

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Masterarbeit

Max-Julian Kiesel

FE-basierte Untersuchung von nichtlinearen Beton-Materialgesetzen für Grout-Verbindungen von Offshore-Tragstrukturen

Fakultät Technik und Informatik Department Maschinenbau und Produktion Faculty of Engineering and Computer Science Department of Mechanical Engineering and Production Management

Max-Julian Kiesel

FE-basierte Untersuchung von nichtlinearen Beton-Materialgesetzen für Grout-Verbindungen von Offshore-Tragstrukturen

Masterarbeit eingereicht im Rahmen der Masterprüfung

im Studiengang Berechnung und Simulation am Department Maschinenbau und Produktion der Fakultät Technik und Informatik der Hochschule für Angewandte Wissenschaften Hamburg

in Zusammenarbeit mit: k2 E+C GmbH engineering consulting Dietmar-Koel-Straße 24 20459 Hamburg

Erstprüfer: Prof. Dr. Georgi Kolarov Zweitprüfer: Dipl.-Ing. Ulf Karnath

Abgabedatum: 18.11.2020

Zusammenfassung

Max-Julian Kiesel

Thema der Masterthesis

FE-basierte Untersuchung von nichtlinearen Beton-Materialgesetzen für Grout-Verbindungen von Offshore-Tragstrukturen

Stichworte

Offshore, Windenergie, Beton, FEM, Materialmodell, Schubrippe, Drucker-Prager, Menetrey-Willam, Ansys

Kurzzusammenfassung

In dieser Masterthesis wird das Tragverhalten von Grout-Verbindungen beschrieben und zwei Materialmodelle zur Abbildung von Beton in Ansys untersucht. Dazu werden die Modelle an Grundversuchen getestet und nach ihrer Konvergenz bewertet. Am Ende wird noch ein kleinskalierter Versuch in Ansys modelliert und die Ergebnisse mit der Literatur verglichen. Abschließend werden die Erkenntnisse zusammengefasst und die gefundenen Probleme benannt. Im Ausblick werden weitere Ansätze zur Abbildung von Beton dargestellt und mögliche Verbesserungen zur Simulation der Versuche genannt.

Name of Student

Max-Julian Kiesel

Title of the paper

FE-based investigation of nonlinear concrete material laws for grout connections of offshore support structures

Keywords

Offshore, wind turbine, grout, material law, shear key, Drucker-Prager, Menetrey-Willam, Ansys

Abstract

In this master thesis the structural behavior of Grout connections is described and two material models for the modelling of concrete in Ansys are investigated. For this purpose, the models are tested on basic experiments and evaluated according to their convergence. Afterwards a small-scale test is modelled in Ansys and the results are compared with the literature. Finally, the results are summarized and the problems are identified. In the outlook further approaches to the modelling of concrete are presented and possible improvements for the simulation of the tests are mentioned.

Aufgabenstellung

Im deutschen Hoheitsgebiet der Nordsee werden zunehmend Offshore-Windparks installiert. Aufgrund der sandigen Beschaffenheit des Nordseebodens kommen dabei vornehmlich Pfahlgründungen zum Einsatz. Bei der zu untersuchenden Verbindung werden die unteren vertikalen Stahlzylinder der Windenergieanlagen-Turmstrukturen sowie der Stahlstrukturen der Umspannplattformen über die Gründungspfähle im Meeresboden gestülpt. Der verbleibende Ringspalt wird mit Beton verfüllt. Es existieren heute weitere Verbindungsalternativen. In dieser Arbeit sollen jedoch ausschließlich die beschriebenen Rohrin-Rohr-Steckverbindungen betrachtet werden. Diese Verbindungen werden auch kurz als "Grout-Verbindung" (eng:Grouted Connections) bezeichnet. Hierbei kommt vornehmlich hochfester Feinkornmörtel zum Einsatz. Für die Lastübertragung von Stahlrohr zu Stahlrohr und um das Durchrutschen der Verbindung zu verhindern werden häufig Schubrippen auf den Rohroberflächen angebracht. An diesen entstehen im Beton lokal hohe Druckspannungsspitzen. Zunächst soll einleitend, basierend auf einer Literaturrecherche, das Tragund Ermüdungsverhalten der Grouted Connections von Offshore-Gründungsstrukturen erläutert werden. Im Hauptteil dieser Arbeit sind Berechnungen der inneren Beanspruchung des Betons mittels FEM Software (z.B. ANSYS) durchzuführen. Zunächst soll dafür die Gültigkeit verschiedener Materialgesetze anhand von Simulationen an Körpern mit vereinfachter Geometrie unter Druck-, Zug- sowie kombinierter Druck-Schubbelastung überprüft werden. Im Anschluss soll das erstellte Modell schrittweise vergrößert werden. sodass die gewonnenen Erkenntnisse für die Berechnung einer Verbindung mit realen Abmessungen eingesetzt werden könnten. Zusammenfassend sind die Anwendbarkeit, bestehende Herausforderungen sowie die Abweichung von der realen Situation durch den Einsatz der betrachteten Materialmodelle für große Simulationsmodelle zu diskutieren. Die besondere Herausforderung in dieser Arbeit besteht darin, die unterschiedlichen Anforderungen hinsichtlich numerischer Größe, Kleinskaligkeit der Geometrie und hinreichender Auflösung der Spannungs- bzw. Dehnungsgradienten abzudecken.

Inhaltsverzeichnis

Αι	Aufgabenstellung I Abbildungsverzeichnis V				
Ab					
Та	abellenverzeichnis VIII				
No	omen	latur	IX		
1.	Einle	itung	1		
2.	Grun 2.1. 2.2. 2.3. 2.4. 2.5. 2.6.	dlagen Grout-Verbindung 2.1.1. Bauarten 2.1.2. Analytisches Modell 2.1.3. Versagensarten Materialeigenschaften 2.2.1. Stahl 2.2.2. Beton 2.2.2. Beton 2.2.2. Beton 2.3.1. Materialmodell Stahl 2.3.2. Materialmodell Beton 2.3.3. Elemente Materialmodell Stahl Materialmodell Beton 2.5.1. Cam-Clay 2.5.2. Mohr-Coulomb 2.5.3. Jointed Rock 2.5.4. Drucker-Prager 2.5.5. Menetrey-Willam Ver- und Entfestigungsfunktion 2.6.1. Lineare Entfestigung 2.6.2. Exponentielle Entfestigung	4 4 5 6 7 9 9 11 20 20 20 20 20 21 22 25 26 27 28 31 34 35 36		
3.	Sim 3.1. 3.2.	lation Materialmodelle	39 39 40		

	3.3.	Würfeldruckversuch	40
		3.3.1. Würfelgeometrie	41
		3.3.2. Netz und Simulationsparamter	11
		3.3.3. Ergebnisse	42
		3.3.4. Konvergenzanalyse	44
	3.4.	Zvlindergeometrie	46
	3.5.	Zvlinderdruckversuch	46
	3.6.	Zwischenfazit Druckversuche	48
	3.7.	Zvlinder Zugversuch	50
	3.8.	Zwischenfazit Zugversuch	51
	3.9.	Spaltzugversuch	51
		3.9.1. Versuchsbeschreibung und Modellaufbau	51
		3.9.2. Materialien	53
		3.9.3. Netze	54
		3.9.4. Ergebnisse Materialtest	54
		3.9.5. Ergebnisse Spaltzugversuch	58
		3.9.6. Zwischenfazit Spaltzugversuch	34
	3.10.	Biaxial Belastung	35
		3.10.1. Modellaufbau	35
		3.10.2. Ergebnisse	36
		3.10.3. Zwischenfazit biaxiale Belastung	38
	3.11.	. Kleinskalierter Versuch	39
		3.11.1. Netz	71
		3.11.2. Vorgehen	72
		3.11.3. Kontaktformulierung	73
		3.11.4. Elastoplastisches Modell für Stahl	74
		3.11.5. Varianz der Betonmaterialmodelle	75
		3.11.6. Zwischenfazit kleinskalierter Versuch	78
л	Ear:	*	70
4.	Fazi		9
5.	Ausl	blick 8	31
Lit	eratu	urverzeichnis &	34
Δr	nhano	r	37
,			
Α.	APE	DL-Code A	-1
	A.1.	Materialdefinition Stahl 100/101	-1
	A.2.	Material definition Beton 200/201	-2
	A.3.	Material definition Beton Drucker-Prager 210	-3
	A.4.	Material definition Beton Drucker-Prager mit HSD6 211	-4
	A.5.	Material definition Beton Drucker-Prager mit HSD2 212	-5
	A.6.	Material definition Beton Drucker-Prager mit HSD6 213	-6
	A.7.	Materialdefinition Beton Drucker-Prager mit HSD6 214	-7

	A.8. A.9. A.10 A.11 A.12	Materi Materi .Materi .Materi .Materi	aldefinition Beton Drucker-Prager mit HSD2 215	A-8 A-9 A-10 A-11 A-12
B.	Date	enblätt	er	B-1
	B.1.	Densit	Ducorit	B-2
C.	Sim	ulation	en	C-1
	C.1.	Würfel	druckversuch	C-1
		C.1.1.	Konvergenzanalyse Drucker-Prager exponentielle Entfestigung	
			(HSD2) Simulationspunkte: 1 Element je Kante	C-1
		C.1.2.	Konvergenzanalyse Drucker-Prager HSD2 Ergebnisse	C-1
		C.1.3.	Konvergenzanalyse Menetrey-Willam HSD2 Simulationspunkte	C-2
		C.1.4.	Konvergenzanalyse Menetrey-Willam HSD2 Ergebnisse	C-2
		C.1.5.	Konvergenzanalyse Drucker-Prager lineare Entfestigung (HSD6) Si-	
			mulationspunkte	C-3
		C.1.6.	Konvergenzanalyse Drucker-Prager HSD6 Ergebnisse	C-3
		C.1.7.	Konvergenzanalyse Drucker-Prager HSD6 Simulationspunkte	C-4
		C.1.8.	Konvergenzanalyse Drucker-Prager HSD6 Ergebnisse	C-4
	C.2.	Spaltz	ugversuch	C-5
		C.2.1.	Netze	C-5
		C.2.2.	Simulationsergebnisse	C-9
	C.3.	Simula	tionspunkte und Simulationsergebnisse Biaxialer Versuch $\ .\ .\ .$.	C-11
	C.4.	Kleins	kalierter Versuch	C-15
		C.4.1.	Prüfkraft-Verformungs-Linien Simulation	C-15
		C.4.2.	Plastische Vergleichsdehnung	C-16

Abbildungsverzeichnis

1.1.	Gründungsstrukturen von OWEAn	2
1.2.	Geschweißte Schubrippe am Pile	3
2.1.	Komponenten einer Offshore-Windenergie	4
2.2.	Varianten der Grout-Verbindungen	5
2.3.	Schematische Darstellung einer Grout-Verbindung	6
2.4.	Kräfte an der Druckstrebe	6
2.5.	Spannungen und Kräfte in der Grout-Verbindung unter Momentenlast	7
2.6.	Varianten der Positionierung der Schubrippen	8
2.7.	Lokale Versagensmodi in Anlehnung an Hordyk	9
2.8.	Spannungs-Dehnungslinie von Stahl	10
2.9.	Meso- und Makroebene Beton	11
2.10.	Spannungs-Dehnungs-Linie Druckbeanspruchung	12
2.11.	f_{bc} über f_{cm} nach Model Code 1990 und 2010 $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	14
2.12.	Wirklichkeitsnahe Spannungs-Dehnungs-Linie nach DIN 1045	15
2.13.	Vergleich E_{cm} zwischen Eurocode und Model Code	16
2.14.	Spannungs-Dehnungs-Diagramm Vergleich Eurocode 2 mit Model Code 2010	17
2.15.	Spannung-Verschiebungslinie Zug mit Bruchenergie	18
2.16.	Festigkeits-Bruchenergie Diagramm mit Messdaten aus FIB42	19
2.17.	Spannungs-Dehnungslinie nach DNV GL	20
2.18.	Fließregel der plastischen Dehnung	24
2.19.	Grenzfließfläche Cam-Clay	26
2.20.	Grenzfließfläche Mohr-Coulomb	27
2.21.	Orientierung der Versagensfläche Jointed Rock	28
2.22.	Fließhülle Drucker-Prager	29
2.23.	Schubtest zur Veranschaulichung des Dilatanzwinkels	31
2.24.	Haigh-Westergaard Koordinatensystem	32
2.25.	Grenzfließfläche Menetrey-Willam	34
2.26.	Verlauf der linearen Entfestigung	35
2.27.	Verlauf der exponentiellen Entfestigung	37
0.1		4.1
3.1.		41
3.2.	Vergleich DP-Modelle mit Spannungs-Dehnungs-Diagramm nach Glei-	4.0
0.0	$\begin{array}{c} \text{chung} (2.18) \dots \dots$	42
3.3.	VGL MW-Modelle mit Spannungs-Dehnungs-Diagramm nach Gleichung	40
a .	$(2.18) \qquad \qquad$	43
3.4.	Zylindermodell und Netz	46

3.5.	Vergleich Zylinderdruckversuch DP-Modelle mit Spannungs-Dehnungs-	
	Diagramm nach Gleichung (2.18)	47
3.6.	Vergleich Zylinderdruckversuch MW-Modelle mit Spannungs-Dehnungs-	
	Diagramm nach Gleichung (2.18)	48
3.7.	Vergleich Zylinderzugversuch DP-Modelle mit Spannungs-Dehnungs-	
	Diagramm nach Gleichung (2.18)	50
3.8.	Vergleich Zylinderzugversuch MW-Modelle mit Spannungs-Dehnungs-	
	Diagramm nach Gleichung (2.18)	51
3.9.	Schematische Darstellung des Spaltzugversuchs	52
3.10	Schematische Darstellung des Spaltzugversuchs	52
3.11	Zugprobe mit verjüngtem Querschnitt	54
3.12	Ergebnisse Zugversuch Material 222_A	55
3.13	Ergebnisse Zugversuch Material 220_A	56
3.14	Ergebnisse Zugversuch Material 221_A	56
3.15	Ergebnisse Zugversuch Material 212_A	57
3.16	Ergebnisse Zugversuch Material 211_A	57
3.17	Ergebnisse Zugversuch Material 210_A	58
3.18	Simulationsergebnisse Spaltzugversuch in Anlehnung an Malárics	59
3.19	. Simulationsergebnisse Spaltzugversuch 222_A/220_A Viertel- und Vollm-	
	odell Remote Point	60
3.20	Simulationsergebnisse Spaltzugversuch 222_A/220_A 2D Viertelmodell	
	mit bonded und reibfreiem Kontakt	61
3.21	. Simulationsergebnisse Spaltzugversuch 222_A 2D Viertelmodell mit rei-	
	bendem Kontakt $\mu = 0,4$	62
3.22	. Simulationsergebnisse Spaltzugversuch 222_A 3D Achtelmodell mit Kontakt	63
3.23	Simulationsergebnisse Spaltzugversuch Material E	63
3.24	Metallbürste aus biaxialen Versuch	65
3.25	Modell 2D Ebener Spannungszustand	66
3.26	. Vergleich Simulationsdaten mit Messdaten von H. Kupfer	67
3.27	Abmessungen kleinskalierte Probe in Anlehnung an Anders	69
3.28	Vernetzung Schubrippe nach DNVGL, Rechteck und Halbkreis	70
3.29	Grobes Netz des kleinskalierten Probenkörpers (N100)	71
3.30	Feines Netz des kleinskalierten Probenkörpers (N101)	71
3.31	Sehr feines Netz des kleinskalierten Probenkörpers (N102)	72
3.32	Prüfkraft-Verformungs-Linie des Kleinversuchskörpers mit Schubrippen	
	h/s=0,056 faserfrei in Anlehnung an Anders	73
3.33	Prüfkraft-Verformungs-Linie Simulation mit reibfreier Kontaktformulie-	
	rung in Anlehnung an Anders	76
3.34	Prütkratt-Verformungs-Linie Simulation mit reibender Kontaktformulie-	
	rung in Anlehnung an Anders	77
3.35	$102_{210_1} N101$ erste Hauptspannung im Beton	77
51	Plastische Vergleichsdehnung N100 210 mit Bankine	81
5.2	Mittelwert der 1 Hauntspannung je Element N100 201 mit Bankine	81
0.4.	minuter der 1. mauptspannung je Element 1100 201 mit Ranklife	OT.

5.3. Mittelwert der 1. Hauptspannung je Element 201 mit Rankine feines Netz . 82 5.4. Mittelwert der 1. Hauptspannung je Element 201 mit Rankine feines Netz. 82 C.5. Netz Spaltzugversuch 2D Remote Point Elementgröße $= 5 \,\mathrm{mm}$ C-6 C.6. Netz Spaltzugversuch 2D Remote Point Elementgröße $= 1,25 \,\mathrm{mm}$ C-6 C.7. Netz Spaltzugversuch 2D Remote Point Elementgröße $= 3.75 \,\mathrm{mm}$ C-6 C.9. Netz Spaltzugversuch 2D Kontakt Elementgröße $= 1,25 \,\mathrm{mm}$ C-7 C.10.Netz Spaltzugversuch 2D Kontakt Elementgröße $= 3.75 \,\mathrm{mm}$ C-7 C.11.Netz Spaltzugversuch 3D Kontakt Elementgröße $= 10 \,\mathrm{mm}$ C-8 C.13.Netz Spaltzugversuch 3D Kontakt Elementgröße $= 3,75 \,\mathrm{mm}$ C-8 C.14.Simulationsergebnisse Spaltzugversuch 222_A/220_A 2D Viertelmodell mit reibfreiem Kontakt C.15.Simulationsergebnisse Spaltzugversuch 222 A Viertelmodell mit bonded Kontakt C.18. Prüfkraft-Verformungs-Linie Simulation mit reibfreier Kontaktformulie-C.19. Plastische Vergleichsdehnung - 102/210 N100 asymmetrisch reibfrei C-16 C.20. Plastische Vergleichsdehnung - 102/210 N101 asymmetrisch reibfrei C-16 C.21. Plastische Vergleichsdehnung - 102/210 N102 asymmetrisch reibfrei C-16 C.22. Plastische Vergleichsdehnung - 102/220 N100 asymmetrisch reibfrei C-17 C.23.Plastische Vergleichsdehnung - 102/220 N101 asymmetrisch reibfrei C-17 C.24. Plastische Vergleichsdehnung - 102/223 N100 asymmetrisch reibfrei C-17 C.25.Plastische Vergleichsdehnung - 102/223 N101 asymmetrisch reibfrei C-17

Tabellenverzeichnis

 2.1. 2.2. 2.3. 2.4. 	Verwendete Parameter Materialmodell Stahl	22 23 23 30
3.1.	Übersicht Materialnummern	39
3.2.	Materialkennwerte Ducorit S5	40
3.3.	Grundparameter Würfeldruckversuch	42
3.4.	Materialdaten Hartfaserplatte	53
3.5.	Materialdaten Beton Spaltzugversuch	53
3.6.	Parameter lineare Entfestigung	53
3.7.	Parameter exponentielle Entfestigung	54
3.8.	Übersicht Simulationsergebnisse Kontakt kleinskalierte Probe	74
3.9.	Übersicht Simulationsergebnisse Kontakt kleinskalierte Probe	74
3.10.	Übersicht Simulationsergebnisse reibfreier Kontakt kleinskalierte Probe	75
3.11.	Übersicht Simulationsergebnisse reibender Kontakt kleinskalierte Probe $\ . \ .$	76
C.1. C.2.	Simulationspunkte und Ergebnisse Biaxiale Verschiebungsbelastung G Simulationspunkte und Ergebnisse Biaxiale Druckbelastung	C-11 C-13

Nomenklatur

Römische Buchstaben

Symbol	Beschreibung	Einheit
a_h	Materialparameter Cam-Clay	[-]
b_q	Breite des Quaders	[mm]
c	Kohäsion	[-]
d	Durchmesser	[mm]
E	Elastizitätsmodul (E-Modul)	$[\mathrm{N}\mathrm{mm}^{-2}]$
E_{C_dyn}	dynamisches E-Modul Beton	$[N \mathrm{mm}^{-2}]$
E_{C_stat}	Statisches E-Modul Beton	$[N \mathrm{mm}^{-2}]$
E_{c0}	dynamischer E-Modul	$[N \mathrm{mm}^{-2}]$
E_{c1}	Sekanten E-Modul	$[N \mathrm{mm}^{-2}]$
E_{cm}	statischer E-Modul	$[N \mathrm{mm}^{-2}]$
E_{St}	E-Modul Stahl	$[\mathrm{N}\mathrm{mm}^{-2}]$
E_T	Tangenten E-Modul Stahl	$[N \mathrm{mm}^{-2}]$
f_{bc}	biaxiale Druckfestigkeit	$[N \mathrm{mm}^{-2}]$
f_{ck}	Zylinderdruckfestigkeit	$[N \mathrm{mm}^{-2}]$
$f_{ck,cube}$	Würfeldruckfestigkeit	$[\mathrm{N}\mathrm{mm}^{-2}]$
f_{cm}	Mittelwert der Zylinderdruckfestigkeiten	$[N \mathrm{mm}^{-2}]$
f_{ct}	zentrische Zugfestigkeit	$[N \mathrm{mm}^{-2}]$
$f_{ct,fl}$	Biegezugfestigkeit	$[\mathrm{N}\mathrm{mm}^{-2}]$
$f_{ct,sp}$	Spaltzugfestigkeit	$[m Nmm^{-2}]$
f_{DP_t}	Drucker-Prager Zug-Fließfläche	$[\mathrm{N}\mathrm{mm}^{-2}]$
f_x	Fließhülle der verschiedenen Modelle	$[m Nmm^{-2}]$
F	Kraft	[N]
F_N	Normalkraft	[N]
F_R	Reibkraft	[N]
$F_{Sr,v}$	Vertikale Kraft an der Schubrippe	[N]
F_u	Prüfkraft	[N]
G_{ft}	Bruchenergie	$[\mathrm{Nmm^{-1}}]$
G_{ft}	gespeicherte elastische Energie	$[\mathrm{N}\mathrm{mm}^{-1}]$
h_0	Bezugswert	[mm]
h_q	Höhe des Quaders	[mm]
h_{Sr}	Höhe Schubrippe	[mm]
h^n	Verfestigungsmodul	[-]
J_2	Zweite Spannungsinvariante	$[\mathrm{N}^2\mathrm{mm}^{-4}]$

Symbol	Beschreibung	Einheit
k	Konstante	[-]
k_{MC}	Plastizitätsnummer	[-]
l	Länge	[mm]
l_{ch}	charakteristische Länge	[mm]
l_q	Länge des Quaders	[mm]
$\hat{L}_{x,y,z}$	Abmessung Lastverteilungsstreifen	[mm]
M	Moment	[N mm]
M_c	Materialparameter Cam-Clay	[-]
n	Anzahl	[-]
n_{St}	Anzahl Druckstreben	[-]
p	Druck	$[N \text{ mm}^{-2}]$
Q	Fließpotential	$[N \mathrm{mm}^{-2}]$
R_b	biaxiale Druckfestigkeit	$[N \mathrm{mm}^{-2}]$
R_c	einaxiale Druckfestigkeit Beton	$[N \mathrm{mm}^{-2}]$
R_{eH}	Streckgrenze	$[N \mathrm{mm}^{-2}]$
R_m	Zugfestigkeit	$[N \mathrm{mm}^{-2}]$
R_t	einaxiale Zugfestigkeit Beton	$[N \mathrm{mm}^{-2}]$
t	modifizierte Spannungsinvariante	$[N \mathrm{mm}^{-2}]$
t_g	Spaltbreite Grout	[mm]
\mathring{T}	Spannungslimit Jointed Rock, Rankine	$[N \mathrm{mm}^{-2}]$
w_{SR}	Weite Schubrippe	[mm]
$\vec{w_j}$	Normale der Versagensfläche	[-]

Griechische Buchstaben

Symbol	Beschreibung	Einheit
α_E	Einflussfaktor Zuschlagstoff	[-]
α_i	Einflussfaktor Festigkeit	[-]
α_j	Rotationswinkel um die neg. z-Achse	[°]
α_{sp}	Umrechnungsfaktor Spaltzugfestigkeit	[-]
β_{cc}	Materialparameter Cam-Clay	[-]
β_j	Rotationswinkel um die neue y-Achse	[°]
eta_t	Beiwert für die Drucker-Prager Zug-Fließfläche	[-]
arepsilon	Dehnung	[-]
ε_{el}	elastische Dehnung	[-]
ε_{ges}	Gesamtdehnung	[-]
ε_m	Dehnung bei Zugfestigkeit	[-]
ε_{pl}	plastische Dehnung	[-]
η	Grad der Dehnung	[-]
heta	Lode Winkel	[°]
κ	modifizierter Grad der plastischen Verformung	[-]

Symbol	Beschreibung	Einheit
κ_{cm}	plastische Verformung bei maximaler Druckfestigkeit	[—]
κ_{cr}	plastische Verformung zu Beginn der verbleibenden relati- ven Druckfestigkeit	[—]
κ_{cu}	plastische Verformung am Übergang von Potenzgesetz zur exponentieller Entfestigung	[—]
κ_{tr}	plastische Verformung zu Beginn der verbleibenden relati- von Zugfostigkoit	[-]
$d\lambda^n$	Betrag der plastischen Dehnungszunahme	[_]
	Beibungskoeffizient	[_]
μ ν_{α}	Poission Zahl Beton	[_]
Ver	Poission Zahl Stahl	[_]
$\frac{1}{2}$	Dichte Beton	$[\text{kgm}^{-3}]$
σ	Spannung	[]
$\bar{\bar{\sigma}}$	Spannungstensor	[_]
σ_e	Vergleichsspannung	$[N \text{ mm}^{-2}]$
σ_m	Mittlere Spannung	$\left[\mathrm{Nmm^{-2}}\right]$
σ_n	Normalspannung in der Ebene	$[N mm^{-2}]$
σ_{Re}	Zugfestigkeit Stahl	$\left[\mathrm{Nmm^{-2}}\right]$
$\sigma_{Re,Mod}$	Modifizierte Zugfestigkeit Stahl	$[N \mathrm{mm}^{-2}]$
σ_{Yt}	Beiwert für die Drucker-Prager Zug-Fließfläche	$[N mm^{-2}]$
au	Schubspannung	$[m Nmm^{-2}]$
$ au_r$	Schubspannung Jointed Rock	$[m Nmm^{-2}]$
ϕ	innerer Reibungswinkel	[°]
ψ	Dilatanzwinkel	[°]
Ω_c	Verfestigungsfunktion Druckbereich	[—]
Ω_{ci}	relative Festigkeit zu Beginn der Verfestigung	[—]
Ω_{cr}	Verbleibende relative Druckfestigkeit	[—]
Ω_{cu}	relative Druckfestigkeit am Übergang von Potenzgesetz zur	[—]
	exponentiellen Entfestigung	
Ω_t	Verfestigungsfunktion Zugbereich	[—]
Ω_{tc}	Entfestigungsfunktion Zugbereich Menetry-Willam	[—]
Ω_{tr}	Verbleibende relative Zugfestigkeit	[—]

Abkürzungen

APDL	Ansys Parametric Design Language
DNV GL	Det Norske Veritas Germanische Lloyd
DP	Drucker-Pager
E-Modul	Elastizitätsmodul
EEG	Erneuerbare-Energien-Gesetz
FEM	Finite Element Methode
FIB	Fédération internationale du béton
HSD2	exponentielle Entfestigung
HSD6	lineare Entfestigung
$\mathbf{M}\mathbf{W}$	Menetrey-Willam
OWEA	Offshore-Windenergieanlage
WEA	Windenergieanlage

1. Einleitung

Die Windkraft stellte 2019 den größten Anteil am produzierten Strom in Deutschland [1]. Damit lag der Anteil der erneuerbaren Energien bei 46,1 %, für einen höheren Anteil muss der Sektor der erneuerbaren Energien weiter ausgebaut werden. Allerdings wird der Platz an Land für Windenergieanlagen (WEAn) knapper und die Akzeptanz der Bürger stellt die Windkraft in Deutschland vor eine Herausforderung [2].

Der Ausbau der Offshore-Windenergieanlagen (OWEAn) wurde im Jahr 2000 im Erneuerbare-Energien-Gesetz (EEG) beschlossen. Dieses Gesetz soll den Anteil an erneuerbaren Energien des deutschen Strommix erhöhen. Für den Offshore-Bereich wurde durch einen verlängerten Mindestvergütungszeitraum von neun Jahren im Vergleich zum Onshore-Bereich, die für fünf Jahre eine feste Vergütung erhalten, der Anreiz zur Investition geschaffen (§ 7 Absatz 1 EEG v. 31. März 2000). Im Jahr 2004 wurden Neuregelungen zum EEG beschlossen. Diese Neuregelungen verlängern den Mindestvergütungszeitraum von OWEAn auf zwölf Jahre und für Anlagen, die vor dem 31. Dezember 2010 in Betrieb genommen wurden, wurde eine Mindestvergütung von 7,02 Cent gezahlt (§ 10 Absatz 3 EEG v. 21. Juli 2004). Die nächste Neuregelung trat am 1. Januar 2009 in Kraft. Für bis 2015 in Betrieb genommene OWEAn wurde die Anfangsvergütung je kWh auf 15 Cent erhöht. Diese Vergütung wird über einen Zeitraum von zwölf Jahre gezahlt (§ 31 Absatz 1 EEG v. 25.Oktober 2008).

Weltweit wurde die erste OWEA im Jahr 1991 bei Vindeby in Betrieb genommen. Der erste deutsche Offshorewindpark "alpha ventus" wurde ab 2001 geplant und 2010 in Betrieb genommen. Der Windpark umfasst 12 Anlagen mit je 5 MW und einer Gesamtnennleistung von 60 MW [3]. Damit spiegelt der Windpark "alpha ventus" weiterhin den Leistungsdurchschnitt aller deutschen OWEAn wieder.

2010 setzte das Energiekonzept der Bundesregierung das Ziel die installierte Leistung im Offshore-Windkraftsektor bis zum Jahr 2030 auf 25 000 MW zu erhöhen [4]. Dieser Zielwert wurde 2016 im Gesetz zur Entwicklung und Förderung der Windenergie auf See (Windenergie-auf-See-Gesetz - WindSeeG) auf 15 000 MW festgeschrieben (§ 1 Absatz 2 WindSeeG v. 13.10.2016). 2019 wurde der Zielwert im Klimapakt auf 20 000 MW erhöht [5]. 2019 sind in der Nord- und Ostsee 7516 MW installiert und ans Netz angeschlossen. Im Durchschnitt beträgt die Nennleistung 5117 kW und die Anlagen haben im Mittel einen Rotordurchmesser von 132 m bei einer Nabenhöhe von 95 m [6].

Die OWEAn werden in Windparks aufgestellt. Der Vorteil von Windparks ist, dass nur ein zentrales Kabel für den Stromtransport zum Festland gelegt werden muss. Zur Erzeugung von Strom werden durch den Wind die an der Nabe befestigten Rotorblätter angetrieben. Die Nabe treibt einen Generator an, der die Bewegungsenergie in elektrische Energie umwandelt. Typischerweise wird der erzeugte Wechselspannungsstrom anschließend durch ein Unterwasserkabel an ein Umspannwerk auf einer zentral gelegenen Plattform geleitet und auf Hochspannung transformiert. Von dort aus wird der Strom bei weiten Entfernungen zum Festland zu einer Konverterplattform transportiert und in Gleichstrom gerichtet, da Gleichstrom bei weiten Transportlängen einen geringeren Leitungsverlust aufweist. An Land wird der Gleichstrom in einer zweiten Konverterstation wieder in Wechselstrom umgewandelt und in das Deutsche Hochspannungsnetz eingespeist. Die größten OWEAn stehen in der Nordsee in den Windparks "Borkum Riffgrund 2" und "Deutsche Bucht". Die OWEA "Vestas V164-8.0 MW" vom Hersteller MHI Vestas Offshore Wind hat einen Rotordurchmesser von 164 m. Diese Anlage leistet 8 MW bei einem Gewicht für die Gondel mit den Rotorblättern von 495 t [7]. Damit WEAn als OWEAn auf dem Meer aufgestellt werden können, gibt es verschiedene Arten der Verankerung am Meeresgrund. Die Befestigung und Aufstellung der OWEA wird Gründung genannt. Abbildung 1.1 zeigt verschiedenen Gründungsstrukturen, die zum Aufstellen von OWEA genutzt werden.

Abbildung 1.1.: Gründungsstrukturen von OWEAn in Anlehnung an die Stiftung Offshore-Windenergie [8]

Je nach Wassertiefe und äußeren Gegebenheiten werden unterschiedliche Konzepte der Gründung angewendet. Bei geringen Wassertiefen bis 30 m werden Schwerkraft-Fundamente und Monopiles genutzt. Für Wassertiefen zwischen 20 m und 50 m werden vorwiegend Tripods, Jakets oder Tripiles angewendet. Für Wassertiefen jenseits der 50 m wird an einer Gründung der OWEA auf Schwimmpontong, die mit Seilen am Meeresboden verankert sind, geforscht. All diese Tiefenangaben sind nur Richtwerte und es gibt auch Ausnahmen. Bei der Verankerung der vier mittleren Strukturen der Abbildung 1.1 kann die Verbindung der Rohre im Meeresgrund und der Gründungsstruktur durch Grout-Verbindungen realisiert werden. Diese Verbindungen stehen im Fokus dieser Arbeit. Bei Grout-Verbindungen wird ein Rohr (eng: Pile) in den Meeresboden gerammt und über dieses Rohr wird ein zweites Rohr (eng: Sleeve) gestülpt. Bei der Gründung von Mono-

dieses Rohr wird ein zweites Rohr (eng: Sleeve) gestülpt. Bei der Gründung von Monopiles wird der "Sleeve" "Transition piece" genannt. Der Zwischenraum zwischen diesen Rohren wird mit hochfestem Beton (Grout) aufgefüllt. Beim Rammen des Piles kann zum Schutz der Meeresbewohner ein Blasenteppich, der die Schwingungen des Rammens dämpft, um das Rohr erzeugt werden. Die Grout-Verbindung ist bei dem Bau von Ölund Gas-Pipelines und Offshore-Förderplattformen Stand der Technik. Bei OWEAn werden die Verbindungen durch die Wind- und Wellenlasten auf Biegung stärker zyklisch beansprucht als in der Öl- und Gasindustrie.

Aus diesem Grund wurden bei den Verbindungen Schubrippen hinzugefügt, die das Rutschen durch Druckstreben im Beton verhindern. Für die Herstellung der Schubrippen gibt es zwei weit verbreitete Arten. Bei der ersten Art werden die Schubrippen aus mehreren Schichten Schweißnaht, wie in Abbildung 1.2 dargestellt, erzeugt. Bei der zweiten Art werden Rund- oder Flachstäbe an die Wand der Rohre angeschweißt. Die Rohre haben

Abbildung 1.2.: Geschweißte Schubrippe am Pile - Screenshot aus dem Video [9]

einen Durchmesser von mehreren Metern und die Abmessungen der Schubrippen liegen im Bereich weniger Zentimeter. Dieses Verhältnis ist eine Herausforderung für die Berechnung mit der Finite Element Methode (FEM), da in einem kleinen physischen Raum eine große Differenz von Spannungen vorhanden ist. Dieser hohe Spannungsgradient bedingt für eine genaue Darstellung ein feines Netz für die Berechnung. Da das belastete Material sich nichtlinear bei Belastungen verhält, muss für die Simulation ein nichtlineares Materialmodell verwendet werden. Zudem reagiert Beton im Zug- und Druckbereich stark unterschiedlich auf Spannungen. Im Zugbereich führen bereits geringe Spannungen zum Versagen des Materials. Unter Druckspannung kann der Beton sehr hohe Belastungen ohne Versagen ertragen. Diese Eigenschaft muss für eine genaue Berechnung mit abgebildet werden.

2. Grundlagen

In diesem Kapitel werden die Grundlagen der Thematik dieser Arbeit beschrieben und erklärt.

2.1. Grout-Verbindung

Abbildung 2.1.: Komponenten einer Offshore-Windenergie in Anlehnung an [10]

Wie in der Einleitung beschrieben, ist eine Verbindungsart im Offshore-Bereich die Grout-Verbindung. In Abbildung 2.1 ist eine OWEA, die auf einem Monopile gegründet wurde, dargestellt. Auf dem Bild ist zu erkennen, dass der Turm der OWEA auf dem Transition piece befestigt ist. Das Transition piece ist meistens gelb und hat mehrere Aufgaben. Strukturell dient es als Adapter zwischen Pile und Turm. Die Verbindung zwischen Turm und Transition piece wird oft als Flanschverbindung realisiert. Bei der Verbindung zwischen Pile und Transition piece kann eine Grout-Verbindung mit Schubrippen genutzt werden. Das Transition piece dient zudem als Anlegestelle. An der Anlegestelle kann eine Person über die am Transition piece befestigte Leiter die Anlage betreten. Diese Leiter führt zu der Arbeitsplattform. Diese Plattform ragt so weit aus dem Wasser, dass diese auch bei hohem Wellengang nicht von den Wellen erreicht wird.

2.1.1. Bauarten

Abbildung 2.2.: Varianten der Grout-Verbindungen

Eine Übersicht über die verschiedenen Bauarten der Grout-Verbindungen ist in der Abbildung 2.2 dargestellt. Die Grout-Verbindungen können in zwei Ausführungen eingeteilt werden. Die erste ist eine glatte Grout-Verbindung. Die glatten Verbindungen können noch in zylindrische und konische Verbindungen unterschieden werden. Die zylindrische Bauweise überträgt die Kraft über Reibung und Adhäsion. Die konische Bauweise ist eine formschlüssige Verbindung bei Druckbelastungen. Bei einer reinen Zugbelastung hält diese Verbindung nur durch die Adhäsion zwischen Beton und Stahl.

Bei der zweiten Ausführung von Grout-Verbindungen befinden sich Schubrippen an der Innenseite des Sleeves und Außenseite des Piles. Schubrippen sind in Umfangsrichtung angebrachte flache Rippen. Diese Rippen werden häufig auf drei verschiedene Arten erzeugt. Die Rippen bestehen entweder aus mehreren Schichten von Schweißnähten, aus einem angeschweißten Rundstahl oder aus einem angeschweißten Flachstahl.

Bei den glatten zylindrischen Verbindungen, die auch bis 2010 in internationalen Windparks verwendet wurden, stellte sich bei der Wartung und Kontrolle der Anlagen heraus, dass es zu einer axialen Verschiebung von mehreren Zentimetern der Verbindung gekommen ist [11]. Durch diese Anfälligkeit wird die glatte zylindrische Grout-Verbindung nicht mehr beim Bau von OWEAn genutzt. Bei OWEAn, deren Verbindung mit Schubrippen aufgestellt wurden, konnte diese Verschiebung nicht festgestellt werden. Daraus lässt sich schließen, dass die Schubrippen einen Großteil der Last aufnehmen können.

Abbildung 2.3.: Schematische Darstellung einer Grout-Verbindung

2.1.2. Analytisches Modell

Bei der axialen Belastung wird die Last F, wie in Abbildung 2.3 dargestellt, über die im Beton entstehenden Druckstreben an den Schubrippen zwischen den Rohren übertragen. In diesen Druckstreben herrschen im Beton hohen Druckspannungen. Eine nicht mehr genutzte aber sehr anschauliche vereinfachte analytische Berechnung hat Lamport entwickelt [12]. Dieses Modell beruht auf den Vereinfachungen, dass die Reibung zwischen Grout und Stahl nur im Kontaktbereich der Druckstrebe auftritt und somit die gesamte Last über die Druckstreben übertragen wird. Zudem wird die anliegende Kraft F wie in Gleichung (2.1) auf die Anzahl der Druckstreben n_{Sr} gleichmäßig verteilt.

Abbildung 2.4.: Anliegende und resultierende Kräfte an der Druckstrebe

$$F_{Sr,v} = \frac{F}{n_{Sr}} \tag{2.1}$$

Dabei resultieren aus der vertikalen Kraft an einer Schubrippe $F_{Sr,v}$ die Reibkraft F_R und die Normalkraft F_N an der Schubrippe [13]. Diese resultierenden Kräfte sind in der Abbildung 2.4 eingezeichnet.

$$F_N = \frac{F_{Sr,v} \cdot (t_g - h_{Sr})}{t_g \cdot (\tan \alpha - \mu)}$$
(2.2)

$$F_R = \mu \cdot F_N \tag{2.3}$$

Für die Gleichung wird die Spaltbreite zwischen dem Pile- und Sleeve-Rohr t_g und die Höhe der Schubrippe h_{Sr} genutzt. μ ist der Reibungskoeffizient für die Reibung zwischen dem Grout und dem Stahl und α gibt den Winkel der Druckstrebe an. Da diese analytische Rechnung sehr viel vereinfacht, wurde 2016 von der DNV GL eine empfohlene Vorgehensweise zur Berechnung von Grout-Verbindungen mit der FEM veröffentlicht [14]. Diese Empfehlungen sind im Kapitel 2.3 aufgelistet.

2.1.3. Versagensarten

Bei einer Belastung der Grout-Verbindung durch einen Moment M wie in Abbildung 2.5 zu sehen, kommt es im oberen und unteren Bereich der Überlappung der Rohre zu einer Kontaktspannung. Diese Spannung ist an den Rändern am größten.

Abbildung 2.5.: Spannungen und Kräfte in der Grout-Verbindung unter Momentenlast

Abbildung 2.6.: Varianten der Positionierung der Schubrippen

In der Abbildung 2.6 sind zwei Varianten der Positionierung der Schubrippen dargestellt. Dabei ist die Variante 2 besser für Belastungen mit einem Moment M geeignet, da die Schubrippen in dem mittleren Bereich angeordnet sind. Bei der Variante 1 führen die Schubrippen zu einer Kerbwirkung im Beton. Diese Kerbwirkung mindert die maximal zu ertragende Spannung im Beton.

Da bei OWEAn durch die Wind- und Wellenlasten große Momente auftreten, wird die zweite Variante vorzugsweise genutzt.

Durch das Umströmen der Strukturen im Wasser entstehen Strudel. Diese reißen einen Teil des Meeresbodens mit sich und legen auf diese Weise die Piles teilweise frei. Diese Ausspülung wird Kolk genannt. Durch die Bildung von Kolk an den Piles kann es auch bei Jacket-Gründungen zu einer signifikanten Erhöhung der zu übertragenden Momenten kommen, da sich die Länge des freien Piles stark erhöht.

Abbildung 2.7.: Lokale Versagensmodi in Anlehnung an Hordyk [15]

Eine Grout-Verbindung kann auf die verschiedenen Arten in Abbildung 2.7 versagen. Zum einen kann es aufgrund der Normalkraft zum Abscheren der Schubrippen kommen. Eine Ursache dafür ist ein zu großes Verhältnis der Schubrippengeometrie $\frac{h_{Sr}}{w_{Sr}}$. Dabei ist w_{SR} die Weite der Schubrippe.

Bei der zweiten Art des Versagens kommt es zum Auflösen der Betonmatrix an den Schubrippen. Dabei ist die Druckfestigkeit des Betons zu gering. Größere Schubrippen können diesen Effekt vermindern.

Wenn der Beton nicht durch die hohe Druckbelastung an den Schubrippen versagt, kommt es zu einem Bruch in der Druckstrebe. Die auftretende Belastung führt zu einer Zugspannung orthogonal zu der Druckstrebe.

Die vierte Art ist ein Gleiten der Rohre durch einen Spalt zwischen dem Beton und dem Rohr. Die Ursache für diese Versagensart kann ein Aufdehnen des Stahlrohrs oder leichtes Auflösen des Betons sein. Auch eine zu dichte Anordnung der Schubrippen begünstigt das Gleiten der Verbindung.

2.2. Materialeigenschaften

Die Grout-Verbindung ist eine Stahl-Beton-Stahl Verbindung. Für diese beiden Materialien werden in diesem Teil die grundlegenden Materialeigenschaften beschrieben.

2.2.1. Stahl

Die Rohre der Grout-Verbindung sind aus Stahl hergestellt. Stahl ist ein isotroper Werkstoff. Im Offshore-Bereich wird vor allem Baustahl benutzt. Baustähle besitzen eine ausgeprägte Streckgrenze. Bis zum Erreichen der Streckgrenze verhält sich der Stahl linear-elastisch. Diese Gerade im Spannungs-Dehnungsdiagramm wird auch Hook'sche Gerade genannt. Nach dem Hook'schen Gesetz kann diese Gerade mit der Gleichung (2.4) beschrieben werden.

$$\sigma = E \cdot \varepsilon \tag{2.4}$$

Die Spannung im Material σ wird über die Dehnung ε und dem Elastizitätsmodul E bestimmt. Nach Erreichen der Streckgrenze beginnt das Material plastisch zu fließen. Dabei bleibt die im Material vorhandene Spannung annähernd konstant. Dieser Teil der plastischen Dehnung wird Lüdersdehnung genannt. Danach verfestigt sich das Material bis zum Erreichen der Zugfestigkeit. Nach Erreichen der Zugfestigkeit kommt es zum Einschnüren der Zugprobe und schließlich zum Bruch. Dabei sinkt die Spannung wieder ab. Dieser Verlauf resultiert daraus, dass die Spannung als Quotient aus Kraft und Ausgangsfläche bestimmt wird. Wenn kontinuierlich auch die kleinste Fläche gemessen würde, kommt es nach Erreichen der Zugfestigkeit zu einem weiteren Anstieg der Spannung. Vereinfachend kann das Verhalten bis zur Bruchdehnung mit zwei Geraden beschrieben werden. Die erste Gerade ist die Hook'sche Gerade. Die zweite Gerade beginnt an der Streckgrenze und verläuft linear durch den Punkt der Bruchdehnung und Zugfestigkeit mit dem verringerten Tangentenmodul E_T .

$$E_T = \frac{R_m - R_{eH}}{\varepsilon_m - \frac{R_{eH}}{E}} \tag{2.5}$$

$$\sigma = \begin{cases} E \cdot \varepsilon & f \ddot{\mathbf{u}} r \ \varepsilon \leq \frac{R_{eH}}{E} \\ R_{eH} + E_T \cdot \left(\varepsilon - \frac{R_{eH}}{E}\right) & f \ddot{\mathbf{u}} r \ \varepsilon > \frac{R_{eH}}{E} \end{cases}$$
(2.6)

Eine andere Abschätzung des Tangentenmoduls für Stahl $(E_{T,St})$ erfolgt in Anlehnung an DIN 1993-1-5 [16] mit 1 % der E-Modul E_{St} .

Abbildung 2.8.: Spannungs-Dehnungslinie von Stahl

In der Abbildung 2.8 sind neben dem realen Verlauf auch die bilinearen Verläufe abgebildet.

2.2.2. Beton

Beton ist eine Verbindung aus Zement, Betonzuschlägen und Wasser. Der Zement bildet eine Matrix, in der die Zuschläge gehalten werden. Die Zuschläge sind unter anderem Gesteinskörner. Die Zuschläge sind entweder natürliche Stoffe wie Kies, Sand, Schotter oder Nebenerzeugnisse der Industrie, wie beispielsweise Hochofenschlacke, Gießereisand, Steinkohleflugasche oder Hausmüllverbrennungssachen. In der Abbildung 2.9 ist die Matrix des Beton in der Meso-Ebene und Makroebene dargestellt. In der Abbildung ist zu erkennen, dass die Zuschläge in der Zementsteinmatrix eingefasst sind. Zudem können sich im Zementstein Pore und andere Einschlüsse bilden. In der Makro-Ebene kann der Beton als ein isotroper Werkstoff betrachtet werden. Ein Riss im Beton verläuft meistens durch die Zementsteinmatrix am Rand der Zuschläge. Bei dem festeren Beton kann der Riss auch durch die Zuschläge verlaufen.

Abbildung 2.9.: Meso- und Makroebene Beton

Die Zuschläge werden in die drei Kategorien Normal-, Leicht- und Schwerzuschlag eingeteilt. Normalzuschlag mit einer Dichte von 2200 bis 3200 kg m⁻³ beinhaltet den Großteil der natürlichen Zuschläge. Leichtzuschläge haben eine Rohdichte von weniger als 2200 kg m⁻³. Beispiele dafür sind Bims, Lavakies oder Blähglas. Schwerzuschläge weisen eine Rohdichte von mehr als 3200 kg m⁻³ auf. Schrott, Schwermetallschalke und Magnetit sind einige Beispiele für diese Kategorie.

Entscheidend für die Festigkeit und Verarbeitbarkeit ist neben der Rohdichte auch die Korngröße. Je feiner die Korngröße ist, desto fließfähiger ist der Beton. Tendenziell weist Schwerbeton eine höhere Festigkeit als Leichtbeton auf. Für Grout-Verbindungen wird hochfester oder ultrahochfester Beton wie beispielsweise der hochfeste Beton Ducorit S5 von der Firma Densit verwendet. Ducorit S5 weist bei einem Würfel mit einer Kantenlänge von 75 mm eine Druckfestigkeit von 130 MPa und eine Zugfestigkeit von 7 MPa auf [17]. An diesem Beispiel ist gut zu erkennen, dass die Druckfestigkeit um ein vielfaches höher als die Zugfestigkeit ist. Durch diese Eigenschaft muss bei der Konstruktion von Betonbauteilen darauf geachtet werden, dass Zugbeanspruchungen vermieden werden oder durch eine Bewehrung abgefangen werden.

Je höher der Wasseranteil ist, desto fließfähiger ist der Beton. Beim Aushärten des Betons, reagiert der Zement mit dem Wasser zu festem Zementstein. Ein zu großer Wasseranteil führt dazu, dass sich im Beton Kapillare bilden und sich die mechanischen Eigenschaften verschlechtern. Ein zu geringer Wasseranteil führt dazu, dass nicht genügend Wassermoleküle für die Reaktion mit dem Zement vorhanden sind und der Beton damit nicht die vollständige Festigkeit erlangt. In der Abbildung 2.10 sind verschiedene

Abbildung 2.10.: Spannungs-Dehnungs-Linie Druckbeanspruchung nach DIN 1045-1 [18]

Spannungs-Dehnungs-Linien einiger Druckfestigkeitsklassen dargestellt. Die Festigkeitsklassen bestehen aus einem "C" für concrete (Deutsch: Beton) und zwei Kennzahlen. Die erste Kennzahl ist die Zylinderdruckfestigkeit f_{ck} . Diese wird nach 28 Tagen an einem Zylinder mit einem Durchmesser von 150 mm und einer Höhe von 300 mm bestimmt. Die zweite Kennzahl ist die Würfelfestigkeit $f_{ck,cube}$, die nach 28 Tagen an einem Würfel mit einer Kantenlänge von 150 mm bestimmt wird. Diese Druckfestigkeitsklassen werden international gleich bestimmt und sind somit vergleichbar. Neben dem "C" gibt es noch die Klasse des Leichtbeton, die mit "LC" abgekürzt wird.

In der Abbildung 2.10 ist zu erkennen, dass nach Erreichen der maximalen Druckspannung es zu einem Abfall der Spannung kommt. Diese Verminderung der Druckfestigkeit ist auf die voranschreitende Bildung der Risse im Beton zurückzuführen. Zudem ist zu erkennen, dass das Versagen bei höher festem Beton spontaner auftritt. Die maximale Dehnung der abgebildeten Betonklassen liegt zwischen 3 ‰ und 3,5 ‰. Der Maximalwert ist der Mittelwert der Zylinderdruckfestigkeiten f_{cm} und kann aus der charakteristischen Zylinderdruckfestigkeit f_{ck} bestimmt werden.

$$f_{cm} = f_{ck} + 8 \,\mathrm{MPa} \tag{2.7}$$

Bei der Zugfestigkeit gibt es drei Werte, die genutzt werden.

- Die zentrische Zugfestigkeit f_{ct}
- Die Spaltzugfestigkeit $f_{ct,sp}$

• Die Biegezugfestigkeit $f_{ct,fl}$

Die zentrische Zugfestigkeit wird mithilfe eines Zugversuchs einer Rundstabsprobe bestimmt. Dabei wird wie bei Metallen die angelegte Prüfkraft mit der Querschnittsfläche der Probe dividiert, sodass die anliegende Spannung mit der Gleichung (2.8) errechnet werden kann. Dabei ist F_u die anliegende Prüfkraft und d der Durchmesser des Prüfkörpers.

$$f_{ct} = \frac{4 \cdot F_u}{d^2 \cdot \pi} \tag{2.8}$$

Bei der experimentellen Bestimmung der Spaltzugfestigkeit wird eine zylindrische Probe zwischen zwei parallel liegende Platten gelegt, sodass die Mantelfläche die beiden Platten berührt. Die Prüfkraft wird auf die Platte aufgetragen. Die Spaltzugfestigkeit lässt sich dann mit der Gleichung (2.9) und der Länge l des Prüfkörpers bestimmen.

$$f_{ct,sp} = \frac{2 \cdot F_u}{d \cdot \pi \cdot l} \tag{2.9}$$

Die dritte Variante zur Bestimmung der Zugfestigkeit ist der Vierpunktbiegeversuch. Dabei wird ein Quader mit quadratischer Grundfläche auf zwei Auflagern bei einem und zwei Drittel des Lagerabstands je mit der halben Prüfkraft belastet. Diese Belastung hat zur Folge, dass zwischen den beiden Krafteinleitungspunkte reiner Zug im Quader vorhanden ist. Mit der Höhe h_q , Breite $b_q = h_q$ und Länge l_q des Quaders wird die Biegezugfestigkeit mit der Gleichung (2.10) bestimmt.

$$f_{ct,fl} = \frac{F_u \cdot l_q}{b_q \cdot h_q^2} \tag{2.10}$$

Der Model Code 1990 [19] beinhaltet Näherungsgleichungen für die Umrechnung der verschiedenen Zugfestigkeiten. Die Spaltzugfestigkeit ist 10 % geringer als die zentrische Zugfestigkeit. Diese Verhältnisse wurden im Model Code 2010 [20] nochmal angepasst. Das Verhältnis zwischen Spaltzugfestigkeit und zentrischer Zugfestigkeit wurde als Kompromiss im Model Code 2010 auf 1 angepasst.

$$f_{ct} = \alpha_{sp} \cdot f_{ct,sp} \text{ mit } \alpha_{sp} = \begin{cases} 0.9 & \text{nach Model Code 1990 [19]} \\ 2.08 \cdot f_{cm}^{-0.16} & \text{nach Malárics und Müller [21]} \\ 1 & \text{nach Model Code 2010 [20]} \end{cases}$$
(2.11)

Allerdings wird auch auf die Ergebnisse von Malárics und Müller [21] verwiesen. Die Versuche zeigen, dass der Faktor 0,9 aus dem Model Code 1990 [19] nicht für alle Betonklassen gilt. Ein aktualisierter Ansatz für den Faktor ist der Ansatz nach Model Code 2010, der in Gleichung (2.11) dargestellt ist.

Das Verhältnis der Biegezugfestigkeit zu der zentrischen Zugfestigkeit ist nach Model Code 1990 [19] in Gleichung (2.12) beschrieben. Dabei ist $h_0 = 100 \text{ mm}$ ein Bezugswert.

$$f_{ct} = \frac{1, 5\left(\frac{h_q}{h_0}\right)^{0,7}}{1 + 1.5 \cdot \left(\frac{h_q}{h_0}\right)^{0,7}} \cdot f_{ct,fl}$$
(2.12)

Die Gleichung (2.12) wurde im Model Code 2010 [20] so angepasst, dass der Bezugswert h_0 bereits im Faktor 0,06 berücksichtigt worden ist.

$$f_{ct} = \frac{0,06 \cdot h_q^{0,7}}{1+0,06 \cdot h_q^{0,7}} \cdot f_{ct,fl}$$
(2.13)

Zu der Gleichung (2.13) steht im Model Code 2010 die Anmerkung, dass für hochfeste Betonarten der Faktor 0,06 nach Experimenten angepasst werden soll.

Wenn Beton aus mehreren Richtungen auf Druck belastet wird, kann der Werkstoff eine höhere Druckspannung ohne Versagen ertragen. Ein analytischer Ansatz für das Verhältnis zwischen einaxialer und biaxialer Druckfestigkeit f_{bc} steht auch im Model Code. Zwischen den beiden Auflagen des Model Codes wurde der Ansatz angepasst.

$$f_{bc} = \begin{cases} 1.2 f_{cm} & \text{Nach Model Code 1990 [19, S.38]} \\ 1.2 f_{cm} - \frac{f_{cm}^2}{1000 \text{ MPa}} & \text{Nach Model Code 2010 [20, S.80]} \end{cases}$$
(2.14)

Dabei führt der neuere Ansatz zu einer geringeren biaxialen Festigkeit. Der Verlauf der beiden Ansätze ist in der Abbild 2.11 dargestellt. In der Abbildung 2.11 ist zu erkennen, dass die Erhöhung der biaxialen Druckfestigkeit bei steigender Druckfestigkeit abnimmt.

Abbildung 2.11.: f_{bc} über f_{cm} nach Model Code 1990 und 2010

Für Betonwerkstoffe können verschiedene E-Moduln bestimmt werden. In der Abbildung 2.12 ist eine wirklichkeitsnahe Spannungs-Dehnungs-Linie nach DIN 1045-1 [22] abgebildet. In diesem Graphen sind drei verschiedene E-Moduln und ihre Bestimmung eingezeichnet. Der dynamische E-Modul E_{c0} gibt die Steigung der Spannungs-Dehnungs-Linie zu Beginn der Dehnung an. Der Sekantenmodul E_{c1} gibt die mittlere Steigung bis zur einaxialen Druckfestigkeit an. Der statische E-Modul E_{cm} gibt die mittlere Steigung bis 40 % der maximalen Druckfestigkeit an.

Abbildung 2.12.: Wirklichkeitsnahe Spannungs-Dehnungs-Linie nach DIN 1045 - Bezeichnungen [18]

Die Werte der E-Moduln unterscheiden sich zwischen dem Eurocode 2 und dem Model Code 2010.

$$E_{cm,EC} = 22 \,\text{GPa} \cdot \left(\frac{f_{cm}}{10 \,\text{MPa}}\right)^{0.3} \tag{2.15}$$

$$E_{cm,MC} = 21.5 \,\mathrm{GPa} \cdot \alpha_E \alpha_i \cdot \left(\frac{f_{cm}}{10 \,\mathrm{MPa}}\right)^{\frac{1}{3}}$$
(2.16)

$$\alpha_{i} = \begin{cases} 0.8 + 0.2 \cdot \frac{f_{cm}}{88 \,\mathrm{MPa}} & f \ddot{\mathrm{u}} r f_{cm} \le 88 \,\mathrm{MPa} \\ 1 & f \ddot{\mathrm{u}} r f_{cm} > 88 \,\mathrm{MPa} \end{cases}$$
(2.17)

Nach dem Eurocode 2 [23] wird der statische E-Modul E_{cm} nach der Gleichung (2.15) aus dem Mittelwert der Zylinderdruckfestigkeit f_{cm} abgeschätzt. Der Model Code 2010 schätzt den statischen E-Modul E_{cm} aus dem Mittelwert der Zylinderdruckfestigkeit f_{cm} und noch aus zwei Einflussfaktoren ab. Der Wert des ersten Einflussfaktors α_E ist je nach Art der Zuschlagstoffe zwischen 0,7 und 1,2. Der zweite Einflussfaktor α_i wird nach der Gleichung (2.17) aus dem Mittelwert der Zylinderdruckfestigkeit f_{cm} bestimmt.

Abbildung 2.13.: Vergleich E_{cm} zwischen Eurocode und Model Code

In der Abbildung 2.13 sind die Ansatzfunktionen für die E-Moduln nach Eurocode 2 und Model Code 2010 dargestellt. Bei Beton-Festigkeitsklassen bis C60/75 gibt der Ansatz nach Eurocode 2 einen höheren E-Modul an. Ab der Klasse C70/85 ist der E-Modul nach Eurocode 2 geringer als nach dem Model Code 2010.

Im Eurocode 2 [23] wird für kurzzeitig wirkende einaxiale Druckbeanspruchung die Spannungs-Dehnungs-Linie mit der Gleichung (2.18) beschrieben.

$$\sigma_c = \left(\frac{k\eta - \eta^2}{1 + (k - 2)\eta}\right) \cdot f_{cm} \tag{2.18}$$

$$k = 1,05E_{cm} \cdot \frac{|\varepsilon_{c1}|}{f_{cm}} = 1,05\frac{E_{cm}}{E_{c1}}$$
(2.19)

$$\eta = \frac{\varepsilon_c}{\varepsilon_{c1}} \tag{2.20}$$

Dabei ist k eine Konstante die durch die Gleichung (2.19) aus dem Mittelwert der Zylinderdruckfestigkeit f_{cm} , dem mittleren Elastizitätsmodul E_{cm} und der Dehnung unter der der Maximallast ε_{c1} . Das Verhältnis der aktuellen Dehnung ε_c und der Dehnung unter der der Maximallast ε_{c1} ist η . Der Model Code 2010 [20] gibt auch die Gleichung (2.18) an, mit η identisch zum Eurocode 2 [23]. Der zweite Parameter k ist im Model Code 2010 die Plastizitätsnummer. Die Plastizitätsnummer ist das Verhältnis des dynamischen E-Modul E_{cm} und dem Sekanten E-Modul E_{c1} .

$$k_{MC} = \frac{E_{cm}}{E_{c1}} \tag{2.21}$$

Die sich aus der Gleichung (2.18) ergebenden Spannungs-Dehnungskurven für eine Auswahl an Beton der Festigkeitsklassen von C12 bis C120 sind in Abbildung 2.14

Abbildung 2.14.: Spannungs-Dehnungs-Diagramm Vergleich Eurocode 2 mit Model Code 2010 nach Gleichung (2.18)

dargestellt. Dabei ist der Verlauf bei beiden Normen bis $0,4 \cdot f_{cm}$ annähernd linear. Die beiden Normen unterscheiden sich allerdings in der Dehnung des Betons unter der Maximalspannung. In der Abbildung 2.14 ist zu sehen, dass die Dehnung unter Maximallast ε_{c1} geringer als im Model Code 2010 ist. Bei der Bruchdehnung ε_{cu1} sind die Werte nach dem Eurocode 2 geringer oder gleich der Werte des Model Code 2010 mit der Ausnahme der Festigkeitsklasse C50.

Für die Poisson'sche Zahl ν_C geben sowohl der Model Code 2010 [20, S.201] als auch der Eurocode 2 [23, S.29] einen Wert von 0,2 für ungerissenen Beton an.

Abbildung 2.15.: Spannung-Verschiebungslinie Zug mit Bruchenergie in Anlehnung an [18, S.70]

Der Verlauf unter Zugbelastung ist in der Abbildung 2.15 dargestellt. Neben dem Verlauf der Zugspannung ist noch der Verlauf der elastischen Entspannung bei der Zugfestigkeit und die Bruchenergie G_f dargestellt. Der Abstand zwischen dem absteigenden Ast und der elastischen Entspannung ist die Rissöffnung w_{cr} . Die Bruchenergie entspricht der schraffierten Fläche in der Abbildung 2.15. Die Bruchenergie kann neben einer experimentellen Bestimmung auch analytisch abgeschätzt werden. Neben den beiden Versionen des Model Codes gibt es auch noch einen Ansatz der Fédération internationale du béton (FIB).

Die Bruchenergie kann nach dem Model Code 1990 [19] über die Gleichung (2.22) berechnet werden. Dabei wird in Abhängigkeit des Größtkorndurchmessers d_{max} der Grundwert der Bruchenergie G_{f0} festgelegt und die Bruchenergie wird dann in Abhängigkeit der einaxialen Zugfestigkeit f_{ct} berechnet. Der Grundwert liegt bei 0,025 N mm mm⁻² für einen Größtkorndurchmesser von 8 mm und bei 0,058 N mm mm⁻² für einen Größtkorndurchmesser von 32 mm. Allerdings kann sich die berechnete Bruchenergie durch andere Einflüsse wie Bauteilgeometrie und bestimmte Zusätze um bis zu ±30 % ändern.

$$G_{ft,MC1990} = G_{f0} \cdot \left(\frac{f_{ct} + 8 \text{ MPa}}{10 \text{ MPa}}\right)^{0.7}$$
 (2.22)

Im Model Code 2010 [20] wird die Bruchenergie nur in Abhängigkeit der einaxialen Zugfestigkeit f_{ct} nach der Gleichung (2.23) bestimmt.

$$G_{ft,MC2010} = 73 \,\mathrm{N}\,\mathrm{m}^{-1} \cdot \left(\frac{f_{ct}}{1\,\mathrm{MPa}}\right)^{0.18}$$
 (2.23)

Im Model Code 2010 wird auf die Veröffentlichung "Constitutive modelling for high strength/high performance concrete" von FIB hingewiesen. In dieser Veröffentlichung [24] wird eine dritte Variante zur Bestimmung der Bruchenergie vorgestellt. Die Bestimmung nach der Gleichung (2.24) bestimmt die Bruchenergie auch nur aus der einaxialen Zugfestigkeit.

$$G_{ft,FIB} = 0.18 \,\mathrm{N\,m\,m^{-2}} \left(1 - 0.77 \cdot \frac{10 \,\mathrm{MPa}}{f_{ct}}\right)$$
 (2.24)

Abbildung 2.16.: Festigkeits-Bruchenergie Diagramm mit Messdaten aus FIB42 [24]

In der Abbildung 2.16 sind die verschiedenen Ansatzfunktionen dargestellt. Dabei sind die blauen Linien jeweils 30 % unterhalb und die grünen Linien 30 % oberhalb der Ansatzfunktionen. Die Messdaten stammen aus dem Bericht "Constitutive modelling of high strength / high performance concrete" [24] der FIB. Es ist zu erkennen, dass der Model Code 1990 nur die Messergebnisse im Bereich von $f_{cm} > 110$ MPa komplett einschließt und für Werte von $f_{cm} < 110$ MPa liegen die Messdaten im oder über dem Bereich der Ansatzfunktion. Die beiden Ansätze nach Gleichung (2.23) und (2.24) schließen einen Großteil der Messdaten ein. Der größte Unterschied dieser beiden Ansätze liegt in dem Bereich bis $f_{cm} < 30$ MPa, da die Ansatzfunktion (2.24) erst ab $f_{cm} \ge 7,7$ MPa eine positive flächenspezifische Bruchenergie besitzt. Für die Bestimmung der Bruchenergie wird der Ansatz nach Gleichung (2.23) gewählt, da dieser die vorhandenen Messdaten gut wiedergibt und für alle Festigkeitsklassen definiert ist.

Aus der Bruchenergie kann zudem noch die charakteristische Länge l_{ch} als eine weiterer Materialkonstante abgeleitet werden. Bei einem Zugkörper mit der zweifachen charakteristische Länge ist die gespeicherte elastische Energie $G_e l$ gleich der Bruchenergie.

$$G_e l = \frac{f_{ct}^2}{E_c m} \cdot l_{ch} \stackrel{!}{=} G_f t \tag{2.25}$$

Gleichung (2.25) nach l_{ch} umgestellt:

$$l_{ch} = \frac{G_f t \cdot E_{cm}}{f_{ct}^2} \tag{2.26}$$

Die charakteristische Länge l_{ch} gibt die Sprödigkeit eines Werkstoff an. Je kleiner der Wert ist, desto spröder ist ein Werkstoff. Die Sprödigkeit und geringe Zugfestigkeit sind die größten Herausforderungen bei der Nutzung von Beton.

2.3. Empfehlung DNV GL

Im September 2016 veröffentlichte der DNV GL eine empfohlene Herangehensweise "Analysis of grouted connections using the finite element method".

2.3.1. Materialmodell Stahl

Für die Modellierung des Stahls wird ein isotropes, lineares, elastisches Materialmodell für die meisten Fälle empfohlen. In Ausnahmen wie dem Maximallastfall oder der Beulanalyse wird auch ein nichtlineares Materialmodell empfohlen. Dafür wird auf die Richtlinie EN 1993-1-5 [16] verwiesen.

2.3.2. Materialmodell Beton

Bei Beton empfiehlt der DNV GL eine Simulation mit einem isotropen linearen elastischen Materialmodell für eine schnelle erste Analyse der Spannungsverteilungen.

Für eine weitergehende Analyse muss ein nichtlineares Materialmodell genutzt werden. Dieses Modell sollte das unsymmetrische Verhalten zwischen Druck- und Zugfestigkeiten und das Versagen bei Bruch widerspiegeln können. Hier nennt der DNV GL als einfachstes Modell das lineare Drucker-Prager Modell aber auch andere Ansätze nach Willam-Warnke oder Lubliner-Lee-Fenves werden erwähnt. Zudem können auch Erweiterungen der Modelle genutzt werden.

Der DNV GL schreibt, dass das nichtlineare Materialmodelle drei grundlegende Komponenten besitzen soll.

- Ein Fließkriterium, ab wann der Beton sich plastisch verformt
- Eine Verfestigungsregel, die das Verfestigen des Betons beschreibt und den Verlauf der Spannung formuliert
- Ein plastisches Potential, das die Richtung des Fließens beschreibt.

Abbildung 2.17.: Spannungs-Dehnungslinie nach DNV GL [14]

Der DNV GL zeigt auch ein Beispiel für den Verlauf der Spannungs-Dehnungslinie. Diese ist in der Abbildung 2.17 dargestellt. Bis 60 % der maximalen Druckfestigkeit verläuft die Linie linear, danach verfestigt sich der Beton bis zum Erreichen der Druckfestigkeit. Bei größeren Dehnungen verhält sich der Beton ideal plastisch bei einer konstanten Spannung. Im Zugbereich wird eine lineare Entfestigung nach Erreichen der Zugfestigkeit vorgeschlagen. Zudem wird empfohlen, die Entfestigung über die Bruchenergie zu definieren, da sonst das Verhalten stark von der Elementgröße abhängig ist.

2.3.3. Elemente

Der DNV GL empfiehlt für die Modellierung des Betons und des Stahls die Nutzung von Elementen der zweiten Ordnung mit einer reduzierten Integration. Falls bei der Simulation mit reduzierter Integration es zu einer Hourglassing Verformung kommt, kann das Umstellen auf eine volle Integration ein Lösungsansatz zur Verbesserung der Konvergenz sein.

Als Elementtyp werden Quader-Volumen-Elemente empfohlen. Die Seitenverhältnisse sollten unter 1,5 in den Bereichen von Interesse sein. In allen anderen Bereichen sollte das Seitenverhältnis unter 3 liegen.

Die Stahlteile sollten mindestens mit einem Element der zweiten Ordnung in der Dicke modelliert werden. Bei dem Beton sollten mindestens drei Elemente in der Dicke genutzt werden.

Schubrippen sollten mit mindestens sechs Elementkanten an der Kontaktfläche zwischen dem Beton und dem Stahl modelliert werden. Beispiele dafür sind in der Abbildung 3.28 auf der Seite 70 abgebildet.
2.4. Materialmodell Stahl

Um die Eigenschaften von Stahl abzubilden, werden zwei Materialmodelle ausgewählt. Das erste Materialmodell ist ein isotropisches linear elastisches Materialmodell. Dabei wird der Elastizitätsmodul für Stahl E_{St} und die Poisson'sche Zahl ν_{St} verwendet. Dieses Materialmodell ist für Ermüdungsberechnungen und die Grenzzustände der Gebrauchstauglichkeit ausreichend [14]. Bei dem zweiten Materialmodell wird das erste Modell um die bilineare isotropische Verfestigung ergänzt. Zudem wird die Streckgrenze nach DIN EN 10025-2 [25] auf die dickenabhängige Mindeststreckgrenze reduziert. Der Tangentenmodul für Stahl ($E_{T,St}$) wird in Anlehnung an DIN 1993-1-5 [16] mit 1% der E-Modul E_{St} angenommen, da für die Berechnung mit der Gleichung (2.5) die Dehnung bei der Zugfestigkeit nicht verfügbar ist. Für die Berechnungen wurden die in der Tabelle 2.1 aufgelisteten Werte verwendet. Das Ansys Parametric Design Language (APDL)-Skript zur

Tabelle 2.1.: Verwendete Parameter Materialmodell Stahl

Parameter	Wert	Einheit
E_{St} 21	10 000	[MPa]
$ u_{St}$	$0,\!3$	[-]
R_{eH}	355	[MPa]
$R_{eH,Versuch}$	391	[MPa]
$E_{T,St}$	2100	[MPa]

Erzeugung der beiden Materialmodelle ist im Anhang A.1 abgedruckt. Dabei werden dem linear-elastischen Modell die Materialnummer 100 und dem bilinear-elastischen Modell die Materialnummer 101 zugewiesen.

2.5. Materialmodell Beton

Wie im Absatz 2.2.2 beschrieben, verhält sich Beton sehr spröde und die Betonfestigkeit ist bei Zug viel geringer als bei Druck. In der Meso-Struktur ist Beton inhomogen. Eine Modellierung der Meso-Struktur (Abbildung 2.9) führt zu sehr kleinen Elementen und einer Vielzahl an Kontaktbedingungen zwischen den einzeln modellierten Zuschlagskörpern und der Zementmatrix. Dieser Modellierungsansatz wird nicht weiter betrachtet, da die Simulation zu viele Elemente besitzen würde. Die verschmierte Makrostruktur wird in einer ersten vereinfachten Form als isotropisches elastisches Materialmodell modelliert. Dieses Materialmodell wird von der DNV GL [14] für die erste Berechnung empfohlen, um einen Überblick über das Modell zu erhalten. Dafür soll der mittlere dynamische E-Modul E_{dyn} verwendet werden. Für die ersten Simulationen in dieser Arbeit werden die Werte aus der Tabelle 2.2 in Anlehnung an das Material Densit Ducorit S5 [17] verwendet.

Parameter	· Wert	Einheit
E_{C_stat}	55000	[MPa]
E_{C_dyn}	60000	[MPa]
$ u_C$	$0,\!19$	[-]

Tabelle 2.2.: Verwendete Parameter Materialmodell Beton

Dieses Materialmodell kann mit dem im Anhang A.2 abgedruckten APDL-Code erzeugt werden. Dieses Materialmodell hat die Materialnummern 200 mit dem dynamischen E-Modul und 201 mit dem statischen E-Modul.

Um das Materialverhalten genauer darzustellen, muss ein nichtlineares Materialmodell verwendet werden. Ansys stellt in der Toolbox für die FEM-Berechnung von geomechanischen Materialien verschiedene Materialmodelle zur Verfügung. Eine Übersicht dieser Modelle ist in der Tabelle 2.3 dargestellt.

Tabelle 2.3.: Geomechanische Materialmodel	lle A.	NSYS
--	--------	------

Modell	Empfehlung
Cam-Clay	lose Böden, Lehm
Mohr-Coulomb	körnige, spröde Materialien
Jointed Rock	geklüfteter Fels, Tunnelbauwerk, viele Trennflächen, Erweiterung von Mohr-Coulomb
Drucker-Prager	Beton, Mörtel, Zement
menetrey-willam	Deton, Mortel, Zement

Alle diese Modelle können bei Volumen-, Schalen- und Plattenelementen verwendet werden. Ansys beschreibt in der "Material Reference" [26, Kapitel 4.9] die geomechanischen Materialmodelle. Diese Modelle basieren auf der geschwindigkeitsunabhängigen Plastizität. Dabei ist die Verformung nur von der Last abhängig. Die Gesamtdehnung ε_{ges} ist die Summe aus der elastischen ε_{el} und der plastischen Dehnung ε_{pl} .

$$\varepsilon_{ges} = \varepsilon_{el} + \varepsilon_{pl} \tag{2.27}$$

Die Grenze zwischen elastischer und plastischer Verformung wird mit der Fließfläche f beschrieben. Einige Modelle besitzen mehrere Fließflächen, sodass die Steigerung der plastischen Dehnung nach der folgenden Gleichung definiert ist.

$$\mathrm{d}\varepsilon_{pl} = \sum_{n} \mathrm{d}\lambda^{n} \frac{\partial Q^{n}}{\partial \sigma} \tag{2.28}$$

Dabei ist n die Anzahl der aktiven Fließflächen, $d\lambda^n$ der Betrag der plastischen Dehnungszunahme, σ der Spannungstensor und Q^n das Fließpotential.

Abbildung 2.18.: Fließregel der plastischen Dehnung [26]

In der Abbildung 2.18 ist eine einfache Fließhülle im Hauptspannungskoordinatensystem dargestellt. In der Vergrößerung sind die Richtungen der Fließfläche (f) und des Fließpotentials (Q) dargestellt. Wenn diese beiden Vektoren übereinander liegen, spricht man von einer assoziierten Fließregel. Bei geologischen Materialien kommt es allerdings häufig vor, dass diese beiden Vektoren nicht aufeinander liegen. Dieses Verhalten wird dann als nichtassoziierte Fließregel bezeichnet. Dabei folgt die Richtung der plastischen Dehnung nicht der Richtung der Fließhüllennormalen.

Das Verfestigungs-, Entfestigungs- und Ausdehnungsverhalten (eng: Hardening, Softening and Dilatation HSD) wird in Abhängigkeit der Variablen κ beschrieben. κ ist der modifizierte Grad der plastischen Verformung und wird aus dem Betrag der plastischen Dehnungszunahme $d\lambda^n$ und dem Verfestigungsmodul h^n bestimmt.

$$\mathrm{d}\kappa = \sum_{n} \mathrm{d}\lambda^{n} h^{n} \tag{2.29}$$

Je nach Materialmodell wird entweder die closet-point Projektion oder die cutting-plane Methode als Integrationsverfahren genutzt.

Die closet-point Projektion wird bei den Materialmodellen Drucker-Prager, Cam-Clay und Menetrey-Willam benutzt. Dieses Iterationsverfahren ist genauer als die cuttingplane Methode, jedoch kann dieses Verfahren zu Divergenz bei Spannungszuständen nahe der Überschneidung von mehreren Fließflächen führen. Der Newton-Raphson Lösungsalgorithmus soll schnell zu konvergenten Lösungen kommen. Mithilfe des APDL-Befehls "NROPT, UNSYM" kann die Konvergenzgeschwindigkeit bei unsymmetrischer Materialsteifigkeitsmatrix erhöht werden. Bei symmetrischer Steifigkeitsmatrix führt diese Option nur halb so schnell zu einem Ergebnis [26].

Die cutting-plane Methode ist stabiler bei einer geringeren Genauigkeit. Zudem braucht diese Methode bei Newton-Raphson länger für eine konvergente Lösung. Diese Integrationsmethode wird bei den Materialmodellen Mohr-Coulomb und "jointed rock" verwendet. Da mehrere Iterationen für die Lösung eines Simulationsschritts benötigt werden, kann mit dem APDL-Befehl "NEQIT, NEQ" die maximale Anzahl der erlaubten Iterationsschritte gesetzt werden. Dabei steht die Variable "NEQ" für die neue Maximalanzahl [26].

In der Material Referenz [26] gibt Ansys an, dass das plastische Verhalten und Versagen der Struktur zu Konvergenzproblemen führen kann. Die Empfehlung dagegen ist eine Änderung der Geometrie, sodass das Versagen nur lokal auftritt und von der umgebenden Struktur abgefangen wird. Dies kann bei der Berechnung der Grout-Verbindung nicht umgesetzt werden. Zudem soll in einigen Fällen eine transiente Berechnung unkontrolliertes Verformen verhindern. Verschiebungsrandbedingungen führen eher zu konvergenten Lösungen als kraftbasierte Randbedingungen, da die Spannung und damit auch die Kraft begrenzt wird. Die Region, in der das Versagen auftritt, ist korrekt, jedoch ist der genaue Verlauf stark von der Netzgröße, Lastschrittgröße und Schrittweite abhängig.

Den Konvergenzproblemen bei der Entfestigung kann mithilfe der Anpassung von konsistenter zu elastischer Materialtangente entgegengewirkt werden. Bei dieser Anpassung sollte ebenfalls die maximale Anzahl an Iterationsschritten erhöht werden. Die Anpassung der Materialtangente wird mit dem Befehl TB,CONCR,MatID,,,MSOL und dem anschließenden Beschreiben der Materiallösungstabelle TBDATA,1,C1 realisiert. Für C1 = 1 wird die konsistente Tangente benutzt und für C1 = 2 die elastische Tangente.

Jedes Materialmodell hat eine Fließfläche. Die Fließflächen werden mit dem Symbol f_x dargestellt. Dabei steht das $_x$ für die verschiedenen Materialmodelle. Bei einigen geomechanischen Materialmodellen ist die Normale der Fließfläche nicht parallel zu der Normalen des plastischen Potentials. Dieser Fall heißt nicht-assoziierte Plastizität. Wenn dies der Fall ist, ist die Definition des plastischen Potentials von der Fließfläche verschieden. Die Funktion des plastischen Potentials wird mit dem Symbol Q_x dargestellt. Eine nicht-assoziierte Plastizität führt zu einer unsymmetrischen Materialsteifigkeitsmatrix.

Nachfolgend werden die geomechanischen Materialmodelle von Ansys kurz beschrieben und bewertet, ob sie für die Modellierung von Beton geeignet sind. Die geeigneten Modelle werden dann ausführlicher beschrieben.

2.5.1. Cam-Clay

Das Cam-Clay Materialmodell wird für die Simulation von Böden verwendet. Dabei ist bei dem Material ab Erreichen der Fließgrenze das Volumen und die Spannung konstant. Bei einer größeren Last erhöht sich die plastische Dehnung ohne Veränderung des Volumens und der Spannung. Die Fließhülle und das plastische Potential werden mit den drei Materialparametern β_{cc} , a_h und M_c sowie dem Druck p und einem modifizierten Spannungsinvariante t bestimmt.

$$Q_{cc} = f_{cc} = \frac{1}{\beta_{cc}^2} \left(\frac{p}{a_h} - 1\right)^2 + \left(\frac{t}{M_c a_h}\right)^2 - 1$$
(2.30)

Die Eigenschaften des Cam-Clay Modells spiegeln nicht die Eigenschaften des Betons wieder, da die Fließhüllkurve (Abb. 2.19) im dreiaxialen Druckbereich geschlossen ist.

Abbildung 2.19.: Grenzfließfläche Cam-Clay [26]

2.5.2. Mohr-Coulomb

Das Mohr-Coulomb Materialmodell basiert auf der inneren Reibung. Wenn die Schubspannung τ gleich oder größer als der Widerstand der inneren Reibung ist, kommt es zu einer plastischen Verformung. Durch den linearen Zusammenhang aus der Gleichung (2.31) wird die Fließbedingung bestimmt. Dabei steht c für die Kohäsion, σ_m für die mittlere Spannung und ϕ für den inneren Reibungswinkel.

$$\tau = c - \sigma_m \cdot \tan(\phi) \tag{2.31}$$

Die Fließfläche ist eine Funktion des Spannungstensors mit den Parametern des inneren Reibungswinkel ϕ und der Kohäsion c.

$$f_{mc} = \sigma_m \sin \phi + \frac{\sigma_e}{\sqrt{3}} \left(\cos \theta - \frac{\sin \theta \sin \phi}{\sqrt{3}} \right) - c \cos \phi$$
(2.32)

Dabei ist θ der Lode Winkel der Haigh-Westergaard Koordinaten. Die Form der Fließhülle ist in der Abbildung 2.20 dargestellt. Dieses Materialmodell ist vor allem für lose Materialien geeignet, es ist aber auch möglich mit diesem Modell Beton zu modellieren, jedoch ist die Eingabe bzw. Bestimmung der Materialparameter nicht trivial und benötigt Experimente. Aus diesem Grund wird dieses Modell nicht weiter betrachtet.

Abbildung 2.20.: Grenzfließfläche Mohr-Coulomb [26]

2.5.3. Jointed Rock

Jointed Rock ist ein anisotropisches Mohr-Coulomb Versagensmodell. Dieses Modell kann zusätzlich zu einem anderen Materialmodell hinzugefügt werden. Durch diese Versagensebenen wird das anisotropische Verhalten modelliert. Eine plastische Verformung kann dann in der Materialmodellierung oder in den Verbindungen auftreten. Es können maximal vier Verbindungen definiert werden. Für jede Versagensebene wird eine Fließfläche aus den Schubspannungen τ_r und den Normalspannungen in der Ebene σ_n mit den Parametern der Kohäsion c_j und des Reibungswinkel ϕ_j definiert.

$$f_j = \tau_r - \sigma_n \tan \phi_j - c_j \tag{2.33}$$

Nach dem Fließen kann zudem eine verbleibende Fließfläche definiert werden. Dabei werden die Parameter des Reibungswinkel ϕ_j und der Kohäsion c_j mit den eingestellten verbleibenden Werten getauscht. Das Fließpotential Q_j wird zudem mit dem Dilatanzwinkel ψ_j bestimmt.

$$Q_j = \tau_r - \sigma_n \tan \psi_j \tag{2.34}$$

Für den Zug-Bereich kann die Normalspannung auf den Wert T_i limitiert werden.

$$f_{Tj} = \sigma_n - T_j \tag{2.35}$$

Nach Erreichen des Limits kann diese Zugspannung auf eine verbleibende Spannung verkleinert werden. Die Orientierung der Versagensfläche wird über die beiden Winkel α_j und β_j angegeben. Es wird mit dem Winkel α_j um die negative z-Achse rotiert und anschließend um die neue y-Achse (v-Achse im Abbildung 2.21) mit dem Winkel β_j rotiert.

Abbildung 2.21.: Orientierung der Versagensfläche Jointed Rock [26]

Mit diesen beiden Rotationen lautet die Normale der Versagensfläche $\vec{w_j}$ wie folgt:

$$\vec{w_j} = \begin{bmatrix} \cos \alpha_j \sin \beta_j \\ -\sin \alpha_j \sin \beta_j \\ \cos \beta_j \end{bmatrix}$$
(2.36)

Die letzte Einstellmöglichkeit des Modells ist die Kopplung der Fließflächen. Es kann eingestellt werden, dass jede Versagensfläche für sich versagt, dass beim Fließen einer Verbindung auch die anderen Verbindungen die verminderten Eigenschaften erhalten zudem kann das auch mit dem versagen des Materialmodells verbunden werden. Da dieses Modell für anisotropes Verhalten ist, wird es für die Modellierung von den in dieser Arbeit betrachteten Versuche nicht weiter betrachtet, da sich Beton im ungerissenen Zustand isotrop verhält. Wie bei dem Mohr-Coulomb Modell müssen die Werte der Kohäsion, des innerer Reibwinkels und des Dilatanzwinkels experimentell bestimmt werden. Für die Simulation bei denen bereits der Beton gerissen ist, könnte dieses Modell genutzt werden.

2.5.4. Drucker-Prager

Das nächste Materialmodell ist das Druck-Prager Beton Materialmodell. Dieses Modell besitzt in der Standardvariante eine kegelförmige Fließhülle. Diese Fließhülle hat den Nachteil, dass sie entweder das Verhalten im Zug-Zug- und Zug-Druck-Bereich oder den

Druck-Bereich gut abbilden kann. Mit dieser Einschränkung ist das allgemeine Drucker-Prager Modell nicht sehr gut für Beton geeignet. Dieses Problem lässt sich aber auf zwei Arten lösen. Entweder wird eine zweite Fließhülle mit der ersten kombiniert, sodass beide Bereiche gut abgebildet werden oder die Zug-Fließhülle wird mit einer Zug-Versagensfläche nach Rankine erweitert. Beide Varianten werden in dem geomechanischen Drucker-Prager Modell integriert. Dabei ist die zweifache Fließhülle die Standardvariante. Diese Variante ist in Abbildung 2.22 dargestellt. Die Spitze des ersten Kegels ist der Zug-Zug-Zug Versagenspunkt. In Richtung des hydrostatischen Drucks ist der Kegel geöffnet. Die Fließhülle aus Abbildung 2.22 kann damit das Verhalten von Beton gut wiedergeben. Das Modell wird über drei Parameter definiert.

Abbildung 2.22.: Fließhülle Drucker-Prager

Die Hüllfläche wird mit den folgenden Gleichungen beschrieben. Die erste Hüllfläche ist die Zug-Fließhülle und wird mit der Gleichung (2.37) beschrieben.

$$f_{DP_t} = \frac{\sigma_e}{\sqrt{3}} + \beta_t \sigma_m - \sigma_{Yt} \tag{2.37}$$

$$\beta_t = \frac{\sqrt{3} \left(R_c \Omega_c - R_t \Omega_t \right)}{R_c \Omega_c + R_t \Omega_t} \tag{2.38}$$

$$\sigma_{Yt} = \frac{2 \cdot R_c \Omega_c R_t \Omega_t}{\sqrt{3} \left(R_c \Omega_c + R_t \Omega_t \right)} \tag{2.39}$$

Die beiden Variablen β_t (Gleichung (2.38)) und σ_{Yt} (Gleichung (2.39)) werden durch die zwei Materialwerte einaxiale Druckfestigkeit (R_c) und einaxiale Zugfestigkeit (R_t) definiert. Die beiden Funktionen Ω_c und Ω_t sind Ver-/Entfestigunsfunktionen für den Beton in Druck- und Zugbereich. Die Funktionen sind abhängig von κ . Ohne ein Ver- und Entfestigungsverhalten ist der Wert dieser Funktion 1. Die mittlere Spannung σ_m wird aus dem Spannungstensor bestimmt.

$$\sigma_m = \frac{Sp(\sigma)}{3} = \frac{\sigma_{11} + \sigma_{22} + \sigma_{33}}{3}$$
(2.40)

Die Vergleichsspannung σ_e wird aus der zweiten Spannungsinvariante J_2 bestimmt.

$$\sigma_e = \sqrt{3J_2} \tag{2.41}$$

Alternativ kann zu der Drucker-Prager Zug-Fließhülle der Zug-Bereich und Zug-Druck-Bereich mit der Rankine Fließkurve abgebildet werden. Dabei wird die Normalspannung wie bei dem Jointed Rock auf den Wert T begrenzt.

$$f_R = \sigma_m + \frac{2}{3}\sigma_e \sin\left(\theta + \frac{2}{3}\pi\right) - T\Omega_t \tag{2.42}$$

Die Druck-Fließhülle wird nach der Gleichung (2.43) mit den beiden Konstanten β_c und σ_{Yc} aus den der ein- und biaxialen Druckfestigkeit (R_c, R_b) bestimmt.

$$f_{DP_c} = \frac{\sigma_e}{\sqrt{3}} + \beta_c \sigma_m - \sigma_{Yc} \tag{2.43}$$

$$\beta_c = \frac{\sqrt{3} \left(R_b - R_c \right)}{2R_b - R_c} \tag{2.44}$$

$$\sigma_{Yc} = \frac{R_b R_c}{\sqrt{3} \left(2R_b - R_c\right)} \tag{2.45}$$

Wenn keine Entfestigungsfunktion formuliert wird, versagt das Material nach Erreichen der Kurve ideal plastisch, sodass keine höheren oder niedrigeren Spannungen im Material auftreten. Die verwendeten Parameter sind zur Übersicht mit ihren Bedingungen in der Tabelle 2.4 dargestellt. Die einaxiale Zugfestigkeit R_t muss als positive Zahl eingetragen werden. Die einaxiale Druckfestigkeit R_c wird auch als positive Zahl eingetragen und muss zudem größer als die Zugfestigkeit sein. Die biaxiale Druckfestigkeit besitzt den höchsten Wert.

Tabelle 2.4.: Verwendete Parameter Grundmaterialmodell Drucker-Prager

Parameter	Bedingung	Wert	Einheit
		Beispie	el Ducorit
R_t	$R_t > 0$	7	[MPa]
R_c	$R_c > R_t$	130	[MPa]
R_b	$R_b > R_c$	149	[MPa]

Das APDL-Skript zur Erzeugung des Materialmodells ist im Anhang A.3 abgedruckt. Die Definition der Entfestigunsfunktion steht im Kapitel 2.6.

2.5.5. Menetrey-Willam

Das Menetrey-Willam Materialmodell ist besonders für Beton geeignet, da sich die einzugebenden Parameter aus den Datenblättern herleiten lassen. Die Hüllfläche wird mit vier Parametern bestimmt:

- Die einaxiale Zugfestigkeit R_t
- Die einaxiale Druckfestigkeit R_c
- Die zweiaxiale Druckfestigkeit R_b
- Der Dilatanzwinkel ψ .

Dabei werden alle Parameter mit positiven Zahlen eingegeben. Zudem muss die zweiaxiale Druckfestigkeit höher als die einaxiale Druckfestigkeit sein. Die Zugfestigkeit muss geringer als die Druckfestigkeit sein. Der Dilatanzwinkel muss das Kriterium nach Gleichung (2.46) erfüllen. Mit den Beispielparametern von Densit Ducorit aus der Tabelle 2.4 wird der Dilatanzwinkel zwischen 2,18° und 35,26° begrenzt.

$$\frac{R_t}{\sqrt{2}R_c} < \tan\psi \le \frac{1}{\sqrt{2}} \tag{2.46}$$

Der Dilatanzwinkel kann experimentell bestimmt werden. Dazu wird, wie in Abbildung 2.23 dargestellt, ein Schubtest des Materials durchgeführt. Der Winkel der Geschwindigkeit v entspricht dem Dilatanzwinkel. Typische Werte für den Dilatanzwinkel von Beton liegen zwischen 8° und 15° [27].

Abbildung 2.23.: Schubtest zur Veranschaulichung des Dilatanzwinkels in Anlehnung an
[27]

Zudem bietet Ansys die Möglichkeit Ver- und Entfestigungsfunktionen bei diesem Modell hinzuzufügen. Die Beschreibung der Ver- und Entfestigungsfunktion steht im Kapitel 2.6. Mit den Ver- und Entfestigungsfunktionen im Druck- und Zugbereich Ω_c und Ω_t werden die Festigkeiten R_t , R_c und R_b abgemindert. Die abgeminderten Festigkeiten werden mit einem Überstrich gekennzeichnet.

$$R_t = R_t \Omega_{tc}$$
(2.47)

$$\bar{R}_c = R_c \Omega_c$$
(2.48)

$$R_c = R_c \Omega_c \tag{2.48}$$

$$\bar{R}_b = R_b \Omega_c \tag{2.49}$$

$$\Omega_{tc} = \begin{cases} \Omega_t & \kappa_c \le \kappa_{cm} \\ \Omega_t \Omega_c & \kappa_c > \kappa_{cm} \end{cases}$$
(2.50)

Mit diesen Werten wird nach der Gleichung (2.54) die Grenzfließfläche in den Haigh-Westergaard Spannungskoordinaten angegeben. Das Haigh-Westergaard Koordniatensystem oder auch Lode-Koordinatensystem besitzt den identischen Ursprung wie das Hauptspannungskoordinatensystem und ist ein Zylinderkoordinatensystem. Die Symmetrieachse ξ liegt auf der hydrostatischen Achse des Hauptspannungskoordinatensystems. Die Koordinate ρ gibt den Abstand von der Symmetrieachse wieder und θ gibt den Winkel an. Zudem wird, wie in Abbildung 2.24 abgebildet, durch ρ und θ die Deviatorebene aufgespannt. Ein Spannungstensor kann in den Drucktensor σ^P und den Spannungsdeviator

Abbildung 2.24.: Haigh-Westergaard Koordinatensystem

 σ^D aufgeteilt werden. Der Drucktensor ist dabei auf der hydrostatischen Achse und der Spannungsdeviator ist der Vektor auf der Deviatorebene.

$$\sigma = \sigma^P + \sigma^D \tag{2.51}$$

$$\begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{13} \\ \sigma_{31} & \sigma_{32} & \sigma_{13} \end{bmatrix} = \begin{bmatrix} \sigma_m & 0 & 0 \\ 0 & \sigma_m & 0 \\ 0 & 0 & \sigma_m \end{bmatrix} + \begin{bmatrix} \sigma_{11} - \sigma_m & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} - \sigma_m & \sigma_{13} \\ \sigma_{31} & \sigma_{32} & \sigma_{13} - \sigma_m \end{bmatrix}$$
(2.52)

Die mittlere Spannung σ_m des Drucktensors ist der Mittelwert der Hauptgeraden des Spannungstensors.

$$\sigma_m = \frac{\sigma_x + \sigma_y + \sigma_z}{3} \tag{2.53}$$

$$f_{MW} = \frac{c_2}{c_3} \left[\sqrt{2}\xi + r\rho \right] + \rho^2 - \frac{1}{c_3}$$
(2.54)

Die Konstanten c_2 sind c_3 sind Funktionen der vorherigen Parameter. Die Variable r beinhaltet zudem den Lodewinkel θ .

$$c_{2} = \frac{1}{\sqrt{6}} \left[\frac{1}{\bar{R}_{c}} - \frac{1}{\bar{R}_{b}} + \frac{\bar{R}_{b} - \bar{R}_{t}}{\bar{R}c^{2}} \right]$$
(2.55)

$$c_3 = \frac{3}{2} \frac{1}{\bar{Rc}^2} \tag{2.56}$$

$$r = \frac{4\left(1 - e^2\right)\cos^2\theta + (2e - 1)^2}{2\left(1 - e^2\right)\cos\theta + (2e - 1)\sqrt{4\left(1 - e^2\right)\cos^2\theta + 5e^2 - 4e}}$$
(2.57)

$$e = \frac{1+\epsilon}{2-\epsilon} \tag{2.58}$$

$$\epsilon = \frac{\bar{R}_t}{\bar{R}_b} \cdot \frac{\bar{R}_b^2 - \bar{R}_c^2}{\bar{R}_c^2 - \bar{R}_t^2}$$
(2.59)

Zur einfacheren Schreibweise werden die beiden Variablen ϵ und e eingeführt. Nach den Gleichungen (2.60) bis (2.62) werden die Haigh-Westergaard Spannungskoordinaten aus dem Spannungstensor bestimmt.

$$\xi = \frac{1}{\sqrt{3}}I_1\tag{2.60}$$

$$\rho = \sqrt{2J_2} \tag{2.61}$$

$$\cos 3\theta = \frac{3\sqrt{3}}{2} \frac{J_3}{\sqrt{J_2^3}}$$
(2.62)

Für die Bestimmung werden drei Invarianten benötigt. I_1 ist die erste Invariante des Spannungstensors, J_2 und J_3 sind die zweite und dritte Invariante des Spannungsdeviators.

$$I_1 = \text{Spur}(\sigma) = \sigma_{11} + \sigma_{22} + \sigma_{33}$$
(2.63)

$$J_2 = \frac{1}{6} \left[(\sigma_{11} - \sigma_{22})^2 + (\sigma_{22} - \sigma_{33})^2 + (\sigma_{33} - \sigma_{11})^2 \right] + \sigma_{12}^2 + \sigma_{23}^2 + \sigma_{31}^2$$
(2.64)

$$J_3 = \det\left(\sigma^D\right) \tag{2.65}$$

Die aus der Berechnung resultierende Fließgrenzfläche ist in der Abbildung 2.25 dargestellt.

Abbildung 2.25.: Grenzfließfläche Menetrey-Willam [26]

In Ansys wird das Menetrey-Willam Materialmodell mit vier Befehlen definiert. Der erste Befehl TB, CONCRETE, MATID, , , MW wählt das Modell aus und mit TBDATA, 1, C1, C2, C3 werden die drei Materialparameter $C1 = R_c$ einaxiale Druckfestigkeit, $C2 = R_t$ einaxiale Zugfestigkeit und $C3 = R_b$ biaxiale Druckfestigkeit übergeben. Mit den beiden Befehlen TB, CONCRETE, MATID, , , DILA und TBDATA, 1, DILA wird der Dilatanzwinkel ψ übergeben.

2.6. Ver- und Entfestigungsfunktion

Bei dem Drucker-Prager und dem Menetrey-Willam Materialmodellen bietet Ansys zwei Möglichkeiten eine Ver- und Entfestigungsfunktion zu hinterlegen. Beide Funktionen besitzen die identische Verfestigungsfunktion. Die beiden Varianten unterscheiden sich nur in der Entfestigungsfunktion. Dabei ist die erste Entfestigungsfunktion linear und die zweite Funktion exponentiell. Für die Verfestigungsfunktion werden zwei Parameter benötigt. Der erste Parameter Ω_{ci} ist der Beginn der Verfestigung relativ zur maximalen Spannung und der zweite Parameter κ_{cm} ist die plastische Dehnung bei Erreichen der einaxialen Druckfestigkeit. Mit diesen beiden Parametern wird die Verfestigung formuliert.

$$\Omega_c = \Omega_{ci} + (1 - \Omega_{ci}) \sqrt{2\frac{\kappa}{\kappa_{cm}} - \frac{\kappa^2}{\kappa_{cm}^2}} \text{ für } 0 \le \kappa \le \kappa_{cm}$$
(2.66)

Unter Zugbelastung verhalten sich beide Varianten bis zum Erreichen der Zugfestigkeit linear.

2.6.1. Lineare Entfestigung

Für die lineare Entfestigung (HSD6) werden neben den zwei Parametern für die Verfestigung noch vier weitere Parameter benötigt. Die vier Parameter geben jeweils im Paar das Ende der linearen Entfestigung bei Zug und Druck an. Nachdem der Beton sich auf den eingestellten Wert entfestigt hat, verhält sich das Material ideal-plastisch. Die vier Parameter lauten:

- κ_{cr} : Die plastische Verformung unter Druckbelastung beim Erreichen des idealplastischen Bereichs
- Ω_{cr} : Relative Druckeigenspannung im ideal-plastischen Bereich
- κ_{tr} : Die plastische Verformung unter Zugbelastung beim Erreichen des idealplastischen Bereichs
- Ω_{tr} : Relative Zugeigenspannung im ideal-plastischen Bereich

Der Verlauf der linearen Entfestigung ist in der Abbildung 2.26 abgebildet.

Abbildung 2.26.: Verlauf der linearen Entfestigung [26]

Mit diesen Parametern wird die Entfestigung im Druckbereich nach Gleichung (2.67) formuliert.

$$\Omega_c = 1 - \frac{1 - \Omega_{cr}}{\kappa_{cr} - \kappa_{cm}} \left(\kappa - \kappa_{cm}\right) \text{ für } \kappa_{cm} \le \kappa \le \kappa_{cr}$$
(2.67)

Im Zugbereich lautet die Entfestigung wie folgt.

$$\Omega_t = 1 - \frac{1 - \Omega_{tr}}{\kappa_{tr}} \kappa \text{ für } 0 \le \kappa \le \kappa_{tr}$$
(2.68)

In der APDL wird die lineare Entfestigung mit dem Befehl TB, CONCR, MatID, , ,HSD6 angegeben. Mit dem Befehl TBDATA, 1, C1, C2, C3, C4, C5, C6 werden mit C1 = κ_{cm} , C2 = κ_{cr} , C3 = Ω_{ci} , C4 = Ω_{cr} , C5 = κ_{tr} und C6 = Ω_{tr} die Werte definiert. Im Eurocode 2 [23] wird für Beton ein linearer Bereich bis 0,4 f_{cm} angenommen. Dieser Wert kann für Ω_{ci} verwendet werden. Die maximale Dehnung unter Druckbeanspruchung von einem Beton der Festigkeitsklasse C80/95 oder fester liegt nach dem Eurocode 2 bei 2,8 ‰. Wenn man die elastische Dehnung abzieht, erhält man den Wert für die plastische Dehnung.

$$\varepsilon_{pl} = \varepsilon_{c1} - \frac{f_{cm}}{E_{stat}} \tag{2.69}$$

Für κ_{cm} kann dann der Wert von ε_{pl} genommen werden. Theoretisch ist der Wert κ_{cr} bei Betonfestigkeiten ab C80/95 gleich dem Wert von κ_{cm} . Allerdings ist dieser Wert in Ansys nicht erlaubt, da $\kappa_{cr} > \kappa_{cm}$ sein muss. Daher wird in dieser Arbeit für κ_{cr} der sehr hohe Wert der Gesamtdehnung ε_{c1} als Startwert verwendet. Die verbleibende Druckspannung Ω_{cr} wird anfangs auf 10% gesetzt. Für die Zugseite wurde die plastische Dehnung der Druckseite um den Faktor $\frac{f_t}{f_c}$ reduziert. Die verbleibende Zugspannung wird zu Beginn auch auf 10% gesetzt.

2.6.2. Exponentielle Entfestigung

Die zweite Entfestigung für die Materialmodelle Drucker-Prager und Menetrey-Willam ist die exponentielle Entfestigung (HSD2). Diese Funktion wird zusätzlich zu den zwei Parametern der Verfestigung mit fünf weiteren Parametern beschrieben. Die fünf Parameter lauten:

- κ_{cu} : Plastische Verformung am Übergang vom Potenzgesetz zur exponentiellen Entfestigung
- Ω_{cu} : Relative Druckeigenspannung beim Übergangspunkt zur Entfestigung
- Ω_{cr} : Relative Druckeigenspannung im ideal-plastischen Bereich
- G_{ft} : Mode 1 flächenspezifische Bruchenergie
- Ω_{tr} : Relative Zugeigenspannung im ideal-plastischen Bereich

Der Verlauf der exponentiellen Verfestigung ist in der Abbildung 2.27 dargestellt. Die beiden Parameter Ω_{cr} und Ω_{tr} sind identisch mit den Werten der linearen Entfestigung. Der Übergangspunkt vom Potenzgesetz zur exponentiellen Entfestigung wird mit den beiden Parametern κ_{cu} und Ω_{cu} beschrieben. Als Wert für die relative Spannung am Übergang Ω_{cu} wurde die Mitte zwischen der maximalen und verbleibenden Druckeigenspannung genommen. Die plastische Dehnung an diesem Punkt wurde auch als Mittelwert

Abbildung 2.27.: Verlauf der exponentiellen Entfestigung in Anlehnung an [26]

aus der plastischen Dehnung beim Erreichen der Druckfestigkeit κ_{cm} und der plastischen Dehnung beim Übergang zum ideal-plastischen Bereich κ_{cr} aus der linearen Verfestigung angenommen. Die Funktion im Druckbereich ist in drei Teile aufgeteilt. Der erste Teil ist die Verfestigungsfunktion (2.66). Der zweite Teil ist die Entfestigung nach dem Potenzgesetz und wird nach der Gleichung (2.70) definiert. Der letzte Teil ist die exponentielle Entfestigung. Dieser wird mit der Gleichung (2.71) definiert.

$$\Omega_c = 1 - (1 - \Omega_{cu}) \left(\frac{\kappa - \kappa_{cm}}{\kappa_{cu} - \kappa_{cm}}\right)^2 \text{ für } \kappa_{cm} \le \kappa \le \kappa_{cu}$$
(2.70)

$$\Omega_{c} = \Omega_{cr} + (\Omega_{cu} - \Omega_{cr}) \exp\left(2\frac{\Omega_{cu} - 1}{\kappa_{cu} - \kappa_{cm}} \cdot \frac{\kappa - \kappa_{cu}}{\Omega_{cu} - \Omega_{cr}}\right) \text{ für } \kappa_{cu} \le \kappa$$
(2.71)

Im Zugbereich wird die Entfestigungsfunktion nur über die flächenspezifische Bruchenergie G_{ft} und der relativen Zugeigenspannung im ideal-plastischen Bereich Ω_{tr} bestimmt. Solange die elastische Energie im Material kleiner als die Bruchenergie ist, verformt sich das Material elastisch. Aus dem Grenzzustand, in dem die im Material gespeicherte elastische Energie gleich der Bruchenergie ist, wird die charakteristische Länge L_i bestimmt. Bei einem zentrisch gezogenen Körper mit der Länge $2L_i$ ist bei $\sigma_t = f_t$ die Bruchenergie gleich der gespeicherten elastischen Energie. Aus dieser Definition kann die charakteristische Länge wie folgt bestimmt werden.

$$L_i = \frac{G_{ft} \cdot E_{C_stat}}{f_{ct}^2} \tag{2.72}$$

Wenn die Probenlänge geringer ist, kommt es nach Erreichen der Zugfestigkeit zu einem abfallenden Ast im Spannungs-Dehnungsdiagramm. Dies ist die Entfestigung. Diese Länge ist allerdings keine physische Größe, sondern eine abgeleitete Materialkonstante, die die Sprödigkeit beschreibt. Je kleiner die Länge desto spröder ist der Werkstoff [18]. In der FEM wird der Wert L_i je nach Element anders aus dem Integrationspunktvolumen V_{int}

bestimmt.

$$L_{i} = \begin{cases} \sqrt[3]{V_{int}}, & \text{für 3-D Elemente} \\ \sqrt{V_{int}}, & \text{für 2-D Elemente} \\ V_{int}, & \text{für 1-D Elemente} \end{cases}$$
(2.73)

$$\Omega_t = \exp\left(-\frac{\kappa \cdot f_t}{g_{ft}}\right) \tag{2.74}$$

$$g_{ft} = \max\left(\frac{G_{ft}}{L_i}, \frac{f_t^2}{E_{C,stat}}\right)$$
(2.75)

Mit dem Zwischenwert g_{ft} wird die Entfestigungsfunktion beschrieben. Diese Funktion gilt für den Wertebereich von $\Omega_t \geq \Omega_{tr}$. Die Bruchenergie kann wie im Kapitel 2.2.2 über die Gleichung (2.23) abgeschätzt werden.

3. Simulation

Um die verschiedenen Materialmodelle zu testen, werden zuerst die Experimente zur Bestimmung der Materialkennwerte simuliert und mit den gegebenen Werten aus dem Datenblatt oder Normen verglichen. Für die Überprüfung der Werte werden der Würfeldruckversuch, der zentrische Zugversuch am Zylinder und der Spaltzugversuch simuliert. Anschließend werden die Bruchkriterien in der biaxialen Belastung simuliert und mit den der Theorien verglichen. Nachdem durch die vorherigen Simulationen eine kleinere Auswahl an Materialmodellen gewählt werden konnte, wird ein Miniaturmodell der Grout-Verbindung simuliert und mit den experimentellen Werten aus der Dissertation von Anders [13] verglichen.

3.1. Materialmodelle

Für diese Simulationen wird der Beton Ducorit S5 in Ansys modelliert. Dieser Werkstoff wird mit den im Abschnitt 2.5 beschriebenen Materialmodellen modelliert. Die Materialparameter werden an die Spannungs-Dehnungskurve nach der Gleichung (2.18) angepasst. Jedem Materialmodell wird eine Materialnummer zugewiesen. Die erste Ziffer beschreibt ob es sich um Stahl oder Beton handelt. Die zweite Ziffer ist für die gewählten Ansätze und die dritte Ziffer ist für die jeweilige Variante. Eine Übersicht der Modelle ist in der Tabelle 3.1 aufgelistet. Die genutzten Werte für die Materialmodelle sind in Anlehnung an den Werkstoff Ducorit S5.

Material ID	Werkstoff	Ansatz	Variante	APDL
100	Stahl	linear	ideal elastisch	A.1
101	Stahl	linear	bilinear	A.1
200	Beton	linear	ideal elastisch	A.2
201	Beton	linear	ideal elastisch	A.2
210	Beton	Drucker-Prager	ohne HSD	A.3
211	Beton	Drucker-Prager	HSD6	A.4
212	Beton	Drucker-Prager	HSD2	A.5
213	Beton	Drucker-Prager	HSD6	A.6
214	Beton	Drucker-Prager	HSD6	A.7
215	Beton	Drucker-Prager	HSD2	A.8
220	Beton	Menetrey-Willam	ohne HSD	A.9
221	Beton	Menetrey-Willam	HSD6	A.10

Tabelle 3.1.: Übersicht Materialnummern

Material ID	Werkstoff	\mathbf{Ansatz}	Variante	APDL
222	Beton	Menetrey-Willam	HSD2	A.11
	Beton	Menetrey-Willam	HSD6	A 12

3.2. Ducorit S5

Für den Betonwerkstoff Ducorit S5 von der Firma Densit werden nicht alle in der Tabelle 3.2 dargestellten Materialkennwerte mitgeliefert. Die fehlenden Werte wurden entweder berechnet oder aus dem Eurocode 2 entnommen.

Tabelle 3.2.: Materialkennwerte Ducorit S5					
Parameter	Wert	Einheit	Quelle		
$f_{c,75mm}$	130	[MPa]	[17]		
$f_{bc,75mm}$	149	[MPa]	Gleichung (2.14)		
f_t	7	[MPa]	[17]		
$f_{ctk;0,05}$	3,7	[MPa]	[28]		
f_{cm}	108	[MPa]	Gleichung (2.7)		
f_{bc}	118	[MPa]	Gleichung (2.14)		
E_{C_stat}	55000	[MPa]	[17]		
E_{C_dyn}	60000	[MPa]	[17]		
$ u_C$	$0,\!19$	[-]	[17]		
Festigkeitsklasse	C100/115	[-]	[17]		
$ ho_C$	2440	$[\mathrm{kg}\mathrm{m}^{-3}]$	[17]		
ε_{c1}	2,8	[-]	[28]		
ε_{cu1}	2,8	[-]	[28]		
G_{ft}	$103,\!6$	$[\mathrm{Nm^{-1}}]$	Gleichung (2.23)		

3.3. Würfeldruckversuch

Die erste Simulation ist der Würfeldruckversuch. Der Würfeldruckversuch wird in den Normen der Reihe EN 12390 beschrieben und dient zur Bestimmung der maximalen Druckfestigkeit. Nach DIN EN 12390-1 [29] ist ein Würfel mit der Kantenlänge von 150 mm erlaubt. Der Versuchsablauf ist in der DIN EN 12390-3 [30] niedergeschrieben. Die Belastungsgeschwindigkeit soll bei $(0,6 \pm 0,2)$ MPa s⁻¹ eingestellt werden. Um den quasizeitlichen Verlauf der Simulation zu erhalten, wird die Simulation mit Substeps berechnet. Damit die nicht-lineare Verformung berücksichtigt wird, werden große Verformungen aktiviert.

3.3.1. Würfelgeometrie

Der Würfel wird, wie in Abbildung 3.1 dargestellt, als Achtelmodell (grau) modelliert. Dabei werden die Flächen an den drei Koordinatenebenen X-Y, X-Z, Y-Z mit Symmetriebedingungen belegt. Durch diese Bedingungen ist der Würfel statisch bestimmt gelagert und kann an den äußeren Flächen belastet werden. Da die Belastung über die maximale Festigkeit gehen soll, wird die Last über die Verschiebung aufgebracht. Die für die Verschiebung notwendige Kraft kann aus der Reaktionskraft der Verschiebung ausgelesen werden. Für den kompletten Würfel muss die Kraft dann noch mit dem Faktor 4 multipliziert werden, da zwei Symmetrieebenen in der Fläche der Lasteinleitung liegen.

Abbildung 3.1.: Würfelmodell

3.3.2. Netz und Simulationsparamter

Das Volumen wird dann in Ansys Workbench mit den Quadratischen Elementen Solid186 vernetzt.

Um den Würfel bis zum Versagen zu belasten, wird eine Verschiebung von 5 ‰ der Kantenlänge aufgetragen. Die Verformung $u_x = -0.375$ mm wird linear steigend aufgetragen. Die Zeit am Ende der Simulation wird auf 0.375 s gestellt. Mit dieser Einstellung entspricht die Zeit dem Betrag der aufgetragenen Verschiebung.

Wenn nicht anders beschrieben, werden die Simulationen mit den Grundparametern aus der Tabelle 3.3 simuliert.

Parameter	Wert
Elemente je Kante	3
Verschiebung u_x	$-0,\!375\mathrm{mm}$
Zeit nach Schritt	$0,\!375\mathrm{s}$
Substebssteuerung:	
Initialer Substeps	100
Minimale Anzahl Substeps	100
Maximale Anzahl Substeps	1000
Große Verformung	ein
Kraftkonvergenz:	
Toleranz	0,5%
Mindestreferenz	$0,01\mathrm{N}$
Verschiebungskonvergenz:	
Toleranz	0,5%
Mindestreferenz	$0\mathrm{mm}$

Tabelle 3.3.: Grundparameter Würfeldruckversuch

3.3.3. Ergebnisse

Für die Materialien 200 bis 213 sind die Spannungs-Dehnungslinien in der Abbildung 3.2 abgebildet.

Abbildung 3.2.: Vergleich DP-Modelle mit Spannungs-Dehnungs-Diagramm nach Gleichung (2.18)

In der Abbildung 3.2 ist zu sehen, dass für eine geringe Dehnung das lineare Modell mit dem Verlauf nach Eurocode 2 plausible Werte liefert. Je größer die Dehnung ist, desto größer wird die Abweichung zur Referenz.

Das Standard Drucker-Prager Modell (210) erreicht schon bei einer geringeren Dehnung die Druckfestigkeit und hält diese bei stärkerer Dehnung konstant. Der Grund dafür

liegt an der fehlenden Verfestigung des Materials. Bis $75\,\%$ der Druckfestigkeit wird der Verlauf gut wiedergegeben.

Das Modelle 211 verläuft bis zum Erreichen der Druckfestigkeit kongruent. Der qualitative Verlauf ist ähnlich zu dem Original, jedoch beginnt die Verfestigung früher als nach dem Eurocode 2. Nach Erreichen der Druckfestigkeit kommt es beim Materialmodell 211 zu einem raschen linearen Abfall auf die eingestellten 10 % der Druckfestigkeit.

Um den Verlauf des Eurocodes 2 besser abzubilden, wird das Materialmodell 211 nochmal mit einem späteren Beginn der nichtlinearen Verfestigung von 65% des Materials unter der Materialnummer 213 gerechnet. Das Ergebnis zeigt, dass durch diese Anpassung des Parameters der Verlauf vom Eurocode 2 sehr gut abgebildet wird.

Das Materialmodell 212 verläuft bis zur maximalen Druckfestigkeit kongruent zu dem Materialmodell 211 und bricht nach einer kleinen Absenkung der Spannung ab. Durch die Änderung des minimalen Substeps auf 50 kann Ansys eine konvergente Lösung erzeugen. Dieser Verlauf ist in der Abbildung 3.2 dargestellt.

Die Simulationsergebnisse der Materialmodelle 220, 221 und 222 sind in der Abbildung 3.3 dargestellt.

Abbildung 3.3.: VGL MW-Modelle mit Spannungs-Dehnungs-Diagramm nach Gleichung (2.18)

Auch hier ist zu erkennen, dass das Standard Menetrey-Willam Modell sich analog wie das Drucker-Prager-Materialmodell verhält. Das Menetrey-Willam Grundmaterialmodell (220) verläuft kongruent zu dem Drucker-Prager Grundmodell. Allerdings kommt es bei der ideal-plastischen Verformung zu einem Fehler. Dabei schwankt im letzten konvergenten Rechenschritt die maximale Hauptspannung in den Werten von 129,99 MPa und 130,01 MPa.

Das Materialmodell 221 bricht im Vergleich zu dem Drucker-Prager Modell (211) bei

der Entfestigung ab. Dieses Verhalten ist auch bei dem Materialmodell 222 und 223 zu erkennen.

Auch das Materialmodell 223 mit der identischen Änderung wie bei 213 bildet bis zum Erreichen der Druckfestigkeit den Eurocode 2 am Besten wieder. Der größte Unterschied zu den Drucker-Prager Modellen ist allerdings, dass die Simulation nach dem Erreichen der Druckfestigkeit noch einige Zwischenschritte konvergent lösen kann, bis die Rechnung aufgrund eines Versagens der Materiallösung divergent abbricht.

3.3.4. Konvergenzanalyse

Da die Simulationen nicht alle konvergent gelöst werden konnten, wurde eine Konvergenzanalyse erstellt. Dabei wurden neben den Kraft- und Verformungstoleranzen auch Parameter der Ver- und Entfestigungsfunktion verändert.

• $\Omega_{cu} = 0.6$

Für diese Simulation wurden folgende Grundparameter genutzt:

- $E_C = 55\,000\,\mathrm{MPa}$ $\Omega_{tr} = 0.25$
- $\nu_C = 0.19$ $\kappa_{tr} = 0.000436$
- $R_c = 130 \,\mathrm{MPa}$
- $R_t = 7 \text{ MPa}$ $\Omega_{cr} = 0.25$
- $R_b = 149 \,\mathrm{MPa}$ $\kappa_{cr} = 4.00 E 03$
- $\Omega_{ci} = 0.4$ $G_{ft} = 0.1 \,\mathrm{N \, mm^{-1}}$
- $\kappa_{cm} = 0.000436$ Elemente je Seite: 1
- $\kappa_{cu} = 0.004$ Ansatzfunktion: linear

Die Last von -1 mm wurde in zwei Lastschritten aufgebracht. Der erste Lastschritt geht bis $u_x = -0.07$ mm. Bis zu dieser Last verhält sich der Beton linear elastisch. Der initiale Substep in den Tabellen ist vom zweiten Lastschritt. Die Übersicht dieser Analyse ist in den Tabellen im Anhang C.1 aufgelistet.

Bei der Simulation mit dem Drucker-Prager Materialmodell mit der exponentiellen Entfestigung (HSD2, Anhang C.1.2) waren drei der zehn Simulationen konvergent. Eine Veränderung der Krafttoleranz um den Faktor ± 2 und eine Veränderung der Verschiebungstoleranz in den Grenzen 0.25% bis 5% führte nicht zu einer konvergenten Lösung. Dabei brachte die Simulation 4 mit den niedrigeren Toleranzen eine minimale Verbesserung gegenüber der Simulation 1 mit den Grundeinstellungen. Eine Erhöhung der Toleranz führte zu einer früheren nicht konvergenten Lösung.

Alle konvergenten Lösungen wurden mit einer quadratischen Ansatzfunktion simuliert. Dabei wurde κ_{cu} die Position des Übergangs vom Potenzgesetz zur exponentiellen Entfestigung verschoben. Die beiden Simulationen 5 und 8 waren nicht konvergent. Der Übergangspunkte liegen bei den beiden Simulationen bei $4 \cdot 10^{-3}$ und $5 \cdot 10^{-3}$. Bei κ_{cu} -Werten von $8 \cdot 10^{-3}$ (SimID=6) und $6 \cdot 10^{-3}$ (SimID=7) sind die Simulationen konvergent. Bei $\kappa_{cu} = 3 \cdot 10^{-3}$ (SimID=10) musste der initiative Substep auf 10000 erhöht werden, damit die Rechnung konvergent gelöst wird.

Bei dem Menetrey-Willam Materialmodell mit der exponentiellen Entfestigung (HSD2, Anhang C.1.4) waren fünf der zehn Simulationen konvergent. Die konvergenten Simulationen waren alle mit einer linearen Ansatzfunktion. Eine Vergrößerung der Kraft- und Verschiebungstoleranz führte zu einer zehnfachen Anzahl an benötigten Substeps. Bei allen quadratischen Simulationen konnte die Druckfestigkeit um maximal 10% abgesenkt werden. Eine Erhöhung der Anzahl der Elemente führte bei dem linearen Ansatz zu einem Abbruch der Simulation bei einer Druckspannungsminderung von 9%.

Bei der Konvergenzanalyse mit der linearen Entfestigung (HSD6) zeigt sich bei dem Menetrey Willam Materialmodellen ein ähnliches Verhalten. Auch hier waren nur Simulationen mit einer linearen Ansatzfunktion konvergent. Bei zwei linearen Elementen je Kante konnte eine konvergente Lösung nur mit sehr kleinen Toleranzen von 0,1%, einer sehr hohen Anzahl an Zwischenschritten und einer sehr langsamen Entfestigung erzeugt werden. Eine langsamere Entfestigung tendiert zu einem konvergenteren Verhalten.

Bei Drucker-Prager konnte bei sechs von elf Simulationen eine Druckspannungsenkung auf 25 % simuliert werden. Dabei brach die Simulation mit einem quadratischen Element nach der Entfestigung ab. Bei zwei Elementen je Kante trat dies nicht auf. Eine weitere Erhöhung der Elementanzahl konnte nicht mehr konvergent gelöst werden. Eine Verlangsamung der Entfestigung konnte bei acht Elementen je Kante und dem linearen Ansatz eine Druckspannungabsenkung von 35 % in der Simulation erreicht werden. Eine Umstellung vom einem iterativen zu einem direkten Solver erhöhte die Absenkung bei dem Quadratischen Ansatz von 0,1 % auf 40 %. Eine langsamere Entfestigung führt eher zu einer konvergierenden Simulation als eine schnelle Entfestigung.

3.4. Zylindergeometrie

Für die Berechnungen mit einem Zylinder wird das in Abbildung 3.4a dargestellte Modell erzeugt. Der komplette Zylinder hat einen Durchmesser von 150 mm und eine Gesamthöhe des zweifachen Durchmesser 300 mm. Dieses Verhältnis ist in der DIN 12390-1 [29] angegeben.

Abbildung 3.4.: Zylindermodell und Netz

Dabei wird die Zylinderachse auf die x-Achse gelegt und an den drei Grundebenen geteilt. Die drei Schnittflächen werden mit Symmetriebedingungen belegt. Über den Radius hat das Modell 8 Elemente, der Viertelbogen wird mit 8 Elementen vernetzt und die Länge wird in 10 Elemente eingeteilt.

3.5. Zylinderdruckversuch

In der DIN 12390-3 [30] ist neben dem Würfeldruckversuch auch der Zylinderdruckversuch beschrieben. Dieser Versuch dient auch zur Bestimmung der einaxialen Druckfestigkeit f_c . Es wird eine Verschiebung von $u_x = -0.75 \text{ mm}$ aufgetragen. Für die Simulation wurden folgende Grundparameter gewählt:

- Initialer Substep: 1000
 Maximale Anzahl an Substeps: 1000
- Minimale Anzahl an Substeps: 100 Solver: Programmgesteuert

• Große Verformungen: ein

• Kraft- und Verschiebungskonvergenz: siehe Tabelle 3.3

Die Simulationsergebnisse der Drucker-Prager Materialmodelle sind in der Abbildung 3.5 dargestellt.

Abbildung 3.5.: Vergleich Zylinderdruckversuch DP-Modelle mit Spannungs-Dehnungs-Diagramm nach Gleichung (2.18)

Die Ergebnisse sind sehr ähnlich zu dem Würfeldruckversuch. Auch bei dem Zylinder bildet das lineare Modell mit der Materialnummer 200 nur bis 25 % den Literaturverlauf dar. Alle drei Drucker-Prager Modelle mit den Nummern 210 bis 213 begrenzen die einaxiale Druckspannung auf den eingegebenen Wert von $R_c = 130$ MPa. Da das Standard Drucker-Prager-Modell vor Erreichen der Zugfestigkeit keine plastische Verformung aufweist, wird die maximale Druckfestigkeit schon bei einer geringeren Dehnung als in der Literatur erreicht. Das angepasste Materialmodell 213 spiegelt auch hier die Literaturkurve am besten wieder. Auffällig ist, dass nur mit dem Materialmodell 210 die Simulation bis zu der aufgetragenen Verformung berechnet werden kann. Die Simulation mit dem Drucker-Prager Materialmodell mit der HSD2-Erweiterung (212) bricht bei einer Dehnung von 102,8 % der Bruchdehnung ε_{cu1} ab.

Die Materialmodelle mit der HSD6-Erweiterung (211 und 213) rechnen mit den Grundparametern bis zu 105,8 % und 108,2 % der Bruchdehnung ε_{cu1} . Alle drei Modelle brechen die Simulation mit der Begründung "Fehler in der Elementformulierung" ab. Daraufhin wurden die beiden Materialmodelle 212 und 213 so angepasst, dass der Spannungsabfall nach Erreichen der Druckfestigkeit langsamer ist. Das Materialmodell 214 ist die Anpassung des Modells 213 und das Modell 215 für 212. Bei dem Materialmodell 214 wurde nur der Parameter κ_{cr} auf 0,007 erhöht. Diese Anpassung führt dazu, dass die Entfestigung langsamer voranschreitet. Wie zu erwarten, sinkt die Spannung langsamer ab. Diese Veränderung führt dazu, dass die Rechnung bis zur aufgebrachten Last konvergente Lösungen berechnet.

Bei der Anpassung der HSD2-Erweiterung (215) liefert die Spannungs-Dehnungslinie eine rückläufige Entfestigung. Die Ursache für diesen "Snapback" ist, dass der Zylinder sich

an der Fläche x = 150 mm stark in Umfangsrichtung aufdehnt. Diese Aufdehnung führt dazu, dass die Spannungen im Ursprung stark zurückgehen und auch die Dehnungen sich verringern. Die Auswertung am Punkt x = 150 mm, y = z = 0 mm (215b) zeigt, dass die angepasste Einstellung zu einer sehr flachen Absenkung der Spannung nach Erreichen der Druckfestigkeit führt.

Abbildung 3.6.: Vergleich Zylinderdruckversuch MW-Modelle mit Spannungs-Dehnungs-Diagramm nach Gleichung (2.18)

Die Simulationsergebnisse der Menetrey-Willam Materialmodelle, die in Abbildung 3.6 dargestellt sind, verhalten sich bis zum Erreichen der Druckfestigkeit deckungsgleich zu den Drucker-Prager Materialien. Nach Erreichen der Druckfestigkeit kommt es auch bei allen Modellen zu einem Abbruch der Simulation. Bei dem Standard-Modell kommt es zu einer großen Verformung eines Elements. Dieser Fehler kann nicht durch eine Erhöhung der Substeps gelöst werden. Bei den anderen Modellen kommt es wie bei den Drucker-Prager-Modellen zu der Warnung, dass die Materiallösung fehlschlägt.

3.6. Zwischenfazit Druckversuche

Aus den beiden einaxialen Druckversuchen ist zu erkennen, dass die beiden Betonmodelle die maximale Druckspannung begrenzen. Der Bereich nach der Druckfestigkeit wird, wie zu erwarten, nur von Modellen mit einer Entfestigungsfunktion abgebildet. Die Grundmodelle liefern in diesem Bereich den konstanten Wert der Druckfestigkeit. Die Drucker-Prager Modelle führen bei einaxialen Druckbelastungen eher zu konvergenten Lösungen als das Menetrey-Willam Modell. Bei den Ergebnissen unterscheiden sich die Modelle nicht. Der Bereich bis zur Druckfestigkeit ist bei beiden Entfestigungsfunktion identisch formuliert. Die Konvergenzanalyse zeigt, dass eine langsamere Entfestigung das Konvergenzverhalten verbessert. Aus den Ergebnissne der Konvergenzanalyse lässt sich schließen, dass das Drucker-Prager Materialmodell mit der exponentiellen Entfestigung besser mit quadratischen Elementen zu simulieren ist. Die Menetrey-Willam Materialmodell mit exponentieller Entfestigung kommt mit linearen Elementen eher zu einer konvergenten Lösung als mit quadratischen Elementen. Bei den Simulationen mit der linearen Entfestigung förderten die linearen Elemente die Konvergenz.

3.7. Zylinder Zugversuch

Für die Überprüfung der zentrischen Zugfestigkeit wird ein Zylinderzugversuch simuliert. Dafür werden die identischen Abmessungen des Zylinderdruckversuchs gewählt. Da Beton eine viel geringere Zugfestigkeit als Druckfestigkeit aufweist, wird eine Verschiebung von $u_x = 0.03 \,\mathrm{mm}$ aufgetragen. Diese Simulationen wurde mit folgenden Grundparametern durchgeführt:

- Initialer Substep: 1000
- Solver: Programmgesteuert
- Minimale Anzahl an substeps: 100

• Maximale Anzahl an Substeps: 1000

- Große Verformungen: ein
- Kraft- und Verschiebungskonvergenz: siehe Tabelle 3.3

Abbildung 3.7.: Vergleich Zylinderzugversuch DP-Modelle mit Spannungs-Dehnungs-Diagramm nach Gleichung (2.18)

Bis zum Erreichen der Zugfestigkeit verhalten sich alle Modelle gleich. Die beiden Grundmodelle verhalten sich ideal plastisch und halten somit bei größeren Dehnungen die Spannung von 7 MPa. Bei den beiden Modellen mit der linearen Entfestigung wurden die Materialparameter so eingestellt, dass es zu einem schnellen Absinken der Zugspannung kommt. Es wird auf 10 % der Zugfestigkeit abgesenkt. Eine weitere Absenkung führt zu einer schlechteren Konvergenz. Bei den Materialmodellen mit der exponentiellen Entfestigung kann die Entfestigungsgeschwindigkeit durch die Bruchenergie angepasst werden. Es ist zu erkennen, dass die Drucker-Prager Materialmodelle vor Erreichen der vorgegebenen Entfestigung abbrechen (Abbildung 3.7). Mit den gleichen Entfestigungseinstellungen rechnet das Menetrey-Willam Materialmodell (Abbildung 3.8) zu einer weiteren Entfestigung.

Abbildung 3.8.: Vergleich Zylinderzugversuch MW-Modelle mit Spannungs-Dehnungs-Diagramm nach Gleichung (2.18)

3.8. Zwischenfazit Zugversuch

Der zentrische Zugversuch zeigt, dass die Modelle diesen Bereich bis zur Zugfestigkeit linear elastisch darstellen. Im Gegensatz zur Druckbelastung liefern die Menetrey-Willam Modelle auch bei größeren Verformungen konvergente Lösungen. Bei dem Drucker-Prager Materialmodellen führen die Entfestigungsfunktionen zu einem Abbruch der Simulation. Das Drucker-Prager Grundmaterialmodell liefert auch eine konvergente Lösung.

3.9. Spaltzugversuch

Eine weiterer Versuch, der zur Bestimmung der Zugfestigkeit benutzt wird, ist der Spaltzugversuch.

3.9.1. Versuchsbeschreibung und Modellaufbau

Dabei wird ein Zylinder, wie in Abbildung 3.9 links dargestellt, mit einem Durchmesser von 150 mm und einer Länge von 300 mm in einer Druckprüfmaschine eingespannt. Über einen Lastverteilungsstreifen wird die Prüfkraft F auf einen größeren Teil der Mantelfläche verteilt. Für die Simulation wird der Versuch an den drei Symmetrieebenen geteilt und als Achtelmodell modelliert. Auch bei diesem Versuch wird die Last über eine Verschiebung aufgetragen. Der Lastverteilungsstreifen hat die Abmessungen $L_x=10$ mm, $L_y = 4$ mm und $L_z = 330$ mm. Als Referenz für diesen Versuch wird die Dissertation "Ermittlung der Betonzugfestigkeit aus dem Spaltzugversuch an zylindrischen Betonproben" von Viktória Malárics [31] verwendet. In ihrer Dissertation wurden Lastverteilungsstreifen aus Stahl und Holz verwendet.

Der Kontakt zwischen dem Lastverteilungsstreifen und dem Betonzylinder wird als verbunden oder reibungsfrei simuliert. Zwischen diesen beiden Grenzfällen sollte der reale Wert liegen. Eine weitere Vereinfachung der Simulation ersetzt den Verteilungsstreifen mit einem Remote Point und der projizierten Fläche des Verteilungsstreifens auf der Mantelfläche. Der Simulationsaufbau dazu ist in der Abbildung 3.10 auf der linken Seite abgebildet. Auf der rechten Seite der Abbildung 3.10 ist eine weitere Vereinfachung abgebildet. Dabei wird der Versuch in einer zweidimensionalen Simulation abgebildet. Die Simulation wird dabei als ebener Dehnungszustand simuliert.

Abbildung 3.9.: Schematische Darstellung des Spaltzugversuchs; links Vollmodell, rechts Achtelmodell

Abbildung 3.10.: Schematische Darstellung des Spaltzugversuchs links: Remote Point rechts: 2D

3.9.2. Materialien

Für Stahl wird das Materialmodell 100 und für den Lastverteilungsstreifen aus Holz wird die Materialnummer 300 vergeben. Das Holzmaterial wird als ideal-elastisches Material vereinfacht und mit den Werten (Tabelle 3.4) aus der Dissertation [31] modelliert. Auch für die Betonwerkstoffe werden neue Materialmodelle erstellt. Dabei werden drei Betonwerkstoffe modelliert. Der erste Beton besitzt eine geringe Festigkeit (2XX_A), der zweite Beton besitzt eine mittlere Festigkeit (2XX_C) und der dritte Beton besitzt einen hohe Druck- und Zugfestigkeit (2XX_E). Die in der Dissertation [31] verwendeten Werte sind in der Tabelle 3.5 aufgelistet.

Tabelle 3.4 Materialdaten Hartiaserplatte				
MaterialID	E-Modul	Dichte	${\it Querkontraktionszahl}$	
300	$4800\mathrm{MPa}$	$900\mathrm{kg}\mathrm{m}^{-3}$	$0,\!2$	

Tabelle 3.4.: Materialdaten Hartfaserplatte

Tabelle 3.5.: Materialdaten Beton Spaltzugversuch

MatID	f_{cm}	f_{ctm}	E_{c0}	G_{ft}	$ u_C $
2XX_A	$20\mathrm{MPa}$	$2,3\mathrm{MPa}$	$24000\mathrm{MPa}$	$0,090{ m Nmm^{-1}}$	$0,\!2$
$2XX_C$	$50\mathrm{MPa}$	$3,6\mathrm{MPa}$	$32000\mathrm{MPa}$	$0,\!130{ m Nmm^{-1}}$	$0,\!2$
$2XX_E$	$110\mathrm{MPa}$	$5,6\mathrm{MPa}$	$45000\mathrm{MPa}$	$0,\!170{ m Nmm^{-1}}$	$_{0,2}$

Neben diesen Grundparametern für die Betonwerkstoffe kommen noch die Parameter für die Ver- und Entfestigung. Die Bestimmung der Parameter ist in den Tabellen 3.6 und 3.7 aufgelistet. Für diese Tabellen wurden die Dehnungen nach dem Eurocode 2 [23] benutzt mit der Ausnahme des Werkstoffs "2XX_E", hier wurde die rechnerische Bruchdehnung ε_{cu1} um 0,1 Promillpunkte erhöht, da in Ansys die Werte verschieden sein müssen. Die Verbleibende Spannung wurde bei allen Materialien auf 10% gesetzt. Die nichtlineare Verfestigung soll bei 65% der maximalen Druckfestigkeit beginnen, da dieser Wert im Kapitel 3.3.1 den Verlauf nach dem Eurocode gut wiedergegeben hat.

Tabelle 3.6.: Parameter lineare Entfestigung

Parameter	Formel	$2XY_A$	2XY_C	$2XY_E^*$
κ_{cm}	$\varepsilon_{c1} - \frac{f_{cm}}{E_{c0}}$	$1,\!086\cdot 10^{-3}$	$7,775 \cdot 10^{-4}$	$3,\!556\cdot 10^{-4}$
κ_{cr}	$\varepsilon_{cu1} - \frac{f_{cm}}{E_{c0}}$	$2,786 \cdot 10^{-3}$	$1,938 \cdot 10^{-3}$	$4,556 \cdot 10^{-4}$
Ω_{ci}	0,65	$6,500 \cdot 10^{-1}$	$6,500 \cdot 10^{-1}$	$6,500\cdot 10^{-1}$
Ω_{cr}	0,1	$1,\!000\cdot 10^{-1}$	$1,\!000\cdot 10^{-1}$	$1,\!000\cdot 10^{-1}$
κ_{tr}	$3\frac{f_{ct}}{E_{c0}}$	$2,\!679\cdot 10^{-4}$	$3,\!375\cdot 10^{-4}$	$3,733 \cdot 10^{-4}$
Ω_{tr}	$0,1^{200}$	$1,\!000\cdot 10^{-1}$	$1,\!000\cdot 10^{-1}$	$1,\!000\cdot 10^{-1}$

		1 0 0		
Parameter	Formel	2XY_A	2XY_C	2XY_E *
κ_{cm}	$\varepsilon_{c1} - \frac{f_{cm}}{E_{c0}}$	$1{,}09\cdot10^{-3}$	$7{,}78\cdot10^{-4}$	$3{,}56\cdot10^{-4}$
κ_{cu}	$\frac{2\varepsilon_{cu1}+\varepsilon_{c1}}{3}$ $-\frac{f_{cm}}{E_{c0}}$	$2{,}22\cdot10^{-3}$	$1,55 \cdot 10^{-3}$	$4,22 \cdot 10^{-4}$
Ω_{ci}	0,65	$6,50 \cdot 10^{-1}$	$6,50 \cdot 10^{-1}$	$6,50 \cdot 10^{-1}$
Ω_{cr}	0,8	$8,00 \cdot 10^{-1}$	$8,\!00\cdot 10^{-1}$	$8,\!00\cdot 10^{-1}$
Ω_{cu}	0,1	$1,\!00\cdot 10^{-1}$	$1,\!00\cdot 10^{-1}$	$1,\!00\cdot 10^{-1}$
G_{ft}	Daten[31] in $[N \text{ mm}^{-1}]$	$9,00 \cdot 10^{-2}$	$1,\!30\cdot 10^{-1}$	$1,70 \cdot 10^{-1}$
Ω_{tr}	0,1	$1,\!00\cdot 10^{-1}$	$1,\!00\cdot 10^{-1}$	$1,\!00\cdot 10^{-1}$

Tabelle 3.7.: Parameter exponentielle Entfestigung

3.9.3. Netze

Die Netze für diesen Versuch sind im Anhang C.2.1 abgebildet.

3.9.4. Ergebnisse Materialtest

Als kurzer Test wird vor dem Spaltzugversuch nochmal ein Zugversuch simuliert. Dabei werden die Simulationsdaten mit den Messdaten von Malárics verglichen. Die geometrischen Abmessungen der Zugprobe sind in der Abbildung 3.11 dargestellt.

Abbildung 3.11.: Zugprobe mit verjüngtem Querschnitt (Maße in mm) [31]

Die Zugprobe wird im ebenen Dehnungszustand simuliert mit folgenden Elementgrößen simuliert. Bei dem gröbsten Netz wird eine Elementgröße von 30 mm gewählt, das zweite Netz hat eine Elementgröße von 10 mm, das dritte Netz wird mit der Elementgröße von 3,5 mm modelliert und das feinste Netz besitzt eine Elementgröße von 2 mm. Die Nomenklatur für diese Versuche ist wie folgt "2XY_Z_NB". Dabei steht "X" für den gewählten Ansatz, X = 1 steht für Drucker-Prager und X = 2 für Menetrey-Willam. Bei Y = 0 wird der Ansatz ohne Entfestigung genommen. Y = 1 steht für die lineare Entfestigung und Y = 2 für die exponentielle Entfestigung. "Z" steht für drei Betonarten A, C und E. "B" gibt die Elementgröße in mm an. Die ersten Zugversuche wurden mit dem Material A simuliert. Bei den Simulationen in der Abbildung 3.12 mit dem Menetrey-Willam Materialmodell zeigt sich, dass die exponentielle Entfestigung konvergente Lösungen liefert.

Abbildung 3.12.: Ergebnisse Zugversuch Material 222_A

Die verschiedenen Netze liefern verschiedene Verläufe nach Erreichen der Zugfestigkeit. Dabei weicht der Versuch "222_A_N30" am stärksten nach Erreichen der Zugfestigkeit von allen ab. Bei dem Versuch "222_A_N10" haben sich zwei Rissbänder gebildet, aus diesem Grund ist der Abstand zu dem Versuch "222_A_N30" größer. Ab dem Netz mit einer Elementgröße von 3,5 mm sind die Abweichungen nicht mehr signifikant. Der fallende Ast der beiden feinsten Netze liefert im Vergleich zu den Messdaten "NK-1" aus der Dissertation von Malárics [31] ein reales Verhalten nach Erreichen der Zugfestigkeit. Auffällig ist zudem noch, dass bei der Simulation "222_A_N2" die Spannung nicht auf 0.25 MPa absinkt, sondern nur bis 0.3 MPa abfällt und dann langsam den eingestellten 0.25 MPa annähert. Ein Grund für dieses Verhalten können die zu kleinen Elemente sein. da die Entfestigungsfunktion über das Integrationsvolumen definiert ist. Diese Simulationen zeigen zudem, dass die Ergebnisse nach Erreichen der Zugfestigkeit vom Netz abhängig sind. Im Bereich vor Erreichen der Zugfestigkeit fällt auf, dass bei den Daten aus dem Versuch "NK-1" schon vor der Zugfestigkeit es zu einer plastischen Verformung kommt. Diese Nichtlinearität kann mit den gewählten Modellen nicht abgebildet werden, sodass die Modelle steifer sind.

Abbildung 3.13.: Ergebnisse Zugversuch Material 220_A

Die Simulationen ohne Entfestigungsfunktion (Abbildung 3.13) führen netzunabhängig zu einem bilinearen Ergebnis. Allerdings brauchen die Simulationen einen sehr kleinen Zeitschritt, sodass die Simulationen mit den Elementgrößen von 10 und 3,5 mm vorzeitig abgebrochen wurden. Bei der Simulation "220_A_N30" sind die kleinen Ausschläge der Zugfestigkeit ab $\varepsilon > 1,7 \cdot 10^{-4}$ in der Abbildung 3.13 zu erkennen. Diese Werte der Spannung schwanken aus numerischen Gründen zwischen 2,498 MPa und 2,503 MPa. Bei den Simulationen mit der linearen Entfestigung (Abbildung 3.14) führte nur die Simulation mit dem gröbsten Netz zu einem absteigenden Ast nach der maximalen Zugfestigkeit. Alle anderen Simulationen brachen aufgrund des Versagens der Materialdefinition vor Erreichen der Zugfestigkeit ab.

Abbildung 3.14.: Ergebnisse Zugversuch Material 221_A

Abschließend lässt sich aus den Simulationen des Zugversuchs mit dem Menetrey-Willam

Materialmodellen schließen, dass die exponentielle Entfestigung die stabilsten Lösungen liefert. Dabei sollte allerdings eine Studie der Netzgröße mit experimentellen Daten abgeglichen werden. Zudem sollte bei der Auswertung der steifere Verlauf bis zum Erreichen der Zugfestigkeit nicht vergessen werden. Da sich die Modelle bis zur Zugfestigkeit linear elastisch verhalten und die Last homogen verteilt ist, sind die Ergebnisse bis dahin nicht von der Elementgröße abhängig.

Abbildung 3.15.: Ergebnisse Zugversuch Material 212_A

Bei dem Drucker-Prager Materialmodell mit der exponentiellen Entfestigung führt eine Verfeinerung des Netzes zu einem Verlangsamen der Entfestigung (Abbildung 3.15). Zudem fällt bei diesem Materialmodell die Spannung nach Erreichen der Zugfestigkeit erst langsam ab. Je feiner das Netz ist, desto länger dauert das Abflachen an.

Abbildung 3.16.: Ergebnisse Zugversuch Material 211_A
Die Simulationsergebnisse der linearen Entfestigung sind in der Abbildung 3.16 dargestellt. Bei diesen Ergebnissen ist zu erkennen, dass wie beim Menetrey-Willam Materialmodell nur das gröbste Netz den absteigenden Ast berechnen konnte. Bei den anderen Elementgrößen führen die Berechnungen zu einer divergenten Lösung.

Abbildung 3.17.: Ergebnisse Zugversuch Material 210_A

Bei dem Drucker-Prager-Materialmodell ohne Entfestigung führen alle Elementgrößen zu einem kongruenten Verlauf der Spannungs-Dehnungs-Linien. Die Ergebnisse sind in der Abbildung 3.17 dargestellt.

Aus den Zugversuchssimulationen lässt sich schließen, dass das Menetrey-Willam Modell mit exponentieller Entfestigung für die Modellierung von Beton unter Zugbelastung am Besten geeignet ist. Wenn nur der Verlauf bis zum Erreichen der Zugfestigkeit untersucht werden soll, können beide Ansätze ohne Entfestigungsfunktion genutzt werden. Der Verlauf bis zur Zugfestigkeit ist nicht von der Elementgröße abhängig. Allerdings verhalten sich die Modelle in diesem Bereich linear elastisch, sodass es bei höheren Zugspannungen zu einer Abweichung von den Versuchsdaten kommt.

3.9.5. Ergebnisse Spaltzugversuch

Die Simulationsergebnisse des Spaltzugversuchs werden mit den Simulationen von Malárics [31] verglichen. Malárics hat ihre Simulationen in DIANA im ebenen Dehnungszustand simuliert. Dabei wurden die Kontakte mit Interfaceelemente modelliert. Die Simulationsergebnisse von Malárics sind in der Abbildung 3.18 abgebildet. Bei diesen Ergebnissen fällt auf, dass zu Beginn der Belastung mit dem Holzzwischenstreifen ein Knick vorhanden ist. Da der E-Modul von Holz viel geringer als der E-Modul des Betons ist, verformt sich das Holz viel stärker als der Beton.

Abbildung 3.18.: Simulationsergebnisse Spaltzugversuch in Anlehnung an Malárics [31]

Die ersten Simulationen werden mit dem Beton "222_A" und dem 2D Viertel-Modell mit Remote Point durchgeführt. Die Elementgröße des Netzes wird zwischen 5 mm und 1,25 mm variiert. Da nur ein Viertel simuliert wurde, muss sowohl die Kraft als auch die Verformung mit dem Faktor 2 multipliziert werden. Da das Modell als ebener Spannungszustand simuliert wurde, müssen die Kraftwerte mit der Länge des Zylinders in mm multipliziert werden. Die Ergebnisse der Simulationen sind um den Faktor 2 steifer als die Simulationen vom Malárics. Zum besseren Vergleich werden die Simulationsergebnisse über eine mit dem Faktor 2 angepassten Abszisse dargestellt.

Abbildung 3.19.: Simulationsergebnisse Spaltzugversuch 222_A/220_A Viertel- und Vollmodell Remote Point

Die Ergebnisse mit Remonte Point sind in der Abbildung 3.19 dargestellt. Die Obere Abszisse gilt für die obere Legende und die untere Abszisse gilt für die untere Legende. Dabei wurde das Simulationsergebnis mit dem Holzzwischenstreifen von Malárics um die Anfangsverformung bis zum ersten Knick bereinigt. Der angepasste Verlauf deckt sich auch mit dem Stahlversuch von Malárics. Alle drei angepassten Netzverfeinerungen zeigen einen annähernd identischen Verlauf bis zu einer Verformung von 0,075 mm. Je feiner das Netz ist, desto früher bricht die Berechnung in Ansys ab. Die Simulationen mit dem Materialmodell "222 A" zeigen nur eine sehr kleine Entfestigung im Spaltzugversuch. Das Material "220_A" mit einer Elementgröße von 5 mm führt bei diesem Versuch zu einer höheren Kraftaufnahme. Nach Erreichen der maximalen Kraft sinkt diese wie bei Malárics ab. Eine Ursache für den Unterschied des Faktor 2 wurde nicht herausgefundenen. Um einen Fehler bei der Umrechnung durch die Symmetrieebenen auszuschließen, wird der Versuch als 2D Vollmodell mit der Lastein- und Lastausleitung über Remote Points simuliert. Auch diese Simulation führt, wie in Abbildung 3.19 zu sehen, zu einem identischen Verlauf. Eine mögliche Ursache für dieses Verhalten kann durch die Vereinfachung der Lasteinleitung sein. Zudem besteht die Möglichkeit, dass in den verglichenen Daten ein Fehler vorliegt.

Die nächste Abstraktionsstufe ist die Modellierung mit Kontakt und Stahlzwischenstreifen. Der Kontakt wird mit dem Augmented-Lagrange Algorithmus berechnet und die Kontaktflächen werden nicht getrimmt. Der Kontakt wird als verbunden und als reibfrei formuliert.

Abbildung 3.20.: Simulationsergebnisse Spaltzugversuch 222_A/220_A 2D Viertelmodell mit bonded und reibfreiem Kontakt

In der Abbildung 3.20 sind die Ergebnisse der Kontaktsimulationen dargestellt. Eine getrennte Abbildung der Graphen ist im Anhang C.2.2 dargestellt. Auffällig bei diesen Ergebnissen ist, dass die Variante mit dem bonded Kontakt auch um den Faktor 2 neben den Ergebnissen von Malárics liegen. Die aufgenommene Kraft ist etwa 10 kN höher als bei der Belastung mittels Remote Point.

Die Simulation mit einer reibfreien Kontaktformulierung liefert eine ähnliche Steigung wie bei den Simulationen von Malárics. Allerdings brechen die reibfreien Simulationen vorzeitig nicht konvergent ab, sodass bei dem Netz mit der Elementlänge 3,75 mm nur eine maximale Kraft von 82 kN erreicht wird. Zudem springt bei einer Verformung von 0,05 mm die Kraft um 11 kN nach unten. Zu diesem Zeitpunkt beträgt die Druckspannung unter dem Lastverteilungsstreifen 64 MPa. Diese hohe Druckspannung führ bei dem Modell zu einem Versagen und zu einer plastischen Verformung unterhalb des Lastverteilungsstreifens. Bei der reibfreien Simulation mit dem Materialmodell 220_A kann eine Kraft von 126 kN aufgenommen werden. Die Steigung des Verlaufs ist ähnlich zu den anderen reibfreien Simulationen und den Daten von Malárics.

Neben den beiden Grenzformulierungen des Kontaktes werden noch die Simulationsergebnisse eines reibenden Kontakts mit dem Reibungskoeffizienten $\mu = 0,4$. Diese Annahme des Reibungskoeffizienten basiert auf den Erkenntnissen zum Reibungskoeffizienten von Lochte-Holtgreven [32, S.163].

Abbildung 3.21.: Simulationsergebnisse Spaltzugversuch 222_A 2D Viertelmodell mit reibendem Kontakt $\mu=0,4$

Die Ergebnisse dieser Simulationen sind in der Abbildung 3.21 dargestellt. Auch ein reibender Kontakt führt zu einer ähnlichen Steifigkeit wie die Simulationen von Malárics. Allerdings führt diese Kontaktformulierung analog zu der reibfreien Modellierung zu einer vorzeitigen Nichtkonvergenz bei der Lasteinleitung, sodass der eigentliche Versuch nicht abgebildet wird.

Zuletzt wird die Simulation mit dem Achtelmodell simuliert. Dabei wird der Kontakt als verbunden modelliert. Bei dieser Simulation ist zu sehen, dass die Kontaktformulierung wieder die Steifigkeit des Systems um den Faktor 2 erhöht. Die aufgenommene Kraft stimmt mit der Referenz sehr gut überein. Die Elementgrößen 5 mm und 3,75 mm verlaufen bis zum Erreichen der Maximalkraft annähernd deckungsgleich. Bei beiden Simulationen fällt die Kraft nach Erreichen des Maximalwerts jedoch nur sehr langsam ab. Die Simulation mit der Elementgröße von 10 mm führt zu einer leicht erhöhten Lastaufnahme.

Abbildung 3.22.: Simulationsergebnisse Spaltzugversuch 222_A 3D Achtelmodell mit Kontakt

Die Simulation mit einer reibfreien (RF) oder reibenden (RB) Kontaktformulierung führt, wie in Abbildung 3.22 dargestellt, zu einer leichten Versteifung des Systems. Die Simulation versagt allerdings im Kontaktbereich zwischen dem Stahlzwischenstreifen und dem Betonzylinder. Aus diesem Grund bricht die Simulation vorzeitig ab.

Neben dem Material A wurden noch Simulationen mit dem Material E durchgeführt.

Abbildung 3.23.: Simulationsergebnisse Spaltzugversuch Material E

In der Abbildung 3.23 sind die Kraft-Verformungs-Verläufe mit dem Material E dargestellt. Bei der Simulation mit räumlichen Elementen zeigt sich das gleiche Bild wie bei dem Material A. Bei den Simulationen mit Remote Point und verbundenen Kontakt ist die Steifigkeit wieder um den Faktor 2 höher. Bei der Simulation von Malárics ist zu sehen, dass bei einer Verformung von 0,1 mm ein Knick vorhanden ist. Dieser Knick kann bei der reibfreien und reibungsbehafteten Simulation auch erzeugt werden. Der Knick in der Simulation beruht auf die zusätzlichen Knoten im Kontakt. Bei der Simulation mit dem Knick ist die Durchdringung an der Kontaktlinie bei fast 10 %. Wenn die Durchdringung auf $1 \cdot 10^{-3}$ mm begrenzt wird, ist der Verlauf leicht steifer als die Simulation von Malárics und weist keinen Knick mehr auf. Bei dem Materialmodell 222_E und einem reibfreien Kontakt versagt das Modell ohne Entfestigung bei einer Kraft von 251 kN am oberen Rand des Außenbereichs. Bei einer Zugfestigkeit von 5,6 MPa und einem Verhältnis zwischen Spaltzugfestigkeit und Zugfestigkeit von 1 ist der Erwartungswert der Kraftaufnahme nach Gleichung (2.9) 396 kN. Bei der Simulation mit Plane183 Elementen und der Lasteinleitung mit Remote Point ist zu erkennen, dass die Simulation wieder steifer ist. Eine Anpassung des E-Moduls auf 28000 MPa gibt die Ergebnisse von Malárics am Besten wieder. Allerdings konnte mit den genutzten Materialmodell keine Entfestigung des Systems erzeugt werden.

3.9.6. Zwischenfazit Spaltzugversuch

Die Simulationen des Spaltzugversuchs zeigen, dass die Kraftaufnahme passend simuliert werden kann. Allerdings ist dabei die Dehnung geringer als bei der zum Vergleich herangezogenen Simulation. Eine finale Beurteilung ist aufgrund der fehlenden Versuchsdaten nicht sicher möglich. Bei der Simulation mit einem verbundenen Kontakt zeigte sich, dass die aufgenommene Kraft bis zu 10 % höher als bei den verglichenen Simulationen ist. Auch bei dem verbundenen Kontakt werden die Kräfte bereits bei um den Faktor 2 geringeren Dehnungen aufgenommen. Die reibfreie Simulation spiegelt die Steigung der verglichenen Quelle deutlich besser wieder, jedoch erreichen diese Simulationen mit der exponentiellen Entfestigung nicht die verglichenen Kraftwerte. Das Grundmodell liefert eine Annäherung an einen Wert, dieser ist jedoch 15 % geringer als der Vergleich. Die Simulation mit reibender Kontaktmodellierung führt schon bei geringen Verformungen zu einem Abbruch der Berechnung, sodass der Beton in der Simulation nicht gespalten wird. Die Simulationen haben gezeigt, dass für den Beton A die Verläufe mit der Elementgröße von 5 mm die ähnlichen Verläufe wie die Simulationen mit den kleineren Elementen aufweisen, sodass die eine Elementgröße von 5 mm ausreichend ist.

3.10. Biaxial Belastung

Für den Vergleich der Simulationsergebnisse bei der biaxialen Belastung werden die Messwerte und der Versuch von H. Kupfer verwendet [33]. Diese Messdaten geben einen qualitativen Verlauf der Versagenshülle bei biaxial belasteten Beton wieder. H. Kupfer hat die Messdaten auf die einaxiale Druckfestigkeit f_{ct} normiert. Bei H. Kupfer ist der Faktor zwischen der einaxialen Druckfestigkeit f_{ct} und der einaxialen Zugfestigkeit. Bei dem Versuch wurde eine Betonquader mit den Abmessungen 200 mm × 200 mm × 50 mm verwendet. Dieser Quader wurde zwischen zwei Druckzylinder und zwei Auflagen belastet. Der Kontakt am Quader wurde mit Metallbürsten realisiert. Ein Beispiel für diese Bürste ist in der Abbildung 3.24 abgebildet. Die einzelnen Borsten haben die Abmessungen von 5 mm × 3 mm und einen Abstand von 0,2 mm zueinander. Die Borsten sorgen dafür, dass der Beton in der Querrichtung nicht behindert wird. Bei den Versuchen, in denen Zug aufgebracht wird, werden die Bürsten an den Beton mit Epoxidharz geklebt. Die Zwischenräume der Bürste werden zuvor mit einem Gummiklebstoff abgedichtet, sodass weiterhin keine Behinderung der Querdehnung erfolgt.

Abbildung 3.24.: Metallbürste aus biaxialen Versuch

Kupfer hat seine Untersuchungen an drei Betonwerkstoffen durchgeführt. Die drei Betonwerkstoffe hatten eine einaxiale Druckfestigkeit von 18,6 MPa, 30,9 MPa und 57,9 MPa [33].

3.10.1. Modellaufbau

Bei der Simulation dieses Versuchs soll der qualitative Verlauf der Materialmodelle überprüft werden. Aus diesem Grund wird für die Simulation das Material "2XX_A" aus dem Spaltzugversuch verwendet. Dieser Versuch wird als zweidimensionaler ebener Spannungszustand simuliert. Zudem wird das Modell, wie in Abbildung 3.25 dargestellt, an den zwei Symmetrieebenen geteilt, sodass nur ein Viertelmodell simuliert wird. Die Verschiebungen u_x und u_y werden als Randbedingung an den Außenkanten aufgebracht.

Abbildung 3.25.: Modell 2D Ebener Spannungszustand

Die simulierten Lastfälle sind im Anhang C.3 mit den Ergebnissen notiert. Die Ergebnisse wurden mit einer Elementgröße von 25 mm erzeugt, da es auch bei einer Netzverfeinerung nicht zu einer signifikanten Änderung im Verlauf der Spannungen kommt. Bei der Simulation wird die automatische Zeitsteuerung und große Verformungen aktiviert. Der initiale Substep wird auf 1000 eingestellt. Die Grenzen für die Zeitsteuerung liegen bei mindestens 100 und maximal 10 000 000 Stubsteps.

3.10.2. Ergebnisse

Bei dem simulierten Materialmodell ist das Verhältnis zwischen Druck- und Zugfestigkeit bei -0,115. Die biaxiale Festigkeit ist nach dem Model Code 2010 und der Gleichung (2.14) um 18% höher als die einaxiale Druckfestigkeit. Damit sollten die Simulationspunkte mit den Versuchsergbnissen von Kupfer übereinstimmen. Bei der Auswertung wurde der Zustand des Versagens bei den Materialmodellen 210_A und 220_A an einer plastischen Verformung detektiert und die Werte sind die letzten Werte ohne plastische Verformung. Bei den anderen Materialmodellen wird der Zeitpunkt des ersten Maximalwertes in den drei Hauptspannungen verwendet.

Die Ergebnisse der Simulationen sind in der Abbildung 3.26 über den Ergebnissen von Kupfer für den Beton mit einer Druckfestigkeit von 18,6 MPa dargestellt. Das Verhalten ist symmetrisch. Über der Symmetrielinie sind die Ergebnisse der Drucker-Prager Materialmodelle in Blautönen und unterhalb der Symmetrielinie sind die Simulationsergebnisse der Menetrey-Willam Materialmodelle abgebildet. Allgemein wird von allen Modellen ein ähnliches Verhalten wiedergegeben. An den eingegebenen Parametern (f_c , f_{bc} und f_t) stimmen alle Modelle mit den eingegebenen Werten Überein. Im Zug-Zug-Bereich ist bei den Drucker-Prager Modellen eine Abnahme gegenüber der einaxialen Zugfestigkeit zu erkennen. Dieses Verhalten spiegelt nicht, wie das Menetrey-Willam Modell, das Verhalten aus den Versuchen von Kupfer wieder. Im Zug-Druck Bereich ist zu erkennen, dass die Grundmodelle (×-Marker) den Verlauf von Kupfer am besten wiedergeben. Die beiden Varianten mit einer Entfestigungsfunktion unterscheiden sich in diesem Bereich nicht

Abbildung 3.26.: Vergleich Simulationsdaten mit Messdaten von H. Kupfer [33]

signifikant. Die Ursache dafür liegt in der identischen linearen Formulierung im Zugbereich bis zum Erreichen der Zugfestigkeit. Im Zug-Druck-Bereich ab einer Druckbelastung von 0,6 sind keine Simulationspunkte vorhanden. Die beiden Grundmodelle nehmen im Zug-Druck-Bereich annähernd linear von der einaxialen Zugfestigkeit bis zur einaxialen Druckfestigkeit ab. Die anderen Varianten fallen schneller ab, sodass ab einer Druckspannung größer als 0,6 der einaxialen Druckspannung die Zugspannung annähernd 0 ist. Im Druck-Druck Bereich verlaufen alle Modelle auf einer ähnlichen Hüllkurve. Im Bereich bis 50% der Einaxialen Druckfestigkeit ist die Überhöhung der zweiten Spannung geringer als bei Kupfer. Bei höheren Druckspannungen ist die Überhöhung leicht über der von Kupfer. Bei der biaxiale Druckfestigkeit stimmt alle Werte überein.

Neben der weggesteuerten Simulation wurden zudem noch einige kraftgesteuerte Simulationen durchgeführt. Diese sind in der Abbildung 3.26 mit der Endung "_p" gekennzeichnet. Diese Simulationen brechen an der Hüllkurve ab, da keine größeren Spannungen vom Modell aufgenommen werden können. Der Verlauf der Hüllkurve ist sehr ähnlich zu dem Verlauf der weggesteuerten Materialmodelle. Der Vorteil bei dieser Belastung ist, dass der zeitliche Verlauf dieser Simulationen linear vom Ursprung verläuft. Dadurch können auch Messpunkte im Bereich von $0.6 \cdot f_{ct}$ bis f_{ct} simuliert werden. Auch bei diesen Simulationen ist zu erkennen, dass das Drucker-Prager Materialmodell eine Abnahme der maximalen Zugspannung bei einer biaxialen Zugbelastung aufweist. Im Zug-Druck Bereich ist zu erkennen, dass ab $0.5 \cdot f_{ct}$ bei dem Menetrey-Willam Modell die Zugkomponente viel geringer ist als bei Kupfer. Dieses Verhalten führt zu einem konservativeren Ergebnis. Beim Druck-Prager Modell führen geringe Druckspannungen zu einer höheren Zugfestigkeit. Dieses Verhalten stimmt nicht mit den Experimentergebnissen von Kupfer überein.

Aus diesen Simulationen lässt sich schließen, dass das Menetrey-Willam Modell bei Zug-Zug Belastungen das Verhalten von Beton besser wiedergeben kann. Im Zug-Druck-Bereich ist das Menetrey-Willam Modell konservativer als Drucker-Prager, allerdings wird die Betongfestigkeit bei höheren Druckbelastungen vom Menetrey-Willam stärker abgemindert als bei Drucker-Prager. Im Druck-Druck-Bereich weisen beide Materialmodelle eine leichte Erhöhung gegenüber Kupfer bei der maximalen Druckfestigkeit auf.

3.10.3. Zwischenfazit biaxiale Belastung

Aus den Simulationen der biaxialen Belastung ist zu erkennen, dass beide Materialmodelle das generelle Verhalten von Beton wiedergeben. Beide Modelle führen zu einer Überhöhung bei einer biaxialen Druckbelastung. Der Unterschied der beiden Modelle liegt im Verhalten bei einer biaxialen Zugbelastung. Bei den Drucker-Prager Modelle senkt sich die Zugfestigkeit bei einer biaxialen Zugbelastung ab. Die Menetrey-Willam Modelle besitzen bei jeder Zug-Zug Belastungskombination die einaxiale Zugfestigkeit in jeder Richtung. Unter Zug-Druck Belastung sind die Menetrey-Willam Modelle näher an den Versuchswerten von H.Kupfer.

3.11. Kleinskalierter Versuch

Der nächste Abstraktionsschritt ist die Simulation der in der Abbildung 3.27 dargestellten kleinskalierten Probe aus der Arbeit von Anders [13].

Abbildung 3.27.: Abmessungen kleinskalierte Probe in Anlehnung an Anders [13, S. 86], Maßangaben in mm

Anders untersuchte in seiner Dissertation an der kleinskalierte Probe das grundlegende Tragverhalten einer Grout-Verbindung. Dazu verwendete er vier verschiedene Vergussmörtel.

- C60: Größtkorn 1,2 mm
- C110: Größtkorn 3,0 mm

- C150: Größtkorn 5,0 mm
- C170: Größtkorn 5,0 mm [13, S. 79]

Anders untersuchte neben den Festigkeitsklassen auch den Einfluss von Stahlfasern. Als Referenz für diese Arbeit werden jedoch nur die Ergebnisse des faserfreien Betons genutzt. Auch bei der Schubrippengeometrie wird sich nur auf die Schubrippen mit dem Verhältnis h/s = 0.056 bezogen. In der Arbeit von Anders [13] ist der genutzte Probenkörper bemaßt. Allerdings fehlt bei dieser Skizze das Maß des Versatzes der Schubrippen. In dieser Arbeit wurden die Schubrippen so positioniert, dass sie jeweils in der Mitte der gegenüberliegenden Schubrippen liegen. Die Maße von Anders sind in der Abbildung 3.27 dargestellt und um das Maß der ersten Schubrippe ergänzt.

Um zeiteffizient zu simulieren, wird das Modell als 2D-rotationssymmetrisches Modell in Ansys Workbench modelliert und vernetzt. Dabei werden verschiedene Vernetzungen der Schubrippen und unterschiedlich feine Netze verglichen. Eine Vernetzung wird nach der Empfehlungen der DNVGL [14, S.36] vernetzt. Bei der minimalen Vernetzung der Schubrippen sollen 6 Elementkanten die Kontur der Schubrippe abbilden. Dies ist gegeben, wenn eine Schubrippe mit je zwei Elementen in der Höhe und Weite abgebildet wird. Diese Vernetzung ist links in der Abbildung 3.28 dargestellt.

Abbildung 3.28.: Vernetzung Schubrippe nach DNVGL [14], Rechteck und Halbkreis

Die nächste Vernetzung der Schubrippen ist an die Geometrie des kleinskalierten Probenkörpers angepasst. Dabei ist die Form der Schubrippe ein Rechteck, das mit zwei Elementen je Seite vernetzt wird. Diese Vernetzung ist in der Mitte der Abbildung 3.28 gezeigt. Auf der rechten Seite der Abbildung 3.28 ist die dritte Vernetzung der Schubrippen abgebildet. Hierbei wird die Schubrippe als Halbkreis modelliert und vernetzt. Dabei liegen 6 Kanten als Sehne an dem Halbkreis. Pile und Sleeve werden bei der minimalen Vernetzung nach der DNVGL mit einem Element in der Dicke vernetzt. Da diese Vernetzung jedoch zu sehr langgezogenen Elementen führt, werden die beiden Hohlzylinder in dieser Arbeit mit mindestens zwei Elementen in der Dicke vernetzt. Die Last wird als Verschiebung u an dem Pile aufgetragen. Der Sleeve wird gegen eine Verschiebung in Achsrichtung gelagert. Durch die Rotationssymmetrie wird keine weiter Lagerung benötigt.

3.11.1. Netz

Die für den Versuch benutzten Netze sind in diesem Teil abgebildet. Das minimal vernetzte Netz mit der originalen Schubrippengeometrie ist in der Abbildung 3.29 abgebildet. Bei allen Netzen liegt die globale Y-Achse auf der Symmetrieachse des Probenkörpers und die X-Achse liegt in der Richtung der Radien. Das Netz aus der Abbildung 3.29 ist mit 312 Materialelementen und 1185 Knoten mit quadratischen Elementen vernetzt. Außerdem kommen noch 174 Kontaktelemente bei einem asymmetrischen Kontakt oder 348 Kontaktelemente bei einem symmetrischen Kontakt dazu. Zur Erzeugung des Netzes wurden auf allen Kanten die Anzahl der Elementkanten vorgegeben und anschließend als regelmäßiges Netz vernetzt. Die Enden vom Pile und Sleeve, die nicht mit dem Grout in Kontakt stehen, werden mit sechs Elementen in der Höhe und einem Bias Faktor von 2 so vernetzt, dass die Elemente zum Grout hin kleiner werden. Bei der Vernetzung der ersten Schubrippe wurde der Bias Faktor so angepasst, dass die Elementgröße am Ende gleich der Elementgröße der anderen Schubrippen ist. An der Unterseite des Sleeves ist eine reibfreie Lagerung aufgebracht. Die Verschiebung u wird an der Oberseite des Piles aufgetragen.

Abbildung 3.29.: Grobes Netz des kleinskalierten Probenkörpers (N100)

Neben der groben Vernetzung wurden auch noch die feine (Abbildung 3.30) und sehr feine Vernetzung (Abbildung 3.31) genutzt. Bei all diesen Netzen wurde die Schubrippe als Rechteck modelliert.

Abbildung 3.30.: Feines Netz des kleinskalierten Probenkörpers (N101)

Abbildung 3.31.: Sehr feines Netz des kleinskalierten Probenkörpers (N102)

3.11.2. Vorgehen

Für die Simulation der kleinskalierten Probe werden für die Metallteile die Materialmodelle 100 und 102 verwendet. Das Materialmodell 100 wird dabei für die ersten Simulationen verwendet, um die Parameter des Kontakts zu testen. Bei diesem Test wird zudem für den Beton das Modell 201 verwendet, sodass in dieser ersten Abstraktionsstufe nur der Kontakt nichtlinear ist. Nachdem auf diese Weise die Parameter für den Kontakt bestimmt wurden, wird im zweiten Schritt das Materialmodell von Pile und Sleeve auf 102 geändert, sodass der Stahl sich plastisch Verformen kann.

Die Ergebnisse werden mit den in der Abbildung 3.32 gezeigten Versuchsdaten eines C150 und C110 Betons aus der Arbeit von Anders [13] verglichen. Dabei wird die Prüfkraft Fmit der Gleichung (3.1) aus der Verbundspannung f_{bu} und der Kontaktfläche A_p errechnet. Die Kontaktfläche A_p zwischen Pile und Grout wird nach der Gleichung (3.2) bestimmt. Dabei ist d_P der Durchmesser des Piles, h_s die Höhe der Schubrippe und l_G die Höhe des Grouts.

$$F = A_p \cdot f_{bu} \tag{3.1}$$

$$A_p = \pi \cdot (d_P - 2h_s) \cdot l_G \tag{3.2}$$

Die Verformung ist der Versatz zwischen Pile und Sleeveoberkante ohne die elastische Verformung des Piles oberhalb des Grouts. Im Experiment von Anders [13] wurden drei Wegaufnehmer an dem oberenen Ende des Sleeves angebracht. Diese haben die Verschiebung des oberen Auflagers gemessen. Die Messewerte wurden anschließend gemittelt und um die elastische Verformung des Piles rechnerisch bereinigt. Die Bereinigung des elastischen Teils wird mit der Gleichung (3.3) auch auf die Daten in der Abbildung 3.32 von Anders wieder hinzugefügt.

$$u_{elas} = F \cdot \frac{l_P - l_G}{E_{St} \cdot A_{P,quer}} = 1,398 \cdot 10^{-7} \,\mathrm{mm} \,\mathrm{N}^{-1} \cdot F \tag{3.3}$$

Bei einer Prüfkraft von 500 kN beträgt die mittlere Spannung im Pile 293 MPa. Da diese Spannung geringer als die Streckgrenze ist, kann die Verformung als rein elastisch angenommen werden.

Bei den Versuchen aus dem Forschungsprojekt "GROW" [34] fehlen zu dem Maß der ersten Schubrippe auch der Abstand zwischen den Schubrippen. Des Weiteren treten bei

Abbildung 3.32.: Prüfkraft-Verformungs-Linie des Kleinversuchskörpers mit Schubrippen h/s=0,056 faserfrei in Anlehnung an Anders [13, S. 100,104]

den Messergebnissen Unstimmigkeit auf. Die für die Versuche genutzte Prüfmaschine kann eine maximale Druckkraft von 500 kN aufbringen. Die Ergebnisse zeigen allerdings Werte bis 578 kN. Aus diesen Gründen wird der kleinskalierte Versuch nur mit den Werten von Anders verglichen.

3.11.3. Kontaktformulierung

Bei der kleinskalierten Probe gibt es zwei Kontaktpaarungen. Beide Kontaktpaarungen sind zwischen Metall und dem Grout. Für die Simulation sind nur die reibungsbehafteten, rauen oder reibfreien Kontakte sinnvoll. Bei allen Varianten kann kein Zug übertragen werden. Bei dem reibfreien Kontakt werden die Tangentialspannungen vernachlässigt, sodass die Verbindung weicher als mit Reibung ist. Rau hat einen unendlich großen Reibungskoeffizienten, sodass kein Rutschen unter Normalkraft auftritt. Diese Verbindung ist steifer als die reibungsbehaftete Kontaktformulierung. Bei dem reibungsbehafteten Kontakt muss ein Reibungskoeffizient angegeben werden. Dieser Wert wird mit 0,4 nach dem Forschungsprojekt "GROW" [34, S. 126] angenommen. Alle drei Kontaktvarianten werden mit der Augmented Lagrange Methode berechnet. Zudem wird die Durchdringung auf $3 \cdot 10^{-3}$ mm bei einer aufgebrachten Verformung von 3 mm begrenzt. Simuliert wird mit den Materialien 100 für Pile und Sleeve und 201 für Grout. Für die Entscheidung, welcher Körper Master oder Slave beim Kontakt ist, wurden nach folgenden Kriterien entschieden. Alle Flächen sind gleich stark gekrümmt und gleich vernetzt und haben auch die gleiche Ansatzordnung in der Elementformulierung. Da Pile und Sleeve aber sowohl den steiferen Werkstoff haben, als auch eine überstehende Fläche besitzen, sind diese Geometrien die Mastergeometrie beim Kontakt. Damit bilden sie die Target-Fläche und das Grout die Kontakt-Fläche.

Für die erste Untersuchung der Kontaktformulierung werden sechs Simulationen ausgewertet. Dabei wird sowohl das Verhalten symmetrisch und asymmetrisch als auch die Kontaktart reibfrei, rau und reibbehaftet variiert. Eine Zusammenfassung der Simulationen mit dem Netz N100 ist in der Tabelle 3.8 dargestellt.

Kontakt	CP-Zeit	Last	u_{diff}	Substeps
reibfrei asym.	$11{,}969\mathrm{s}$	$6{,}358\cdot10^3\mathrm{kN}$	$1,\!1249\mathrm{mm}$	105
reibfrei sym.	$13{,}531\mathrm{s}$	$6{,}357\cdot10^3\mathrm{kN}$	$1{,}1250\mathrm{mm}$	105
rau asym.	$13{,}016\mathrm{s}$	$6{,}652\cdot10^3\mathrm{kN}$	$1,0665\mathrm{mm}$	105
rau sym.	$19{,}484\mathrm{s}$	$6,\!637\cdot10^3\mathrm{kN}$	$1{,}0738\mathrm{mm}$	109
reibend asym.	$16{,}000\mathrm{s}$	$6,452 \cdot 10^3 \mathrm{kN}$	$1,1082\mathrm{mm}$	105
reibend sym.	$20{,}625\mathrm{s}$	$6,448\cdot10^3\mathrm{kN}$	$1,1091\mathrm{mm}$	105

Tabelle 3.8.: Übersicht Simulationsergebnisse Kontakt kleinskalierte Probe

Die Ergebnisse der Kontaktsimulationen mit dem minimalen Netz bestätigen die angenommene Reihenfolge der Steifigkeit des Verbunds. Zudem lässt sich aus den Ergebnissen schließen, dass die asymmetrische reibfreie Kontaktdefinition am schnellsten rechnet. Für die weiteren Untersuchungen wird der Kontakt sowohl als reibfrei asymmetrisch als auch als reibend asymmetrisch modelliert. Die erste Variante sollte stabilerer und schneller rechnen und die zweite Modellierung sollte die realitätsnäheren Ergebnisse liefern.

3.11.4. Elastoplastisches Modell für Stahl

In der nächsten Abstraktionsstufe wird das Stahlmodell an die Realität angepasst. Dazu wird noch ein Tangentenmodul hinzugefügt. Anders [13] hat in seiner Arbeit ein Zugversuch von dem verwendeten Stahl durchgeführt und eine Streckgrenze von 391 MPa gemessen. Ab dieser Streckgrenze fällt der E-Modul auf 1% des vorherigen E-Moduls ab. Mit diesem Stahl-Materialmodell werden die beiden in Kapitel 3.11.3 ausgewählten Kontaktarten simuliert.

MatID	Kontakt	CP-Zeit	Last	u_{diff}	Substeps			
100/201	reibfrei asym.	$11{,}969\mathrm{s}$	$6,358\cdot10^3\mathrm{kN}$	$1,\!1249\mathrm{mm}$	105			
102/201	reibfrei asym.	$8{,}812\mathrm{s}$	$1,739\cdot 10^3\mathrm{kN}$	$0{,}5636\mathrm{mm}$	105			
100/201	reibend asym.	$16,000\mathrm{s}$	$6,452\cdot10^3\mathrm{kN}$	$1,1082\mathrm{mm}$	105			
102/201	reibend asym.	$18,\!016\mathrm{s}$	$2,473\cdot 10^3\mathrm{kN}$	$0{,}8258\mathrm{mm}$	105			

Tabelle 3.9.: Übersicht Simulationsergebnisse Kontakt kleinskalierte Probe

Die Ergebnisse der beiden Simulationen mit den Ergebnissen der vorherigen Abstraktionsstufe sind in der Tabelle 3.9 dargestellt. Bei dem elastoplastischen Modellen ist eine deutliche Abnahme der Lagerkraft zu erkennen. Zudem ist die Relativverschiebung u_{diff} deutlich kleiner. Die Ursache für diese beiden Phänomene ist, dass die Rohre sich in den Bereichen außerhalb der Überlappung plastisch verformen. Diese plastische Verformung tritt aber nur auf, da das Grout sich nur elastisch verformt. Vor der plastischen Verformung sind die Kraftverläufe kongruent.

3.11.5. Varianz der Betonmaterialmodelle

Im letzten Schritt wird das Betonmaterialmodell variiert. Zuerst werden die Materialien 210, 220 und 223 simuliert. Die Ergebnisse für den reibfreien Kontakt sind in der Tabelle 3.10 aufgelistet. Bei den Simulationen wurde bei einer nicht konvergenten Lösung die aufgebrachte Verformung u auf -1 mm reduziert um die Schrittweite zu reduzieren. Zudem wird die maximale Anzahl an Substeps auf $1 \cdot 10^6$ geändert.

MatID	NetzID	Last	u_{diff}	Schritte	konvergent	u_{max}
102/201	N100	$1738,5 {\rm kN}$	0,5636mm	105	\checkmark	-3,0mm
102/210	N100	741,1kN	0,5209mm	95	×	-0,87mm
102/210	N101	739,5kN	$2,363 \mathrm{mm}$	132	\checkmark	-3,0mm
102/210	N102	739,2kN	2,391mm	140	\checkmark	-3,0mm
102/220	N100	413,5kN	0,2352 mm	471	×	-0,36mm
102/220	N101	$376,9 \mathrm{kN}$	$0,2050\mathrm{mm}$	421	×	-0,32mm
102/223	N100	247,2kN	0,1400mm	287	×	-0,18mm
102/223	N101	$172,7 \mathrm{kN}$	$0{,}05020\mathrm{mm}$	138	×	-0,10mm
C110	Experiment	297,3kN	1,246mm			-3,6mm
C150	Experiment	469,9kN	$1,\!834\mathrm{mm}$			-6,5mm

Tabelle 3.10.: Übersicht Simulationsergebnisse reibfreier Kontakt kleinskalierte Probe

In der Tabelle 3.10 sind die Simulationsergebnisse der reibfreien Kontaktmodellierung aufgelistet. Die dazugehörigen Verläufe sind in der Abbildung 3.33 dargestellt. Bei allen Simulationen ist zu erkennen, dass die Verbindung weicher als beim linearen Betonmodell ist. Allerdings bildet auch diese Abstraktionsstufe nicht die Ergebnisse aus dem Experiment von Anders [13] ab. Die simulierte Verbindung verhält sich viel steifer als das Experiment. Zudem ist bei den konvergenten Lösungen die aufgenommene Last weit über den experimentellen Daten von Anders. Die plastische Dehnung des letzten konvergenten Lastschritts ist im Anhang C.4.2 abgedruckt. Bei den Simulation mit dem Drucker-Prager Grundmaterialmodell (210) ist zu erkennen, dass die größte plastische Vergleichsdehnung unterhalb der Schubrippen des Piles liegen. Bei dem Menetrey-Willam Grundmaterialmodell (220) verläuft die plastische Dehnung von den Schubrippen entlang der Druckstreben. Je nach Netz ist die Steigung der plastischen Zone unterschiedlich. Die plastische Dehnung an der untersten Druckstrebe ist am größten und zuerst geschlossen.

Abbildung 3.33.: Prüfkraft-Verformungs-Linie Simulation mit reibfreier Kontaktformulierung in Anlehnung an Anders [13, S. 100]

Die Ergebnisse für den reibenden Kontakt sind in der Tabelle 3.11 aufgelistet und in der Abbildung 3.34 dargestellt. Aus der Simulation mit dem elastischen Betonmodellen ist zu erkennen, dass das Modell mit dem reibenden Kontakt eine leicht höhere Last bei geringerer relativen Verschiebung von Pile und Sleeve aufnehmen kann.

MatID	NetzID	Last	u_{diff}	Schritte	konvergent	u_{max}
102/201	N100	$1770,4 {\rm kN}$	$0,5220 { m mm}$	105	1	-3,00mm
102/210	N100	771,3kN	0,3940mm	111	X	-0,75mm
102/210	N101	480,2kN	$0,2010 \mathrm{mm}$	69	X	-0,35mm
102/210	$N101_L$	992,6kN	$1,0800 \mathrm{mm}$	133	1	-2mm
102/220	N100	376,4kN	$0,1230\mathrm{mm}$	65	X	-0,24mm
102/220	N101	264 kN	$0,0427\mathrm{mm}$	128	×	-0,16mm

Tabelle 3.11.: Übersicht Simulationsergebnisse reibender Kontakt kleinskalierte Probe

Abbildung 3.34.: Prüfkraft-Verformungs-Linie Simulation mit reibender Kontaktformulierung in Anlehnung an Anders [13, S. 100]

Die Menetrey-Willam Simulationen mit dem Grundmodell brechen bereits nach einer aufgebrachten Verformung von 0,24 mm (N100) bzw. 0,16 mm (N101) vor den Simulationen mit reibfreien Kontakt ab. Mit dem reibenden Kontakt konnte keine konvergente Lösung mit quadratischen Elementen erzeugt werden.

Mit linearen Elementen konnte eine Verformung von 2 mm konvergent simuliert werden. Da bei dem Grundmodell von Drucker-Prager keine Entfestigung eingegeben ist, ist der Verlauf plausibel. Allerdings ist auch bei dieser Simulation die aufgenommene Kraft viel höher als in den Versuchen von Anders. Eine Ursache für diese Differenz könnte aufgrund des geringen Abmessungen des Versuchskörper liegen. Bei diesem Maßstab könnten die Betonzuschläge zu einem inhomogenen Verhalten des Betons führen.

Auffällig ist allerdings, dass die erste Hauptspannung nicht auf die eingestellten 7 MPa limitiert werden. In der Abbildung 3.35 ist zu erkennen, dass die elementbezogene gemittelte erste Hauptspannung auf 43,276 MPa limitiert wurde. Eine Ursache für dieses Verhalten konnte nicht gefunden werden.

Abbildung 3.35.: 102_/210_l N101 erste Hauptspannung im Beton

3.11.6. Zwischenfazit kleinskalierter Versuch

Abschließend kann aus den Simulationen des kleinskalierten Versuchs geschlossen werden, dass der qualitative Verlauf der experimentellen Werte von Anders teilweise wiedergegeben werden kann. Bei den Simulationen mit den verschiedenen Materialmodellen zeigte sich, dass das Drucker-Prager Modell besser konvergierte als das Menetrey-Willam Modell. Allerdings begrenzen beide Modelle die maximale Zugspannung nicht auf die eingestellten 7 MPa. Das Menetrey-Willam Modell begrenzt die erste Hauptspannung näher an der eingestellten einaxialen Zugfestigkeit. Allerdings konnte Dabei keine konvergente Rechnung erzeugt werden. Die Ursache für dieses Verhalten konnte nicht geklärt werden.

Durch diesen höheren Wert in der Zugspannung kann die höhere aufgenommene Kraft des Versuchskörpers erklärt werden.

Der Unterschied zwischen der Simulation und den experimentellen Daten könnte auch an dem Einfluss der Korngröße liegen. Bei einem Größtkorndurchmesser von 3 bis 5 mm und einer Betonbreite von 19 mm kann das Verschmieren der Betoneigenschaften sich positiv auf die Tragfähigkeit auswirken.

Diese Differenz der Simulationsergebnisse und Messergebnisse konnte auch in der Simulation des Forschungsprojekts "GROW" [34] nicht erklärt werden, sodass dort auch nur der qualitative Verlauf wiedergegeben werden konnte.

4. Fazit

Die Simulationen zeigen, dass die untersuchten Materialmodelle das Verhalten von Beton teilweise abbilden können. Bei einaxialen Belastungen liefern alle Materialmodelle eine Konvergente Lösung bis zu den eingegebenen Parameter. Bei den Grundmodellen von Drucker-Prager (210) und Menetrey-Willam (220) findet keine Entfestigung vor dem Erreichen der Festigkeiten statt, sodass diese Modelle bei hohen Auslastungen vom realen Verlauf abweichen. Diese Diskrepanz kann durch das Nutzen des E-Moduls E_{c1} kompensiert werden. Diese Anpassung führt im Gegenzug aber zu größeren Dehnungen bei geringen Auslastungen im Druck- und Zugbereich. Besser ist das Hinzufügen einer linearen oder exponentiellen Entfestigungsfunktion. Mit diesen Funktionen lässt sich sowohl der Bereich vor Erreichen der einaxialen Festigkeiten als auch der Bereich nach Erreichen der Festigkeiten abbilden. Die Anpassung und Auswahl dieser Werte sollten jedoch mit experimentellen Daten verifiziert werden.

Auch der biaxiale Versuch hat gezeigt, dass die Materialmodelle die Eigenschaften von Beton gut nachbilden können. Dabei sei aber nochmal darauf hingewiesen, dass die Drucker-Prager-Materialmodelle bei biaxialer Zugbelastung die Festigkeit entgegen der Realität abmindern und bei geringer Druckbelastung die Zugfestigkeit überhöhen. Die Menetrey-Willam-Materialmodelle bilden diese beiden Bereiche näher an der Realität ab. Bei hohen Druckspannungen und geringen Zugspannungen versagen die beide Materialmodelle vor dem Messdaten von Kupfer [33]. Im Druck-Druckbereich kommt es bei hohen Drücken zu einer leichten Überhöhunug im Vergleich zu Kupfer. Der biaxiale Versuch betrachtet allerdings nur die maximalen Spannungen und nicht die dazu gehörigen Dehnungen.

Bei der Simulation des Spaltzugversuchs wurde bei der Vereinfachung mit einer verteilten Last ("remote Point") eine Abweichung in der Verschiebung gegenüber den Simulationen von Malárics [31] festgestellt.

Bei der Recherche zum Spaltzugversuch wurden keine zeitlichen Verläufe eines Spaltzugversuchs gefunden, sodass über die Dehnungen keine Bewertung erfolgen konnte. Die vom Betonzylinder aufgenommene Kraft ist bei dem Menetrey-Willam Material mit der exponentiellen Entfestigung im Vergleich zu den Simulationen und Versuchen von Malárics annähernd identisch. Auch die Simulation mit einem verbundenen Kontakt liefert ähnliche Ergebnisse. Bei den reibfreien und reibenden Simulationen verläuft der Kraft-Verformungsverlauf ohne den Faktor ähnlich zu der Simulation von Malárics. Diese Simulationen brechen vorzeitig ab, da im Bereich der Krafteinleitung sehr hohe plastische Verformungen und Spannungen auftreten. Bei der reibfreien Simulation mit dem Menetrey-Willam Materialmodell ohne Entfestigungsfunktion versagt das Modell nicht bei der Krafteinleitung, sodass auch der weitere Verlauf simuliert wird. Dabei ist die maximale Kraft 15 % geringer als bei Malárics.

Bei den Simulationen hat sich gezeigt, dass beim Einsetzen der Entfestigungsfunktionen

eine sehr kleine Schrittweite benötigt wurde, um konvergente Lösungen zu berechnen. Bei der Elementgröße kann ein zu kleines Element zu einem vorzeitigen Abbruch der Simulation führen. Auch die Elementgröße sollte mithilfe einer Konvergenzstudie bestimmt werden. So zeigte sich bei dem Spaltzugversuch, dass ein zu kleines Element zu einem vorzeitigen Abbrechen der Simulation führt. Gröbere Elemente brauchen bei der Entfestigung größere Dehnungen, bis der eingestellte Grenzwert erreicht ist. Aus diesem Grund sind die gröberen Netze nummerisch stabiler als die feinen Netze. Für die Simulation sollten, wie von der DNV GL AS [14] empfohlen, Elemente zweiter Ordnung verwendet werden.

In den Simulationen des kleinskalierten Versuchs hat sich gezeigt, dass das Drucker-Prager Materialmodell besser konvergiert als das Menetrey-Willam Materialmodell.

Um ein Modell zu simulieren sollte erst ein lineares elastisches Modell gewählt werden. Das Drucker-Prager Materialmodell ist das einfachste Modell, das zu der Modellierung von Beton genutzt werden kann. Dabei müssen neben den elastische Eigenschaften, dem E-Modul und der Querkontraktionszahl noch die drei betonspezifische Werte der einaxialen Druck- und Zugfestigkeit und der biaxialen Druckfestigkeit eingegeben werden. Aus diesen Parametern wird dann eine Fließhülle mit den Gleichungen (2.37) und (2.43) berechnet. Solange der Wert dieser Fließfläche negativ ist, ist der Beton im elastischen Bereich.

Bei dem Menetrey-Willam Materialmodell kommt zu den Drucker-Prager Parametern noch der Dilatanzwinkel hinzu. Die Veranschaulichung des Dilatanzwinkels ist in der Abbildung 2.23 dargestellt. Je kleiner der Dilatanzwinkel ist, desto kleiner ist auch die Normalkraft der Reibung zwischen dem Beton und dem Stahl der Grout-Verbindung. Ein sehr kleiner Winkel ist damit die konservativste Annahme. Ansys gibt dafür in der Gleichung (2.46) eine untere Grenzwert aus den Betonparametern an.

Mit dieser ideal-plastischen Modellierung sollten die Betonparameter mit einem Sicherheitsfaktor belegt werden, damit die die plastische Verformung vor der maximalen Festigkeit abgedeckt wird.

Durch das Hinzufügen einer Entfestigungsfunktion kann das Verhalten von Beton besser abgebildet werden, jedoch erschwert die Entfestigungsfunktion die Konvergenz. Wenn die Entfestigung nach der maximalen Zug- und Druckfestigung nicht benötigt wird sollte nur mit dem Grundmodell gerechnet werden.

Bei der Nutzung dieser beiden Materialmodelle haben die Wahl der Schrittweite, der Elementgröße und des Elementansatzfunktion einen Einfluss auf die Konvergenz. Zudem erschwert die Kontaktformulierung die Konvergenz.

Ein gröberes Netz erhöht die Lastaufnahme des simulierten kleinskalierten Versuchs.

Aus alle Simulationen lässt sich schließen, dass man bei diesem nichtlinearen Materialmodellen nicht allgemein geltende Aussagen bezüglich der Schrittweite und Elementgröße nennen kann. Und für jedes Problem muss durch eine Veränderung der Parameter der konservativste Ansatz gewählt werden. Aber auch mit diesem Vorgehen konnten die Real gemessenen Werte von Anders [13] für den kleinskalierten Versuch nicht wiedergegeben werden, da die Begrenzung der Zugfestigkeit nicht bei dem eingestellten Wert gegriffen hat.

5. Ausblick

Bei der Untersuchung des Spaltzugversuchs könnte eine Anpassung der Zwischenstreifengeometrie von dem Linien-Anfangskontakt zu einem Flächen-Anfangskontakt die Simulationsergebnisse die Ergebnisse von Malárics besser wiedergeben und auch die Konvergenz der Simulation erhöhen.

Neben den in dieser Arbeit untersuchten Modellen gibt es noch weitere Materialmodelle, die für die Betonformulierung in Ansys benutzt werden können. Einerseits kann das Drucker-Prager Materialmodell mit einem Rankine Fließfläche im Zugbereich ergänzt werden, sodass bei dem Drucker-Prager Materialmodell die Zugspannung auf einen Wert begrenzt werden kann. Dies hat in einer ersten Simulation des kleinskalierten Versuchs funktioniert.

Abbildung 5.1.: Plastische Vergleichsdehnung N100 210 mit Rankine

In der Abbildung 5.1 ist plastische Vergleichsdehnung zu erkennen. Dabei ist zu erkennen, dass die Druckstrebe ganz links in der Abbildung sich plastisch verformt. Diese Verformung deutet auf den Bruch der Druckstrebe hin. Bei den oberen Schubrippen ist die plastische Verformung aufgrund der Druckspannung zu erkennen.

Abbildung 5.2.: Mittelwert der 1. Hauptspannung je Element N100 201 mit Rankine

In der Abbildung 5.2 ist deutlich die funktionierende Begrenzung der Zugspannung erkennbar. Auch mit diesem Modell bricht die Simulation nicht konvergent bei einer Kraft von 675,81 kN ab. Diese Ergebnisse liegen schon näher an den Versuchswerten von Anders [13].

Abbildung 5.3.: Mittelwert der 1. Hauptspannung je Element 201 mit Rankine feines Netz

Auch ein feineres Netz wie in der Abbildung 5.3 begrenzt die erste Hauptspannung und die Bereiche der hohen Druckspannungen werden feiner abgebildet.

Für weitere Simulationen empfiehlt es sich die Fließbedingung als benutzerdefiniertes Ergebnis darzustellen. Als Beispiel ist in der Abbildung 5.4 die Druckfließgrenze des feinen Netzes dargestellt.

Abbildung 5.4.: Mittelwert der 1. Hauptspannung je Element 201 mit Rankine feines Netz

In der Abbildung 5.4 ist zu sehen, wie weit jedes Element von der Fließgrenze entfernt ist. Ab dem Wert 0 fängt das Material an zu fließen. Durch das ideal plastische Fließen wird der Wert 0 nicht überschritten

Der Einfluss der beiden Materialtangenten wurde aus zeitlichen Gründen nicht mehr untersucht. Ob diese Einstellung die Konvergenz verbessert oder mindert müsste mit weiteren Simulationen untersucht werden.

Eine weitere Modellierung wurde im Ansys Technologie Demonstration (eng. Technology Showcase) dargestellt. Dabei wird die Struktur mit einem verbundenen "Coupled pore-pressure-thermal mechanical solid element" vernetzt. Das Material wird mit einem "coupled damage-plasticity microplane model" modelliert. Die Formulierung des Modells erfolgt neben dem E-Modul, der Querkontraktionszahl, der einaxialen Zug-, Druckfestigkeit und der biaxialen Druckfestigkeit noch mit zehn weiteren Parametern. Ob diese Materialmodellierung die Konvergenzprobleme lösen kann, muss auch in weiteren Simulationen untersucht werden.

Literaturverzeichnis

- FRAUNHOFER ISE: Öffentliche Nettostromerzeugung in Deutschland 2019: Mehr erneuerbare als fossile Energieerzeugung. https://www.ise.fraunhofer. de/content/dam/ise/de/documents/news/2019/0120_d_ISE_Aktuelles_ Stromerzeugung_2019.pdf. Abgerufen am 27.10.2020
- [2] TRITTMAACK, Gero: Protest gegen die Windmühlen. In: Independent https://www.independent.co.uk/incoming/ fresh-blow-for-wind-farms-as-possible-flaw-is-scrutinised-5533979. html. Abgerufen am 27.10.2020
- [3] DEUTSCHE OFFSHORE-TESTFELD UND INFRASTRUKTUR GMBH & CO. KG: Ein Offshore-Windpark entsteht. https://www.alpha-ventus.de/fileadmin/ Dateien/publikationen/av_Broschuere_deutsch_web_bmu.pdf. Abgerufen am 27.10.2020
- BUNDESMINISTERIUM FÜR WIRTSCHAFT UND TECHNOLOGIE: Energiekonzeptfür eine umweltschonende, zuverlässige und bezahlbare Energieversorgung. https://www.bmwi.de/Redaktion/DE/Downloads/E/energiekonzept-2010. pdf?__blob=publicationFile&v=5. Abgerufen am 27.10.2020
- KLIMAKABINETT: Eckpunkte für das Klimaschutzprogramm 2030. https://www.bundesregierung.de/resource/blob/997532/1673502/ 768b67ba939c098c994b71c0b7d6e636/2019-09-20-klimaschutzprogramm-data. pdf. Abgerufen am 27.10.2020
- [6] DEUTSCHE WINDGUARD GMBH: Status des Offshore-Windenergieausbaus in Deutschland Jahr 2019. https://www.wind-energie.de/ fileadmin/redaktion/dokumente/pressemitteilungen/2020/Status_des_ Offshore-Windenergieausbaus_Jahr_2019.pdf. Abgerufen am 27.10.2020
- [7] MHI VESTAS OFFSHORE WIND APS: V164-8.0 MW breaks world record for wind energy production. https://www.mhivestasoffshore.com/wp-content/uploads/ 2015/03/21-10-2014-Press-release.pdf. Abgerufen am 27.10.2020
- [8] STIFTUNG OFFSHORE-WINDENERGIE: Fundamentarten von OWEA. https://www.offshore-stiftung.de/sites/offshorelink.de/files/ mediaimages/Fundamentarten%20von%200ffshore-Windenergieanlagen.jpg. Abgerufen am 27.10.2020

- [9] BLADT INDUSTRIES A/S: Offshore Wind Grout Seal test over shear keys. https: //www.youtube.com/watch?v=Ju8TkbATWWM. Abgerufen am 27.10.2020
- [10] STIFTUNG OFFSHORE-WINDENERGIE: Fundamentarten von OWEA. https://www.offshore-stiftung.de/sites/offshorelink.de/files/ mediaimages/022_alpha_ventus_28_%2B.jpg. Abgerufen am 04.02.2020
- [11] ARNOTT, Sarah: Fresh blow for wind farms as possible flaw is scrutinised. In: Schleswiger Nachrichten https://www.shz.de/lokales/schleswiger-nachrichten/ protest-gegen-die-windmuehlen-id21655497.html. Abgerufen am 27.10.2020
- [12] LAMPORT, William: Ultimate strength of grouted pile-to-sleeve connections. http: //search.proquest.com/docview/303580582/. Version: 1988
- [13] ANDERS, Steffen: Betontechnologische Einflüsse auf das Tragverhalten von grouted joints -. Paderborn : IFB, 2007. ISBN 978-3-936-63405-1
- [14] DNV GL: Analysis of grouted connections using the finite element method. https: //rules.dnvgl.com/docs/pdf/DNVGL/RP/2016-09/DNVGL-RP-0419.pdf. Abgerufen am 27.10.2020
- [15] HORDYK, M.: The Static and Fatigue Strength of Grouted Pile-sleeve Connections. In: *Fatique in Offshore Structures* Volume 2 (1996), S. 635–657
- [16] Eurocode 3: Bemessung und Konstruktion von Stahlbauten Teil 1-5: Plattenförmige Bauteile; EN 1993-1-5:2006 + AC:2009 + A1:2017 + A2:2019
- [17] DENSIT: TECHNICAL DATA SHEET DUCORIT®, http://www.sintemar.com/ sites/default/files/tds_en_ducoit_r5g.pdf. Abgerufen am 27.10.2020
- [18] ZILCH, Konrad ; ZEHETMAIER, Gerhard: Bemessung im konstruktiven Betonbau
 Nach DIN 1045-1 (Fassung 2008) und EN 1992-1-1 (Eurocode 2). Wiesbaden : Springer Berlin Heidelberg, 2010. ISBN 978-3-540-70637-3
- [19] ETON, Comit E Euro-international Du B.: CEB-FIP Model Code 1990 Design Code. T. Telford, 1993. ISBN 978 0 727 73543 0
- [20] Fib model code for concrete structures 2010. Lausanne : Ernst und Sohn, 2013. ISBN 9783433604083
- [21] MÜLLER, V.Malárics & H.: Evaluation of the splitting tension test for concrete from a fracture mechanical point of view. (2010)
- [22] Tragwerke aus Beton, Stahlbeton und Spannbeton Teil 1: Bemessung und Konstruktion; DIN 1045-1:2008-08
- [23] Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau; Deutsche Fassung EN 1992-1-1:2004 + AC:2010

- [24] BÉTON, fib Fédération internationale d.: Constitutive Modelling of High Strength/high Performance Concrete. 2008. ISBN 9782883940826
- [25] DIN EN 10025-2:2019, Warmgewalzte Erzeugnisse aus Baustählen_- Teil_2: Technische Lieferbedingungen für unlegierte Baustähle; Deutsche Fassung EN_10025-2:2019
- [26] Ansys Mechanical APDL 2019R2 Material Reference
- [27] DMITRIEV, A. et a.: Calibration and Validation of the Menetrey-Willam Constitutive Model for Concrete. In: Construction of Unique Buildings and Structures Volume 88 (2020), Nr. 8804. https://unistroy.spbstu.ru/userfiles/files/2020/3(88) /8804(1).pdf
- [28] Nationaler Anhang National festgelegte Parameter Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau
- [29] DIN EN 12390-1:2019-10, Pr
 üfung von Festbeton_- Teil_1: Form, Maße und andere Anforderungen f
 ür Probek
 örper und Formen; Deutsche und Englische Fassung prEN_12390-1:2019
- [30] DIN EN 12390-3:2019-10, Pr
 üfung von Festbeton_- Teil_3: Druckfestigkeit von Probek
 örpern; Deutsche Fassung EN_12390-3:2019
- [31] MALÁRICS, Viktória: Ermittlung der Betonzugfestigkeit aus dem Spaltzugversuch an zylindrischen Betonproben -. Karlsruhe : KIT Scientific Publishing, 2011. ISBN 978-3-866-44735-6
- [32] LOCHTE-HOLTGREVEN, Stephan: Zum Trag- und Ermüdungsverhalten biegebeanspruchter Grouted Joints in Offshore-Windenergieanlagen. Aachen : Shaker, 2013. ISBN 978-3-844-01987-2
- [33] KUPFER, Helmut ; HILSDORF, Hubert K. ; RUSCH, Hubert: Behavior of Concrete Under Biaxial Stresses. In: ACI Journal Proceedings Bd. 66 ACI, 1969, S. 656 666
- [34] SCHAUMANN, Peter ; LOCHTE-HOLTGREVEN, Stephan: Experimentelle und numerische Untersuchungen zum Tragverhalten von Grout-Strukturen für Offshore-Windenergieanlagen : Schlussbericht ; Projektlaufzeit: 01.10.2006 bis 30.09.2010. (2011). http://dx.doi.org/10.2314/GBV:668304839. DOI 10.2314/GBV:668304839

Anhang

A. APDL-Code

A.1. Materialdefinition Stahl 100/101

```
Listing A.1: Materialdefinition Stahl
```

```
!_____Stahl_linear_elastisch____Start_____
/Prep7
! Parameter
     = 210000
E St
                       ![N/mm^2]
                       ![]
            0.3
nu_St
        =
MatID St1 =
                       ![]
             100
! Definition
MP, EX, MatID St1, E St,
MP, NUXY, MatID_St1, nu_St,
!_____Stahl_linear_elastisch____Ende_____
!_____Stahl_bilinear_plastisch_Start_____
/Prep7
! Parameter
                       ![N/mm^2]
E St
     = 210000
                       ![N/mm^2]
E_TSt =
            2100
              391
                       ![N/mm^2] <-Versuch Anders</pre>
sig Re mod =
nu St =
              0.3
                       ![]
                       ![]
MatID_St2 =
              101
! Definition
MP, EX, MatID St2, E St,
MP, NUXY, MatID_St2, nu_St,
TB,BISO,MatID St2,,,,
TBDATA,1,sig Re mod,E TSt
ERESX, DEFA
!__end____Stahl_bilinear_plastisch__Ende_____
```

A.2. Materialdefinition Beton 200/201

		0	
!	_Beto	n_200	Start
/Prep7			
! Paramete	ər		
E_C_stat	=	55000	![N/mm^2]
E_C_dyn	=	60000	![N/mm^2]
nu_c	=	0.19	![]
MatID_C	=	200	![]
! Definit:	ion		
MP,EX,Mat	ID_C,	E_C_dyn,	
MP, NUXY, Ma	atID_	C,nu_c,	
!Beton_200			Ende
!Beton_201			Start
/Prep7			
! Paramete	ər		
E_C_stat	=	55000	![N/mm^2]
E_C_dyn	=	60000	![N/mm^2]
nu_c	=	0.19	![]
MatID_C	=	201	![]
! Definit:	ion		
MP, EX, Mat	ID_C,	E_C_stat,	
MP, NUXY, Ma	atID_	C,nu_c,	
!	Beto	n_201	Ende

Listing A.2: Material definition Beton

A.3. Materialdefinition Beton Drucker-Prager 210

Listing A.3: Material definition Drucker-Prager

!	Druc	ker-Prager	Start			
/Prep7						
! Paramete	er					
E_C_stat	=	55000	![N/mm^2]			
nu_c	=	0.19	![]			
MatID_DP0	=	210	![]			
R_c	=	130	![N/mm^2]			
R_t	=	7	![N/mm^2]			
R_b	=	149	![N/mm^2]			
! Definition						
MP,EX,MatID_DP0,E_c_stat,						
MP,NUXY,MatID_DPO,nu_c,						
TB,CONCRETE,MatID_DPO,,,DP						
TBDATA,1,R_c,R_t,R_b						
!	Druc	ker-Prager	Ende			

A.4. Materialdefinition Beton Drucker-Prager mit HSD6 211

!_____Drucker-Prager_____Start____ /Prep7 ! Parameter E C stat = 55000 ![N/mm^2] = 0.19 ![] nu c 211 MatID DP1 = ![] ![N/mm^2] Rс = 130 = 7 ![N/mm^2] Rt R_b 149 ![N/mm^2] = 149![N/mm 2]0.25! Dilatanzfaktor Zug delta_t1 = delta c1 = 1 ! Dilatanzfaktor Druck ! linear hardening softening HSD6 4.364E-04! eps_pl bei R_c kappa_cm1= kappa_cr1= 0.0028 ! Effektive plastische Grenzdehnung bei Druck ! Relative Spannung beim Start omega_ci1= 0.4 der nichtlinearen Verfestigung 0.1 ! Verbleibende relative omega_cr1= Druckspannung 0.00015 ! Plastische Zugdehngrenze kappa_tr1= omega_tr1= 0.1 ! Verbleibende relative Zugspannung ! Definition MP,EX,MatID_DP1,E_c_stat, MP, NUXY, MatID_DP1, nu_c, TB, CONCRETE, MatID DP1,,,DP TBDATA,1,R_c,R_t,R_b TB, CONCRETE, MatID_DP1,,,DILA TBDATA,1,delta_t1 TBDATA,2,delta c1 TB, CONCRETE, MatID DP1,,, HSD6 TBDATA,1,kappa_cm1 TBDATA,2,kappa_cr1 TBDATA,3,omega_ci1 TBDATA,4,omega_cr1 TBDATA,5,kappa_tr1 TBDATA,6,omega_tr1 !_____Drucker-Prager_____Ende_____

Listing A.4: Materialdefinition Drucker-Prager

A.5. Materialdefinition Beton Drucker-Prager mit HSD2 212

```
!_____Drucker-Prager_____Start_____
/Prep7
! Parameter
E_C_stat
         =
               55000
                           ![N/mm^2]
nu c
     =
                 0.19
                           ![]
                            ![]
MatID DP2 =
                 212
R_c
                 130
                           ![N/mm^2]
         =
Rt
         =
                  7
                           ![N/mm^2]
          =
Rb
                  149
                           ![N/mm^2]
         =
                  0.25
                           ! Dilatanzfaktor Zug
delta_t2
delta_c2
          =
                   1
                           ! Dilatanzfaktor Druck
! exponetial hardening softening HSD2
kappa cm2 =
                   4.364E-4 ! Plastiche Dehnung bei
  uniaxialer Druck-Festigkeit
                   1.027E-3 ! Plastische Dehnung am
kappa cu2 =
  Uebergang von Potenzgesetz zu exponentieller Entfestigung
                   0.4 ! Relative Spannung beim Start
omega ci2 =
  der nichtlinearen Verfestigung
omega_cu2
         =
                   0.55
                           ! Verbleibende relative
  Spannung am Uebergang von Potenzgesetz zu exponentieller
  Entfestigung
                       ! Verbleibende relative
                   0.1
omega_cr2 =
  Druckspannung
                   0.01075 ! Mode-1-flaechenspezifische
G ft2
         =
  Bruchenergie (N mm<sup>-1</sup>)
                   0.1 ! Verbleibende relative
omega_tr2 =
  Zugspannung
! Definition
MP,EX,MatID DP2,E c stat,
MP,NUXY,MatID_DP2,nu_c,
TB, CONCRETE, MatID_DP2,,,DP
TBDATA,1,R c,R t,R b
TB, CONCRETE, MatID_DP2,,,DILA
TBDATA,1,delta t2,delta c2
TB, CONCRETE, MatID_DP2,,, HSD2
TBDATA,1,kappa_cm2,kappa_cu2
TBDATA,3,omega_ci2,omega_cu2
TBDATA,5,omega_cr2,G_ft2,omega_tr2
!_____Drucker-Prager_____Ende____
```

A.6. Materialdefinition Beton Drucker-Prager mit HSD6 213

```
!____Drucker-Prager_HSD6_____Start____
/Prep7
! Parameter
E C stat =
              55000
                           ![N/mm^2]
                 0.19
                           ![]
          =
nu c
MatID DP1
         =
                           ![]
                213
                           ![N/mm^2]
Rс
         =
                130
                           ![N/mm^2]
Rt
         =
                  7
                149
                           ![N/mm^2]
R_b
         =
                         ! Dilatanzfaktor Zug
delta_t1
                 0.25
         =
         =
                   1
                           ! Dilatanzfaktor Druck
delta c1
! linear hardening softening HSD6
kappa_cm1=
                   4.364E-04! eps_pl bei R_c
kappa_cr1=
                   0.0028 ! Effektive plastische
  Grenzdehnung bei Druck
                        ! Relative Spannung beim Start
omega_ci1=
                   0.65
  der nichtlinearen Verfestigung
                   0.1 ! Verbleibende relative
omega_cr1=
  Druckspannung
                   0.00015 ! Plastische Zugdehngrenze
kappa_tr1=
omega_tr1=
                   0.1 ! Verbleibende relative
  Zugspannung
! Definition
MP,EX,MatID_DP1,E_c_stat,
MP, NUXY, MatID_DP1, nu_c,
TB, CONCRETE, MatID DP1,,,DP
TBDATA,1,R_c,R_t,R_b
TB, CONCRETE, MatID_DP1,,,DILA
TBDATA,1,delta_t1,delta_c1
TB, CONCRETE, MatID DP1,,, HSD6
TBDATA,1,kappa_cm1,kappa_cr1,omega_ci1,omega_cr1,kappa_tr1,
  omega_tr1
!_____Drucker-Prager_HSD6_____Ende_____
```
A.7. Materialdefinition Beton Drucker-Prager mit HSD6 214

```
!____Drucker-Prager_HSD6_____Start____
/Prep7
! Parameter
E C stat =
              55000
                           ![N/mm^2]
                 0.19
                           ![]
nu c
          =
MatID DP1
          =
                214
                           ![]
Rc
                           ![N/mm^2]
         =
                130
                           ![N/mm^2]
Rt
         =
                  7
                149
                           ![N/mm^2]
R_b
          =
                         ! Dilatanzfaktor Zug
                 0.25
delta_t1
         =
delta c1
         =
                   1
                           ! Dilatanzfaktor Druck
! linear hardening softening HSD6
kappa_cm1=
                   4.364E-04! eps_pl bei R_c
kappa_cr1=
                   0.007 ! Effektive plastische
  Grenzdehnung bei Druck
                       ! Relative Spannung beim Start
omega_ci1=
                   0.65
  der nichtlinearen Verfestigung
                   0.1 ! Verbleibende relative
omega_cr1=
  Druckspannung
kappa_tr1=
                   0.00015 ! Plastische Zugdehngrenze
omega_tr1=
                   0.1 ! Verbleibende relative
  Zugspannung
! Definition
MP,EX,MatID_DP1,E_c_stat,
MP,NUXY,MatID_DP1,nu_c,
TB, CONCRETE, MatID DP1,,,DP
TBDATA,1,R c,R t,R b
TB, CONCRETE, MatID_DP1,,,DILA
TBDATA,1,delta_t1,delta_c1
TB, CONCRETE, MatID DP1,,, HSD6
TBDATA,1,kappa_cm1,kappa_cr1,omega_ci1,omega_cr1,kappa_tr1,
  omega_tr1
!_____Drucker-Prager_HSD6_____Ende____
```

Listing A.6: Materialdefinition Drucker-Prager

A.8. Materialdefinition Beton Drucker-Prager mit HSD2 215

```
!____Drucker-Prager_HSD2____Start____
/Prep7
! Parameter
E_C_stat
          =
                55000
                            ![N/mm^2]
                           ![]
nu c
     =
                 0.19
                            ![]
MatID DP2 =
                  215
                            ![N/mm^2]
R_c
                 130
         =
Rt
          =
                  7
                            ![N/mm^2]
          =
Rb
                  149
                            ![N/mm^2]
                  0.25
                           ! Dilatanzfaktor Zug
delta_t2
         =
delta_c2
          =
                   1
                            ! Dilatanzfaktor Druck
! exponential hardening softening HSD2
kappa cm2 =
                    4.364E-4 ! Plastiche Dehnung bei
  uniaxialer Druck-Festigkeit
                   0.0035 ! Plastische Dehnung am
kappa cu2 =
  Uebergang von Potenzgesetz zu exponentieller Entfestigung
                   0.4 ! Relative Spannung beim Start
omega ci2 =
  der nichtlinearen Verfestigung
omega_cu2
         =
                    0.55
                           ! Verbleibende relative
  Spannung am Uebergang von Potenzgesetz zu exponentieller
  Entfestigung
                       ! Verbleibende relative
                    0.1
omega_cr2 =
  Druckspannung
                   0.01075 ! Mode-1-flaechenspezifische
G ft2
         =
  Bruchenergie (N mm<sup>-1</sup>)
                   0.1 ! Verbleibende relative
omega_tr2 =
  Zugspannung
! Definition
MP,EX,MatID DP2,E c stat,
MP,NUXY,MatID_DP2,nu_c,
TB, CONCRETE, MatID_DP2,,,DP
TBDATA,1,R c,R t,R b
TB, CONCRETE, MatID_DP2,,,DILA
TBDATA,1,delta t2,delta c2
TB, CONCRETE, MatID_DP2,,, HSD2
TBDATA,1,kappa_cm2,kappa_cu2
TBDATA,3,omega_ci2,omega_cu2
TBDATA,5,omega_cr2,G_ft2,omega_tr2
!_____Drucker-Prager_HSD2_____Ende_____
```

A.9. Materialdefinition Beton Menetrey-Willam 220

!_____Menetrey-Willam_____Start_____ /Prep7 ! Parameter E_C_stat = 55000 ![N/mm^2] ![] 0.19 nu c = MatID_MW = ![] 220 ![N/mm^2] R_c = 130 ![N/mm^2] R t = 7 = 149 ![N/mm^2] R_b = 20 ![deg] arcdila ! Definition MP, NUXY, MatID DPO, nu c, TB, CONCRETE, MatID_MW,,,MW TBDATA,1,R_c,R_t,R_b TB, CONCRETE, MatID_MW,,, DILA TBDATA,1,acrdila !_____Menetrey-Willam_____Ende____

Listing A.7: Materialdefinition Menetrey-Willam

A.10. Materialdefinition Beton Menetrey-Willam mit HSD6 221

	Libering 11		minimient weiter of a mann
!M	lenetrey-W	illam	Start
/Prep7			
! Parameter	2		
E_C_stat	= 5500	00	![N/mm^2]
nu_c	=	0.19	![]
MatID_MW	= 22	21	![]
R_c	= 13	30	![N/mm^2]
R_t	=	7	![N/mm^2]
R_b	= 14	49	![N/mm^2]
arcdila	=	20	![deg]
! linear ha	ardening s	oftening H	ISD6
kappa_cm1=		4.364E-04	! eps_pl bei R_c
kappa_cr1=		0.0028	! Effektive plastische
Grenzdeh	nung bei I)ruck	
omega_ci1=		0.4	! Relative Spannung beim Start
der nich	tlinearen	Verfestig	ung
omega_cr1=		0.1	! Verbleibende relative
Druckspa	nnung		
kappa_tr1=		0.00015	! Plastische Zugdehngrenze
omega_tr1=		0.1	! Verbleibende relative
Zugspann	ung		
! Definitio	on		
MP, NUXY, Mat	ID_DP0,nu	_C ,	
TB, CONCRETE	C,MatID_MW	,,,MW	
TBDATA,1,R_	_c,R_t,R_b		
TB, CONCRETE	C,MatID_MW	,,,DILA	
TBDATA,1,ac	crdila		
TB, CONCRETE	C,MatID_MW	,,,HSD6	
TBDATA,1,ka	appa_cm1		
TBDATA,2,ka	appa_cr1		
TBDATA,3, on	nega_ci1		
TBDATA,4,on	nega_cr1		
TBDATA,5,ka	appa_tr1		
TBDATA,6,om	nega_tr1		
!P	lenetrey-W	illam	Ende

Listing A.8: Material definition Menetrey-Willam

A.11. Materialdefinition Beton Menetrey-Willam mit HSD2 222

```
!_____Menetrey-Willam_____Start_____
/Prep7
! Parameter
E_C_stat =
              55000
                           ![N/mm^2]
                 0.19
                           ![]
nu c
         =
                           ![]
MatID MW
         =
                 222
                           ![N/mm^2]
R_c
         =
                130
                  7
                           ![N/mm^2]
Rt
         =
RЬ
          =
                 149
                           ![N/mm^2]
         =
                 20
                           ![deg]
arcdila
! exponetial hardening softening HSD2
kappa cm2 = 4.364E-4 ! Plastiche Dehnung bei
  uniaxialer Druck-Festigkeit
kappa cu2 =
                   1.027E-3 ! Plastische Dehnung am
  Uebergang von Potenzgesetz zu exponentieller Entfestigung
omega ci2
         =
                   0.4
                         ! Relative Spannung beim Start
  der nichtlinearen Verfestigung
omega cu2 =
                   0.55 ! Verbleibende relative
  Spannung am Uebergang von Potenzgesetz zu exponentieller
  Entfestigung
                   0.1 ! Verbleibende relative
omega cr2
         =
  Druckspannung
                   0.01075 ! Mode-1-flaechenspezifische
G ft2
      =
  Bruchenergie (N mm<sup>-1</sup>)
omega_tr2 =
                   0.1
                       ! Verbleibende relative
  Zugspannung
! Definition
MP, NUXY, MatID DPO, nu c,
TB, CONCRETE, MatID MW,,, MW
TBDATA,1,R_c,R_t,R_b
TB, CONCRETE, MatID_MW,,, DILA
TBDATA,1,acrdila
TB, CONCRETE, MatID_MW,,, HSD2
TBDATA,1,kappa cm2
TBDATA,2,kappa_cu2
TBDATA, 3, omega_ci2
TBDATA,4,omega_cu2
TBDATA,5,omega_cr2,G_ft2,omega_tr2
!_____Menetrey-Willam_____Ende____
```

A.12. Materialdefinition Beton Menetrey-Willam mit HSD6 223

	171		identification meneorey withann
!	_Meneti	ey-Willam	Start
/Prep7			
! Paramet	er		
E_C_stat	=	55000	![N/mm^2]
nu_c	=	0.19	![]
MatID_MW	=	223	![]
R_c	=	130	![N/mm^2]
R_t	=	7	![N/mm^2]
R_b	=	149	![N/mm^2]
arcdila	=	20	![deg]
! linear	harden	ing softening	HSD6
kappa_cm1	=	4.364E-	04! eps_pl bei R_c
kappa_cr1	=	0.0028	! Effektive plastische
Grenzde	ehnung	bei Druck	
omega_ci1	=	0.65	! Relative Spannung beim Start
der nic	chtline	aren Verfesti	igung
omega_cr1	=	0.1	! Verbleibende relative
Drucksp	bannung		
kappa_tr1	=	0.00015	! Plastische Zugdehngrenze
omega_tr1	=	0.1	! Verbleibende relative
Zugspar	nnung		
! Definit	ion		
MP,NUXY,M	atID_DH	°0,nu_c,	
TB, CONCRE	ΓE,Mat	[D_MW,,,MW	
TBDATA,1,	R_c,R_t	t,R_b	
TB, CONCRE	ΓE,Mat	[D_MW,,,DILA	
TBDATA,1,	acrdila	ì	
TB, CONCRE	FE,Mat	[D_MW,,,HSD6	
TBDATA,1,	kappa_0	cm1,kappa_cr1	,omega_ci1,omega_cr1,kappa_tr1,
omega_t	r1		
!	_Meneti	rey-Willam	Ende

Listing A.9: Materialdefinition Menetrey-Willam

B. Datenblätter

B.1. Densit Ducorit

TECHNICAL DATA SHEET - DUCORIT®

Revised: 06/2017

DESCRIPTION

The ultra high performance grout, Ducorit[®] is used for structural grouted connections in wind turbine foundations and oil & gas installations - both offshore and onshore.

PRODUCTS

The core of the Ducorit[®] products is the unique Densit[®] Binder. The different properties of Ducorit® S1, Ducorit® S2, Ducorit® S5, Ducorit[®] S5_R and Ducorit[®] D4 are obtained by adding aggregates such as quartz sand or bauxite.

Ducorit[®] products are characterised by extreme strength and stiffness, making them a strong structural component and not just a filling material. Using Ducorit® does not require special precautions with respect to environmental or personal hazards.

PUMPABILITY

Ducorit[®] products are pumpable up to several hundred metres through hoses between 2" and 5". Due to viscosity and high inner cohesion of the mixed material, there is no risk of washing out cement particles, separation or mixture with water when cast below sea level.

EARLY STRENGTH DEVELOPMENT

Ducorit[®] develop a significant early strength. After 24 hours of curing at 20°C (68°F), the strength reaches approximately 25% of the long term value. The early strength is even more pronounced with regard to the material stiffness.

FATIGUE

Due to ultra high strength and durability of Ducorit® products, the fatigue strength is outstanding compared to normal concrete. As fatigue strength depends upon the static strength of concrete, the fatigue strength of Ducorit® can be up to more than five times the strength of normal concrete.

DUCORIT[®] ULTRA HIGH PERFORMANCE GROUT

ITW Engineered Polymers

Densit D

TECHNICAL DATA SHEET - DUCORIT®

MECHANICAL PROPERTIES

PROPERTIES	DUCORIT [®] D4	DUCORIT [®] S5	DUCORIT [®] S5 _R	DUCORIT [®] S2	DUCORIT [®] S1
Compressive strength f _o ² - MPa/psi	200 / 29,000	130 / 18,850	130 / 18,850	120 / 17,500	110 / 16,000
Static modulus of elasticity E _c - GPa/ksi	70 / 10,000	55 / 8,000	55 / 8,000	47 / 6,800	35 / 5,000
Dynamic modulus of elasticity E _s - GPa/ksi	88 / 12,800	60 / 8,700	60 / 8,700	48 / 6.975	37 / 5,400
Tensile strength f _t - MPa/ps	10 / 1,500	7 / 1,000	7 / 1,000	6 / 870	5 / 725
Flexural strength ftt*- MPa/ps	23.5 / 3,400	18 / 2,600	18 / 2,600	11/1,450	13.5 / 2,000
Density ρ - kg/m³	2740	2440	2382	2350	2250
Poisson's ratio v	0.19	0.19	0.19	0.18	0.19
Consistence class ¹	a2	a2	a2	at	
Compressive Strength class ⁹	C170/185	C100/115	C110/125	C90/105	C80/95
Compressive Strength class (24h) ¹	Class A	Class B	Class A	Class A	Class A
Shrinkage1) εs,m,91	SKVB I (0,413 ‰)	SKVB 0 (0,559 ‰)	SKVB 0 (-)	SKVB 0 (0.576 ‰)	-
Shrinkage1) ɛs,i,91	SKVB I (0,421 ‰)	SKVB 0 (0,567‰)	SKVB 0 (-)	SKVB 0 (0.579 ‰)	-

(Minimum 28 days curing at 20°C). *with 1.9% by volume of steel fibres) ¹ DAfStb-Richtlinie Herstellung und Verwendung von zementgebundenem Vergussbeton und vergussmörtel (Juni 2006). ² Note that the stipulated values are mean values, based on 75x75 mm cubes. ³ Strength class refers to characteristically strengths on respectively 150x300 cylinders and 150x150 mm cubes.

ITW ENGINEERED POLYMERS APS Gasværksvej 46 | 9000 Aalborg Phone: +45 9816 7011 | mail.densit.com | www.densit.com

ITW Engineered Polymers

C. Simulationen

C.1. Würfeldruckversuch

C.1.1. Konvergenzanalyse Drucker-Prager HSD2 Simulationspunkte: 1 Element je Kante

Sim ID	Ansatz- funktion	κ_{cu}	Kraft- konvergenz in [%]	Verschiebungs- konvergenz in [%]	Initialer Substep
1	linear	4.00E-03	0.5	0.5	1000
2	linear	4.00E-03	1	1	1000
3	linear	4.00E-03	1	5	1000
4	linear	4.00E-03	0.25	0.25	1000
5	quadratisch	4.00E-03	0.5	0.5	1000
6	quadratisch	8.00E-03	0.5	0.5	1000
7	quadratisch	6.00E-03	0.5	0.5	1000
8	quadratisch	5.00E-03	0.5	0.5	1000
9	linear	5.00E-03	0.5	0.5	1000
10	quadratisch	3.00E-03	0.5	0.5	10000

C.1.2. Konvergenzanalyse Drucker-Prager HSD2 Ergebnisse

Sim ID	Anzahl Iterationen	Kraft konvergent?	Gesamt konvergent?	u_{max} [mm]	$\begin{array}{c} \sigma(u_{max}) \\ [\text{MPa}] \end{array}$
1	530	nein	nein	-0.76683	33.697
2	287	ja	nein	-0.44619	57.76
3	246	ja	nein	-0.41297	72.304
4	378	ja	nein	-0.77741	33.595
5	249	ja	nein	-0.4128	72.48
6	266	ja	ja	-1	43.734
7	315	ja	ja	-1	35.304
8	296	ja	nein	-0.49401	71.46
9	519	ja	nein	-0.88062	34.555
10	714	ja	ja	-1	32.486

Sim ID	Elemente Kante	Ansatz- funktion	κ_{cu}	Kraftkon- vergenz in [%]	Verschiebungs- konvergenz in [%]	Initialer Substep
21	1	linear	4.00E-03	0.5	0.5	1000
22	1	linear	4.00E-03	1	1	1000
23	1	linear	4.00E-03	5	10	1000
24	1	linear	4.00E-03	0.25	0.25	1000
25	1	quadratisch	4.00E-03	0.5	0.5	1000
26	1	quadratisch	8.00E-03	0.5	0.5	1000
27	1	quadratisch	1.00E-02	0.5	0.5	1000
28	1	quadratisch	1.00E-03	0.5	0.5	1000
29	1	linear	1.00E-03	0.5	0.5	1000
30	4	linear	4.00E-03	0.5	0.5	1000

C.1.3. Konvergenzanalyse Menetrey-Willam HSD2 Simulationspunkte

C.1.4. Konvergenzanalyse Menetrey-Willam HSD2 Ergebnisse

Sim ID	Anzahl Iterationen	Kraft konvergent?	Gesamt konvergent?	u_{max} [mm]	$\frac{\sigma(u_{max})}{[\text{MPa}]}$
21	258	ja	ja	-1	32.659
22	249	ja	ja	-1	32.659
23	2873	ja	ja	-1	32.252
24	264	ja	ja	-1	32.659
25	255	nein	nein	-0.32372	117.37
26	696	nein	nein	-0.32606	127.66
27	3529	ja	nein	-0.32354	128.6
28	229	nein	nein	-0.21597	125.34
29	243	ja	ja	-1	32.5
30	17148	nein	nein	-0.31819	118.76

Sim ID	Elemente je Kante	Ansatz funktion	κ_{cr}	Solver
101	1	linear	4.00E-03	iterativ
103	2	linear	4.00E-03	iterativ
104	2	quadratisch	4.00E-03	iterativ
108	1	linear	3.00E-03	iterativ
110	1	linear	1.00E-02	iterativ
102	1	quadratisch	4.00E-03	iterativ
105	8	quadratisch	4.00E-03	iterativ
106	8	quadratisch	4.00E-03	direkt
107	8	linear	4.00E-03	iterativ
109	1	linear	2.64E-03	iterativ
111	8	linear	1.20E-02	iterativ

C.1.5. Konvergenzanalyse Drucker-Prager HSD6 Simulationspunkte

C.1.6. Konvergenzanalyse Drucker-Prager HSD6 Ergebnisse

Sim ID	Anzahl Iterationen	Kraft konvergent?	Gesamt konvergent?	u_{max} [mm]	$\frac{\sigma(u_{max})}{[\text{MPa}]}$
101	269	ja	ja	-1	32.5
103	302	ja	ja	-1	32.501
104	294	ja	ja	-1	32.5
108	326	ja	ja	-1	32.5
110	341	ja	ja	-1	32.5
102	236	nein	nein	-0.34353	32.5
105	232	nein	nein	-0.2098	129.85
106	246	nein	nein	-0.28164	77.63
107	248	nein	nein	-0.24215	106.15
109	224	nein	nein	-0.24156	33.53
111	808	nein	nein	-0.74726	45.724

Sim ID	Elemente je Kante	Ansatz- funktion	κ_{cr}	Kraftkon- vergenz in [%]	Verschiebungs- konvergenz in [%]
121	1	linear	4.00E-03	0.5	0.5
122	1	quadratisch	4.00E-03	0.5	0.5
123	2	linear	4.00E-03	0.5	0.5
124	2	quadratisch	4.00E-03	0.5	0.5
125	1	linear	3.00E-03	0.5	0.5
126	1	linear	2.26E-03	0.5	0.5
127	1	linear	1.00E-02	0.5	0.5
128	2	linear	1.00E-02	0.5	0.5
129	2	linear	1.00E-02	0.1	0.1

C.1.7. Konvergenzanalyse Drucker-Prager HSD6 Simulationspunkte

C.1.8. Konvergenzanalyse Drucker-Prager HSD6 Ergebnisse

Sim ID	Anzahl Iterationen	Kraft konvergent?	Gesamt konvergent?	u_{max} [mm]	$\begin{array}{c} \sigma(u_{max}) \\ [\text{MPa}] \end{array}$
121	226	ja	ja	-1	32.5
122	220	nein	nein	-0.34142	34.111
123	362	nein	nein	-0.32319	47.041
124	604	nein	nein	-0.24816	101.76
125	229	ja	ja	-1	32.5
126	270	nein	nein	-0.21501	35.304
127	225	ja	ja	-1	32.5
128	22674	nein	nein	-0.6743	51.091
129	521894	ja	ja	-1	32.5

C.2. Spaltzugversuch

C.2.1. Netze

Abbildung C.1.: Netz Zugprobe 2D Elementgröße = $30\,\mathrm{mm}$

Abbildung C.2.: Netz Zugprobe 2D Elementgröße = $10\,\mathrm{mm}$

Abbildung C.3.: Netz Zugprobe 2D Elementgröße = $3,5\,\mathrm{mm}$

Abbildung C.4.: Netz Zugprobe 2D Elementgröße $=2\,\mathrm{mm}$

Abbildung C.5.: Netz Spaltzugversuch 2D Abbildung C.7.: Netz Spaltzugversuch 2D Remote Point Elementgrö- $\beta e = 5 \, mm$

Remote Point Elementgrö- $\beta e = 3,75 \, \mathrm{mm}$

Abbildung C.6.: Netz Spaltzugversuch 2D Remote Point Elementgrö- $\beta e = 1,25 \,\mathrm{mm}$

Abbildung C.8.: Netz Spaltzugversuch 2D Abbildung C.10.: Netz Spaltzugversuch 2D Kontakt Elementgröße = $5\,\mathrm{mm}$

Kontakt Elementgröße = $3,75\,\mathrm{mm}$

Abbildung C.9.: Netz Spaltzugversuch 2D Kontakt Elementgröße = $1,25\,\mathrm{mm}$

Abbildung C.11.: Netz Spaltzugversuch 3D Kontakt Elementgröße = $10 \,\mathrm{mm}$

Abbildung C.13.: Netz Spaltzugversuch 3D Kontakt Elementgröße = $3,75 \,\mathrm{mm}$

Abbildung C.12.: Netz Spaltzugversuch 3D Kontakt Elementgröße = $5 \,\mathrm{mm}$

C.2.2. Simulationsergebnisse

Abbildung C.14.: Simulationsergebnisse Spaltzugversuch 222_A/220_A 2D Viertelmodell mit reibfreiem Kontakt

Abbildung C.15.: Simulationsergebnisse Spaltzugversuch 222_A Viertelmodell mit bonded Kontakt

Abbildung C.16.: Simulationsergebnisse Spaltzugversuch Material E

Abbildung C.17.: Simulationsergebnisse Spaltzugversuch Material E

C.3. Simulationspunkte und Simulationsergebnisse Biaxialer Versuch

Mat_ID	$egin{array}{c} u_y \ [m mm] \end{array}$	$oldsymbol{u}_x \ [ext{mm}]$	Zeitfaktor Auswertung	$\sigma_y \ [ext{MPa}]$	$oldsymbol{\sigma}_x \ [ext{MPa}]$
210_A	-0,1	-0,1	0,682	$-23,\!60$	$-23,\!60$
210_A	-0,1	-0,05	0,812	-26,05	-16,58
210_A	-0,1	-0,025	0,832	$-25,\!48$	-10,92
210_A	-0,1	-0,01	0,802	$-23,\!86$	-7,02
210_A	-0,1	0	0,782	$-22,\!81$	-4,56
210_A	-0,1	$0,\!02$	0,712	-19,94	< -0.01
210_A	-0,1	$0,\!04$	0,312	-8,37	1,82
210_A	-0,1	0,03	$0,\!442$	$-12,\!12$	$1,\!29$
210_A	-0,05	0,025	$0,\!492$	-6,46	$2,\!15$
210_A	-0,05	$0,\!03$	$0,\!392$	-5,03	$2,\!29$
210_A	-0,05	$0,\!08$	0,122	$-1,\!21$	$2,\!49$
210_A	-0,01	$0,\!05$	$0,\!172$	< -0.01	$2,\!40$
210_A	$0,\!01$	$0,\!01$	$0,\!492$	1,72	1,72
211_A	-0,2	-0,2	0,562	$-23,\!60$	$-23,\!60$
211_A	-0,2	-0,1	0,722	$-25,\!83$	-19,70
211_A	-0,2	-0,05	0,812	$-26,\!29$	-16,09
211_A	-0,2	-0,02	0,862	-26,04	-13,23
211_A	-0,2	0	0,882	$-25,\!54$	-11,00
211_A	-0,2	frei	0,892	-20,00	< -0.01
211_A	-0,05	0,015	$0,\!682$	-7,07	1,53
211_A	-0,2	0,08	$0,\!132$	-9,34	0,98
211_A	-0,05	0,025	0,432	-5,64	1,86
211_A	-0,05	0,03	0,362	-4,61	2,07
211_A	-0,05	0,08	0,122	-1,21 [1]	$2,49^{[1]}$
211_A	-0,01	0,05	0,172	-0,02 [1]	$2,49^{[1]}$
211_A	0,01	0,01	0,512	1,78	1,78
212_A	-0,2	-0,2	0,572	$-23,\!60$	$-23,\!60$
212_A	-0,2	-0,1	0,722	$-25,\!83$	-19,70
212_A	-0,2	-0,05	0,822	$-26,\!30$	$-16,\!15$
212_A	-0,2	-0,02	0,882	$-26,\!05$	$-13,\!38$
212_A	-0,2	0	0,932	$-25,\!60$	$-11,\!35$
212_A	-0,2	frei	0,902	-20,00	< -0.01
212_A	-0,05	0,015	$0,\!682$	-9,34	$0,\!98$

Tabelle C.1.: Simulationspunkte und Ergebnisse Biaxiale Verschiebungsbelastung

Mat_ID	u_y	u_x	Zeitfaktor	σ_y	σ_x
			Auswertung		
212_A	-0,05	0,02	0,532	-7,11	1,53
212_A	-0,05	0,025	0,432	-5,64	1,86
212_A	-0,05	0,03	0,362	-4,61	2,07
212_A	-0,05	0,08	0,132	-1,33	2,52
212_A	-0,01	0,05	0,182	-0,01	2,50
212_A	0,01	0,01	0,512	1,78	1,78
220 A	_0 1	_0.1	0.682	-23 60	-23 60
220_Λ 220_Δ	-0.1	-0.05	0.822	-26,38	-16.78
220_Λ 220_Δ	-0.1	-0.025	0.842	-25,30	-11.05
220_A 220_A	-0.1	-0.025	0,842 0.832	-25,75 -24.76	-11,00 -7.28
220_Λ 220_Δ	-0.1	0,01	0,802	-23.30	-4.68
220_Λ 220_Δ	-0.1	0 02	0,002 0.712	-10.94	4,00
220_Λ 220_Δ	-0.1	0,02	0.482	-13.21 ^[1]	< 0.01 1 $40^{[1]}$
220_Λ 220_Δ	-0.1	0,03	0,402 0.342	-9.16 ^[1]	$1,40^{-1}$ $1,08^{[1]}$
220_Λ 220_Δ	-0.05	0,04 0.025	0,542 0 502	-659 ^[1]	$2.10^{[1]}$
220 A	-0.05	0,025	0,302	-5.03 ^[1]	$2,10^{11}$ $2,20^{[1]}$
220_A 220_A	-0.03	0,05	0,592	-3,00	2,25
220_A 220_A	-0,01	0,010	0,002 0.172	-1,19	2,40 2,40
220_A 220_A	-0,01	0,05	0,172	< -0.01	$^{2,40}_{2,20}$
220_A	0,01	0,01	0,082	2,39	2,39
221_A	-0,2	-0,2	0,562	$-23,\!60$	$-23,\!60$
221_A	-0,2	-0,1	0,712	-25,70	-20,32
221_A	-0,2	-0,05	0,812	-26,46	$-17,\!37$
221_A	-0,2	-0,02	0,862	-26,56	-14,90
221_A	-0,2	0	0,892	$-26,\!39$	-12,98
221_A	-0,2	frei	$0,\!641$	-19,21 ^[2]	-0,01 ^[2]
221_A	-0,05	0,015	0,722	-9,89	1,05
221_A	-0,2	0,08	$0,\!142$	$-7,\!59$	1,63
221_A	-0,05	0,025	$0,\!452$	-5,91	$1,\!95$
221_A	-0,05	0,03	0,372	-4,75	$2,\!14$
221_A	-0,05	$0,\!08$	$0,\!122$	-1,21 ^[1]	$2,46^{[1]}$
221_A	-0,01	$0,\!05$	0,182	-0,01	$2,\!48$
221_A	0,008	0,008	0,842	$2,\!35$	$2,\!35$
999 A	_0.2	_0.2	0 579	_23 60	-23 60
222_Π 222 Δ	-0.2	-0.2	0.012 0.719	-25,00 -25,70	-20.32
222_A 222_A	$^{-0,2}$	-0.1	0.819	-25,10 -26,46	-20,32 -17,37
222_A	-0.2	-0.03	0.872	-20,40 -26.57	-17,37 -14,00
222_A 222_A	$^{-0,2}$	-0,02	0.012	-20,07 -26,41	-13.94
222_Γ 222 Δ	-0.2	froi	0,322	-10.38 ^[2]	-0.01 ^[2]
$\Delta \Delta \Delta _ \square$	-0,2	mer	0,071	-19,00 11	-0,01 * *

Mat_ID	$u_y \ [m mm]$	$egin{array}{c} u_x \ [ext{mm}] \end{array}$	Zeitfaktor Auswertung	$\sigma_y \ [ext{MPa}]$	$\sigma_x \ [ext{MPa}]$
222_A	-0,05	0,015	0,722	-9,89	1,05
222_A	-0,05	$0,\!02$	0,562	$-7,\!53$	$1,\!63$
222_A	-0,05	0,025	$0,\!452$	-5,91	$1,\!95$
222_A	-0,05	$0,\!03$	$0,\!372$	-4,75	$2,\!14$
222_A	-0,05	$0,\!08$	$0,\!122$	-1,21	$2,\!47$
222_A	-0,005	$0,\!025$	0,362	-0,01	$2,\!50$
222_A	$0,\!01$	$0,\!01$	$0,\!682$	2,35	$2,\!35$

^[1] Die Simulation war bis zum Ende nicht konvergent.
^[2] Die Simulation war bis zum Versagen nicht konvergent.

Tabelle C.2.: Simulationspunkte und Ergebnisse Biaxiale Druckbelastung

Mat_{ID}	p_x	p_y	σ_y	σ_x
	[MPa]	[MPa]	[MPa]	[MPa]
210_A	30	30	$-23,\!60$	$-23,\!57$
210_A	30	20	-18,08	$-26,\!17$
210_A	30	15	-13,78	$-26,\!12$
210_A	30	12,5	-9,92	-24,79
210_A	30	5	-3,74	$-22,\!43$
210_A	30	2,5	-1,77	$-21,\!22$
210_A	30	frei	$<\!0,\!01$	-20
210_A	25	-0,5	0,36	$-17,\!93$
210_A	25	-1	$0,\!65$	$-16,\!23$
210_A	25	-1,5	$0,\!89$	$-14,\!80$
210_A	25	-2	1,09	$-13,\!60$
210_A	25	-5	1,81	-9,05
210_A	25	-10	$2,\!27$	$-5,\!68$
210_A	15	-10	$2,\!48$	-3,72
210_A	15	-15	2,57	-2,57
210_A	5	-15	2,58	-0,86
210_A	frei	-3	2,50	$<\!0,\!01$
210_A	-1	-3	2,32	0,77
210_A	-2	-3	2,04	$1,\!36$
210_A	-3	-3	1,74	1,74
222_A	30	30	$-23,\!60$	$-23,\!60$
222_A	30	20	$-17,\!64$	$-26,\!43$
222_A	30	15	-13,23	-26,43

Mat_{ID}	p_x	p_y	σ_y	$oldsymbol{\sigma}_x$
	[MPa]	[MPa]	[MPa]	[MPa]
222_A	30	$12,\!5$	-10,84	-25,97
222_A	30	5	-3,86	-23,12
222_A	30	2,5	-1,82	-21,78
222_A	30	frei	< 0,01	-17,90
222_A	25	-0,5	0,26	$-16,\!66$
222_A	25	-1	0,53	$-13,\!37$
222_A	25	-1,5	0,74	-12,38
222_A	25	-2	$0,\!95$	-11,41
222_A	25	-5	$1,\!61$	-8,07
222_A	25	-10	$2,\!12$	-5,08
222_A	15	-10	$2,\!30$	-3,44
222_A	15	-15	$2,\!40$	-2,40
222_A	5	-15	$2,\!48$	-0,83
222_A	frei	-3	2,50	< -0.01
222_A	-1	-3	$2,\!49$	$0,\!83$
222_A	-2	-3	$2,\!45$	$1,\!63$
222_A	-3	-3	$2,\!35$	$2,\!35$

C.4. Kleinskalierter Versuch

C.4.1. Prüfkraft-Verformungs-Linien Simulation

Abbildung C.18.: Prüfkraft-Verformungs-Linie Simulation mit reibfreier Kontaktformulierung in Anlehnung an Anders [13, S. 100]

C.4.2. Plastische Vergleichsdehnung

Abbildung C.19.: Plastische Vergleichsdehnung - 102/210 N100 asymmetrisch reibfrei

Abbildung C.20.: Plastische Vergleichsdehnung - 102/210 N101 asymmetrisch reibfrei

Abbildung C.21.: Plastische Vergleichsdehnung - 102/210 N102 asymmetrisch reibfrei

Abbildung C.22.: Plastische Vergleichsdehnung - 102/220 N100 asymmetrisch reibfrei

Abbildung C.23.: Plastische Vergleichsdehnung - 102/220 N101 asymmetrisch reibfrei

Abbildung C.24.: Plastische Vergleichsdehnung - 102/223 N100 asymmetrisch reibfrei

Abbildung C.25.: Plastische Vergleichsdehnung - 102/223 N101 asymmetrisch reibfrei

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Erklärung zur selbstständigen Bearbeitung einer Abschlussarbeit

Gemäß der Allgemeinen Prüfungs- und Studienordnung ist zusammen mit der Abschlussarbeit eine schriftliche Erklärung abzugeben, in der der Studierende bestätigt, dass die Abschlussarbeit "– bei einer Gruppenarbeit die entsprechend gekennzeichneten Teile der Arbeit [(§ 18 Abs. 1 APSO-TI-BM bzw. § 21 Abs. 1 APSO-INGI)] – ohne fremde Hilfe selbständig verfasst und nur die angegebenen Quellen und Hilfsmittel benutzt wurden. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich zu machen."

Quelle: § 16 Abs. 5 APSO-TI-BM bzw. § 15 Abs. 6 APSO-INGI

Dieses Blatt, mit der folgenden Erklärung, ist nach Fertigstellung der Abschlussarbeit durch den Studierenden auszufüllen und jeweils mit Originalunterschrift als <u>letztes Blatt</u> in das Prüfungsexemplar der Abschlussarbeit einzubinden.

Eine unrichtig abgegebene Erklärung kann -auch nachträglich- zur Ungültigkeit des Studienabschlusses führen.

Erklärung zur selbstständigen Bearbeitung der Arbeit						
Hiermit ver	sichere ich,					
Name:	Kiesel					
Vorname:	Max-Julian					
dass ich di gekennzeid FE-basierte Offshore-Tr	dass ich die vorliegende Masterarbeit 💽 bzw. bei einer Gruppenarbeit die entsprechend gekennzeichneten Teile der Arbeit – mit dem Thema: FE-basierte Untersuchung von nichtlinearen Beton-Materialgesetzen für Grout-Verbindungen von Offshore-Tragstrukturen					
ohne fremo benutzt ha Angabe de	de Hilfe selbständig verfasst be. Wörtlich oder dem Sinn i r Quellen kenntlich gemacht	und nur die angegel nach aus anderen W	oenen Quellen und Hilfsmittel ′erken entnommene Stellen sind unter			
	- die folgende Aussage ist bei G	ruppenarbeiten auszu	füllen und entfällt bei Einzelarbeiten -			
Die Kennzeichnung der von mir erstellten und verantworteten Teile der -bitte auswählen- ist erfolgt durch:						
	Hamburg	.11.2020				
	Ort	Datum	Unterschrift im Original			