
i

BACHELOR THESIS
Aynur Agnyanova Hasanova

Design and development of wireless
communication systems for control and
monitoring of an autonomous
meteorological station

FACULTY OF ENGINEERING AND COMPUTER SCIENCE
Department of Information and Electrical Engineering

Fakultät Technik und Informatik
Department Informations- und Elektrotechnik

ii

Aynur Agnyanova Hasanova

Design and development of wireless

communication systems for control and

monitoring of an autonomous meteorological

station

Bachelor Thesis based on the examination and study regulations for the

Bachelor of Engineering degree programme

Information Engineering

at the Department of Information and Electrical Engineering

of the Faculty of Engineering and Computer Science

of the University of Applied Sciences Hamburg

Supervising examiner: Prof. Dr.-Ing. Lutz Leutelt

Second examiner: Prof. Dr. Marc Hensel

Day of delivery: 21 June 2021

iii

Aynur Agnyanova Hasanova

Title of the paper
Design and development of wireless communication systems for control and monitoring
of an autonomous meteorological station

Keywords

Weather Station, Microcontroller, Wi-Fi, Bluetooth, Wireless Communication,
TM4C1294NCPDT, Wemos D1 mini, ESP8266, HC-05, UART, I2C, AT commands

Abstract

The work detailed in the present document presents a part of an autonomous solar-
powered weather station project of the Hamburg University of Applied Sciences. The
project aims to demonstrate the skills acquired by students in the Faculty of Engineering
and Computer Sciences at the end of their programs and to attract more students to the
fields of Computer Sciences and Engineering.

This thesis project aims to design and implement Wi-Fi and Bluetooth communication
channels for the autonomous weather station and the building of a framework for the
development of the weather station. The Wi-Fi link is intended for weather data upload to
a remote server. In contrast, the Bluetooth link is dedicated for demonstration of the
weather station capabilities and maintenance using a Bluetooth connected handheld
device. An investigation on weather stations previously developed by other university
students and analysis on commercially available digital weather stations is done to
determine the expected behaviour of the currently developed weather station and its
subsystem specifics.

iv

Aynur Agnyanova Hasanova

Thema der Bachelorthesis
Entwurf und Entwicklung von drahtlosen Kommunikationssystemen zur Steuerung und
Überwachung einer autonomen Wetterstation

Stichworte

Wetterstation, Mikrocontroller, Wi-Fi, Bluetooth, drahtlose Kommunikation,
TM4C1294NCPDT, Wemos D1 mini, ESP8266, HC-05, UART, I2C, AT-Befehle

Kurzzusammenfassung

Bei der hier vorgestellten Arbeit handelt es sich um einen Teil eines autonomen,

solarbetriebenen Wetterstationsprojekts der Hochschule für Angewandte

Wissenschaften Hamburg. Das Projekt zielt darauf ab, die bis zum Studiumsende

erworbenen Fähigkeiten der Studentinnen und Studenten der Fakultät für

Ingenieurwissenschaften und Informatik zu demonstrieren und mehr Studierende für die

Bereiche Informatik und Ingenieurwissenschaften zu begeistern.

Das Ziel dieser Arbeit ist es, Schnittstellen für Wi-Fi- und Bluetooth-

Kommunikationskanäle für die autonome Wetterstation zu entwickeln und zu

implementieren, sowie eine entsprechende Programmiergrundlage für die weitere

Entwicklung der Wetterstation zu schaffen. Die Wi-Fi-Verbindung ist für das Hochladen

von Wetterdaten auf einen ortsfernen Server vorgesehen, während die Bluetooth-

Verbindung vor Ort für die Demonstration der Fähigkeiten und zur Wartung der

Wetterstation genutzt wird. Dies geschieht mit Hilfe eines über Bluetooth verbundenen

mobilen Handgeräts. Die vorliegende Arbeit analysiert darüber hinaus sowohl

Wetterstationen, die von anderen Studierenden der Universität entwickelt wurden, als

auch kommerziell erhältliche digitale meterologische Stationen in Bezug darauf welche

Subsysteme integriert wurden. Anhand der gewonnenen Erkenntnisse konnte die

Programmiergrundlage entsprechend derart entwickelt werden diese zu erwartenden

Subsysteme ebenfalls zu berücksichtigen, also über die reine Unterstützung der

Kommunikationsschnittstelle hinaus.

v

Contents

List of Tables .. viii

List of Figures ..ix

Abbreviations ...xi

Terminology ..xii

1. Introduction ... 1

2. Fundamentals.. 3

 Microcontroller ... 3

 Serial Communication Interfaces ... 4

2.2.1. Universal Asynchronous Receiver Transmitter .. 4

2.2.2. Inter-Integrated Circuit... 5

 Event Detection via Polling or Interrupt .. 6

 Attention Commands ... 7

 Wireless Network Technologies and Standards ... 8

2.5.1. Wi-Fi ... 8

2.5.2. Bluetooth ... 9

2.5.3. TCP/IP Protocol Suite ..10

 EK-TM4C1294XL LaunchPad ...11

2.6.1. Microcontroller ...11

2.6.2. Hardware ...11

2.6.3. TivaWare Software Development Kit ..14

3. Requirements ...15

 Elicitation ..15

3.1.1. Stakeholders ..15

3.1.2. Requirement Derivation ..15

 Specification ...24

3.2.1. Fully Equipped Weather Station ...24

3.2.2. Communication System ...31

4. Concept ..33

 Hardware ..33

4.1.1. Microcontroller ...33

4.1.2. WLAN Module ...37

4.1.3. Bluetooth Module ...38

vi

4.1.4. Data Provisioning Module ..39

4.1.5. Handheld Device for Monitoring and Maintenance ...39

 Hardware Structure ..40

4.2.1. Wemos D1 Mini ..41

4.2.2. HC-05 ..41

4.2.3. EK-TM4C1294XL LaunchPad Connections to the Wemos D1 Mini and HC-05 Boards

 ..42

 Software ...43

4.3.1. Structures...43

4.3.2. Behaviour ...47

 Test Concept ..51

5. Implementation ..53

 Hardware ..53

5.1.1. Pin Assignment ..53

5.1.2. Power Supply ...54

 Software ...55

5.2.1. MCU Initialization and Configuration ..55

5.2.2. Command Software ...61

 Additions...65

5.3.1. Bluetooth LED ..65

5.3.2. I2C ..65

6. Results and Evaluation ..68

 Test Results ...68

6.1.1. Hardware ...68

6.1.2. Debug Console ..68

6.1.3. Wi-Fi module and AT Software ...68

6.1.4. Bluetooth module and AT Software ..70

6.1.5. I2C and BME280 ..72

 Evaluation ...72

7. Conclusion ...73

 Summary ..73

 Future Work ..74

Appendix A - Table with Detailed Overview of Features of Previously Developed Weather

Stations.. I

Appendix B - Comparison Tables for Handheld Devices ..III

vii

Appendix C- Bluetooth Commands to be Implemented and Command Parameter

Definitions ... VI

Appendix D - Activity Diagram of Bluetooth Command Line Processing IX

Appendix E - Bluetooth AT Commands Implemented ... X

Appendix F - Wi-Fi AT Commands Implemented ... XII

Appendix G - Test Scenarios .. XV

Bibliography .. XXI

viii

List of Tables

Table 1: General Naming and Project Details of Reports on Previous Stations18

Table 2: List of User Requirements ...26

Table 3: List of Communication System Requirements ...31

Table 4: Comparison Table of Microcontroller Development Boards Used in Previously

Developed Weather Station Solutions ...35

Table 5: Overview of TM4C microcontroller Family Series ..37

Table 6: Overview of TM4C129x Based Development Boards ..37

Table 7: Comparison Table of Wi-Fi TCP/IP Providing Modules ...38

Table 8: Bluetooth Connection Parameters ...39

Table 9: Web Server Conneciton Parameters ...43

Table 10: Wi-Fi AT Command Set to be Implemented ..44

Table 11: List of Bluetooth AT Commands Implemented in “Solar-Jan-20”45

Table 12: Defined Hardware Functionality of the LaunchPad for the Bluetooth and Wi-Fi

Modules and a Debug Console ...54

Table 13: Hardware Definition of the Bluetooth Status LED ..65

Table 14: Hardware Definition for Using I2C0 for Connecting a BME280 Sensor66

Table 15: List of drivers evaluated for the integration of a BME280 sensor67

Table 16: Table with Detailed Overview of Features of Previously Developed Weather Stations II

Table 17: Comparison List of Computer Modules with Display .. IV

Table 18: Comparison Table of Industrial Rugged Tablets ... V

Table 19: List of Bluetooth AT Commands to be Implemented and Their Expected Answers ... VII

Table 20: List of Bluetooth Command Parameters and Their Meanings VIII

Table 21: List of Available Bluetooth AT Test Commands .. X

Table 22: List of Available Bluetooth AT Execution Commands ... X

Table 23: List Of Available Bluetooth AT Set Commands ... X

Table 24: List Of Available Bluetooth AT Get Commands ... XI

Table 25: List of Available Wi-Fi AT Commands Based on ESP8266 AT Software XIII

Table 26: List of Parameters Used in the Wi-Fi AT Commands ... XIV

ix

List of Figures

Figure 1: Example of Component Diagram for a Weather Station .. 1

Figure 2: Expected System Structure ... 2

Figure 3: Typical Microcontroller Block Diagram .. 3

Figure 4: Component Diagram of Communication Between Two UART Modules 4

Figure 5: Packet Format of UART Communication Protocol [8] .. 5

Figure 6: Component Diagram of a Typical I2C Network with Three Followers 5

Figure 7: Packet Format of I2C Communication Protocol [10] ... 6

Figure 8: Activity Diagrams of Blocking Polling, Non-blocking Polling and Interrupt-driven

Routines... 7

Figure 9: Star Topology in Wireless Networks .. 9

Figure 10: Comparison of the OSI Model and TCP/IP Stack Layers ..10

Figure 11: Front Pinout of the EK-TM4C1294XL LaunchPad Board with Availble BoosterPacks

based on the TM4C1294NCPDT Microcontroller [25] ..12

Figure 12: Side Header Pinout of the EK-TM4C1294XL LaunchPad Board Based on the

TM4C1294NCPDT Microcontroller [25] ...13

Figure 13: Weather Base Station Application GUI for “Real-Jan-16” ...19

Figure 14: Initial Page View of the “Solar-Jan-20” Windows Application21

Figure 15: Web Page of AccuWeather for Current Weather with Extended Information Window

 ...23

Figure 16: MyWorldWeather Android Application GUI and Menus ..23

Figure 17: Minimal Class Diagram with Expected Multiplicities for the Full System27

Figure 18: Data Related Component Overview of the Full System Including Weather Station,

Web Server and Handheld Device Subsystems ..27

Figure 19: Handheld Device Subsystem ...28

Figure 20: Data Collection Subsystem ..28

Figure 21: Use Case Diagram of the Weather Station System ..29

Figure 22: Use Case Diagram of the Handheld Device System ..30

Figure 23: Hardware Component Diagram of Weather Station and Associated Wireless Devices

 ...32

Figure 24: Raspberry Pi Server Structure Overview ..32

Figure 25: Use Case Diagram of the Communication Subsystem ...32

Figure 26: Front and Back Images of the Selection of Industrial Tablet40

Figure 27: Pinout of the Wemos D1 Mini Board [43] ..41

Figure 28: Pinout of the HC-05 Board [44] ..42

Figure 29: Communication Subsystem Hardware Component Diagram42

Figure 30: Web Server Expected Data Format ..43

Figure 31: Weather Station Modes - State Machine Diagram ..47

Figure 32: Generalization of Embedded Program Flow ...48

Figure 33: Bluetooth Module State Machine ..49

Figure 34: Sequence Diagram for Uploading Data to the Web Server50

Figure 35: Wi-Fi Module State Machine ..51

Figure 36: Tiva C LaunchPad Pin Connections to HC-05 and Wemos D1 Mini Modules53

Figure 37: Structogram of Hibernation Module Interrupt Setup ..58

x

Figure 38: Activity Diagram of Hibernation Module Interrupt Handler ..58

Figure 39: Activity Diagram for Port M Interrupt Handler ...60

Figure 40: Enum Holding the Possible WLAN States for the Wi-Fi Module63

Figure 41: Pinout of the BME280 Module Board [49]...66

Figure 42: Web Page GUI of “Pro-Jan-17” with Old Data ..69

Figure 43: Web Page GUI of “Pro-Jan-17” with New Data Containing only Zeroes69

Figure 44: PuTTY and Arduino IDE Serial Monitor Outputs ...70

Figure 45: Bluetooth Application with Command Tests Performed ..71

Figure 46: Web Page GUI of “Pro-Jan-17” After RTC Setup With Time and Data from Bluetooth

and Data Upload via the Wi-Fi Link ...71

https://hawhamburgde-my.sharepoint.com/personal/aynur_hasanova_haw-hamburg_de/Documents/Desktop/Bachelor%20Thesis%20-%20Aynur%20Agnyanova%20Hasanova%20-%20MatrNr2216675%20v2.docx#_Toc75166166

xi

Abbreviations

AP Access point

AT Attention command

BC Before Christ

CR Carriage return

GNSS Global Navigation Satellite System

GUI Graphical User Interface

HAW Hamburg Hamburg University of Applied Sciences

I²C Inter-Integrated Circuit

IDE Integrated development environment

ISR Interrupt Service Routine

LF Line feed, also known as

MCU Microcontroller unit

OOP Object-oriented programming

RTC Real-time clock

SCL Serial clock line (relates to I²C)

SDA Serial data line (relates to I²C)

SoC System-on-a-chip

SPI Serial peripheral interface

TCP/IP Transmission Control Protocol/ Internet protocol

UART Universal Asynchronous Receiver Transmitter

USB Universal Serial Bus

UTC Coordinated Universal Time

Wi-Fi Wireless Fidelity

WS Weather Station

N/A Not available

xii

Terminology

Initiator/Leader A device that can initiate a transmission and provides the clock signal
in a serial communication system. These terms are used as an
alternative to the “master” notation.

Responder/Follower A device that waits for an instruction to participate in a serial
communication system and uses a provided clock signal. These
terms are used as an alternative to the “slave” notation.

Peripheral A device directly connected to the CPU via the internal bus system
with no easy option to separate it from the board.

Module A device which is external to the board and needs to be connected to
an Input/Output Peripheral of the board. An exception is the
Hibernation module of EK-TM4C1294XL, which is part of the
dedicated board.

1

1. Introduction

The history of weather sciences can be traced back to 3000 BC in India, where the first writings
on weather, cloud formations and season cycles were done [1]. Later in 350 BC, Aristotle
produced a written description on earth sciences, including weather and climate in
“Meteorology”(written 350 BC). Even before those descriptions, sailors, farmers and shepherds,
whose livelihood and safety relied on their understanding of weather, had developed rules for
prediction and the concept of seasonal changes [2]. Around 200 BC, the first analogue
hygrometer was invented in China (206 BC), followed by the invention of the compass (200 BC)
and the windsocks (100 BC, presumably China or Japan as origin). Since then, multiple tools for
quantifying weather phenomenons such as temperature, humidity, wind speed and direction,
precipitation and others have been developed. In 1847 the first independent weather station
using self-recording instruments designed on a kite was sent up in England, and in 1960 the first
weather dedicated satellite was dispatched, which allowed weather monitoring on a global level.
At the end of the 20th century, the first public weather broadcasts were made, making
meteorology a concern not only for the domain of experts. Miniaturisation and advancement of
electronic components allowed for the development of weather stations with more quantifying
elements, compacter sizes and better precision and accuracy of the readings.

A modern meteorological station consists of several systems revolving around gathering and
administering weather data (see Figure 1). Those systems are based on electrical components,
such as sensors and power providing units, and software controlling these components at the
application level. Making a meteorological station combines theoretical and practical knowledge
of climatology, electrical and computer sciences. This property makes it an exemplary
demonstration of skills acquired in universities of applied sciences, where students gain a
multitude of experiences and knowledge in one or more of these disciplines.

FIGURE 1: EXAMPLE OF COMPONENT DIAGRAM FOR A WEATHER STATION

In 2019, Prof. Dr.-Ing. Lutz Leutelt, a lecturer in the Hamburg University of Applied Sciences,
together with several other involved parties, concluded that a meteorological station would be
an exemplary display for the complexity of skills learned in Electrical Engineering and

2

Informatics programs. He concluded that a weather station project should be one of the
showcases advertising the faculty to young students and other university visitors.

The final presentable solution for the showcase shall be an autonomous solar-powered weather
station that provides several channels for accessing it wirelessly. The system is therefore
separated into three major subsystems - data gathering, power management and
communication management.

The work described in the present document concentrates on the design and implementation of
wireless communication channels for the meteorological station. A Bluetooth channel for
maintenance and control by a handheld device and a Wi-Fi channel for uploading weather data
to a remote web server are to be developed (see Figure 2). As a starting point for the showcase
product, an initial set of specifications for the weather station is derived based on industry
standards and analysis of weather stations previously developed by students of the Hamburg
University of Applied Sciences. This thesis project is the first subproject for the implementation
of a fully functioning weather station. Consequently, a framework for the development of the
whole project is built. It includes decisions about the microcontroller core of the weather station
and the development tools to be used throughout the continuity of the weather station project.

FIGURE 2: EXPECTED SYSTEM STRUCTURE

3

2. Fundamentals

 Microcontroller

A microcontroller unit, also abbreviated as MCU or µC, is a complex computational unit that
includes a Central Processing Unit (CPU), memory (RAM, ROM), input/output ports,
peripherals, and interrupt processing all in one chip [3]. The block diagram in Figure 3 displays
the standard components in a microcontroller.

A specification that differentiates microcontrollers from microprocessors, even though both can
be considered microcomputers, is that an MCU uses an internal bus system to interface its
components, which means that the components included in the microcontroller cannot be
separately used.

Another difference can be drawn between a microcontroller and a system on a chip (SoC). An
SoC includes a microcontroller and integrates it on the same device or chip with advanced
peripherals such as converters, oscillator, graphical processing unit (GPU), wireless modules
(WLAN, Bluetooth, infrared) and more chipped solutions.

The main properties on which MCUs are assessed are:

• maximum system clock,

• processing data width,

• size of program memory (flash),

• operating voltage,

• power consumption,

• advanced architectural support for peripherals,

• development support (compiler, IDE, debugging)

• and most of all, cost of unit - both as a market price, and as an effort for integration [4].

FIGURE 3: TYPICAL MICROCONTROLLER BLOCK DIAGRAM

4

 Serial Communication Interfaces

One of the primary means of wired communication with a highly integrated device such as a

microcontroller is via serial interfaces. Such an interface is represented by the sequential

transmission of binary (bit) pulses on a wire [5, p. 39]. In a typical setting, a logical “1” is

represented by sending of high voltage (usually 3.3V or 5V) and logical “0” is represented by

low voltage (usually 0V). Because data is transmitted as a “binary string”, locating the start of

the data is crucial. Different serial protocols provide different solutions for this issue.

2.2.1. Universal Asynchronous Receiver Transmitter

Universal Asynchronous Receiver Transmitter (UART) is a communication module that realises
an asynchronous serial protocol that allows communication between two devices - typically
a microcontroller with a peripheral device or another microcontroller [6]. It consists of two data
wires – one for receiving (Rx) and one for transmitting (Tx) and their respective registers to hold
the data (see Figure 4). As the communication is asynchronous, the transmitting and receiving
devices should be preconfigured with the same clock. Otherwise, the transmission would be
successful, but the receiver would not be able to correctly sample the data at the middle of each
bit, which would lead to corrupted data.

Other characteristics of the protocol are the bitrate, which depends on the length of the cable
connectors used and the packet format (portrayed in Figure 5) [6]:

There also exists USART - Universal Synchronous/Asynchronous Receiver Transmitter module
definition. It allows for synchronous serial communication using the existing Tx and Rx lines and
utilises a third line carrying a clock signal. Typically, USART is faster by a factor s than UART
[7, p. 81]. A USART module combines logic for both synchronous and asynchronous
communication.

FIGURE 4: COMPONENT DIAGRAM OF COMMUNICATION BETWEEN TWO UART MODULES

5

FIGURE 5: PACKET FORMAT OF UART COMMUNICATION PROTOCOL [8]

2.2.2. Inter-Integrated Circuit

The Inter-Integrated Circuit (I²C) bus is a synchronous two-wire serial interface developed by
Philips Semiconductors in 1982 [7, p. 84] and currently owned by NXP. It is a multi-initiator,
multi-responder protocol with a typical device address length of 7 bits. It allows for up to 128
devices connected on the bus, provided the maximum bus capacitance of 400 pF is not
exceeded. It is widely used for short-distance interfacing between microcontrollers and
peripheral devices and is the preferred module/protocol for multi-leader applications. The
protocol allows several initiators, with the definition of a leader being a device that can initiate
data transfers on the communication bus. A responder is defined by being addressed by an
initiator [9, p. 45]. When an initiator sends data, it is visible to all connected responders, but only
the responder whose address is part of the data frame can answer the query.

The I²C uses two bi-directional wires for communication: Serial Clock (SCL) and Serial Data
(SDA), to which all participants, initiators and responders, are connected (see Figure 6) [7]. The
interface has three speed modes: standard (100 kbit/s), fast (400 kbit/s) and high-speed (3.4
Mbit/s). The packet frame format for I2C is shown in Figure 7.

FIGURE 6: COMPONENT DIAGRAM OF A TYPICAL I2C NETWORK WITH THREE FOLLOWERS

6

FIGURE 7: PACKET FORMAT OF I2C COMMUNICATION PROTOCOL [10]

 Event Detection via Polling or Interrupt

Software and hardware systems alike are often designed to change their behaviour based on

the change of status of an internal function or based on an external factor [7, p. 52]. This is

typically done by the detection of these changes, called events, and the timely reaction to them

via predefined routines. There exist two types of event discovery - polling and direct interrupt.

Polling is the repeated or perpetual checking for a flag of a resource (peripheral) if an event has

occurred and the associated module needs servicing from the CPU (“software asks”) [11].

Polling keeps the CPU continuously busy and does not allow it to go to power save mode.

There are two types of polling - blocking (“busy waiting”), where the CPU continuously checks

the status until the status changes, and non-blocking, where the CPU checks the status and

continues with other tasks until the time has come to recheck the resource. This concept is easy

to implement and debug as the program flow depends only on the main function and its sub-

functions. However, some events can be missed if they occur when their flag is not checked or

in the case of the busy waiting, the CPU cannot continue with other work until this flag has been

set.

The other concept is via “hardware tells” by the associated peripherals, which send a signal to

the CPU or a module dedicated to processing the interrupt before announcing it to the CPU [12].

The first requires the signal to be a vectored interrupt containing information about the priority of

the interrupt and the expected interrupt service routine (interrupt handler) [9, p. 22]. The second

implementation requires an additional module called Vectored Interrupt Controller, which

receives the “hardware tells” when an event occurs and keeps track of the occurrence and

priority of the events as well as the routine (interrupt handler or Interrupt Service Routine - ISR)

to execute when a given interrupt occurs. This allows the CPU to possibly enter power save

(sleep) mode when no interrupts are present. Additionally, it lowers the possibility of events

being missed but requires more secure data integrity and is more challenging to debug as the

main function can be interrupted at any time.

Figure 8 shows an approximation for the activity diagrams of a program for reading data using

either the two polling concepts or the interrupt-driven concept.

7

FIGURE 8: ACTIVITY DIAGRAMS OF BLOCKING POLLING, NON-BLOCKING POLLING AND

INTERRUPT-DRIVEN ROUTINES

 Attention Commands

The Hayes command set, also known as the “AT” command set, is a set of commands

developed by Dennis Hayes, the founder of Hayes Microcomputer Products [13, p. 53]. It was

designed to configure the settings of the “smart modem”, first introduced in 1977, without

physically changing the hardware. Since then, the AT commands technology has evolved from

purely modem control to a comprehensive middleware for mobile devices and networks.

An “attention” - “AT” command consists of three elements: the prefix -“AT”, the body of the

command and the termination character <CR> [14, p. 6].

The standard defines two main types of commands - action and parameter commands. The

action commands are either “execute” or “test” sub-type, where the first executes a particular

function of the device. The second checks if the device supports specific functionality. The

second primary type is separated into “set”, “read”, or “tested” command types. A “set”

command stores values on the device, a “read” command reports the current value or values

stored, and a “tested” command determines if the device supports a parameter and whether the

value range matches.

There exist two syntax definitions for the commands - basic and extended, both of which follow

the main attention command format “AT<command><CR>”.

The basic command syntax is the prefix followed by a body that combines a letter (A to Z) or “&”

character and an optional numerical string, representing a decimal integer value. The letter

corresponds to a predefined by the original standard application [15].

8

The extended command syntax is defined by names for the actions and parameters always

precedented by a “+” character. A name (<name>) consists of one to sixteen characters, where

the characters can be alphabetical (A-Z), numerical (0-9) or special (!,%,-,.,/,:,_). The first

character after the “+” is a letter and implies the application of the command [14, p. 8]. If there

are any parameters involved, they can be added after the name of the command by the addition

of a “=” or other special character followed by the parameter value as a numerical or string

constant (<value>). In the case that more than one parameter is involved, the values are placed

in a “compound value” (<compound_value>) and are separated by a comma (“,”) character (see

(1)). Optional parameters are placed in square brackets “[]”.

 < 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑡_𝑣𝑎𝑙𝑢𝑒 > = < 𝑣𝑎𝑙𝑢𝑒1 >, < 𝑣𝑎𝑙𝑢𝑒2 >, < 𝑣𝑎𝑙𝑢𝑒3 >, (1)

The command name should be defined using only upper-case characters.

Furthermore, the syntax for the extended command standard is as follows:

• Action execution command: +<name> or +<name>[=<value>] or

+<name>[=<compound_name>]

• Action/Parameter test command: +<name>=?

• Parameter set command: +<name>=[<value>] or +<name>=[<compound_value>]

• Parameter read command: +<name>?

For return statements, a successful command returns an “OK” followed by a set of a <CR> and

<LF> character.

 Wireless Network Technologies and Standards

A wireless network is a wireless substitution of wired networks and is used for areas where the

connected devices are moved often [16]. The technology uses antennas to transmit and receive

data on a given radio frequency without a physical conductor. Within a LAN network, an address

of a device is associated with its physical location. With WLAN, this rule does not always hold.

An addressable unit (destination) for WLAN is a station (STA). Wireless standards work on the

Physical and Data Link layers of the standard Open Systems Interconnect (OSI) model [17, p.

10]. There exist four types of wireless networks - Wireless Personal Area Network (WPAN),

Wireless Local Area Network (WLAN), Wireless Metropolitan Area Network (WMAN) and

Wireless Wide Area Network (WWAN), with the coverage varying from within a couple of meters

to worldwide available [18].

2.5.1. Wi-Fi

Wi-Fi is a generalisation for the wireless network protocols under the IEEE 802.11 (WLAN)

communication standards used for local area networking [17, p. 40]. A “Wi-Fi CERTIFIED” seal

ensures that a product meets a set of criteria and can interoperate with other Wi-Fi certified

devices on the same frequency band. It was developed to be a wireless substitution of the high-

speed Ethernet internet protocol. It typically uses Star network topology with a router (playing

the role similar to the hub in wired networks), providing an access point to which multiple

devices can connect simultaneously (see Figure 9). Wi-Fi is commonly used for static

9

environments such as work or home, where a router can be placed, and devices within the

building or campus can connect to. Typical applications for Wi-Fi include client-server based

solutions where a certain degree of configuration for both sides is possible and high speed is

required. A Wi-Fi network always has an access point and is usually password protected.

The most widely used Wi-Fi standards are “a”, “b”, “g”, “n”. The “a” standard stands for 54 Mbps

data rate using a 5 GHz band. “B” stands for 11 Mbps on a 2.4 GHz band. “G” extends the data

rate on a 2.4 GHz band to 54 Mbps and is compatible with “b” standard. “N” provides even

higher data rates of 150,350 and up to 600 Mbps and maintains backward compatibility with the

“a”, “b” and “g” standards [17, p. 140].

There also exists an “802.11u” standard which provides a generic, standardised approach for

WLAN to work with non 802.11 networks such as Bluetooth and Zigbee (both WPAN networks)

and WiMax (WMAN). However, this standard is rarely used in ready solutions. The most recent

standards, “802.11ac” from 2013 and “802.11ax” from 2019, are both backwards compatible

with “b”, “g” and “n” and provide higher security and performance capabilities [19]. A router with

“802.11ac” would work with a device with “b”, “g”, or “n” standards. For using the benefits of the

newest standards, both the router and the connected devices should be implementing the

newest standard.

FIGURE 9: STAR TOPOLOGY IN WIRELESS NETWORKS

2.5.2. Bluetooth

Bluetooth is an IEEE 802.15.1 (WPAN) wireless standard with short-range capabilities which

involves little to no infrastructure or direct (point-to-point) connectivity [20]. The communication

is based on a leader-follower principle where a leader can connect to up to seven devices, but a

follower module can typically only have one leader. A device can switch roles if the hardware

allows it. At any time, data can be transmitted from the leader to one other device, where the

leader chooses which device to address. If more than one follower is connected, the leader

uses round-robin scheduling to address and transmit the needed data.

Bluetooth was designed to be a low-power alternative to other short-distance wireless protocols

and requires a semi-visible optical path between the participants. The protocol is intended for

portable equipment in any setting, both for personal and industrial use. Typical applications

10

include headsets and remote controls, where ease of connection with a minimal setup is

required. All Bluetooth standards are backwards compatible.

2.5.3. TCP/IP Protocol Suite

The Transmission Control Protocol (TCP) and the Internet Protocol (IP) together form a protocol

suite that became “the standard for interconnecting networks, devices and the Internet” [21, p.

2]. The suite is responsible for routing data packets within a TCP session using the IP address

of the recipient attached to each data packet. TCP/IP provides an abstraction on top of physical

networks and operating systems so that user applications do not need to know the physical

architecture.

As with most networking software, TCP/IP is modelled in layers, otherwise referred to as the

TCP/IP stack. The layers are defined as Application, Transport, Network, Data Link and

Physical. Compared with the standard OSI model, the Application layer of the TCP/IP includes

the Application, Presentation and Session layers of the OSI model (see Figure 10).

“It is important to note that when the layers of TCP/IP are on different systems, they are only

connected at the physical layer. Direct peer-to-peer communication between all other layers is

impossible. Therefore, all data from an application has to flow “down” through all five layers at

the sender, and “up” all five layers at the receiver to reach the correct process on the other

system.” [22].

FIGURE 10: COMPARISON OF THE OSI MODEL AND TCP/IP STACK LAYERS

11

 EK-TM4C1294XL LaunchPad

The EK-TM4C1294XL LaunchPad is an evaluation board based on the tm4c1294ncpdt

microcontroller produced by Texas Instruments.

2.6.1. Microcontroller

The tm4c1294ncpdt is an ARM Cortex-M4F CPU microcontroller with a Nested vectored
interrupt controller (NVIC), DSP and floating-point units, three sleep modes for optimised power
consumption, 1024 kB of flash memory and operating at 120 MHz. It includes an internal ROM
loaded with some of the functions available from TivaWare - an SDK provided from Texas
Instruments for microcontroller software development - and a multitude of communication
interfaces (UART, SPI, I2C, USB, CAN). The microcontroller board pins operate at 3.3V.
However, 3.3V and 5V output rails are available.

An additional Hibernation module peripheral allows the microcontroller to be powered off when
put in hibernation mode, as long as the Hibernation peripheral has a separately provided battery
attached to it.

2.6.2. Hardware

The EK-TM4C1294XL LaunchPad board provides access to 80 of the TM4C1294NCPDT
microcontroller GPIOs via 4 sets of 20 pins (BoosterPacks) [23].

Figure 11 below shows the frontal pinout of the board with the possible pin configurations
written in the tables on the side of the LaunchPad. The pins are grouped in 15 GPIO blocks
(ports) - A, B, C, D, E, F, G, H, J, K, L, M, N, P, Q [24, p. 742]. Depending on a functionality set
in the GPIO registers, most pins have alternate functions such as UART, I2C, ADC, SPI. The
BoosterPack pins provide access to six UART, four SPI, and three I2C serial communication
interfaces and 19 ADC pins where some of the pin functionalities overlap for several pins.

A side header for 98 connector pins is also available on the LaunchPad board, allowing for

access also to UART0 and UART1 and other configurable pins (see Figure 12).

The LaunchPad board also provides:

• four user-operated LEDs (connected to PN1, PN0, PF4, PF0),

• two user-operated switches (connected to PJ0 and PJ1),

• one independent hibernate wake switch,

• one independent microcontroller reset switch,

• Ethernet connector,

• USB 2.0 micro A/B connector,

• integrated debug interface (ICDI) with available USB connector,

• jumper for selecting power source: ICDI USB, USB Device, BoosterPack.

If the LaunchPad is powered by USB, the expected power input is 5V. However, if the board is
powered via a BoosterPack pin, the power supply needs to be 3.3V.

12

FIGURE 11: FRONT PINOUT OF THE EK-TM4C1294XL LAUNCHPAD BOARD WITH AVAILBLE

BOOSTERPACKS BASED ON THE TM4C1294NCPDT MICROCONTROLLER [25]

13

FIGURE 12: SIDE HEADER PINOUT OF THE EK-TM4C1294XL LAUNCHPAD BOARD BASED ON

THE TM4C1294NCPDT MICROCONTROLLER [25]

14

2.6.3. TivaWare Software Development Kit

TivaWare is a software development kit written in C for the TM4C Cortex-M4F solutions family
of Texas Instruments. It provides APIs for the initialisation and configuration of a microcontroller
without direct access programming, thus lowering the overall time and production costs. The
SDK is supported by Code Composer Studio (CCS), IAR Embedded Workbench and Keil Real
View Microcontroller Development Kit, and several other development tool chains.

The SDK provides several libraries for peripheral access (driverlib), USB configuration (usblib),
graphics (grlib), NFC (nfclib) or sensor (sensorlib) functionality, together with examples on how
they could be used based on a board or peripheral.

Using these drivers could expedite a development process drastically. Consequently, to the
design of the libraries, their implementation has a disclaimer that it might not be as efficient in
terms of speed and code size as using direct access for programming the registers. The SDK
also provides part-specific header files (tm4c1924ncpdt.h for the microcontroller base of the
TM4C1294 LaunchPad, which accommodate register macros for uncomplicated direct access
programming.

15

3. Requirements

This chapter gives insight into the requirements derivation process. It can be grouped into two
main steps - elicitation and specification. The first one concentrates on defining the groups
involved and researching the needs of the stakeholders and modality of weather stations
solutions. In the specification phase, the gathered data is first filtered out for the requirements of
the autonomous weather station and then narrowed down to provide the specification for the
implementation of the wireless communication channels.

 Elicitation

The requirements gathering process included identifying the involved parties (stakeholders) and
their needs for the system, analysing those needs and narrowing them down to a set of
requirements for the communication subsystem of the weather station. Only this subset of the
requirements shall be implemented in this project. In the process, weather station solutions
created by other university students and commercially available digital weather stations are
evaluated.

3.1.1. Stakeholders

The stakeholders involved in the specification derivative were:

1. End-users:
a. Professors, technical assistants,
b. Student guests to the university,

2. Technical staff:
a. University students involved in similar projects from the university in the past,
b. University students, assistants and other workers involved in the developing,

upgrading and maintaining of the meteorological station.
The first group, defined as “End-users”, would operate the final product to:

• see weather data provided by the station (a. and b.),

• demonstrate the functionality of the weather station (a.),

• illustrate various aspects and opportunities of electrical engineering and informatics (a.),

• arise interest in the study of information and electrical engineering (a. and b.).
The second group, defined as “Technical staff”:

• works on improvements of the current software and hardware of the weather station,

• develop further features for the “End-user” group,

• maintains the associated software and hardware,

• performs tests on separate features, and the whole system.

3.1.2. Requirement Derivation

The requirements derivation includes the breakdown of the specifications for a “fully-equipped
weather station” and the communication links associated with it provided by the end-user
stakeholder group. Secondly, an evaluation of existing solutions was done to derive further
specifications about the expectations from the system. The analysis was performed on weather

16

stations created by other students in the Hamburg University of Applied Sciences (HAW
Hamburg) and commercially available meteorological stations.

3.1.2.1. Requirements for a Fully Equipped Weather Station

A fully equipped weather station shall have dual use:

1. as a tool for demonstrating the possibilities and educational appeal of digital electronics
and embedded systems,

2. as a tool for collecting weather data.
The station then shall support three modes:

• Demonstration mode, which showcases the weather station’s functionality, such as
manual adjustment of the solar panel towards the sun.

• Data collection mode, which focuses on the timely collection of data and its storage, and
low power-consumption.

• Test/maintenance mode, in which a technician can perform maintenance tests to
evaluate if any sensors or other hardware need adjustment or replacement. This mode
and the demonstration mode would need a display.

Additionally, a concept for collecting, distributing, and visualising the data shall be designed.
The solution shall:

1. collect data locally on an SD card.
2. transmit data wirelessly (e.g. GSM) to a central storage (e.g. cloud).
3. visualise data on an interactive local display or laptops/mobile devices (e.g. using a web

server).
4. Enable setup and control of weather station features by local buttons, web interface or

module app.
Therefore, a fully-equipped station shall include several subsystems – a data system, a power
system, and a communication system.

The data system would include data gathering on several points: temperature, humidity,
atmospheric pressure, precipitation, altitude, wind speed, wind direction and brightness.

The power system would include a solar panel whose positioning can be continually adjusted to
that of the sun and a GPS and 3-axis magnetometer to measure the solar panel’s direction and
the location of the station.

The communication system shall include two types of wireless channels – a “Wireless
Maintenance Link” and a “Data Upload Link”.

The first link is intended for use by a service technician with a handheld device at the weather
station site. This handheld device must:

• support Bluetooth communication

• provide touch-sensitive display

• allow implementation of control software with a graphical user interface (GUI)

• have an industrial appearance and feel to emphasise the embedded nature of
electronics

The software on this handheld device shall:

• send commands to the weather station

• enable the display of sensor values as text in the GUI

• enable selection of the operating mode of the fully equipped weather station
(demonstration, data collection or test mode)

17

• enable for selection of sensors, whose functionality can be showcased by lighting on/off
an LED associated with a particular sensor

• enable forced solar panel adjustment towards the current sun position
The “Data Upload Link” is intended only for uploading sensor data via WLAN from the weather
station to a remote web server. The web server has the task to store and display the data in an
appropriate GUI format.

The entire setup shall have demonstration as its primary purpose:

• all electronics (sensors, microcontroller, solar panel, battery) shall be accessible and
visible for inspection during a demonstration

• the sensor values shall be visualised in a manner that non-experts can understand

• the solution shall initially be developed for indoor use only.
The utilisation of the prototype can be based on existing, reused or refractured modules.

3.1.2.2. Previously Developed Weather Stations in the HAW Hamburg

3.1.2.2.1. Overview

Weather stations previously developed in HAW Hamburg play an essential part in identifying
additional features about the system’s behaviour expected from the user group. Furthermore,
they provide information about the implementation process and the possible concept
development.

Each of the existing weather stations was developed by groups (teams) of students as part of a
Sensor technology (Sensortechnik) project in the master programs in the Department of
Information and Electrical Engineering in the HAW Hamburg. All teams were required to present
a report summarising their approaches and chosen hardware and software implementations at
the end of the semester. The teams varied in the number of people involved, and each team
was required to create their definition of a “solar-powered weather station”.

As seen from Table 1, a total of 8 reports were available for analysis. The teams consisted of
two to five people. A unique station ID was assigned to each report and then used instead of the
reports full name.

Appendix A - Table with Detailed Overview of Features of Previously Developed Weather
Stations presents an overview of the weather stations’ features developed and described in their
respective reports by the HAW Hamburg master students.

The data from the table suggests that each of the teams came to the same base requirement
set:

• the station should be autonomous, i.e. using a solar panel for power source

• should gather weather data (temperature, humidity, compass/direction, wind speed and
direction)

• should provide at least one channel for data acquisition

• should provide time and date

• should save data on a local SD card.

Two of the weather stations, whose reports were provided, were still available physically as
solutions in the university at the start of this project. As indicated in the end-user requirements,
any parts from other stations fitting with the requirements can be reused in the current project.

The “Pro-Jan-17” solution worked until March 2020, when it encountered an issue with the solar
panel movement and stopped sending data to its web server. The web server, consisting of a

18

router and a Raspberry Pi 3 server, database and web page displaying only the latest upload,
was still available and working. It was considered for testing the WLAN communication channel
implemented for the newest weather station. The technical staff on-site has indicated they would
like to keep the rest of the weather station as is. Therefore, no other hardware could be
acquired from it.

TABLE 1: GENERAL NAMING AND PROJECT DETAILS OF REPORTS ON PREVIOUS STATIONS

The other still physically available weather station in HAW Hamburg was “Solar-Jan-20”. It used
an 8-bit STM microcontroller for the weather station base and included a Windows application
for the data output of its Bluetooth communication channel. The solution provided weather
readings for all the data points expected for a fully equipped weather station except for
brightness. It was also autonomous in its data collection with the provided solar panel and
battery. It would have been possible to use it as the weather station and expand it with the
needed Wi-Fi module and brightness sensor. However, the microcontroller used in this solution
was chosen to optimally provide the needed peripherals. It left only one SPI channel unused,
which would not allow further development with the needed modules.

Consequently, this STM microcontroller could not provide the needed peripherals, and the
“Solar-Jan-20” system could not be used as a base for the implementation of the wireless
channels.

3.1.2.2.2. Graphical User Interface

Two of the solutions summarised in Appendix A - Table with Detailed Overview of Features of
Previously Developed Weather Stations had a graphical interface described in their report. Both
applications were developed to work as a base station and on a personal computer (PC).

Name of report Date Number

of people

Unique station ID

(arbitrary)

Entwicklung und Aufbau eines Systems zur

Erfassung von Messdaten und zur Steuerung

eines Ausrichtungssystems für eine Sollarzelle

Jan-13 2 Entw-Jan-13

Entwicklung einer solarbetriebenen Wetterstation

unter Verwendung eines Arduino Unos

Jan-14 2 Entw-Jan-14

Realisierung einer Wetterstation Jan-14 2 Real-Jan-14

AWDAD – Autonomous Weather Data Acquiring

Device

Jan-16 5 AWDA-Jan-16

Realisierung und technische Beschreibung einer

Wetterstation basiert auf einem Arduino DUE

Signalprozessor

Jan-16 5 Real-Jan-16

Wetterstation Jan-18 5 Wett-Jan-18

Solarbetriebene, mobile Wetterstation Jan-20 4 Solar-Jan-20

Projekt: Wetterstation Jan-17 5 Pro-Jan-17

19

Figure 13 shows the initial page of the Windows application provided by the team who
developed “Real-Jan-16”. As seen from it, three main windows could be defined:

• a left window with most of the sensor data,

• a right window with a drawing of the weather station and identifier for the wind direction
and the GPS data,

• and a bottom window with an interactive display for the user.
The blue fields of the sensors were made from interactive buttons and allowed a user to open a
chart with the values over time for that sensor. The values were loaded from a local database.
Underneath those two windows, several interactive buttons were placed:

• “View Data” for viewing of all data in a separate window in a table format

• “Show on Map” for showing a world map in a new window with indicated location of the
weather station

• command buttons:
o “Adjust Time” – for adjusting the time and date on the weather station
o “Change Interval” – for setting the interval at which measurements should be

sent from the weather station to the base station
o “Change Counter”
o “Calibrate” – for calibrating the solar panel position to the sun
o “GPS ON”
o “GPS OFF”

• buttons for control of the communication:
o “Start COM”
o “Show Available ComPorts”

FIGURE 13: WEATHER BASE STATION APPLICATION GUI FOR “REAL-JAN-16”

The initial interface upon opening of the “Solar-Jan-20” PC application is shown in Figure 14.
The application provided features for displaying randomly generated data in a chart format.
Several parts could be distinguished:

• console for input and output at the bottom,

20

• data window with the chart graph - as seen in the picture, another type of data view was
available - “Overview”

• data decision window – consisting of start and end time for the data to be displayed, two
possible data fields with dropdown buttons and an “Update” button, which updates the
data window

• and options bar at the top left corner consisting of options for Mode, View, Control and
File

It was indicated in the report provided by the team that the Overview tab consists of sensor data
in tabular form.

The options available for the “File” menu were: “Save” and “Open”, which were not implemented
but were supposed to work with CSV files.

The options in the “Control” menu were:

• “Set Time”
o UTC
o Custom (not implemented)

• “Set position”
o Hamburg
o Custom (not implemented)

• “Adjust Orientation” (not implemented)

• “Set Update-Intervall”
o 5 seconds, 1 minute, 15 minutes, 1 hour
o Manual – with which the data must be requested and is not automatically sent to

the Windows application

• “Set Measuring-Intervall”
o 5 seconds, 15 seconds, 1 minute

Similarly, the “View” menu provided options for:

• Last-minute, last 15 minutes, Last Day, Last Week, Last Month

• Custom (not implemented) – the user is supposed to choose the start and end times
from the main interface

The “Mode” menu consisted of 4 items:

• Enable Debug – enable the debug messages to be displayed in the console

• Disable Debug

• Enable COM – manually connect to the Weather station via Bluetooth, which was not
needed to read measurement data automatically.

• Disable COM

21

FIGURE 14: INITIAL PAGE VIEW OF THE “SOLAR-JAN-20” WINDOWS APPLICATION

A note in the report indicated that the application worked in just one thread. Upon establishing
communication with the weather station, it could not process any events triggered by the user,
which proved problematic in terms of execution. Consequently, it was determined that this PC
application would not make a good testing unit for the Bluetooth communication link. Instead, a
commercial Bluetooth Serial Communicator with proven capability should be used to test the
current wireless communications development. However, the thread issue should be passed on
as a limitation to prevent any such occurrences with the developed application connected to the
Bluetooth.

3.1.2.3. Commercial Weather Provisioning Services

From commercial standards, most of the requirements relate to the overall experience expected
by the user, which is defined as the “user model” - “their mental understanding of what the
program would do for them.” [26]. The “user model” includes both the assumptions about what
working with the solution might be like and the expectations propagating from previous contacts
with other ones. Therefore, the result of any development must comply with both the
expectations and the needs of the users. The end-user requirements give an overview of the
intended use of the solution – the needs – but does not give specifics about the implementation
of the features they automatically assume would be there without being discussed. Moreover, it
was essential to look at solutions available on the market and identify features that, unless
included, would lead to an unsatisfied user.

For this project, the end-user group would have contact with the weather station system via the
weather application on the handheld device or the web page provided by the web server.

22

In this case, a look into portable digital weather stations with direct hardware access and web
provisioning weather services was needed.

Most commercially available portable digital weather stations come either with a local display for
showing current data or with a tablet/mobile or web application for collecting and analysing data
over time and ultimately provide weather forecasts. Depending on the type of weather station,
the provided data ranges from temperature, humidity and time measurement to including
precipitation, wind speed, direction, and more.

If the user has direct access to the physical weather station, the following concerns were
observed when choosing a weather station purchase [27]:

• How is the hardware powered - via changeable batteries, charging an embedded
battery, or autonomously powered by a solar panel, and how long could the hardware go
without needing a recharge/a change of the batteries?

• How easy would the weather station be install and set up?

• How easy would it be to operate the weather station if any additional settings are
available?

• How many data values can be displayed on the local display of the weather station?

• What data is displayed and in what format?

• What are the connectivity options?

• How accurate are the readings?
Another commercially available weather service considered was forecasting websites or
applications which use databases with already collected weather data and analyse them to
produce a prognosis. The databases typically get data from a vast network of weather stations
installed by individuals or institutions worldwide.

The similarities between the GUIs of popular web and mobile weather provisioning services
such as “BBC Weather”, “AccuWeather”, “MyWorldWeather” suggest there are several features
that are expected to be included in the GUI for a weather reporting service (see Figure 15 and
Figure 16):

• easy to read by the human eye data – font, font size, format (e.g. converted temperature
data with up to 2 decimal points instead of raw data)

• hourly and daily forecast

• data on current temperature, humidity pressure, wind speed and direction, “real feel”
temperature

• text summary of the weather with a form akin to “Partly sunny”, “Light clouds and a
gentle breeze”

• selection of the period to be displayed - current weather, daily prognosis, weekly
prognosis

• selection of location for the weather data to be displayed - options for user location and
additional locations other than that of the user

• a scrollbar on the right side whenever more data is available on the page than is
currently in the display window

• when on a mobile application: clickable menu icon either on the left or right upper corner.
The menu icon should have a list of options, one of which is “Settings”. Other items in
the menu list could be “Info”/” About us”, “Version”. The “Settings” menu should include
unit selection for temperature

• when on a web page: menu bar with a selection of buttons for the period to display.
Nice to have features include:

• information about air quality

23

• minimum and maximum expected values for temperature

• sunrise and sunset times for a selected day

• weather map

• localised translation of the interface text depending on the location of the user accessing
the service

• unit selection for data other than the temperature for mobile applications

• light/dark mode for mobile applications

• UV index, brightness

FIGURE 15: WEB PAGE OF ACCUWEATHER FOR CURRENT WEATHER WITH EXTENDED

INFORMATION WINDOW

FIGURE 16: MYWORLDWEATHER ANDROID APPLICATION GUI AND MENUS

24

 Specification

3.2.1. Fully Equipped Weather Station

A list of specifications applying for the fully equipped weather station project was derived and
listed in Table 2. The specifications are based on the user requirements for a fully equipped
weather station and the derived expectations set from previous stations created in the HAW
Hamburg university, and some commercial standards about user interaction.

The requirements were grouped into functional (F) and non-functional (NF) and have a
number assigned to them for later reference.

Additionally, they have been grouped into four main functional categories:

1. Communication: relating to the channels between the weather station, the handheld
device, and the web server. It includes hardware and software needed for the
transmission of data between the different modules.

2. Data collection: relating to data collection on the weather station from sensors and data
collection on the handheld device from the weather station and the web server. It
includes installing sensors and their interaction with the weather station and storing
sensor data locally and remotely.

3. User interaction: relating to data display and options for customisation.
4. Other weather station functionality:

a. Power system – relating to the inclusion of solar panel and battery and separate
from power control subsystem to the weather station

b. Other operational features

 Category Requirement

F1 2 The weather station shall collect weather, location, and power data

NF1 2 Data collected shall include temperature, humidity, atmospheric pressure,

solar panel orientation, wind speed, wind direction, altitude, longitude,

latitude, time and date in UTC, current battery power

F2 2 Weather station shall save said data on local storage (e.g. SD card)

F3 1 The weather station shall send said data to the remote web server over an

adjustable measurement interval

F4 1 The weather station shall connect to the remote web server via WLAN

F5 1 The weather station shall send any or all of the mentioned data to the

handheld device

F6 1 The weather station shall send data to the handheld device over an

adjustable update interval or on command

F7 2 The weather station shall collect data over an adjustable measurement

interval

F8 1 The weather station shall connect to the handheld device via Bluetooth

25

F9 1 The weather station shall receive commands for data or control from the

handheld device via Bluetooth

NF2 4 The weather station shall be an automated system

NF3 4 The weather station shall be solar powered

F10 4 The weather station shall have a low-power operating mode available

F11 4 The weather station shall have a demonstration, data collection and test

operating modes available

F12 4 The weather station shall have local LEDs associated with components

such as sensors, CPU, battery

F13 4 The weather station shall light LED on or off, indicating the location of said

components

F14 4 Weather station shall have local buttons for change of the operating mode

F15 4 The weather station shall have all of its electronics visible and accessible

for inspection

NF4 4 The weather station shall be initially developed for indoor use only - non-

waterproof

F16 4 The weather station shall adjust solar panel orientation to that of the sun

NF5 4 The weather station shall be a real-time embedded system

F17 4 The weather station shall have a solar subsystem which includes a solar

panel, a GPS module, a 3-axis magnetometer

NF6 3 The handheld device shall have a touch-sensitive display

F18 1 The handheld device shall have Bluetooth

F19 1 The handheld device shall have WLAN

NF7 3 The handheld device shall have an industrial appearance and feel

NF8 3 The handheld device shall allow for software with a graphical user

interface

F20 1 The handheld app shall be able to use the Bluetooth functionality of the

handheld device

F21 1 The handheld app shall be able to use the WLAN functionality of the

handheld device

F22 2 The handheld app shall be able to receive a response to said commands

via Bluetooth from the weather station

F23 1 The handheld app shall be able to request data from the weather station

26

F24 1 The handheld app shall be able to control certain functions of the Weather

station: - set time, set measurement interval, set update data interval, set

location, set operating mode, execute solar panel calibration, turn GPS

on/off, set led on/off

F25 1 The handheld app should be able to request data from the web server

F26 2 The handheld app should be able to receive data from the web server

F27 3 The handheld app shall have a console display for input/output of a

command to/from the weather station

F28 3 The handheld app shall have a window for the tabular display of data

F29 3 The handheld app shall have a window for the graphical display of data

F30 3 The handheld app shall provide options for data decision to the user:

period selection, data to display selection

F31 3 The handheld app shall provide a Menu on the top left corner

F32 3 The handheld app menu shall include a list of commands that can be sent

to the weather station

F33 3 The handheld app menu shall include an option for choosing parameters

for the data display

F34 3 The handheld app menu shall include an option for unit selection for the

data

F35 3 The handheld app shall provide text summarisation of the last measured

data in the format “Hot and Raining.”

F36 3 The handheld app shall provide all measurement values converted to the

appropriate unit

F37 3 The handheld app shall provide an option for weather station component

selection where the LED associated with the component shall be lit on the

weather station

F38 3 The handheld app shall allow user interaction and open communication

channels at the same time

NF9 3 The handheld app shall provide all of the data in a readable format,

including font and font size

F39 2 The web server shall store weather data

F40 3 The web server should display stored weather data

TABLE 2: LIST OF USER REQUIREMENTS

The web server, weather station, and handheld device could be considered systems with other
subsystems. They interact with each other and with a fourth actor - a user, relating to the group
of end-users. Figure 17 displays the relations between these actors.

27

FIGURE 17: MINIMAL CLASS DIAGRAM WITH EXPECTED MULTIPLICITIES FOR THE FULL SYSTEM

The weather station system components are presented in Figure 18. The dotted channels
indicate wireless communication. The filled lines indicate that physical access is intended.

The weather station itself was defined to have the following three subsystems:

• data collection,

• communication,

• and power subsystem.
The web server should have a database and a website displaying data from the database.

A mediator between the web server and the weather station should be a Wi-Fi-connected
router, which might or might not, depending on the later implementation of the web server,
connect to the internet.

FIGURE 18: DATA RELATED COMPONENT OVERVIEW OF THE FULL SYSTEM INCLUDING

WEATHER STATION, WEB SERVER AND HANDHELD DEVICE SUBSYSTEMS

28

The Handheld device system shall include Bluetooth and Wi-Fi hardware capability and a GUI
application for the user (see Figure 19). The application shall use the Bluetooth capabilities for
connecting to the weather station and WLAN to connect to the web server.

Figure 20 shows the data which is to be collected from the weather station. It includes several

groups of data: weather data, real-time clock data, location data, solar panel data and power

data. It was already indicated that a GPS module shall provide the location data, and the solar

panel orientation shall be obtained from a 3-axis magnetometer.

FIGURE 19: HANDHELD DEVICE SUBSYSTEM

FIGURE 20: DATA COLLECTION SUBSYSTEM

29

Figure 22 and Figure 21 show the initial use case diagrams for the Handheld Application
System and the Weather Station System. Further development of the specifications for each
subsystem shall be created upon its implementation. This paper concentrates only on the
Communication system.

FIGURE 21: USE CASE DIAGRAM OF THE WEATHER STATION SYSTEM

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

30

FIGURE 22: USE CASE DIAGRAM OF THE HANDHELD DEVICE SYSTEM

V
is

u
a

l P
a

ra
d

ig
m

 O
n

lin
e

 F
re

e
 E

d
itio

n

V
is

u
a

l P
a

ra
d

ig
m

 O
n

lin
e

 F
re

e
 E

d
itio

n

31

3.2.2. Communication System

The requirements for the communication system are listed in Table 3 and indicated by CF for
the functional and CNF for the non-functional specifications, followed by a number.

 Requirement

CF1 A proof of concept shall be the end product of this thesis project.

CF2
(extending F4)

The concept would include that the initial weather station can use WLAN.

CF3
(extending F8)

The concept would include that the initial weather station can use
Bluetooth.

CNF1 It should be further extendable with data collection and solar power
systems.

CF4 A single data module (e.g. sensor, RTC) shall be integrated.

CF5 The changing data of the data module shall be sent over the
communication links together with hardcoded values for the other
expected data fields.

CF6 The solutions for both communication links shall allow for easy extension
or change of the current functionality.

CF7 The microcontroller and the accompanying modules in this proof of
concept shall be able to be powered separately, e.g. from a battery

CF8
(extending F15)

The modules used in the proof of concept shall be development boards,
a.k.a. shall not just be a microchip, but have pinouts that allow for
breadboard testing and possibly a USB connection for separately
debugging each module.

CF9
(extending F9)

The Bluetooth connection shall use commands for instructing the weather
station about a needed action. Any compatible Bluetooth device or
software can be used for testing this property.

CF10 A handheld device shall be chosen, and the concept for its integration with
the Bluetooth communication link shall be done. Any further development
on the basis of this concept would be out of the scope of this project.

CF11 The proof of concept shall use the existing “Pro-Jan-17” web server
infrastructure (see Figure 23 and Figure 24) for testing the implemented
WLAN communication link.

CF12 Data sent from the weather station to the web server shall be successfully
uploaded and seen as a new value in the database.

TABLE 3: LIST OF COMMUNICATION SYSTEM REQUIREMENTS

32

FIGURE 23: HARDWARE COMPONENT DIAGRAM OF WEATHER STATION AND ASSOCIATED

WIRELESS DEVICES

FIGURE 24: RASPBERRY PI SERVER STRUCTURE OVERVIEW

The core functionality of the weather station communication system can be seen in the use

cases shown in Figure 25.

FIGURE 25: USE CASE DIAGRAM OF THE COMMUNICATION SUBSYSTEM

33

4. Concept

This chapter describes the decisions made about which hardware modules to use to fulfil the
requirements defined in the previous chapter and the software design concept, which shall work
as a base for the firmware architecture.

 Hardware

The first step of the concept process was the decision on hardware components:

• a microcontroller for the base of the weather station,

• a WLAN and a Bluetooth module to enable wireless communication links,

• a data providing module for testing the data integrity of the communication channels,

• and a possible handheld device solution.

4.1.1. Microcontroller

The microcontroller plays an essential part as the heart of the weather station system – the data
line for each module shall end at the microcontroller either for data gathering or control of the
functionality. Therefore, it was essential to define several criteria for choosing a microcontroller,
which can continue working as the weather station base past the scope of this thesis project,
which involves only adding the communication links to the station.

One criterion should be that the program (flash) memory is sufficient for all modules intended for
the final fully functioning weather station. In the reports of the previously developed weather
stations in 2013 and 2014, using Arduino UNO provided some difficulties when integrating all
modules in the firmware due to insufficient flash memory.

Another criterion already defined in the requirements was that the microcontroller could operate
in low-power mode. This requirement was looked at from two perspectives – one is the
microcontroller to have a sleep mode providing low-powered mode and how much current it
would need with all peripherals integrated. However, the second criterion was defined mainly by
the software development process and not by the hardware and was disregarded.

The third criterion was the availability of peripheral interfaces. As already discussed in the
requirements elicitation, “Solar-Jan-20” would have been a great candidate for being extended
with the needed functionality for a fully equipped weather station. However, the base
microcontroller of the solution did not provide enough peripherals to integrate the needed
additional modules.

Due to the scope of the final fully equipped weather station, it could be expected that even more
modules might need integration besides the ones defined in the specification for the fully
equipped station. Consequently, the following list of criteria for the microcontroller interfaces
was decided:

• The microcontroller shall have at least one I2C interface peripheral. According to the I2C
protocol specification, a single I2C bus would allow 128 devices to be connected due to
the 7-bit addressing mechanism of the I2C protocol. On the other hand, not all sensor
circuit boards provide I2C interfacing. Therefore, it was necessary to give other interface
options, thus enabling teams continuing the work on the weather station to have a
certain amount of freedom when choosing their modules.

34

• An SD card development board typically provides only an SPI interface. An SD card
would be needed to ensure that data is stored locally when it is impossible to push it to
the web server. Due to the nature of the SPI interface, where one leader can have a
maximum of two followers (if the negative of the chip select signal is used), the
microcontroller board base should have a minimum of two SPI interfaces. The first one
would be dedicated to the SD card module. The second one would be in case more
boards provide only SPI interface (allowing for F2 to be implemented).

• When it comes to UART interfaces, one UART interface should be reserved for
debugging purposes to allow the developers to pinpoint issues with the software, which
is already troublesome in an embedded solution due to the frequent lack of debugging
tools. Therefore, a minimum of two UART peripherals shall be available on the
microcontroller chip.

• The program would need at least two Timers: one for timing the autonomous data
collection (F7) and a second one for counting the Bluetooth data upload interval (F6). If
the data upload to the server is different than those two intervals, a third one should also
be available. Therefore, the microcontroller base should have a minimum of three
general-purpose timers.

Another criterion for the decision matrix of the microcontroller was the provision of tools
alongside the microcontroller development board, such as available IDEs, debugger, libraries.
Those stand for the ease of integration and use of the chosen board.

The microcontroller should be available on a development or another board, providing access to
the microcontroller functionality via standardly spaced at 2.54 mm pins. This would ensure fast
development of the proof of concept for the current project and allow modules to be directly
connected to the microcontroller board via standardly spaced connectors.

Additionally, the price point of the available solutions was to be observed.

Table 4 below shows an overview of the so far used microcontroller development boards for the
weather base station from previous solutions created in HAW Hamburg.

Compared to the other microcontrollers, the Arduino UNO has a relatively small Flash memory
and would not provide enough peripherals. The Stellaris LaunchPad Evaluation Kit LM4F120
(EK-LM4F120XL) has been discontinued, and an EK-TM4C123GXL evaluation board has been
suggested as a substitute from its producer (Texas Instruments).

Arduino Due provides a sufficient number of peripherals and a lot of Flash memory. On the
other hand, compared to the other boards, it has higher current consumption in its lowest power
mode. It provides an internally integrated RTC, which cannot be powered separately.
Furthermore, the price point is two to three times higher than other available boards. Most
importantly, the board does not provide an integrated debugger, which would make the code
implementation phase take longer.

The last two development boards were the NUCLEO-8L152R8, used in “Solar-Jan-20”, and the
MSP-EXP432P401R, used in the “Pro-Jan-17” from which the web server would be used for
testing the current weather station Wi-Fi implementation. As deducted from the requirements
analysis phase, the station created with the NUCLEO-8L152R8 consisted of almost all features
to be a fully equipped weather station as previously defined by this work. However, it would not
have sufficient peripherals for adding a WLAN module and other sensors. This left the low-
power MSP432 development board as the best board option used as a base for the previous
weather stations. Given that the EK-LM4F120XL would have provided similar features, and
Texas Instruments produced both boards, an investigation on the currently available
development boards provided by TI was performed.

35

Arduino UNO Arduino DUE EK-

LM4F120XL

MSP-EXP4

32P401R

NUCLEO-

8L152R8

MCU ATmega328P

(8-bit AVR)

SAM3X8E

(32-bit ARM

Cortex-M3)

LM4F120H5Q

R (32-bit ARM

Cortex M4F)

MSP432P4

01R (32-bit

ARM Cortex

M4F)

STM8L152R

8 (8-bit

STM8)

Flash

Memory

32 KB 512 KB 256 KB 256 KB 64 KB

CPU 16 MHz 84 MHz 84 MHz 48 MHz 16 MHz

Sleep

modes

N/A Sleep, Wait

and Backup

modes, down

to 2.5 µA in

Backup mode

with RTC,

RTT, and

GPBR

Deep-sleep

mode (sys

clock at 30

KHz) with 1.05

mA, Hibernate

mode with 1.7

uA for RTC

enabled

Low-power

mode with

RTC with

660 nA

Halt mode

with 400 nA

GPIOs 14 (6 PWM) 54 (12 PWM) 40 (24 PWM) 40 (4 PWM) 54 (3 PWM)

Peripherals 1x UART

1x I2C/TWI

1x SPI

1x USB

6x ADC

3x Timer

4x UART

2x I2C/TWI

1x SPI

2x USB

2x DAC

12x ADC

9x Timer

RTC

4x UART

4x I2C

4x SPI

2x 12-bit ADC

6x Timer

RTC

4x UART

4x I2C

8x SPI

2x 12-bit

ADC

6x Timer

RTC

3x UART

1x I2C

2x SPI

2x DAC

1x ADC

5x Timer

RTC

LCD

IDE Arduino IDE/

Atmel Studio

Arduino IDE/

Atmel Studio

Code

Composer

Studio

Code

Composer

Studio

STVD

Debugger No/

yes(external)

No/

yes(external)

In-Circuit

Debug

Interface

Build-in yes

MCU

Library

Arduino/ ASF Arduino/ ASF StellarisWare SIMPLELIN

K-MSP432-

SDK

STM8-SPL

Price point

(mouser.de)

17,70 € 31,68 € Obsolete

(discontinued)

22,52 € 9,10 €

TABLE 4: COMPARISON TABLE OF MICROCONTROLLER DEVELOPMENT BOARDS USED IN

PREVIOUSLY DEVELOPED WEATHER STATION SOLUTIONS

36

The portfolio of microcontrollers of Texas Instruments was divided into three major families:
ARM-based, C2000 real-time, and MSP430. All the solutions come with a microcontroller
peripheral library available when using Code Composer Studio.

The ARM-based products were grouped into several families: Arm-M4F (TM4C) and Arm Cortex
R4&R5.

C200 MCUs provide control for power electronics requiring advanced digital processing.

The last group consists of 16-bit microcontrollers with a concentration on system costs.

The microcontroller of the EK-TM4C123GXL recommended by Texas Instruments as a
replacement for the EK-LM4F120XL Stellaris LaunchPad was part of the TM4C family which is
defined by a 32-bit ARM Cortex-M4F and multiple communication peripherals such as CAN,
USB and Ethernet.

Table 5 below shows an overview of the microcontroller series part of the TM4C family [28]. The
family consists of two production series, namely the TM4C123x and the TM4C129x. Both
groups have more than sufficient peripherals, flash memory, and provide several tools for fast
development: IDE, TivaWare SDK, and have a development board based on them.

The first group was characterised by up to 80 MHz CPU, Flash memory of up to 256 KB, and
power consumption in deep-sleep mode down to 1.6 µA in hibernation mode.

Compared to the TM4C123x group, the TM4C129x group provides even more peripherals and
memory and lower power consumption. Consequently, a microcontroller base from the
TM4C129x group was determined to have better properties.

 CPU Memory Lowest
power

consumption

Peripherals Tools

Flash SRAM EEPROM

TM4C123x Up to
80MHz

Up to
256KB

Up to
32KB

2KB 1.6 µA in
Hibernate

mode

64-168
GPIO (Up

to 40x
PWM)

8x UART
6x I2C

4x SPI/SSI
2x CAN

1x USB 2.0
2x 12-bit

ADC
RTC

Code
Composer

Studio
IDE

TivaWare
SDK

TM4C129x Up to
120MHz

Up to
1MB

Up to
256KB

6KB 1.30 µA in
Hibernate
mode with

RTC
enabled

128-212
GPIO (Up

to 8x PWM)
8x UART
10x I2C

4x
QSPI/SSI
1x 1-wire

leader
interface
2x CAN

Code
Composer

Studio
IDE

TivaWare
SDK

37

1x USB 2.0
1x Ethernet

1x LCD
controller
2x12-bit

ADC
8x 32-bit

Timer
RTC

TABLE 5: OVERVIEW OF TM4C MICROCONTROLLER FAMILY SERIES

An evaluation of the development boards based on TM4C129x microcontrollers is presented in
Table 6. There are two solutions available: the TM4C1294XL evaluation kit and the TM4C129x
development kit. Both solutions provide an in-circuit debug interface (ICDI). However, the price
point of the Development Kit based on the TM4C129XNCZAD microcontroller is more than
several times higher than that of the EK-TM4C129XL. The EK-TM4C1294XL was still in a
comparable price range with other solutions mentioned before, whilst offering more versatile
properties than many of the above-discussed solutions. It was consequently chosen as the base
board of the weather station. The suggested tools for software development by the board
producer were CCS IDE and TivaWare. They were chosen to be used for the development of
the proof of concept.

 MCU Interfaces Price Point
(mouser.de)

Evaluation kit
(EK)

TM4C1294XL

TM4C1294NCPDT 2x stackable BoosterPack XL
connection interfaces (access to 80x

GPIO in total), Ethernet port, Reset and
Wake push buttons, 1x micro A/B USB
connector, 2x user switches, 4x user
LEDs, 1x USB Debug port, External
debug connection, 98x Breadboard

connection Headers [23, p. 4]

22,52 €

Development
kit (DK)

TM4C129X

TM4C129XNCZAD 1x BoosterPack and 1x BoosterPack
XL interfaces(access to 104 GPIO in

total),
Integrated LCD, speaker, microSD,

user tricolour LED, power and Ethernet
LEDs, Up and Down buttons, Select
and Reset buttons, Ethernet port, 1x

USB AB OTG, 1x USB micro B
Debug/power [29, p. 4]

224,18 €

TABLE 6: OVERVIEW OF TM4C129X BASED DEVELOPMENT BOARDS

4.1.2. WLAN Module

The requirements for the WLAN module were to utilise the Wi-Fi (IEEE 801.11) protocol and to
be breadboard compatible for the proof of concept. The router available as part of the web
server solution for testing the implementation of the WLAN module was a TPlink TL-WR841N.
The device works with the “n” standard of Wi-Fi, making it compatible with “b” and “g” Wi-Fi
connected devices, which comprise the multitude of commercially available devices for wireless
connectivity. Moreover, the web server available worked with TCP/IP, which required the Wi-Fi
module to utilize TCP/IP.

Table 7 below shows several Wi-Fi modules for achieving the WLAN link.

38

The CC3100BOOST [30] module would have been the recommended module to use as it is
provided by Texas Instruments and integrates well with the chosen TM4C microcontroller.
However, its price point is higher than that of the base microcontroller, making it a bad match for
this project. Additionally, it would need to be placed directly on top of the microcontroller, which
would block the direct view of the microcontroller board.

The ESP8266EX is a system on a chip (SoC) often used in non-professional and student IoT
projects. It provides several connection interfaces, including UART, SPI and I2C. The
microcontroller of the ESP8266 comes with an SDK available from its producer, Espressif, and
implements the standard TCP/IP stack. The SDK has an integrated set of Hayes-style
commands for easy TCP/IP connections [31] and three sleep modes, where the power
consumption could go as low as 20 µA [32]. Multiple development boards and modules, such as
the NodeMCU and the Wemos D1 mini [33], integrate this chip.

The NodeMCU itself is a development kit for using the NodeMCU open-source firmware, which
is layered on top of the existing Espressif SDK. Both modules provide similar features matching
the requirements for the Wi-Fi module for this communication solution. The NodeMCU,
however, has a slightly larger size and is slightly more expensive than the Wemos D1 mini
board. Therefore, the Wemos D1 mini board was chosen to implement the Wi-Fi link on the
weather station.

 Features Price point

NodeMCU (ESP8266 based) Flash: 4MB

10 GPIOs

I2C, 1-wire, 1 ADC, micro USB

Weight: 50g

Size: 4.8cm x 2.38cm

8.99 €

(conrad.de)

Wemos D1 mini (ESP8266

based)

Flash: 4MB

11 GPIOs

UART, SPI, I2C,1 ADC

Status LED, micro USB

Weight: 3g

Size: 3.42cm x 2.56cm

7.51 €

(conrad.de)

CC3100BOOST 2x20 GPIOs

4x status LEDs

2x push buttons

UART, SPI, USB type B

55,20 €

(mouser.de)

TABLE 7: COMPARISON TABLE OF WI-FI TCP/IP PROVIDING MODULES

4.1.3. Bluetooth Module

For the Bluetooth module, the requirements related only to the hardware, where it shall allow for
Bluetooth communication and be compatible with a breadboard.

The Bluetooth module from “Solar-Jan-20” was still available and could be used as it meets the
criteria.

It is an HC-05 board based on the EGBT-045MS microchip [34]. The board itself comes with a
UART interface with Serial-to-Bluetooth conversion and two additional pins for Connection
Status and mode selection.

39

The microchip comes with a preinstalled AT command set. However, due to the need for
custom commands, the development team decided to permanently put the module in “Data
Mode”, where all data is directly transferred over the UART via connecting the Mode Selection
pin to a 0V internal pin. This enabled the team to create custom commands for operating their
weather station functionality via Bluetooth. The “Data Mode” puts the Bluetooth module in
follower mode, where it can be only connected to but cannot initiate a connection itself. Because
of these changes, the UART configuration of the module is permanently set to 9600bps, 8 data
bits, 1 stop bit, no parity, and no handshake.

Additionally, the connection parameters for the module were set to:

Passkey: 1234

Device Name: Wetterstation_1a

TABLE 8: BLUETOOTH CONNECTION PARAMETERS

The HC-05 module also provides a red LED indicating the status of the connection. If the

module is in broadcast mode and not connected, it would continuously blink. When the module

has been paired and connected to, it will blink twice with an interval of approximately 5 seconds.

4.1.4. Data Provisioning Module

As described in the requirements for this package, a module for providing variable data was
needed to test that the wireless connections transfer data correctly. The TM4C1294XL
LaunchPad, chosen as the base board for the weather station, provided an onboard Hibernation
module incorporating a Real-Time Clock (RTC). This RTC could be used for providing new data
over time to test if data is stored and extracted correctly in the main routine of the
microcontroller and was therefore chosen as the data provisioning module.

4.1.5. Handheld Device for Monitoring and Maintenance

For the handheld device on the other end of the Bluetooth connection, several options were
available: to create the device from scratch or to use an already available module on the
market.

An in-house made device would require a touch-sensitive display, base microcontroller with
graphic capabilities, Wi-Fi and Bluetooth communication, battery. The integration itself would
have been a whole other project, so it was not feasible in the scope of this thesis work.

Consequently, the handheld device was decided to be a store-bought solution.

Two sets of tablets were derived for comparison: computer modules with display and rugged
industrial tablets, both presented in Appendix B - Comparison Tables for Handheld Devices . All
of the included devices covered the requirements for the handheld device to have an industrial
feel and have Wi-Fi and Bluetooth communication channels.

The first set consisted mainly of separate from each other display and processing unit, whereas
the second set was with ready-to-use handheld solutions with mobile capabilities (see Figure
26).

The devices listed in Table 17 required prices quoting from the distributing or production
company. The tablets catalogued in Table 18 were available with price tags for purchasing
either via the manufacturer or via online electronics distributor platforms based in Germany.
This proved to be an important property at the time of development of the currently discussed
project due to limitations of import products of countries outside the European Union.

40

The two selection sets were presented to two of the involved stakeholders from the end-user
group – Prof. Dr.-Ing. Lutz Leutelt and technical assistant Detmar Rüdiger. A decision was
made that the device would be purchased by invoice, and the price shall not exceed 500 €.
Therefore, the list of computer modules with a display was removed entirely from the selection
due to the needed request for a price quote. From the selection of industrial tablets, only the
Apglos Armour tablet was available by a European distributor, wherefore purchasable by invoice
in the decided price range. The Apglos Armor was chosen as the handheld device to implement
the Bluetooth link.

FIGURE 26: FRONT AND BACK IMAGES OF THE SELECTION OF INDUSTRIAL TABLET

 Hardware Structure

This subchapter analyses the available hardware interfaces of the modules and defines the type

of interfaces needed for connecting the wireless modules to the chosen microcontroller

development board.

41

4.2.1. Wemos D1 Mini

The Wemos D1 mini chosen for the Wi-Fi communication provides single UART, SPI and I2C
interfaces for connecting to other devices (see Figure 27). Using the SPI and I2C interfaces
require software programming and setup via the existing Serial to USB interface of the module
to configure the mode of operation (leader or follower) [35, p. 3]. Therefore, to directly use the
AT command driver and the TCP/IP stack available with the ESP8266 core firmware of the
module without any further configuration of the microchip, the UART interface was decided to be
used for connecting to the weather station system.

The Wemos D1 board provides access to two UART interfaces - UART0 and UART1. UART0
had dedicated hardware pins working with default transmission speed 115200. UART1 was
connected to the flash, and only the transmit signal pin (D4) could be used, typically for
debugging purposes. Ergo, the fully-functioning UART0 of the Wemos D1 mini module was
chosen for interaction with the LaunchPad.

FIGURE 27: PINOUT OF THE WEMOS D1 MINI BOARD [36]

4.2.2. HC-05

Figure 28 shows the physical appearance of the HC-05 Bluetooth module and its pinout. The
module provides only a single UART interface, which was chosen for the connection to the
microcontroller. It is important to note that the voltage required to power the module is 5V.
However, the other board pins operate at 3.3V. The State pin indicates whether a device has
connected to the Bluetooth module when high level (1), and the Enable pin (EN) can be set low
(0) from the microcontroller when the module should be disabled.

42

FIGURE 28: PINOUT OF THE HC-05 BOARD [37]

4.2.3. EK-TM4C1294XL LaunchPad Connections to the Wemos D1 Mini and

HC-05 Boards

The Wi-Fi and the Bluetooth modules each used a UART interface and were defined to occupy
two of the existing UART peripherals of the LaunchPad. The Bluetooth State pin was to be
connected to one of the general-purpose pins as input and used to determine the connection
status of the Bluetooth module.

Figure 29 shows the expected hardware component diagram, where the LaunchPad is one
component with several subcomponents derived from the microcontroller block diagram ([24, p.
54]). GPIOs represent the UART peripherals in the real world, where the GPIO can have an
alternate functionality as UART. The HC-05 and Wemos D1 mini modules are external
components that use the provided interfaces (pins) from the LaunchPad board.

FIGURE 29: COMMUNICATION SUBSYSTEM HARDWARE COMPONENT DIAGRAM

43

 Software

After the decision of the hardware components and their connection types, an outline of the
software design was derived. It included analysis of the expected behaviour and construction of
the needed software model.

4.3.1. Structures

4.3.1.1. WLAN Structures

Based on the source code provided with the respective report for the weather station and
accompanying web-server developed in 2017, the web-server expects a string wrapped with an
"A:" at the beginning and a "\n!" at the end with semicolon-separated values (“;”). The total
number of expected value fields is 21. Whenever no new value is present compared to the last
measurement, the data slot should be left empty with no spaces between, just the semi-colon
separating it from the following data field.

Figure 30 shows the expected string with the parameters. The parameters should be replaced
by numerical values representing raw data.

This structure was expected to be sent from the new weather station to the current web server
to test the Wi-Fi communication channel.

Following this data upload format, the proof of concept can assume that the data was already
available and in the correct format. As indicated in the requirements, all data values, except for
the ones provided by a single data provisioning module - in this case, the already defined RTC -
shall be hardcoded (CF5).

FIGURE 30: WEB SERVER EXPECTED DATA FORMAT

Furthermore, based on the code source provided, the parameters for connecting to the server
were extracted and are displayed in Table 9.

 Value

Access point name (<ssid>) Wetterstation

Password (<pwd>) wetterdeluxe

Medium (<type>) TCP

IP (<ip_addr>) 192.168.178.82

IP Port (<port>) 100

TABLE 9: WEB SERVER CONNECITON PARAMETERS

44

4.3.1.2. Wi-Fi Commands

The ESP8266 microchip of the Wemos D1 module provides a driver with AT commands,
including basic AT commands for the operation of the module hardware, Wi-Fi commands, and
TCP/IP-related AT commands [31].

Considering the data provided from Espressif for connecting to a TCP/IP server and uploading
of single data strings [38], the following subset of AT commands were decided to be
implemented on the weather station to enable data upload to the server via using the ESP8266
driver (see Table 10).

 Description Expected Response

AT Test AT module OK

AT+RST Restart the module OK

AT+CWJAP_CUR=<ssid>,<pwd> Connect to an

Access Point (AP)

OK

AT+CWQAP Disconnect from the

AP

OK

AT+CIPSTATUS Get the connection

status

+CIPSTATUS:<link

ID>,<type>,<remote

IP>,<local port>,<tetype>

AT+CIPSTART=<type>,<ip_addr>,<port> Establish a TCP,

UDP or SSL

connection

OK

AT+CIPSEND Send data SEND OK

AT+CIPCLOSE Closes the TCP,

UDP or SSL

connection

OK

TABLE 10: WI-FI AT COMMAND SET TO BE IMPLEMENTED

4.3.1.3. Bluetooth Commands

The HC-05 Bluetooth module taken from “Solar-Jan-20” could not use the AT command set
described in its datasheet due to working in “pass-through” mode. The weather station and the
handheld device were defined to share a set of commands and implement them on both sides
of the Bluetooth link to ensure compatibility for the communication.

The command format could be as simple as singular numerals or letters. However, to provide a
universal feel of the solution and allow for further development of the list of commands, a
command set following the extended “AT command syntax” rules were defined to be used.

“Solar-Jan-20” also implemented an extended AT command style set for the Bluetooth
communication (see Table 11). These commands were expected to be part of the new
Bluetooth solution.

45

 Description Expected Response

AT Test connection OK

ATE<n> Activate/Deactivate remote echo OK

AT+CTEMP? Get temperature measurement
+CTEMP:

<bme>,<cpu>,<qmc>,<mpu>
OK

AT+CPRES?
Get atmospheric pressure

measurement
+CPRES: <bme>

OK

AT+HUM? Get humidity measurement
+CHUM: <bme>

OK

AT+CWIND? Get wind direction and speed
+CWIND: <w_dir>,<w_spd>

OK

AT+CTIME?
Get weather station time and

date

+CTIME:
<YY>,<MM>,<DD>,<hh>,<mm>,

<ss>
OK

AT+CTIME=<YY>,<M
M>,<DD>,<hh>,<mm>,

<ss>

Set time and date of the weather
station

OK

AT+CALIGN?
Align the weather station solar
panel position to that of the sun

+CALIGN:<azm>,<zen>

AT+CGNSPOS? Get GPS position
+CGNSPOS: <lat>,<lon>,<alt>

OK

AT+CGNSPOS=<lat>,<
lon>[,<alt>]

Set GPS position OK

AT+CPWR? Get power statuses

+CPWR:
<v_bat>,<i_bat>,<v_solar>,

<i_solar>,<v_sys>
OK

AT+CINTV=<intvl> Set the measurement interval OK

AT+CGUI?
Get weather station data for

graphical representation

+CGUI:<YY>,<MM>,<DD>,<hh>
,<mm>,<ss>,<t_bme>,<t_cpu>,
<t_qmc>,<t_mpu>,<w_dir>,<w_
spd>,<pres>,<hum>,<zen>,<az
m>,<lat>,<lon>,<alt>,<v_bat>,<i
_bat>,<v_solar>,<i_solar>,<v_s

ys>
OK

TABLE 11: LIST OF BLUETOOTH AT COMMANDS IMPLEMENTED IN “SOLAR-JAN-20”

46

However, this set of commands did not cover all the functionality required for the showcase
weather station. For that reason, it was extended with commands allowing the missing
functionality:

• set the Bluetooth data update interval (F24)

• set weather station operating mode (F24)

• set GPS on/off (F24)

• set LED on/off (F24)

A framework for the Bluetooth AT commands was developed as follows:

• Commands contain “AT” at the beginning of the string and are followed by a plus (“+”)
sign and the command name. The command name is an abbreviation indicating the
purpose of the command and is written with uppercase letters. The first letter of the
name string is “C”, indicating it as a command.

𝐴𝑇+< 𝑐𝑜𝑚𝑚𝑎𝑛𝑑_𝑛𝑎𝑚𝑒 >

• Any parameters to the set commands are added by an equal (“=”) sign after the
command name and the parameter's value. If more than one parameter is applicable,
the parameters are separated by the comma (“,”) character with no spaces between
them.

𝐴𝑇+< 𝑐𝑜𝑚𝑚𝑎𝑛𝑑_𝑛𝑎𝑚𝑒 >=< 𝑣𝑎𝑙𝑢𝑒_1 >, < 𝑣𝑎𝑙𝑢𝑒_2 >

• Similarly to the developed concept for “Solar-Jan-20” parameter “read” commands
contain a question mark (“?”) character after the command name.

𝐴𝑇+< 𝑐𝑜𝑚𝑚𝑎𝑛𝑑_𝑛𝑎𝑚𝑒 >?

• A command which is an “execute” type and does not require any return parameters shall
have the exclamation mark (“!”) character. By definition of the AT command syntax, this
is permitted.

𝐴𝑇+< 𝑐𝑜𝑚𝑚𝑎𝑛𝑑_𝑛𝑎𝑚𝑒 > !

• A “read” command should return a string with parameter values together with the
command name. The “+” sign is placed before the command name, and a “:” sign after it
is added. The parameter values are separated with a comma (“,”) if more than one is
applicable.

+< 𝑐𝑜𝑚𝑚𝑎𝑛𝑑_𝑛𝑎𝑚𝑒 >: < 𝑣𝑎𝑙𝑢𝑒_1 >, < 𝑣𝑎𝑙𝑢𝑒_2 >

• If a command has been executed successfully, the weather station shall return an “OK”
line on the Bluetooth link.

The complete list of the commands to be implemented can be checked in Appendix C -
Bluetooth Commands to be Implemented and Command Parameter Definitions. A list of the
parameters used in these AT commands for clarity of the definitions is also included.

4.3.1.4. RTC Holder

As part of the Hibernation module, the Real-Time Clock had already defined software

functionality by the TivaWare drivers. However, a wrapper for assigning and reading the time of

the module needed to be created. Furthermore, based on the data structure required for the Wi-

Fi Upload link, the following structures were defined to be part of the RTC wrapper:

• date: year, month, day

• time: hour, minute, second

47

4.3.2. Behaviour

4.3.2.1. Weather Station System

The primary purpose of the weather station's communication system was to enable control and
data monitoring from outside sources, namely a handheld device and a webserver. Figure 31
illustrates the operating modes described in the requirements phase as state behaviour of the
fully functional weather station.

Based on the specification in the requirements phase, the weather station was defined to have
three operating modes (F11):

• data collection (regular operation),

• demonstration,

• and test(maintenance) mode.
The first was defined by the autonomous operation of the weather station such as:

• the collection of data over a set interval (F7),

• data upload to a remote web server or save on a local SD card if there is no access to
the webserver (F3 and F2),

• adjustment of the solar panel orientation for optimal sun power input (F16),

• and entering in low-power mode when those actions are not performed (F10).
The second operating mode was defined by the shift of the control to the device connected by
the Bluetooth link. As long as the device is connected, the user on the device end can control
the weather station and its connected devices.

The third operating mode should incorporate all the functionality of the second mode. However,
it should also include the performance of selected self-maintenance tests on the weather station
and their report over the Bluetooth link.

FIGURE 31: WEATHER STATION MODES - STATE MACHINE DIAGRAM

Consequently, the general flow of the program was decided to be as follows (see Figure 32):

1. power on the microcontroller,
2. peripherals setup,
3. infinite loop.

The loop would ensure that the weather station software would continue to run as long as the
hardware is powered on.

The peripherals setup refers to the powering and enabling of the microcontroller and its
peripheral modules (general clock, GPIOs, UARTs, interrupts) and is typically done once at the
beginning of the program and is not changed through the run of the program.

48

The loop is a general infinite loop ensuring that the program continues running as long as the
device is powered on and would continue to execute actions.

FIGURE 32: GENERALIZATION OF EMBEDDED PROGRAM FLOW

There were two methods to implement this program flow in an embedded solution – sequential
and interrupt-based. One of these flows needed to be decided to define how the weather station
would operate.

The sequential program flow is defined by all actions being performed sequentially in the loop.
This would mean that the microcontroller would need to be always active (powered on) and wait
to perform a given action specified in the routine only when its turn in the sequence has come
up, consequently possibly missing on events if they have a short lifetime.

The second one, interrupt-based routine, allows for the timely reaction to change of status. The
weather station needs to be a real-time reactive system. Therefore the interrupt approach was
preferred and chosen for the implementation to ensure any event occurring, such as a restart or
a connection initiated via the Bluetooth module from the handheld device, was recognized and
reacted to accordingly.

4.3.2.2. Communication Modules

4.3.2.2.1. Bluetooth Module

According to the requirements, the Bluetooth connection should be a primary trigger for the
change of the status of the weather station.

This would mean that once the handheld device has been connected to the Bluetooth module,
the weather station should prioritise actions requested by that link. Depending on the type of
command received, the microcontroller could enter its test mode or need to execute an action
such as read and send data over the Bluetooth link, power GPS module on or off, or align solar
panel.

While the command is processed and executed, other software-defined interrupts should not be
able to disturb the routine so that the action required by the command can be completed, which
makes the command processing a “blocking” function. Figure 33 shows the expected states of
the Bluetooth module derived from these definitions.

The status of the Bluetooth module should change from “Disconnected” to “Connected” when
the handheld has discovered the weather station Bluetooth module on the Bluetooth network via
its name and has successfully “paired” to the weather station BT via entering the authentication
passkey. The authentication is done automatically by the BT module firmware even in the “pass-
through” mode, and the connectivity is realized by a continuous “high” level signal sent from the
device to the microcontroller via the Bluetooth status pin.

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

49

FIGURE 33: BLUETOOTH MODULE STATE MACHINE

4.3.2.2.2. Data Upload

The Wi-Fi connection was defined to be started either via a command received on the Bluetooth

link and processed for requesting an in-time data upload or via a timed interrupt. The timed

interrupt would trigger the data collecting routine and the Data upload sequentially, or there

could be an interrupt with a different interval only triggering the Wi-Fi Data upload.

As the proof of concept required only proof that the communication channel works and the

upload is successful, only the Bluetooth triggered Wi-Fi connection was decided to be part of

this weather station implementation. Therefore, the two concerns defining the Wi-Fi link were

the connectivity to the web server and the correct formatting of the uploaded data.

As defined in the AT command example for the ESP8266 [38], the upload was characterized by

three main steps in sequential order:

1. connecting to the router Access Point (AP),

2. connecting to the TCP/IP defined server,

3. sending the data to the web server using the TCP/IP session.

Figure 34 shows the expected sequence diagram for a Data upload event.

The microcontroller receives a signal for upload, then initializes (powers on) the Wi-Fi module

and checks if the AP associated with the web server is available. If it has been available, it

connects to it via using the predefined AP connecting parameters. If the connection is

successful, the microcontroller initiates a TCP/IP session to the web server and uploads the

data.

50

FIGURE 34: SEQUENCE DIAGRAM FOR UPLOADING DATA TO THE WEB SERVER

Taking into account the connectivity statuses, the Wi-Fi module could be defined to have four

primary states (see Figure 35):

• Idle: when the module has been powered on, but no AP connection was made.

• AP connected: when an upload is requested, and the Wi-Fi module successfully

connects to the access point of the web server associated router.

• TCP connected: when the module has established an AP connection and has

successfully connected to the TCP socket. When the Wi-Fi module is in this state, the

microcontroller can send the data to the web server.

• Waiting for response: for any type of AT command action required, the software should

wait for a response from the ESP8266 driver received on the UART receiving line (busy

waiting). If the AT command is correctly typed, recognized by the driver and the action is

performed correctly from the Wemos D1 mini module, the response will be “OK”.

51

FIGURE 35: WI-FI MODULE STATE MACHINE

4.3.2.3. Debug Console

The debug console using the UART should output information about all the actions performed

on the “modules”. For example, if the Wi-Fi module attempts to connect to the access point, the

console should output a message indicating that.

The writing of the information on the serial output line should happen immediately to ensure that

a developer can check the flow of the program in time. Therefore, the debugging console was

decided to also implement an interrupt routine for printing on the serial line.

The interrupt routine would be triggered for character input or output on the console. When a

character was typed in, the console should do nothing with it unless the prompt was given to the

user. If the input was requested from the program, the typed character should be printed out on

the console to provide feedback to the user that he has typed that character. At the same time,

it should be saved in a buffer provided for the Debug Console input and then assigned to the

function which requested console input.

 Test Concept

This chapter describes the testing processes which would ensure that the core functionality

listed in the requirements chapter has been sustained.

There were several scenarios that needed to be tested for the verification of the solution. As the
goal of this project was proof of concept (CF1), only the standard use case scenarios were
assumed. This would mean that the system was tested for working under the designed
conditions and does not demonstrate that it is free of defects [39, p. 206]. The designed
conditions were that the web server and access point from “Pro-Jan-17” are available and

52

discoverable from the weather station, and a serial Bluetooth terminal application with proven
capabilities is used for connecting to the HC-05 module.

The test scenarios were given an identification string by “TS” (standing for “test scenario”) and a
number following it (example “TS1”). They were grouped by “Hardware” and “Software” tests.

The “Software” tests were defined to test the base functionality of the Wi-Fi, Bluetooth and RTC
modules such as sending or receiving commands. A complete list with the derived tests
scenarios can be seen in Appendix G - Test Scenarios.

An automated testing environment can be a project of its own. Ergo the testing concept
assumed only manual testing.

53

5. Implementation

This chapter concentrates on the implementation of the communication channels and the

specifics of the microcontroller and modules used. This includes the hardware setup of the

devices and software created to fulfil the requirement specifications.

 Hardware

As mentioned in 4.2, the TM4C1294NCPDT microcontroller base of the LaunchPad evaluation

board provides access to 80 general-purpose input/output pins via BoosterPack headers, which

can be configured to work with alternative functions. The alternative functions give access to the

microcontroller UART interfaces 2 to 7, SPI interfaces 0,1,2,3 and 5, and I2C interfaces 0 to 2.

5.1.1. Pin Assignment

The HC-05 and the Wemos D1 modules both needed UART interfaces for their connection to

the LaunchPad.

The Wemos D1 had two UART hardware interfaces - UART0 and UART1, where UART0 could

be used for communication and UART1, namely the Tx, could be used for debugging purposes.

The Wemos D1 was connected to the microcontroller for control of the AT command software

via the UART0.

The decision which UART interfaces of the LaunchPad to use was made based on the proximity

of the pins on the board in such a way that only one of the BoosterPack pin sets was used.

Therefore, the Wi-Fi module was placed to use UART5, and the Bluetooth module was

connected to the UART7 interface.

Additionally, the status pin of the Bluetooth required a connection to a GPIO pin, for which the

same strategy applied. Hence, pin 5 of port M, also on the same set of pins with the two UARTs,

was used for the Bluetooth Status pin.

Figure 36 shows the hardware connection between the two communication modules and the

LaunchPad evaluation board.

FIGURE 36: TIVA C LAUNCHPAD PIN CONNECTIONS TO HC-05 AND WEMOS D1 MINI MODULES

54

In addition to these modules, a Debug Console interface for printing out messages from the

microcontroller using a UART interface was defined in the concept phase. The LaunchPad

provides an internal conversion between USB and the UART0 interface, allowing a USB cable

to transport the serial data in and out of a connected personal computer. Ergo, the UART0

interface was chosen for the Debug Console.

Table 12 shows the intended functionality of the modules and the pins with their alternative
functions and settings for implementing the communication system of the weather station.

 Module pin LaunchPad

Peripheral

LaunchPad pin LaunchPad

Alternative

function

Settings

Debug
Console

 UART0 Port A pin 1 –
output

U0Tx

Baud rate:
112500

Frame format:
8N1

Port A pin 0 –
input

U0Rx

Wi-Fi Wemos D1 mini
Rx

UART5 Port C pin 7 –
output

U5Tx Baud rate:
115200

Frame format:
8N1

Wemos D1 mini
Tx

Port C pin 6 –
input

U5Rx

Bluetooth HC-05 D1 Rx UART7 Port C pin 5 –
output

U7Tx Baud rate: 9600
Frame format:

8N1 HC-05 D1 Tx Port C pin 4 –
input

U7Rx

Bluetooth
State

HC-05 State
pin

GPIO Port M pin 5 -
input

none Interrupt: On input
high

Priority: highest

TABLE 12: DEFINED HARDWARE FUNCTIONALITY OF THE LAUNCHPAD FOR THE BLUETOOTH

AND WI-FI MODULES AND A DEBUG CONSOLE

5.1.2. Power Supply

5.1.2.1. Wemos D1 Mini Breakout Board

The Wemos D1 mini board needed a 3.3V supply. The LaunchPad provided a 3.3V power rail,

so the Wi-Fi module was powered on by that connection for this iteration of the project.

However, the module could also be powered on by plugging in a 5V micro USB supply source.

Suppose the USB output of the Wemos board is connected to a computer. In that case, the

module is powered on by the computer, and the computer can serve as an output for the AT

driver software via a serial console such as “PuTTY” or “Arduino IDE Serial Monitor”. The

computer console would then need to be configured with the same settings for the Wi-Fi module

setup on the LaunchPad. Thus, the computer console could output all the commands sent or

received on the Wemos D1 mini board via the UART0 interface.

Provided that a 3.3V supply powers the Wemos D1 mini board and it is at the same time it is

connected via the USB interface, this does not impact the performance. This feature was used

at a later point in the testing phase for the module.

55

5.1.2.2. HC-05 Breakout Board

The HC-05 Bluetooth module needs a 5V supply. As the LaunchPad provides a 5V power rail,

the module was powered on by that connection.

5.1.2.3. LaunchPad Board

The LaunchPad has several options for powering. A “power select” jumper (JP1) decides the

power source - BoosterPack, target USB cable, or the on-board debug interface (ICDI) USB

cable. While connected via its USB debug interface, the evaluation board can be at the same

time powered by it.

Both USB connections allow for 5V to be connected to the board. However, if the BoosterPack

is selected as a power source, the voltage should be 3.3V.

For the CF7 requirement, the weather station should be set up to use a separate battery as a

power source. Considering that the Wemos D1 mini and the HC-05 modules can both use the

LaunchPas for their power needs and the LaunchPad itself is powered by a battery via its target

USB, then all of the modules could be powered altogether.

In the proof of concept, the Wemos D1 was powered on via the 3.3V power rail on the

LaunchPad. The HC-05 was powered on via the 5V LaunchPad power rail, and the LaunchPad

itself was powered on via the default debug 5V USB connector.

 Software

This subchapter describes the software implementation for the communication channels and the

weather station functionality determined in the Concept chapter. It includes three main points of

the development:

1. initialization and configuration of the microcontroller and its peripherals (GPIOs, UARTs,

Hibernation module)

2. command processing software developed for the separate Wi-Fi and Bluetooth

communication channels.

3. command sets available for use for the two wireless channels of the weather station.

As this was the beginning of the new weather station, a new project was created in Code

Composer Studio (CCS), the recommended by Texas Instruments IDE, and the C programming

language was used, as this is considered the standard language for microcontroller

programming with CCS. Additionally, the TivaWare SDK was used for the rapid development of

the software.

5.2.1. MCU Initialization and Configuration

As mentioned in 4.3.2, the microcontroller program could be separated into two major parts:

setup and loop. The setup consists of the initialization and configuration of the microcontroller

and its peripherals. The loop typically concentrates on the functionality intended for the solution.

For the setup phase, the existing TivaWare drivers were used to initialize the system and its

components.

56

5.2.1.1. System Clock

First and foremost, the clock system for the microcontroller had to be set up. The

tm4c1294ncpdt microcontroller allows a system clock of up to 120 MHz. However, as there was

no requirement about the expected clock of the system, the system clock was directly selected

from the 16 MHz main external oscillator of the microcontroller.

5.2.1.2. Peripherals setup

After that the setup of the system clock was done, there was no particular sequence required for

the setup of the peripherals, so it was arbitrarily chosen as:

1. Setup of UART0 and Debug Console instance

2. Setup of UART7 and Bluetooth instance

3. Setup of UART5 and Wi-Fi instance

4. Setup of Hibernation module and RTC

5. Setup of GPIO PM5 as input for Bluetooth Connection Status pin and setup an

interrupt for it

5.2.1.3. UART

The two UART instances for the communication modules were included in the definition of the

appropriate module (UART5 in a file associated with the Wi-Fi and UART7 associated with the

Bluetooth) to provide a certain level of abstraction for the command software. Similarly, the

GPIO configuration for the Bluetooth status pin was also part of the Bluetooth definition.

Due to using a utility provided by the TivaWare software for UART0 as a Debug Console, there

was no need for further setup of reading/writing functions, software buffers, or interrupts as they

came with the utility.

A general UART wrapper was created to send and receive on the serial Rx and Tx lines. It

received references from the Wi-Fi and Bluetooth modules for the UART peripheral it should

print to/read from. The following functionality was supported in this wrapper:

• Waiting for a line: The <CR><LF> characters sequentially received define the end of

a line.

• Waiting for a specific string line: A comparison is made between the expected string

and the current line.

• Waiting until all data sent is received: The program receives lines and stores them in

the indicated receive buffer until the sequence “OK”<CR><LF> is received.

• Sending a command: The command is sent together with the <CR><LF> character

sequence to indicate the end of transmission.

• Sending data: The command sent is intended for the data upload to the server. The

prefix “A:” and the postfix “<LF>!” are added to the data. The composed data string is

thus transmitted on the serial line.

• buffers for used for storing received lines or lines to transmit

• buffer cleaning

57

The <CR><LF> character sequence at the end of commands is part of the typical command

format for data sent over to servers or console outputs, which is why this termination sequence

is commonly used in AT command software.

5.2.1.4. Hibernation Module

A wrapper was created for the Hibernation module providing two formatting options for the RTC

data:

• “YY.MM.DD hh:mm:ss” - for data requests from the Bluetooth or data upload via the

Wi-Fi link

• "MMM DD, YYYY hh : hh : ss AM/PM" - for displayed data on the Debug Console

The RTC requires the time and date first to be set and would otherwise return “INVALID DATE

AND/OR TIME” upon a time query. The wrapper allows the time and date of the RTC to be set

via the Debug Console or via a “set” command from the Bluetooth module.

Setting from the Debus console is made after the prompt requests input via the “>” sign followed

by the following lines, each of which requires entry:

• “Enter hour. Range: {0, ..., 23}:”

• "Enter minutes. Range: {0, ..., 59}:"

• "Enter date in format YY.MM.DD:"

The Hibernation module wrapper also provides functions for entering “hibernation mode”, which

is one of the microcontroller’s low-power modes.

As part of the investigation on the Hibernation module, it was found that the pin for connecting

separate battery source just for this module on the tm4c1294ncpdt microcontroller (v_bat) was

not taken out on the LaunchPad breakout board. This consequently meant that the board

needed to be powered on at all times to keep the saved data when entering hibernation mode.

Suppose a method for accessing the v_bat pin on the microcontroller is found. In that case, the

microcontroller could also execute hibernation mode where all power supplies are turned off to

the rest of the microcontroller and only the Hibernation module’s circuit is active [44, p. 245].

An external event on a switch or a predefined GPIO or an RTC match can wake the

microcontroller back and get all of the other microcontroller circuits powered on. The processor

then starts the typical sequence of running code.

An interrupt for waking up the peripheral 10 seconds after entering hibernation mode was

configured and enabled. Figure 37 shows a structogram with the setup for the Hibernation

module interrupt. Figure 38 shows the program flow of the associated interrupt handler.

58

FIGURE 37: STRUCTOGRAM OF HIBERNATION MODULE INTERRUPT SETUP

FIGURE 38: ACTIVITY DIAGRAM OF HIBERNATION MODULE INTERRUPT HANDLER

The wrapper was created based on an example for the Hibernation module peripheral provided

by TivaWare SDK.

5.2.1.5. UART Debug Console

For the user Debug Console setup, a utility UART driver wrapper was already provided by TI.

The utility is part of the TivaWare SDK and allows for buffered or unbuffered console

output/input. As part of the utility, an interrupt routine for the UART0 was included reacting to

input from the console or output from the application. The printing function was modified to

ensure that data is pushed from the software buffer to the UART0 Tx buffer.

5.2.1.6. GPIO

As part of the proof of concept, an interrupt for changing the station into demonstration mode

was set up based on the status of the Bluetooth Status pin. The GPIO pin 5 of Port 5 on the

59

LaunchPad was configured as an input pin connected to the Bluetooth Status pin with an

interrupt for an achieved “high” level on the line.

The interrupt and its associated handler were added to the application’s startup code

(tm4c1294ncpdt_startup_css.c) as instructed by the TivaWare Peripheral Driver Library User’s

Guide [40, p. 353] to ensure the fastest interrupt response time. Figure 39 shows the program

flow for the Port M handler.

60

FIGURE 39: ACTIVITY DIAGRAM FOR PORT M INTERRUPT HANDLER

61

5.2.2. Command Software

The command software used for communication between the weather station and the web

server or handheld controlling device is described in this section. The interfaces for the

Bluetooth and the Wi-Fi modules differ in the command model. This is because the

communication with the Wi-Fi is initiated by the weather station, but an external Bluetooth

handheld device initiates the communication with the Bluetooth.

There were two versions of the command software implementation. The first version consisted

of hardcoded command functions where a function needed to be implicitly called to execute a

command. The second was developed to shorten the amount of needed programming space

and relied on a single processing function and a grouping of the commands by type. This model

was inspired by the examples presented from TivaWare for the Hibernation module.

5.2.2.1. Processing

5.2.2.1.1. Bluetooth

The processing of the Bluetooth commands was done according to their AT type. There were

four groups of commands defined: “test”, “execution”, “set”, and “get”, and for each type, a two-

dimensional array with command definitions was created.

Upon a line received, the line is separated into arguments based on the number of special

characters, namely “:” or “+”. Up to three arguments are accepted for the command. The

number of arguments partially determine the type of the command.

A “test” command has only one argument, meaning there are no additional special characters in

the command. It starts with the “AT” prefix and is accompanied by a letter or a combination of a

letter and a numeral, similarly to the original Hayes command set.

A “get” command consists of two arguments, where the first is the “AT” prefix and the second is

the command name. A special character “?” at the end of the command name distinguishes the

command as “get” type.

In a similar manner, an “execution” command consists of two arguments but does not have a “?”

at the end of the command. In the current list of “execution” commands, the commands have a

“!” attached to the command name. The algorithm, however, will also accept other special

characters or no special characters after the command name, as is generally defined in the

extended Hayes command style. This change was made so that if a different HC-05 module or

another AT-command-supporting Bluetooth device is connected, the developers can change the

list of supported commands without a need to retouch the processing of the commands.

A “set” command consists of three arguments. The first one is the “AT” prefix, followed by the

connective “+” sign. The second is the name of the command followed by a “=” sign. The third

contains the command parameter arguments. The “=” is by standard the character used for

separation between the command and the parameters in the extended Hayes command style.

If a command has not been found among the tables provided, the algorithm would make it so

that “UNRECOGNISED” is sent back on the Bluetooth line. If the execution of the associated

command has been successful, an “OK” line would be sent back, and if it were not successful, a

“FAILED” line would be sent back.

62

The activity diagram in Appendix D - Activity Diagram of Bluetooth Command Line Processing

provides further information on the command processing algorithm.

5.2.2.1.2. Wi-Fi

As already mentioned, the Wi-Fi command processing model was different from that of the

Bluetooth module due to the initiation of the communication coming from the weather station.

The Wi-Fi processing function is called when a command needs to be sent to the Wi-Fi module.

A single parameter is passed to the function, indicating the command that would be sent. A

check upon an entry of the existing single command table is done for matching the command. If

the entry matches the command, a new string for sending with the command prefix “AT” and

accompanying name connected with a “+” sign is created. After that, depending on the

command and the command type, the following checks are made:

• If the command would be for sending data, an attempt for connecting to the TCP/IP

server is made. If the connection is successful, the data to be sent would be appended

to the started command build and send over to the server. After the send, the weather

station is to wait for a “SEND OK” string for successful execution status, and upon

receiving it close the TCP/IP connection.

• If the command is to restart the module, the command is sent, and the weather station

should wait for a “ready” string for successful execution status.

• For all other commands, the type of the command matters:

o Execute: The command is sent, and the weather station waits for an “OK” string

to be received for successful execution status.

o Set: The needed parameters are appended to the command via an additional

function call. After that, the command is sent. The weather station waits for an

“OK” string to be received for successful execution status.

o Get: The command is sent. The weather station reads received lines and parses

them to internal parameters until an “OK” string line is received. This indicates a

successful execution status.

o Set_get: The needed parameters are appended to the command via an

additional function call. After that, the command is sent. The weather station

reads received lines and parses them to internal parameters until an “OK” string

line is received for successful execution status.

If the command is not that of the current command entry, the algorithm continues until it reaches

the end of the command set table.

The command is always found within the table as the commands available for use are all in the

table.

If the execution was successful, the flow terminates by returning “OK” status. If the execution

was not successful, this is also reported back by a different return status, depending on the

failure reason.

63

5.2.2.2. Structures

5.2.2.2.1. Bluetooth

Four separate 2D array tables for the four Bluetooth command types were created to assist in

the command processing.

Each of the command entry types has:

• a pointer to a string holding the command name (e.g. “CWTIME?”),

• a function pointer for the action needed to be executed,

• and a pointer to a string with a brief description for the command.

The “get” command type has an additional pointer holding the expected return command name.

5.2.2.2.2. Wi-Fi

More diverse structures were associated with the Wi-Fi module compared to the Bluetooth

module. This was due to the vast number of parameters that can be queried or set on the Wi-Fi

module because of the installed AT firmware.

A single table was defined for holding all of the commands. An entry in the command table

consists of seven parameters:

• a pointer to a string holding the name of the command together with the “AT” prefix

(e.g. “AT+CIPSTART=”),

• an enum stating the command (e.g. connectTCP_IP),

• an enum with type generalisation of the command type (e.g. set),

• a function pointer to a function which appends the needed by the command

parameter values and is used for “set” and “set_get” command types,

• a number indicating the expected number of lines before an “OK” is received. The

value is set to “0” for “set” and “execute” command types,

• and a pointer to a function that sets weather station parameters from received input

from the module defined only for the “get” and “set_get” command types.

An enum structure was created as part of the Wi-Fi module definition for switching the states of

the module as needed (see Figure 40). This parameter was based on the state returned from

the AT software for the Wi-Fi module. It also fulfilled partially the definition of Wi-Fi states

mentioned in 4.3.2. The status parameter of the module is assigned when a query to the module

for checking module status is made. Additionally, if a Bluetooth command requesting the

module status is made, the value of this parameter is returned a parsed to a string value to be

sent back to the Bluetooth connected device.

typedef enum WlanStatus{
 inactive,
 idle,
 IPConnected,
 transmitting,
 IPDisconnected,
 APDisconnected
}tWlanStatus;

FIGURE 40: ENUM HOLDING THE POSSIBLE WLAN STATES FOR THE WI-FI MODULE

64

Other structures which were defined were for keeping the current operating mode of the Wi-Fi

(as “Station”, “Access Point”, or both) and for keeping the enum types needed for the table.

5.2.2.3. AT Command Sets

5.2.2.3.1. Bluetooth

The Bluetooth commands defined in 4.3.1.3 were implemented with the addition to several other

commands:

• uploading data via the Wi-Fi link,

• checking the status of the Wi-Fi connectivity,

• checking or setting the tracking of the solar panel position,

• reading and writing data from/to the weather station SD card,

• putting the weather station into hibernation mode.

A list with the implemented commands can be checked in Appendix E - Bluetooth AT

Commands Implemented.

All “set” commands, except for date and time set, were configured to return that the action was

not executed. This is due to the fact that the current implementation does not include the

needed modules whose data is to be set.

In a similar manner, “get” commands return hardcoded data, except for data acquired from the

RTC module. Although a hibernation function was defined, due to the complications described

in 5.2.1.4, the execution of the command does not happen.

Similarly, the “Bluetooth Echo” was partially configured - a handler was written, but no actual

interrupt was configured for UART7. Therefore, the function currently returns that enable/disable

occurs, but as no interrupt has been configured, the echo parameter is never evaluated. This

implementation was done due to concerns for constantly entering the interrupt for the UART7

and printing data back when the “BT Echo on” was selected. Additionally, this could have a user

on the BT line confused as data sent to the weather station would be immediately returned.

Consequently, if the functionality is to be used, an additional interrupt for UART7 on Receiving

should be configured in the module setup phase.

For the “CGUI” command, semicolon-separated hardcoded values are placed and returned. The

data used is the same as the one for the Wi-Fi data upload link, where 21 values are sent, and

six of them are the changing RTC values.

The parameter names used in the command definitions are listed in Table 20: List of Bluetooth

Command Parameters and Their Meanings as part of Appendix C - Bluetooth Commands to be

Implemented and Command Parameter Definitions.

A set of tests proving that the commands defined work as intended was added to the test

scenarios in Appendix G - Test Scenarios.

5.2.2.3.2. Wi-Fi

The Wi-Fi commands supported by the weather station are listed in Appendix F - Wi-Fi AT

Commands Implemented. The list includes the connection commands defined in 4.3.1.2 and

65

extends with several others from the ESP8266 AT command software [31], which could be

helpful in the future implementations of the weather station.

For a command to be used, a call to the Wi-Fi processing function needs to be made. The

processing function requires the command defining enum parameter to process the command.

In the current implementation of the Wi-Fi commands, all of the parameters used are predefined

and hardcoded, except the length of the upload data. The length of the upload data is

determined in time based on the current data string, whose length could vary due to the RTC

values included. For a complete list of the parameters used, see Table 26 in Appendix F - Wi-Fi

AT Commands Implemented.

Most “get” functions were left blank, meaning they do not assign any Wi-Fi module data due to a

lack of module parameters for setting. Due to the supported commands, a rework of the Wi-Fi

module is encouraged to incorporate more of the ESP8266 parameters.

 Additions

During the implementation process, two features outside the derived concept were developed.

The first was a user-defined LED on the LaunchPad as a visual help for determining when the

Bluetooth has been connected. The second was an implementation of the I2C0 interface on the

LaunchPad with the microcontroller as the initiator of the communication. In addition, a BME280

module retrieved from “Solar-Jan-20” was connected to the I2C0 interface to test the connection

and possibly acquire additional data for uploading.

5.3.1. Bluetooth LED

An LED associated with Port N pin 1 of the LaunchPad was defined to output the status

received on PM5, thus visually informing if the Bluetooth has been connected to. The setup of

the MCU for this addition is listed in Table 13.

 MCU
Peripheral

MCU pin MCU
Alternative

function

Settings

Bluetooth
State LED

GPIO Port N pin 1- output none Output the same signal as Port M pin
5 input

TABLE 13: HARDWARE DEFINITION OF THE BLUETOOTH STATUS LED

5.3.2. I2C

An I2C interface was configured to accommodate sensors that would be included in later

versions of the weather station. A BME280 sensor retrieved from “Solar-Jan-20” was used to

test the interface. The BME280 is a sensor from Bosch Sensortec that provides temperature,

humidity and barometric pressure readings [41]. Typically the sensor provides SPI and I2C

interfaces. However, the development board module which was used only extended the I2C

interface (see Figure 41).

66

FIGURE 41: PINOUT OF THE BME280 MODULE BOARD [42]

5.3.2.1. Hardware

The connection from the BME280 sensor to the microcontroller was made so that the same

LaunchPad BoosterPack previously used for the WI-Fi and Bluetooth module connections was

utilized. The I2C number 0 with GPIO pins PB3 for the Serial Data line (SDA) and PB2 for the

Serial Clock line (SCL) was enabled for communication. The connections to the microcontroller

for the inclusion of this module are listed in Table 14.

The BME280 sensor board needed a 3.3V supply and was powered up by the 3.3V power line

of the LaunchPad.

 Module pin MCU
Peripheral

MCU pin MCU
Alternative

function

Settings

BME280 SCL I2C0 Port B pin 2-
output

SCL Microcontroller as
leader of the
connection SDA Port B pin 3-

Output/input
SDA

TABLE 14: HARDWARE DEFINITION FOR USING I2C0 FOR CONNECTING A BME280 SENSOR

5.3.2.2. Software

5.3.2.2.1. I2C wrapper

A wrapper for using the I2C0 serial interface with the microcontroller as the leader of the

communication channel was defined. The microcontroller feeds the clock to the SCL line, thus

controlling the devices connected on the I2C0 bus.

Unlike UART and SPI, I2C uses one bi-directional line for communication and requires the

addresses of the follower devices to initialize a connection with any of them. In addition, the

leader needs to know the registers of the connected followers to read or write data from/to them.

The wrapper included functions for sending and receiving data via the I2C0 as a line leader was

based on the TivaWare I2C driver and the driver provided for I2C connectivity in “Solar-Jan-20”.

5.3.2.2.2. BME280 driver

Three BME280 libraries were evaluated for integrating the BME280 module to the current

weather station. The first was provided by the producer Bosch Sensortec and provided options

67

for connecting the sensor via SPI or I2C. The other two were a Github library for BMP280 [43]

and a customized “Solar-Jan-20” driver, both of which extended the Bosch driver. A comparison

table for the available drivers is listed in Table 15. The driver available from “Solar-Jan-20”

provided temperature, humidity, and pressure readings, whereas the other did not provide a

humidity reading. The “Solar-Jan-20” was chosen because it was considered to add more value

if the driver and module continued to be used for the weather station project.

 Features

Bosch Sensortec SPI and I2C available, double-precision floating-point and

integer versions, 32- and 64-bit implementations for pressure,

results can be provided in decimal values for C, Pa, and %

relative humidity

Solar-Jan-20 Based on the Bosch driver, compensation for ambient

temperature error, data is in held in bme280 structure

Github source Based on the Bosch driver, available for SPI and I2C on Tiva

C boards, returns decimal values for C and Pa, no humidity

value available

TABLE 15: LIST OF DRIVERS EVALUATED FOR THE INTEGRATION OF A BME280 SENSOR

5.3.2.3. Tests

A set of tests was added to the test scenarios in Appendix G - Test Scenarios to accommodate

the additional features.

68

6. Results and Evaluation

This chapter looks at the functionality delivered in the implementation phase after the testing

with the defined test scenarios. The results are compared and evaluated with the defined

requirements in 3.2.

 Test Results

The tests from Appendix G - Test Scenarios were performed to confirm the functionality stated

in the Implementation chapter.

6.1.1. Hardware

The hardware connections were proven via the functionality of the software for the UART5,

UART7 and pin 5 of Port M of the LaunchPad board. The UART interfaces have been able to

correctly deliver streams of data to and from the connected devices. The PM5 pin has been

successfully detecting input from the Bluetooth status pin. The PN1 user-defined LED was

lighting up according to the connection status received on PM5.

6.1.2. Debug Console

The Debug Console on UART0 was configured successfully to deliver messages from the

microcontroller program to a personal computer connected via USB to the LaunchPad. The

program used for displaying the serial output from the Debug Console was “PuTTY”. At the

beginning of the microcontroller program, the Console will be cleared out and start at the

leftmost upper corner of the serial application.

6.1.3. Wi-Fi module and AT Software

For the Wi-Fi module, the statuses of each command were set to be outputted on the already

established Debug Console via a descriptive message with the format “WLAN:<Command

Description>……<status>”.

A function including all the command definitions for connecting to the web server was written

and set to execute at the setup phase of the microcontroller program. The function was defined

in such a way that unless all steps are completed, the program cannot continue. The conditions

for the successful execution were:

• the router with the access point “Wetterserver” and password “wetterdeluxe” to be in the

range of the Wi-Fi module

• the web server with IP “192.168.178.82” and port “100” defined for data input is

connected to the router.

The sequence tested was as described in Figure 34 in chapter 4.3.2.2.

Figure 42 and Figure 43 display the result of the test performed, proving that the data upload

was successful.

69

FIGURE 42: WEB PAGE GUI OF “PRO-JAN-17” WITH OLD DATA

FIGURE 43: WEB PAGE GUI OF “PRO-JAN-17” WITH NEW DATA CONTAINING ONLY ZEROES

Additionally, a comparison between the PuTTY output and another serial console (Arduino IDE

Serial Monitor) as indicated by TS5, TS6, TS7, TS8, TS9, TS10, TS11, TS12 was performed to

confirm that the execution was successful. The PuTTY console is connected to the Debug

Console, and the Arduino IDE Serial Monitor is connected to the serial USB output of the

Wemos D1 mini module. This also confirms that the Debug Console operates as expected

according to TS4 (see Figure 44).

70

FIGURE 44: PUTTY AND ARDUINO IDE SERIAL MONITOR OUTPUTS

6.1.4. Bluetooth module and AT Software

The tests for the Bluetooth were performed using an application called “Serial Bluetooth

Terminal” from the Google Play Store for Android [44]. The application was tested with two

devices using it, successfully recognized the paired devices and connected them, sustained the

connection, and sent and received data.

Figure 45 shows the main interface of the chosen application together with some of the

performed command tests. All of the Bluetooth command tests performed as expected. The set

commands always received a “FAILED” response, the “get” commands returned dummy

hardcoded data, the RTC set and get functions were able to successfully update the real-time

clock and acquire data from it. The Wi-Fi status was returned correctly, and data was

successfully uploaded to the server using the Bluetooth command “AT+CWIFISEND!” as can be

verified in Figure 46.

71

FIGURE 46: WEB PAGE GUI OF “PRO-JAN-17” AFTER RTC SETUP WITH TIME AND DATA FROM

BLUETOOTH AND DATA UPLOAD VIA THE WI-FI LINK

FIGURE 45: BLUETOOTH APPLICATION WITH COMMAND TESTS PERFORMED

72

6.1.5. I2C and BME280

The test for the BME280 and the associated I2C0 interface was to send and receive a packet

successfully to and from the module. This was done via the driver functions for the initialization

and update of the BME280. The initialization first performs a reset on the module and then

reads data to compare the assigned module ID to the ID stored in the device memory. At most

times, the initialization was completed, and the module ID was verified. However, due to the

hard reset of the module, sporadically, the program would not be able to retrieve data from the

BME280 immediately after reset. An implementation of a function waiting for the restart to be

completed for the module should be implemented to ensure that it is ready before new access

from the microcontroller is initiated. Because of this and probably other issues with

writing/reading to/from the module, no calibrated data could be acquired for temperature,

humidity and barometric pressure.

 Evaluation

All of the tests performed, except for the BME280 and associated I2C0 interface, were

successfully completed. The tests proved the fulfilment of the following requirements for the

communication system: CF1, CF2, CF3, CNF1, CF4, CF5, CF9, CF11, CF12 , F5.

Additionally, in the concept design, the following were considered:

- the modules chosen are available as development boards with standardly spaced pins to

allow for connection to a breadboard or additional connectors (CF8)

- the chosen Wi-Fi and Bluetooth modules can be directly powered by the weather station

base controller via 3.3V and 5V accordingly. The LaunchPad board can be powered via

a 5V USB source, thus powering the attached modules (CF8)

- the microcontroller base TM4C1294ncpdt allows three low-powered modes and a

hibernation mode (partially F11) and provides sufficient other peripherals and features

for the development of the fully equipped weather station

- a handheld device for connecting to the weather station via Bluetooth was chosen

according to the specifications given by the stakeholders (CF10)

- the weather station can receive commands from the Bluetooth, recognize them and

categorise them successfully and answer them accordingly

- the commands defined for the Bluetooth and the Wi-Fi communication were

implemented using tables with definitions for the commands and their execution. Adding

new commands would be easily feasible via adding a new command entry to the

respective command table. No changes are needed on the processing of the commands

(CF6)

In conclusion, all requirements set for developing the weather station’s communication system

were met.

73

7. Conclusion

 Summary

The work presented in this paper aimed to create a framework for the development of an

automated solar-powered weather station and the implementation of its Wi-Fi and Bluetooth

wireless communication channels. It was designed as a proof of concept where the Wi-Fi link is

used for uploading data to a remote server, and the Bluetooth link is used for demonstration of

the weather station features and maintenance.

Specifications for the weather station were derived together with ones for the communication

subsystem based on stakeholder requirements and analysis of other weather stations

developed by students or commercially available.

A development framework was created based on the EK-TM4C1294XL LaunchPad board as

the core for the weather station. The software was built with Code Composer Studio and the C-

written TivaWare SDK provided by Texas Instruments.

A handheld device for demonstration and maintenance of the weather station connecting to the

Bluetooth channel was chosen for the later iterations of the weather station project. It has a

rugged appearance and is Android-based to allow uncomplicated development of the weather

station controlling application.

The specified proof of concept was delivered with both the Wi-Fi and Bluetooth links as

hardware and software components. The software included an extendable set of AT style

commands for both communication channels. The Wi-Fi medium was able to successfully

connect to a specified access point and server and upload data to the server. The Bluetooth

medium was able to recognize commands sent by an external Bluetooth connected device and

execute the functionality associated with the given command on the weather station. Because of

the nature of the Wi-Fi connection, the communication via this channel was set to be initiated by

the weather station. On the other hand, the communication via Bluetooth was set to be initiated

by the Bluetooth connected handheld device. Once a connection has been established, a user

can query commands to the weather station.

Multiple tests were performed to ensure that the commands are received, processed and sent

correctly for both channels. They were performed using a Debug Console connected to output

informative messages about the current program status over the existing Debug USB of the

LaunchPad board.

Furthermore, a user-defined LED on the LaunchPad was configured to light on when a device

has been connected via Bluetooth to the weather station, and an interface for using the I2C0 bus

as a leader was provided and partially tested.

Deep comprehension of microcontrollers, C programming, bus systems, sensor technology, and

software engineering was required to develop the communication subsystem of the weather

station. Therefore the complexity of the project has been an excellent showcase for the

knowledge and experience gained by students from computer science and electrical

engineering programs of the Hamburg University of Applied Sciences.

74

 Future Work

Future work should include incremental expansion of the existing source code.

Given that the functionality of the communication modules is similar, and all the modules have

some common features, an object-oriented approach should be considered to allow a good

level of abstraction. For the existing framework to continue to be used and the OOP approach to

be integrated, the C++ programming language could be suggested for further development of

the weather station.

An OOP approach would surely use additional program space. However, if the peripherals of

the EK-TM4C1294XL are initialized and configured using the existing build-in TivaWare

functions on the ROM memory, the overload to the program would be reduced considerably.

Furthermore, an LED indicating when the setup of the microcontroller has been completed

would allow for visual help with identifying when a device can be connected to the weather

station via Bluetooth. In addition, some error handling should be implemented, and universal

status definitions should be introduced. These features could help with the automation of the

weather station and the further development of the weather station framework.

I

Appendix A - Table with Detailed Overview of

Features of Previously Developed Weather

Stations

Entw-

Jan-

13

Entw-

Jan-

14

Real-

Jan-

14

AWDAD-

Jan-16

Real-

Jan-16

Pro-Jan-17 Wett-

Jan-

18

Solar-

Jan-20

Solution

still

available

No No No No No Yes No Yes

Temperatu

re

SHT1

5,

BMP0

85

SHT1

5,

BMP0

85

SHT1

5

SHT15 SHT 15,

BMP085

HTU21D,

BMP180

SHT

15,

BMP0

85

BME2

80

Humidity SHT1

5

SHT1

5

SHT1

5

SHT15 SHT 15 HTU21D SHT

15

BME2

80

Air

pressure

BMP0

85

BMP0

85

BMP0

85

BMP085 BMP085 BMP180 BMP0

85

BME2

80

Altitude N/A BMP0

85

Get

via

GPS

N/A BMP085 Venus638F

LP

BMP0

85,

Fona

808

MPU6

050

Direction/c

ompass

HMC

6352

HMC6

352

CMPS

03

HMC635

2

HMC635

2

HMC5883L HMC

5843

HMC5

883L

Position/

GPS

N/A Ultima

te

GPS

break

out

Board

(MTK3

339)

Ultima

te

GPS

break

out

Board

(MTK3

339)

Venus63

8FLPx

Venus83

8FLPx

Venus638F

LP

Fona

808

NEO-

6M

Wind

direction

and speed

N/A WS23

00-15

WS23

00

WS2300 WS2300-

15

WS2350 WS23

00-15

SEN-

08942

Real-time

clock

DS13

07

DS13

07

Maxim

OS13

87

DS1307 RTC130

7

DS3234 Fona

808

Get

via

GPS

II

Power

data sent

Yes Yes No Yes No Yes No Yes

SD card Yes Yes Yes Yes Yes Yes Yes Yes

Communic

ation

module

XBee

Pro

S2

Xbee

S1

Xbee

Pro

S1

Custom

SIM

using

WLAN

XBee

Pro S1

ESP-01 HC-

05

HC-05

Communic

ation

protocol

Embe

r

ZNet

(a

compl

ete

Zigbe

e

proto

col)

Zigbe

e

stack

+

DigiM

esh

networ

k

protoc

ol

Zigbe

e

stack

+

DigiM

esh

networ

k

protoc

ol

Wi-Fi Zigbee

stack +

DigiMesh

network

protocol

Wi-Fi Bluet

ooth

Blueto

oth

Data

output

N/A N/A Arduin

o

COM

Raspberr

y Pi2,

Server

+Databa

se

XBee

attached

+

Windows

/Linux

app+

Microsoft

SQL

Server

LocalDB

Raspberry

Pi3, TCP

Server +

SQLite3

database

N/A Windo

ws

app,

no

databa

se

MCU Ardui

no

UNO

Arduin

o

UNO

Arduin

o

UNO

EK-

LM4F12

0XL from

TI

Arduino

DUE

MSP-EXP43

2P401R

from TI

Ardui

no

DUE

STM8

L152

TABLE 16: TABLE WITH DETAILED OVERVIEW OF FEATURES OF PREVIOUSLY DEVELOPED

WEATHER STATIONS

III

Appendix B - Comparison Tables for Handheld

Devices

Short

Description

System Display

and

Graphics

Available

ports

Communication

Alpha 712

by Blue

Chip

Technolog

y

Based in

the UK [45]

Rugged

aluminum

front panel

tablet

CPU:

1GHz Cortex A8

ARM RISC,

256MB SDRAM

OS:

Windows CE 6.0

R3 or Linux

Ubuntu or

Android

Memory:

256 MB RAM,

512 MB Flash,

MicroSD sloth

7.1" TFT

touchscree

n 800x400

External:

2x USB 2.0

1x USB 1.1

Analog Audio-

in & Out plugs

2x RS232

1x RS485

HDMI

Optional

Video capture

inputs

Internal:

12x GPIO

Optional GPS

Optional GSM

Optional 2G

Ethernet

Bluetooth

Wi-Fi

Starterkit-

N2930

Baytrail

(Pico) by

Anders

Electronics

PLC

Based in

the UK [46]

Separate

display and

processor

with visible

cabling

CPU:

1.86 GHz x86

Intel Bay Trail 4-

core N2930

OS:

Linux or

Windows 10

LTSB or

Windows 7/8

Memory:

4 GB RAM,

16 GB SSD

7th Intel

Graphics

7" or 10.1"

TFT

touchscree

n800x480

or

1280x800

LVDS

HDMI

Optional VGA

7x USB 2.0

1x USB 3.0

SATA2

mSATA

2x PCIe

2x UART

Ethernet

Optional Wi-Fi

Starterkit-

iMX6

by Anders

Electronics

PLC

Based in

the UK [46]

Separate

display and

processor

CPU:

1.2 GHz ARM

Cortex A9 i.MX6

4-/2-/1-core

OS:

Linux

Memory:

4 GB RAM,

GPU3Dv4

7’’ or 10.1’’

TFT

touchscree

n800x480

or

1280x800,

2x LVDS

HDMI

1x USB 2.0

OTG

4x USB 2.0

Host

Optional

SATA-II

Optional PCIe

Up to 2x

Ethernet

Optional

Bluetooth

Optional Wi-Fi

IV

32 GB SSD Parallel

RGB

Up to 2x

UART

Up to 24

GPIO

Optional CAN

I2C

Starterkit-

T335

by Anders

Electronics

PLC

Based in

the UK [46]

Separate

display and

processor

CPU:

600 MHz ARM

Cortex A8

AM3354 Single

Core

OS:

Linux

Memory:

512 MB DDR,

1 GB NAND

PowerVR

SGX530,

4.3" or 7"

TFT

touchscree

n,

800x480,

Parallel

RGB

LVDS

DVI

1x USB 2.0

OTG

Up to 4x USB

2.0 Host

Up to 8x

GPIO

1x CAN

2x I2C

1x SPI

Optional

Ethernet

Optional Wi-Fi

TABLE 17: COMPARISON LIST OF COMPUTER MODULES WITH DISPLAY

System description Features Price

Scorpion 8

Slim by

Bressner

Technology

GmbH

Based in

Germany

[47]

CPU:

2.0 GHz MSM8953

Quad-Core

OS:

Android 9.0

Memory:

4GB RAM

64GB ROM

Battery:

7500 mAh

Display: 8" 1280x800 Corning Gorilla

Glass, 5-point multitouch

Weight and dimensions: 647g, 220 x 143,4

x 15,7 mm

Ports: 1x micro USB, 1x mini HDMI,

3.5mm audio jack, 1x SIM, 1x micro SD

Communication: Wi-Fi, Bluetooth, GPS,

NFC, 4G LTE

Certifications: IP65, MIL-STD-810G

516 €*

TOUCAN

Mobile 8.3

by

BRESSNER

Based in

Germany

[48]

CPU:

2.4 GHz Intel Atom

Z3795 Quad-core

OS:

Windows 10 IoT or

Android 6.0

Memory:

4GB RAM

64 or 128 GB

eMMC(Flash)

Battery life:

8-10 Wh

Display: 8.3" 1920×1200 Corning Gorilla

Glass, 10-point multitouch

Weight and dimensions: 758g, 227 x 150 x

12.5 mm

Ports: 1x USB 2.0, 3.5mm audio jack, 1x

micro SD

Communication: Wi-Fi, Wi-Fi Direct,

Bluetooth, GPS, NFC, Optional LTE

Certifications: IP65

1020

€*

V

RT71 7''

Rugged

tablet PC by

XANARC

Direct

Based in the

USA [49]

CPU:

1.5 GHz ARM Cortex

53 Quad-core

OS:

Android 7.0

Memory:

3 GB RAM

32 GB ROM EMCP

Battery:

9650mAh

Display: 7" 1280 x 720

Weight and dimensions: 662g, 202 x 123 x

22 mm

Ports: 1x USB Type-C, 3.5mm audio jack,

1x RS232, 1x SIM, 1x micro SD

Communication: Wi-Fi, Bluetooth,

2G/3G/4G LTE, GPS, NFC

Certification: IP65, NEMA6P

478 €**

Apglos

Armour by

Apglos

Based in the

Netherlands

[50]

CPU:

1.5 GHz ARM Cortex

53 Quad-core

OS:

Android 7.0

Memory:

3 GB RAM

32 GB ROM EMCP

Battery:

10000mAh

Display: 7.9 '' 1024x 768 capacitive

Weight and dimensions: 860g, 159 x 233 x

21 mm

Ports: 1x USB Type-C, 3.5mm audio jack,

1x SIM, 1x micro SD

Communication: Wi-Fi, Bluetooth,

2G/3G/4G LTE, GPS

Certification: IP67, MIL-STD-810G

490 €**

AIM-35AT-

02307000

by

Advancetec

h

Based in

Asia but with

distributor in

Germany

[51]

CPU:

1.44 GHz Intel®

Atom™ x5-Z8350

Quad-core

OS:

Windows 10 IoT or

Android 6.0

Memory:

4 GB RAM

64 GB eMMC

Battery:

4900mAh (18.6 Wh)

Display: 8'' 1920 x 1200 Gorilla Glass 3,

10-point multitouch

Weight and dimensions: 600g, 240 x 142 x

14.5 mm

Ports: 1x micro HDMI, 1x micro USB,

3.5mm jack, 1x micro SIM, 1x micro SD,

1x AIM extension 14-pin pogo connector,

1x AIM dock 16-pin pogo connector

Communication: Wi-Fi, Bluetooth, NFC

Certification: IP65

707 €**

TABLE 18: COMPARISON TABLE OF INDUSTRIAL RUGGED TABLETS

* price available on dimedtec.de: last accessed on 22.04.2021
** price available on the original web page of the producer: last accessed on 22.04.2021

VI

Appendix C - Bluetooth Commands to be

Implemented and Command Parameter

Definitions

 Description Return

AT Test the module OK

ATE<n> Activate/Deactivate
remote echo

OK

ATI Get the name of the
weather station

<ID>

AT+CTIME=<YY>,<MM>,
<DD>,<hh>,<mm>,<ss>

Set the date and
time

OK

AT+CGPSPOS=<lat>,<lon>[,<alt>] Set the GPS
position

OK

AT+CGPSPWR=<n> Turn GPS on/off OK

AT+CMESINTV=<intvl> Set the
measurement

interval

OK

AT+CUPINTV=<intvl> Set the Bluetooth
upload interval

OK

AT+CSPALIGN! Request alignment
of the Solar Panel

OK

AT+COPMODE=<opMode> Set the operating
mode of the

weather station

OK

AT+CLED=<LED>,<n> Set an LED on/off OK

AT+CTEMP? Get temperature
reading

+CTEMP:<temp>
OK

AT+CPRES? Get pressure
reading

+CPRES:<press>
OK

AT+CHUM? Get humidity
reading

+CHUM:<hum>
OK

AT+CTIME? Get date and time
reading

+CTIME:<YY>,<MM>,<DD>,
<hh>,<mm>,<ss>

OK

AT+CWIND? Get wind speed and
direction reading

+CWIND:<w_spd>,<w_dir>
OK

AT+CGPSPOS? Get GPS position
and altitude

+CGNSPOS:<lat>,<lon>,<alt>
OK

AT+CWSPWR? Get the power
statuses of the
weather station

+CPWR:<pwr_stats>
OK

VII

AT+CGUI? Get readings in GUI
format string

+CGUI:<YY>,<MM>,<DD>,<hh>,
<mm>,<ss>,<temperature>,

<pres>,<hum><w_dir>,<w_spd>,
<zen>,<azm>,<lat>,<lon>,<alt>,

<list_pwrStats>
OK

TABLE 19: LIST OF BLUETOOTH AT COMMANDS TO BE IMPLEMENTED AND THEIR EXPECTED

ANSWERS

 Parameter meaning Value type

<ID> Name of the weather station String with an artificial name for
the weather station

<YY> Year Numerical from 0 to 99 relating
for years after 2000

<MM> Month Numerical from 1 to 12

<DD> Day Numerical from 1 to 31

<hh> Hour Numerical from 0 to 23 (UTC)

<mm> Minute Numerical from 0 to 59

<ss> Second Numerical from 0 to 59

<zen> Zenit Numerical

<azm> Azimuth Numerical

<lat> Latitude Numerical

<lon> Longitude Numerical

<alt> Altitude Numerical

<hum> Humidity Numerical

<press> Atmospheric pressure Numerical

<temp> Temperature Numerical

<w_dir> Wind direction Numerical

<w_spd> Wind speed Numerical

<n> On or Off status Numerical 0 or 1

<intvl> Interval Numerical in seconds

<opMode> Weather Station operating mode Numerical

<LED> LED number Numerical

<i_bat> Battery current Numerical in mA

<v_bat> Battery voltage Numerical in mV

<i_solar> Solar panel current Numerical in mA

VIII

<v_solar> Solar panel voltage Numerical in mV

<v_sys> System voltage Numerical in mV

<list_pwrStats> A list with the power statuses of the
weather station

Numerical

<bme> Temperature, Pressure or Humidity
data from BME280 module

Numerical in 0.01C, 1 Pa or
0.01%

<cpu> Temperature of the CPU Numerical in 0.01C

<qmc> Temperature from QMC5883L module Numerical in 0.01C

<mpu> Temperature from MPU6050 module Numerical in 0.01C

TABLE 20: LIST OF BLUETOOTH COMMAND PARAMETERS AND THEIR MEANINGS

IX

Appendix D - Activity Diagram of Bluetooth Command

Line Processing

X

Appendix E - Bluetooth AT Commands

Implemented

 Description

AT Check Bluetooth connection

ATE0 Disable Bluetooth Echo

ATE1 Enable Bluetooth Echo

TABLE 21: LIST OF AVAILABLE BLUETOOTH AT TEST COMMANDS

 Description

AT+CWKUP! Execute manual wakeup

AT+CHIB! Manually put microcontroller in Hibernate mode

AT+CALIGN! Request alignment of the solar panel

AT+CWIFISEND! Send data from microcontroller to Server via Wi-Fi

TABLE 22: LIST OF AVAILABLE BLUETOOTH AT EXECUTION COMMANDS

Description

AT+CTIME=<YY>.<MM>.<DD>
<hh>:<mm>:<ss>

Set real time clock value

AT+CGNSPOS=<lat>,<lon>[,<alt>] Set GPS coordinates

AT+CINTV=<intvl> Set interval for taking measurements

AT+CTRACK=<n> Set on/off the solar panel tracking

AT+CTURN=<dir> Start manual calibration of the magnetometer

AT+CWFILE=<data to write> Write the weather data received from BT to the SD card

AT+CBTINTVL=<intvl> Set interval for sending measurements to BT connected
device

AT+CGPSPWR=<n> Set GPS power on/off

AT+CTESTOP=<n> Set maintenance operating mode of the weather station
on/off

AT+CLED=<LED_nr>,<n> Set a given LED on or off

TABLE 23: LIST OF AVAILABLE BLUETOOTH AT SET COMMANDS

 Return command Description

AT+CALIGN? +CALIGN:<compound_parameter> Get current alignment of solar
panel

AT+CWSNAME? +CWSNAME:
<compound_parameter>

Get Station Name

XI

AT+CTEMP? +CTEMP: <temp> Check current temperature
measurements

AT+CPRES? +CPRES: <pres> Check air pressure

AT+CHUM? +CHUM: <hum> Check relative humidity

AT+CTIME? +CTIME:<YY>.<MM>.<DD>
<hh>:<mm>:<ss>

Check real time clock value

AT+CWIND? +CWIND:<compound_parameter> Check wind direction and speed

AT+CGNSPOS? +CGNSPOS:<compound_parameter> Check GPS coordinates

AT+CPWR? +CPWR:<compound_parameter> Check current and voltage
measurements

AT+CINTV? +CINTV:<intvl> Get interval for taking
measurements

AT+CBTINTVL +CBTINTVL:<intvl> Get interval for sending
measurements to BT connected

device

AT+CGUI? +CGUI:<compound_parameter> Get data used for the GUI

AT+CTRACK? +CTRACK:<n> Get if the solar panel is being
tracked or not

AT+CRFILE? +CRFILE:<compound_parameter> Read last line from SD card and
return it

AT+CWIFI? +CWIFI:<n> Get Wi-Fi status - if available and
if connection is established

TABLE 24: LIST OF AVAILABLE BLUETOOTH AT GET COMMANDS

XII

Appendix F - Wi-Fi AT Commands Implemented

 Command
type

Description

AT Execute Test AT Startup

ATE0 Execute Switch echo off

ATE1 Execute Switch echo on

AT+RST Execute Restart the Module

AT+GMR Get Check AT and SDK Version
Information

AT+RESTORE Execute Reset all parameters saved in flash
and restores the factory default

settings of the module. The chip will
be restarted when this command is

executed.

AT+UART_CUR=<baudrate>,<databits>,
<stopbits>,<parity>,<flowcontrol>

Set Set the UART configuration of the
Wi-Fi module

AT+UART_CUR? Get Get the UART configuration of the
Wi-Fi module

AT+GSLP=<time> Set_get Put the Wi-Fi module in deep sleep
mode for X ms

AT+SLEEP=<sleep mode> Set Set sleep mode of the Wi-Fi module

AT+SLEEP? Get Get the sleep mode of the Wi-Fi
module

AT+WAKEUPGPIO=<enable>,
<trigger_GPIO>,<trigger_level>

Set Configure a GPIO to wake up the
module from light-sleep mode

AT+SYSRAM? Get Get the remaining RAM of the Wi-Fi
module

AT+CWMODE=<wifi_mode> Set Set the Wi-Fi mode
(Station/AP/Station+AP)

AT+CWMODE_CUR? Get Get the Wi-Fi mode
(Station/AP/Station+AP)

AT+CIFSR Get Check if the module is connected to
an AP

AT+CIPMUX=0 Execute Disable multiple connections to the
Wi-Fi module

AT+CIPMUX=1 Execute Enable multiple connections to the
Wi-Fi module

AT+CIPMUX? Get Query the connection mode of the
Wi-FI module

AT+CWJAP_CUR=<ssid>,<pwd> Set Connect to an AP

AT+CWJAP_CUR? Get Get the AP to which the Wi-Fi is
connected to

XIII

AT+CWLAP Get List available APs

AT+CWLAP=<ssid> Set Check if an AP with a specific SSID
is available

AT+CWQAP Execute Disconnect from an AP

AT+CIPSTA_CUR=<module_ip> Set Set the IP address of the Wi-Fi
module

AT+CIPSTA_CUR? Get Get the current IP address of the Wi-
Fi module

AT+CWHOSTNAME=<hostname> Set Set the host name of the Wi-Fi
module

AT+CWHOSTNAME? Get Get the host name of the Wi-Fi
module

AT+CIPSTATUS Get Get the Connection Status

AT+CIPSTART=<connection
type>,<remote IP>,<remote port>

Set Establish TCP IP connection

AT+CIPCLOSE Execute Close TCP IP connection

AT+CIPSEND=<length> Set Send data from the weather station to
the Web server in single connection

mode (CIPMUX=0)

TABLE 25: LIST OF AVAILABLE WI-FI AT COMMANDS BASED ON ESP8266 AT SOFTWARE

 Type [possible values] Description

<baudrate> Numerical, e.g.
9600,115200

The baudrate for the UART connection.
Typically set to 115200.

<databits> Numerical [5,6,7,8] The number of data bits for the UART
frame. Typically set to 8.

<stopbits> Numerical [1,1.5,2] The number of stop bits for the UART
frame. Typically set to 1.

<parity> Numerical [0,1,2] The number of parity bits for the UART
frame. Typically set to 0- no parity bit.

<flowcontrol> Numerical [0,1,2,3] The flow control for the UART connection.
Typically set to 0- no flow control.

<time> Numerical (>0) The Time in ms for which the module is
put to sleep mode

<sleep mode> Numerical [0-disable sleep
mode, 1-light sleep mode,

2-modem sleep mode]

Defines the sleep mode to use when put to
sleep. It can be used only when the

module is in Station mode.

<enable> Numerical [0-disable,1-
enable]

Defines if a given GPIO on the Wi-Fi
module should wake it up from sleep

mode

<trigger_GPIO> Numerical [0 to15] Trigger GPIO for wakeup of the Wi-Fi
module

<trigger_level> Numerical [0- wake on low
level, 1- wake on high

level]

The trigger level for the wakeup GPIO of
the Wi-Fi module

XIV

<wifi_mode> Numerical [1-Station
mode, 2-SoftAP mode, 3-

SoftAP+Station Mode]

The operating mode of the module. When
operating in Station mode, the module can

connect to remote servers.

<ssid> String, e.g. “Wetterstation” The name of the access point to connect
to

<pwd> String, e.g. “wetterdeluxe” The password of the access point to
connect to

<module_ip> String, e.g.
“192.168.178.1”

The IP address of the Wi-Fi module

<hostname> String, e.g. “WS2021” The hostname of the Wi-Fi module

<connection type> String [“TCP”, “UDP”] The type of the remote server connection

<remote IP> String, e.g.
“192.168.178.82”

The IP address of the remote server to
connect to

<remote port> String, e.g. “100” The port of the remote server to connect to

<length> Numerical (>0) The length of the data to send in bytes

TABLE 26: LIST OF PARAMETERS USED IN THE WI-FI AT COMMANDS

XV

Appendix G - Test Scenarios

Hardware

The UART and Hibernation module libraries as part of the supported by Texas Instrument's

TivaWare SDK. It can be assumed that the drivers provided have already been tested and work

as instructed as long as they are configured correctly.

For each hardware connection for this project, the configuration should be tested.

 Test name Description

TS1 UART configuration for

Wemos D1 mini module

The UART driver instance of the TM4C microcontroller for

connecting to the Wi-Fi device shall be configured with the

same frame format as the configuration of the UART

interface of the Wi-Fi device itself. The receiving (Rx) and

transmitting (Tx) wires should be correctly connected - the

Rx line from the microcontroller is connected to Tx of the

Wi-Fi device, and the Tx line from the microcontroller is

connected to the Rx of the Wi-Fi device.

This functionality could be proven either using a protocol

analyser connected to the channel or by proof of the

higher-level application tests, namely if a message is

received in a readable ASCII-character format.

TS2 UART configuration for

HC-05 module

Similar to TS1but the connection between the TM4C

LaunchPad UART instance and the Bluetooth module are

tested.

TS3 GPIO input pin

configuration for HC-05

module status pin

The GPIO pin of the TM4C should be correctly configured

as input for the State pin of the Bluetooth module. This can

be proved via the correct detection of input from this pin,

which should be part of the software tests.

Software

Debug console

Setup: A serial to USB connection is made between the microcontroller and a personal

computer. The “PuTTY” serial console shall be used to display data received on the USB port of

the computer. The same serial configuration should be setup on the microcontroller for the serial

output and on the reading serial console on the personal computer.

 Test name Description

TS4 Print out debug info Hardcoded messages are printed out on the serial line of

the associated microcontroller. The hardcoded messages

XVI

are received and displayed in human-readable format on

the serial console window.

Wi-Fi

Setup: At each command sending point an informative message shall be printed on the Debug

console serial line. If the command was successful a “SUCCESSFUL” message shall be printed

after the message, else a “FAILED” message shall be printed. Additionally, the USB connection

of the Wemos D1 mini shall be used and connected to another serial console on the personal

computer and setup with the same configuration as the serial port used on the microcontroller

for the Wi-Fi module. The second console shall display all the commands received and sent to

the Wi-Fi module from the microcontroller. A visual comparison between the two console

outputs should be done to determine if the test was successful.

 Test name Description

TS5 Connection to access
point

Sending the command “AT+ CWJAP_CUR=
<ssid>,<pwd>” where the ssid is “Wetterstation” and the
pwd is “wetterdeluxe” and receiving an “OK” in return.

TS6 Connection to web
server

Sending the command
“AT+CIPSTART=<type>,<ip_addr>,<port>” where the type
is “TCP”, the ip_addr is the IP address “192.168.178.82”

and the port is “100”. The expected response is “OK”.

TS7 Data send to web server Sending the command “AT+CIPSEND=<byte_length>”,
where the parameter byte_length is the byte length of the

data to be sent. The server should respond with a “>”
character, but there is no need to wait for it. Next the data
string as is, is sent to the server, if the data byte length is
as expected a “SEND OK” string will be received on the

UART line.

TS8 Test AT command driver Sending the command “AT”, the driver responds with “OK”.

TS9 Restart the Wi-Fi module Sending the command “AT+RST”, the driver responds with
“ready” and then with “OK”.

TS10 Disconnect from the AP Sending the command “AT+CWQAP”, the driver responds
with “OK”.

TS11 Disconnect from the web
server

Sending the command “AT+CIPCLOSE”, the driver
responds with “OK”.

TS12 Data upload to the web
server

Sending 21 hardcoded values in semi-colon separated
format where the time and date data are accurately

written, and all the other values are assumed to be zero.
Upon check on the server web page, the time and date are

those of the hardcoded time and date values.

Bluetooth General

Setup: For testing the Bluetooth capabilities, an application allowing Bluetooth to serial console

shall be used. The application could be mobile based and it itself needs to be tested that it

XVII

accurately transmits and receives data over a Bluetooth channel via using two devices who

have installed this same application.

 Test name Description

TS13 Bluetooth application
testing device

Connecting two devices which have installed the same
application, interconnecting them via a Bluetooth link and
sending a simple “Hello” message from one to the other
results in a “Hello” message received on the receiving

device application.

TS14 Bluetooth
connected/disconnected

recognition

Continuously polling the Bluetooth status pin associated
GPIO connected to the LaunchPad, when a connection is
initiated by the testing BT device, a recognised connection

is indicated by printing an informative message on the
Debug Console.

TS15 Bluetooth command
receiving

A command is sent from the already connected BT device
application to the BT of the weather station. On command

received, it is printed on the Debug Console via an
informative message.

TS16 Bluetooth command
processing

Categories are assigned to the commands - execute, set,
get. Once a message is received, it should be assigned a
category according to a recognition pattern. If the pattern
works correctly, the informative message displaying the
type of command will display the correct assignment.

TS17 Bluetooth test, set or
execute command

execution

For the test command “AT”, if it was received and
processed correctly, the microcontroller should send an

“OK” message back to the BT connected device followed
by <CR> and <LF> characters. The message shall be

displayed on the BT connected device application console.
An informative message indicating the string sent shall

also be printed on the Debug Console.

TS18 Bluetooth get command
execution

Similar to TS17, however the message returned should
have “+<command_name>=<value1>,<value2>…”,

followed by <CR> and <LF> characters.

Bluetooth Commands with Their Expected Response

Setup: A command is sent from a Bluetooth enabled handheld device. The Settings involve a

<CR><LF> combination of characters at the end of each command. The actual response is

evaluated if it matches the expected response.

 BT Command Expected Response

TS19 AT OK

TS20 ATE0 OK

TS21 ATE1 OK

TS22 AT+CWKUP! FAILED

XVIII

TS23 AT+CHIB! FAILED

TS24 AT+CALIGN! FAILED

TS25 AT+CWIFISEND! OK

TS26 AT+CTIME=<YY>.<MM>.<
DD> <hh>:<mm>:<ss>

OK

TS27 AT+CGNSPOS=<lat>,<lon
>[,<alt>]

FAILED

TS28 AT+CINTV=<intvl> FAILED

TS29 AT+CTRACK=<n> FAILED

TS30 AT+CTURN=<dir> FAILED

TS31 AT+CWFILE=<data to
write>

FAILED

TS32 AT+CBTINTVL=<intvl> FAILED

TS33 AT+CGPSPWR=<n> FAILED

TS34 AT+CTESTOP=<n> FAILED

TS35 AT+CLED=<LED_nr>,<n> FAILED

TS36 AT+CALIGN? FAILED

TS37 AT+CWSNAME? "+CWSNAME:STP_1A WETTERSTATION"
OK

TS38 AT+CTEMP? "+CTEMP:0"
OK

TS39 AT+CPRES? "+CPRES:0"
OK

TS40 AT+CHUM? "+CHUM:0"
OK

TS41 AT+CTIME? "+CTIME:21,06,17 13:09:51"
OK

TS42 AT+CWIND? "+CWING:0,0"
OK

TS43 AT+CGNSPOS? "+CGNSPOS:100198,535566"
OK

TS44 AT+CPWR? "+CPWR:0,0,0"
OK

TS45 AT+CINTV? "+CINTV:0"
OK

TS46 AT+CBTINTVL "+CBTINTVL:0"
OK

TS47 AT+CGUI? "+CGUI:21;06;17;13;38;17;;;;;;;;535566451;10019889;
;;;;;" where the first 6 values will be the differnet

OK

TS48 AT+CTRACK? FAILED

TS49 AT+CRFILE? "+CRFILE:No values yet”

XIX

TS50 AT+CWIFI? "+CWIFI:IP DISCONNECTED" or “CWIFI:TCP
DISCONNECTED”

OK

Bluetooth LED

 Test name Description

TS51 Bluetooth Status LED Visual inspection on Bluetooth LED and comparison with
the HC-05 embedded red LED shall be done. When the
HC-05 LED is continuously blinking, the Bluetooth LED
should be turned off. When the HC-05 LED is blinking
twice with an interval of 5 seconds, the Bluetooth LED

should be turned on.

I2C

 Test name Description

TS52 Operation of I2C0 with
the microcontroller as
the initiator of the bus

Assume that the chosen driver works correctly. The
BME280 is initialized in the main routine after the I2C0
master connection has been enabled. If the BME280

initialization is successful, then the I2C0 master interface
has been configured correctly. This would mean that , that
a packet was sent and received on the I2C0 bus line from

the microcontroller.

XX

Acknowledgement

I would like to express my gratitude to my primary supervisor and mentor Prof. Dr.-Ing. Lutz
Leutelt from the Faculty of Engineering and Computer Science, Hamburg University of Applied
Sciences. His expertise, guidance and encouragement played a vital role in making this thesis a
success. An additional acknowledgement is due to Prof. Dr. Marc Hensel and Detmar Rüdiger
from HAW Hamburg for providing technical support and knowledge, which have helped me
tremendously for the completion of the project described in this thesis paper.
I would also like to thank my friends for the support and understanding they showed during my
studies and during the writing of this paper.

XXI

Bibliography

[26] A. J. Spolsky, User Interface Design for Programmers, illustrated ed., Apress, 2001, p.

144.

[46] Anders Electronics PLC, "Embedded Displays," Anders Electronics PLC, [Online].

Available: https://www.andersdx.com/embedded-display-touch-systems/. [Accessed 26

April 2021].

[50] Apglos, "Rugged tablet Apglos Armour," Apglos B.V., [Online]. Available:

https://www.apglos.eu/shop2/hardware/handhelds/apglos/rugged-tablet-apglos-armor/.

[Accessed 26 April 2021].

[42] AZ-DELIVERY, "GY-BME280 Barometric sensor for temperature, humidity and air

pressure," [Online]. Available: https://www.az-delivery.de/en/products/gy-bme280.

[Accessed 12 Jun 2021].

[45] Blue Chip Technology, "ALPHA 712," Blue Chip Technology, [Online]. Available:

https://www.bluechiptechnology.com/products/alpha-712/. [Accessed 26 April 2021].

[41] Bosch Sensortec, "BME280 Combined humidity and pressure sensor - Data sheet,"

2020.

[48] Bressner, "TOUCAN Mobile 8.3'' - Windows," Bressner, [Online]. Available:

https://www.bressner.de/shop/mobile-computing/industrial-tablets/toucan-mobile-8-3-

windows/. [Accessed 26 April 2021].

[36] C. David, "ESP8266 Pinout Overview [ESP-01, NodeMCU, WeMos D1 Mini]," [Online].

Available: https://diyi0t.com/what-is-the-esp8266-pinout-for-different-boards/. [Accessed

23 April 2021].

[37] Conrad, "HC-05 Wireless Bluetooth Transceiver Modul mit Adapter Board für MCU

(AVR/ARM/PIC)," Conrad, [Online]. Available: https://www.conrad.de/de/p/hc-05-

wireless-bluetooth-transceiver-modul-mit-adapter-board-fuer-mcu-avr-arm-pic-

802247514.html. [Accessed 23 April 2021].

[34] e-Gizmo Mechatronix Central, "HC-05 Bluetooth Module Breakout Board Technical

Manual Rev1r0," 2016. [Online]. Available: https://www.e-

gizmo.net/oc/index.php?route=product/product&product_id=1258&search=hc05&descripti

on=true. [Accessed 14 Jun 2021].

[25] Energia, "Guide to the TM4C129 Connected LaunchPad (EK-TM4C1294XL)," [Online].

Available: https://energia.nu/pinmaps/ek-tm4c1294xl/. [Accessed 22 April 2021].

[38] Espressif Systems, "ESP8266 AT command examples," 2017.

XXII

[31] Espressif Systems, "ESP8266 AT Instruction Set," Espressif Systems, 2020.

[32] Espressif Systems, "ESP8266 Low-Power Solutions," 2019.

[35] Espressif Systems, "ESP8266 Technical Reference," 2020.

[13] European Telecommunications Standards Institute, "Human Factors (HF); AT

Commands for Assistive Mobile device Interfaces," European Telecommunications

Standards Institute (ETSI), 2007.

[7] G. Gridling and B. Weiss, "Introduction to Microcontrollers," Vienna University of

Technology, Vienna, 2007.

[15] Hayes Microcomputer Products, Inc., "Technical Reference for Hayes Modem Users,"

Hayes Microcomputer Products, Inc., Atlanta, 1993.

[39] I. Sommerville, Software Engineering, Ninth ed., M. Horton and M. Hirsch, Eds., Boston,

Massachusetts: Addison-Wisley, 2011, p. 773.

[9] I. Susnea and M. Mitescu, Microcontrollers in Practice, Heidelberg: Springer, 2005, p.

257.

[21] IBM Redbooks, TCP/IP Tutorial and Technical Overview, Eight Edition ed., International

Business Machines Corporation (IBM) Redbooks, 2006, p. 998.

[16] IEEE Computer Society, "Part 11: Wireless LAN Medium Access Control (MAC) and

Physical Layer (PHY) Specifications," IEEE, 2021.

[20] IEEE Computer Society, "Part 15.1: Wireless Medium Access Control (MAC) and

Physical Layer (PHY) Specifications for Wireless Personal Area Networks (WPANs),"

2005.

[14] ITU Telecommunication Standardization Sector (ITU-T), "Series V: Data Communication

over the Telephone Network - Serial asynchronous automatic dialling and control,"

International Telecommunication Union (ITU), 2003.

[2] J. D. Exline, A. S. Levine and J. S. Levine, "Meteorology: An Educator’s Resource for

Inquery-Based Learning for Grades 5-9: Introduction," National Aeronautics and Space

Administration (NASA), August 2006. [Online]. Available:

https://www.nasa.gov/centers/langley/pdf/245901main_MeteorologyTeacherRes-Intro-

Ch1.r3.pdf. [Accessed 17 May 2021].

[43] K. D. Trinh, "BMP280 Driver using TivaC," [Online]. Available:

https://github.com/khoitd1997/BMP280_driver_TivaC. [Accessed 10 June 2021].

[44] K. Morich, "Serial Bluetooth Terminal," 6 Mar 2021. [Online]. Available:

https://play.google.com/store/apps/details?id=de.kai_morich.serial_bluetooth_terminal&hl

=en&gl=US. [Accessed 18 Jun 2021].

XXIII

[18] K. Sharma and N. Dhir, "A Study of Wireless Networks: WLANs, WPANs, WMANs, and

WWANs with Comparison," International Journal of Computer Science and Information

Technologies (IJCSIT), vol. 5, no. 7810-7813, p. 4, 2014.

[4] L. Leutelt, "Basic Microcontroller Architecture" slideset, lecture material of

"Microcontrollers", Hamburg: HAW Hamburg, 2020.

[11] L. Leutelt, "Introduction to Embedded C" slideset, lecture material of "Microcontrollers",

Hamburg: HAW Hamburg, 2020.

[6] L. Leutelt, "Serial Interface: UART" slideset, lecture material of "Microcontrollers",

Hamburg: HAW Hamburg, 2020.

[12] L. Leutelt, "Software Design with Interrupts" slideset, lecture material of

"Microcontrollers", Hamburg: HAW Hamburg, 2020.

[5] M. Mitescu and I. Susnea, Advanced Microelectronics: Microcontrollers in Practice, Berlin

Heidelberg: Springer, 2005, p. 250.

[51] Mouser, "Advantech AIM-35AT-02307000," Advancetech, [Online]. Available:

https://www.mouser.de/ProductDetail/Advantech/AIM-35AT-

02307000?qs=%2Fha2pyFadujyiqQuuZxN7sXjzvlh7QhA%252B9i6wZznkpJRYlNPjP1Q

%2FR6iI0w1xYn%252B. [Accessed 26 April 2021].

[10] S. Campbell, "Basics of the I2C Communication Protocol," Circuit Basics, [Online].

Available: https://www.circuitbasics.com/basics-of-the-i2c-communication-protocol/.

[Accessed 11 May 2021].

[8] S. Campbell, "Basics of UART Communication," Circuit Basics, [Online]. Available:

https://www.circuitbasics.com/basics-uart-communication/. [Accessed 11 May 2021].

[19] S. Driver, "Wi-Fi 6 and the Legacy of Wi-Fi Standards," Business News Daily, 20 Mar

2020. [Online]. Available: https://www.businessnewsdaily.com/10570-wi-fi-standards-

explained.html#:~:text=The%20802.11%20standards%20establish%20how,between%20

the%20router%20and%20devices.. [Accessed 21 May 2021].

[17] S. Rackley, Wireless Nerworking Technology, Jordan Hill, Oxford: Elsevier, 2007, p. 413.

[47] Scorpion, "Scorpion 8'' Slim - Industrial Rugged Tablet with 8.0 inch Display," Scorpion

Rugged Tablet & Handheld Solutions, [Online]. Available: https://www.scorpion-

rugged.de/en/products/scorpion-8-slim/. [Accessed 26 April 2021].

[27] Skymet Weather Team, "How to choose a home weather station," Skymetweather, 30

Mar 2021. [Online]. Available: https://www.skymetweather.com/content/weather-news-

and-analysis/how-to-choose-a-home-weather-station/. [Accessed 20 May 2021].

[3] STMicroelectronics Microcontroller Division Applications, "Microcontrollers made easy,"

[Online]. Available: https://www.st.com/resource/en/application_note/cd00003980-

microcontrollers-made-easy-stmicroelectronics.pdf. [Accessed 31 March 2021].

XXIV

[30] Texas Instruments, "CC3100 SimpleLink™ Wi-Fi® and IoT Solution BoosterPack

Hardware User's Guide," 2015.

[23] Texas Instruments, "Tiva™ C Series TM4C1294 Connected Launchpad Evaluation Kit -

User's Guide," Texas Instruments Incorporated, Austin, 2014.

[24] Texas Instruments, "Tiva™ TM4C1294NCPDT Microcontroller - Data sheet," Texas

Instruments Incorporated, Austin, 2014.

[29] Texas instruments, "Tiva™ TM4C129X Development Board - User's Guide," Texas

Instruments Incorporated, Austin, 2016.

[40] Texas Instruments, "TivaWare Peripheral Driver Library User's Guide," Texas

Instruments Incorporated, Austin, 2020.

[28] Texas Instruments, “TM4C Microcontrollers Product Selection Guide,” Texas Instruments

Incorporated, Austin, 2021.

[1] University of Waikato, "Measuring the weather – a timeline," University of Waikato, 19

April 2018. [Online]. Available: https://www.sciencelearn.org.nz/interactive_timeline/9-

measuring-the-weather-a-timeline. [Accessed 17 May 2021].

[33] W. Ewald, "Wemos D1 Mini Boards," Wolles Elektronikkiste, 8 Jan 2021. [Online].

Available: https://wolles-elektronikkiste.de/en/wemos-d1-mini-boards. [Accessed 15 Mar

2021].

[22] W. Goralski, The Illustrated Network: How TCP/IP Works in a Modern Network, Second

Edition ed., Cambridge, Massachusetts: Morgan Kaufmann, 2017, 2009, p. 936.

[26] A. J. Spolsky, User Interface Design for Programmers, illustrated ed., Apress, 2001, p.

144.

XXV

Declaration

I declare within the meaning of section 25(4) of the Examination and Study Regulations of the
International Degree Course Information Engineering that this Bachelor report has been
completed by myself independently without outside help and only the defined sources and study
aids were used. Sections that reflect the thoughts or works of others are made known through
the definition of sources.

Hamburg, 21 June 2021
 City, Date Sign

	List of Tables
	List of Figures
	Abbreviations
	Terminology
	1. Introduction
	2. Fundamentals
	2.1. Microcontroller
	2.2. Serial Communication Interfaces
	2.2.1. Universal Asynchronous Receiver Transmitter
	2.2.2. Inter-Integrated Circuit

	2.3. Event Detection via Polling or Interrupt
	2.4. Attention Commands
	2.5. Wireless Network Technologies and Standards
	2.5.1. Wi-Fi
	2.5.2. Bluetooth
	2.5.3. TCP/IP Protocol Suite

	2.6. EK-TM4C1294XL LaunchPad
	2.6.1. Microcontroller
	2.6.2. Hardware
	2.6.3. TivaWare Software Development Kit

	3. Requirements
	3.1. Elicitation
	3.1.1. Stakeholders
	3.1.2. Requirement Derivation
	3.1.2.1. Requirements for a Fully Equipped Weather Station
	3.1.2.2. Previously Developed Weather Stations in the HAW Hamburg
	3.1.2.2.1. Overview
	3.1.2.2.2. Graphical User Interface

	3.1.2.3. Commercial Weather Provisioning Services

	3.2. Specification
	3.2.1. Fully Equipped Weather Station
	3.2.2. Communication System

	4. Concept
	4.1. Hardware
	4.1.1. Microcontroller
	4.1.2. WLAN Module
	4.1.3. Bluetooth Module
	4.1.4. Data Provisioning Module
	4.1.5. Handheld Device for Monitoring and Maintenance

	4.2. Hardware Structure
	4.2.1. Wemos D1 Mini
	4.2.2. HC-05
	4.2.3. EK-TM4C1294XL LaunchPad Connections to the Wemos D1 Mini and HC-05 Boards

	4.3. Software
	4.3.1. Structures
	4.3.1.1. WLAN Structures
	4.3.1.2. Wi-Fi Commands
	4.3.1.3. Bluetooth Commands
	4.3.1.4. RTC Holder

	4.3.2. Behaviour
	4.3.2.1. Weather Station System
	4.3.2.2. Communication Modules
	4.3.2.2.1. Bluetooth Module
	4.3.2.2.2. Data Upload

	4.3.2.3. Debug Console

	4.4. Test Concept

	5. Implementation
	5.1. Hardware
	5.1.1. Pin Assignment
	5.1.2. Power Supply
	5.1.2.1. Wemos D1 Mini Breakout Board
	5.1.2.2. HC-05 Breakout Board
	5.1.2.3. LaunchPad Board

	5.2. Software
	5.2.1. MCU Initialization and Configuration
	5.2.1.1. System Clock
	5.2.1.2. Peripherals setup
	5.2.1.3. UART
	5.2.1.4. Hibernation Module
	5.2.1.5. UART Debug Console
	5.2.1.6. GPIO

	5.2.2. Command Software
	5.2.2.1. Processing
	5.2.2.1.1. Bluetooth
	5.2.2.1.2. Wi-Fi

	5.2.2.2. Structures
	5.2.2.2.1. Bluetooth
	5.2.2.2.2. Wi-Fi

	5.2.2.3. AT Command Sets
	5.2.2.3.1. Bluetooth
	5.2.2.3.2. Wi-Fi

	5.3. Additions
	5.3.1. Bluetooth LED
	5.3.2. I2C
	5.3.2.1. Hardware
	5.3.2.2. Software
	5.3.2.2.1. I2C wrapper
	5.3.2.2.2. BME280 driver

	5.3.2.3. Tests

	6. Results and Evaluation
	6.1. Test Results
	6.1.1. Hardware
	6.1.2. Debug Console
	6.1.3. Wi-Fi module and AT Software
	6.1.4. Bluetooth module and AT Software
	6.1.5. I2C and BME280

	6.2. Evaluation

	7. Conclusion
	7.1. Summary
	7.2. Future Work

	Appendix A - Table with Detailed Overview of Features of Previously Developed Weather Stations
	Appendix B - Comparison Tables for Handheld Devices
	Appendix C - Bluetooth Commands to be Implemented and Command Parameter Definitions
	Appendix D - Activity Diagram of Bluetooth Command Line Processing
	Appendix E - Bluetooth AT Commands Implemented
	Appendix F - Wi-Fi AT Commands Implemented
	Appendix G - Test Scenarios
	Bibliography

