L I

> >

MBURG

BACHELORTHESIS
Benedikt Buhk

Development of a method for
energy efficiency optimization
of an autonomous, electric
vehicle on the test track for
automated and connected
driving in Hamburg

FAKULTY OF COMPUTER SCIENCE AND ENGINEERING
Department of Information and Electrical Engineering

Fakultat Technik und Informatik
Department Informations- und Elektrotechnik

HOCHSCHULE FUR ANGEWANDTE
WISSENSCHAFTEN HAMBURG

Hamburg University of Applied Sciences

Benedikt Buhk

Development of a method for energy efficiency
optimization of an autonomous, electric vehicle on
the test track for automated and connected driving in
Hamburg

Bachelorthesis based on the study regulations for the study
programme Bachelor of Science Elektro- und Informationstechnik
at the Department of Information and Electrical Engineering

of the Faculty of Computer Science and Engineering

of the Hamburg University of Applied Sciences

Supervising examiner: Prof. Dr. Rasmus Rettig
Second examiner: Prof. Dr. Pawel Buczek

Day of delivery: 10. Juni 2021

Benedikt Buhk

Title of Thesis

Development of a method for energy efficiency optimization of an autonomous, electric

vehicle on the test track for automated and connected driving in Hamburg

Keywords

energy efficiency, driving algorithms, electric vehicle, traffic simulation, forward-facing

energy model

Abstract

This study introduces a simulation model that couples a forward facing energy model with
a microscopic traffic simulator for the analysis of the energy performance of connected
and autonomous vehicles (CAVs). The developed model is validated against measurement
data from driving cycles of an Electric Vehicle (EV). The applicapability of the model is

demonstrated by optimizing a driving algorithm on energy efficiency.

Benedikt Buhk

Thema der Arbeit

Entwicklung einer Methode zur Optimierung der Energieeffizienz eines autonomen Elek-

trofahrzeugs auf der Teststrecke fiir automatisiertes und vernetztes Fahren in Hamburg

Stichworte

Energieeffizienz, Fahralgorithmen, Elektrofahrzeug, Vehrkehrssimulation, vorwérts-gerichtetes

Energie Model

Kurzzusammenfassung

Diese Studie schligt ein Simulationsmodel zur Analyse der Energieeffizienz von au-
tonomen Fahrzeugen vor, welches ein vorwérts gerichtetes Energiemodel mit einer
Vehrkehrssimulationssoftware koppelt. Das entwickelte Model wird anhand von Mess-
daten mehrerer Fahrzyklen eines Elektrofahrzeuges validiert. Die Anwendbarkeit des

Models wird mit der Optimierung eines Fahralgorithmus demonstriert.

iii

Contents

List of Figures vi
List of Tables vii
Acronyms viii
1 Introduction 1
1.1 Publication note 1

1.2 Motivation 1
1.3 Literature Review 1
1.4 Solution Approach 3

2 Principles of the used Technologies 5
2.1 CAN-bus 5
2.2 Tesla Model S 75D 2017 6
2.3 Test track for automated and connected driving in Hamburg (TAVF) . . . 7
2.4 Used Energy Model: EVRA, 7
2.5 Microscopic Traffic Simulator SUMO 8

3 Experimental Data Collection 11
3.1 Experimental Setup 11
3.1.1 Route e 11

3.1.2 External Influences 12

3.1.3 Auxiliary Systems 12

3.1.4 In-Vehicle Setup 13

3.2 Data Processing 14
3.3 Measurement Results 15

4 Simulation Model 17
4.1 Simulation Toolchain oo 17

v

Contents

7

8

4.2 Required Software
4.3 SUMO Traffic Simulation Setup
4.4 Energy Simulation Setup oo
4.5 Driving Algorithms
4.6 Model Setup.

Model Validation
5.1 Energy Model Validation
5.2 TAVF Driving Cycle Generation with SUMO Model

Simulation Results
Conclusion

Outlook

Bibliography

A Appendix

A.1 automatic_simulation.py.
A2 run EVRAmM

Declaration

31
31
35

39

45

47

48

52
52
64

65

List of Figures

2.1
2.2

3.1
3.2
3.3

4.1
4.2

4.3

5.1
5.2

5.3

6.1

6.2

6.3

6.4

6.5

6.6

Data frame of a CAN message [33]
Screenshot of a traffic simulation with the SUMO-GUI [21].

The TAVF with the starting points of Cycle 1, 2, and 3 [30]
Setup inside the vehicle during the measurements on the TAVF

Measurement data from Cycle 1, Cycle 2 and Cycle 3.

The toolchain of the coupled simulation model

Flowchart of the top-layer python script automatic simulation.py (sec-

Difference from calculated SoC to measured SoC
Cycle 1, Cycle 2 and Cycle 3 measurements and the SoC of the energy

model (red)
One of 100 random TAVF cycles generated with SUMO

Average A SoC over random 20 TAVF cycles for different acceleration and
decelaration parameters with low auxiliary system use
Average duration over random 20 TAVF cycles for different acceleration
and decelaration parameters
Average over the average speed of random 20 TAVF cycles for different
acceleration and decelaration parameters
Average number of stops per cycle over random 20 TAVF cycles for differ-
ent acceleration and decelaration parameters.
Average stoping time per cycle over random 20 TAVF cycles for different
acceleration and decelaration parameters
Average A SoC over random 20 TAVF cycles for different acceleration and

decelaration parameters with high auxiliary system use

vi

List of Tables

2.1

3.1
3.2
3.3

4.1
4.2

5.1
5.2

Tesla Model S 75D vehicle characteristics [36] 7

Use factor of auxiliary systems during the measurements of Cycle 1 to 3 . 13

Key values of the measurements of three TAVF cycles with human driver 15

Energy consumption of the three measurement cycles 15
Results for SUMO Ballistic simulation 29
Results for SUMO Euler simulation 30
A SoC |%] measured and calculated for each TAVF cycle. 32

Key values of random SUMO cycle generation compared with measurements 36

vii

Acronyms

AC air conditioning.
ADVISOR Advanced Vehicle Simulator.
API application programming interface.

AWD all-wheel-drive.

CAN controller area network.
CAV connected and autonomous vehicle.

CSV comma seperated value.

DLR Deutsches Zentrum fiir Luft- und Raumfahrt.

EPA Environmental Protection Agency.
EPL Eclipse Public License.
EV Electric Vehicle.

EVRA Electric Vehicle Reference Application.

GEH Geoffrey E. Havers.
GHG greenhouse gas.

GUI graphical user interface.

HAW Hochschule fiir Angewandte Wissenschaften.

HIL Hardware In the Loop.

viii

Acronyms

ITS intelligent transport systems.

LSA Lichtsignalanlage.

NEDC New European Driving Cycle.

OSM OpenStreetMap.

RNG random number generator.

SoC State of Charge.

SUMO Simulation of Urban MObility.

TAVF Teststrecke fiir automatisiertes und vernetztes Fahren.

TCP Transmission Control Protocol.
TraCl Traffic Control Interface.

TRANSIMS TRansportation ANalysis SIMulation System.

UML Urban Mobility Lab.

VISSIM Verkehr In Stadten - SImulationsModell.

VT-CPEM Virginia Tech Comprehensive Power-based EV Energy consumption Model.

1X

1 Introduction

1.1 Publication note

Parts of this study have been submitted to the SUMO User Conference 2021 [9] to be
published in [2].

1.2 Motivation

Today, the transport sector causes about 27 % of greenhouse gas (GHG) emissions in
the EU and has not improved its sustainability in recent years [5]. Therefore, solutions
for sustainable mobility are of compelling importance to meet the Paris agreement and
prevent global warming to rise above 1.5 degrees compared to pre-industrial tempera-

tures.

In the controversial debate about such solutions, automated and connected vehicles
(CAVs) in combination with an electrical drivetrain are often presented as a promis-
ing technology to increase the energy efficiency of the transport sector. However, such an
increase in energy efficiency under urban traffic conditions is very difficult to estimate.
Therefore, a tool is needed that can analyze the energy consumption of CAVs under
realistic traffic conditions. Such a tool could also be used to optimize a given driving

algorithm in its energy efficiency.

1.3 Literature Review

In literature, some studies that analyze and optimize the energy consumption of CAVs

with simulation tools can be found. This section summarizes these studies and commonly

1 Introduction

used simulation tools to point out shortcomings for the evaluation of a driving algorithm’s

energy performance.

To generate realistic traffic scenarios and analyze them down to a single vehicle, micro-
scopic traffic simulation tools are already widely used today. These tools such as VISSIM
[27], TRANSIMS [28], aimsun [1] or SUMO |21], simulate complex vehicle interactions
on a microscopic level. They are used in the area of transportation planning and traf-
fic engineering for a large range of purposes from demand and supply analysis over the
test of vehicle routing methods to detailed vehicle interaction simulations. To calculate
the energy consumption of a vehicle, microscopic traffic simulators are usually based on
backward-facing energy models. Those backward-facing energy models such as the VT-
CPEM proposed by Fiori et al. [6] or the one of T. Kurczveil et al. [19] implemented in
SUMO can deliver instantaneous energy consumption estimations requiring only a few
vehicle-specific parameters. They remain computationally efficient by calculating the
consumed energy based on simple equations from the current speed "backward” to the
energy source. However, forward-facing models such as ADVISOR [13| can deliver more
accurate instantaneous energy consumption estimations due to more accurate vehicle
parametrization for the cost of being computationally more complex. They also take the
speed-over-time data of a driving cycle as input. This speed is then used as a reference
for a driver model which controls the torque request to the engine. From this torque
request, the drive train is calculated "forward” to the wheels resulting in an actual speed
of the vehicle. Since all of the vehicle aggregates and the drivetrain components can
be simulated, the consumed energy to achieve the actual speed is calculated in a causal
way. Therefore, forward-facing models are the better choice when it comes to a detailed

analysis of a vehicle’s energy consumption.

R. Galvin [7] analyzed the influence of different speed and acceleration values on the
energy consumption over a short driving scenario without traffic for eight commonly-
used electric vehicles (EVs). One of the key findings was the significant reduction of
energy efficiency with modest to high acceleration. To reduce the energy consumption of
CAVs different methods are proposed in the literature. They can mainly be divided into
two groups: eco-routing approaches, and eco-driving approaches. Eco-routing focuses on
the energy-efficient routing of one or more vehicles. For example, the traffic light control
can be optimized on the energy consumption of all vehicles on the road as Luin et al. [22]
demonstrated. In their study, they used SUMO together with a backward-facing energy
model to verify their results. In this case, a more accurate, forward-facing model would

be unfavorable since its computational complexity would result in very long simulation

1 Introduction

times when calculating the energy consumption for a whole vehicle fleet. Eco-driving
approaches focus on the optimal speed for a single vehicle. For the evaluation of the
energy performance of a driving algorithm for CAVs, J. Han et al. [13] proposed an eco-
driving control system for energy-optimal acceleration and deceleration and simulated the
performance. Their simulation was based on the assumption, that the preceding vehicle
stays the same and there is no other vehicle joining the gap between the controlled vehicle
and its leader over a whole driving cycle. However, this assumption is usually not fulfilled

in real urban traffic.

To meet the shortcomings of existing simulation methods and analyze the energy per-
formance of CAVs under realistic traffic scenarios, the coupling of a microscopic traffic

simulator with a forward-facing energy model could be a promising solution.

1.4 Solution Approach

This study is introducing a simulation-based method for the analysis of the energy ef-
ficiency of a driving algorithm for a certain EV. The presented method is coupling the
open-source microscopic traffic simulator SUMO (Simulator for Urban Mobility) [21] with
a highly accurate, forward-facing energy model implemented in Simulink [23]. SUMO
comes with an application programming interface called Traffic Control Interface (TraCI)
[32] which can be used to control certain vehicles inside the simulation with an external
driving algorithm. Therefore, a detailed analysis of the energy performance of CAVs
becomes possible. With the coupled model lots of realistic traffic scenarios are generated
with SUMO and the performance of different driving algorithms and parameters can be
analyzed and optimized. With the forward-facing energy model also power-train opti-
mizations of the considered vehicle would be possible for the cycles generated with the

driving algorithm.

To validate the Simulation results, this study also presents the speed and State of Charge
(SoC) data collected from a test vehicle in real urban traffic. Therefore, a 2017 Tesla
Model S [36] is driven three cycles around the test track for automated and connected
driving (TAVF) in Hamburg [11]. A SUMO model of the same road network, the TAVF,
is used together with route files representing realistic traffic demand on those streets.
With this model, driving cycles for the test vehicle following the same route as in the

measurements are simulated. Thus, the test vehicle is controlled by a driving algorithm

1 Introduction

and the resulting cycles are analyzed for the vehicle’s energy consumption and compared

to the consumption of the real cycles measured in this study.

The simulation model developed in this study can be used in a very flexible way to
analyze and optimize the energy efficiency of CAVs. Various driving algorithms can be
implemented, the energy model can be parameterized for any vehicle, and the traffic
scenarios, in which the behavior and energy consumption of a certain vehicle with a

certain driving algorithm is analyzed, can be changed to any scenario(s) of interest.

2 Principles of the used Technologies

In this chapter, the main principles of the technologies used for the data collection and the
developed simulation model in this study are presented. First, the CAN-bus is explained
briefly, which was logged in a test vehicle to collect relevant data for this study. The
main specifications and features of the test vehicle, a Tesla Model S, are explained as
well as the test track for automated and connected driving in Hamburg (TAVF), that

was driven during the data collection.

For the coupled simulation model both the used energy model, an extended version of
the EVRA, and the used microscopic traffic simulator (SUMO), are presented.

2.1 CAN-bus

A controller area network (CAN) is a communication network that was designed to
interconnect vehicle components and to save wiring. Instead of using two wires for
every signal as it was common in vehicles before the CAN-bus was developed, it allows
multiple systems to exchange messages over the same two wires (CAN HI and CAN LO in
Figure 2.1). The difference between the voltage on CAN HI and CAN LO is interpreted
as a 'l if it is greater than 2 V. Otherwise the current bit is interpreted as a '0’. The
voltage on both bus wires is changed to switch between ones and zeros. Therefore, a
short signal edge is achieved allowing speeds up to 1 Mbps. CAN is a field bus and is

widely used in vehicles nowadays. [20]

The messages that are exchanged on the bus have a data frame shown in Figure 2.1. They
start with a unique 11-bit identifier (indicated in green) which represents the priority. In
the extended frame format, the identifier has 29-bit. The messages can include up to 8
Bytes (64-bit) of data (indicated in red). The length of the data in Bytes is stored in the
4 bits (indicated in yellow).

2 Principles of the used Technologies

The data is generally broadcasted on the bus so that every system can filter out the

relevant information from the bus using the identifier.

Figure 2.1: Data frame of a CAN message [33]

The subsystems of the Tesla Model S exchange information over four different highspeed
CAN-busses with a data rate of 500 kbps and use the extended frame format. On CAN3
information about the powertrain is transmitted. The current SoC of the battery pack
is published under the identifier 0x302 with a frequency of 1 Hz and the current speed
under the identifier 0x256 with a frequency of 10 Hz. In this study, the SoC and speed
was logged from CAN3 as described in chapter 3.

2.2 Tesla Model S 75D 2017

The 2017 Model S [36] in the 75D version is an EV produced by the car manufacturing
company Tesla. It has a 75 kWh battery. In this study, the Model S 75D of the Urban
Mobility Lab (UML) of the Hamburg University of Applied Sciences (HAW Hamburg)
serves as a test vehicle for the experimental data collection (see chapter 3). The main

characteristics of the Model are presented in Table 2.1.

2 Principles of the used Technologies

Battery Capacity 75 kWh

Power 386 kW (518 hp)
Torque 441 Nm
Drivetrain AWD

0 - 100 km/h 44 s

Range (EPA [34]) 417 km
Range (NEDC [35]) 490 km
Top Speed 225 km/h
Year 2016 - 2019

Table 2.1: Tesla Model S 75D vehicle characteristics [36]

2.3 Test track for automated and connected driving in
Hamburg (TAVF)

The test track for automated and connected driving (Teststrecke fiir automatisiertes und
vernetztes Fahren (TAVF)) [11] is a route in the middle of the city Hamburg in Germany.
It consists of about 8.5 km street distance with a total of 37 traffic lights [11]. The test
track is not separated from the regular city traffic. Its streets represent real urban traffic
in a speed limit zone of 50 km/h and they all have between two or three lanes. Some
traffic lights on the track are equipped with IEEE802.11p Road Side Units (RSUs) [24].
The TAVF is a project that aims to test intelligent transport systems (ITS) in an open

collaboration of various users and contributors under real traffic conditions.

2.4 Used Energy Model: EVRA

The used energy model in this study is an extended version of the Electric Vehicle Ref-
erence Application (EVRA) [29] that was adapted in a previous student work [25]. The
EVRA is a forward-facing energy model. It represents a full EV model including motor-
generator, battery, direct-drive transmission as well as associated powertrain control
algorithms and can serve for powertrain optimizations, component selection, diagnostic
algorithm design, and Hardware In the Loop (HIL) testing [29].

The model takes a driving cycle in the form of a two-dimensional vector as an input.
In the first column, the time in seconds is passed and the second column contains the

corresponding speed in km/h. This driving cycle with one speed value per second is

2 Principles of the used Technologies

seen as the target speed cycle. The car model calculates a torque request based on the
actual speed and the target speed. From this torque request, the whole drive train is
calculated in a forward and causal way, resulting in the actual speed of the vehicle. Also,
the atmospheric temperature is considered by the model and taken as an input of the

battery model since it has a significant influence on the battery performance.

In [25] the model was extended to take the energy consumption of the auxiliary systems
air conditioning (AC), ventilation, headlights, infotainment (board computer with touch-
screen and speakers), and seat heating into account. For these systems, the extended
model takes the percentage of use of the auxiliary systems over time as an input. Those
percentages result in factors that are multiplied with the maximum current measured for
the respective system in the test vehicle. The model was also parameterized to the 2017
Model S 75D of the UML of the (HAW) in [25]. The maximum current of the auxiliary
systems was measured to be for the AC 6 A, the ventilation 2 A, the seat heating 0.6 A,
the headlights 0.4 A, and the infotainment systems 0.2 A. The AC and the ventilation
are supplied from a 400 V system meanwhile the rest of the considered systems run with

a 12 V power supply (|25]).

In this study, this extended EVRA model which was adapted and parameterized for the
test vehicle (2017 Model S 75D) in [25] is used to calculate the continuous SoC value for
driving cycles of the test vehicle that were generated in SUMO.

2.5 Microscopic Traffic Simulator SUMO

There are multiple microscopic traffic simulators in the market. In the commercial sector
there are VISSIM [27] and aimsun [1]. TRANSIMS [28] and SUMO |[21] are open source
simulators. In this study, SUMO was chosen to serve as a tool to generat realistic
driving for a CAV due to its open availability, its high portability and its application
programming interface (API) TraCl that allows on-line connection to other applications

during a simulation.

SUMO was mainly developed by the German Aerospace Center (DLR) [8] under the EPL
2.0 [4] license. The open source software comes with an extensive documentation that

can be accessed online [10].

The simulation package can run continuous traffic scenarios on large networks with ve-

hicles from different classes and also considers pedestrians. During a simulation, the

2 Principles of the used Technologies

Figure 2.2: Screenshot of a traffic simulation with the SUMO-GUT [21]

network state including the position of every vehicle, their speed, and more are calcu-
lated for every simulation step. It is open to a large range of input data and comes
with many tools that extend its connectivity to other software and data formats. To
interact with the simulation during a scenario the Traffic Control Interface (TraCI) [32]
is implemented which can start SUMO as a server and connect to it as a client with a

TCP connection.

A SUMO simulation is based on a network file, which represents the street network with
positions of the streets, lane numbers, and traffic lights. It can handle very large networks
and comes with different tools that can create networks automatically or import them
from other traffic simulation tools or OpenStreetMap (OSM) [12|. To simulate different
vehicles on those streets, they have to be defined in route files containing the type of
each vehicle and information about its route in the street network. The vehicle type
defines features of the vehicle such as its identifier, class, color, length, maximum speed,
maximum acceleration and deceleration, speed factor, driving imperfection value sigma,
and others. The speed factor is multiplied by the speed limit of the street the vehicle
is driving on. The driver imperfection value sigma is between 0 and 1.0. It indicates

random fluctuations of the speed of a vehicle. With a sigma of 0, the vehicle will drive

2 Principles of the used Technologies

continuously at the speed limit of a street if no preceding vehicles or traffic lights are

forcing it to brake.

To run a simulation a SUMO configuration file has to be written or generated. This
.sumocfg-file defines all network, route, and additional files as well as simulation param-
eters such as simulation step length, begin and end time, the integration method, or the
seed value for the random number generator (RNG). Also, the outputs that the simula-
tion will generate are defined in the configuration file. A .sumocfg-file can be executed
in the SUMO-GUI or in a terminal. In the GUI, the street network with all the vehicles
can be seen during the simulation. The speed of the simulation can be adjusted and the

simulation can be paused.

The used network files of the TAVF and the route files for the traffic used in this study

are described in more detail in section 4.3.

10

3 Experimental Data Collection

For this study, the speed and SoC data of three real driving cycles were collected from a
test vehicle. This chapter describes the setup and conditions under which the measure-

ments were taken and presents the collected data.

First, the driven route is presented and the external influences as well as the auxiliary
system use is explained for the three cycles, respectively. Then, the setup for the mea-
surements in the vehicle is described. Finally, the collected speed and SoC data from the

three cycles are presented.

3.1 Experimental Setup

3.1.1 Route

For the data collection, three driving cycles were measured: Cycle 1, Cycle 2, and Cycle
3. These measured cycles will be referred to with a capital initial letter in the further
course of this thesis. All of them had the same route. The test vehicle was driven one
circle on the TAVF in Hamburg [11]. In Cycle 1 and Cycle 2, the starting (and ending)
point was in front of the train station Hamburg Dammtor and the Cycle 3 started (and
ended) at Holstenwall (next to the park Planten un Blomen). The TAVF is shown in
Figure 3.2. Also, the starting points of the cycles are marked. In all three cycles, the
big, counterclockwise round on the TAVF was driven over Stephansplatz and Dammtor.
At the Elphilharmonie, a turn was performed to continue the route. The driver of the

vehicle was only performing lane changes when they were necessary to follow the route.

The TAVF is located in the center of Hamburg and represents real urban traffic. On the
route there are 37 traffic lights, the streets have between 2 and 3 lanes and the speed
limit is 50 km/h.

11

3 Experimental Data Collection

\ Start / Endpoint Cycle 1 and Cycle 2
H

Teststrecke fiir Automatisiertes
und Vernetztes Fahren in Hamburg
(TAVF-HH)

AuBenalster

W= Umsetzung bis 2020

nnnnnn

E Ausgestattete Ampeln Stand Jan 2020

S Stadthausbriicke

y U Rbdingsmarkt
H

Elbphilharmonie S

Figure 3.1: The TAVF with the starting points of Cycle 1, 2, and 3 [30]

3.1.2 External Influences

The energy consumption for a cycle on the TAVF has many external influences that do not
depend on the driving behavior of the car such as traffic, traffic lights, and temperature.
The traffic depends highly on the weekday and time. The experimental data of Cycle 1
and Cycle 2 were taken consecutively on the 16th of December 2020 between 14:00 and
15:00. The ambient temperature was 8 degrees Celsius. During those measurements,
the cabin of the car was already well-tempered to around 18 degrees Celsius. Cycle
3 was measured on the 13th of January 2021 between 15:00 and 16:00 at an ambient
temperature of 4 degrees Celsius. At the beginning of this cycle, the cabin was still cold
and the air conditioning systems were used to a higher extent to warm up the cabin, as

shown in the next subsection 3.1.3.

3.1.3 Auxiliary Systems
The auxiliary systems with the most significant energy consumption of the test vehicle

were analyzed in a previous study [25]. Those values are also taken into account in

the energy model (section 4.4) with a factor representing the percentage of use of each

12

3 Experimental Data Collection

of those systems. Table 3.1 shows those factors for each system in the three cycles

approximately.

Note, that the AC and ventilation were set to a higher power during the measurements

of Cycle 3 compared to the measurements of Cycle 1 and 2.

Measurement AC Ventilation Seat Heater Headlights Infotainment

Cycle 1 0.3 0.3 0 1.0 0.1
Cycle 2 0.3 0.3 0 1.0 0.1
Cycle 3 0.8 0.8 0 1.0 0.1

Table 3.1: Use factor of auxiliary systems during the measurements of Cycle 1 to 3

3.1.4 In-Vehicle Setup

Figure 3.2: Setup inside the vehicle during the measurements on the TAVF

The used test vehicle is a 2017 Tesla Model S 75D [36]. The internal systems of the
car communicate over a Controler Area Network (CAN) bus. On the CAN3 bus, data
regarding the powertrain is shared. This CAN3 bus can be accessed over pin 18 and 19 of
the Tesla Diagnostic Connector under the Touchscreen of the middle console. During the
driving cycles on the TAVF, the bus messages are read and logged over the USB-CAN
interface "USB-to-CAN V2’ of the brand Ixxat [15] using the software CANalyzer Mini3
[14]. To ensure that no signals are disturbed and nothing can be sent on the bus, a
certified CAN-bus iso coupler, the SAM-CAN-ISO011 [17], is used for the connection. It

connects the CAN interface with galvanic isolation to the vehicle bus network.

13

3 Experimental Data Collection

All messages from the CAN3 are logged in a CSV file. The speed data is published on the
bus with the identifier 0x256 with a frequency of 10Hz. The SoC-value has the identifier
0x302 and is published with a frequency of 1 Hz. After the measurements, the logged
CAN messages are exported in a CSV file containing the time, the identifier, the length

of the data in bytes, and the data bits in hexadecimal for each message.

3.2 Data Processing

For each of the three measured cycles, one CSV file is obtained from the measurements.
These files contain all messages that were published on the vehicles CAN3 bus during the
measurements. Since there are usually more than 2000 messages per second published

on CAN, the files of the cycle measurements have more than 2 million lines.

An existing python script that was developed in the UML was executed on the files to
create one file for each identifier containing all the messages that were published under
this identifier. For the identifier 0x0256 and 0x0302 the speed and SoC values were
encoded after [16] automatically by the provided script.

In Cycle 1 and Cycle 2 the CAN3 log was started on the way to the TAVF and continued
after the route was finished. The times of the route start and end were noted and the
corresponding period was cut out of the measurement data. For Cycle 3 the log was
started in the starting position of the route (a parking lot at the side of the TAVF) and
stopped when passing that same point at the end of the route. Therefore, the whole data
of the log file represents the whole cycle.

The obtained data contains for each cycle speed values with a frequency of 10 Hz and SoC
values with a frequency of 1 Hz. The distance of each cycle was calculated by calculating
the distance traveled in 0.1 s with every speed value and accumulating these values to
get the distance of the whole cycle. For the input of the energy model, a two-dimensional
array was created containing integer values for the time of the cycle in seconds in the
first column and the corresponding speed at this second in the second column. For the

speed value, the average over the 10 measured speed values for each second was taken.

14

3 Experimental Data Collection

3.3 Measurement Results

The collected speed and SoC data for the three cycles are shown in Figure 3.3. The
duration in seconds, the distance in meter, the average speed in km/h and the difference
in the SoC in percent of the battery charging state over the whole cycle are given in

Table 3.2 for each cylce respectively:

Measurement duration distance average speed A SoC

Cycle 1 1442 s 84914 m 21.2km/h 22 %
Cycle 2 1406 s 8605.2 m 22.03 km/h 23 %
Cycle 3 1462's 8240.0 m 2029 km/h 2.7 %

Table 3.2: Key values of the measurements of three TAVF cycles with human driver

The battery of the test vehicle has a capacity of 75 kWh. The energy consumption of
the three cycles is shown in Table 3.3.

Measurement A SoC consumption full cycle consumption per km

Cycle 1 2.2 % 1650 Wh 194,31 Wh/km
Cycle 2 2.3 % 1725 Wh 200,46 Wh/km
Cycle 3 2.7 % 2025 Wh 245,75 Wh/km

Table 3.3: Energy consumption of the three measurement cycles

15

3 Experimental Data Collection

Figure 3.3: Measurement data from Cycle 1, Cycle 2 and Cycle 3

16

4 Simulation Model

This chapter describes the model implemented to run the energy simulations. It is de-
scribed how the top-layer python script couples the traffic simulator and the energy model
to generate driving cycles for CAVs and calculate their instantaneous energy consump-
tion. The required software to implement the model is shown. Furthermore, this chapter
is describing the used simulation files of the traffic simulator SUMO [21] and the setup
for the forward-facing energy model, which is implemented in Matlab [23|. Finally, it is
shown, how a driving algorithm can be implemented in the model to control vehicles in

the simulation and what requirements such algorithms have to meet.

4.1 Simulation Toolchain

The developed model is based on a top layer python script that couples the traffic simu-

lation tool SUMO and the forward-facing energy model implemented in Simulink.

With SUMO, CAVs can be simulated under various traffic conditions. The driving al-
gorithm controlling the CAVs can be implemented in python (see section 4.5). The
surrounding streets and vehicles are defined in network and route files in SUMO. The
driving cycles for the analyzed CAVs are saved by the python script and forwarded to
the energy model after a traffic simulation is done. From the energy model, the corre-
sponding SoC-over-time-data for a driving cycle of a vehicle is obtained. Therefore, the

model has to be parameterized for a given vehicle.

In this study, the developed model was used to analyze the energy performance of the test
vehicle controlled by the driving algorithm implemented in SUMOs Kraus car-following
model [18] on the TAVF. Therefore, multiple pseudo-random scenarios of the test vehicle
driving a round on the TAVF are simulated for different parameters for acceleration and
deceleration of the driving algorithm. The setup of the SUMO simulation can be seen in

section 4.3.

17

184

4 Simulation Model

Figure 4.1: The toolchain of the coupled simulation model

For the results of this study (chapter 6), the python script 'automatic_simulation.py’
was developed. In Figure 4.2 a flow chart of this script is shown. The whole code can be
seen in the appendix (section A.1). The script initializes the simulation setup and creates
the chosen vectors accel and decel with the values that are intended to be analyzed. The
value of n is defining the number of random scenarios that are simulated per parameter
set. In the simulations of this study, five values for the accel parameter and six for
decel were analyzed. This gives 30 possible parameter combinations. For each of those
parameter combinations, one simulation-run of n = 20 random simulations is executed.
The randomness of the simulations is achieved by setting different seed values for the
SUMOs random number generator (RNG). In ’automatic_simulation.py’, the seed value
for a simulation-run is increased for each simulation. Therefore, the first simulation in a

simulation-run has a seed value of 1, and the n-th simulation a seed value of n.

For every simulation in a simulation-run a sumo config file is generated including the
TAVF route and network files and the seed value. The communication between the
python script and sumo is realized over TraCl (indicated green in Figure 4.1). With the
generated .sumocfg-file SUMO is started as a server in the simulation run()-function

(line 184 of automatic_simulation.py).

traci.start (| sumoBinary, "—c", cfg file])

code 4.1: Starting SUMO as a server with TraCI from automatic__simulation.py

18

63

64
65
66
67
68

69
70
71

72
73

74
75
76
7
78

79
80

4 Simulation Model

Afterward, the run()-function is executed with the accel and decel parameters of the cur-
rent simulation-run. The function is defined in lines 63 to 92 of automatic simulation.py
and is shown in code 4.2. When the simulated test vehicle "Tesla HAW’ first appears in
the simulation, which is set to 100 seconds plus a random departure offset, the values for
accel and decel are set (line 76 and 77) for the driving algorithm in SUMO. After every
simulation step that is executed the current speed of the test vehicle is appended together
with the current simulation time to the cycle array (line 82). When the test vehicle is not
in the simulation anymore the simulation is closed in line 86. The run()-function returns

the cycle array with the speed over time values of the test vehicle in the simulation.

runs sumo simulation with TraCi and returns cycle (speed over
time) data for the test wvehicle (TeslaHAW)

def run(accel, decel):

nimnn nimnn

execute the TraCl control loop
step = 0 # simulation step
time = 0 # simulation time
cycle = np.empty ((0,2)) # array for the cycle data: collumn
0 = time in seconds, collumn 1 = speed in m/s (later
converted to km/h)

while (step < end/step length):
traci.simulationStep () # execute one SUMO simulation
step
if (’TeslaHAW’ in traci.vehicle.getIDList()):
initialiye tesla wvehicle settings before first
step
if (time = 0):
traci.vehicle.setImperfection ('TeslaHAW’ | sigma)
traci.vehicle.setAccel (’TeslaHAW’ , accel)
traci.vehicle.setDecel ('TeslaHAW’, decel)
traci.vehicle.setSpeedFactor (' TeslaHAW |
speedFactor)

time += 1

19

81

82
83
84
85
86
87

88
89
90
91
92

178

189
190
191

4 Simulation Model

cycle = np.append(cycle, np.array ([[time, traci.
vehicle . getSpeed ('TeslaHAW ") ||) , axis=0) #

appending current time (s) and speed of tesla

if no tesla after 500 seconds the route was completed
elif (step > 500):
traci.close () # close SUMO simulation
sys.stdout . flush ()
return cycle # return driving cycle of tesla (

time in s, corresponding speed)

step +=1
traci.close ()
sys.stdout . flush ()

return cycle

code 4.2: run()-function of automatic_simulation.py

The cycle array is the input of the energy model to calculate the corresponding energy
consumption for the test vehicle. The Matlab script run_ EVRA.m’ (section A.2) ex-
ecutes the forward-facing energy model (see section 4.4). The coupling to the python
script is done through the Matlab engine for python, which is started in line 178 of

automatic simulation.py.

eng = matlab.engine.start matlab () # starts Matlab engine

code 4.3: Starting a Matlab engine from automatic_simulation.py

The cycle array is converted to a Matlab double array in line 189. Then the Matlab
script run. EVRA.m is executed and in line 191 the resulting SoC data is converted to

a numpy array.

cycle._ m = matlab.double(cycle.tolist ())
soc. m = eng.run_ EVRA(cycle m, nargout=1)

soc = np.array (soc_m).astype (float)

code 4.4: Running the energy model from automatic_simulation.py

20

4 Simulation Model

After the model has calculated the energy consumption for the cycle, the SoC over time
array is returned to the python script. The SoC and speed data for the cycle are saved

as a file and as a plot figure.

The script runs until the chosen number of scenarios is generated. Each of those scenarios
is different since each of the SUMO simulations is initialized with another seed value for
the pseudo-RNG.

21

4 Simulation Model

Figure 4.2: Flowchart of the top-layer python script automatic simulation.py (sec-
tion A.1)

22

4 Simulation Model

4.2 Required Software

The top layer python script is implemented in python version 3.6.8 [31]|. This is the latest
version that is still compatible with the Matlab engine for python [23], which is also used.
The energy model used in this study requires Simulink, the Powertrain Toolbox, and the
Parallel Computing Toolbox of MathWorks from version 2020b or later. In the python
code, the cycle data is analyzed and saved using the NumPy [26] library. For the traffic
simulation the SUMO version 1.7.0 is used [21].

4.3 SUMO Traffic Simulation Setup

SUMO is used to generate random scenarios for the route of the test vehicle. The
chosen driving algorithm can be analyzed under a big range of different traffic models for
example on highways, in urban traffic, or certain cities or districts. The only requirements
are accurate network and routing files for the whished traffic situations and enough
computer power and time to run the simulations. The driving algorithm can be used to
control one or more vehicles in the simulation. Note that especially the analysis of the
energy consumption with the forward-facing energy model is computationally expensive,
which increases the run time of this toolchain significantly if the energy consumption is
calculated for multiple vehicles of the same scenario. Also, the energy model has to be

parameterized for the exact vehicle it is representing (see section 4.4).

In this study, all generated cycles are simulated on the same road network, which is a
model of the TAVF and only one vehicle in the simulated scenarios is controlled by the

driving algorithm and analyzed with the energy model.

This vehicle is representing the test vehicle of the measurements. It virtually drives the
same route on the TAVF as the real test vehicle in the measurements (see chapter 3)
with the starting point at Hamburg Dammtor (as in Cycle 1 and 2 of the measurements)
in every simulation scenario. Also, the other vehicles in the simulation - the traffic
demand - are the same for every simulation. SUMO allows pseudo-random changes in
the driving behavior of the other vehicles and a random departure offset of every vehicle
created with a RNG based on an integer seed value. In one simulation run, for every
SUMO simulation, the seed value is increased by one. This way, many different cycles

are generated with the same route files.

23

4 Simulation Model

The used network file and route files of the TAVF were provided by the German Aerospace
Center (DLR). The route files are based on induction loop count data of the streets of
the TAVF from the authorities of the state of Hamburg. Cars and trucks were generated
from this data using a GEH statistic so that they represent weekday traffic between
15:00 and 16:00 with an accuracy between 95 and 99 %. The cars and trucks have a
sigma value of 0.5, which means their driving behavior includes random deviations from
a perfect one with a factor of 0.5. Additionally, buses are considered in the route files.
The bus routes are based on the schedules from the Hamburger Verkehrsverbund (HV'V,

the public transport provider in Hamburg) from autumn 2019.

With the network file also the traffic lights are defined. In the provided network file
of the TAVF, three of the 37 traffic lights of the TAVF are implemented based on the
real phases of their counterparts, namely LSA 34, 560, and 94. The rest of the traffic
lights were generated automatically by SUMO and partly optimized to guarantee realistic

traffic flow during the simulations.

The different cycles simulated with SUMO from the python script all have the same
configuration file except for the seed value, which is increased with every simulation by
one. Therefore, the simulated scenarios are repeatable, but the behavior of the cars and
their starting time varies randomly in every single scenario. The seed value for the RNG
of SUMO is influencing the random behavior of other vehicles and the random departure
offset of each vehicle, which is set in the simulation configuration to a maximum of 30
s. Therefore, every vehicle departs with a random offset between 0 and 30 s to their

programmed departure time in every simulation.

4.4 Energy Simulation Setup

The used energy model is based on the Electric Vehicle Reference Application (EVRA)
from MathWorks 23] which was parameterized for the 2017 Tesla Model S and extended
for the most energy-consuming auxiliary systems of the Tesla in a previous study [25].
The model was rebuilt and saved in the Simulink model 'EVRA tesla EM.slx’ for this
study.

The diagram in Figure 4.3 shows how this model is used in this study. A driving cycle, a
use factor for each of the listed auxiliary systems, and the atmospheric temperature are

passed as input and after the energy simulation has finished the SoC data for the driving

24

4 Simulation Model

Figure 4.3: Inputs and outputs of the energy model

cycle is obtained. The driving cycle is passed as a two-dimensional array where the first
column holds the time of the cycle in seconds and the second one the corresponding
speed in km/h. The auxiliary systems and the atmospheric temperature are assumed to

remain at a chosen value over the whole cycle.

To use the energy model in that way, the Matlab function 'run_ EVRA.m’ was written
(section A.2). It takes the cycle array as an input, executes the simulation of the energy
model, and retrieves the SoC data. The energy model saves the SoC values over the
cycle with a resolution of 0.1 s. To assure the same length of the cycle input array and
the corresponding SoC output array, the output vector is shortened to every 10th value
before passed. Therefore, the SoC values in the output correspond to the time and the
speed of the input array at the same index. The use factor for the auxiliary systems, the
atmospheric temperature as well as the SoC value of the battery at the beginning of the

cycle is set in the Simulink model before the simulation.

4.5 Driving Algorithms

With the method presented in this study, any longitudinal driving algorithm that is based
on input data available in the SUMO simulation can be implemented in the python script
to control the speed of one or multiple vehicles in the simulation. The performance of
an implemented algorithm can then be tested over lots of random scenarios and un-

der different traffic conditions. Furthermore, with the method presented in this study,

25

4 Simulation Model

the algorithm can be analyzed in its energy consumption for a certain vehicle and its

parameters can be optimized for the chosen traffic conditions.

Over the Traffic Control Interface (TraCI) of SUMO, the algorithm can access data of
the vehicle’s surroundings from the SUMO simulation in between each simulation step.

A selection of the information that can be accessed with TraCl is given below.

e The current longitudinal speed of the vehicle

The current lateral speed of the vehicle

The current position of the vehicle

A list of traffic lights on the vehicle’s route with their current state and distance

The leading vehicle of the car and its distance

e The current speed of any vehicle in the simulation

Based on this input data, the algorithm can control the vehicle’s speed over the whole
simulation. The route of the controlled vehicle can be programmed before in the route
file so that the algorithm has to take care only of the longitudinal movement. The vehicle
can be controlled by the algorithm by setting either its speed or its position for the next
simulation step. It is also possible to consider lane changes in the driving algorithm. In

that case, it can be implemented as a car-following model in SUMO.

To show the applicability of the presented method, the energy efficiency of the driving
algorithm of the Kraus car-following model [18] is analyzed. This algorithm is already
implemented in SUMO and calculates the speed of a vehicle for the next simulation
step based on the parameters of its acceleration, deceleration, emergency deceleration,
the minimal gap it should have to a leading vehicle, a value sigma representing the
imperfection in the driving behavior and a value tau representing the reaction time a
driver needs to react on changing conditions. The values sigma and tau are implemented
to simulate non-perfect, human driving behavior in SUMO. Since in this study, the
algorithm is used to simulate an autonomous vehicle, sigma is chosen to be 0 (no random
variation in speed) and tau to the shortest possible value of the simulation step length,

which is set to one second for the simulations in this study.

The algorithm decelerates the vehicle with a deceleration corresponding to the decelera-

tion parameter value d to stop if a red or yellow traffic light is coming up or to respect

26

4 Simulation Model

the minimal gap to any leading vehicle. Otherwise, the vehicle is accelerated depending

on the acceleration parameter a.

4.6 Model Setup

With existing network- and route-files, a SUMO simulation can be run. SUMO simulates
all vehicles over a given range of simulation steps which corresponds to a time period.
The time of the beginning of the simulation, the time of its end and the simulation
step-length has to be defined before the simulation is started in the .sumocfg-file. For
example, to simulate the scenario for the first 10 minutes, the begin variable has to be
chosen to 0 (s) and the end variable to 600 (s). The simulation parameter step-length
determines how many steps are calculated for the scenario. It is set to 1 (s) as default.
Therefore, in the given example, 600 simulation steps would be calculated representing
the state of the scenario after every full second. This allows to access information about
the scenario and its vehicles such as speed, position, state of the next traffic light, etc.

after every full second.

The SUMO simulation can calculate the state of the network using one of the two inte-
gration methods Euler or Ballistic. The method determines how the speed between two
simulation steps is assumed for the calculation of the positions of the vehicles. Using
the Euler method, the vehicles are assumed to drive with the speed of the next simu-
lation step over the whole time between two steps. Therefore, the position for a time
step Dstep—o is calculated by adding the product of the speed for that time step vsep—o
and the simulation step-length tsep—iengin to the position of the previous simulation step
Pstep=—1 (Equation 4.1). If the speed of a vehicle was 5 (m/s) in the last simulation step
and is set to 0 for the next one, its position in the next step will be the same as in the

previous one.

The Ballistic integration method assumes the vehicles to travel with the average speed
of the previous and the next simulation step (see Equation 4.2). Therefore, using the
ballistic method, in the given example with a simulation step-length of 1 (s), the next

o . o . . 5+0 _
position would be the position of the previous step plus °3= = 2.5m.

27

4 Simulation Model

Euler : Pstep=0 = Pstep=—1 + Ustep=0 * tstepflength (41>
Ustep=0 T Ustep=—1
2

Ballistic : pstep—0 = Pstep=—1 + - Lstep—length (4.2)

To find useful parameters for the simulation-step-length and the integration method,
simulations with different parameters were run and analyzed. In all the simulations,
one test vehicle was simulated to drive one circle on the TAVF. Therefore, the same
route on the same road network as in all simulations from this study was simulated. A
time period of 2000 seconds was simulated (begin = 0, end = 2000). The simulation
was run for different step-length parameters and for scenarios with traffic and with the
test vehicle as the only vehicle in the simulation by using the Euler and the Ballistic
integration method. The simulations were analyzed on their simulation time, the real-
time factor (the factor of the simulation time to equal the simulated period of 2000 s),
the number of warnings, and the number of them referring to a vehicle in the simulation
being teleported because of a crash or another problem and the route duration of the

test vehicle to complete one round on the TAVF.

The simulation results for the Euler method can be seen in Table 4.2 and the ones for
the Ballistic are shown in Table 4.1. The high number of warnings of simulations with a
step-length greater than 2 s can be explained with a parameter for the action-step-length
of a driver in SUMO, which default is 1 s. Therefore, in those simulations, the vehicles
drive for a longer time period with an unchanged speed, than they are expected to need
to react to their environment. Lots of crashes in the simulation are the following of those
settings. One can see from the results, that the time the test vehicle needs to complete
its route depends on the parameters of the step length and the integration method. The
simulation time increases for both methods with decreasing step-length. This is expected,
since the number of simulation steps that are calculated also increased with a decreasing
step length. One can see that in simulations using the Ballistic integration method more
warnings occur compared to the one using the Euler integration method except for a
step-length of 0.01. Since the warnings that happened in these simulations all indicate
either an emergency braking of a vehicle or the teleportation of a vehicle, a realistic traffic
scenario of the TAVF over 2000 s should not include many warnings. Therefore, for the
further simulations in this study, the integration method is chosen to be Euler and the

simulation step-length to be 1 s. With these parameters, driving cycles with the highest

28

4 Simulation Model

possible resolution expected by the energy model of one speed value per second can be

generated in a short simulation time.

step length

route duration simulation time real time factor number warnings

(teleportations)
without traffic (test vehicle only)
10 s 930 s 0.05 s 38461 0
2s 906 s 0.1s 21052 0
1s 908 s 0.13 s 14925 0
0.1s 908.8 s 0.69 s 2881 0
0.5s 908.5 s 0.21 s 9708 0
0.01s 908.98 s 6.41 s 312 0
0.001 s 908.990 s 62.513 s 31 0
with traffic

2s 884 s 23.67 s 84 >32000
1s 1023 s 48.11's 41 73 (24)
0.1 1004.4 s 519.28 s 3.85 179
0.5 1238.0 s 74.92 s 26 56
0.01 1039.84 s 2643.59 s 0.76 871 (3)

Table 4.1: Results for SUMO Ballistic simulation

29

4 Simulation Model

step length

route duration simulation time real time factor number warnings

(teleportations)
without traffic (test vehicle only)
10 s 960 s 0.06 s 36363 0
2s 906 s 0.09 s 22727 0
ls 907 s 0.12 s 16666 0
0.1s 908.8 s 0.71 s 2816 0
0.5s 908.0 s 0.21s 9569 0
0.01 s 908.97 s 6.38 s 313 0
0.001 s 908.989 s 62.293 s 32 0
with traffic

2s 906 s 23.22 s 86 >35000
1s 1158 s 41.60 s 48 1
0.1 1275.1 s 208.75 s 6.69 165 (1)
0.5 1099.5 s 70.5 s 28.4 24
0.01 1009.06 s 2583.99 s 0.77 929

Table 4.2: Results for SUMO Euler simulation

30

5 Model Validation

This chapter is dedicated to validate the two simulation models against the measurement
data. For the Energy Model, the measured driving cycles of the TAVF are passed as
inputs. The resulting SoC from the energy model is shown to be highly accurate when

compared to the measured SoC.

The SUMO model of the TAVF is analyzed in the accuracy for the generation of realistic
driving cycles. Therefore, a set of generated cycles is compared to the cycles measured

in duration, distance, average speed, and the number of stops and time standing.

5.1 Energy Model Validation

The energy model was run for each measurement cycle with the required inputs: atmo-
spheric temperature, the percentage of use of the considered auxiliary systems, and the

speed cycle. Those values for the Cycles 1 to 3 are shown in section 3.1.

In Figure 5.2 the resulting SoC calculations for Cycle 1, 2, and 3 are plotted in red on

top of the corresponding measurements.

One can see that the SoC values calculated with the energy model are roughly following
the measured ones. Note that the measured SoC was logged with a precision of 0.1 %
SoC and the calculated values were rounded to a precision of 0.001 % SoC . For Cycle 1,
the A SoC, so the difference of SoC at the beginning of the cycle to the end of the cycle,
is measured to be 2.2 % and calculated to be 2.219 %.

The absolute and relative differences between measured and calculated A SoC % con-

sumed by each cycle are listed in Figure 5.1.

Cycle 3 shows the biggest gap with an absolute difference of 0.027 % SoC. In all three

Cycles, the energy model comes to a A SoC with a relative deviation of 1 % or less.

31

5 Model Validation

TAVF Cycle measured [%| calculated [%]| difference abs. [%] difference rel.

Cycle 1 2.2 2.219 0.019 +0.86 %
Cycle 2 2.3 2.291 -0.009 -0.39 %
Cycle 3 2.7 2.673 -0.027 -1.00 %

Table 5.1: A SoC |%| measured and calculated for each TAVF cycle

Figure 5.1: Difference from calculated SoC to measured SoC

In Figure 5.1 the difference in the SoC value in % from the energy model (calculated)
to the measured one is shown over the whole cycle for TAVF Cycle 1, 2, and 3. In the

plots, the highest resolution of the measurement values of 0.1 is marked in yellow.

32

5 Model Validation

One sees that even though the calculated SoC value is quite close to the measured one
at the end of the cycles, during the cycles the difference is significantly higher. It can
also be seen that this difference follows a bit of a pattern, where it is slightly increasing
over more or less the whole cycle and then at some point dropping at a comparably high
rate. In Cycle 1 and Cycle 2, this drop happens at about the same period of around 500
to 700 and 600 to 800 seconds meanwhile in Cycle 3 the drop can be seen between 150

and 350 seconds approximately.

This phenomenon can be explained by the road grade of the route. The TAVF is compa-
rably flat over most of its length but has a higher negative road grade between U St. Pauli
and U Landungsbriicken. Since the road grade is not considered in the energy model,
in this part of the cycle the test vehicle consumes less energy than calculated. This
results in higher calculated energy consumption over that period than measured, and
consequently, the difference between calculated and measured SoC is decreasing. This
explanation also agrees with the results of the study of S.C. Yang et al. [37], in which

the influences of different road grades on an EVs energy consumption was analyzed.

The road grade of the rest of the TAVF does not have such significance at any other part
of its length. Evidently, it does have a positive road grade at other parts to come back
to the same height after a full round. Therefore, since the measured cycles were all going
over a full round on the TAVF, during the rest of the cycle this effect is canceled out by

the model calculating a lower energy consumption at the positive road grade parts.

The time period of the drop in the difference of calculated and measured SoC also meets
the assumptions for the three cycles. Cycle 1 and 2 both have the same starting point at
Dammtor. And they both show the drop event in about the same time period between
500 to 800 seconds from the cycle start.

Cycle 3 on the other hand started at Holstenwall, which is closer to the negative road

grade part. Therefore, this cycle also shows the drop event earlier.

33

5 Model Validation

Figure 5.2: Cycle 1, Cycle 2 and Cycle 3 measurements and the SoC of the energy model
(red)

34

5 Model Validation

5.2 TAVF Driving Cycle Generation with SUMO Model

For the method presented in this study, SUMO is used to generate realistic driving
scenarios for a vehicle under fixed traffic conditions. With the used SUMO model for
the TAVF and the traffic presented in section 4.3, the resulting driving cycles of the test
vehicle of 100 pseudo-random simulations were analyzed and compared to the measured
driving cycles of the TAVF.

Figure 5.3: One of 100 random TAVF cycles generated with SUMO

For the 100 cycles, the test vehicle was simulated with the Kraus car-following model
in SUMO. Its acceleration was set to 1.0 m/s?, the deceleration to 5 m/s?> and the
value for sigma - which represents a driving imperfection in SUMO - was chosen to be
0.5. In Figure 5.3 one of those 100 cycles is shown. When compared to the measured
driving cycles from Figure 5.2, one can see in the example plot that the driving behavior
simulated in SUMO does not match the real human driving behavior from those cycles
very closely. In the simulation, the vehicle increases speed to its speed limit (50 km/h
multiplied by a random factor) with steady acceleration, and the random speed variation
around the limit caused by the sigma-value looks like white noise. Also, the deceleration
is steady when braking. The measured cycles in contrast have varying acceleration and

deceleration values and the speed variations do not have the characteristics of white

35

5 Model Validation

TAVF Cycle duration distance average speed stops time standing
Cycle 1 1442 s 8491.4 m 21.20 km/h 15 428 s
Cycle 2 1406 s 8605.2 m 22.03 km/h 16 340 s
Cycle 3 1462 s 8240.0 m 20.29 km /h 15 489 s
100 generated cycles:

average 1394 s 8464.2 m 22.08 km/h 15.95 384 s
max 1772 s 8472.1 m 28.57 km /h 23 662 s
min 1067 s 8450.8 m 17.19 km/h 9 127 s
std. dev. 137.11 s 4.35 m 2.22 km/h 3,1 98,47 s

Table 5.2: Key values of random SUMO cycle generation compared with measurements

noise. Nevertheless, the generated cycles do deliver some clues about the suitability of
the TAVF model in SUMO. Therefore, the values of duration, distance, average speed,
the total time standing, and the number of stops are observed for the generated cycles

and compared to the measured cycles.

All of these values are approaching a normal distribution over the 100 random cycles.
Their average, maximum, minimum, and standard deviation for the 100 simulations are
shown in Table 5.2 together with the data of the measurements. The time standing is
the number of seconds where the vehicle had a speed of 0 km/h and for the number of
stops, the occurrences of standing situations (consecutive speed of 0 km/h) are counted
where short movements of less than 5 seconds (up to four consecutive seconds with a
speed other than 0 in between two standing situations) are respected as one single stop.
This prevents a stop at a single traffic light where the vehicle moves forward again after
stopping to close the gap to the leading vehicle in the same red phase to be counted as

two stops.

The statistics of the simulated cycles show that the model matches the values from the
measured Cycle 1, 2, and 3 in the chosen categories. The values for duration, average
speed, and stops of all three measured cycles are inside one standard deviation from the
mean value over the 100 simulated cycles. For the standing time, only Cycle 3 is outside
this boundary with 489 seconds, being 1.35 % higher than the one standard deviation
over the mean. Also, this Cycle is well below the maximum standing time of all 100
generated cycles which is 662 seconds. The only category in which the value range of
the simulated cycles does not cover the values of the measurements is the distance of the
cycle. Here, the standard deviation over the values of 100 simulated cycles is very little
with 4.35 m. The difference in the distance of the simulated cycles is, therefore, much

smaller than the difference between the distance of the measured cycles, which have a

36

5 Model Validation

maximum difference of 365.3 m. It is also striking that the distance of Cycle 3, which
was measured about one month later than Cycle 1 and 2, is significantly smaller than
the distance of Cycle 1 and 2.

This could possibly be due to measurement inaccuracies. The distance of the cycles from
Table 5.2 were calculated from the speed cycle. For the measurement cycles, a speed
value for every 0.1 s was measured and used to calculate the distance over that time
period. Afterward, the distances were accumulated for each cycle. The measured speed
from the CAN-bus is calculated by the internal Tesla systems from the rotation speed of
the wheels multiplied by the wheel perimeter. Even though all three cycles were driven
with the same wheels, their perimeter can vary slightly due to differences in tire pressure
and tread. If the tire pressure of the test vehicle was higher during the measurement of
Cycle 3 compared to the one during Cycle 1 and 2, the wheel perimeter was larger as well.
And if the wheel perimeter was larger than the one assumed by the car to calculate the
current speed, the actual speed values were higher, than the ones measured. Therefore,
also the real distance traveled during the cycle would be larger. Between Cycle 1 and 2

a difference in tire pressure is very unlikely since they were taken consecutively.

Another influence on the distance is the selection of the period of the measurement
cycles. During the measurements of Cycle 1 and 2, a log-book was written with the time
of the start and end of each cycle to identify the period of the TAVF cycle from the
measurement data. Inaccuracies in the start and end time of the cycle also increase or

decrease the distance and duration of the cycle.

For Cycle 3, these inaccuracies were avoided by starting the measurements from a parking

position at the side of the TAVF and finishing in at the same parking.

The fact that Cycle 3 is 210.8 m shorter than the lowest simulated distance might also
be caused by the route of the used TAVF model in SUMO being about this distance
longer than the real route on the TAVF (that would be 2,56 %). In that case, the TAVF
model would also show slightly higher average speed values since it includes all the traffic
lights but has longer streets in between them where the vehicle is driving faster than the
average speed. Also, the duration of a cycle would be slightly higher as if it would be
simulated with a TAVF model that has the real distance of the route.

Overall, the randomly generated cycles show that the TAVF model used in this study
matches the expectations of the three measured cycles of the real TAVF. Excepts for the

distance where the lowest simulated one is 2.56 % larger than the lowest measured one,

37

5 Model Validation

the values of the 100 simulated cycles are all distributed over a range that contains the
measured ones. If one assumes that the used model was representing the TAVF perfectly,
the measured values of Cycle 1 to 3 for the duration, average speed, stops, and standing
time do not only represent possible but also very probable quantities when compared
to the distribution of the values from the simulations. Vice versa, the presented results
can be seen as evidence that the network and routing files used in the simulation are an
accurate model of the real TAVF with realistic traffic.

38

6 Simulation Results

In this section, the simulation results for the energy consumption of the driving algorithm
of the Kraus car-following model are presented. With the method described in chapter 4,
the test vehicle is simulated to drive always the same route on the TAVF. During the
simulation, its speed is controlled from the algorithm of the Kraus car-following model
described in section 4.5 with different parameters for acceleration and deceleration. Next,
the performance of the algorithm is analyzed for the energy consumption and the duration
of one TAVF cycle.

Figure 6.1: Average A SoC over random 20 TAVF cycles for different acceleration and
decelaration parameters with low auxiliary system use

39

6 Simulation Results

The acceleration parameter a was set to 0.5, 1.5, 2.5, 3.5 and 4.5 m/s? and the decelartion
parameter d to 1.5, 2.5, 3.5, 4.5, 5.5 and 6.5 m/s?. For each value combination of a and
d in the driving algorithm, the test vehicle was simulated over 20 random cycles and its

energy consumption has been calculated.

In Figure 6.1 the average difference in SoC per cycle over 20 cycles is plotted for different
combinations of the driving algorithm parameters of @ and d. The energy model was
set to the lower auxiliary system use of Cycle 1 and 2 of the measurements for those
results (see subsection 3.1.3). The difference in SoC of these two cycles measured is also
indicated in the plot. One can see a trend for higher energy consumption if the algorithm
is set to higher a and d values. Only in three simulation-runs the average A SoC stays
below the 2.3 % of the measurement Cycle 2. This is in the runs with the parameter
combinations a = 0.5 and d = 0.5 m/s? (2.204 %), a = 1.5 and d = 1.5 m/s? (2.288 %),
and a = 0.5 and d = 2.5 m/s? (2.268 %). None of the simulation-runs achieved a lower

average energy consumption per cycle than the 2.2 % A SoC of Cycle 1.

Figure 6.2: Average duration over random 20 TAVF cycles for different acceleration and
decelaration parameters

40

6 Simulation Results

Figure 6.3: Average over the average speed of random 20 TAVF cycles for different ac-
celeration and decelaration parameters

Figure 6.2 and Figure 6.3 show the average duration and average speed per TAVF cycle
over 20 cycles for the same a and d values. Also, the corresponding values of the three
measurement cycles are marked in the figures. Since the average cycle distance does not
vary more that 10 m between the simulated parameters (the minimum is 8457 and the
maximum 8466 m), duration and average speed data show the same trend. One can see
that for a values of 1.5 m/s? and higher the average cycle duration remains very similar
around 1200 seconds. For those parameters, the maximum duration is 1237 s (at a = 1.5
m/s? and d = 3.5 m/s?).

Meanwhile a values above 1.5 m/s? do not result in significant changes in the cycle
duration, the simulation results show significantly higher values for a lower a of 0.5
m/s?. Here, the duration is between 1444 and 1568 s, which is between 16.7 % and 26.8
% higher, than the highest result for other parameters (1237 s). The parameter d does

not influence the cycle duration considerably over the whole range of simulated values.

41

6 Simulation Results

Figure 6.4: Average number of stops per cycle over random 20 TAVF cycles for different
acceleration and decelaration parameters

The average number of stops and the average stopping time per cycle are shown in
Figure 6.4 and Figure 6.5 respectively. The plots indicate that generally for the simulated
scenarios and overall the acceleration and deceleration parameters, more stops lead to
longer stopping time. Also, they show that for a low a of 0.5 m/s? the stopping time is
significantly higher than for a values of 1.5 m/s? and above. This can explain the longer
cycle duration for those simulations and the lower average speed. The results for the
average number of stops and stopping time in the simulated TAVF cycles for different
acceleration and deceleration parameters of the driving algorithm also show a light trend
of lower values for a lower d meanwhile, the average cycle speed does not show this trend.
Therefore, for the lower deceleration values, lower stopping time and fewer stops do not

result in a higher average speed or lower cycle duration.

Regarding the average energy consumption per cycle for lower auxiliary system use in

Figure 6.1, the cycles with an a value of 0.5 m/s?, which have a longer cycle duration,

42

6 Simulation Results

Figure 6.5: Average stoping time per cycle over random 20 TAVF cycles for different
acceleration and decelaration parameters

still show a lower energy consumption than the cycles with higher a values that have

shorter trip duration.

In Figure 6.6, the energy consumption for the same cycles is shown with higher auxiliary
system use. Therefore, the energy model is set to the parameters for auxiliary systems
and atmospheric temperature of the measurements Cycle 3. The A SoC of Cycle 3 is
also plotted in the figure. One can see that with this auxiliary system use, the energy
consumed in all cycles is higher. The average A SoC per cycle over all the cycles is
here 3.196 %. For the energy calculations with lower use of auxiliaries in Figure 6.1, the
average over all the cycles is 2.610 %. Therefore, the energy consumption per TAVF cycle
increased by 0.586 % SoC on average when changing from a low auxiliary system use as
in measurement Cycles 1 and 2 (AC and Ventilation to 30 %, atmospheric temperature of
8 degrees Celsius) to a higher one as in the measurements of Cycle 3 (AC and Ventilation
to 80 %, the atmospheric temperature of 4 degrees Celsius, see subsection 3.1.3). This is

an increase in energy consumption of 22.4 %.

43

6 Simulation Results

Figure 6.6: Average A SoC over random 20 TAVF cycles for different acceleration and
decelaration parameters with high auxiliary system use

One can also see when comparing Figure 6.1 and Figure 6.6, that the longer cycle du-
ration for simulations with an a value of 0.5 m/s? leads to a larger increase in energy
consumption for the high auxiliary system use than for other a values, that correspond
to lower cycle durations. In the cases for d = 1.5 m/s? and d = 2.5 m/s?, one can see
that with the high auxiliary system use, the energy consumption is even larger for an a
of 0.5 m/s? than for one of 1.5 m/s?, due to the longer duration of those cycles. In fact,
in the simulations with d = 1.5 m/s?, the average A SoC value over 20 cycles for different
acceleration was even the second highest for an accelarion of 0.5 m/s? with 2.905 % (only
with a = 3.5 m/s? the resulting energy consumption was slightly higher with a A SoC
of 2.912 %).

The lowest average energy consumption per cycle achived by the algorithm is 2.862 %
SoC for high auxiliary system use with the parameters a = 1.5 m/s? and d = 1.5 m/s?.
For the simulation with low auxiliary system use, the best value is 2.204 % with the

parameters a = 0.5 m/s? and d = 1.5 m/s?.

44

7 Conclusion

A method to evaluate the energy consumption of an EV controlled by a driving algorithm
in realistic urban traffic was developed in this thesis. The simulation model couples the
microscopic traffic simulator SUMO with a forward-facing energy model in Simulink.
The energy model was validated with speed and SoC data collected under real urban
traffic on the TAVF in Hamburg, Germany with a 2017 Tesla Model S 75D. The energy
model with the parametrization of [25] was shown to calculate an energy consumption
with a relative difference of 0.86 %, -0.39 % and -1.00 % to the measured one for the
three measured TAVF cycles.

The used network and route files of the TAVF in SUMO were shown to deliver realistic
cycle statistics when simulating driving cycles with the same virtual route on the TAVF

in SUMO, that was driven for the measurements.

With the introduced method, a driving algorithm for a vehicle can be analyzed on the
vehicle’s energy consumption and also on other statistics such as trip duration, trip
distance, average speed, number of stops, and stopping time. The compatibility for
algorithms is so far limited to input variables available in SUMO and the vehicle can
not be controlled by a torque request, but by setting its speed directly. However, in this

direction, the model can possibly be extended (see chapter 8).

To demonstrate the applicability of the simulation model, the driving algorithm of the
Kraus car-following model was analyzed. Therefore, multiple, random scenarios for dif-
ferent values of the acceleration and deceleration algorithm parameters were simulated.
In each of the simulations, the driving algorithm controlled the speed of the test vehicle
during one cycle on the TAVF. It was shown that the introduced simulation model can
serve as an energy consumption analysis and optimization tool for a driving algorithm.
With the model, a driving algorithm can be used to control one or multiple cars in any

traffic scenario implemented in SUMO. The energy consumption for a simulated driving

45

7 Conclusion

cycle can be calculated for any given vehicle, that the energy model is parameterized

for.

The simulation results show that, for the Kraus driving algorithm on the TAVF with
low use of auxiliary systems, the cycles with the lowest values for the acceleration and
deceleration parameters of 0.5 m/s? and 1.5 m/s? respectively have the lowest energy
consumption with a A SoC of 2.204 %. This is very close to the energy consumption of the
measured, human-driven cycles with the same auxiliary system use, namely Cycle 1 and
Cycle 2. Here, the consumed energy was measured to be 2.2 % and 2.3 %, respectively.
It was also shown that, for the Kraus driving algorithm, the trip duration for one cycle
on the TAVF does not depend on the deceleration parameter. And the acceleration
parameter does not influence the duration significantly with a value of 1.5 m/s? or above
(not more than 6.68 %) but with a value of 0.5 m/s? the duration is 26.8 % longer than

for higher values.

Furthermore, the energy simulations with higher use of the auxiliary systems AC and
ventilation show that, for the same cycles, higher steady energy use results in a larger
reduction of energy efficiency for cycles with a higher duration. Therefore, in this simu-
lation with the higher auxiliary system use, the parameters deceleration = 1.5 m/s? and
acceleration = 1.5 m/s? resulted in the lowest average energy consumption due to their
lower cycle duration. With these parameters, the driving algorithm achieved an average
A SoC of 2.862 % for a TAVF cycle. This is relatively 6 % more than the measured A
SoC of 2.7 % for Cycle 3, which had the same, higher auxiliary system use.

The energy simulations demonstrate the significant effect of auxiliary systems on a ve-
hicle’s energy consumption. Overall the 600 TAVF cycle simulations of this study, the
consumed energy per cycle increased by 22.4 % when changing the use factor for the AC
and ventilation from 30 % to 80 %. This finding also overlaps with the results of [6].

46

8 Outlook

This thesis demonstrates the applicability of the coupled simulation model. It can now
be used to study the energy performance of other driving algorithms and under different
traffic conditions and optimize many parameters. Also, the effects of multiple CAVs
controlled by a driving algorithm on energy efficiency and traffic flow can be analyzed.
Therefore, insight on the potential of CAVs in the increase of the energy efficiency of the

transport sector can be obtained.

Furthermore, different vehicle types can be analyzed by parameterizing the energy model
for other vehicles. For the analyzed vehicles, also drive-train optimizations for defined
routes and traffic conditions become possible with the model. And new vehicle-mobility
concepts such as small city busses, car sharing, or car renting can be analyzed for their

energy efficiency.

Despite using the model for further energy performance studies, the model itself can also
be extended to increase its capabilities. Most of the driving algorithms developed for
CAVs are based on camera data. In the developed version of the model, implemented
driving algorithms have to meet the requirements described in section 4.5. They can
only rely on inputs available in SUMO. A possible way to enable the implementation and
analysis of a larger range of driving algorithms could be the coupling of the model with a
three-dimensional graphical simulation tool such as webots [3]. With a webots simulation
of the SUMO traffic simulation, sensors such as lidar or camera sensors can be simulated.
Based on this simulated sensor data many new algorithms could be implemented to

control the CAV in SUMO.

47

Bibliography

1]

2]

3]

4]

15]

[6]

7]

8]

19]

[10]

AIMSUN: Aimsun Next. https://www.aimsun.com/aimsun-next/. — [Ac-
cessed: 28.05.2021|

BuHK, Benedikt ; RETTIG, Rasmus: Simulation based method for the analysis of
energy-efficient driving algorithms using SUMO, 2021

CYBERBOTICS LTD.: Webots. https://www.cyberbotics.com/. — [Accessed:
28.05.2021]

Ecripse: FEclipse Public License - v 2.0. https://www.eclipse.org/org/
documents/epl-2.0/EPL-2.0.html. — [Accessed: 29.05.2021|

EEA: Greenhouse gas emissions from transport in Furope. https://www.eea.
europa.eu/data-and-maps/indicators/transport-emissions—of—-
greenhouse—-gases/transport—-emissions—-of-greenhouse-gases—12.
December 2019. — [Accessed: 14.05.2021]

F1or1, Chiara ; AHN, Kyoungho ; RAKHA, Hesham A.: Power-based electric vehicle

energy consumption model: Model development and validation. In: Applied Energy
168 (2016), S. 257268

GALVIN, Ray: Energy consumption effects of speed and acceleration in electric
vehicles: Laboratory case studies and implications for drivers and policymakers. In:
Transportation Research Part D: Transport and Environment 53 (2017), S. 234-248

GERMAN AEROSPACE CENTER: Institute of Transportation Systems. https:
//www.dlr.de/ts. — [Accessed: 29.05.2021]

GERMAN AEROSPACE CENTER: SUMO User Conference 2021. https://www.
eclipse.org/sumo/conference/. — [Accessed: 16.05.2021|

GERMAN AEROSPACE CENTER: SUMO User Documentation. https://sumo.
dlr.de/docs/index.html. — [Accessed: 29.05.2021]

48

Bibliography

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

21]

GESCHAFTSSTELLE DER TESTSTRECKE FUR AUTOMATISIERTES UND VERNETZTES
FAHREN HAMBURG ¢/0 ITS MOBILITY E. V.: Teststrecke fiir automatisiertes und
vernetztes Fahren in Hamburg. https://tavf.hamburg. — [Accessed: 14.05.2021]

HAKLAY, Mordechai ; WEBER, Patrick: Openstreetmap: User-generated street
maps. In: IEEE Pervasive computing 7 (2008), Nr. 4, S. 12-18

HAN, Jihun ; SCIARRETTA, Antonio ; OJEDA, Luis L. ; DE NUNzI1O, Giovanni ;
THIBAULT, Laurent: Safe-and eco-driving control for connected and automated
electric vehicles using analytical state-constrained optimal solution. In: IEEE Trans-
actions on Intelligent Vehicles 3 (2018), Nr. 2, S. 163-172

HMS INDUSTRIAL NETWORKS: canAnalyzer mini. — URL https:
//www.ixxat.com/de/produkte/industrie-produkte/pc—can—
interfaces-uebersicht/softwareunterstuetzung. - [Accessed:
05.05.2021]

HMS INDUSTRIAL NETWORKS: USB-to-CAN V2. https://www.ixxat.
com/de/produkte/industrie-produkte/pc—can—interfaces-
uebersicht/usb/usb-to-can-v2-professional?ordercode=1.01.
0281.12001. — [Accessed: 06.05.2021]

HuGHES, Jason: Tesla Model S CAN Bus Deciphering. http://skie.net/
uploads/TeslaCAN/. — [Accessed: 07.05.2021]

IPETRONIK GmbH & Co. KG (Veranst.): SAM-CAN-1SO011. — URL https://
www.ipetronik.com/zubehoer—-detail/sam-can-iso011l.html. — [Ac-
cessed: 05.05.2021]

KRrAUss, Stefan: Microscopic modeling of traffic flow: Investigation of collision free
vehicle dynamics. (1998)

KURCZVEIL, Tamas ; LOPEZ, Pablo A. ; SCHNIEDER, Eckehard: Implementation of
an Energy Model and a Charging Infrastructure in SUMO. In: Simulation of Urban
MObility User Conference Springer (Veranst.), 2013, S. 33-43

LAwWRENZ, Wolfhard: CAN system engineering. Bd. 121. Springer, 1997

LoPEz, Pablo A. ; BEHRISCH, Michael ; BIEKER-WALZ, Laura ; ERDMANN, Jakob ;
FLOTTEROD, Yun-Pang ; HILBRICH, Robert ; LUCKEN, Leonhard ; RUMMEL, Jo-
hannes ; WAGNER, Peter ; WIESSNER, Evamarie: Microscopic traffic simulation

49

Bibliography

22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

using sumo. In: 2018 21st International Conference on Intelligent Transportation

Systems (ITSC) IEEE (Veranst.), 2018, S. 2575-2582

LuIN, BlaZ ; PETELIN, Stojan ; AL-MANSOUR, Fouad: Microsimulation of electric
vehicle energy consumption. In: Energy 174 (2019), S. 24-32

The Mathworks, Inc. (Veranst.): MATLAB version 9.9.0.1467703 (R2020b). 2020

NOURMOFIDI, Omidreza: Entwicklung eines Systems zur automatisierten Frken-
nung und Meldung vulnerabler Verkehrsteilnehmer mittels C2X-Kommunikation.
2021

OELLERICH, Christopher ; RETTIG, Rasmus: Entwicklung eines Modells zur Simu-
lation der Energiebilanz beim Betrieb eines Elektrofahrzeugs. 2020. — unpublished

OLIPHANT, Travis E.: A guide to NumPy. Bd. 1. Trelgol Publishing USA, 2006

PTV PLANUNG TRANSPORT VERKEHR AG: VISSIM. https://www.
ptvgroup.com/de/loesungen/produkte/ptv-vissim/. - [Accessed:
28.05.2021]

SMITH, Laron ; BECKMAN, Richard ; BAGGERLY, Keith: TRANSIMS: Transporta-
tion analysis and simulation system / Los Alamos National Lab., NM (United
States). 1995. — Forschungsbericht

THE MATHWORKS, INC.: EV Reference Application. https://de.
mathworks.com/help/autoblks/ug/electric-vehicle-reference-
application.html#d123e19478. — [Accessed: 25.03.2021]

V., Geschéftsstelle der Teststrecke fiir automatisiertes und ver-netztes Fahren
Hamburg c¢/o ITS mobility e.: TAVF Streckenkarte. https://tavf.hamburg/
fileadmin/user_upload/Bilder/TAVF_Streckenkarte_quer_de_
200108. jpg. — [Accessed: 16.05.2021]

VAN RossuM, Guido u.a.: Python Programming Language. 2007

WEGENER, Axel ; PIORKOWSKI, Michal ; RAvA, Maxim ; HELLBRUCK, Horst ;
Fi1SCHER, Stefan ; HUBAUX, Jean-Pierre: TraCl: an interface for coupling road
traffic and network simulators. In: Proceedings of the 11th communications and

networking simulation symposium, 2008, S. 155-163

WIKIPEDIA: CAN bus. https://en.wikipedia.org/wiki/CAN_bus. — [Ac-
cessed: 06.04.2021]

50

Bibliography

[34] WIKIPEDIA: FTP-75. https://en.wikipedia.org/wiki/FTP-75. — [Ac-
cessed: 16.04.2021]

[35] WIKIPEDIA: New European Driving Cycle. https://en.wikipedia.org/
wiki/New_European Driving_ Cycle.— [Accessed: 16.04.2021]

[36] WIKIPEDIA: Tesla model S characteristics. https://en.wikipedia.org/
wiki/Tesla Model_ S. 2017

[37] YANG, SC; L1, M ; LIN, Y ; TANG, TQ: Electric vehicle’s electricity consumption on
a road with different slope. In: Physica A: Statistical Mechanics and its Applications
402 (2014), S. 41-48

51

o Ul W N
NN

10

11

12

A Appendix

A.1 automatic simulation.py

#1/usr/bin/env python

automatic simulation traci.py

author: Benedikt Buhk

date: 07.04.21

description: this scrip runs a traffic simulation with sumo to

generate a driving cycle for a test vehicle (tesla) and
calculates the corresponding

energy consumption using a matlab simulink model for a range
random scemnarios and varying acceleration and deceleration
parameters.

For the traffic simulation sumo is started as a server and the
script connects as a TraCl—client. The energy simulation 1is
done with the model

EVRA/EVRA tesla._ EM. slx which is executed over the matlab
script run. EVRA.m. The generated .sumocfg—files are saved in
sim_config. The simulated cycles

and their corresponding energy consumption (soc = state of
charge) over time are saved in sim_ cycles as numpy arrays
and in sim_plots as png plots.

the average metadata [seed, timestamp, duration, distance, av.
speed (km/h), delat—soc, stopSeconds, nStops]| over n cycles
15 saved as a numpy array in

sim_ cycles and as png plots in sim_plots stat analysis. in

sim_outputs some outputs from the sumo simulations are saved

and in sim_log one .txt—logfile

52

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28

29

30

31

32

33

34

35

36

37
38

A Appendix

1s saved per execution of this script.

import os

import sys

from datetime import datetime
import numpy as np

import matlab

import matlab.engine

import matplotlib.pyplot as plt
from sumolib import checkBinary

import traci
function declaration

generating a sumo—config file in the subfolder with the
passed seed wvalue (for randommness)
def genConfig(seed):
generating tempTAVF. sumocfg
begin = 0 # time in second when simulation begins
fcd tesla =1 # enable sumo fcd—output for the tesla (test

vehicle) in sumo

traffic = 1 # include traffic route files in the
simulation config (0 = tesla as only vehicle in
simulation)

ballistic = 0 # 0 = ballistic integration method, 1 =

euler integration method

log =1 # enable sumo simulation log (the log file
will have the same timestamp as the generated config
file)

random depart offset = 30 # wvehicles in the simulation

start with an random offset between 0 and 30 seconds

timestamp (YYYYMMDD-HH MM SS) at time when config—file is

generated

53

39

40

41
42

43

44
45
46
47
48
49

50
o1
52

53
54
95

56

57
58
59

A Appendix

timestamp = datetime.now () .strftime ("%YVaftd—9H %M %S") #

timestamp indicating when file was generated (to

identify simulation)

cfg file = ’sim config/tempTAVF’ + timestamp + ’.sumocfg’

the cfg command executed in a terminal will generate the

cfg cmd = ’sumo_—C_’ + cfg file +

if

if

if

path to the config file

wished .sumocfg—file

'_—n._../sumo_files/tavf.

net.xml_—b_’ + str(begin) + '_—e_’ + str(end) + _—

seed_.’ + str(seed) + ’_—step—length_’ + str(step length

) + ’_—random—depart—offset_’ + str(

random depart _offset)

(ballistic):
cfg cmd += ’_—step—method. ballistic

)

(log):

cfg_emd += ’_—1_../sim_outputs/simulation ’ +timestamp +
".log . txt’

(fecd tesla):

cfg_emd += ' _—fcd—output=../sim_outputs/

Y)

tesla fcd output .xml_—device . fcd .

explicit=TeslaHAW’

+timestamp +

if (traffic):
cfg ecmd += ’_—a_../sumo_files/busStops.add.xml’ #../
static_files/detectors.add.zml,
cfg_ecmd += ’_—r_../sumo files/tesla tavf start dammtor.
rou.xml,../sumo_files/vType.xml,../sumo files/
LKW automatic.rou.xml,../sumo files/PKW automatic.
rou.xml,../sumo _files/bus route.rou.xml’
else:

cfg_emd += '_—r_../tesla tavf start dammtor.rou.xml’

54

60

61

62
63

64
65
66
67
68

69
70
71

72
73

74
75
76
7
78

79
80
81

82
83
84

A Appendix

os.system (cfg _cmd) # ezxecute the command (genereates the
sumocfg—file)

return cfg file, timestamp # return the path to the file
and the timestap indicating when the file was generated

(to identify simulation results)

runs sumo simulation with TraCi and returns cycle (speed over

time) data for the test wvehicle (TeslaHAW)

def run(accel, decel):

nnn nnn

execute the TraCl control loop
step = 0 # simulation step
time = 0 # simulation time
cycle = np.empty((0,2)) # array for the cycle data: collumn
0 = time in seconds, collumn 1 = speed in m/s (later
converted to km/h)

while (step < end/step length):
traci.simulationStep () # ezecute one SUMO simulation
step
if (’TeslaHAW’ in traci.vehicle.getIDList()):
initialiye tesla wvehicle settings before first
step
if (time =— 0):
traci.vehicle.setImperfection (’TeslaHAW’ | sigma)
traci.vehicle.setAccel('TeslaHAW’, accel)
traci.vehicle.setDecel (’TeslaHAW’, decel)
traci.vehicle.setSpeedFactor (’TeslaHAW ’ |
speedFactor)

time += 1
cycle = np.append(cycle, np.array ([[time, traci.
vehicle . getSpeed ('TeslaHAW) ||) , axis=0) #

appending current time (s) and speed of tesla

if no tesla after 500 seconds the route was completed
elif (step > 500):

55

85
86
87

88
89
90
91
92
93
94

95
96
97

98

99

100
101
102
103
104

105
106
107
108
109
110

111
112
113

A Appendix

traci.close () # close SUMO simulation
sys.stdout . flush ()
return cycle # return driving cycle of tesla (

time in s, corresponding speed)

step +=1
traci.close ()
sys.stdout . flush ()

return cycle

shows or saves plot of cycle (takes 2D cycle, 1D soc, and
string (number or timestamp of cycle) as inputs)
def plotCycle(cycle, soc, number):
fig , axl = plt.subplots(figsize=(10, 6))
plt.title (r’$\bf{TAVF_Cycle_}$’ + number + ’\n’ + str(len(
cycle[:,1])) + 'Us,.’ + \
str(getDist(cycle)) + ’_m,_av._speed:_’ + str(getAvSpeed
(cycle)) + \
"_km/h, _delta_soc:_’ + str(np.round(soc|[0, 0] — soc|[—1,
0], 3)) + "%\n’)
color = ’tab:blue’
axl.set xlabel(’time_in_seconds’)
axl.set ylabel(’speed_|km/h]|’, color=color)

axl.plot(cycle|[:,0], cycle[:,1], color=color)

axl.tick params(axis='y’, labelcolor=color) #color of y—
values

ax2 = axl.twinx ()

color = ’tab:red’

ax2.set ylabel(’soc_[%]|’, color=color)

ax2.plot (cycle[:,0], soc|:], color=color)

ax2.tick params(axis=’'y’, labelcolor=color) #color of y—
values

#plt.show()
plt.savefig(’sim_ plots/cycle’ + number + ’.png’, dpi=200)
plt.close ()

56

A Appendix

114
115 # takes meta_data array of simulation run and plots statistics
of 6 categories

116 def plot meta analysis(meta data):

117 run_first timestamp = meta data[0, 1]

118 run_n_simus = len(meta data|:,1])

119

120 run_av_data = np.empty ((0))

121 run_av_data = np.append(run_av_data, run_first timestamp)

122 run_av_data = np.append(run_av_data, run_ n_simus)

123

124 for ¢ in range(2,8):

125 data = meta_ data|:,c]|.astype(np.float)

126 categories = np.array (| ’seed’, ’timestamp’, ’'duration’,
"distance’, ’av—speed’, ’'delta—soc’, ’stop time’, ’
stops’])

127 categories unit = np.array (| ’seed’, ’timestamp’, ’
duration(s)’, ’distance(m)’, ’av.speed(km/h)’, ’
delta—soc(%)’, ’stop_time(s)’, 'number_of_stops’])

128 print (’analysing_cycles_in_their_’, categories|c])

129 print(’first:_’, data|0], ’;_last:_’, data|—1])

130

131 run_mean = np.mean(data)

132 run_max = np.max(data)

133 run_min = np.min(data)

134 run_var = np.var(data)

135 run_std dev = np.sqrt(run_var)

136

137 # append mean

138 run_av_data = np.append(run_av_data, run_ mean)

139

140 plt.title (r’$\bf{Histogram_of_}$’ + categories|c] + ’:

.’ + str(run_n_simus) + '_cycles_(run_’ +
run_first timestamp + ’)_\n’ \
9y 3 Y

141 + ’mean:_’ + str(np.round(run_mean, 3)) + ’'_min:_ " -+

str (np.round(run_min, 3)) + ’'_max:_’ \

57

142

143
144
145
146
147
148

149

150
151

152
153

154

155
156
157
158
159
160
161
162
163
164
165

166
167
168
169

A Appendix

) 9

+ str(np.round(run_max, 3)) + ’'_var:_’ + str(np
.round(run_var, 5)) + ’'_std._dev.:_’ + str(
np.round (run_std dev, 3)))

plt.xlabel(categories unit|c]|)

plt.ylabel (’frequency’)

plt . hist (data)

plt.axvline (x=np.mean(data), linewidth=2.0, color="red’)

plt . axvline (x=np.mean(data)4np.sqrt (np.var (data)),
linewidth=2.0, color="aqua’)

plt.axvline (x=np.mean(data)—np.sqrt (np.var(data)),
linewidth=2.0, color="aqua’)

#plt.show()

plt.savefig(’sim plots stat analysis/simRun’ + meta data
[0,1] + ’ 7 + categories|[c] + '.png’, dpi=200)

plt.close ()

print ('run_av_data_shape:_’, np.shape(run_av_ data), ’;_

Y

run_av_data:_’, run_av_data)

", run_av_data|[5], ’run_av_stops:_’,

print ('run_av_soc:_
run_av_data[7])

return run_ av_data

returns distance of cycle in m rounded to 1 digit after comma
def getDist(cycle):
return np.round (np.sum(1000xcycle|:,1]/3600), 1)

average speed of cycle in km/h rounded to 2 digits after comma
def getAvSpeed(cycle):
return np.round(np.sum(cycle|[:,1])/len(cycle|:,1]), 2)

counts number of stops in the cycle. (2 stops less than 5
seconds away from each other are counted as 1)
def countStops(cycle):
idx = np.where(cycle[:,1]==0)
nStops = 0
for i in range(1l,len(idx|[0])):

58

170
171
172
173
174

175
176

177

178
179
180
181
182
183

184
185

186

187

188

189

190

191

192

193
194

A Appendix

if idx|[0][i] > (idx[O][i—1] + 5):
nStops += 1

return nStops

runs n random simulations for given accel and decel wvalues.

def

also calculates soc with matlab simulink energy model, plots

and saves cycle and meta data
simulation run(n, accel, decel):
print (’starting_simulation_run_of_’, n, ’_different_
scenarios)
sim_meta_data = np.empty ((0,8)) # meat data ([seed,
timestamp , duration , distance, av.speed(km/h), delat—soc
, stopSeconds, nStops]|) for each simulation
eng = matlab.engine.start matlab () # starts Matlab engine
for seed in range(l,n + 1):
generate config file
[cfg file, timestamp| = genConfig(seed)
print ('starting_simulation_of_scenario’, seed)
sumo 1s started as a subprocess and then the python
script connects and runs
traci.start ([sumoBinary, "—c", cfg file])
cycle = run(accel, decel) # runs sumo simulation (
generates tesla cycle from tavf scenario)
cycle[:,1] = 3600xcycle[:,1]/1000 # converts from m/s
to km/h

np.save(’sim_cycles/cycle

Y

+ timestamp, cycle) # save
cycle data

simulate energy consumption of cycle (with matlab
simulink EVRA model)

cycle. m = matlab.double(cycle. tolist ())

soc._ m = eng.run_EVRA(cycle m, nargout=1)

soc = np.array(soc_m).astype(float)

9 Y

np.save (’sim_cycles/cycle’ + timestamp + ’'soc’, soc) #
save calculated soc data
#plot cycle with soc

plotCycle(cycle, soc, timestamp)

59

195

196

197
198
199

200
201

202
203
204
205
206
207

208
209
210
211
212
213
214
215

216

A Appendix

save key cycle data to metadata of current simulation
run ([seed, timestamp, duration, distance, av.speed(
km/h), delat—soc, stopSeconds, nStops])

sim meta data = np.append(sim meta data, np.array ([[seed
, timestamp, len(cycle|:,1]), getDist(cycle),
getAvSpeed(cycle), soc[0, 0] — soc[—1, O], np.

count nonzero(cycle|:,1]==0), countStops(cycle)]|]) ,
axis=0)
print (’simulation_of_scenario_’, seed, ’_is_done!”)

save metadata from all cycles of this simulation run
np.save(’sim_cycles/metadata cycle ’ + sim_ meta data|0,1] +
to 7 + sim_ meta data[—-1 ,1] + '’ + str(n) + ’cycles’,

sim_meta_data)

)

plot metadata analyses of this simulation run

return plot meta analysis(sim_ meta data) # return array
run_av_data (8,) that contains first timestamp, number
of cycles and average wvalues of run for duration,

distance , av.speed(km/h), delat—soc, stopSeconds, nStops

##2 script starts here:
t start = datetime.now() # for simulation timer

timestamp start = t_ start.strftime ("%Valid—9H %M %S")

we need to import python modules from the $SUMO HOME/tools
directory

if 'SUMO HOME’ in os.environ:
tools = os.path.join (os.environ|’SUMO HOME’ |, ’tools’)
sys.path.append(tools)

else:

sys.exit ("please_declare_environment_variable_’SUMO HOME'")

tesla vehicle settings

sigma = 0.0 # sumo wvalue for driver imperfection (random
value between 1 and sigma is factor for speed factor)
speedFactor = 1.0 # factor for speed limit that is respected

by vehicles

60

217
218
219

220

221
222

223
224
225
226
227
228
229
230
231

232
233

234

235

236

237

238

239
240

A Appendix

#speedDev = 0.1 # not adjustable with traci

end = 2000 # end of sumo simulation (globally declared to
guarante access for run() function)
step _length = 1 # step length of sumo simulation (globally

declared to guarante access for run() function)

simulate with sumo gui or in sumo commandline tool (gui chosen

)

when this script is called with ’'gui’ as an argument)

if (len(sys.argv) > 1 and ’gui’ in sys.argv|[l:]):
sumoBinary = checkBinary (’sumo—gui’) # path to sumo—gui
else:

sumoBinary = checkBinary (’sumo’) # path to sumo

this 1s the main entry point of this script

n

if name — " man ":

parameters

n = 20 # number of simulations per accel—decel—pair

range accel = np.arange (0.5, 4.6, 1.0) # vector with all
deceleration wvalues to simulate (of the tesla)

range decel = np.arange (1.5, 6.6, 1.0) # vector with all

acceleration wvalues to simulate (of the tesla)

#

name of log file for whole simulation run (BigRunYYYYMMDD-
HH MM SS (n—accel—values)z (n—decel—values)cycles)

log filename = ’sim_logs/BigRun’ + timestamp start + ’ ' +
str(len(range accel)xlen(range decel)) + ’x’ + str(n)+ ’

cycles . txt’

print simulation information and add it to the log file

61

A Appendix

241 message = '\

n

\nTOP_SIMULATION_started _now_(’ + timestamp start \
242 + 7)._\ntotal_simulations:_’ + str(len(range accel)xlen(

range decel)*n) + '_(’ + str(len(range accel)x*len(
range decel)) + ’'_simulation_runs_of_’ \
243 + str(n) + ’_simulations_each.)_\n \

nrange_of_parameters:\n’ + str(len(range accel)) \

244 + ’_acceleration_values_(’ + str(range accel) + ’")_and\n’ +

str(len(range decel)) + ’_deceleration_values_(’ \

245 + str(range decel) +)\
n
246 print (message)
247 os.system(’echo_\’’ + message + '\’_>>_" + log filename)
248
249 # start the simulation run (n simulation for every parameter

pair (accel and decel))

250 bigRun meta data av = np.empty((0,8)) # array that saves the
average meta data over n cycles for each parameter pair

251 # for every parameter pair

252 for accel in range accel:

253 for decel in range decel:

254 # print simulation information and add it to the log

file
255 message = ’'starting_simulation_run_with_accel_=_" +

str(accel) + ’_and_decel_=_" + str(decel) + ’_at
.’ + datetime.now().strftime ("%Y%altd—%H %M %S")

256 print (message)

257 os.system(’echo_’ + message + ’_>>_" + log filename)

258

259 # runs n simulation for given wvalue pair and saves
resulting average meta data

260 bigRun meta data av = np.append(bigRun meta data av,

np.array ([simulation run(n, accel, decel)]),

axis=0)

62

261
262
263

264
265

266
267

268

269
270

A Appendix

save meta data array to file
np.save(’sim_cycles/metadata bigRun’ + timestamp start + ~ ’
+ str(len(range accel)xlen(range decel)) + ’runs a ’ +

str(n) + ’cycles’, bigRun_ meta data av)

t finish = datetime.now() # get time when simulation
finishes for simulation timer

print simulation information and add it to the log file

message = ’Simulation_ended_at_’ + str(t_finish) + ’(’ + str
(len(range accel)xlen(range decel)) + '_x_’ + str(n) + ~’
—. + str(len(range accel)xlen(range decel)xn) + ’_
scenarious)!_(simulation_started_at:_" \

+ str(t _start) + ’;_simulation_duration:_’ + str(t_ finish —
t_start) +)\

n

\n’
print (message)

)

os.system(’echo_\’’ + message + '\’_>>_" + log filename)

63

A Appendix

A2 run EVRA.m

1 %% setup model from python

2
3
4
)
6
7
8
9

10
11
12
13
14
15

% this script is called by a python script. it automatically
starts the
% energy simulation and returns the results to python.#
function soc = run. EVRA(cycle)
cd(’./EVRA)
input cycle = cycle;
save ("input cycle’, ’input cycle”)
dur = length (input cycle);
out = sim (’EVRA tesla EM.slx’, ’StopTime’, num2str(dur))
cd(’..7)
soc = out.logsout{2}.Values.Data(1:10:10*dur);
delta soc = soc(1)—soc(end);
end

64

Erklarung zur selbststandigen Bearbeitung einer Abschlussarbeit

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbsténdig
verfasst und nur die angegebenen Hilfsmittel benutzt habe. Wortlich oder dem Sinn

nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich

gemacht.

Ort Datum

65

