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Abstract

The SpaceWire communication protocol simpli�es the design of communication systems

to be deployed in space. It can be used in conjunction with higher level protocols that

further specify how two SpaceWire nodes can communicate with each other. In order to

do this both nodes need the correct drivers which allows them to create and understand

communication in the format of the protocol. This document is the result of a thesis

project within the scope of which such a driver has been developed. The driver is tested

with the help of a test-bench, the creation of which is also a part of the project. The

driver is written for a GR740 System-on-a-Chip and adheres to the RMAP protocol

speci�cation.
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Das SpaceWire-Kommunikationsprotokoll vereinfacht den Entwurf von Kommunikation-

ssystemen, die im Weltraum eingesetzt werden sollen. Es kann in Verbindung mit Pro-

tokollen höherer Ordnung verwendet werden, die näher spezi�zieren, wie zwei SpaceWire-

Knoten miteinander kommunizieren können. Dazu benötigen beide Knoten die richti-

gen Treiber, die es ihnen ermöglichen, die Kommunikation im Format des Protokolls

zu erstellen und zu verstehen. Dieses Dokument ist das Ergebnis eines Dissertation-

sprojekts, in dessen Rahmen ein solcher Treiber entwickelt wurde. Der Treiber wird

mit Hilfe eines Prüfstandes getestet, dessen Erstellung ebenfalls Teil des Projektes ist.

Der Treiber wurde für ein GR740 System-on-a-Chip geschrieben und hält sich an die

RMAP-Protokollspezi�kation

iv
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1 Introduction

Communication systems in equipment operating in space face a special set of require-

ments since the environment imposes many di�erent challenges, e.g. noise in the form of

radiation. Therefore, much care must be taken before the equipment is deployed to ascer-

tain that communication between the system parts can function reliably. The SpaceWire

standard was created in order to facilitate the communication on such a system by pro-

viding an energy e�cient, noise resistant and �exible method of communication. Being

�exible, the SpaceWire standard allows higher level protocols to put further speci�ca-

tions on normal SpaceWire communication and thus acts a base for these higher level

protocols. One of these protocols is the Remote Memory Access Protocol, which is abbre-

viated as RMAP. RMAP uses the SpaceWire standard to further de�ne three di�erent

commands which allows one device to read and write to memory of another device when

the two are connected via a SpaceWire network. In order for this type of communication

to function both the messenger (also called source node) and the receiver (also called

destination node) must have drivers adhering to the standard's speci�cations. These

drivers can be implemented in either hardware or software.

1.1 Task Description

This document is the result of a thesis project with the main goal of creating and testing

an RMAP software driver for a destination node. Whereas a driver for a source node

would need to be able to send RMAP commands, a destination node driver needs to

respond to incoming RMAP commands and transmit replies back to the source node. The

driver shall run on a LEON4 processor on a System-on-a-Chip called GR740 developed by

the company Cobham Gaisler. The GR740 is designed as the European Space Agency's

(ESA) next generation microprocessor and is available on a development board with the

name GR-CPCI-GR740. This is the development board used throughout this project.

1



1 Introduction

In addition to the development of an RMAP software driver, a test-bench shall be created

which should allow for convenient testing of the developed RMAP driver. In order to do

this the test-bench should run on a separate machine which is able to communicate with

the GR740 via a SpaceWire network. The test-bench shall be able to perform several

tests at once and the tests shall be performed according to scripts created by a tester, as

to automate the testing process as much as possible.

The remainder of this document contains background descriptions of all the system com-

ponents, instructions on setting up a development environment, formal project require-

ments, design and implementation and a description of test-bench usage and project

state.
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2 Theory

In order to create a proper understanding of the project described in this document it

is important to have an overview of all the system components. This section contains

descriptions of the relevant components and modules and should be carefully reviewed

before any further development using this project setup is attempted.

2.1 SpaceWire

A central part of this thesis project is the usage of SpaceWire. SpaceWire is a data-

handling network developed for use on-board spacecraft. The standard covers the �rst

two layers of the OSI model (physical and data link) and was developed to exhibit some

speci�c characteristics:

� High speed

� Low power usage

� Simplicity

� Low implementation cost

� Architectural �exibility

These characteristics make SpaceWire a good choice for spacecraft communication, and

has since its publication been adopted by the European Space Agency (ESA) and the

National Aeronautics and Space Administration (NASA), among others. It was developed

at the University of Dundee on a contract from ESA, who wanted to solve the problems

of the predecessor of SpaceWire, a standard called IEEE 1355-1995. The main goals of

the SpaceWire standard are to:

� facilitate the construction of high-performance on-board data handling systems

3



2 Theory

� help reduce system integration costs

� promote compatibility between data-handling equipment and subsystems

� encourage re-use of data-handling equipment across several di�erent missions

The following subsections will provide an in-depth look into the SpaceWire standard.

For further information on SpaceWire the reader is referred to the SpaceWire user guide

from STAR-Dundee [12], from which the information in this section is derived.

2.1.1 An Overview

The two most important components of the SpaceWire standard are the SpaceWire

link and the SpaceWire packet. The links are point-to-point data links which connects

two SpaceWire nodes, or a node to a SpaceWire router. A node can be an instrument,

processor, mass-memory unit etc. Each link is a full-duplex, serial data link and operates

at rates between 2 Mbit/s and 200 Mbit/s. It uses two signals, data and strobe, in each

direction to transmit a serial bit stream. Each signal is driven by low voltage di�erential

signaling (LVDS) which means two wires are required for each signal. This results in

four twisted pairs in each SpaceWire cable.

Bit synchronization in a link is achieved by sending the clock signal encoded in the serial

data. This is the purpose of the strobe signal: by using an XOR operation on the data and

strobe signal the clock is recovered. This is done to reduce the maximum clock-to-data

skew. Synchronization is only done once, when the link is started. If synchronization is

later lost it will be detected through a parity error mechanism and the link will restart.

By using a state machine SpaceWire makes it relatively simple to track the current

link state and control operations like starting a link, keeping it running, transmitting

data, checking if receiver is ready and recovering from link errors. The state machine

is always controlled by the SpaceWire interface and is therefore transparent to the user

application.

The information sent over a SpaceWire network is grouped into packets. The packets

have a very simple structure and are therefore suited to be used as the base of higher

level protocols, which can further de�ne the �elds of a SpaceWire packet. This is the

case with the Remote Memory Access Protocol (RMAP) which is described in Section

2.2.1. The structure of a SpaceWire packet can be seen in Figure 2.1.

4



2 Theory

Figure 2.1: Structure of a SpaceWire packet [12].

The �rst part of the packet which is sent is the destination address. The destination

address is a list of data characters which represent either the address of the destination

node or the path that the packet has to take through the network to get there. In the

case of point-to-point connections a destination address is not necessary. The next part

of the SpaceWire packet is the cargo. This is the actual data to be transmitted from one

node to another. Within the space of the cargo �eld higher level protocols are free to

determine their expected structure. Any number of bytes can be transferred in the cargo

of a SpaceWire packet. The �nal part of the packet is the special End of Packet (EOP)

character which indicates the end of a packet. This is necessary as there are no limits

to the size of a SpaceWire packet and the cargo length is not declared at the beginning

of the packet. There is also the Error End of Packet (EEP) character, which indicates

that the packet was not successfully transmitted from the source.

SpaceWire networks can be created by combining several point-to-point links, and using

routers makes it possible to be very �exible regarding the network architecture. The

architecture used in this thesis project is shown in Figure 2.2.

Figure 2.2: SpaceWire network architecture in this project.

Even though the only SpaceWire communication takes place between the SpaceWire

MK3 brick (see Section 2.6) and the development board (see Section 2.5), please note

that this is not a point-to-point connection, as there are routers between the source and

destination. Many more architectures are possible and for a deeper look into these the

reader is referred to Section 2.4 of the SpaceWire user guide [12].
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2.1.2 SpaceWire Links

In this section, the operation of a SpaceWire link is described in further detail. The

SpaceWire standard covers electrical properties, connectors, cables and logical protocols

which are de�ned on six di�erent levels:

� Physical Level: SpaceWire connectors, cables, cable assemblies and printed cir-

cuit board tracks

� Signal Level: Signal encoding, voltage levels, noise margins, and data signaling

rates

� Character Level: Data and control characters used to manage the �ow of data

across a SpaceWire link

� Exchange Level: Protocols for link initialization, �ow control, link error detection

and link error recovery

� Packet Level: De�nition of how data for transmission over a SpaceWire link is

split up into packets

� Network Level: Structure of a SpaceWire network and the way in which packets

are transferred from a source node to a destination node across a network. The

network level also de�nes how link errors and network level errors are handled.

The following subsections will describe the �rst four levels. The packet level is su�ciently

described by Figure 2.1 in combination with the discussion in Section 2.1.1, whereas the

network level is described in further detail in Section 2.1.3.

Physical Level

The components on the physical level of the SpaceWire standard were developed to

meet the electromagnetic compatibility (EMC) speci�cations of typical spacecraft. As

previously mentioned, a SpaceWire cable contains four twisted pairs where each twisted

pair provides one signal in one direction. Each of these pairs is surrounded by a separate

shield, and the entire cable content is surrounded by an overall shield. The cables have

a characteristic impedance of 100Ω di�erential impedance which is matched to the line

termination impedance (see Figure 2.5). In general, the cables were designed to exhibit

low signal attenuation, low cross-talk and good EMC performance. A SpaceWire cable

6
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can be used for data rates of 200 Mbit/s for distances up to 10 meters. It is possible to

increase the wire gauge of the conducting wires in order to reduce cable attenuation if

longer distances are required. The main drawback of the cable structure is the mass of

the cable, namely around 87 g/m [12].

Figure 2.3: Structure of a SpaceWire cable [12].

The SpaceWire connectors have eight signal contacts (for the four twisted pairs) as well

as a screen termination contact as displayed in Figure 2.4. The connector is speci�ed as

a nine pin micro-miniature D-type connector. The outer shield connects to the backshell

(part protecting the connection between connector and cable) at each end of the cable.

The shield of each twisted pair is connected to pin 3 which acts as signal ground, however

each such inner shield is only connected at one end of the cable, namely the end driving

the signal. It is mentioned in the SpaceWire user guide by STAR-Dundee [12] that this

arrangement is far from ideal and should in the future be revised to having all shields

being terminated at both ends of each cable.

The SpaceWire standard also speci�es requirements of PCB tracks, for information and

guidelines regarding these the reader is referred to Section 3.1.4 of the SpaceWire user

guide [12].

7
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Figure 2.4: Pin-out of a SpaceWire connector [12].

Signal Level

As previously mentioned, the signaling technique used for SpaceWire is LVDS. This

section describes LVDS in further detail, as well as a look into the data encoding process

of SpaceWire.

Figure 2.5: Low Voltage Di�erential Signaling (LVDS) operation [12].

A typical LVDS driver and receiver can be seen in Figure 2.5. The transmission medium

can be either a cable or PCB traces with a di�erential impedance of 100Ω, which is

matched by the 100Ω termination resistance. The matching of impedance is done in

order to avoid signal re�ections. The driver is modeled as a constant current source of

about 3.5 mA which provides the current that �ows along the transmission medium and

through the termination resistance, thus creating a voltage at the receiver. Two pairs

of transistors in the driver are used to control the direction of the current, which in

turn a�ects the polarity of the voltage drop over the termination resistance. By toggling

the current between +3.5 mA and -3.5 mA the receiver side comparator will detect the

voltage polarity and output the corresponding logical value (HIGH at +3.5 mA, LOW

at -3.5 mA). LVDS receivers have a high input impedance which means that most of the

provided current �ows through the termination resistor. Therefore the nominal voltage

8
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level at the receiver for LVDS signaling is approximately ±350 mV . Some typical voltage

levels and thresholds are shown in Figure 2.6.

Figure 2.6: Typical LVDS voltage levels [12].

SpaceWire uses a coding scheme called Data-Strobe Encoding, which is also used in the

Firewire standard. The data is sent unmodi�ed while the strobe signal changes state

whenever the data signal remains constant from one bit interval to the next. The result

of this is that the clock signal can be recovered by performing an XOR operation on the

data and strobe signals. An example of this process is displayed in Figure 2.7.

Figure 2.7: Data-Strobe encoding example [12].

Character Level

SpaceWire uses two types of characters, data and control characters. In addition to these

there are two special control codes. This section contains descriptions on these characters

and their respective functions.

� Data characters: The data characters contain an eight bit data value which is

transmitted LSB �rst. The data characters also contain a parity bit and a data-

control �ag for a total of 10 bits. The parity coverage of a SpaceWire character

is a bit unusual in that it covers the eight data bits (or two bit control code) of

the previously sent character, in addition to itself and the current data-control

�ag. This is done in order to avoid incorrect decoding of a character when the

9
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data-control �ag is in error, since the length of the two character types di�er. The

parity is set to produce odd parity. The data-control �ag is set to zero to indicate

a data character.

� Control characters: Control characters are a total of four bits in length. The

�rst bit is the parity bit, which functions in the same way as for a data character.

The following bit is the data-control �ag, which is set to one to identify it as a

control character. The last two bits are control code bits which allows for a total

of four distinct control characters. One of these is the escape code (ESC) which

can be used to form longer control codes.

� Special control codes: Currently, two longer control codes are speci�ed: the

NULL code and the time code. The NULL code is formed by an ESC character

followed by �ow control token (FCT). The time code is formed by an ESC character

followed by a single data character.

The structures of all these types of characters are summarized in Figure 2.8.

Figure 2.8: SpaceWire character types [12].

There are three main usages of SpaceWire characters, namely link control, sending data

packets and sending time codes. The control characters NULL and FCT are used for

10
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link control and are also known as L-Chars (for Link Characters). They are used in the

exchange level and are not passed on to higher levels. To send data packets the data

characters and two types of control characters (EOP and EEP) are used. These are

known as N-Chars (for Normal Characters). EOP and EEP are end-of-packet markers

and are passed up to the packet level. EOP (end of packet) indicates a normal end of

packet whereas EEP (error end of packet) indicates that an error took place during packet

transmission. The time codes are used for distributing system time across a SpaceWire

network and are further explained in Section 2.1.4.

Exchange Level

The exchange level is responsible for link initialization, �ow control and error handling

which in addition to the SpaceWire interface will be described in this section.

A SpaceWire link interface can be found at each end of a SpaceWire link. After initial-

ization, the link interface can send and receive data packets and time codes. A block

diagram of a SpaceWire interface is shown in Figure 2.9.

Figure 2.9: Block diagram of a SpaceWire interface [12].

For transmission, each character is passed to the transmission FIFO, starting with the

data character containing the destination address. Incoming SpaceWire packets are re-

ceived to the reception FIFO and can then be read out character by character by the
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application in control. Time codes bypass the FIFOs and are transmitted as soon as the

current character is �nished being sent. The state machine controls link initialization

and manages recovery from any errors detected on the link. To prevent over�ow of the

receiving FIFO the �ow control part of the interface contains circuitry to monitor the

available FIFO space and uses FCTs to control the data being sent from the other end

of the link.

The state diagram shown in Figure 2.10 best describes the order of events when starting

a SpaceWire link, including the error handling processes. Following reset the SpaceWire

interface enters the ErrorReset state in which both the receiver and transmitter hardware

are reset. To ensure that the reset completes, the interface remains in this state for 6.4

microseconds before moving on to the ErrorWait state where it enables the receiver but

holds the transmitter in a reset state. After 12.8 microseconds the interface moves to

the Ready state, where it waits for a command to start the link. This command will be

given by the application that controls the SpaceWire interface. The link can also be set

to operate in auto-start mode, in which the state transition from Ready to Started can be

triggered by the interface receiving a bit instead of an explicit command from the local

application. This is very useful when starting a link remotely. Both link ends can be

set to auto-start mode in order to allow either of them to initiate communication. The

state transition will not be attempted regardless of other events if the LinkDisabled �ag

is set.

Figure 2.10: State diagram of SpaceWire link initialization and error recovery [12].
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Once the interface is in the Started state it starts sending out NULL characters. If the

other link end is sending out NULL characters (either by having been explicitly started

or by being in auto-start mode and receiving a NULL) the �rst link end will detect this

and move to the Connecting state. The other end should also have received a NULL at

this point so it will move on to the Connecting state as well. In this state the interfaces

will both send out a burst of FCTs. When receiving a FCT a �nal state transition to the

Run state is made. This completes what is known as the NULL/FCT handshake and if

successful both link ends are ready for communication. The interface will remain in this

state until the link is disabled or an error is detected.

The handshake can fail in two ways, either by errors detected on the link or by timing

out. In the Started state the handshake reaches its timeout after 12.8 microseconds of not

receiving any NULL characters and resets, thus restarting the process. In the Connecting

state timeout is reached after 12.8 microseconds of not receiving any FCTs. The possible

types of link errors are:

� Disconnect error

� Parity error

� Escape error

� Credit error

A link disconnection is detected when after the reception of a data bit no new bit is

received within the link disconnection timeout window of 850 nanoseconds. The parity

error occurs when the parity bit is erroneous and the escape error occurs when an ESC

character is followed by another ESC, EOP or EEP characters which are sequences that

are not allowed. The credit error occurs when a N-Char arrives even though there is no

room for it in the reception FIFO. The link �ow control of the SpaceWire interface makes

sure that no characters are sent from the other end if there is not space available for them

at the receiving end. This is done by the receiving end indicating that is has space for

eight more N-Chars by sending a FCT. The other end receives this FCT and therefore

knows it can safely send eight N-Chars. The receiving end can report more than eight

places of available bu�er space by sending several FCTs. A SpaceWire interface can have

up to seven outstanding FCTs, thus reporting space for up to 56 N-Chars. Through this

mechanism, FCTs are in e�ect traded for N-Chars and allows the transmitting side to

know if the other end is ready to receive data packets.
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Within the context of Figure 2.10 a RxErr error is a disconnect, parity or escape error.

As seen in the �gure, transitions to the ErrorReset state are not only triggered by the

four discussed error types but also by reception of a character that is invalid in the current

state. For example, if the interface is in the Connecting state and receives a time code

or N-Char, this is seen as an error and the link is reset.

For further information, see Section 3.4 of the SpaceWire user guide by STAR-Dundee

for detailed explanations of the order of events during link initialization and error man-

agement [12].

2.1.3 SpaceWire Networks

SpaceWire allows �exible network architectures by combining routers and point-to-point

links. This section contains descriptions on how packets are forwarded throughout a

SpaceWire network.

SpaceWire Addressing

SpaceWire uses two di�erent kinds of addressing, path addressing and logical addressing.

Logical addressing involves specifying the destination address as a single byte with a

value between 32 and 254 which uniquely identi�es the destination node. This type

of addressing is conceptually easy to understand and only requires one byte, however it

comes with the drawback that each router in the packet's path must have been con�gured

as to forward all incoming packets with a certain address to a certain port. Therefore,

any changes to the network architecture might require recon�guration of one or several

routers. Path addressing does not have this drawback but instead might require several

bytes in the destination address of a packet. When using path addressing the destination

address consists of several bytes, each with a value between 1 and 31. Each byte represents

the port that the packet should be forwarded out through by the next router it encounters.

If a router receives a packet with the �rst byte having a value of 4, then it will remove

this byte as it is no longer needed and proceed to forward the packet out of port 4. This

exposes the next address byte for the following router, and the process is repeated until

the packet reaches its destination. At that point the packet's addressing bytes should have

been completely removed and the destination node will see the cargo part of the packet.

If the network architecture changes, one must only modify the path addressing bytes at
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the beginning of each packet instead of re-con�guring any routers. The addressing mode

must not be known in advance by the routers, as path addressing always uses values

between 1 and 31 and logical addressing uses values between 32 and 254 (the value 255

is reserved for future applications).

SpaceWire Routing

The SpaceWire routers mainly consist of a number of SpaceWire interfaces and a switch

matrix. The concept is demonstrated in Figure 2.11.

Figure 2.11: Switch matrix of a SpaceWire router [12].

By con�guring the switch matrix incoming packets can be forwarded to one or several

desired output ports. If path addressing is used the �rst byte of the incoming packet will

be interpreted as the physical port number to which the packet should be forwarded, and

if logical addressing is used the router will look up the entry in the con�gured routing

table to determine which is the correct output port. Therefore, the routing tables of

each router in a SpaceWire network which will use logical addressing must be con�gured

before use.
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Figure 2.12: Example of routing table entries in a SpaceWire router [12].

A typical routing table is shown in Figure 2.12. The correct output ports for an incoming

packet with a certain address are speci�ed as a series of 1's and 0's acting as �ags for the

existing ports. For example, the shown routing table will lead to all incoming packets

having a leading byte with value 33 being routed to port 4. It is also possible to de�ne

alternative output ports by setting several cells in one row to 1. This is called Group

Adaptive Routing and allows the router to pick a di�erent output port if the other ones

are busy. This is useful when several ports lead (directly or indirectly) to the same

destination node.

The destination address with value 0 is a special address, as it leads to the internal

con�guration port of a SpaceWire router. This port is used to remotely con�gure or

access the status information of a router. An example of such a con�guration is the

routing table, which can be con�gured via this port.

2.1.4 Time-codes

SpaceWire provides a way to quickly distribute system time over a network and therefore

synchronize the system components. The time information is given as ticks, which is an

incrementing value which can be synchronized to the system in which the network is used.

A time code consists of an ESC character followed by a data character. The time code

tick count is found in the six least signi�cant bits of the data character. The value of the

two most signi�cant bits within the data �eld is 0b00, as all other values are reserved.
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SpaceWire interfaces have a separate time code interface in order to quickly propagate

the time codes. These consist of two signals, TICK_IN and TICK_OUT as well as two

eight-bit input and output ports. When a time code is to be distributed throughout a

system, the so-called time master sets the eight input lines of the SpaceWire interface

to the time code which should be sent followed by asserting the TICK_IN signal. This

will cause the SpaceWire interface to save the presented value to its time-counter, which

is an internal register which holds the last received (and valid) time code. At this point

TICK_OUT is asserted to signalize that the interface received a new time code, and the

value of the received time code is put on the eight output lines. If the SpaceWire interface

which received the time code belongs to a router, the TICK_OUT signal propagates to

the TICK_IN interfaces of all the router output ports, which causes all nodes connected

to the router to update their time-codes as well. Through this mechanism time codes

are distributed through the network. There is never more than one time master in a

SpaceWire network, and it is nothing but a node or router which generates a periodic

TICK_IN signal.

Time codes are only updated if they are deemed valid. During normal operation the time

code values increase from 0 to 63 before rolling around and continuing. The incoming

time codes should always be exactly one tick more than the time code currently residing

in the node's time counter to be deemed valid. If the incoming time code is not valid the

node still updates the internal time counter but does not assert the TICK_OUT signal,

thus preventing an undesired time code updating loop if there is a circular connection.

This means that if a router receives a time code which it propagates and receives again

on another port through a circular connection, the value will be the same as in the time

counter and therefore deemed invalid and is ignored.

Time codes can be used for synchronization, time distribution, event signaling and even

as a means of distributing interrupts across a system due to its rapid propagation. For

more information regarding time codes, see the SpaceWire user guide by STAR-Dundee

[12].

2.2 The ECSS Protocol Suite

The European Cooperation for Space Standardization (ECSS) is an initiative which was

created in order to develop user friendly standards for systems used in European space

activities. It is a cooperative e�ort from the ESA, European national space agencies
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and European industry associations. SpaceWire is in fact maintained by ECSS and goes

under the formal name ECSS-E-ST-50-12 [10]. There are also standards for protocols

which can be used together with SpaceWire. These higher level protocols use the �exible

structure of SpaceWire and imposes further de�nitions on the communication. This is

referred to as protocols which are 'laying on top of' SpaceWire. ECSS maintains some

of these higher level protocols and refers to them as the ECSS-E-ST-50-5x series. At

the moment of writing this series contains two standards, namely the Remote Memory

Access Protocol (RMAP/ECSS-E-ST-50-52) and the CCSDS packet transfer protocol

(ECSS-E-ST-50-53). The protocol of interest within the scope of this thesis is RMAP

which will be described in detail in the following subsection. CCSDS is the abbreviation

for the Consultative Committee for Space Data Systems and the CCSDS packet transfer

protocol simply aims to encapsulate so called CCSDS packets in SpaceWire packets and

transfer them across networks [9]. For a more detailed look into the CCSDS packet

transfer protocol the reader is referred to the ECSS-E-ST-50-53 document which can be

found on the ECSS website under Standards -> Active Standards.

Although only two are mentioned, there are other higher level protocols which lay on top

of SpaceWire. The ones mentioned so far are maintained by ECSS, whereas the others fall

under the responsibility of other organizations. ECSS maintains an additional standard in

the ECSS-E-ST-50-5x series called ECSS-E-ST-50-51 and this standard de�nes protocol

identi�ers for all protocols which are resting on SpaceWire. The standard contains a

helpful table which provides an overview of the existing protocols and can be seen in

Table 2.1.

Table 2.1: Protocol identi�ers for di�erent higher level protocols using SpaceWire [9].

Protocol Identi�er Protocol Speci�ed in

0 Extended Protocol Identi�er Clause 5

1 Remote Memory Access Protocol ECSS-E-ST-50-52

2 CCSDS Packet Transfer Protocol ECSS-E-ST-50-53

238 GOES-R Reliable Data Delivery Protocol
417-R-RTP-0500 Version 2.1,

16 January 2008

239 Serial Transfer Universal Protocol
SMCS-ASTD-PS-001 Issue 1.1,

24 July 2009
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2.2.1 RMAP

RMAP is a protocol which allows reading and writing to speci�c memory locations of

another device on a SpaceWire network. It was developed to be able to con�gure other

network devices, control SpaceWire units and to gather data from those units, although

it can be used for a wide range of applications. RMAP is commonly used to con�gure

both SpaceWire routers and SpaceWire interfaces.

RMAP consists of three commands:

� Read

� Write

� Read-Modify-Write

Each of these commands are sent to a destination node, which may or may not reply

depending on the type of command and the contents of certain command �elds. The

RMAP protocol de�nes all operations as posted, which means that the protocol itself

does not specify that the source node must wait for an acknowledgment or reply. It

is the responsibility of the user application to implement time-outs for missing replies

if such functionality is requested [8]. The embedded application developed during this

thesis project enables the GR740 to act as a destination node, which means that it will

listen for incoming communication and then react and reply in a manner consistent with

the RMAP standard. It is assumed to never be the source node, and therefore has no

functionality for handling incoming replies. For a detailed graphical representation of

how the RMAP commands are handled by the GR740 SoC, refer to Figure 5.4, Figure

5.5, Figure 5.6 and Figure 5.3. The �owcharts shown in the �gures are derived from the

descriptions in the RMAP speci�cation draft [8] and provide a convenient overview of

the protocol. If more detail is desired please see the speci�cation.

In the following subsections each command will be discussed separately, with command

structure and functionality in focus. Each command has two di�erent versions to be used

for either path addressing or logical addressing (see Section 2.1.3) and only the latter will

be treated here since only logical addressing was used during the scope of this project.
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The Read Command

The structure of a read command is shown in Figure 2.13. Each �eld is one byte long,

which means that the read command is 16 bytes long excluding the EOP �eld.

Figure 2.13: Structure of a RMAP read command [8].

� Destination Logical Address: Has a value between 32 and 254 to identify the

destination node.

� Protocol Identi�er: Identi�es which higher level protocol is being used, value is

0x01 for RMAP.

� Packet Type/Command/Source Path Address Length: Contains several

di�erent �elds and the byte structure can be seen at the bottom of Figure 2.13:

� Packet Type: Has a value of 01b to indicate that the packet is a command

and not a reply.

� Command: The �rst bit is the Write/Read bit and has a value of 0 to indicate

that the command is a read command. The next bit is the Verify Before Write

bit and is 0 since there is no writing of data. The third bit is the Ack/No Ack

bit and controls whether the destination node should send a reply back as a

response to this command. This bit is set as it makes little sense to not request

any data in a read command. The last bit in this �eld is the Increment/No

Increment Address bit. When set this bit causes the read address in the

destination node to increase after every byte has been read. If cleared, the

read address is not incremented so successive bytes are read from the same

memory location.
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� Source Path Address Length: Not applicable when using logical addressing

and is set to 00b.

� Destination Key: A value used by the destination node to authorize the com-

mand. If the value is di�erent than expected the command will be rejected and an

error will be returned to the source node.

� Source Logical Address: The logical address of the source node.

� Transaction Identi�er (2x): A two byte number which uniquely identi�es the

command in a sequence of commands. The reply will contain the same transaction

identi�er and the reply can therefore be properly matched to the sent command.

� Extended Read Address: An extension of the four Read Address bytes, it holds

the eight most signi�cant bits of the memory address to be read from. This extends

the 32-bit memory address to 40-bit thus allowing access to one terabyte of memory

space in every node.

� Read Address (4x): A four byte �eld specifying the memory location in the

destination node at which to read data from.

� Data Length (3x): Three bytes which are used to specify how much data is to

be read, in bytes.

� Header CRC: An eight-bit CRC which is used to con�rm that the header has

been received correctly before the rest of the command is executed.

The reply to a read command can be seen in Figure 2.14. Many �elds are similar to the

ones in the original command but there are also a few di�erences:

� Status: A value which contains a status indicating successful completion of com-

mand or if an error occurred. For a list of possible codes, see Section 2.2.1.

� Reserved: A �eld which is currently reserved and has a value of 0x00.

� Data CRC: Similar to the header CRC but covers the data bytes of the reply.

Note that there is always a data CRC even if no data is sent back with the reply.
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It is also worth noting that the semantics regarding source and destination does not

change in the destination node. The command initiating node is still referred to as the

source node, and the other as the destination node even from the destination node's

perspective.

Figure 2.14: Structure of a RMAP read reply [8].

The Write Command

As seen in Figure 2.15 the RMAP write command shares several �elds with the read

command. The di�erences will be discussed here.

Figure 2.15: Structure of a RMAP write command [8].
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� Packet Type/Command/Source Path Address Length:

� Command: The Write/Read bit is set to 1 to indicate that this is a write

command. The Verify Before Write bit controls if the destination node is

to check that the data CRC is valid before attempting to write it to the

desired memory location. If set, then the entire command needs to be bu�ered

somewhere and if the command is too big for the available bu�er space this

can lead to a verify bu�er over�ow error. This process is shown in Figure

5.5. If the bit is not set, the data CRC is checked after the data has been

written to memory. This is mainly used as a protective measure when writing

to con�guration registers. The Ack/No Ack bit can also be either 0 or 1

depending on if a reply is desired. If it is cleared then the source node will

not be informed when an error occurs. The Increment /No increment address

bit works in a similar way as in the read command, however here it controls if

the data is written to consecutive memory locations (when set) or if the data

bytes are written to the same location repeatedly (when cleared).

� Extended Write Address: Just as with the extended read address, this �eld

extends the accessible memory space from 32 to 40 bits.

� Write Address (4x): The memory address at which to write the data to.

� Data Length (3x): The length of the data to be written, in bytes. This will be

veri�ed at the destination node before writing by comparing this number to the

bytes sent in the packet.

� Data CRC: An eight-bit CRC used by the destination node to verify that the

data was transmitted correctly.

The format of a write reply is simple and consists of only eight �elds. It is demonstrated

in Figure 2.16.
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Figure 2.16: Structure of a RMAP write reply [8].

The Read-Modify-Write Command

The Read-Modify-Write (RMW) command is the most complex of the three commands.

It performs both the read and write action whilst providing a masking mechanism for

the write action. It causes the destination node to �rst read some data from a desired

location and then it uses the mask to decide which data should be written to the same

location. Finally, it sends a reply containing the data which was read in the �rst step.

Exactly how the mask is used is up to the user application. The RMAP speci�cation

provides an example following the formula:

Written Data = (Mask AND Command Data) OR (NOT Mask AND Read Data)

This is also the scheme which was used in this project. It is performed bit-wise and

causes the written data to come from the sent data if the corresponding mask bit is set,

otherwise it will remain the same as before the command.
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Figure 2.17: Structure of a RMAP RMW command [8].

As seen in Figure 2.17 most �elds of the RMW command are the same or similar as

in the previous two commands. The main di�erence is the addition of the mask bytes.

There must be as many mask bytes as data bytes, and the Data/Mask Length �eld can

only have values 0x00, 0x02, 0x04, 0x06 or 0x08. All other values in this �eld are invalid.

This value speci�es the total number of bytes in the combined data and mask �elds.

For example, if the value is 0x08 there are four data bytes and four mask bytes. The

data/mask CRC appended at the end covers both the data and mask bytes, and just as

with the data CRC in the write command it is always present.

Figure 2.18: Structure of a RMAP RMW reply [8].
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For more information on the performed error checks and sequence of actions de�ned by

the standard please see the RMAP speci�cation [8] or Figure 5.4, Figure 5.5, Figure 5.6

and Figure 5.3 for a graphical overview.

RMAP Error Codes

The RMAP standard de�nes some 8-bit codes for error and status reporting in replies.

Depending on the success of the command, the destination node will choose a value as

appropriate and set this as the value of the status �eld in the reply. This enables the

source node to be informed regarding the success of the operation. All the speci�ed error

codes can be found in Table 2.2

Table 2.2: RMAP error codes [8]

Error Code Error Error Description

0
Command executed

successfully

1 General error code
When the detected error does not �t

into the other error cases

2
Unused RMAP packet type

or command code
The packet type has an invalid value

3 Invalid destination key
The key did not match the value expected

by the user application

4 Invalid data CRC The data CRC is incorrect

5 Early EOP
The packet was shorter than was declared

in the data length �eld

6 Cargo too large
The packet was longer than declared in the

data length �eld

7 EEP
An EEP marker was detected. Indicates some

sort of communication failure.

8 Reserved

9 Verify bu�er overrun

The Verify Before Write bit is set but there is

not enough bu�er space to hold the entire

command while calculating the data CRC

10
RMAP Command not

implemented or not authorized

The destination node did not authorize the

requested operation.

11 RMW data length error The data length of a RMW command is invalid

12 Invalid destination logical address
The destination logical address was not the

value expected by the application

13-255 Reserved All unused error codes are reserved
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2.3 Real-Time Operating Systems

The embedded application developed during this thesis project uses a real-time operating

system (RTOS). A RTOS is very useful for development of embedded code when several

di�erent tasks need to be performed in parallel. In this case, the use of the RTOS is

not justi�ed by the complexity of the developed code but rather by the fact that the

RTEMS Cross Compiler (RCC) is the development platform. RCC includes and relies

on a RTOS called Real-Time Executive for Multiprocessor Systems (RTEMS) and the

examples and instructions for development is based on the use of this RTOS. Therefore,

even though the developed RMAP driver amounts to one single task, which in itself does

not warrant a RTOS, it is written using the RTEMS kernel. An advantage of this is

that future extensions to this project can leave the RMAP driver task as it is and add

other tasks to run in parallel to the driver, whilst taking proper care of task priorities

and communication between them if necessary.

The following subsection gives a brief introduction to RTEMS. It does not aim to be an

introduction to RTOS concepts in general. If the basic concepts of real-time operating

systems seem new, it is strongly recommended to read up on these before continuing. The

RTEMS C user guide [11] introduces the bene�ts of using a RTOS in it's introductory

chapter.

2.3.1 RTEMS

RTEMS is a real-time executive which provides a high performance environment for

embedded applications. In the RTEMS C user guide support for the following features

are highlighted:

� Multitasking

� Homogeneous and heterogeneous multiprocessor systems

� Event-driven, priority based, preemptive scheduling

� Optional rate monotonic scheduling

� Intertask communication and synchronization

� Priority inheritance
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� Responsive interrupt management

� Dynamic memory allocation

� High level of con�gurability

RTEMS is written to act as a bridge between the target hardware and the application

dependent code by isolating the hardware dependencies in board support packages (BSPs)

and providing an interface to the application code. This allows the developer to use

functions from the interface without having to worry about the low-level implementation,

as long as the correct BSP is used. The architecture of a RTEMS application can be

visualized as seen in Figure 2.19.

Figure 2.19: Architecture of a RTEMS application [11].

The interface to the application code is formed by grouping logical sets of functions

into what RTEMS calls managers. The application can then use requested functionality

from the relevant managers, each of which is described in detail in the RTEMS C user

guide. Functions which are used by several managers (such as functions dealing with

e.g. scheduling) are grouped together in the executive core which is accessible to all

managers[11]. The concept of managers and the core is displayed in Figure 2.20.
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Figure 2.20: Internal architecture of RTEMS [11].

When navigating the RTEMS C user guide it is recommended to read chapters 1-5 for a

detailed introduction to important RTEMS concepts, Chapter 22 for a guide on system

con�guration and Chapter 25 for an example application. A majority of the remaining

chapters deal with each of the available managers (as seen in Figure 2.20) and can be

read depending on the project. For example, if no semaphores are to be used Chapter 9

is of little importance.

2.4 RTEMS Cross Compiler

The RTEMS Cross Compiler (RCC) is a multi-platform development system. It is based

on tools developed by the RTEMS community and Cobham Gaisler, as well as freely

available tools from the GNU family of development tools. It consists of the following

packages:

� GCC 7.2.0 or LLVM/Clang 7.0.0 C/C++ compiler

� GNU binary utilities 2.29

� RTEMS 5.0 C/C++ real-time kernel with precompiled BSPs for LEON2/3/4 and

ERC32
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� Newlib 2.5.0 standalone C library

� GDB 6.8 SPARC cross-debugger

RCC is the central software component used for the development of the project code. As

such, the RCC user manual is a very important document for a proper understanding

of how to perform this type of development. It is recommended to begin by reading

chapters 1-4 which contains general instructions on usage. It also contains some of the

installation instructions found in Chapter 3.2. Chapters 5 and 6 of the manual can be

useful for gaining a deeper understanding of how hardware and bus drivers are handled

by the so-called driver manager. In short, the driver manager maintains bus and device

drivers in a tree structure where each bus has a linked list of devices present on that

bus. The devices contain information about their respective drivers, and if a device is a

bridge to a child-bus it can register this bus which in turn will contain a linked list on the

devices on that bus [3]. These chapters are of great importance when developing custom

hardware which shall run software developed using RCC. However, they are not vital to

development on the GR-CPCI-GR740 development board since it uses the GR740 SoC

for which there is a precompiled BSP included in RCC. The GR740 BSP contains the

device drivers needed for operation and therefore no extra drivers need to be registered

by the developer.

The remaining chapters of the user manual act as a reference on the drivers for di�erent

hardware devices. They contain descriptions on how to control and access the devices

through the application code. For development using SpaceWire the central chapters

are Chapter 18 and Chapter 20, and an overview of the information in these chapters is

given in the following subsections. Please note that the SpaceWire driver described in

Chapter 19 is planned to be deprecated and replaced by the packet driver described in

Chapter 18 [3]. This is why the packet driver is chosen to control the SpaceWire device

in this project.

It should also be noted that RCC already contains an RMAP driver which relies on

RMAP hardware in the SpaceWire interface (see Section 2.5). Since the goal of this

project is to implement a RMAP software driver all built-in RMAP handling capability

is disabled. If the built-in RMAP driver is to be used, see Chapter 7 of the user manual.
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2.4.1 GRSPW SpaceWire Packet Driver

The GRSPW SpaceWire packet driver provides the developer with an API to directly

con�gure and control a SpaceWire interface. It replaces an older SpaceWire driver which

used standard UNIX �le procedures (such as open(), read(), ioctl() etc.) to receive or

transmit a single packet at a time. The new driver uses Direct Memory Access (DMA)

and supports the use of multiple DMA channels. It is divided up into two major parts,

the device interface and the DMA channel interface. The DMA concept and the two

driver parts are discussed in the following subsections.

DMA

DMA is used to facilitate the transfer of data between two sections of memory or, as

in this case, between an I/O device and memory. The traditional approach to moving

data is letting the processor copy each byte into its intended destination. For each such

operation the processor must fetch the next instruction, decode it, read in data from the

source (be it memory or an I/O device), fetch the next instruction, decode it as well

and then store the read value before this cycle repeats for every byte to be transferred.

DMA provides an alternative which allows for high-speed transfers of large data blocks

by bypassing the processor. The processor is bypassed by one or several DMA channels,

going directly from the I/O device to memory. The data is then written or read directly

to or from memory under control of the DMA controller (DMAC). During transfers, the

DMAC needs control over the data and address buses without the processor interfering.

The simplest way to implement this is by letting the DMAC signal the processor to

suspend its operation whilst the transfer is being done. This means that DMA does not

necessarily allow the processor to continue operation in parallel to the data transfer, but

the loss of overhead from the instruction fetching and decoding as well as avoiding the

extra copying means that the total time of the transfer can be decreased.

There are four basic types of DMA:

� Standard block transfer

� Demand mode transfer

� Fly-by transfer

� Data-chaining transfer
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The type that is relevant for this project is the last one, the data-chaining transfer. This

transfer type works by giving the DMAC a linked list of so-called descriptors. Each

descriptor contains (at least) a byte count, source address, destination address and a

pointer to the next descriptor. The DMAC gets a pointer to the beginning of the list and

starts transferring the data from the source address. When the byte count is reached the

next descriptor is loaded and a new transfer starts. This continues until a NULL pointer

is reached [14]. This is the basic functionality of the SpaceWire DMA interface used in

this project.

Device interface

The SpaceWire device interface handles everything which is not related to the DMA

transfers. This includes initialization during system start-up to get the device into a

known state, link control to chose behavior on link errors, node address con�guration,

time code handling and more. To better understand the device interface it is useful to

understand the SpaceWire hardware interface which is described in Section 2.5.

An overview of the functions from the interface available to the developer is given in Table

2.3. This is an convenient way to get an idea of what the device interface provides. Each

of these functions are documented in detail in Chapter 18 of the RCC user manual.
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Table 2.3: Device API functions
Function Description

int grspw_dev_count(void) Retrieve number of GRSPW devices registered to the driver.

void *grspw_open(int dev_no)

Opens a GRSPW device. The GRSPW device is identi�ed by index.

The returned value is used as input argument to all functions operating

on the device.

int grspw_close(void *d)
Closes a previously opened device. All DMA channels must have been

stopped and closed by the user prior to calling this function.

void grspw_hw_support(void *d,

struct grspw_hw_sup *hw)
Read hardware capabilities of GRSPW device.

void grspw_link_ctrl(void *d, int

*options, int *stscfg, int *clkdiv)
Read and con�gure link interface settings.

spw_link_state_t grspw_link_state(void *d) Read and return current SpaceWire link status.

unsigned int grspw_link_status(void *d) Reads and returns the current value of the GRSPW status register.

void grspw_link_status_clr(void *d,

unsigned int mask)
Clear bits in the GRSPW status register.

void grspw_addr_ctrl(void *d,

struct grspw_addr_con�g *cfg)
Always read and optionally set the node addresses con�guration.

void grspw_tc_ctrl(void *d, int *options) Always read and optionally set TimeCode settings of GRSPW device.

void grspw_tc_tx(void *d) Generates a TimeCode Tick-In.

void grspw_tc_isr(void *d,

void (*tcisr)(void *data, int tc), void *data)

Assigns a Interrupt Service Routine (ISR) to handle TimeCode

interrupt events.

void grspw_tc_time(void *d, int *time)
Optionally writes and always reads the current TimeCode control �ags

and counter from hardware registers.

int grspw_port_count(void *d) Reads and returns number of ports that hardware supports.

int grspw_port_ctrl(void *d, int *port) Always read and optionally set port control settings of GRSPW device.

int grspw_port_active(void *d) Reads and returns the currently actively used SpaceWire port.

int grspw_rmap_support(void *d,

char *rmap, char *rmap_crc)
Reads the RMAP hardware support of a GRSPW device.

int grspw_rmap_ctrl(void *d, int *options,

int *dstkey)

Read and optionally write RMAP con�guration and SpaceWire

destination key value.

void grspw_stats_read(void *d,

struct grspw_core_stats *sts)

Reads the current driver statistics collected from earlier events by

GRSPW device and driver usage.

void grspw_stats_clr(void *d) Resets the driver GRSPW device statistical counters to zero.

DMA channel interface

As previously mentioned, the type of DMA transfer used with the GRSPW2 device is

data-chaining DMA which uses linked lists of descriptors to move data to the correct

destination. The descriptors used by the SpaceWire packet driver are represented by

the C structure grspw_pkt. Typical usage is for the user to de�ne an own structure

with the same �elds as grspw_pkt in the top and then custom �elds at the bottom if

needed. Each of these descriptors acts as metadata for exactly one SpaceWire packet.

Every descriptor consists of the following �elds:
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� next: A pointer to the next descriptor. The DMA engine will start using the next

descriptor as soon as en EOP/EEP marker was received or the received number of

bytes matches the value in the dlen �eld.

� �ags: Controls transmission behavior (e.g should �nished transmission trigger in-

terrupt) or indicates status of received packet (e.g. was there a link error during

reception).

� hlen: Header length. Number of bytes in the header of the SpaceWire packet

to be sent. For logical addressing this will be 1, since there is only a one byte

address. Has no function for reception since all received data is put at where the

data pointer points to.

� dlen: Number of bytes to send as data.

� data: Pointer to the data to be sent.

� hdr: Pointer to the header bytes.

Notice the division of header and data. The header �eld does not need to be used at all,

one can put the entire packet including the destination address at the place pointed to

by the data pointer and set hlen to 0. However, it can be convenient to deal with the

address of a packet and the data it contains separately, especially if path addressing is

used. This is what the two �elds allow. For reception the header pointer and hlen have

no use, all incoming data is put at the position pointed to by data and it is up to the

user application to interpret the received bytes.

The linked lists of descriptors are referred to by the driver as queues. The organization

of one such queue is visualized in Figure 2.21. Every queue maintains a counter of how

many descriptors is currently in the list.
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Figure 2.21: SpaceWire packet driver descriptor queue organization [3].

A very important concept to understand when using the SpaceWire packet driver is the

use of several descriptor queues per DMA channel and direction. Every DMA channel

has six di�erent queues, three for transmission and three for reception:

� RX READY: List of descriptors that are pointing to free data bu�ers initialized

by the user. This can be seen as the �rst step of preparing for reception, where the

user has made sure there is some space for the incoming packets.

� RX SCHED: In order to receive packets, descriptors from RX READY are

moved to this queue. Once in this queue, the descriptors will be used for any

incoming data. The descriptors should not be directly accessed by the user here.

� RX RECV: List of descriptors pointing to received data.

� TX SEND: Transmission equivalent of RX READY. However, here the descrip-

tors are not pointing to free space for incoming data, but rather to the data that

the user application wants to send.

� TX SCHED: When ready to send, descriptors from TX SEND are moved to

this queue. The packets will be sent when possible.

� TX SENT: List of descriptors pointing to sent packets. The �ag �eld has been

updated to indicate any detected errors that occurred during transmission.
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In other words, the �ow of descriptors is always the same: USER → RX READY → RX

SCHED → RX RECV → USER for reception and USER → TX SEND → TX SCHED

→ TX SENT → USER for transmission.

The developer has a choice regarding the movement of descriptors between queues. The

packet driver supports both blocking and polling modes. In polling mode, the developer

is responsible for calling DMA reception and transmission routines at regular intervals.

These routines are used to both retrieve or send new data, as well as trigger movement of

descriptors between the queues. In blocking mode, the developer can use functions that

wait for a condition to be ful�lled, e.g. wait until there are more (or less) descriptors

than a certain threshold in one or more queues. In that case, the so-called work-task is

responsible for all queue handling. The work-task is triggered by DMA interrupts and

so it reacts to sent or received data and moves descriptors between queues accordingly.

Every time the work-task completes the conditions in the blocking functions are evalu-

ated. It is also possible to provide a time-out to the blocking functions. The developer

can control the priority of the work-task by setting the attribute int grspw_work_-

task_priority. The default value is 100, and if polling mode is wished this value

should be set to -1. This causes the work-task to never be created. The RCC user man-

ual notes that care must be taken so that the priority of the work-task is high enough

to not be constantly blocked by higher level tasks always being ready. This would make

the transmission and reception appear to deadlock since no descriptors would be moved

between the queues.

As it would be waste of resources - both time and memory - to constantly de�ne new

data bu�ers for reception and transmission, it is possible to re-use packet descriptors.

For reception, this means that a descriptor in the RX RECV queue pointing to a received

packet can be given back to the RX READY queue once the user application has either

saved the received data or is �nished using it. The next time this descriptor is used

the same memory space will be used. The same can be done for transmission, where

descriptors are moved from TX SENT to TX SEND. This is not done by the work-task

since it does not know when the user application is �nished with the data [3].

An overview of the available functions from this part of the API can be seen in Table

2.4. For this project, the blocking approach was used in order not to waste CPU cycles

in polling mode.
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Table 2.4: DMA API functions
Function Description

void *grspw_dma_open(void *d, int chan_no) Opens a DMA channel of a previously opened GRSPW device.

void grspw_dma_close(void *c)
Closes a previously opened DMA channel.

Channel must be stopped �rst.

int grspw_dma_start(void *c) Starts DMA operation.

void grspw_dma_stop(void *c) Stops DMA operation.

int grspw_dma_rx_recv(void *c, int opts,

struct grspw_list *pkts, int *count)
Get pointer to received RX packets.

int grspw_dma_rx_prepare(void *c, int opts,

struct grspw_list *pkts, int count)
Add RX free packet bu�ers for reception.

void grspw_dma_rx_count(void *c, int *ready,

int *sched, int *recv)
Get current number of packets in respective RX queue.

int grspw_dma_rx_wait(void *c, int recv_cnt, int op,

int ready_cnt, int timeout)
Wait for queue conditions to be met. Blocking.

int grspw_dma_tx_send(void *c, int opts,

struct grspw_list *pkts, int count)
Schedules a list of packets for transmission at some point in future.

int grspw_dma_tx_reclaim(void *c, int opts,

struct grspw_list *pkts, int *count)

Reclaim TX packet bu�ers that have previously been sent or

scheduled for transmission.

void grspw_dma_tx_count(void *c, int *send,

int *sched, int *sent)
Get current number of packets in respective TX queue.

int grspw_dma_tx_wait(void *c, int send_cnt, int op,

int sent_cnt, int timeout)
Wait for queue conditions to be met. Blocking.

int grspw_dma_con�g(void *c,

struct grspw_dma_con�g *cfg)

Set the DMA channel con�guration options as described

by the input arguments.

void grspw_dma_con�g_read(void *c,

struct grspw_dma_con�g *cfg)

Copies the DMA channel con�guration to user de�ned

memory area.

void grspw_dma_stats_read(void *c,

struct grspw_dma_stats *sts)

Reads the current driver statistics collected from earlier events

on a DMA channel.

void grspw_dma_stats_clr(void *c) Resets one DMA channel's statistical counters.

2.4.2 GRSPW SpaceWire Router Driver

The other driver that is central for setting up communication using SpaceWire is the

router driver. This driver is used for con�guring the router hardware, setting up the

routing table (see Section 2.1.3) and managing time codes. It can also enable or disable

links, collect statistics and detect errors on di�erent ports. The normal use case is to

open the router, con�gure the settings and then set up the routing table. Just like in

the case of the SpaceWire device interface, it is bene�cial to have some understanding of

the router hardware to better understand the driver. The router hardware is described

in Section 2.5.1.

The driver provides getters and setters for many individual router con�guration registers

and therefore the list of functions available is quite long. For a quick overview of some
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of the most important parts of the driver, please see Table 2.5. For a more detailed

documentation of the interface see Chapter 20 of the RCC user manual.

Table 2.5: Partial overview of the GRSPWROUTER driver interface
Function Description

void * router_open( int dev_no ) Opens a router with the given dev_no index.

int router_close( void * router ) Closes a router.

int router_hwinfo_get( void * router,

struct router_hw_info * hwinfo)
Get the hardware info of a given router.

int router_con�g_set( void * router,

struct router_con�g * cfg)
Set the con�guration of a given router.

int router_reset( void * router ) Reset a given router.

int router_routing_table_set( void * router,

struct router_routing_table * rt)
Set the routing table of a given router.

int router_route_set( void * router,

struct router_route * route )
Set a speci�c route of a given router.

int router_port_ioc( void * router, int port,

struct router_port * cfg)
Con�gure a given port of a given router.

int router_port_enable(void * router, int port) Enable data transfers to and from a given port of a given router.

int router_port_link_status(void * router, int port) Get the link status from a given port of a given router.

int router_port_start(void * router, int port) Start link interface FSM from a given port of a given router.

int router_tc_enable(void * router) Enable time-codes in a given router.

2.5 GR-CPCI-GR740 Development Board

GR-CPCI-GR740 is the name of the development board used during this project for the

validation of functionality of the developed code. This section contains an introduction

to the board and the relevant on-board components.
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Figure 2.22: The GR-CPCI-GR740 development board [1].

The board can be seen in Figure 2.22. Some of the main components of the board is the

GR740 SoC , a CPCI interface for connection to other hardware, con�gurable SDRAM

(48 or 96 bit) and 64 Mbit parallel boot �ash. In addition to this it also contains the

required interface circuits for the connectors available on the front panel of the board,

such as the FTDI to USB interface, the Ethernet interface and the eight port SpaceWire

interface used in this project. The front panel also has a number of DIP switches for

manual con�guration. How to set these into a default state (and how to con�gure the

board for SpaceWire communication) is described in Section 3.1.
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Figure 2.23: Block diagram of the GR-CPCI-GR740 [1].

Debugging is supported via JTAG, Ethernet or SpaceWire (port 1).

2.5.1 GR740

The most critical part of the development board is the GR740 SoC which contains the

quad-core LEON4 SPARC V8 processor on which the embedded code is executed. It also

contains the SpaceWire router and SpaceWire interface hardware developed by Cobham

Gaisler. It is radiation-hard, which means that it is resistant to damage or malfunction

caused by high levels of radiation. This is necessary due to its intended operational
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environment, i.e. space, where radiation can pose a big problem for electronic equipment.

A block diagram of the SoC can be seen in Figure 2.24.

Figure 2.24: Block diagram of the GR740 SoC[1].

In addition to the LEON4 the GR740 contains a set of IP cores developed by Cobham

Gaisler and documented in the GRLIB IP core user manual [6]. The IP cores are con-

nected through a nested system of Advanced Microcontroller Bus Architecture (AMBA)

buses. This connects back to the driver manager mentioned in Section 2.4, which al-

lows for such a tree structure of buses. The IP cores most relevant for developing a

SpaceWire-based application is the SpaceWire router core which goes under the name

GRSPWROUTER and contains four SpaceWire devices which are called GRSPW2. The

GRSPWROUTER and GRSPW2 cores are presented in the following subsections.

GRSPW2

A block diagram of the GRSPW2 core is seen in Figure 2.25.
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Figure 2.25: Block diagram of the GRSPW2 architecture [6].

The main parts of the core are the link interface, RMAP interface and AMBA interface.

Starting from left to right, the core has support for two SpaceWire ports of which only one

is active at a given time. The receiver interprets the received SpaceWire character and

forwards some status signals to the �nite state machine (FSM) which controls the link

according to the SpaceWire standard (see Section 2.1.2) and the current con�guration.

Through the device interface described in Section 2.4.1 the user can con�gure the device

to enable/disable the link, put it in auto-start mode, or choose error conditions which

should disable the link, among other things. Received N-chars are stored in a FIFO. If

RMAP functionality is enabled the RMAP receiver will formulate the appropriate reply

and directly queue it for transmission. The received N-char is stored at the address

pointed to in the current descriptor of the receiver DMA engine, via the AMBA interface

on the right in Figure 2.25.

GRSPWROUTER

The SpaceWire router core is documented both in the GRLIB IP core user manual [6]

and the GR740 user manual [2]. A block diagram of its design is shown in Figure 2.26.
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Figure 2.26: Block diagram of the GRSPWROUTER [2].

The routing table controls packet forwarding according to their address and is con�gured

using the router interface provided by RCC. The port setup table controls individual

port behavior. An important thing to understand about the router hardware is the port

numbering. The con�guration port is always port 0 and the SpaceWire ports follow in

numbering starting from 1. The AMBA port numbering start where the SpaceWire port

numbering end. In the case of the hardware used in this project, where there are eight

SpaceWire ports available, this means that the �rst AMBA port is port 9 [2]. This is

important for setting up the routing table, since the AMBA ports are what connects the

router to the rest of the GR740. In order for the processor to access incoming SpaceWire

communication the routing table needs to be set up to forward packets with the correct

address to one of the AMBA ports. The process for doing this is found in Chapter 6.

2.6 MK3 SpaceWire Brick

In order to verify the correct functionality of the protocol handling application it is helpful

to test how the application reacts to valid RMAP commands. The MK3 SpaceWire brick
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developed by STAR-Dundee is a piece of additional hardware which can be used with

a PC in order to send and receive SpaceWire packets. This is an important part of

the debugging process and STAR-Dundee provides an API which can be used to write

applications which automates the testing process. This enables the development of a

test-bench running on the development PC. The design and implementation of the test-

bench is discussed along with the embedded application in Chapter 5 and Chapter 6. A

description of test-bench usage is found in Chapter 7.

The following subsections give an introduction to the SpaceWire MK3 brick.

2.6.1 Hardware Description

The SpaceWire MK3 brick can be seen in Figure 2.27. On the front panel there are

two SpaceWire ports where SpaceWire cables can connect and form one end of the

communication channel between the GR-CPCI-GR740 and the brick. It can be helpful

to connect a cable between the ports and use one for input and one for output. This

way it is possible to analyze exactly what is sent out by the brick and is especially useful

when con�guring the brick in routing mode to verify correct transmission. There are also

LEDs for each port indicating status of reception and transmission.

(a) Front panel. (b) Rear panel.

Figure 2.27: Physical overview of the SpaceWire MK3 Brick [13].

The SpaceWire MK3 brick has two SpaceWire interfaces, available through port 1 and

port 2. They are connected to an internal SpaceWire router which in turn is connected

to three channels and a con�guration port. The three channels are connected to a

USB interface and all communications between the brick and the PC are sent via these

channels. Channel 1 and 2 can be used in parallel by the two SpaceWire interfaces,

so communication on one port will never block tra�c on the other port. Channel 0 is

a control channel which allows the user to access the control, con�guration and status

space of the brick regardless of the current data �ow.
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Figure 2.28: Block diagram of the SpaceWire MK3 Brick hardware [13].

The router can be used in two di�erent modes, interface mode and router mode. In

router mode, any incoming packet on a port can be routed to another port. In this

mode the brick works like a normal SpaceWire router and needs to have a routing table

con�gured for correct operation. Something to be taken into consideration is the optional

header deletion. With header deletion enabled the �rst N-char of the SpaceWire packet

is deleted before the packet is forwarded. This can be undesired if the application in

the destination node expects the �rst N-char to be the logical address of the destination

node, as is the case in logical addressing mode. The brick router can also be con�gured

to be the time-master of a SpaceWire network and periodically send out time-codes to

be distributed throughout the network.

In interface mode, the brick is set up to have a static connection between a SpaceWire

port and either channel 1 or 2. All routing functionality is disabled and this type of

connection allows for a point-to-point connection between the source and destination

node. Therefore, a changing destination address will have no e�ect on whether the

packet arrives at the destination node or not [13].

2.6.2 C++ API

The STAR-System API is provided as a set of libraries and header �les intended for

use with the C programming language. The C++ API is an extension of this API

to provide an object-oriented interface to the STAR-System. The API can be used to

con�gure the brick and e.g. set up the routing table, and send and receive SpaceWire

packets or even RMAP commands in a convenient way from a development PC. The
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STAR-System documentation contains many helpful example programs and since the

test-bench is written using this API some speci�cs will be discussed in Chapter 6.

The STAR-System API is documented in detail in the API manual [13] which is avail-

able after installing the STAR-System software, see Section 3.5.2. Some simple GUI

applications which can be used to con�gure and use the brick are also discussed in that

section.
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As with any software project, it is necessary to set up the correct environment for devel-

opment and debugging. This section contains instructions for a �rst time project setup,

derived from the relevant documents and datasheets. The instructions found here are

not as in-depth as the descriptions found in the referenced documents and the reader is

encouraged to look into these in case of problems during the setup process. The instruc-

tions are given with SpaceWire based projects in mind but are applicable to development

of any type of application on the GR-CPCI-GR740 development board. Also note that

the instructions for the software setup are written for installation on a computer running

Windows 10 as the operating system. For installation on other platforms please see the

referenced documents.

Figure 3.1 gives an overview of the physical setup.

Figure 3.1: Overview of the connections between PC and development board.
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3.1 GR-CPCI-GR740 Development Board

This section contains instructions on how to manually con�gure the settings on the

development board in hardware, as well as warnings regarding usage.

3.1.1 Warnings

The development board contains components which can be damaged by electrostatic

discharge (ESD). Therefore it is important to observe ESD safe practices when handling

the board. When working with the board, use an ESD mat as the work surface. The mat

should be connected to ground of a nearby electrical outlet, and you should be connected

to conducting wristbands which are in turn connected to the ESD mat. Make sure to

always wear the wristbands when touching the development board, as well as making

sure the board is in contact with the mat. When the board is not in use it should be

stored in a ESD safe container. When moving jumpers or connecting (or disconnecting)

cables make sure the board is in an unpowered state. Also make sure the correct input

voltage of 5V is used [1].

3.1.2 Settings

At the project outset it is advisable to start with all settings in their default positions.

This increases the probability that the various guides and instructions will be helpful.

Project speci�c settings are then set as required. This section contains instructions on

how to set the development board's default settings as described in the GR-CPCI-GR740

user manual, and notes on changes needed for this speci�c project.

There are three parts to consider regarding the board settings; the jumpers, the switches

and the plug-on board.

The jumpers Most of the jumpers can be seen in the top left area of the development

board, as shown in Figure 3.4. By using them to connect or disconnect di�erent pin pairs

we are in e�ect con�guring the hardware. The jumper numbers are printed on the PCB.

In Table 3.1 we see the default positions of all jumpers, together with a comment about

the e�ect of that con�guration. To fully understand every jumper con�guration option

the reader is referred to the user manual of the GR-CPCI-GR740 development board,
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from which this table is taken [1]. During the project described in this document all the

jumpers were set in the positions described in Table 3.1 and did not need any further

changes.

Table 3.1: Default jumper positions for the GR-CPCI-GR740 [1]
Jumper Jumper Setting Comment
JP1 Connected to Front Panel Connects front panel RESET and BREAK switch to JP1

JP2 Not installed (4x) UART1 not connected to FTDI chip

JP3 Not installed (4x) UART0 not connected to FTDI chip

JP4 1 2 3 4 5 6 7 8 Connects ASIC JTAG to FTDI chip

JP5 1 2 3 4 Connects I2C to FTDI chip

JP6
3 4 5 6 7 8 9 10 11 12
(1 2 open)

Con�gured for 8 bit Flash memory PROM

JP7 Not installed (4x) GPIO[7..4]; For SPW DSU install 1 2 and 3 4

JP8 1 2 SPI OB; Install to enable on board SPI circuit

JP9 Installed 1 2 VC0 CLKSEL; XTAL generates 25MHZ clock

JP10 Not installed VC0 PROG, do not install for parameters to be loaded via I2C

JP11

Jumpers 1,2,13 &14 in
position C D
Other jumpers in position
A B (18x)

Install A B for PROM and C D for alternate I/F functions

JP12 Do not install +3.3V

JP13 Do not install +VIN

JP14 Install I3V3asic

JP15 Install I2V5

JP16 Install I1V2

JP17 Open TESTEN disabled

JP18 Open PCI bus runs at 33MHz

JP19 Not installed PCI_RSTN con�guration options

JP20 Not installed VC1 CLKSEL; SD_CLK generates SDCLK's

JP21 Not installed VC1 PROG, do not install for parameters to be loaded via I2C

JP22 Install BP CLK (Host Mode) all clocks present on BP

JP23 Install M66EN; Force backplane to 33MHz

JP24 Not installed Con�guration options for Versaclock PLL ranges

The switches The switches are seen in the black and red areas on the board's front

panel, as depicted in Figure 3.5. The eight most left-hand switches in the black area

are denoted by the pre�x FP-S1, the remaining right-hand eight switches are denoted by

FP-S2, and the eight switches in the red area are denoted by FP-S3. The switches are

open in the top position, and closed in the bottom position. Please see Figure 3.2 for

reference. In Table 3.2 we see the default positions of the switches. As with the jumpers,

the reader is referred to the development board's user manual for further explanations

regarding the con�guration options [1]. For the project described in this document only
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one switch needed to be changed from the default setting, namely FP-S2-4 which was

changed from open to closed in order to enable the on-board SpaceWire router.

Table 3.2: Default switch positions for the GR-CPCI-GR740 [1]
Switch GPIO Switch Setting Comment
FP S1 1 to 6 GPIO[5..0] Open GPIO[5..0] Mac address. Default Disable EDCL

FP S1 7 & 8 GPIO[7..6] Open SPW Router INT mode. Default Pulled up.

FP S2 1 & 2 GPIO[9..8] Open EDCL0 & EDCL 1 Link tra�c : EDCL Enabled

FP S2 3 GPIO[10] Closed PROM Width 8 bit

FP S2 4 GPIO[11] Open '1' >Disables SPW Router

FP S2 5 & 6 GPIO[13..12] Open SPW Router ID '11'

FP S2 7 GPIO[14] Closed PROM EDAC disabled

FP S2 8 GPIO[15] Closed PROM I/O enabled

FP S3 1 Open DSU Enabled

FP S3 2 Open MEM CLK is taken from Xtal X2

FP S3 3 Closed PLL for SYS_CLK enabled (close for 'bypassed')

FP S3 4 Closed PLL for MEM_CLK enabled (close for 'bypassed')

FP S3 5 Closed PLL for SPW_CLK enabled (close for 'bypassed')

FP S3 6 Open Disable PLL lock

FP S3 7 Closed Ethernet Clock: 100M Ethernet on ETH 0 and ETH1

FP S3 8 Open WD output does not cause board reset

Figure 3.2: The front panel switch con�guration used in this project.

The plug-on board The plug-on board can be found on the bottom of the devel-

opment board and is shown in Figure 3.3. The plug-on board is used to con�gure the

SDRAM memory interface. The GR-CPCI-GR740 board has two SODIMM modules

which o�er a 96 bit wide SDRAM data interface to the GR740 processor. However, the

GR740 processor can operate in di�erent memory modes including full-width (96 bit)

and half-width (48 bit) operation. The upper 48 data bits of the SDRAM interface are

multi-functional pins which are shared with the PCI and Ethernet_1 interfaces. This

means that the user can choose to use the full 96 bit width if no PCI or Ethernet func-
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tionality is needed, or use the 48 bit half-width if it is. This is what the plug-on board

is used to con�gure [1]. The settings are summarized in Table 3.3. Within the scope of

this project neither PCI or Ethernet is used, so the plug-on board is installed on position

J23 in order to use the full memory width.

Figure 3.3: The plug-on board in of the three possible positions [1].

Table 3.3: Plug-on board con�gurations [1]

Plug Position Con�guration
J21 48 bit memory + PCI

J22 48 bit memory + ETH1

J23 96 bit memory

3.2 Installing The RTEMS Cross Compiler

The RTEMS Cross Compiler (RCC) is provided for two host platforms, Linux/x86_64

and Windows/x86_64. This section describes the installation of the latter version. RCC

is available for download on the website of Cobham Gaisler at www.gaisler.com.

Go to Downloads -> Compilers -> RCC linux, cygwin and mingw binaries -> mingw

and download the �le sparc-rtems-5-gcc-7.2.0-1.3-rc6-mingw.zip or a later

version if release candidate (rc) 6 is no longer available. This is the version that was

used during this thesis project and which this setup description is based upon. If any

unexpected errors occur during the setup please beware of mentions in the RCC user

manual regarding updates in later release candidates. The downloaded zip �le must be
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Figure 3.4: Top view of the GR-CPCI-GR740 development board [1].

Figure 3.5: Front panel of the GR-CPCI-GR740 development board [1].
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extracted to C:\opt and should thereby create the directory C:\opt\rcc-1.3-rc6-

gcc. Now add the directory C:\opt\rcc-1.3-rc6-gcc\bin to your system path if

you wish to be able to run the toolchain executables from the command line. In Windows

10 this can be done by right clicking on This PC in the �le explorer and then clicking

Properties ->Advanced system settings->Environment variables.

RCC needs some basic tools like those found on UNIX systems to function properly. In

order to create a UNIX like development environment on Windows the MSYS package can

be installed. It is available for download at www.mingw.org. The MSYS installation is

handled through the MinGW installation manager. If MinGW is already installed simply

open the installation manager. Otherwise, download the �le mingw-get-setup.exe

and run it with default settings to install MinGW and open the MinGW installation

manager. The MSYS base version must be 2013.07.23 or later [7]. In addition to the

MinGW and MSYS base packages (make sure to mark the packages mingw32-base-bin

and msys-base-bin for installation), a few additional packages need to be installed.

� msys-�ndutils

� msys-m4

� msys-perl

In the installation manager, go on All Packages -> MSYS and make sure to mark these

packages for installation. Only the package components ending in -bin are necessary.

Afterwards, click on Installation -> Apply Changes to initiate the package installations.

After the installation, add the paths C:\MinGW\bin and C:\MinGW\msys\1.0\bin

to the system path.

The directory where the RCC toolchain is installed (C:\opt\rcc-1.3-rc6-gcc) must

be found at opt\rcc-1.3-rc6-gcc from the MSYS environment. This is done by

adding the line C:/opt/rcc-1.3-rc6-gcc /opt/rcc-1.3-rc6-gcc at the bot-

tom of the �le fstab found at C:\MinGW\msys\1.0\etc. The path to the toolchain

binaries (C:\opt\rcc-1.3-rc6-gcc\bin) must be added to the MSYS PATH envi-

ronment variable. This is done by running the MSYS shell (run msys.bat) and execut-

ing the following command: export PATH=/opt/rcc-1.3-rc6-gcc/bin:$PATH.

At this point the toolchain installation can be tested by compiling the samples included

in the toolchain. From within the MSYS shell, run the following two commands:

� cd /opt/rcc-1.3-rc6-gcc/src/samples
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� make

Please note that the samples found in this directory are very helpful to understand the

structure of applications written for RCC. They are great starting points for develop-

ment.

As a �nal (although optional) step, the RCC user manual recommends installing the

RTEMS kernel source code. It can be downloaded from the website of Cobham Gaisler,

at Downloads -> Compilers -> RTEMS source code. The �le name is rtems-5-1.3-

rc6-src.txz. After downloading, extract the contents to C:\opt\rcc-1.3-rc6-

gcc\src so that the resulting path becomes C:\opt\rcc-1.3-rc6-gcc\src\rcc-

1.3-rc6.

For instructions on how to install in an Linux environment, please see the RCC user

manual [3].

3.3 Installing GRMON

In order to load the compiled executable onto the development board it is possible to

use the debug monitor software GRMON. Within the scope of this project the version

GRMON3 Professional was used. GRMON relies on a few di�erent components being

available on the used system to fo function. This section describes these components,

their installation and �nially the installation of GRMON itself. Please note that in order

to download some components from Cobham Gaisler's website you will need a password

and a username. These login details are delivered together with the development board.

Java 8 Both GRMON (at least the GUI) and Eclipse need Java to work. Install

Java version 8 or later on the system [4]. Java is freely available online at the address

https://www.java.com/en/download/. Simply download the installer and follow

the setup.

Sentinel LDK runtime GRMON is licensed using a Sentinel LDK USB hardware

key. This means that in order to run GRMON a USB dongle with the correct license

must be connected to the development PC. Within the scope of this project a node-

locked (identi�ed by its purple color) key was used. As stated in the GRMON user
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manual, it is necessary to install the Sentinel LDK runtime in order for the PC to

validate the USB dongle. The latest LDK runtime is available for download as a zip �le

on the website of Cobham Gaisler, at Downloads-> Debug Tools. Extract the archive

to a desired destination and �nd detailed installation instructions in the README �le.

However, ignore all instructions about installing haspvlib_<vendorID>.so and/or

haspvlib_x86_64_<vendorID>.so [4].

D2XX When using Windows, GRMON will need the so-called D2XX interface devel-

oped by Future Technology Devices International Limited (FTDI) in order to communi-

cate with the board via the USB interface. The D2XX driver is available for download

at https://www.ftdichip.com/Drivers/D2XX.htm. Locate the Windows ver-

sion and click the link setup executable. Extract the downloaded archive and run the

�le CDM21228_Setup.exe to complete the installation [7]. Make sure to restart the

computer after this step.

GRMON3 Professional GRMON3 Professional is available for download as a zip �le

at Cobham Gaisler's website on the same page the the Sentinel LDK runtime. Version

3.0.16 or later is required in order to connect to the development board. After download-

ing the archive can be extracted to a desired destination, and it is recommended to add

the path <your_path>\grmon-pro\windows\bin64 to your system path variable

[7].

3.4 Setting Up Eclipse For Development And Debugging

The Eclipse IDE is a popular development platform and was used as the primary IDE

during this project. This section describes the Eclipse installation process and how to

set up an Eclipse project for debugging a LEON target, such as with development for

the GR-CPCI-GR740 development board.

The provided guide [5] states that it is written for Eclipse IDE for C/C++ Developers

2019-09 but is likely to work with other versions as well as long as all the necessary plugins

are available. It is recommended to install the latest version of Eclipse IDE for C/C++

Developers. Before continuing make sure that the software components mentioned in the

previous sections of this chapter are installed, especially Java (as mentioned in Section

3.3), since Eclipse needs Java to work.
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3.4.1 Installation and project setup

The latest version of Eclipse is freely available for download at https://www.eclipse.

org/. Run the installer and follow the instructions therein whilst making sure to install

Eclipse for C/C++ Developers. After installation, create a new project by clicking File

-> New -> C/C++ Project. Select the Managed Build template and click Next. Now

enter the name of your project and under Project type select Hello World ANSI C Project.

Under Toolchains, select Cross GCC and click Next. Now customize the input values as

desired before clicking Next. Click Advanced settings....

In the settings tree, select C/C++ Build -> Tool Chain Editor. Set Con�guration to

Debug and at Current Builder choose CDT Internal Builder. Now change Con�guration

to Release and choose the same internal builder.

Now go to C/C++ Build -> Settings and set Con�guration to All con�gurations. Select

Cross GCC Compiler -> Miscellaneous and add the compiler �ags -qbsp=gr740 -

mcpu=leon3 to the �eld Other �ags. These �ags control compiler behaviour and the

choices are described in detail in Chapter 2 of the RCC user manual[3]. Now select Cross

GCC Linker and add the same �ags in the �eld Linker �ags. Click Apply and close and

then Next.

In the �eld Cross compiler pre�x enter the pre�x of the toolchain, i.e. sparc-gaisler-

rtems5-, including the trailing hyphen. In Cross compiler path enter the path to the

bin folder of the toolchain, i.e. C:\opt\rcc-1.3-rc6-gcc\bin. Now press Finish.

It should now be possible to build the project by clicking Project -> Build Project [5].

Finally, go to Project -> Properties -> C/C++ General -> Paths and Symbols and

open the Includes tab. Click on GNU C and add the path C:\opt\rcc-1.3-rc6-

gcc\sparc-gaisler-rtems5\gr740\lib\include to the Include directories list.

This will allow eclipse to �nd the board-speci�c header �les provided by Cobham Gaisler.

3.4.2 Debugging setup

In order to correctly load the compiled executable and debug the code as it is running

on the target a hardware debug con�guration must be made in Eclipse. Click on Run

-> Debug Con�gurations.... Double click on GDB Hardware Debugging to create a new

con�guration. Now verify that the project name is correct and that the path in C/C++
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Application is set to the application to be debugged. Go on the Debugger tab and

add the path to the GDB executable at GDB command, i.e. C:\opt\rcc-1.3-rc6-

gcc\bin\sparc-gaisler-rtems5-gdb.exe. Now set JTAG Device to Generic

TCP/IP and enter 2222 in Port number. This number must match the port number

opened by GRMON when starting the GDB server (see the following section).

Go to the Startup tab and add monitor gdb reset to the text-box at the top. Verify

that Load Image and Load Symbols are both checked. Check the Set breakpoint at box

and add main in the �eld. Now add monitor gdb postload to the second text-

box. Please note that this command can lead to problems and the IDE setup guide

from Cobham Gaisler states that this line can be excluded without any issues in the vast

majority of cases. During this bachelor thesis project, the addition of this line led to

problems during debugging and was therefore not used.

Finally, make sure Resume is checked [5].

3.4.3 Debugging with Eclipse

As a �rst step, make sure to have the development board in an unpowered state. Connect

the development PC to the board via the provided USB cable, the port is visible in the

lower left corner of Figure 3.5. Be aware that the connection when using the provided

cable can be non-ideal since the casing around the cable connector prevents a tight �t into

the port. One might consider using an alternative cable. Provided that all the hardware

settings as described in Section 3.1 have been con�gured, it is now safe to power the

board.

Before it is possible to start debugging, GRMON must be started. While it is possible

to do this in the command line outside of Eclipse it is more convenient to fully control

the debugging process from within one application, namely Eclipse. In order to achieve

this a new terminal can be created by clicking the terminal icon in the Eclipse tool bar.

The icon is highlighted in Figure 3.6.

Figure 3.6: The terminal icon in the Eclipse tool bar.

Choose a local terminal with UTF-8 encoding in the pop-up dialog. Click OK and the

terminal window should open at the bottom of Eclipse. To start GRMON and enable it
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to act as a GDB server (which is necessary for debugging the target), run the following

command in the opened terminal: grmon -ftdi -ucli -gdb. Remember that the

USB hardware key must be connected to the PC in order to run GRMON.

The -ftdi �ag speci�es the debug interface which is used. Possible options can be

found in the GRMON user manual [4] Chapter 5. The -ucli �ag makes sure that

Eclipse prints the output sent from the board to PC to the GRMON terminal. This

printing functionality is helpful during debugging and the usage of this �ag is mentioned

in the FAQ of the IDE setup guide [5] as a solution to non-working calls to printf in

the embedded code. The -gdb �ag starts the GDB server and can be speci�ed with a

port number as such -gdb [port]. This port number must match the number set in

the debug con�guration as described in Section 3.4.2.

If the setup is correct, a JTAG scan is performed and detected devices are printed to the

terminal as seen in Figure 3.7. In case of errors, make sure that the USB cable has a

proper connection to the board. The FAQ of the IDE setup guide [5] is a good resource

for solving debug related problems.

Figure 3.7: Running the command to start GRMON from within Eclipse.

At this point, assuming GRMON has started correctly and the project can be built

without errors, debugging can begin. Click the arrow on the green Debug As... icon

on the Eclipse tool bar and choose the debugging con�guration which was created as

described in Section 3.4.2. This should start the debugging process. If the board is to be

restarted GRMON must be restarted as well. Write q in the terminal to exit GRMON.
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3.5 The SpaceWire MK3 Brick

The previous sections of this chapter have explained the setup necessary for the top-most

connection between the PC and development board in Figure 3.1, namely the debug

interface. In this section, the bottom-most connection of the �gure is described. The

purpose of this connection is to communicate with the board via SpaceWire from the

development PC. By loading an application onto the board and then using the SpaceWire

MK3 brick to send a SpaceWire packet and receive any potential reply to the PC, the

behavior of the embedded application can be evaluated. Therefore, it is an important

part of debugging when developing an application which involves SpaceWire protocol

handling. Whereas this section describes how to set up and use the SpaceWire MK3

brick, it is advisable to �rst read Section 2.6 for a more detailed understanding of the

inner workings of the brick.

3.5.1 Physical Setup

The MK3 brick has two di�erent SpaceWire interfaces available through port 1 and 2.

It does not matter which one is used as long as the chosen port is noted and used later

in the relevant software settings. The brick is connected to the PC via the USB 3.0

port available on its rear view panel, however this should be done �rst after the proper

software and drivers have been installed so that the PC will correctly identify the brick.

To connect to the development board, make sure it is in an unpowered state before

attaching a SpaceWire cable to one of the eight SpaceWire ports (not counting port 0

which is the SpaceWire debug interface of the board). Then connect the other end of

the cable to the brick via port 1 or 2 found on the front panel.

3.5.2 Software Installation

The necessary software and drivers are saved on a CD which should be found together

with the SpaceWire MK3 brick. The components can be installed directly from the CD

and after installation there should be a shortcut called STAR-System - Shortcut placed

on the desktop. Now the brick can be connected to the PC. The desktop shortcut leads to

a folder of shortcuts which in turn leads to documentation and some useful executables.

The documentation (such as [13]) is given in the form of a collection of HTML documents.
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The executables are small GUI programs intended for convenient control of the brick.

Three very useful executables are:

� Device Con�guration: Allows for easy con�guration of the brick through the

presented GUI. Here it is possible to set the internal SpaceWire router to either

router or interface mode, as well as con�gure the router table and connections

between the channels and SpaceWire ports. See Section 2.6 for more details.

� Receive: Listens for and displays incoming packets as raw bytes.

� Transmit: Allows user to de�ne the raw bytes to be sent and then transmit them.

Also has functionality for injecting EEP errors in packets.

There are other executables available in the shortcut folder, however only these three

were used for development within the scope of this thesis. When many di�erent packets

are to be sent it quickly becomes cumbersome to use these simple GUI applications.

Therefore, one can instead turn to the provided C++ API.

3.5.3 C++ API

The STAR-System C++ API allows the user to control all brick operations through

custom applications. This is very useful when developing a test-bench which needs to

send and/or receive packets via SpaceWire. The fastest way to get started with the

brick's C++ API is by going through some of the provided examples, which can be

found after installation at:

C:\Program Files\STAR-Dundee\STAR-System\apis\cpp_api\examples.

It is described in detail in [13].
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The requirements for both the embedded application and the test-bench developed during

this project stem from a set of initial requirements de�ned at the project beginning that

sequentially has been modi�ed and added to. They are mainly a result of discussions

between the student and the primary thesis supervisor, although the RMAP speci�cation

is also an important source as it de�nes large parts of the code behavior. The activity

diagrams in Section 5.2.1 are tightly coupled to the requirements regarding the RMAP

handling and are useful as a graphical overview of what here is described in text. The

requirements are listed in the following subsections.

4.1 Embedded Application

1. The application is to be run on a LEON4 processor on a GR740 SoC.

2. The application must con�gure the hardware necessary for SpaceWire communica-

tion.

a) The application must con�gure the on-board SpaceWire router to allow com-

munication between the GR740 and a SpaceWire source node external to the

development board.

b) The application must set up a SpaceWire interface for communication.

3. The application must be able to receive incoming SpaceWire packets.

4. The application must support continuous operation without manual intervention

(e.g. reset).

5. The application must make sure the RMAP handling is done in software and not

in hardware.

61



4 Requirements

6. The application must de�ne a valid memory area from which RMAP commands

can read or write to.

7. The application must de�ne a destination key.

8. The application must de�ne a logical address.

9. The application must react and reply to incoming RMAP communication according

to the behavior of a destination node as speci�ed in the RMAP standard.

a) Incoming packets terminating with an EEP shall be discarded.

b) Incoming truncated packets shall be discarded.

c) Incoming packets with a protocol ID of a value not equal to 0x01 shall be

discarded.

d) Incoming RMAP packets with an incorrect header CRC shall be reported to

a CRC error counter and then discarded.

e) Incoming RMAP reply type packets shall be ignored.

f) Incoming RMAP commands with an unexpected destination key and a set ac-

knowledge bit shall cause a RMAP reply with a status code reporting "Invalid

destination key". If the acknowledge bit is not set the command is discarded

and ignored.

g) The application must handle incoming RMAP Read commands.

i. A read command trying to read outside the valid memory area and hav-

ing a set acknowledge bit shall cause a RMAP reply with a status code

reporting "RMAP command not implemented or authorized". If the ac-

knowledge bit is not set the command is discarded and ignored.

ii. A completely valid read command shall cause a reply containing the re-

quested data and a status code reporting "Command executed success-

fully".

h) The application must handle incoming RMAP Write commands.
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i. A write command trying to write outside the valid memory area and

having a set acknowledge bit shall cause a RMAP reply with a status

code reporting "RMAP command not implemented or authorized". If

the acknowledge bit is not set the command is discarded and ignored.

ii. If there are fewer data bytes than declared in the command header and

the acknowledge bit is set, a reply with a status code indicating "Early

EOP" shall be sent. If the acknowledge bit is not set, no reply is sent. It

does not matter if some or all of the data has been written to memory

before this is discovered, but afterwards the command execution stops.

iii. If there are more data bytes than declared in the command header and

the acknowledge bit is set, a reply with a status code indicating "Cargo

too large" shall be sent. If the acknowledge bit is not set, no reply is sent.

It does not matter if some or all of the data has been written to memory

before this is discovered, but afterwards the command execution stops.

iv. A write command with a set Validate Before Write bit shall cause a check

if there is enough bu�er space available for data CRC veri�cation.

A. If there is not enough space and the acknowledge bit is set a reply

with a status code indicating "Verify Bu�er Overrun" shall be sent. If

the acknowledge bit is not set the command is discarded and ignored.

B. If there is enough bu�er space the data CRC shall be calculated and

compared to the CRC value in the command. If not valid a reply with

a status code of "Invalid Data CRC" shall be created and sent if the

acknowledge bit is set. If the acknowledge bit is not set the command

is discarded and ignored. If the data CRC is valid the command data

can be written to memory.

v. A write command with a cleared Validate Before Write bit shall not per-

form the Verify Bu�er Overrun and and Data CRC checks before data is

written to memory.

vi. After a write command that successfully writes all its data to memory

the data CRC of the written data shall be compared to the data CRC

in the command. If valid and the acknowledge bit is set a reply with a

status code indicating "Command executed successfully" shall be sent. If
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invalid and the acknowledge bit is set, a reply with a status code indicating

"Invalid data CRC" shall be sent. If the acknowledge bit is cleared no

reply is sent.

i) The application must handle incoming RMAP Read-Modify-Write commands.

i. The declared and found data lengths must be identical and be one of the

following values 0x00, 0x02, 0x04, 0x06, 0x08. If the value is not one of

these values a reply with status code indicating "RMW data length error"

shall be sent. If the data length was found invalid the command is then

discarded and ignored.

ii. If the command tries to perform the RMW action outside of valid memory

area a reply with a status code indicating "RMAP command not imple-

mented or authorized" shall be sent. The command is then discarded and

ignored.

iii. The data and mask CRC shall be calculated and compared to the CRC

in the command. If invalid, a reply with a status code indicating "Invalid

Data CRC" shall be sent. The command is then ignored and discarded.

iv. A valid RMW command shall cause the data in the command to be writ-

ten to memory according to an arbitrary scheme using the mask in the

command. The unmodi�ed data at the memory location before the write

operation shall be sent in a reply.

j) All RMAP replies must contain a transaction ID which matches the command

it responds to.

k) All replies must identify themselves as RMAP replies by using a protocol ID

value of 0x01.

l) All reply types designed to contain data must have a data CRC value appended

no matter if there is any data or not.

4.2 Test-bench

1. The test-bench shall be able to con�gure the SpaceWire MK3 brick.
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2. The test-bench shall be able to use the SpaceWire MK3 brick to send the three

di�erent types of RMAP commands and wait for and receive the corresponding

replies.

3. The test-bench shall be able to read instructions according to a de�ned format from

user-de�ned script �les.

4. The test-bench shall be able to send commands as de�ned in script �le instructions.

5. The script �les can contain multiple commands.

6. The test-bench shall be able to automatically perform instructions from several

script �les.

7. The test-bench shall create one output log �le per input script �le. The output log

�les shall contain information on the replies corresponding to the commands in the

script �le to which the output log �le corresponds.

8. The test-bench shall be able to detect if no reply was received within a certain

time-out.

9. The test-bench shall be able to detect and report incorrect instructions in script

�les.

10. The test-bench shall allow script �les to contain a header which will be copied to

the corresponding output log �le.

11. The test-bench shall include some automatic general checks (e.g. making sure that

incoming replies have the same transaction ID as the corresponding command) to

assist the developer to detect such errors.

12. The output log �les shall contain information on the raw bytes of the incoming

reply.

13. When performing a set of script �les, an error in one script �le shall not interrupt

the execution of following script �les.

14. Errors due to script �les or test-bench during testing shall be reported to the user.
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5.1 Overall system design

Figure 5.1 illustrates the original overall system design from the early stages of the project

development. It is a control hierarchy diagram showing how the top-most modules have

control over lower or same-level modules. The diagram includes hardware components

and software modules in order to give a more complete overview of the whole system.

To the right in the diagram are the modules which make up the test-bench and in the

lower left corner the embedded application can be seen. The modules for each of these

are discussed in the sections of this chapter. It is important to note that this is not the

�nal system design since a few modi�cations were done during the project, and some

parts were left out due to time constraints. The di�erences in the �nal design will be

mentioned in the upcoming sections, but Figure 5.1 is still useful for understanding the

system architecture.
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Figure 5.1: Diagram of the original system design including test-bench.

The overall design is mainly derived from dividing di�erent responsibilities into logical

blocks. For example, the module containing functions for con�guring the SpaceWire

router is separated from the module which contains packet handling functions. One part

of the design is inspired by a pattern mentioned in the book Making embedded systems

by Elecia White [14]. This is the well-known Model-View-Controller pattern but now in

an embedded environment. The three parts can then be described as follows:

� Model: The model is the module which represents the actual algorithm or func-

tionality that a developer wants to implement. It receives some data input and

provides some data output.

� View: The view represents the interface to the user, for example this can be panels

with push buttons or displays. More generally, the view is responsible for input

and output of data at the borders of a system.

� Controller: The controller is a translator between the model and view. It receives

input from the view and formats it in a way the model can understand. Similarly,
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it receives the output from the model and formats it in a way compatible with the

view.

What makes this pattern so useful is the interchangeability of the controller, which can

help separating the functionality of an application from the hardware. This makes it

possible to test the (overall) behavior of the model without needing the target hardware

[14]. In this design the MVC pattern is not used as the overall pattern, but should rather

be seen as a sub-pattern which is used for the planned connection between the packet

controller and the packet processing modules. The test scripts can be seen as the view in

this case, and the packet processing as the model. The packet processing contains func-

tions for interpreting and reacting to incoming SpaceWire packets as well as formulating

replies, all according to the RMAP speci�cation. This is the main functionality of the

embedded application. In the normal case, the SpaceWire packets handled by the packet

processing module will have been received by the GR740 from the SpaceWire MK3 brick.

This is the case when the brick controller has been used to send packets using the brick

as instructed by the test scripts. By adding the packet controller, which can translate the

instructions in the test scripts into the kind of data expected by the packet processing

module, the hardware is in e�ect bypassed and the packet processing functions can be

tested separately. This makes it convenient to test the application logic without access

to the target hardware. However, this is not an ideal type of testing since concepts like

timing will be di�erent on di�erent machines. In this case, where the RMAP handling

in the model also requires reading and writing to certain memory areas it becomes a bit

more di�cult to separate the model from the hardware. Therefore, testing the model

separate from the hardware could in this case be done by simply printing the actions

which would have been taken as response to a certain test-script. This would at least

allow for the RMAP handling logic to be tested separately.

The MVC pattern described here is mentioned in order to explain the original design.

Due to time constraints the packet controller and therefore direct connection between

the test-bench and embedded application could not be developed within the scope of this

project, and is left as a suggestion for future improvements. Currently, the test-bench

only controls the brick controller which in turn controls the SpaceWire MK3 brick. The

packet controller and abstract controller module do not exists at the moment of writing.
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5.2 Embedded Application

The design of the embedded application at the moment of writing is illustrated in Figure

5.2. It generally has the same structure as in the original design but with two additions,

the two modules containing macro de�nitions. The design is based on the example found

in the �le test.c located at C:\opt\rcc-1.3-rc6-gcc\src\samples\spw\grspw-

pkt after installing RCC.

Figure 5.2: Architecture of the embedded application

� con�g_de�nes: RTEMS is mainly con�gured by de�ning values for certain macros.

The de�nition of these macros is done in a separate module in order not to clutter

the main module. The values are mainly derived from the example upon which the

design is based.

� custom_de�nes: This module contains macro de�nitions for values which might

be needed throughout the application, such as the logical address of the GR740

de�ned by the user.

� grspw_pkt_lib: This module is mainly used to con�gure and control a SpaceWire

interface on the GR740. It was provided in RCC in the parent directory of the ex-

ample upon which this design is based.
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� spw_pkt_handler: This module contains the central part of the application,

namely the logic implementing the RMAP handling. It is responsible for performing

the received RMAP commands and creating RMAP replies.

� spw_router_lib: Is used for con�guration of the SpaceWire router on the GR740.

It is heavily based on the �le spwrouter_custom_config.c found together

with the example upon which the design is based.

� bsp/grspw_pkt: The SpaceWire packet driver (see Section 2.4.1).

� bsp/grspw_router: The SpaceWire router driver (see Section 2.4.2).

5.2.1 RMAP Handling

The activity diagrams presented in this section describe how the application handles

RMAP commands as a result of the RMAP speci�cation. It is almost completely com-

pliant with the RMAP speci�cation with a few di�erences stemming from the DMA

implementation of the packet driver. This is mentioned in the subsection on the RMAP

write command. Another di�erence is that the increment bit (see Section 2.2.1) of any

RMAP command will not have any e�ect in the current implementation.

The �rst part after reception of a RMAP packet is to do some general checks which are

relevant for any RMAP command. If all checks pass, the type of RMAP command is

found and the packet is then delegated to the corresponding command handler.
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Figure 5.3: Activity diagram of �rst actions upon received packet.
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Read Command Handling

Read command handling is the most straightforward, after a few checks pass the re-

quested data is appended to a RMAP read reply. If the checks don't pass, the correct

error code is set and given to the reply.

Figure 5.4: Activity diagram of the handling of a Read command.
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Write Command Handling

The write command handler is the most complicated of the three command handlers.

There are many checks involved and the implementation is not completely compatible

with the RMAP speci�cation. This is due to the use of DMA in the packet driver. The

issue is that the RMAP speci�cation implies that the incoming SpaceWire characters are

interpreted one-by-one as they are received. Therefore, RMAP handling and checking

are described as if the entire RMAP packet is not available at the start of handling

it. In the DMA implementation, interrupts for incoming SpaceWire packets can not

be generated on a character basis but only when a packet terminating EEP or EOP

is found. Therefore, when the waiting embedded application is woken up by incoming

communication, at least one entire packet will have been received. This makes e.g. the

Verify Bu�er Overrun check obsolete. According to the RMAP standard, after the header

of a RMAP packet is received the data length �eld is checked to make sure the incoming

data can �t in the available bu�ers before it is accepted. Since in this implementation

the entire packet is already received at the point of this check, there is little point in

performing it. Instead, in the beginning of the command handling a check is performed

to see if the packet was truncated, meaning that the entire packet is too big to �t in the

reception bu�ers. This is used as an alternative to the Verify Bu�er Overrun check even

though it in e�ect does not check the bu�er overrun based on the length of the data, but

on the length of the entire packet. This is a somewhat subtle di�erence.

Another di�erence from the RMAP speci�cation due to the use of DMA is the order of

checking the data length. According to the RMAP speci�cation the application should

look for an early EOP as the bytes are being written to memory. If the EOP is found

before the declared number of bytes have been written, this is an error of insu�cient data.

Conversely, if the declared number of bytes have been written but no EOP is found, this

is a data over�ow error. At the time at which either of these errors are found, it is possible

that data has already been written to the memory location. The RMAP speci�cation

allows this, even though the command is to be interrupted as soon as the error is found.

In the case of this implementation, there is no need to wait until after writing starts to

do these checks, since the entire packet with all the data is already received. Therefore

the checks for insu�cient data and data over�ow happen before writing starts.
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Figure 5.5: Activity diagram of the handling of a Write command.
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Also notice how a reply is always created no matter if the acknowledge bit is set or not.

Whether the reply is sent or not is decided outside the write command handler.

Read-Modify-Write Command Handling

The RMW handler shares many elements with the other two handlers. One di�erence is

the check for valid data lengths since the RMW command need the data length �eld to

be one of a set of values. When passing all checks the RMW command is performed as

described in Section 2.2.1.

Figure 5.6: Activity diagram of the handling of a RMW command.
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Currently, the biggest �aw in the RMW handling is that there is no check that makes

sure that the declared data length and the received data length are both the same, it is

assumed the declared data length is correct.

5.3 Test-bench

The �nal design of the test-bench is very similar to the original design. The only di�erence

is that the logger is only directly controlled by the rmap module instead of the test_bench

module.

Figure 5.7: Architecture of the test-bench.

� test_bench: Responsible for performing the automatic tests and keeping track of

errors occurring during the process.

� brick_con�g: Contains functions which can set up the SpaceWire MK3 brick for

operation.

� rmap: This corresponds to the brick controller in the original design. It contains

functions which uses the brick to send and receive RMAP packets.

� parser: This module is responsible for interpreting the instructions in the test

scripts given by the user into data structures that the rmap module can use.
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� logger: This module is responsible for creating the output log �les as a response

to each test script.

� STAR-System C++ API: The API provided by STAR-Dundee to control and

con�gure the SpaceWire MK3 brick.
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The embedded application and the test-bench both consist of too much code to conve-

niently include within this document. Instead, the two projects will be found on a CD

distributed together with this thesis. In this chapter, some important highlights of the

code are shown and explained.

The starting points for both projects were based on examples provided in the RCC

and STAR-System distributions. The embedded application is heavily based on the

�le test.c found at C:\opt\rcc-1.3-rc6-gcc\src\samples\spw\grspw-pkt

after installing RCC. It contains the main application, but also uses another �le in

the same directory responsible for router con�guration. This �le is the basis for the

created router handling module spw_router_lib.c. One directory above test.c

one can �nd the �le grspw_pkt_lib.c which was used in this project mainly for

SpaceWire device con�guration. Further �les were created, and some modi�ed, when

dividing the actions taken in test.c into separate modules. For example, the sec-

tion containing macro de�nitions for con�guring RTEMS were put in an own module

in order to make the main �le more readable. As the di�erent logical responsibilities

were divided up into separate modules, corresponding header �les were created as well.

The �les were all imported into an Eclipse project and the IDE environment set up as

described in Chapter 3. The starting point for the test-bench was an example Visual Stu-

dio project called rmap_examples.vcxproj found at C:\Program Files\STAR-

Dundee\STAR-System\apis\cpp_api\examples\rmap after installing STAR-System.

By importing this �le through Visual Studio a project is opened which contains exam-

ples of how to create RMAP commands using the STAR-System C++ API. This was

used as inspiration for the module responsible for using the SpaceWire MK3 brick for

transmitting and receiving RMAP commands. Another project in the same example

directory contains concrete examples on how to use the API to con�gure the MK3

brick. This project can be opened by importing the project �le device_config_-

tester.vcxproj in Visual Studio. Within the scope of this project, Visual Studio

Community 2017 version 15.9.16 was used for test-bench development.
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If the developed project will be used as a starting point for further development, please be

aware that the project will most likely need some changes to run on a new development

PC. Speci�cally, all paths (such as the include paths) will need to be changed to match

the new environment. Furthermore, there might be changes in directory structure if

using another release candidate than RC6, which is used in this project, so header �les

might be found in other places than those expected by the #include statements in the

code.

6.1 Embedded Application

As previously mentioned, RTEMS is mainly con�gured through de�ning a set of macros.

The bulk of the con�guration used in this project is seen in Listing 6.1.

Listing 6.1: RTEMS con�guration through macro de�nitions

/* con f i g u r a t i on in format ion */

#define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER

#define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER

/* The shared IRQ lay e r need one semaphore .

*/

#define CONFIGURE_MAXIMUM_TASKS 8

#define CONFIGURE_MAXIMUM_SEMAPHORES 20

#define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 20

#define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32

#define CONFIGURE_MAXIMUM_DRIVERS 32

#define CONFIGURE_MAXIMUM_PERIODS 1

#define CONFIGURE_RTEMS_INIT_TASKS_TABLE

#define CONFIGURE_INIT_TASK_ATTRIBUTES RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT

#define CONFIGURE_EXTRA_TASK_STACKS (40 * RTEMS_MINIMUM_STACK_SIZE)

#define CONFIGURE_MICROSECONDS_PER_TICK RTEMS_MILLISECONDS_TO_MICROSECONDS(2)

#include <rtems/ con fd e f s . h>

/* Configure Driver manager */

#i f de f ined (RTEMS_DRVMGR_STARTUP) && de f ined (LEON3) /* i f ==drvmgr was g iven to con f i gu r e */

/* Add Timer and UART Driver */

#i f d e f CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER

#de f i n e CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER

79



6 Implementation

#end i f

#i f d e f CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER

#de f i n e CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART

#end i f

#endif

#define CONFIGURE_DRIVER_AMBAPP_GAISLER_SPW_ROUTER /* SpaceWire Router */

#define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW2 /* SpaceWire Packet d r i v e r */

#include <drvmgr/drvmgr_confdefs . h>

The de�nition of the �rst two macros makes sure there is a clock tick driver and a

console driver, the latter in order to enable printing which is useful for debugging. The

following six macros de�ne some maximum numbers of OS objects. This will cause

RTEMS to allocate enough space for as many objects in the application image. The

values currently used are directly derived from the example �le and do not re�ect the

needs of the developed RMAP application. Therefore these values should be decreased

in order to decrease the size of the �nal application.

The following three macros set some attributes for RTEMS tasks. The default attributes

with the addition of �oating point arithmetic are set, but the latter could most likely

be removed for the RMAP application since no �oating point arithmetic is needed. The

CONFIGURE_EXTRA_TASK_STACKS parameter controls how many bytes should

be added to the task size which is calculated automatically when using the rtems/-

confdefs.h �le. It is used to give a task some margin in case it should make use of

more memory than calculated by the automatic mechanism. As seen in the listing, here

we give the tasks lots of margin by adding an extra 40 times of the calculated task stack

size. This is just a value from the example and can probably be set to 0, which is the

default value for this macro. The tasks should have enough stack space without any

addition, as is discussed a bit later when showing how a task is created.

The following section contain C preprocessing directives which controls the de�nition of

some macros which in turn control the con�guration of timer and UART drivers necessary

for the clock and and console driver. The �nal two macros makes sure that RTEMS

includes drivers for the SpaceWire router and the SpaceWire cores on the GR740 SoC.

More details on these and all available macros can be found in the RTEMS documentation

[11].
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Listing 6.2 shows the entry point of the embedded application. RTEMS uses a function

called Init as its entry point, as opposed to the common main().
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Listing 6.2: Initialization of RTEMS application

rtems_task I n i t ( rtems_task_argument ignored )

{

struct router_hw_info router_hw ; // conta ins hw in f o o f spw rou te r

grspw_work_task_priority 11 ;

#ifde f DEBUG

/* Print dev i c e t opo l o gy */

drvmgr_print_topo ( ) ;

rtems_task_wake_after ( 4 ) ;

#endif

/* Create t a s k */

rtems_task_create (

rtems_build_name ( 'R ' , 'M' , 'A ' , 'P ' ) ,

12 , RTEMS_MINIMUM_STACK_SIZE * 2 , RTEMS_DEFAULT_MODES,

RTEMS_FLOATING_POINT, &tid_rmap ) ;

/* I n i t i a l i z e the SpW rou te r */

PRINTF( " Se t t i ng  up SpaceWire route r \n" ) ;

i f ( router_setup_custom(&router_hw ) ) {

PRINTF( " Fa i l ed  route r  i n i t i a l i z a t i o n \n" ) ;

e x i t ( 0 ) ;

}

/* I n i t i a l i z e the SpW dev i c e to use */

memset(&spw_dev , 0 , s izeof ( struct grspw_dev_ext ) ) ;

i f ( grspw_dev_init(&spw_dev ) ) {

PRINTF( " Fa i l ed  to  i n i t i a l i z e  GRSPW0\n" ) ;

e x i t ( 0 ) ;

}

/* S ta r t DMA channel ope ra t i ons on dev i c e */

i f ( grspw_start(&spw_dev ) ) {

PRINTF( " Fa i l ed  to  i n i t i a l i z e  GRSPW\n" ) ;

e x i t ( 0 ) ;

}

PRINTF( " Started  Su c c e s s f u l l y \n" ) ;

/* S ta r t the t a s k */

rtems_task_start ( tid_rmap , rmap_task , 0 ) ;

rtems_task_suspend ( RTEMS_SELF ) ;

}
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Init needs one argument, but as is implied by the parameter name it is not used in this

application. The main actions of this function is to create the task that is the RMAP

application, con�guring and starting the SpaceWire core and router, and �nally starting

the RMAP task before suspending itself. The DEBUG macro is used to control whether

debugging information should be printed to console. The macro is de�ned in custom_-

defines.h and also controls whether the PRINTF statement is replaced by the normal

printf function or by nothing during preprocessing.

There are some things to note in the task creation. All RTEMS tasks have a name

associated with them, in this case that name is �RMAP�. The following parameter is

the task priority, which in this case is set somewhat arbitrarily to 12. In RTEMS, tasks

with numerically lower priorities are more important. Therefore the priority of the work

task is set to 11, which means it has priority over the main application. This is done in

order to allow the work task to quickly process incoming communication and make the

necessary moves between DMA queues without being blocked by any command handling

(see Section 2.3.1). The following parameter controls how much stack size is allocated

for the task. As mentioned, when using the rtems/confdefs.h module the macro

RTEMS_MINIMUM_STACK_SIZE is automatically calculated by RTEMS. To give

some margin for unexpected stack usage, this value is doubled in the function call to

give the task twice as much space as expected.The two following parameters specify the

attributes of the task, just like in the RTEMS con�guration the �oating point option could

most likely be left out for the purposes of the RMAP application. The �nal parameter is

the address of a variable in which an integer acting like a unique task ID will be saved.

Listing 6.3 shows the main loop of the RMAP task. It mainly handles the data bu�ers

in terms of handing them to and retrieving them from the DMA drivers. The way

it currently works is that the task waits for at least one received SpaceWire packet,

retrieves it and hands it over to the command handling function which is the entry point

of the packet handling. All the RMAP command actions are performed by the command

handler and lower-layer functions which also are in charge of creating a reply which

may or may not be sent, depending on the acknowledge bit in the RMAP command.

In the current implementation, every incoming command is handled and responded to

before the next command is handled. An alternative implementation would be to handle

all received commands and save the replies, and then schedule the created replies for

transmission after every command has been handled. In the case of many commands

received at once, the source node would then have to wait for all the commands to be

processed before receiving any feedback. The current implementation was chosen since
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it minimizes the time between the source node sends the command to that it receives a

reply.

Listing 6.3: Main loop of RMAP application

while (1 ) {

/* Schedu le rx b u f f e r s f o r r e c ep t i on */

grspw_dma_rx_prepare ( dev=>dma [ 0 ] , 0 , &rx_lst , rx_l i s t_cnt ) ;

rx_l i s t_cnt 0;

gr spw_l i s t_c l r (&rx_lst ) ; // d e s c r i p t o r s owned by dr i ver , we shouldn ' t acces s during rx

/* Wait u n t i l a t l e a s t 1 packe t in RECV queue */

grspw_dma_rx_wait ( dev=>dma [ 0 ] , 1 , 0 , 31 , 0 ) ;

/* Receive in t o l i s t */

rxcnt =1;

grspw_dma_rx_recv ( dev=>dma [ 0 ] , 0 , &temp_lst , &rxcnt ) ;

/* React acco rd ing l y to each r e c e i v ed packe t */

for ( pkt temp_lst . head , r ep ly tx_lst . head ;

pkt && rep ly ; pkt pkt=>next , r ep ly reply=>next ) {

/* Perform command and crea t e r e p l i e s */

ack command_handler ( pkt , r ep ly ) ;

/* Send r ep l y i f ack b i t was s e t in command */

i f ( ack > 0){

txcnt =1;

/* Send rep ly , wai t f o r complet ion , r e s t o r e r e p l y b u f f e r */

grspw_dma_tx_send( dev=>dma [ 0 ] , 0 , &tx_lst , 1 ) ;

grspw_dma_tx_wait ( dev=>dma [ 0 ] , 0 , 0 , 0 , 1 ) ;

grspw_dma_tx_reclaim ( dev=>dma [ 0 ] , 0 , &tx_lst , &txcnt ) ;

}

}

/* Prepare rx l i s t s f o r f u t u r e t ransmis s i ons */

i f ( rxcnt > 0) {

grspw_list_append_list (&rx_lst , &temp_lst ) ; // reuse rx b u f f e r s

rx_l i s t_cnt + rxcnt ;

gr spw_l i s t_c l r (&temp_lst ) ;

}

}
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Another important thing to understand is the set up of the routing table of the SpaceWire

router. This is mainly done through de�ning a struct later used in a con�guration

function. The beginning of this struct is seen in Listing 6.4.

Listing 6.4: Beginning of routing table con�guring struct

stat ic struct router_rout ing_table rout ing_table

{

. f l a g s ROUTER_ROUTE_FLG_MAP | ROUTER_ROUTE_FLG_CTRL,

. a con t ro l {

. c on t r o l_ l o g i c a l {

/* 020 . .027 */ 0x5 , 0x5 , 0x5 , 0x5 , 0x5 , 0x5 , 0x5 , 0x5 ,

/* 020 . .02 f */ 0x5 , 0x5 , 0x5 , 0x5 , 0x5 , 0x5 , 0x5 , 0x5 ,

/* 030 . .037 */ 0x4 , 0x5 , 0x5 , 0x5 , 0x5 , 0x5 , 0x5 , 0x5 ,

/* 030 . .03 f */ 0x5 , 0x5 , 0x5 , 0x5 , 0x5 , 0x5 , 0x5 , 0x5 ,

. . .

This struct allows the developer to con�gure address control and port routing through

the corresponding .acontrol and .portmap members. Address control lets the developer

choose whether packets with a certain address should have e.g. their header deleted or

if they are of a higher priority than other packets. Like seen in the listing, each logical

address (starting with 0x20 32) have a separate integer de�ning which of four bit �ags

should be set or cleared. In the current implementation, the GR740 is given a logical

address of 0x68 and the SpaceWire brick acting as a source node is given an address

of 0x30. As seen in the listing, at the index corresponding to 0x30 the value di�ers

from the default value. This is because the rightmost bit is cleared in order to disable

header deletion. This means that packets coming to the router will not have the �rst

byte deleted before being passed on. The same thing is done at the index corresponding

to address 0x68, as header deletion is not used in either direction.

Listing 6.5: Port routing section of routing table con�guring struct

stat ic struct router_rout ing_table rout ing_table

{

. . .

. pmap_logical {

/* 020 . .027 */ 0x00000002 , 0x00000002 , 0x00000002 , 0x00000002 , . . .

/* 028 . .02 f */ 0x00000002 , 0x00000002 , 0x00000002 , 0x00000002 , . . .

/* 030 . .037 */ 0x00000002 , 0x00000004 , 0x00000004 , 0x00000004 , . . .

/* 038 . .03 f */ 0x00000008 , 0x00000008 , 0x00000008 , 0x00000008 , . . .
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. . .

In Listing 6.5 a nested member of the .portmap member is shown. This member controls

the port routing of the SpaceWire router. At each index there is a number representing

a group of bit �ags, where each bit sets the port or ports on which an incoming packet

with an address matching that index should be routed to. For example, if one wants

to send an outgoing packet on the �rst SpaceWire port of the router (as in the case in

this project) one must set the second least signi�cant bit, i.e. 0x00000002. As seen in

the listing this is the value set for the index matching the address 0x30, which is the set

address of the SpaceWire brick. Therefore, all packets arriving at the router with the

logical address 0x30 will be routed out of the �rst SpaceWire port. The least signi�cant

bit corresponds to the con�guration port of the router, which is why the �rst SpaceWire

port is represented by the second bit. Multiple bits can be set if an incoming packet

should be routed to several addresses. This is a practical example of the group adaptive

routing mentioned in Section 2.1.3. Similarly, the value set at the index matching address

0x68 is set to a value of 0x00000200. This means that all incoming packets with address

0x68 will be routed to the ninth port of the router. Remember that the router on

GR740 has eight SpaceWire ports and that the AMBA port numbering starts after the

SpaceWire ports. That means that the �rst AMBA port is port 9, which is why the

corresponding bit is set for this port. If the incoming packets would not be routed to

an AMBA port, they are not available to the rest of the GR740 and it will appear as if

there are no incoming packets.

As previously mentioned, it is not feasible to go through all of the developed code within

the scope of this document. Hopefully the comments and variable names in the source

code together with the theory given in this document are su�cient for future developers

to understand and make use of the existing code. One �nal piece of code which could be

useful to show however, is one of the RMAP command handlers. Speci�cally, the handler

for the read command. The other command handlers are similar in structure, with the

main di�erence being how they react to the command.

Listing 6.6: RMAP read handler

/* Handles incoming read commands and formu la t e s a r e p l y .

* @pkt ( s t r u c t * ) : Pointer to the packe t d e s c r i p t o r con ta in ing

* the read command .

* @reply ( s t r u c t * ) : Pointer to a d e s c r i p t o r which w i l l ho ld the
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* r e p l y to the command .

* */

void rmap_read_handler ( struct grspw_pkt *pkt , struct grspw_pkt * r ep ly ){

struct rmap_pkt* p_pkt ( struct rmap_pkt*) pkt=>data ;

unsigned int i , data_len , r_adr ;

data_len arr_to_24bit (p_pkt=>hdr . data_len ) ;

r_adr arr_to_32bit (p_pkt=>hdr . wr_addr ) ;

/* Reply has no data by d e f au l t , j u s t data crc (0) */

* ( (U8*) rep ly=>data ) 0 ;

rep ly=>dlen 1 ;

/* Check i f HW de t e c t e d e r ro r s in t ransmis s ion */

i f ( pkt=>f l a g s & (RXPKT_FLAG_EEOP | RXPKT_FLAG_TRUNK)) {

i f ( pkt=>f l a g s & RXPKT_FLAG_TRUNK){

PRINTF( "Packet too  l a r g e \n" ) ;

make_read_reply ( reply , pkt , RMAP_ERROR_GENERAL_ERROR) ;

return ;

}

else i f ( pkt=>f l a g s & RXPKT_FLAG_EEOP){

PRINTF( "EEP detec ted  in  packet \n" ) ;

make_read_reply ( reply , pkt , RMAP_ERROR_EEP) ;

return ;

}

}

/* Ver i f y the d e s t i n a t i o n key */

i f (p_pkt=>hdr . dst_key ! RMAP_DEST_KEY){

PRINTF( " In c o r r e c t  d e s t i n a t i on  key :  \%d\n" , p_pkt=>hdr . dst_key ) ;

make_read_reply ( reply , pkt , RMAP_ERROR_INVALID_DEST_KEY) ;

return ;

}

/* Ver i f y data l o c a t i o n and l en g t h */

i f ( ( r_adr + data_len ) > MEM_END | | r_adr < MEM_BEGIN){

PRINTF( "Cannot read from unauthor i sed  memory area \n" ) ;

make_read_reply ( reply , pkt , RMAP_ERROR_COM_NOT_IMP_AUTH) ;

return ;

}

i f ( data_len > MAX_RMAP_DATA_SIZE){

PRINTF( "Too l a r g e  chunk o f  data to  read\n" ) ;

make_read_reply ( reply , pkt , RMAP_ERROR_COM_NOT_IMP_AUTH) ;
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return ;

}

// A l l checks passed , now we perform the command

/* Read the r eque s t ed data in t o r e p l y b u f f e r */

for ( i 0 ; i < data_len ; i++){

* ( (U8*) rep ly=>data + i ) * ( (U8*) r_adr + i ) ;

}

/* Ca l cu l a t e and append data CRC to data */

* ( (U8*) rep ly=>data + data_len ) RMAP_CalculateCRC( reply=>data , data_len ) ;

rep ly=>dlen data_len + 1 ; //+1 from data crc

make_read_reply ( reply , pkt , RMAP_COMMAND_SUCCESS) ;

return ;

}

All incoming data of a SpaceWire packet is put in the data �eld of the RX descriptor.

As a �rst step, the content of this �eld is interpreted as a struct that has the same

structure as a generic RMAP command. This is convenient since it allows the developer

to reference a certain byte by naming the �eld instead of counting bytes. The data length

and read address values in a read command is split over several bytes. Therefore, in the

next step functions are called for conveniently interpreting these multi-byte values as

single integers. Next, it is made sure that the data �eld of the reply points to a valid

value. This is zero by default since a data CRC of zero is used in the reply even if no

data could be read. The length of data to be sent is set accordingly.

As the next step, the function checks for errors detected by hardware. One of these is if

the incoming packet could not �t in the given bu�er and therefore was truncated. A read

command using logical addressing has a non-variable size of 16 bytes and should be able

to �t in the given data bu�ers. The developer must make sure of this when initializing the

data bu�ers. If there for some reason is not enough space to accept the read command

packet, this is treated as a general error (since it does not �t into the de�ned error

categories of RMAP) and a read reply is created with a status code indicating this. If

the DEBUG macro is de�ned, an error message will be printed to console. Then the

handler returns, and the main loop will check whether the reply should be sent or not.

This is the general series of events every time an error in the command is found. If an
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EEP marker is found, something went wrong during transmission and a corresponding

reply is formulated before the handler returns.

In the next step, it is veri�ed that the command sent the same destination key as de�ned

by the application. This functions as an extra veri�cation that the source and destination

node expected to communicate with each other, meaning that a source node with no

information about the destination key can not get the destination node to perform any

RMAP commands.

The next block veri�es that the request of reading data will not lead to the source

node accessing areas outside of the de�ned authorized memory. If that check passes the

command is valid and the read can be performed. The data �eld of the reply is de�ned as

a pointer to void and must �rst be cast to a pointer to an unsigned byte. The i variable is

then used for indexing the bytes and values are copied from the desired memory location

into the data bu�er which will be used for transmission. After the data has been read and

added, the data CRC is calculated and appended to the reply. Finally, the data length

�eld is updated and a reply indicating successful command execution is created.
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In order to test the functionality of the developed embedded application a test-bench

was developed. The test-bench is a useful tool for creating and performing automatic

tests which results in log �les with information about the command that was sent and

the reply that was received as a response to the command. This section describes typical

test-bench usage, and what the test-bench indicates regarding the current state of the

embedded application.

Usage of the test-bench assumes that all connections between the development PC,

SpaceWire MK3 brick and GR-CPCI-GR740 are set up and that the embedded ap-

plication and test-bench both agree on the logical addresses used. Other dependencies

between the embedded code and the test-bench are the value of the destination key, and

what section of memory is authorized for RMAP commands to use. A possible future

simpli�cation would be to have the two projects share one �le containing the macro de�-

nitions that represent values to be shared between the embedded code and the test-bench,

thus minimizing the manual maintenance needed by the developer.

The test-bench uses test scripts created by the user to create and send RMAP commands

via the SpaceWire MK3 brick. The test scripts therefore need to contain information on

what type of command should be sent as well as custom values for the relevant �elds.

Every test script can contain several commands. The test scripts also contain a header,

marked by the HEADER and END HEADER tags. Everything that is between these two

tags is simply treated as a string and copied to the output log �le created as a response to

the execution of the test script. This is convenient since it allows the test script author to

de�ne what is the purpose of the test and what is the expected result. This text will then

be present in both the test script and the resulting log �le. This is important since the

test-bench is not as general as to detect any failing tests automatically. It simply logs the

sent commands and resulting replies and it is then up to the tester to verify that was was

received is correct. The test-bench does however include some general checks of values

that should always behave a certain way. For example, the transaction ID of a reply
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should always match that of the sent command. This is a good candidate for a general

check, and is implemented in the test-bench. If one or more of these general checks fail, it

is reported to the user via the console and is logged under the header COMMENTS in the

output log �le. The output log �les will be saved in a directory called ./output within

the same directory as the test script �les. Within that directory, the log �les will be saved

in a nested directory whose name is derived directly from the system time at the start

of the test. An example output log �le directory would therefore be ./output/(28_-

07_2020)_(08_07_39) which is the date in day_month_year format and time in

hour_minute_seconds format. An example test script and the resulting output log �le

can be seen in Figure 7.1 and Figure 7.2.

Figure 7.1: An example test script for use with the test-bench.
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Figure 7.2: The resulting output �le after performing the script from Figure 7.1.

The test-bench will perform all the test scripts found in the given directory. It �nds test

scripts by assuming all text �les whose name end in *_test.txt is a test script. It also

needs to �nd a con�guration �le within the same directory called config.txt. This

�le contains information on the logical addresses to be used, as well which channel of

SpaceWire MK3 brick should be used and if header deletion should be enabled or not.

An example con�guration �le is seen in Figure 7.3.

Figure 7.3: A con�guration �le for a suite of test scripts.

The test-bench is started through either compiling and running the code from within

the Visual Studio project, or simply using the created executable. In either case, the
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test-bench needs to be started with one argument, namely the path to the directory

containing the test scripts. An example of a successful start is seen in Figure 7.4.

Figure 7.4: A successful start of the test-bench.

After a successful start, the test-bench will print the found con�guration to the console,

as well as the found SpaceWire device and the hardware version and build date. After

this the found test-scripts are parsed and turned into RMAP commands one by one.

The test-bench tracks di�erent types of errors and present them to the user. The �rst

category is test-bench errors. These are errors coming from the test-bench itself, such

as unexpected code failures. They are mainly found by functions returning error codes

when unsuccessful. The next error category is missing, unrequested or bad replies. These

are errors such as the test-bench timing out whilst waiting for an expected reply, or

conversely receiving a reply when non should be received. A `bad reply' is within this

context a received reply that for whatever reason could not be parsed into a valid RMAP

packet. The last error category is the number of automatic checks that failed, such as

the transaction ID check previously mentioned. Errors from the two last error categories

are added to the relevant log �le. Scripts which caused any of these errors will be logged

at the end of the test execution, to highlight log �les of extra importance to the tester.

Figures 7.5 and 7.6 shows how such an error is reported to the user.
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Figure 7.5: Error in one of the test scripts.

Figure 7.6: End of the test-bench output when errors were detected.

At the moment of writing, the existing test scripts that are provided together with the

test-bench source code test the following aspects:

� Sends a read command that wants to start reading outside valid memory borders.

Should cause a read reply with status code for Command not implemented or au-

thorized.

� Sends a read command that wants to start reading within valid memory but with

a data length that will cross valid memory borders. Should cause a read reply with

status code for Command not implemented or authorized.

� Sends a read command with an invalid destination key. Should cause a read reply

with a status code for Invalid destination key.

� Sends a write command (assumed to work correctly) to write a speci�c value at

a place in memory. Followed by sending a read command at the same memory

address, in order to make sure that the read data matches what was sent in the

read command. Both write and read replies should have status codes for Successful

command execution.
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� Sends a otherwise valid write command with an incorrect data CRC value, with

Verify Before Write bit set. Should cause a write reply with a status code indicating

Invalid data CRC.

� Sends a otherwise valid write command with an incorrect data CRC value, with

Verify Before Write bit cleared. Should cause a write reply with a status code

indicating Invalid data CRC, but also the data should have been written. Therefore

a read command follows to allow the tester to make sure the data was written, even

if incorrect.

� Sends a write command with invalid destination key and Acknowledge bit set.

Should cause a write reply with a status code indicating Invalid destination key.

� Sends a write command trying to write outside valid memory. Should cause a write

reply with a status code indicating Command not implemented or authorized.

� Sends a valid write command with Acknowledge bit and Verify Before Write bit

set. Should cause a write reply with status code indicating Successful command

execution.

� Sends a valid write command with the Acknowledge bit cleared. No reply should

be received (within de�ned timeout).

� Sends a write command with too much data for the data bu�ers (decided by macros

in the embedded application). Should cause a write reply with a status code indi-

cating Verify bu�er overrun.

� Sends a otherwise valid RMW command with an invalid data CRC. Should cause

a RMW reply with a status code indicating Invalid data CRC.

� Sends a RMW command with an incorrect destination key. Should cause a RMW

reply with a status code indicating Invalid destination key.

� Sends a RMW command with an invalid data length. Should cause a RMW reply

with a status code indicating RMW data length error.

� Sends a RMW command trying to perform the command outside valid memory

area. Should cause a RMW reply with a status code indicating Command not

implemented or authorized.
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� Sends a completely valid RMW command. Should cause a reply containing some

data and a status code indicating Successful command execution.

� A write command is sent to set certain data in memory. Then a valid RMW

command is sent, which should cause a RMW reply containing the same data

which was written by the previous command.

At the moment of writing, all the existing tests pass. This is determined by a manual

inspection of the output log �les.
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At the conclusion of this project it can be stated that the main goals presented in Section

1.1 and Chapter 4 have been achieved. A software driver for the RMAP protocol running

on the GR740 SoC acting as a destination node is developed and behaves according to

the standard when communicating with a PC using the SpaceWire MK3 brick. Some

compromises exist due to the usage of the DMA-based SpaceWire packet driver provided

together with RCC, causing the order of certain checks to be slightly di�erent than

described in the RMAP speci�cation. The di�erence is that in this implementation

incorrect data will never have been written at the point where the error is detected and

this is deemed as an acceptable deviation from the standard as it should have no e�ect

on normal RMAP usage.

The developed test-bench allows convenient testing of the RMAP software driver by

reading test scripts adhering to a certain format and using the SpaceWire MK3 brick

to send the RMAP commands described in these test scripts. The results are logged in

output log �les and act as a great tool for a developer or tester to see how the RMAP

driver responds to certain RMAP commands, thus helping in the validation of correct

behavior.

8.1 Outlook

At the end point of the project there still exists several areas of improvement which could

be the starting point for any further additions to the developed driver. They are listed

here.

� There are dependencies between the test-bench and the RMAP driver such as

logical addresses and valid memory area which need to be maintained manually

by the developer when using the system. The maintenance could be simpli�ed by
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having one shared �le from which these values are taken by both the RMAP driver

and the test-bench.

� The tester needs to go through the output log �les manually to determine if any

errors occurred in the RMAP driver. An addition to the test-bench could be to

allow the test script author to de�ne expected values in certain �elds of the RMAP

reply. This could help automatic detection of bugs and further simplify the testing

process.

� Currently the RMAP driver does not respond to changes in the Increment bit.

This is a deviation from the RMAP standard and should be added in the future.

� The application image size can likely be heavily decreased by modifying the values

for the RTEMS con�guration to di�er from the example values and better re�ect

the needs of the RMAP driver.
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A FAQ

During the software driver development many issues were encountered and resolved. This

appendix describes some of the problems and their solutions. Another important resource

for resolving development issues is the FAQ of the software IDE quick start guide [5].

� Problem: printf is not putting any output on the console, even though GDB

was started with the correct options.

Solution: All strings to be printed must be terminated with newline character.

� Problem: Compiling gives the error message `NULL unde�ned`.

Solution: Make sure to include stdlib.h and stdio.h before any custom

header �les.

� Problem: When trying to debug, the error `Failed to execute MI command: -�le-

exec-and-symbols' appears.

Solution: Make sure to have MinGW installed directly under C:\(not in Pro-

gram Files or another directory with spaces in the name) and add the bin path

under Project->Properties->C/C++ Build->Environment in the PATH

variable.

� Problem: When the test-bench received SpaceWire packets and tried interpreting

it as RMAP, the function failed and simply said the status code was `GENERAL_-

ERROR' but didn't give more clues to what was wrong with what should have been

a normal RMAP reply.

Solution: In this case this was due to the header CRC being incorrectly calculated

in the RMAP driver on the GR740.

� Problem: Starting GRMON gives: `JTAG Instruction register length detection

failed'.

Solution: Make sure FTDI driver is installed and that the development PC has

been restarted afterwards.
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