression =

13 t.callExpression(

14 t.identifier('handleVariableDeclarator'),

15 [babel.types.stringLiteral(path.node.id.name), path.node.init,

startIndexNode, endIndexNode]

16);

17 path.node.init = callExpression;

18 } else {

19 const callExpression =

20 t.callExpression(

21 t.identifier('handleVariableDeclarator'),

22 [babel.types.stringLiteral(path.node.id.name), babel.types.identifier(

"undefined"), startIndexNode, endIndexNode]

23);

24 path.node.init = callExpression;

25 }

26 }

27 }

28 };

29 }

Listing D.1: Example of a code to be used in AST Explorer website using babelv7 parser.

76

Declaration

I declare that this Bachelor Thesis has been completed by myself independently without

outside help and only the de�ned sources and study aids were used.

City Date

77

