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Abstract: Emerging technologies associated with Artificial Intelligence (AI) have enabled improve-
ments in global food security situations. However, there is a limited understanding regarding the
extent to which stakeholders are involved in AI modelling research for food security purposes. This
study systematically reviews the existing literature to bridge the knowledge gap in AI and food
security, focusing on software modelling perspectives. The study found the application of AI models
to examine various indicators of food security across six continents, with most studies conducted
in sub-Saharan Africa. While research organisations conducting AI modelling were predominantly
based in Europe or the Americas, their study communities were in the Global South. External funders
also supported AI modelling research on food security through international universities and research
institutes, although some collaborations with local organisations and external partners were identified.
The analysis revealed three patterns in the application of AI models for food security research: (1) the
exclusive utilisation of AI models to assess food security situations, (2) stakeholder involvement in
some aspects of the AI modelling process, and (3) stakeholder involvement in AI modelling for food
security through an iterative process. Overall, studies on AI models for food security were primarily
experimental and lacked real-life implementation of the results with stakeholders. Consequently, this
study concluded that research on AI, which incorporates feedback and/or the implementation of
research outcomes for stakeholders, can contribute to learning and enhance the validity of the models
in addressing food security challenges.
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1. Background

The pursuit of a sustainable food system has prompted the adoption of innovative
technologies like Artificial Intelligence (AI) to enhance food security. Artificial Intelligence
(AI) encompasses a wide range of disciplines within computer science, with the aim of
constructing intelligent machines capable of executing tasks typically demanding human
intelligence [1]. AI has become imperative due to the uncertainties associated with the
intricate and dynamic relationship among social, economic, and environmental factors that
underlie food security [2,3]. For instance, a report by the FAO, IFAD, UNICEF, WFP, and
WHO [4] indicates that global food insecurity is projected to worsen due to rapid population
growth, overexploitation, the depletion of natural resources, and unprecedented climate
change. About 70% more food will be needed by 2050 to feed the growing population,
while the global food consumption in calories from the use of agricultural commodities
is projected to increase by 1.3% per year over the next decade [5]. Food for developing
countries is produced by 80% of smallholder farmers who rely on simple technologies [6].
The rise in agricultural input prices experienced over the last two years, particularly the
rising fertiliser costs, can lead to higher food prices, and this raises concern about global
food security [7]. Stakeholders in the food and agricultural sector face the challenge of
optimising their operations to minimise losses and costs while maximising yields. This
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challenge encompasses factors, such as low crop yields, losses due to weather events (e.g.,
droughts, floods, and frost), pest and disease incidences, post-harvest losses during storage
and transportation, high costs of production, low revenue generation, and uncertainties
due to market dynamics among other issues [8].

In the context of the numerous challenges affecting stakeholders’ efforts of ensuring
food security, AI appears to be a tool that can help develop comprehensive food security
management strategies, optimising crop yields, minimising losses, and reducing oper-
ational costs [9]. AI models offer significant advantages for food security purposes in
terms of efficiency, accuracy, consistency, automation, pattern recognition, availability, and
scalability, but they also come with challenges related to data, cost, ethics, and the need
for ongoing management [10]. The choice between traditional methods and AI models
depends on the specific problem, available resources, and the trade-offs involved. AI
comprise analytical tools, such as data analytics, machine learning, and optimisation mod-
els, which can be applied to historical data and real-time information to make informed
decisions [11]. This study focuses on the application of AI models. AI modelling is the key
to building automated, intelligent, and smart systems ensuring that processes are better,
faster, and more precise [12]. A combination of numerical optimisation, risk analyses,
parameterization and scenario planning can help stakeholders address the multifaceted
problem and adapt to changing conditions for long-term success [13].

The application of AI for food security involves a wide range of stakeholders and
groups of people, such as farmers (e.g., commercial or smallholder farmers), agricultural
researchers and scientists, food processing companies, food retailers and distributors, gov-
ernment agencies, NGOs, agriculture and food technology companies, and consumers [14].
Other stakeholders who also apply AI to enhance food security include investors and
financial institutions, weather and climate agencies, supply chain and logistics companies,
farm workers and labour forces, and food safety regulators, among other stakeholders [11].
The collaboration and coordination of these stakeholders are essential for addressing global
food security challenges effectively [14,15].

In view of the stakeholders involved, in recent years, there has been a significant
increase in investments by research agencies and governments worldwide in AI and its
application in modelling food security issues [16]. Similarly, numerous research and policy
organisations are actively developing models for effective policy making in the context of
food security challenges [17]. Given the growing concerns regarding food (in)security, the
scientific community recognises the crucial role of AI models in informing decision making.
Despite the abundance of data and models available, there is often a failure in effectively
translating these models into actionable policy [18–20]. A common characteristic of using
AI in policy making is the interpretation of model outputs on a large scale [17,21,22]. While
this approach is valuable, it is essential to integrate the local knowledge of stakeholders
to ensure the robustness of model outcomes. The incorporation of stakeholders, their
knowledge, and needs into models has been posited to result in better outcomes for
stakeholders [23]. Involving stakeholders and incorporating their local knowledge in
decision-making processes are necessary, as models alone can be ineffective tools [24,25].
Additionally, it is crucial to broaden the scope of model research to provide feedback
to the communities under study [26]. Stakeholder participation requires collaboration
with computer scientists and stakeholders [27], particularly the communities facing food
insecurity. The approaches to stakeholder participation in AI modelling for food security
vary [28].

Despite the diversity of participatory modelling methods to promote stakeholder
involvement in modelling [29], particularly AI, the extent of stakeholder participation for
food security purposes remains uncertain. Hence, there is little evidence that assesses
stakeholder involvement in the application of AI models for food security. Also, limited
knowledge exists on whether stakeholder involvement actually leads to a situation where
AI modellers provide feedback to research communities. To this end, the main research
questions that guide this study are as follows: What is the extent of stakeholder participation
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in AI modelling for food security? How does this engagement influence the feedback loop
between AI modellers and local communities facing food insecurity?

As AI gains prominence in the food security sector, several studies have been con-
ducted on s indicators of the technology. Similarly, studies have been conducted on food
security and modelling (see, for instance, [16,18,21,30–34]). However, the existing studies
consist of fragmented themes and methodologies in the agrifood sector, characterised by
diverse objectives across different disciplines, with relatively few connections between
AI and food security. Recognising the knowledge gap, this study aims to analyse the AI
models used in the literature for food security research

This study contributes to the growing importance of AI in enhancing food security by
emphasising significance of collaboration between computer scientists and stakeholders
to incorporate local knowledge into AI models, making them more effective tools for
decision making.

2. Literature Review and Conceptual Framing of the Research

This section defines the key concepts such as food security and AI modelling applied
in this study.

• Defining food security

A sufficient global food production alone does not guarantee food security for the
entire population [35]. Hence, nutrition security complements food security by considering
individuals’ ability to meet their nutritional needs through food intake [36]. Nutrition
security is typically assessed at the individual level, taking into account factors such as
gender, wealth, age, and other determinants that affect an individual’s access to food
within households [37]. Despite these differences, food and nutrition security indicators
are commonly aggregated at local, regional, national, and global levels for policy-making
purposes [38]. Therefore, in this paper, the term “food security” encompasses both food
and nutrition security across scales.

Four indicators of food security—food accessibility, availability, affordability, and
utilisation—are operationalised for analysis in this study [39,40]. Access refers to the
amount of food that can be produced, purchased from the market, or obtained through
other means [36,37]. The production of food is primarily connected to the food availability
indicator of food security [41]. Affordability, the third dimension, pertains to the cost or
price aspect of food, while utilisation refers to households’ ability to process accessible
food. This depends on their capacity to acquire sufficient fuel, water, and other resources
specific to their contexts. Utilisation also relates to individuals’ physiological ability to
digest food [42].

Given the complexity of the challenges hindering the attainment of the indicators of
food security, the sector requires innovative solutions to mitigate the trade-offs between
environmental, economic, and social objectives while ensuring the short- and long-term
accessibility, availability, affordability, and utilisation of food [43,44].

• The application of AI models in the context of food security

Following Soori et al. [11], AI models can be categorised as follows: (i) machine learn-
ing models; (ii) neural network and deep learning models; (iii) data mining, knowledge
discovery, and advanced analytics models; (iv) rule-based models and decision-making
models; (v) fuzzy logic-based approaches; (vi) knowledge representation, uncertainty rea-
soning, and expert system models; (vii) case-based reasoning models; (viii) text mining and
natural language processing models; (ix) visual analytics, computer vision, and pattern
recognition models; and (x) hybridisation, search, and optimisation techniques. Hence,
the AI models considered in this study encompass machine learning and deep learning
models [27,45,46], including approaches that might not be typically considered as conven-
tional AI; however, they have integrated AI techniques or algorithms to some extent in
the models. AI models span a range from the global scale (e.g., food trade equilibrium
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models) to the local scale (e.g., farm-level crop models, bioeconomic models, or agent-based
approaches) [30].

The design or framework of AI models is typically top-down, neglecting the local
setting, local knowledge, and the goals and needs of study communities. In such an
instance, AI models utilise cadastral, biophysical, bioeconomic, or socioeconomic data or
data integration, but they fail to incorporate the perspectives of the study communities.
Critics argue that this approach results in detached outcomes that do not accurately reflect
real-life situations and may not address actual food security issues. Müller et al. [17] pointed
out that the exclusion of stakeholders and relevant concerns in these models reveals a gap
that reflects social injustice.

Consequently, decisions often involve a trade-off between choosing the “right” model
for the task and selecting the easiest model for researchers to use [3,47]. Therefore, mod-
elling research is often driven by the capabilities of models rather than the requirements of
stakeholders. Although some models explicitly aim to incorporate stakeholders’ views, it
remains challenging and unsatisfactory because predicting the future of food security un-
der long-term global change scenarios is difficult. Additionally, modellers may encounter
difficulties when combining different models due to the lack of empirical or experimental
data for model parameterisation [48].

The complexity of global change and its interactions with the food system necessi-
tate a multi-system and interdisciplinary perspective in AI modelling to address intri-
cate food system issues. Consequently, an emerging approach, known as participatory
modelling [49–51], seeks to integrate stakeholders’ perspectives to bridge the existing gaps
and overcome other challenges. More recently, analyses conducted at the global or regional
level have made progress in finding solutions that better consider the local realities of
individuals (e.g., [52,53]). Furthermore, recent advancements have witnessed collaborative
efforts among modellers from diverse organisations, nations, and fields of expertise. This
collective synergy aims to significantly strengthen worldwide food security [17].

3. Research Method

This study applied a literature review method [54]. The systematic review involved
the identification, selection, and critical appraisal of relevant research, and an analysis of
data from selected studies. To ensure a high level of quality reporting, this study adhered
to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)
guidelines [55]. This framework encompasses a checklist and a flow diagram, both of which
are crucial for transparent reporting (see File S1 in Supplementary Materials). Figure 1
illustrates the flow diagram, providing a visual representation of the steps undertaken and
briefly discussed in the following sub-sections.

3.1. Literature Identification

In the quest to identify studies pertaining to AI’s role in food security, the study opted
to use the Google search engine due to its comprehensive coverage of disciplines and
interdisciplinary journal articles. The search queries included combinations of terms such
as “Agricultural subsidy policies” AND “Food security” AND “Artificial Intelligence”,
“Farming systems” AND “Food security” AND “Artificial Intelligence”, “Landownership”
AND “Food security” AND “Artificial Intelligence”, and “Cropping systems” AND “Food
security” AND “Artificial Intelligence”. The authors deliberately sought articles that fo-
cused on the concepts of food security and AI models (see Supplementary Materials File S1).
While this approach aligns with the research objectives, it is worth noting that other studies
and concepts may exist. Consequently, this article should be considered a foundational
step in the discourse on the application of AI models for food security, offering insights for
future research and collaborative efforts. The search was not limited to specific journals
or subsets of the literature. Given this study’s emphasis on AI modelling in the context of
food security, the authors conducted a broad search using terms such as “Food security”,
“Artificial Intelligence”, “Machine learning”, and “Modelling” during the abstract screening
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process, examining the title, abstract, and/or keywords of all articles in the database. This
search was performed in December 2022 and yielded 1400 papers. To assess their relevance,
the abstracts, introductions, and discussion sections, were thoroughly reviewed, resulting
in the inclusion of 389 documents. Subsequently, 262 documents were selected due to
removal of 127 duplicate documents.
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3.2. Literature Screening and Eligibility

To assess the eligibility of the retrieved documents, this study established inclusion
criteria. Studies failing to meet these criteria were excluded (n = 91). The selection criteria
encompassed explicit references to methodologies for primary data collection and anal-
yses concerning AI models or AI-related models, or indicators of food security. Another
criterion focused on studies published in the English language from 2000 to 2022, as this
period reflects the emergence of AI technologies and global food security discourses. Ge-
ographical coverage was also considered in our criteria. Ultimately, 171 articles met all
inclusion criteria.

3.3. Analysis of Articles

The selected articles were imported into Atlas.ti software (version 22.1), where they
were examined and categorised based on objectives, research methods, discussion, and
conclusions. Atlas.ti’s software capabilities facilitated the systematic organisation, coding,
and analysis of qualitative data, such as text. It enabled annotation and data segmentation,
the creation and application of hierarchical coding schemes, and the generation of reports
and summaries. This software proved valuable for conducting in-depth content and
thematic analyses of the selected documents. Each study underwent a thorough reading
and coding process.

The method for analysing the selected documents primarily followed an inductive
approach. In the initial phase, coding began with a list of codes for broad categories
guided by the “who-what-where-why-how” concept. For example, under “where”, coding
initially encompassed geographical locations and subsequently generated sub-codes for
specific regions (e.g., Asia, Africa, America, and Europe). For “why”, coding examined
the rationale, and open coding was employed to capture various aspects. Similarly, “how”
aspect followed open coding, encompassing all relevant activities, including the models
applied in each study. This approach allowed for the development of a comprehensive
and detailed understanding of all the documents, linking broad themes and sub-codes
together for the purpose of report writing. Coding encompassed the authors’ institutions,
funding organisations, study country/community, the model’s end use, and food security
indicators. Additionally, the theoretical underpinnings of the selected papers, focusing
on the key concepts and constructs relevant to AI model research on food security (see
Section 2), were coded.

Subsequently, codes for overarching themes (broad codes), such as geographical lo-
cations, indicators of food security, institutions conducting AI modelling research, and
organisations funding AI models for food security research, were exported into Microsoft
Office Excel 365 (Microsoft Corporation, Redmond, WA, USA). During this phase, more
specific sub-codes were identified inductively. For instance, five sub-categories (i.e., de-
velopment agencies, research institutions, state organisations, financial institutions, and
others) were derived under the theme “organisations funding AI models for food security
research”. Subsequently, the data on categories and sub-categories in the extraction table
were analysed for frequency of occurrence, leading to the creation of visual diagrams with
Microsoft Office Excel. The results of the analyses are presented in the Findings Section.
The analyses were not meant to generalise findings but rather identify pertinent research
avenues for scholars to pursue context-specific investigations.

4. Findings

This section presents the findings categorised into sub-sections.

4.1. Overview of Geographical Locations of AI-Based Modelling Research on Food Security

The analysis of the selected documents showed the application of AI models for
food security research in 68 countries across 6 continents. The distribution of the studies
conducted in each continent is as follows: Africa (58 countries), Europe (17 countries), South
America (16 countries), Asia (38 countries), North America (9 countries), and Australia
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(4 countries). Additionally, some studies (30) had a global focus or focused on countries in
different continents.

Among the 68 countries identified, approximately one-third of the studies were from
the Global North [56–58], while two-thirds were from the Global South [24,59,60], with
a particular emphasis on sub-Saharan African countries, like Ethiopia, Ghana, Malawi,
Uganda, and Madagascar [61–67]. The European countries where research on AI and food
security was conducted include Hungary, Spain, the UK, Italy, Poland, the Netherlands,
Germany, and Greece [68–72]. Figure 2 highlights the geographical distribution of the
identified countries and regions in the analysis.
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4.1.1. Indicators of Food Security with the Application of AI Models

Research on AI and food security has analysed indicators, including accessibility,
availability, affordability, and utilisation (Figure 3). However, most studies have primarily
focused on the availability aspect of food security, often overlapping with other dimensions.

Regarding the accessibility indicator, 35 documents applied AI models to assess dispar-
ities in food distribution among households. These studies demonstrate how households
rely on social safety programs or adopt coping strategies such as rural migration or the
selling of livestock to improve their food security status [73–75].

Out of the 171 documents analysed, 105 documents mainly focused on food produc-
tion, representing the availability indicator of food security [41]. The following themes
provide an overview of the topics where AI has been applied to examine the availability
indicator of food security:

• The impact of climate change on crop production, soil health, pest and disease patterns,
and the vulnerability of crops [60,76,77].
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• Predictions of changes in arable land cover, land use, and land use management under
climate change [56,78–81].

• The effects of soil fertility decline, population growth, and poverty dynamics on food
availability [59,82] and the application of climate or seasonal forecasts for food crop
production [67].

• Agricultural productivity; crop yield predictions; risk; and the application of inputs,
such as fertilisers, cropping patterns, sowing dates, crop variety selection, and cultural
practices (like mulching and cropping patterns [43,65,79–87].

• Climate change and the contribution of livestock, aquaculture, and fisheries sectors to
food availability [83,84].

• The potential of agricultural production systems, including smallholder farming
systems, climate-smart agriculture, agroecology, agroforestry, industrial crops, organic
farming, and the sustainable intensification of food crops [49,51,64,72,85–88].

• Farmers’ behaviour, drivers, decision making regarding cropping patterns, input
applications, and climate adaptation measures [89,90].

• Water availability, including groundwater and freshwater resources, irrigation dynam-
ics, and management [25,91–94].
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Figure 3. Indicators of food security analysed with AI-based model.

The crosscutting issues identified under the availability indicator of food security,
with the application of AI models, include gender, labour issues, migratory household
patterns [61,81,95–98], finance [99], cooperatives, local knowledge, infrastructure, sup-
ply/value chain [100–106], the energy–water–food nexus [107,108], and the application of
digital technologies.

The affordability indicator of food security in AI model studies was limited to 22 doc-
uments, which explored the effect of subsidy policies on the food security of rural house-
holds [70,109]. These studies used models to create scenarios, examining conditions such
as the taxation of groundwater extraction, increased water costs, reductions in agricultural
subsidies, and cash transfer programs and the effects on rural livelihoods and food se-
curity [110]. Additionally, two document nvestigated the impact of food prices on food
security and household income [62,111], particularly in sub-Saharan Africa. An AI model
based on machine learning algorithms was also employed to estimate the role of scarcity,
prices, food riots, and politically unstable regions [112].

AI models were also applied to assess the utilisation of food. The analysis also showed
11 documents focusing on social influence and the consumption patterns of specific food
products, such as dairy [58,113,114] and plant-based meat alternatives. With this category,
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models were also used to explore the food utilisation of different farming styles and their
impact on hunger and rural health [115]. Other identified themes included social capital
and the nutritional status of various groups, mainly rural farm households [116–118].

In this study, food security indicators were assessed at multiple levels, ranging from
local to global (see Table 1).

Table 1. The application of AI models for food security indicators at various levels.

Indicators
Levels of Application of AI Models for Food Security Research

Local Sub-Regional National Regional Global

Accessibility n = 23 n = 1 n = 8 n = 3
Availability n = 47 n = 17 n = 11 n = 5 n = 23

Affordability n = 19 n = 2 n = 1
Utilisation n = 6 n = 1 n = 1 n = 3

Availability was the most frequently measured food security indicator across all levels,
with data available at the local, sub-regional, national, regional, and global levels. This
suggests a strong focus on assessing the quantity and availability of food. Accessibility
indicators were examined at the local level (e.g., communities, villages, household, farm
levels, and suburbs), in 23 documents. This assessment focused on whether households
within these specific localities have sufficient access to food. The sub-regional level (e.g.,
watersheds, river basins, sub-regions, and provinces) was also considered in this study,
with data collected from 1 document. This study extended its analysis on the accessibility
indicator to the national level, involving data from 8 documents. The regional level (e.g.,
the European Union) analysis involved 3 documents, and, at the global level, this study
examined food security indicators from a broader perspective. It included data from
23 documents.

Accessibility was also researched at various levels, including local, national, and
regional levels, indicating an interest in understanding whether people have physical
and economic access to food. Affordability was identified at the local and national levels,
focusing on whether individuals and households can afford to purchase food. However,
it was not assessed at the sub-regional, regional, or global levels. Utilisation was the
least measured indicator, with data primarily available at the local and regional levels.
Utilisation assesses how well individuals within a household utilise the available food,
including nutritional aspects. It was not assessed at the sub-regional, national, or global
levels. There was limited data at the sub-regional, regional, and global levels for most
indicators, showing that food security assessment is often conducted at the local or national
levels. The distribution of data across these indicators and levels suggests that food security
assessments may vary in scope and depth, with a stronger emphasis on assessing the
availability and, to a lesser extent, the accessibility and affordability of food. The absence
of data at the global level for some indicators may be due to the challenges of collecting
consistent with specific indicators of food security.

4.1.2. Model Types

This study identified various types of models; however, there were differences in
their applications. Some studies applied a combination of models, including systemic
and dynamic modelling. For instance, the ALUAM-AB model, an economic land use
model based on Linear Programming Language (LPL) and a CPLEX solver, was applied to
assess land use changes and their corresponding effects on food production and farming
decision making. The models mentioned in the reviewed documents analysed human
factors (such as the adoption of technologies, labour availability, and migration patterns),
natural systems (weather, soil, water, etc.), or a combination of both. Machine learning
algorithms, such as Boosted Regression Trees (BRT), Random Forest (RF), and Maximum
Entropy (MAXENT) algorithms, were identified, mainly focused on analysing natural
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systems. Additionally, agent-based modelling approaches, like the Common Resources
Management Agent-Based System (CORMAS), Companion Modelling (ComMod), and
RaMDry, were applied. As mentioned in Section 2, the identified models in Table 2 also
include techniques that used AI algorithms at some stages.

Table 2. List of models applied in research on indicators of food security.

Models Applied in Food Security
Research Application in the Reviewed Documents Type of Approach Adopted

Farm management model
FARMACTOR and crop growth model

system EXPERT-N

Crop management and decision making regarding
planting and harvesting [69] Natural systems

GIAM.GTEM [119]; Global and Local
Learning Model, GALLM) (Hayward

and Graham, 2013) [120]

Explored the response of land use and agricultural
production to changes in productivity rates, resource
scarcity and degradation, greenhouse gas abatement

policy, climate change, and global demand [78]

Natural systems

Statistical Analogue Resampling (STAR)
scheme, Weather and Research
Forecasting (WRF) model, and

Model for Nitrogen and Carbon in
Agroecosystems (MONICA)

Evaluated the impact of two climate change
scenarios on the profitability of double-cropping

systems [60]
Natural and human systems

GIS modelling, Analytic Hierarchy
Process (AHP), and an

optimisation functionality

Assessed the “Energy-Water-Food nexus node” to
support decision making for sustainable and

resilient food security [108]
Natural systems

Markovian cellular automata and an
agent-based approach

Investigated the future land use trajectories of a
semi-arid Mediterranean agroecosystem [121] Natural and human systems

Computable General Equilibrium
(CGE) model

Seasonal rural labour markets and their relevance to
policy analyses [81] Natural and human systems

Discrete Event Simulation Simulated potential growth strategies and observe
the impact concerning existing farm processes [122] Natural and human systems

Change detection methods and
agent-based modelling

Examined of historical and future land use
changes [118] Natural and human systems

ADOPT (combines socio-hydrological
and agent-based modelling approaches

by coupling the FAO crop model
AquacropOS with a behavioural model
capable of simulating different adaptive

behavioural theories)

Evaluated the factors that influence adaptation
decisions and the subsequent adoption of measures

and how this affects drought risk for agricultural
production [90]

Farmers facing droughts: capturing adaptation
dynamics [25]

Education, financial aid, and awareness can reduce
smallholder farmers’ vulnerability to drought [99]

Natural and human systems

The ID3 rule induction/machine
learning algorithm

Assessed farmers’ adaptation to changes in
environmental and economic contexts [68] Natural and human systems

MOSAICA Assessed the upscale of CSA [51] Human systems

Machine learning algorithms, including
Boosted Regression Trees (BRT),

Random Forest (RF), and Maximum
Entropy (MAXENT) algorithms

Mapped the suitability for small-scale, informal
irrigation [94] Natural systems

GIS and agent-based modelling

The interlinkage and interaction of
resource–food–bioenergy systems and optimise
supply chains considering poly-centric decision

spaces [123]

Natural systems

Remote sensing and Artificial
Intelligence techniques (neural

network algorithms)
Identified of food insecure zones [95] Natural systems
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Table 2. Cont.

Models Applied in Food Security
Research Application in the Reviewed Documents Type of Approach Adopted

CLASSES (bioeconomic system
dynamics model) and Mexico Sheep

Sector Model (MSSM)

Illustrated how three indicators of access (food
consumption expenditures, a food insecurity scale,

and dietary diversity) and their stability can be
incorporated into a dynamic household-level model
of a maize-based production system and a dynamic

regional model of sheep production and
marketing [98]

Natural and human systems

Artificial Intelligence and deep
learning approaches

Agricultural productivity and crop yield predictions
and risk [124–130] Natural systems

Model for Nitrogen and Carbon
Dynamics in Agroecosystems

(MONICA) and
Mathematical-Programming-based
Multi-Agent Systems (MPMASs)

Identified biophysical and socioeconomic
dimensions of yield gaps [59] Natural and human system

MPMASs with the crop growth model
Model for Nitrogen and Carbon in

Agroecosystems)

Examined farmers’ decision making and agricultural
land use to account for the interplay between the

environment and human decision making [89]
Natural and human system

Common Resources Management
Agent-Based System (CORMAS) and

SimSahel model

Tested the impact of social forces on the evolution of
Sahelian farming systems [85] Natural and human systems

Asia-Pacific Integrated Model (AIM)
using Computable General Equilibrium

Inclusive climate change mitigation and food
security policy [96,97] Natural and human systems

Agent-based model

The potential effects of a subsidised policy on
households to rent out land use rights for long terms

under formal contracts and impacts on food
security [109]

Natural and human systems

Examined impacts of climate and price variability on
household income and food security [62] Natural and human systems

Assessed of household-level and community-wide
resilience to climate shocks in a smallholder mixed

crop–livestock farming setting [84]
Natural and human systems

Assess future patterns of arable land use under four
localised, stakeholder-driven scenarios of plausible

future socioeconomic and climate change [80]
Human systems

Integrated of seasonal precipitation forecast
information into local-level agricultural decision

making [67]
Natural and human systems

Milk consumption and scenarios of dairy reduction
and adoption of plant-based milk (PBM) [58] Natural and human systems

Simulated the impacts of climate variability and
change on crop varietal diversity [131] Human systems

Irrigation agriculture dynamics [91,93] Natural and human systems

Explored how interactions between households and
the environment lead to the emergence of

community food availability, access, utilisation, and
stability over time [61]

Natural and human systems

The impacts of cash transfer programs on rural
livelihoods [110] Natural and human systems

Transition from conventional to organic farming [91] Natural and human systems
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Table 2. Cont.

Models Applied in Food Security
Research Application in the Reviewed Documents Type of Approach Adopted

Agent-based model

Assessment of agricultural vulnerability of
sugarcane facing climatic change [77] Natural and human systems

Characterising farm types and evolvement in
smallholder dairy systems [113] Natural and human systems

Assessed the impacts of the changes in farming
systems on food security and environmental

sustainability of a rural region [76]
Natural and human systems

The management of aquaculture production [83] Natural and human systems

Vulnerable households using migration to manage
the risk of rainfall variability and food insecurity [74] Natural and human systems

Market of potato (Solanum tuberosum)
producers [100] Human systems

The impact that water canals and electric grid
development have on the Water–Energy–Food

(WEF) nexus in a rural area [107]
Human systems

Analysed the impact of climate-smart agriculture on
food security using an agent-based analysis [88] Human systems

Simulate strategies of the perishable food market
under different circumstances [104] Human systems

Reduced meat consumption [114]; social influence
on meat-eating behaviour [132] Human systems

Examined the supply chain of organic fertiliser [102] Human systems

Evaluated food supply chain resilience: potato
supply chain [105]; contract farming in rice supply

chain [103,106]
Human systems

Examined the uptake of new farming practices, for
example, organic waste application [87] Human systems

Examined household food security, climate outlook,
and agricultural productivity [133–137] Natural and Human systems

Examined climate change, hunger, and rural health
through the lens of farming styles [115] Natural and human systems

Simulated small-scale farmers’ agroforestry
adoption decisions to investigate the consequences
for livelihoods and the environment over time [138]

Natural and human systems

Projected the effect of crop yield increases, dietary
change, and different price scenarios on land use
under two different state security regimes [111]

Natural and human systems

Examined Food security and global trade [101] Human systems

Asses the potential of land use change for mitigation
of food deserts [56] Natural and human systems

Analysed the diffusion of added-value markets
among Dutch farmers [139] Natural and human systems

Examined disparities in food accessibility among
households [117] Natural and human systems

Farmers’ adaptation to agricultural risks [140];
adaptive management in crop pest control in the face
of climate variability [141] postharvest loss of food

grains [142]

Natural and human systems
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Table 2. Cont.

Models Applied in Food Security
Research Application in the Reviewed Documents Type of Approach Adopted

Dimensions of Agent-Based Modelling Approaches

Common Resources Management
Agent-Based System
(CORMAS) [143,144]

Assessed development intervention on the provision
of fertiliser and credit to farmers [73] Natural and human systems

TERROIR (TERRoir level Organic
matter Interactions and

Recycling model)

Analysed nutrient cycles at three levels of
organisation: plot, household, and landscape [145] Natural and human systems

AMBAWA model Assessed the impacts of the practice of crop residue
mulching on crop productivity [64] Natural and human systems

Spatially explicit empirical agent-based
model (SEALM)

Examined possible future trends of farmers’ crop
management and the effects of these trends on the

environment, household economy, food
self-sufficiency, and household coping strategies for

food insecurity [65]

Natural and human systems

Companion Modelling (ComMod)

Assessed the synergies and trade-offs between
REDD+ and climate-smart agriculture [49]

Groundwater irrigation management with local
farmers [92]

Natural and human systems

ALUAM-AB (an economic land use
model based on Linear Programming
Language (LPL) and a CPLEX solver)

Assessed the interaction effects of these agricultural
policies while accounting for climate change impacts

in the analysis [70]
Natural and human systems

Integrated assessment modelling (IAM)
using coupled component modelling

(CCM) approach to derive an
agent-based model associated with a

soil model and multi-scale spatial
model, resulting in the Model for

West-Africa Agroecosystem Integrated
Assessment (MOWASIA)

Assessed the environmental and economic
performances of semi-continuous and continuous

farming systems [146]
Natural and human systems

Agent-based rangeland model RaMDry

Assessed the vulnerability of rangelands and
livestock production systems as a result of the effects
of ongoing changes in precipitation and its variation,

as well as its temporal distribution [75]

Natural systems

Multi-agent systems (MAS)
Simulated soil fertility and poverty dynamics [147]

Simulation of the sustainability of farming
systems [148]

Natural and human systems

Mathematical Programming-based
Multi-Agent Systems (MPMASs)

Analysed how adaptation affects the distribution of
household food security and poverty under the

current climate and price variability [82]
Analysed of the biophysical and socioeconomic
factors that influence the livelihood strategies of
traditional Andean farmers and study how these

systems are being affected by climate change [149]
Climate variability, social capital, and food

security [143]
Examined watershed-level irrigation

management [150]

Human systems

The OMOLAND-CA (OMOLAND
Climate Change Adaptation) model

The socio-cognitive behaviour of rural households
towards climate change and resource flows prompt
agents to diversify their production strategy under

different climatic conditions [116]

Models natural and
human systems
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Table 2. Cont.

Models Applied in Food Security
Research Application in the Reviewed Documents Type of Approach Adopted

The farm management model
(FarmActor)

Examined how climatic changes drive farmers’
adaptation of their land use decisions [151].

Models natural and
human systems

Common Resources Management
Agent-Based System (CORMAS)

Analysed the impact of development interventions
on the rural population [85]

Models natural and
human systems

Flows in Agro-Food Networks (FAN) Simulated contrasting scenarios of material flows
locally in a small farming region [152]

Models natural and
human systems

The Dawe Global Security Model Simulated the global food market, food riot, and the
political fragility of countries [112] Human systems

4.2. Institutions Conducting AI-Based Modelling Research for Food Security

This study identified three categories of institutions that engaged in AI modelling
research for food security. These categories are as follows:

1. Local organisations based in countries where the research was conducted, predomi-
nantly comprising universities or research institutions [70,76,78,108,122,131,153].

2. Collaboration was observed between local and foreign research institutions [59,60,80,
81,113,121,154].

3. Foreign organisations, including universities and international research organisations,
solely focused on AI research related to food security [24,49,62,65,66,73,84,109].

According to Figure 4, AI modelling research on food security was primarily led by
foreign organisations. These collaborations involved universities and research institutions
from the Global North, while the actual study communities were based in the Global South.
The local organisations engaged in AI modelling research for food security in home-based
countries were predominantly from developed countries [69,70,78]. However, there were
exceptions, as local organisations carried out research in countries such as Qatar, Iran,
China, South Africa, and Saudi Arabia [70,92,104,108,155].
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4.3. Categories of Organisations Funding AI Modelling Research on Food Security

This study identified three categories of funding for AI modelling research on food
security as follows:

i. Foreign funding: AI modelling research on food security was funded by develop-
ment agencies, research institutions, state organisations, financial institutions, and
other forums (e.g., foundations or platforms) [24,31,49,59,64–66,84].

ii. Collaborative funding: Funding between local universities, research institutions,
and foreign partners [89,155].

iii. Local funding: Home-based institutions (e.g., local universities and research institutes)
received funds from governments through research councils [58,69,70,72,78,108,113].

Figure 5 illustrates findings on the three modes of funding for AI modelling research
for food security. However, collaborative funding (i.e., the contribution of funds between a
home-based institution and external partners) was less than sole foreign funding. In some
instances, home-based institutions provided support to research in kind. Of the 171 papers
reviewed, 36 funding sources could not be identified, as the documents did not mention
any funding organisations.
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Figure 5. Sources of funding for AI-based modelling research on food security. Source: authors’
construct based on literature review, 2023.

External funding for AI modelling research for food security was provided by de-
velopment agencies, research institutions, state organisations, financial institutions, and
others (refer to Figure 5). For example, funding for AI modelling research on food security
was received through initiatives such as the CGIAR Program on Water & Food; “Meeting
Urban Food Needs”, a project by the Food and Agriculture Organization of the United
Nations; the Global Hunger and Food Security Initiative of the United States Agency for In-
ternational Development (USAID); and the West African Science Service Center on Climate
Change and Adapted Land Use (WASCAL), among other initiatives (see Supplementary
Materials File S2). Figure 6 illustrates the distribution of external funding sources for AI
modelling research on food security. The analysis showed 103 reviewed documents that
mentioned external funding. However, the analyses showed 150 organisations because
some documents stated more than one external funding organisation.
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External funding for AI modelling research on food security has primarily focused on
countries in the Global South, particularly Africa. These countries include Niger, Senegal,
Ethiopia, Burkina Faso, Tanzania, Madagascar, Ghana, Uganda, Malawi, Kenya, Cameroon,
and South Africa [61–67]. A similar funding pattern was observed in the Asian region,
specifically in Laos, Vietnam, Bhutan, Thailand, Indonesia, India, Sri Lanka, the Philippines,
Bangladesh, and Nepal [49,81,109,149]. In South America, the countries identified included
Paraguay, Brazil, Colombia, Peru, Mexico, Chile, Guadeloupe, Uruguay, Ecuador, and
Guatemala [24,59,60,91,100,149,156].

In the Global North, government and national/local organisations provided funding
for AI modelling research on food security in countries such as Germany, Switzerland, the
UK, Norway, Australia, the USA, Canada, the Netherlands, France, and Belgium [68–72]. In
the Mediterranean and Arab (MENA) region, countries like Qatar, Iran, and Saudi Arabia
have foundations or government-sponsored initiatives for AI modelling research on food
security [108,155]. While most modelling studies on food security in the Global South were
externally funded, there were a few exceptions where some local institutions also financed
research activities on food security [76,136,157].

4.4. Approaches Used in AI Models for Food Security Research

This section analyses three main approaches commonly adopted in AI model research
on food security. These approaches are as follows:

4.4.1. The Application of Only Artificial Intelligence Models for Food Security Situations

The first approach identified in the studies (87 documents) used various types of data
without involving stakeholders. The data sources included biophysical data (such as crop
data, weather/climate data, and soil characteristics data), bioeconomic data (including his-
torical agricultural production data), and cadastral data (such as satellite images, geospatial
information, and land use and landcover maps). In some studies, different datasets were
integrated into models to investigate specific aspects of food security.

The recommendations and conclusions reflected on the model building process and
the potential of AI to conduct specific analyses, frameworks, and methodologies. Ulti-
mately, they offered insights into the possibilities and limitations of the models, such as
the unavailability of data for model development, evaluation, and application. Further-
more, the studies drew conclusions on the future operationalisation of the model for food
security and proposed avenues for future research, including the incorporation of param-
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eters, variables, socioeconomic and environmental factors into the models. However, a
few studies recommended involving stakeholders when applying the model outputs in
real-life situations.

4.4.2. Involving Stakeholders in Artificial Intelligence Model Research for Food Security

The second approach identified in the reviewed literature (81 documents) involved
integrating AI models, biophysical data, and primary data derived from stakeholders.
Data utilised for this approach encompassed preliminary data gathered through various
methods, including participatory research, surveys/questionnaires (using the Likert
scale, open-ended formats, and close-ended formats), focus group discussions, inter-
views, Bayesian network analysis, workshops, role-playing games, community meetings,
observations, and ethnographic approaches (refer to see Supplementary Materials File
S3 for more details). In certain studies, mixed methods were employed to harness
the benefits of integrating real-life data with models. Some studies utilized a research
methodology involving field investigations, local experts’ discussions, and interdisci-
plinary modelling. Some studies developed parameters and scenarios with stakeholders.
Stakeholders also supported the modelling process, for example, participating in the
validation and simulation stages. Additionally, studies identified in this category also
applied secondary data in the form of a literature review, consisting of peer-reviewed
literature, project reviews, and government documents outlining government directives,
as well as food security strategies and planning. The secondary data sources (e.g., census
data) were applied in some studies to construct scenarios for the models.

With this approach, models also applied well-known concepts from sociology, science
communication, and economics to study indicators of food security. Although the studies
reviewed under this category included stakeholders’ perspectives, their main focus was
building a modelling framework to explore the extent of food security indicators. The
discussions of findings, recommendations, and conclusions proposed how policy and
research results could enhance productivity and food security. Most studies analyzed the
effectiveness of the methodology applied and recommended the use of mixed method
approach and using an interactive and interdisciplinary approach to understand food
security situations. Some studies in this category also recommended cross-validation
and suggested pathways for future research, such as incorporating a larger sample size,
developing the concept of value co-creation, and assessing the feasibility of different paths
in practice.

4.4.3. Stakeholder Involvement in AI Modelling for Food Security through an
Iterative Process

There was a limited application (3 documents) of this approach where stakeholders
were involved in AI modelling for food security through an iterative process. Findings
on this approach indicate the utilization of biophysical and real-life data, as described in
Section 4.4.2. However, researchers shared their findings (feedback) with study communi-
ties and assisted in implementing the results. The modelling process involved workshops,
conceptualization, scenario building, implementation, validation, and experimentation.
Various methodologies combined tools and interpretations of remote sensing data in com-
puter modelling (ComMod and multi-agent model). Stakeholder engagements involved
conventional on-farm research, role plays, on-farm surveys, innovation platforms, farmer
field schools, and experiments. The studies that applied these approaches reflected on the
“best practice” of involving stakeholders, and it provided entry points to engage stake-
holders, integrated knowledge from diverse sources and identified methodological choices
that could be replicated. They also mentioned capacity-building initiatives, as well as
monitoring and evaluation as means of critical reflections and learning on the successes
and failures. Studies identified for the analysis under this category communicated or
provided feedback to research communities. Conclusions also demonstrated that local
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stakeholders’ involvement enhanced the design of local interventions, tailoring them to fit
the specific context.

5. Discussion

In this section, the key themes that emerged from the research findings are discussed.
This review conducted on the use of AI models for food security purposes revealed

few studies that have demonstrated how feedback is incorporated into policy or even
implemented the outcomes with stakeholders. The approach to go beyond AI modelling
and stakeholder consultation was observed in three studies in the analysis that employed
participatory modelling, involving stakeholders’ knowledge to develop formalised and
shared representations of reality. These studies used models as boundary objects to facilitate
two-way learning and collective reasoning about food security challenges iteratively. The
limited provision of feedback and implementation of outcomes in study communities, as
identified in several studies, may be attributed to the current organisation of research,
where there is more focus on model outputs for publications to fulfil aspects of funding
indicators. Moreover, the limited timeframe of consortiums can result in a lack of continuity
in applying research outcomes in communities. The funding issues and the organisations
responsible for implementing AI modelling research may also influence the selection of
research designs, including the provision of feedback and the implementation of findings.

This study also found that the sources of funding for AI modelling research on food
security were predominantly external to study communities. Most of the reviewed studies
indicated that researchers initiated the research process rather than the local population.
This finding has implications for the implementation of AI models for food security to
address local needs. Hence, it highlights the need for local stakeholders to take the lead in
setting the research agenda, rather than relying solely on researchers and funding agencies.
The findings also emphasises the importance of promoting the use of AI technologies for
demand-driven innovation and scaling approaches.

The findings on the themes of food security, for example, climate-smart agricultural
practices, agroecology, climate information services for agriculture, and sustainable agri-
cultural practices, among other related themes, align with the current agenda set by in-
ternational donor agencies and organisations for global food security and food systems.
According to Verburg et al. [19], most research grants for modelling in the crop and agri-
cultural sector, for instance, are driven by specific issues, with model development and
implementation often serving as secondary objectives. This study also calls for the inter-
national community to critically review the approach to funding research, especially for
AI modelling research on food security, as it has shed light on the missing link between
researchers and stakeholders, especially local communities.

Also, studies did not adequately address or even document how they dealt with issues
regarding inclusiveness and the equitable and fair representation of stakeholders and
vulnerable groups in the selection of stakeholders. In addition, the documents analysed
lacked explicit statements justifying the selection criteria of stakeholders. The documents
reviewed also did not illustrate how they created separate interaction spaces for different
groups of stakeholders. Additionally, the studies did not consider selection criteria for
participating stakeholders, including researchers. The consideration of AI researchers in the
food security sector as stakeholders in the research can strengthen the research framework
and outcome for practical implementation.

The findings in Section 4.4.2 show that some studies used already established interac-
tion spaces from previous or ongoing projects, such as innovation platforms and farmer
field schools. These spaces incorporated stakeholders who were already actively involved
in knowledge production, sharing, and use. Examples of such stakeholders include opinion
leaders, extension agents with good relationships with farmers, experts recognised by their
peers, and individuals with extensive networks. However, only a few studies explicitly
stated how they applied interactive principles, such as involving stakeholders throughout
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the process, creating opportunities for mutual learning, and monitoring and assessing
mutual learning (as mentioned in Section 4.4.3).

While many models fall short in addressing inclusivity and fairness when dealing
with food security challenges, establishing some points of departure can help provide
context and relevance to modelling approaches. One such point is determining whether
AI modelling approaches can solve all food security challenges. Answering this question
requires selecting approaches that promote inclusivity and accurately reflect people’s
realities. However, considering the wide range of realities and priorities, achieving this
goal may prove challenging, particularly for local communities. Moreover, modellers
often tend to adhere to their conventional approaches and define realities based on their
own preferences.

In the documents reviewed, especially those that involved stakeholders, there was
an observed discrepancy where the studies tried to encompass broad perspectives while
simultaneously addressing contextual issues. In this instance, there are risks associated
with applying AI models to study food security on a global scale. However, there is also
recognition regarding the issue of scale and the trade-offs associated with it, as it can
influence the extent to which AI modelling research can facilitate social justice and equity
in addressing real-life food security challenges. Consequently, these intriguing dilemmas
prompt the need to consider how we can navigate the issue of scale in models.

In some studies, the primary goals of the models were focused on model building and
framework development, rather than employing the models to solve specific food security
challenges. Also, the development of models has been characterised by gradual, often ad
hoc improvements and extensions, with different groups incorporating “new” modules that
have already been implemented elsewhere [17]. Consequently, there has been an increase
in the number of models, but insufficient attention has been given to other crucial processes
related to food security, such as addressing perennial challenges, and bridging the gap
between simulated and actual on-farm yields [19]. Here, this study proposes that, instead
of viewing models as black boxes, they should be seen as internally logical tools that can
lead to specific outcomes on food security challenges, thereby persuading stakeholders to
adopt appropriate actions.

Contributions of This Study to Policy and the Scientific Community

One key contribution of this study is the identification of different categories of in-
stitutions involved in AI modelling research on food security. This study highlights the
dominance of foreign organisations, mainly from the Global North, in spearheading AI
modelling research on food security, despite the research communities being based in the
Global South. This information is vital for policymakers and researchers to ensure inclu-
sivity and equity in AI modelling research on food security, promoting a balance between
local and foreign involvement. Another contribution of this study is the comprehensive
overview of the organisations funding AI modelling research on food security. This article
identifies three modes of funding for AI models, including foreign funding, collaborative
funding, and local funding. Additionally, it presents a detailed analysis of external funding
sources for AI modelling research on food security, with a focus on countries in the Global
South, North, and MENA regions. By providing this information, this article offers valuable
insights into the global funding landscape for AI modelling research on food security, which
can inform future research and policy decisions in this field.

This study also identified three approaches: one focusing on biophysical and bioe-
conomic data and the other focusing on integrating local knowledge and experiences
through stakeholder involvement. This study emphasises the importance of stakeholder
participation in developing policy instruments to improve food security, such as subsidies,
infrastructure deployment, economic and market incentives, and extension and advisory
systems. Additionally, it discusses the limited involvement of stakeholders throughout the
research process, including the provision of feedback and implementation of research out-
comes, providing insights into the potential benefits of increased stakeholder engagement,
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such as promoting participatory monitoring and evaluation and tailoring interventions to
fit the local context.

The findings of the study have implications for policymakers, researchers, and practi-
tioners working towards achieving food security and promoting sustainable development.
Overall, this study contributes to the growing body of knowledge on the application of AI
in addressing global challenges like food insecurity.

6. Conclusions

In conclusion, the analysis of geographical locations, indicators of food security,
model types, institutions involved, and funding sources in AI modelling research on food
security has revealed both the global scope and the intricate web of stakeholders engaged
in addressing this critical issue. However, the multifaceted problems surrounding
food security persist, demanding continued attention and innovative approaches for
involving stakeholders. One of the key takeaways from this review research is the
significant emphasis placed on the availability indicator of food security through AI
modelling, with research predominantly concentrated in sub-Saharan Africa. While
this focus is crucial, it is important to recognise that the affordability and utilisation
aspects of food security also warrant closer examination, as they are interconnected with
the broader food security landscape. Moreover, the integration of stakeholders, local
knowledge, and community participation in AI modelling research on food security has
demonstrated its potential for generating meaningful insights and real-life interventions.
This approach can lead to a shift in community perceptions, promote trust, and empower
marginalised groups to participate in decision-making processes. As we navigate the
complexities of ensuring food security in a changing world, it is evident that collaborative
efforts between researchers, stakeholders, and local communities are essential. Only
by engaging in iterative processes that bridge the gap between theory and practice can
we hope to address the multifaceted challenges of food security effectively. Through
such inclusive approaches, we can drive meaningful change, enhance food security, and
ultimately contribute to a more sustainable and equitable future.

Based on the findings of this study, this study proposes the following recommendations
to enhance research on the application of AI and food security.

There is a need to build trust between researchers and study communities to maintain
long-term collaborations. This can be achieved through informal, shared experiences
that build social capital among researchers, stakeholders, and communities facing food
security. Trust can be built when AI modellers (research groups) acknowledge, examine,
and appreciate differences in the study community’s traditions and experiences and select
methodological approaches that foster engagement. It is essential for researchers to fully
understand the scope of the study community and consider contextual factors that can
affect decision making.

Computer science collaborators (i.e., AI modellers) should consider themselves as part
of the food security project rather than just technical support or information technology
consultants. They can also build a common vocabulary while explicitly exploring food
security problems to help understand the contexts of study communities.

Researchers may create a culture of listening and open communication with stake-
holders and ensure that modelling research provides the results to study communities. A
lack of familiarity with research goals and modelling approaches may lead to a misunder-
standing of the constraints associated with the application of AI models for food security.
Therefore, the organisation of frequent meetings between modellers, researchers, and study
communities can help overcome language barriers and provide real-time clarification of
jargon or misunderstandings.

AI modellers can also engage with study communities early in the research design
process to understand local needs and explain any limitations that cannot be met in the
modelling research.
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The provision of training and capacity building to researchers from different disci-
plines and stakeholders on basic quantitative skills, computational literacy, and scenario
building can aid in the interpretation of research results, integration into policy, and other
aspects of the research process. This can help study communities better understand model
outcomes and enable modellers/researchers to communicate research goals for improved
collaboration and communication.

Researchers can also help stakeholders develop Decision Support System (DSS)
tools to enable feedback provision and advisories to communities facing food security
challenges. The communication of the research outcome to stakeholders and study
communities can also be carried out through various knowledge products, such as
computer-based data visualisation tools or by linking modelling outcomes to mobile
devices and apps.

Research funders should also ensure the provision of feedback and/or the imple-
mentation of findings to stakeholders or study communities as part of the funding
requirement. Assessments of research proposals requiring funding should integrate
the aforementioned criteria as components. The monitoring and evaluation of research
should also ensure that researchers are in contact with stakeholders and study communi-
ties. Funding mechanisms are needed to support integration, continuity, shared learning,
and continuous innovation.

Future Research

While this study provides insights into where and how AI models are applied for
food security, there is a limited assessment of the extent (measurable) that the use of
Artificial Intelligence helps or can help achieve the required level of food security. The
identified limitations of this research are mainly attributed to the literature review ap-
proach adopted. Future research should focus on evaluating the continued effectiveness
of AI models in improving food availability, accessibility, affordability, and utilisation
over extended periods. As food security is influenced by evolving factors, such as climate
change, socioeconomic shifts, and global crises (e.g., pandemics), future research should
assess how AI models adapt to changing conditions and contribute to the resilience of
food systems. Research should delve deeper into the participatory processes involving
stakeholders in AI modelling. Understanding how local communities are empowered
to make informed decisions and implement AI-driven recommendations can provide
valuable insights. Given the diverse geographical locations where AI models are applied,
future research should explore the cultural, contextual, and governance factors that
influence the success or challenges of AI interventions in different regions. Comparative
studies can also be conducted across countries and regions to identify the best practices,
the lessons learned, and transferable AI-based approaches for enhancing food security.
Future research should also investigate the ethical implications of AI models in food
security that involve stakeholders, especially issues related to data privacy, fairness,
and the equitable distribution of benefits. Research should also assess the potential
unintended consequences of AI-driven decisions on vulnerable populations, including
examining the role of policies, regulations, and governance structures in supporting
or hindering the implementation of AI models in food security initiatives. Future re-
search should also evaluate the scalability and replicability of successful AI-driven
interventions, considering the feasibility of adapting these models to diverse food secu-
rity contexts. Addressing these research gaps will provide a more holistic understanding
of the role of AI in sustainable food security and inform the development of effective,
context-specific strategies for enhancing food security worldwide.
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