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Executive Summary 

Name of student 

 Yi Wang 

 

Title of the paper 

Development of a simulation framework for dynamically loaded multifunctional composite 

structures and evaluation of vibration control performance 

 

Keywords 

Comsol & Matlab simulation, dynamically loaded, multifunctional composite structures, 

cantilever, wingbox, vibration control, fibre orientation 

 

Abstract 

Within the framework of this master’s thesis, a dynamically loaded multifunctional polymer 

electrolyte coated carbon fibre (PeCCF) composites structure is investigated. The PeCCF 

composite structure is a multifunctional structure, which provide the load bearing function 

simultaneously can store and transport electric energy. Due to electric resistance in the 

composite structure, the structure interior temperature rises which reduces the stiffness of 

polymer electrolyte coating, so that the structural stiffness is significantly reduced. 

Moreover, the structural stiffness depends on fibre orientation and fibre volume fraction. 

With this multi-physical material behavior, this composite structures can be used for sound 

reduction and vibration control since the natural frequency of structure depends on its 

stiffnesses. In this thesis a simulation framework of PeCCF composite structure in COMSOL 

and Matlab is developed to analyse its vibration reduction potential. Furthermore, suitable 

design parameters are identified to optimize the vibration reduction for exemplary 

application scenarios. Furthermore the developed PeCCF composite structure is able to 

withstand the load during the flight. 
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Zusammenfassung 

Name des Studierenden 

 Yi Wang 

 

Thema der Studienarbeit  

Entwicklung eines Simulationsmodells für dynamisch belastete multifunktionale 

Fasverbundstrukturen und Auswertung der Vibrationsschutzleistung 

 

Stichworte 

Comsol & Matlab Simulation, dynamische Belastung, multifunktionale 

Faserverbundstruktur, Ausleger, Flügelkasten, Vibrationsschutzleistung, Faserorientierung 

 

Kurzzusammenfassung 

Im Rahmen dieser Masterarbeit wird die dynamische belastete multifunktionale mit 

Polymerelektrolyt beschichtete Kohlefaser (PeCCF) in einer Faserverbundstruktur 

untersucht. Die PeCCF Faserverbundstruktur ist eine multifunktionale Struktur, die 

Belastung aufnehmen und gleichzeitig elektrische Energie speichern und transportieren 

kann. Wegen des elektrischen Widerstands der PeCCF Faserverbundstruktur steigt die 

Temperatur in der Schicht, wodurch sich die Steifigkeit der Polymerelektrolyt Beschichtung 

reduziert. Die Steifigkeit ist zusätzlich abhängig von der Faserorientierung und 

Faservolumenanteil. Mit dieser multiphysikalischen Eigenschaft wird eine potentielle 

Leistung der PeCCF Composite Struktur zur Schallreduktion und Vibrationskontrolle 

erwartet, weil die Eigenfrequenzen der Struktur von der Steifigkeit abhängig sind. In dieser 

Arbeit wird eine Simulation der linear elastischen Faserverbundstruktur in COMSOL und 

Matlab durchgeführt, um das Potential zur Vibrationskontrolle und Schallreduktion zu 

analysieren. Außerdem werden geeignete Parameter optimiert, damit der Kabinenlärm in 

bestimmten Flugphasen reduziert werden kann. Die entwickelte Struktur hat weiterhin eine 

ausreichende Steifigkeit, um die Anforderungen an eine Flugzeugstruktur zu erfüllen. 

 

 



III 

Acknowledgements 

This master’s thesis was written from March to August 2021 at HAW Hamburg. 

Firstly, I would like to express my gratitude to my first supervisor Prof. Dr.-Ing. habil Thomas 

Kletschkowski for his great scientific and personal support during our weekly meeting. Professor 

Kletschkowski has looked after my work in a optimal and always friendly way, so that my 

motivation could never be lost. Futher thanks go to my second supervisor Prof. Alexander Piskun. 

He has declared himself to be available as my second examiner for this work. 

In the same manner I would like to thank M. Sc. Maximilian Schutzeichel who has provided me 

technical aid and valuable information regarding the subject. 

Finally I would like to thank my family, my boyfriend Simon and my friends for their personal 

support but also necessory distraction and relaxation during my studies. 



IV 

Danksagung 

Die vorliegende Masterarbeit ist von März bis August 2021 an der HAW Hamburg angefertigt 

worden. 

Zuerst möchte ich meinem Erstprüfer Prof. Dr.-Ing. habil. Thomas Kletschkowski für die 

wissenschaftliche Unterstützung und persönliche Betreuung während der wöchentlichen Treffen 

bedanken. Professor Kletschkowski hat mich sehr gut und freundlich betreut, sodass ich immer 

motiviert war. Weiterhin möchte ich mich bei Prof. Alexander Piskun bedanken, der sich bereit 

erklärt hat, als Zweitprüfer für diese Arbeit zur Verfügung zu stehen. 

Außerdem bedanke ich mich bei Herrn M. Sc. Maximilian Schutzeichel, der mir stets mit 

technischer Hilfe und wertvollen Informationen weitergeholfen hat. 

Zuletzt bedanke ich mich bei meiner Familie, meinem Freund Simon und meinen Freunden für 

ihre persöliche Unterstützung aber auch notwendige Ablenkung und Entspannung während 

meines gesamten Studiums. 

 

 

 

 



V 

Table of Contents 

Executive Summary ....................................................................................................... I 

Zusammenfassung ........................................................................................................ II 

Acknowledgements ...................................................................................................... III 

Danksagung ................................................................................................................. IV 

Table of Contents ......................................................................................................... V 

List of Acronyms ....................................................................................................... VIII 

List of Symbols ............................................................................................................ IX 

List of Figures .............................................................................................................. XI 

List of Tables ............................................................................................................. XIV 

1 Introduction .............................................................................................................. 1 

1.1 Background................................................................................................................. 1 

1.2 Research objective ..................................................................................................... 2 

1.3 Thesis Structure .......................................................................................................... 2 

2 State of research...................................................................................................... 4 

2.1 Fundamentals of Vibration .......................................................................................... 4 

2.1.1 Natural frequency and resonance ...................................................................... 4 

2.1.2 Simple harmonic oscillator ................................................................................. 5 

2.2 Timoshenko beam theory with FEM method ............................................................... 6 

2.2.1 Derivation of shape functions ............................................................................. 7 

2.2.2  Governing equation in matrix form .................................................................... 9 

2.3 Polymer electrolyte coated carbon fibre (PeCCF) composite structure ...................... 12 

2.3.1  Carbon fibres .................................................................................................. 14 

2.3.2 Polymer electrolyte coating .............................................................................. 15 

2.4 Micromechanics analysis of PeCCF composite in COMSOL ..................................... 18 

2.5 Layerweise (LW) Theory ........................................................................................... 19 



VI 

2.6 Frequency of noise in an aircraft cabin ...................................................................... 20 

2.7 Genetic Algorithm (GA) ............................................................................................. 21 

3 Simulation framework for dynamically loaded structures ................................. 23 

3.1 FEM Simulation with Matlab and COMSOL 5.5 ......................................................... 23 

3.1.1 Timoshenko beam simulation with Matlab ....................................................... 23 

3.2 Vibration control potential investigation of beam .......................................................... 27 

3.2.1 Results comparison ......................................................................................... 28 

4 Analysis of the structural vibration reduction potential of multifunctional 
PeCCF ........................................................................................................................... 30 

4.1 COMSOL model - microstructure .............................................................................. 30 

4.2 Layered material ....................................................................................................... 31 

4.3 COMSOL model – macrostructure ............................................................................ 31 

4.4 Comparison of model with different laminate parameters .......................................... 33 

5 Discussion of parameter optimisation ................................................................. 35 

5.1 Optimisation of beams with different cross-sections .................................................. 35 

5.1.1 Optimization procedure for fibre orientation ..................................................... 35 

5.1.2 Comparing the optimized results with other fibre orientation ............................ 42 

5.1.3 Stiffness of the optimized beam ....................................................................... 44 

5.2 Optimisation of wingbox ............................................................................................ 48 

5.2.1 Optimization procedure for fibre orientation ..................................................... 48 

5.2.2 Comparing the optimized results with other fibre orientation ............................ 50 

5.2.3 Stiffness of the optimized wingbox ................................................................... 51 

6 Conclusion and Future Work ................................................................................ 53 

6.1 Conclusion ................................................................................................................ 53 

6.2 Suggestions for future work ...................................................................................... 54 



VII 

References ................................................................................................................... 56 

Appendix A – Matlab code for Timoshenko beam .................................................... 60 

Appendix B – COMSOL Tutorial for Timoshenko beam ........................................... 77 

Appendix C – Matlab code for comparing total kinetic energy of beam with 
different Young’s modulus ......................................................................................... 85 

Appendix D – Matlab code for comparing velocity along the beam with different 
parameters ................................................................................................................... 87 

Appendix E – Matlab code for orientation optimisation ........................................... 89 



VIII 

List of Acronyms  

CLPT 

DMF 

DOF 

Classical Laminated Plates Theory 

Dimethylformamide 

Degree of Freedom 

ESL Equivalent Single Layer 

FSDT First-order Shear Deformation Theory 

GA      Genetic Algorithm    

li-triflate   lithium trifluoromethanesulfonate 

LW       Layerwise 

PeCCF  Polymer electrolyte Coated Carbon Fibre 

SPE Solid Polymer Electrolyte 

SPL Sound Pressure Level 

SR209 tetraethylene glycol dimethacrylate 

SR550 methoxy polyethylene glycol monomethacrylate 



IX 

List of Symbols 

𝐴  cross-sectional area 

𝑎  side length of unit cell cube 

𝐸  elastic modulus 

𝐸𝑘−𝑡𝑜𝑡 total kinetic energy 

𝐟  loading vector 

𝐺 elastic shear modulus 

𝐻  total energy 

𝐼  second-order moment of inertia 

𝑘  Spring stiffness 

𝐾𝐸  beam kinetic energy 

𝐊  stiffness matrix 

𝐊𝐸  stiffness element matrix 

𝑀 system mass 

𝐌  mass matrix 

𝐌𝐸  mass element matrix 

𝐌𝜌𝐴 part 1 of mass element matrix which is associated with the translational inertia 

𝐌𝜌𝐼 part 2 of mass element matrix which is associated with the rotatory inertia 

𝑚 moment per unit length 

𝑞  transversal force per unit length 

𝑟  carbon fibre radius 

𝑆𝐸  beam strain energy 



X 

𝑡  layer thickness 

T  transimmisibility 

𝑣𝑓  fibre volume fraction 

𝑊𝐸  external work 

u  spring displacement 

x  mass displacement 
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1 Introduction 

1.1 Background   

Structures under dynamic loads induce vibrations, so that the value of stress and strains are 

changed with time. Furthermore, structural vibration cause noise and instabilities and can also 

develop resonance, which leads to increased deflections and failure. Therefore, structural 

vibration control has always been an important field for development in commercial aircraft 

manufacturing. Good vibration control improves flight comfort and at the same time reduces 

damage to the aircraft’s structure. However, it is often not possible to predict the behaviour of the 

system straightforwardly. Hence numerical simulation plays a crucial role in predicting the 

response of a structure. Moreover, it enables the optimization of parameters, since the 

experimental investigations are expensive and prone to errors.   

 

Moreover, multifunctional materials have been widely investigated and used in the aerospace, 

medicine and several others industries over the last few years. Multifunctional materials perform 

multiple functions in a system due to their special properties. They can be both naturally existing 

and specially engineered. For example, some traditional materials that provide a high strength-

to-weight ratios can be modified at the nanoscale to attain other properties, such as the generation 

and transmission (conduction) of electrical energy, etc [1]. Fibre reinforced plastics in the 

manufacturing industry are increasingly used. Compared to traditional metallic engineering 

materials, fibre reinforced plastics are lighter and more corrosion resistant, and properties like 

strength, stiffness and toughness can often be tailored to a specific application [2]. 

The design of multifunctional, fibre reinforced plastics which can act as load-bearing structural 

parts and simultaneously, as vibration control devices, are of special interest in lightweight design 

related research [3, 4, 5]. Experimental and theoretical investigations on PeCCF composites have 

identified a multi-physical material behaviour. For example, such materials have been found to 

show a significant decrease in storage modulus when subjected to higher temperatures. Due to 

this stiffness reduction, it is expected that PeCCF composites offer increased potential for the 

reduction of vibrations in a dynamically loaded structure. 

Since the stiffness drop can be tailored by temperature and fibre volume fraction, the direction of 

stiffness drop can be tailored by fibre orientation, structures made from this material can be made 
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to act as a vibration control device. The stiffness can be tailored to specific vibrations aiming at a 

reduction of excitation. 

1.2 Research objective 

As explained in the background, the reduction of vibration is important to prevent structure failure 

and to reduce the noise in the airplane cabin. It is expected that the application of composite 

structures made from PeCCFs whose stiffness depends on the temperature, fibre volume fraction 

and fibre orientations can reduce structural vibration significantly. To prove this expectation, a 

simulation framework for linear elastic composite structures under dynamic loads is constructed. 

The framework shall be based on the finite element method and should be able to handle typical 

engineering geometries such as beams and plates, including their internal structure, e.g laminates 

with several plies of different longitudinal orientation. Existing tools like Matlab and COMSOL 

Multiphysics will be used for the simulation framework.  

Based on the developed framework, the vibration control performance of PeCCF composite 

structures shall be evaluated concerning given material properties. The vibration reduction 

potential shall be discussed based on the results from significant case studies (beams or plates). 

Furthermore, possible optimization parameters can be discussed in order to improve vibration 

reduction. 

1.3 Thesis Structure 

This thesis is structured as follows: 

• Chapter 2 shows the state of research and expresses the basic theories which are 

used later 

• Chapter 3 explains the development of the simulation framework in detail and presents 

results from the simulation. 

• Chapter 4 analyses the structural vibration reduction potential of PeCCF composite 

structures based on a beam model. 
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• Chapter 5 discusses the optimization parameters which can improve vibration 

reduction in beams with different cross-sections and in a wingbox. 

• Chapter 6 summarizes the most important conclusions of the thesis and suggests 

paths that are worthwhile for future research & development activities. 
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2 State of research 

2.1 Fundamentals of Vibration  

2.1.1 Natural frequency and resonance 

The natural frequency is the frequency at which a system freely vibrates. In a mass-spring system, 

the natural frequency can be calculated as follow [6], 

𝜔0 = √
𝑘

𝑀
                                                                                                                                       1) 

where 𝑘  and 𝑀  are the spring stiffness and mass, respectively. Similarly, it can be clearly 

expressed by a mass-beam system, as shown in Figure 2.1. It means that a system with a lower 

mass or stiffer structure has a higher natural frequency. A higher mass and/or a softer structure 

lower the natural frequency.  

 

Figure 2.1: a) vs b) lower mass increases the natural frequency. c) vs d) stiffer beam increases 

the natural frequency [7]. 
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If a periodically external force is applied to the system, the occurring oscillation is known as forced 

vibration. When the frequency of the applied force is equal or close to the natural frequency of 

the system, the amplitude of vibration increases manyfold. This is known as resonance [6]. 

2.1.2 Simple harmonic oscillator 

In the cantilevered beam or tuning fork models, the systems are considered to be undamped, as 

there is no mechanism present which can dissipate the mechanical energy. A system without 

damping will vibrate for a long period of time before coming to rest. With damping, the mechanical 

energy in the system is dissipated and the vibrations are attenuated more quickly [7]. 

A simple harmonic oscillator consisting of a rigid mass M and an ideal linear spring is shown in 

Figure 2.2.  

 

The equilibrium equation of the system is given by [7], 

𝑀ẍ + 𝑘(x − u) = 0                                                                                                                        2) 

If the spring-mass system is driven by a sinusoidal displacement with frequency 𝜔 and peak 

amplitude |u|, a sinusoidal displacement of the mass 𝑀 with peak amplitude |x| at the same 

frequency 𝜔 will be produced. The steady-state ratio of the amplitude of mass motion |x| to the 

spring end motion |u| which is also called transmissibility is given by [7], 

T =
|x|

|u|
=

1

1−
𝜔2

𝜔0
2

                                                                                                                               3) 

Figure 2.2: A simple harmonic oscillator [7] 
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Where 𝜔0 is the natural frequency of the system (see equation 1)). 𝜔0 is only determined by 

system mass and stiffness.  

The transmissibility of the system is commonly plotted as a function of the ratio 𝜔 𝜔0⁄  on a 

logarithmic-logarithmic plot like Figure 2.3. In this figure, three characteristic features are shown:  

• a) If 𝜔 ≪ 𝜔0, Transmissibility T=1 which means that the motion of the mass is the same 

as the motion at the other end of the spring. 

• b) If 𝜔 ≈ 𝜔0, Transmissibility T >1, the motion of the mass |x| is infinite which is much 

greater than that of |u|. 

• c) If 𝜔 ≫ 𝜔0, Transmissibility T <1, the resulting displacement decreases in proportion 

to 1 𝜔2⁄ . The displacement |u| applied to the system is not transmitted to the mass 

which means that the spring acts as an isolator [7].  

 

Hence the natural frequency of the system should be staggered from the frequency of applied 

force to avoid resonance if there is no damping to dissipate the mechanical energy. 

2.2 Timoshenko beam theory with FEM method 

A beam is a structural element that is used for support. Four theories are widely used to describe 

this structural element: Euler-Bernoulli [8], Rayleigh [9], Shear [10] and Timoshenko [11] [12]. In 

Figure 2.3: Transmissibility of a simple harmonic oscillator [7] 
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the Euler-Bernoulli theory of flexural vibration of beams which is often called classic beam theory, 

the effects of rotatory inertia and shear are neglected. This theory is adequate for relatively 

slender beams. However, it tends to overestimate the natural frequencies of beams with larger 

cross-sections [13]. The Rayleigh beam theory includes the effects of the rotation of the cross-

section which provides an improvement on the classic beam theory. As a result, the 

overestimation of natural frequencies which occurs with the Euler-Bernoulli model is partially 

corrected. Nevertheless, the natural frequencies are still overestimated [14]. When shear 

distortion is accounted for the Euler-Bernoulli model, this is known as the shear model, which 

improves the estimation of natural frequencies considerably. But it does not fit the purpose of 

obtaining an improved model to the Euler-Bernoulli model, because it excludes the most important 

factor, the bending effect [10]. In the Timoshenko beam theory, the effects of shear, as well as 

the effects of rotation, are added to the Euler-Bernoulli beam. It is a major improvement for non-

slender beams and for high-frequency responses where shear and rotatory effects are no longer 

negligible [13]. Hence the Timoshenko beam theory is normally used for predicting the natural 

frequencies of transversely dynamically loaded beams. The equilibrium equations of a straight 

Timoshenko beam can be described by the following differential equations [15], 

𝛿𝑣: − ҡ𝐺𝐴 (
𝑑2𝑣

𝑑𝑥2
−
𝑑𝜃

𝑑𝑥
) + 𝜌𝐴

𝑑2𝑣

𝑑𝑡2
− 𝑞 = 0                                                                                         4) 

𝛿𝜃: − 𝐸𝐼
𝑑2𝜃

𝑑𝑥2
− ҡ𝐺𝐴 (

𝑑𝑣

𝑑𝑥
− 𝜃) + 𝜌𝐼

𝑑2𝜃

𝑑𝑡2
−𝑚 = 0                                                                              5) 

The transversal displacement of the beam and the rotation of the beam's cross-section are given 

by 𝑣  and 𝜃 , respectively. The elastic modulus and elastic shear modulus of the beam are 

represented by 𝐸 and 𝐺. 𝜌 and 𝐴 are the density and cross-sectional area of the beam. 𝐼 is the 

second-order moment of inertia of the beam's cross-section. ҡ is the shear coefficient of the beam 

which depends on the cross-section and material of the beam. 𝑞  and 𝑚  are the applied 

transversal force per unit length and moment per unit length, respectively. 

2.2.1 Derivation of shape functions 

The shape functions of the Timoshenko beam can be obtained by solving the homogeneous 

differential equations of the static equilibrium in equations 4) and 5). Therefore, the dynamic and 

loading terms in the equilibrium equations are neglected as given below [15]. The displacement 

in x- and y-direction and the rotation are shown in Figure 2.4. 

 
𝑑𝑣

𝑑𝑥
(ҡ𝐺𝐴 (

𝑑𝑣

𝑑𝑥
− 𝜃)) = 0                                                                                                                  6) 

𝐸𝐼
𝑑2𝜃

𝑑𝑥2
+ ҡ𝐺𝐴 (

𝑑𝑣

𝑑𝑥
− 𝜃) = 0                                                                                                            7) 
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So that the shape functions for 𝑣 and 𝜃 are as follows [15], 

𝑣 = [𝑁𝑣𝑣1 𝑁𝑣𝜃1 𝑁𝑣𝑣2 𝑁𝑣𝜃2] {

𝑣1
𝜃1
𝑣2
𝜃2

}                                                                                             8) 

𝑁𝑣𝑣1 =
1

4(1+∅)
{(𝜉 − 1)(𝜉2 + 𝜉 − 2(1 + ∅))}                                                                                    9) 

𝑁𝑣𝜃1 =
𝐿

8(1+∅)
{(𝜉2 − 1)(𝜉 − (1 + ∅))}                                                                                          10) 

𝑁𝑣𝑣2 =
1

4(1+∅)
{(𝜉 + 1)(−𝜉2 + 𝜉 + 2(1 + ∅))}                                                                               11) 

𝑁𝑣𝜃2 =
𝐿

8(1+∅)
{(𝜉2 − 1)(𝜉 + (1 + ∅))}                                                                                          12) 

𝜃 = [𝑁𝜃𝑣1 𝑁𝜃𝜃1 𝑁𝜃𝑣2 𝑁𝜃𝜃2] {

𝑣1
𝜃1
𝑣2
𝜃2

}                                                                                           13) 

Figure 2.4: Conceptual kinematic of a straight Timoshenko beam  
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𝑁𝜃𝑣1 =
3

2𝐿(1+∅)
(𝜉2 − 1)                                                                                                                 14) 

𝑁𝜃𝜃1 =
1

4(1+∅)
{(𝜉 − 1)(3𝜉 + 1 − 2∅)}                                                                                           15) 

𝑁𝜃𝑣2 =
3

2𝐿(1+∅)
(−𝜉2 + 1)                                                                                                              16) 

𝑁𝜃𝜃2 =
1

4(1+∅)
{(𝜉 + 1)(3𝜉 − 1 + 2∅)}                                                                                            17)  

The shape functions (equation 8)-12) and 14)-17)) are function of the ratio of beam bending to 

shear stiffness ∅ and 𝜉. Where, 

∅ =
12𝐸𝐼

ҡ𝐺𝐴𝐿2
                                                                                                                                      18) 

𝜉 =
2𝑥−𝐿

𝐿
                                                                                                                                      19) 

These shape functions interpolate the vertical displacement or rotation of an arbitrary point along 

the beam from the nodal displacement and rotation of DOFs (Degree of Freedom) at both ends 

of the beam as follows, 

{
𝑣
𝜃
} = [

𝑁𝑣𝑣1 𝑁𝑣𝜃1 𝑁𝑣𝑣2 𝑁𝑣𝜃2
𝑁𝜃𝑣1 𝑁𝜃𝜃1 𝑁𝜃𝑣2 𝑁𝜃𝜃2

] {

𝑣1
𝜃1
𝑣2
𝜃2

}                                                                                       20) 

2.2.2  Governing equation in matrix form 

Via Hamilton’s principle the equation of motion is derived as follows: 

𝛿𝐻 = ∫ (𝛿𝑆𝐸
𝑡2
𝑡1

− 𝛿𝐾𝐸 − 𝛿𝑊𝐸)𝑑𝑡 = 0                                                                                              21) 

𝛿𝐻 is the variation of total energy, 𝛿𝑆𝐸, 𝛿𝐾𝐸 and 𝛿𝑊𝐸 are the variation of beam strain energy, 

beam kinetic energy and external work, respectively.   

The internal strain energy and kinetic energy of the beam at an instant time of 𝑡1 = 𝑡2 are given 

as, 

𝑆𝐸 =
1

2
∫ {𝐸𝐼 (

𝑑2𝜃

𝑑𝑥2
)
2

− ҡ𝐺𝐴(
𝑑𝑣

𝑑𝑥
− 𝜃)

2
}

𝐿

0
𝑑𝑥                                                                                      22) 

𝐾𝐸 =
1

2
∫ {𝜌𝐴(

𝑑𝑣

𝑑𝑡
)2 + 𝜌𝐼(

𝑑𝜃

𝑑𝑡
)2}

𝐿

0
𝑑𝑥                                                                                                  23) 
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The external work is defined as, 

𝑊𝐸 = ∫ {𝑞𝑣 +𝑚𝜃}
𝐿

0
𝑑𝑥                                                                                                                     24) 

Where 𝑞 and 𝑚 are the applied distributed transversal forces per unit length and moments per 

unit length, respectively. 

The derivatives by 𝑥  of vertical displacement and roration can be represented by the nodal 

general displacement vector 𝐝, 

𝑑𝑣

𝑑𝑥
= [𝑁′𝑣𝑣1 𝑁′𝑣𝜃1 𝑁′𝑣𝑣2 𝑁′𝜃𝜃2] {

𝑣1
𝜃1
𝑣2
𝜃2

} = 𝑁′𝑣𝐝                                                                       25) 

𝑑𝜃

𝑑𝑥
= [𝑁′𝜃𝑣1 𝑁′𝜃𝜃1 𝑁′𝜃𝑣2 𝑁′𝜃𝜃2] {

𝑣1
𝜃1
𝑣2
𝜃2

} = 𝑁′𝜃𝐝                                                                         26) 

By substituting equations 25) and 26), the internal strain energy equation, the kinetic energy 

equation and the external work together with boundary conditions equation can be expressed in 

matrix form as, 

𝑺𝑬 =
1

2
{

𝑣1
𝜃1
𝑣2
𝜃2

}

𝑇

∫ {{
𝑁′𝑣 −𝑁𝜃
𝑁′𝜃

}
𝑇

[
ҡ𝐺𝐴 0
0 𝐸𝐼

] {
𝑁′𝑣 −𝑁𝜃
𝑁′𝜃

}}
𝐿

0
𝑑𝑥 {

𝑣1
𝜃1
𝑣2
𝜃2

}                                                              27) 

𝑲𝑬 =
1

2

{
 

 
𝑣1̈
𝜃1̈
𝑣2̈
𝜃2̈}
 

 
𝑇

∫ {{
𝑁𝑣
𝑁𝜃
}
𝑇

[
𝜌𝐴 0
0 𝜌𝐼

] {
𝑁𝑣
𝑁𝜃
}}

𝐿

0
𝑑𝑥

{
 

 
𝑣1̈
𝜃1̈
𝑣2̈
𝜃2̈}
 

 

                                                                           28) 

𝑾𝑬 = {

𝑣1
𝜃1
𝑣2
𝜃2

}

𝑇

{

𝑁𝑣1𝑄1
𝑁𝜃1𝑀1
𝑁𝑣2𝑄2
𝑁𝜃2𝑀2

}− {

𝑣1
𝜃1
𝑣2
𝜃2

}

𝑇

∫ {

𝑁𝑣1𝑞
𝑁𝜃1𝑚
𝑁𝑣2𝑞
𝑁𝜃2𝑚

}
𝐿

0
𝑑𝑥                                                                              29) 

Where, 

𝑁′𝑣 = [𝑁
′
𝑣𝑣1 𝑁′𝑣𝜃1 𝑁′𝑣𝑣2 𝑁′𝜃𝜃2]                                                                                          30) 

𝑁′𝜃 = [𝑁
′
𝜃𝑣1 𝑁′𝜃𝜃1 𝑁′𝜃𝑣2 𝑁′𝜃𝜃2]                                                                                          31) 

The finite element formulation for a straight Timoshenko beam can be developed by using the 

theory of minimum potential energy to obtain the equilibrium equation in matrix form, 
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Π =
1

2
𝐝𝑇𝐊𝐝 −

1

2
𝐝�̈�𝐌�̈� − 𝐝𝑇𝐟                                                                                                          32) 

𝜕Π

𝜕𝐝𝑇
= 𝐊𝐝 −𝐌�̈� − 𝐟 = 𝟎                                                                                                                  33) 

The two points on 𝐝 means the second derivative with respect to time. 𝐊, 𝐌 and 𝐟 are the stiffness 

matrix, the mass matrix and the loading vector as follows, 

𝐊 = ∫ {{
𝑁′𝑣 −𝑁𝜃
𝑁′𝜃

}
𝑇

[
ҡ𝐺𝐴 0
0 𝐸𝐼

] {
𝑁′𝑣 −𝑁𝜃
𝑁′𝜃

}}
𝐿

0
𝑑𝑥                                                                                     34) 

𝐌 = ∫ {{
𝑁𝑣
𝑁𝜃
}
𝑇

[
𝜌𝐴 0
0 𝜌𝐼

] {
𝑁𝑣
𝑁𝜃
}}

𝐿

0
𝑑𝑥                                                                                                 35) 

𝐟 = {

𝑁𝑣1𝑄1
𝑁𝜃1𝑀1
𝑁𝑣2𝑄2
𝑁𝜃2𝑀2

}+ ∫ {

𝑁𝑣1𝑞
𝑁𝜃1𝑚
𝑁𝑣2𝑞
𝑁𝜃2𝑚

}
𝐿

0
𝑑𝑥                                                                                                       36) 

So that the stiffness element matrix of the Timoshenko beam can be given as, 

𝐊𝐸 =
𝐸𝐼

(1+∅)𝐿3
[

12 6𝐿 −12 6𝐿

6𝐿
−12
6𝐿

(4 + ∅)𝐿2

−6𝐿
(2 − ∅)𝐿2

−6𝐿
12
−6𝐿

(2 − ∅)𝐿2

−6𝐿
(4 + ∅)𝐿2

]                                                                              37) 

The mass element matrix of a Timoshenko beam consists of 𝐌𝜌𝐴 which is associated with the 

translational inertia and 𝐌𝜌𝐼 which is associated with the rotatory inertia, 

𝐌𝐸 = 𝐌𝜌𝐴 +𝐌𝜌𝐼                                                                                                                           38) 

Where, 

𝐌𝜌𝐴 =
𝜌𝐴𝐿

210(1 + ∅)2
 

×

[
 
 
 
 
 
 
 
 (70∅2 + 147∅ + 78) (35∅2 + 77∅ + 44)

𝐿

4

(35∅2 + 77∅ + 44)
𝐿

4
(7∅2 + 14∅ + 8)

𝐿2

4

(35∅2 + 63∅ + 27) −(35∅2 + 63∅ + 26)
𝐿

4

(35∅2 + 63∅ + 26)
𝐿

4
−(7∅2 + 14∅ + 6)

𝐿2

4

(35∅2 + 63∅ + 27) (35∅2 + 63∅ + 26)
𝐿

4

−(35∅2 + 63∅ + 26)
𝐿

4
−(7∅2 + 14∅ + 6)

𝐿2

4

(70∅2 + 147∅ + 78) −(35∅2 + 77∅ + 44)
𝐿

4

−(35∅2 + 77∅ + 44)
𝐿

4
(7∅2 + 14∅ + 8)

𝐿2

4 ]
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𝐌𝜌𝐼 =
𝜌𝐼

30(1 + ∅)2𝐿
 

×

[
 
 
 

36 −(15∅ − 3)𝐿

−(15∅ − 3)𝐿 (10∅2 + 5∅ + 4)𝐿2
−36 −(15∅ − 3)𝐿

(15∅ − 3)𝐿 (5∅2 − 5∅ − 1)𝐿2

−36 (15∅ − 3)𝐿

−(15∅ − 3)𝐿 (5∅2 − 5∅ − 1)𝐿2
36 (15∅ − 3)𝐿

(15∅ − 3)𝐿 (10∅2 + 5∅ + 4)𝐿2]
 
 
 

 

2.3 Polymer electrolyte coated carbon fibre (PeCCF) composite 

structure 

A composite material made from polymer electrolyte coated carbon fibres (PeCCF) and a 

polymeric matrix material can provide several functions. Apart from load bearing, research 

identified other potential functions like energy storage, energy transmission and thermal heating. 

Structures made from this material are usually architectured in several plies with similar thickness 

but different fibre orientations. This can be compared with classic fibre reinforced plastics. [4].  

LI batteries consist of four main components: anode, cathode, electrolyte and separator. They 

are shown in Figure 2.5. The anode and cathode store the lithium. When the battery is charging, 

lithium ions are released by the cathode and resolved in electrolyte then through the separator 

until they are received by the anode. While the battery is discharging and providing an electric 

current, the anode releases positively charged lithium ions to the cathode through the separator. 

The movement of the lithium ions creates free electrons in the anode which creates a charge at 

the positive current collector. The electrical current flows from the positive current collector 

through a device being powered to the negative current collector. The separator blocks the flow 

of electrons inside the battery [16]. 
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Compared with a normal carbon fibre composite material the carbon fibres in the battery are 

coated with a thin layer of solid polymer electrolyte (SPE) which functions both as a separator 

and an electrolyte. The carbon fibre is used as an anode and the matrix material represents the 

cathode and current collector [4]. The detailed structure of the battery is shown in Figure 2.6.    

 

Figure 2.5: Structure of LI battery [17] 

Figure 2.6: Cross-section of structural battery [4]  
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However, there are two limiting parameters for such a structural battery with SPE. The first 

limitation is the ion conductivity. The second is the ion transport distance between two electrodes. 

These two parameters influence the loss of potential during cycling due to the ion transport 

resistance, which is also called “ohmic drop”. To reduce ohmic drop, the ion conductivity should 

be increased or the ion transport distance should be decreased [4]. 

2.3.1  Carbon fibres 

In the last few years, many advanced and specialised carbon fibre types are developed and are 

applied widely in the aerospace and automobile industry. The fibre types with different 

multifunctional properties have different potential for application in energy storage devices. Major 

factors are the lithium ions intercalate ability within the carbon microstructure, the usability for 

electropolymerization and classical mechanical properties [4]. Collected different sources the 

parameters of different carbon fibre types are shown in Table 2.1. 

 

  

Fibre type 

Diameter Tensile 

modules 

Tensile 

strength 

Specific 

resistance 

Reversible 

capacity  

[μm] [GPa] [MPa] [Ωmm] [mAh/g] 

IMS65 5 290 6000 1.45 ∙ 10−2 N.s. 

IMS65 (unsized) 5 290 6000 N.s. 360 

HTS40 7 240 4400 1.60 ∙ 10−2 N.s. 

T800 (unsized) 5 294 5490 1.40 ∙ 10−2 130 

UMS45 4.7 430 4500 9.70 ∙ 10−3 30 

Cytec P-120 2K N.s. 828 2240 2.20 ∙ 10−3 N.s. 

For the application in structure batteries, a high reversible capacity is important. The carbon fibre 

type IMS65 has the biggest reversible capacity. Therefore, IMS65 has been chosen for this work 

due to its desired characteristics. 

Table 2.1: Multifunctional properties of commercially available carbon fibres. (specific resistance 

at 293.15 K. reversible capacity after 10 cycles charge-discharge) [18] [19] [20] 
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2.3.2 Polymer electrolyte coating  

Compared with liquid polymer electrolytes the SPE has a substantially lower ion conductivity, 

whilst this property is not desirable, it is feasible since the liquid polymer electrolytes can not bear 

any mechanical loads. The ion transport distance is equal to the thickness of the SPE since the 

SPE is used as an electrolyte and a separator.  

As in Table 2.2 shown with the same thickness the effective conductivity of SPE is three 

magnitudes lower compared to a liquid electrolyte, therefore, its ohmic drop increases three 

magnitudes. When the electrolyte thickness decreases to 500 nm the ohmic drop is cut down 

significantly, thus making the battery performance better. Since the recent studies found out that 

property gradient effects are only significant below the thickness of 200 nm, meaning the effects 

are less noticeable with the thickness of 500 nm. 500 nm is a very thin SPE layer and its ohmic 

drop is much better, this thickness is used for later studies [4] [21].  

 

 Liquid electrolyte Solid polymer electrolyte 

Electrolyte thickness 30 μm 30 μm 500 nm 

Effective conductivity 0.7 mS/cm 1.5 μS/cm 1.5 μS/cm 

Ohmic drop at 1 mA/cm2 4 mV 2 V 34 mV 

During research in the past years, the monomer-salt mixtures presented in Table 2.3 are well 

investigated. The monomers are available in liquid condition and are solved in Dimethylformamide 

(DMF) prior to electropolymerization. The resulting mechanical properties are presented below. 

Comply with the recommendations from Leijonmarck [23] systems with a salt content between 8 

and 12 weight percentage are chosen. However, the elastic modulus varies between 1400 MPa 

and nearly no elastic modulus. The polymer made only from monomer A, methoxy polyethylene 

glycol monomethacrylate (SR550), has nearly no mechanical behaviour and behaves like a 

viscous gel. Different from monomer A the monomer B, tetraethylene glycol dimethacrylate 

(SR209), generates a very brittle surface that tends to peel off the carbon fibre. Moreover, 

monomer B has very low ionic conductivity. The mixture of both monomer A and B by a 1:1 ratio 

could have increased surface stability while its modulus is decreased by monomer A. 

Furthermore, because of monomer A, the ion conductivity of the mixture can be increased 

significantly. This indicates that ionic conductivity is inversely proportional to mechanical stiffness. 

Table 2.2: Dependency of ohmic drop on type of electrolyte and ion transport distance [22] 
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The higher the elastic modulus the polymer has, the lower its ionic conductivity becomes [4]. In 

this work, the coating which consists of a mixture of monomer A and monomer B by a 1:1 ratio 

and 8% lithium trifluoromethanesulfonate (li-triflate) is chosen. 

 

 Chemical 

indication 

Salt content Ionic conductivity Modulus Comment 

Monomer  [%] [S/cm] [MPa]  

A SR550 12 1.50 ∙ 10−5 <1 Viscous 

B SR209 12 2.08 ∙ 10−10 1417 Brittle 

A+B - 12 5.50 ∙ 10−8 770 N.s. 

A+B - 8 5.00 ∙ 10−8 820 N.s. 

The material properties of applied carbon fibre, resin and SPE are shown in Table 2.4. The layer 

of laminate is made of IMS65 carbon fibre, epoxy resin and the SPE coating which consists of 

monomer A and monomer B by 1:1 ratio. To enable ion conductivity this mixture contains 8% li-

triflate and is dissolved in Dimethylformamide (DMF). The modulus of the SPE varies with 

temperature which changes due to altitude or heat generation while the battery is operating. In 

the table below the modulus and CTE of coating are expressed in a range which is calculated 

from the temperature range of [273.5K, 343.5K] and studied in former research [21]., 

 

 

Table 2.3: Physical properties of polymers. Resulting from monomers after electropolymerization 

[22] [23]   
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Phase Symbol Value Unit Explanation 

Fibre 

IMS65 

𝐸1,𝑓 290 GPa Longitudinal modulus, 𝑥1 

𝐸2,𝑓 8 GPa Transverse modulus 𝑥2𝑥3 

plane 

𝐺12,𝑓 15 GPa Shear modulus 𝑥1𝑥2 plane 

𝐺23,𝑓 3 GPa Shear modulus 𝑥2𝑥3 plane 

𝜈12,𝑓 0.2 1 Poisson’s ratio 𝑥1𝑥2 plane 

𝜈23,𝑓 0.4 1 Poisson’s ratio 𝑥2𝑥3 plane 

𝛼1,𝑓 −4.2 ∙ 10−7 1/K Fibre CTE, 𝑥1 

𝛼2,𝑓 4.9 ∙ 10−6 1/K Fibre CTE, 𝑥2𝑥3 plane 

SPE 

Coating 

𝐸𝑐 [0.5, 2] GPa Young’s modulus range 

studied 

𝜈𝑐 0.3 1 Poisson’s ratio 

𝛼𝑐 [4 ∙ 10−5, 4 ∙ 10−4] 1/K CTE range studied 

Matrix 

Epoxy resin 

𝐸𝑚 2 GPa Young’s modulus Epoxy 

matrix 

𝜈𝑚 0.3 1 Poisson’s ratio 

𝛼𝑚 2.44 ∙ 10−5, 1/K Matrix CTE 

Table 2.4: Material constants of PeCCF [21]. Directions correspond to the coordinate system in 

Figure 2.6 
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2.4 Micromechanics analysis of PeCCF composite in COMSOL 

The micromechanics analysis of a single electrolyte coated carbon fibre in a resin can be 

performed using the Cell Periodicity node available in the Solid Mechanics interface. Using this 

functionality, the elastic matrix of the homogenized material can be computed for a given coated 

fibre and resin properties, and the fibre volume fraction [2]. 

With the help of the COMSOL tutorial [2] the unit cell is created and shown in Figure 2.7a). The 

blue cube represents the matrix, the yellow ring is the electrolyte coating whose thickness 𝑡 is 

500 nm and the black circle is the carbon fibre whose radius 𝑟 is 2.5 ∙ 10−6 m. The fibre volume 

fraction 𝑣𝑓 is 0.5, from that the side length of the cube 𝑎 can be calculated by following: 

 𝑎 = √𝜋(𝑡 + 𝑟)2 𝑣𝑓⁄                                                                                                                      39) 

After inputting the parameters of matrix, carbon fibre and coating according to Table 2.4 under 

the material section in COMSOL, the Cell Periodicity Study function is used to generate the 

PeCCF composite material. Then the cross-section of a unit cell is meshed with the Free 

Triangular element type. The meshed model is shown in Figure 2.7b). After computing this study 

the PeCCF composite material is successfully created and its material properties (stiffness, 

density. etc) can be used for the following beam simulation. Furthermore, this special 

arrangement related to PeCCF was studied by Schutzeichel et al [3] [21] 

 

Figure 2.7: a) Components of unit cell model in COMSOL; b) Unit cell with mesh 



2 State of research  19 

 

2.5 Layerweise (LW) Theory 

Modelling individual coated fibres in every layer in the laminate is unfeasible. A simplified 

micromechanics model of a single carbon fibre in epoxy is instead used to estimate the elastic 

properties of a single layer. These properties are then used in the homogenized model of the 

laminated composite cantilever beam. Two approaches are available in COMSOL to model the 

laminate, namely the Layerwise (LW) theory and the Equivalent Single Layer (ESL) theory [2]. 

The LW theory describes laminated composites as an assembly of individual layers, or uses a 1D 

interpolation function to simulate the displacement and/or stress fields along the thickness 

direction. The LW theory is useful for detailed modelling of thick composite laminates because it 

can capture interlaminar shear stresses [2]. Besides, with LW theory In-plane finite element 

meshing is independent of the out-of-plane (thickness direction) meshing and a separate shape 

function order can be chosen in the thickness direction in order to avoid shear locking [24].  

The classical laminated plates theory (CLPT) and the first-order shear deformation theory (FSDT) 

are two most popular ESL theories, and widely used in design, analysis and optimize of the 

composite engineering structures. The ESL theory can provide good results for the global 

responses of very thin laminated composite plates and shells, for example, the gross deflection, 

the critical buckling loads, the fundamental vibration frequencies and the associated mode 

shapes, but poor results for the thick laminated composites, especially the local responses, such 

as the distribution of ply-level stresses [25]. 

In this thesis, the LW theory is used. Because the LW theory is more accurate than the ESL 

theory, although it is significantly more expensive in terms of computer resources. Furthermore, 

the LW theory is suitable for thick composite laminates while the ESL theory gives only good 

results for the very thin laminates [25]. Moreover, with LW theory the fibre orientation, layer 

thickness and stacking sequence can be defined, which is important for subsequent optimization. 

The degrees of freedom in the LW theory are the displacements (𝑢, 𝑣 , 𝑤) available on the 

modelled surface as well as in the through-thickness direction. From a constitutive equation point 

of view, the LW theory is similar to 3D solid elasticity [2]. There are two approaches depending 

on the way degrees of freedom are defined: partial displacement field approach and full 

displacement field approach. In the partial displacement field approach, the laminate thickness 

remains constant, whereas the full displacement field approach allows a change in thickness of 

the laminate. In COMSOL Multiphysics, a full displacement field based LW theory is implemented 

[24].  
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Modelling a composite laminated structure based on LW theory requires a surface geometry (2D), 

typically referred to as a base surface, and a Layered Material node which adds an extra 

dimension (1D) to the base surface geometry in the surface normal direction. Using the Layered 

Material functionality in COMSOL, several layers of different thickness, material properties and 

fibre orientations can be modeled. Furthermore, symmetric, antisymmetric or repeated laminate 

can be constructed using a transform option [2].  

2.6 Frequency of noise in an aircraft cabin 

The noise produced by an aircraft engine is harmful to people working in close proximity due to 

its high sound pressure level (SPL) and it is a key factor in the realm of flight comfort. At the same 

time, the vibration due to engine operation influences the service life of the aircraft. Furthermore, 

airframe noise which is caused by unstable flow around the airframe is a major cause of cabin 

noise. Therefore, it is important to take care of the frequency of cabin noise to avoid resonance 

and reduce its SPL. 

In this paper, a Cessna 172 was observed. In Figure 2.8 the noise in a Cessna Skyhawk 172 

cabin during the cruise is shown. The bold curve is the modified reference signal [26]. In this 

figure, we can see the resonance frequencies. The first resonance frequency is approximately 90 

Hz. The second one is 170 Hz and the third and fourth are 250 Hz and 295 Hz. These resonance 

frequencies are the mixed effect of the propeller and flow. In this work, these resonance 

frequencies will be used as references to optimize the structure so that their natural frequencies 

can be tuned to avoid the resonant frequencies of cabin noise or do not coincide with these 

resonant frequencies [26].  
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2.7 Genetic Algorithm (GA) 

A Genetic Algorithm (GA) is an evolutionary stochastic optimisation procedure that is based on 

Darwin theory. In this context the stochastic means that the stochastic changes are applied in 

current solutions to find a better solution. Furthermore, the solution is changed slightly each time 

to find the best solution.  

GA works on a population that consists of many solutions. Each solution is referred to as an 

individual. Each individual has a chromosome that includes a lot of parameters, these parameters 

define the particular individual. Every individual has a fitness value, this allows the best individual 

to be chosen using a fitness function. The result of the fitness function is the fitness value which 

represents the quality of the solution. The greater the fitness value, the higher the quality of the 

solution which in turn, allows the best individuals to be selected depending on the quality of the 

solution. These selected best individuals together create a mating pool, so that the higher quality 

individuals are more likely to be selected. The individuals in the mating pool are called parents 

and together the two parents generate two offspring. This process is called crossover which is 

shown in Figure 2.9. The offspring with higher quality is kept and the lower quality of offspring will 

Figure 2.8: Cessna Skyhawk 172 cabin noise and reference signal spectra during cruise [26] 
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be sorted out. By the means of continuous selection and summarization, only the individuals with 

good quality are left. In the end, the procedure finds the best solution [27]. 

However, the offspring which are generated by the parents are not changed and have only the 

properties of their parents. So that these offsprings could have some of the same disadvantages 

as their parents. In order to solve this problem, a few changes in the offspring are made and then 

new offspring are generated. This process is called mutation which is shown in Figure 2.9. These 

newly generated individuals create a new population that replaces the old population. The new 

population is called generation. The whole process of GA is shown in Figure 2.10. 

 

 

Today GA is very often used for solving problems whose fitness functions are discontinuous, not 

differentiable, stochastic or highly non-linear. This optimization procedure is used in many 

software programs. For example, in Matlab, the GA is used to find the minimum value of the 

fitness function. In this thesis, the GA is used to find the best combination of fibre orientation 

which causes the least kinetic energy at the resonant frequency.  

 

 

Figure 2.9: The mating steps 

Figure 2.10: The flow chart of GA 
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3 Simulation framework for dynamically 

loaded structures 

Before the potential of vibration control with PeCCF is investigated, a simulation framework for 

dynamically loaded structures will be created and developed. In this chapter, it was chosen to 

simulate the span of an airplane wing. Due to their transverse loaded character and beam 

structure, it may show significant vibration reduction by reducing structural stiffness. At first, the 

span is simulated in Matlab using the FEM method. Simultaneously a simulation in COMSOL was 

carried out. In the end,  both results were compared and verified, then the simulation framework 

in COMSOL is used for investigation on PeCCF composites afterwards. At the same time, the 

Matlab simulation is validated. 

3.1 FEM Simulation with Matlab and COMSOL 5.5 

In this chapter, a Timoshenko beam is created analytically via Matlab and with FEM software 

COMSOL. The Young’s modulus of both beams is 7 ∙ 1010 Pa. After comparing their natural 

frequencies the accuracy of the Matlab model is verified. 

3.1.1 Timoshenko beam simulation with Matlab 

In this numerical simulation, the Timoshenko beam theory was used (see chapter 2.2). The beam 

consists of 15 elements and measures 1400 mm x 150 mm x 30 mm (length x height x width). 

From equations 33), 37) and 38) the equilibrium equation in matrix form for Timoshenko beam is: 

 

After resolving the equation above, the natural frequencies of the Timoshenko beam are 

generated. The Matlab codes are shown in Appendix A. The results of the simulation are shown 
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in Figure 3.1. In the figure, we can see the first 10 natural frequencies of the beam and their mode 

shapes. The Timoshenko beam consists of 15 elements and has a Boundary condition of 

clamped-free which means that at x=0 the displacement is zero and at x=1400 mm the 

displacement is maximum. Here  𝐟 is a zero vector.  

 

3.1.2 Timoshenko beam simulation with COMSOL 5.5 

Then a 2D Timoshenko beam was built in COMSOL. This COMSOL model has same dimension, 

element number and boundary condition as Matlab model in chapter 3.1.1. Therefore, the 

COMSOL model can be verified by the Matlab model and be used for later investigation. The  

Eigenfrequency functionality was used to calculate the natural frequencies. The tutorial for the 

COMSOL model is shown in Appendix B. The results of the COMSOL simulation are shown below. 

In Figure 3.2, Figure 3.3 and Figure 3.4 we can see the first 14 natural frequencies and their mode 

shapes. Comparing with Figure 3.1 we can see that most natural frequencies and their mode 

shapes are identical to the results of the Matlab simulation. But the third, the seventh, the ninth 

and the twelfth natural frequencies are not shown in Figure 3.1. This could be caused by the 

theory in chapter 3.1.1 which does not consider longitudinal deformation. At these inconsistent 

frequencies, the mode shapes show that the beam undergoes only axial deformation. In this case 

it is understandable that these natural frequencies do not match the results in chapter 3.1.1. 

Figure 3.1 First 10 natural frequencies and their mode shapes of Timoshenko beam  
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Figure 3.2: The first four natual frequencies and their mode shapes of the Timoshenko beam 

Figure 3.3: The fifth to eighth natual frequencies and their mode shapes of the Timoshenko beam 
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In order to compare the natural frequencies from these two methods conveniently and intuitively, 

the first 10 natural frequencies of the Matlab and COMSOL models are shown in Table 3.1. In the 

table, we can see that the natural frequencies of the two models are identical. However, in the 

COMSOL model the natural frequencies, which are shown in the left column, are not shown in 

the Matlab model. At these frequencies, the beam is elongated axially, this is because the Matlab 

simulation does not consider axial displacement. After verification, the COMSOL model was used 

for the subsequent investigations. 

 

Figure 3.4: The ninth to fourteenth natural frequencies and their mode shapes of the Timoshenko 

beam 
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Number of natural 

frequency 

Matlab 

 [Hz] 

COMSOL 

[Hz] 

Only axial displacement  

[Hz] 

1. 62.38 62.38  

2. 371.64 371.64  

   909.66 

3. 971.54 971.54  

4. 1754.83 1754.83  

5. 2669.98 2669.98  

   2739.00 

6. 3683.14 3683.14  

   4598.30 

7. 4777.82 4777.82  

8. 5946.45 5946.45  

   6508.00 

9. 7184.53 7184.53  

10. 8484.04 8484.04  

3.2 Vibration control potential investigation of beam  

In this chapter, the potential of vibration reduction will be investigated. The structural natural 

frequency is related to stiffness (Young’s modulus) and mass (see chapter 2.1). In the PeCCF 

structure, Young’s modulus of the fibre coating varies with temperature (see Table 2.4), which is 

caused by joule heat generated from energy production and transmission. The fibre orientation 

Table 3.1: The natural frequencies of Matlab and COMSOL models 
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To verify the result in Figure 3.5, the frequency spectrum of the COMSOL model with different 

Young’s moduli are compared (see Figure 3.6). The blue curve represents the model with E=6.48 ∙

1010 Pa. Compared with Figure 3.5 and Figure 3.6 we can found that their results are correspond 

with each other. The peak of blue curve is at 60 Hz while the red and black curve has much 

smaller value at 60 Hz. Furthermore, the peak of red and black curve are lower than the peak of 

blue curve. This result shows that by varying the stiffness of the beam, the resonant frequency of 

the structure can be moved to a frequency range that is not in a similar range as the cabin noise 

frequency, so that the resonance can be avoided and cabin noise reduced. 

 

Figure 3.6: The frequency spectrum of the COMSOL beam with different Young’s moduli. 
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4 Analysis of the structural vibration 

reduction potential of multifunctional PeCCF  

In this chapter a PeCCF composite beam is constructed via COMSOL and the vibration reduction 

effect of different variables are analyzed. At first the properties for carbon fibre and resin are 

defined in micro level (see Figure 4.1). Based on the properties in micro level the layer material 

can be defined. From layer level the properties of laminate can be gotten which are used for beam 

model in macro level. In the end the COMSOL model is used for testing effect of different 

variables, for example, fiber volume fraction, stiffness of fibre coating and fibre orientation. 

 

4.1 COMSOL model - microstructure 

After validating the results of the COMSOL model, a PeCCF composite structure is simulated via 

COMSOL to analyse its potential for vibration reduction. Since no available material in the 

COMSOL material library can represent PeCCF composite material, the microstructure, a unit cell 

must be created before creating the macrostructure. The unit cell defines the properties of the 

carbon fibre, epoxy resin and electrolyte coating which are shown in Table 2.4. The carbon fibres 

Figure 4.1: Coordinate systems for different levels. 
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is assumed to be transversely isotropic and the epoxy resin and polymer electrolyte coating are 

isotropic. The details of microstructure are shown in chapter 2.4. 

4.2 Layered material  

Based on the microstructure in chapter 4.1 the laminate layers can be constructed. From chapter 

2.5 we know that the Layered Material functionality in COMSOL should be used. At first, a 

homogenous layered material was under the global definition constructed, where the effective 

material properties calculated from the unit cell model in chapter 4.1 are applied. Simultaneously, 

the layer thickness, fibre orientation and layer transform are set. In  Figure 4.2 the layer position 

and fibre orientation are shown. The material consists of 6-layer symmetric laminate with the stack 

sequence [0°/45°/90°]𝑠. These orientations are randomly selected. The layer thickness is equal 

to 1 mm. The layers are in xy direction and the positive fibre orientation is in clockwise which 

starts from x axis. The further details for setting up can be found in COMSOL tutorial [2]. 

 

Figure 4.2: a) cross section view of 6-layer laminat; b) layer stack view with stack sequence 

[0°/45°/90°]𝑠 

4.3 COMSOL model – macrostructure 

Then a 3D beam with the size of 150 mm x 30 mm x 1400 mm is constructed based on the layered 

material in chapter 4.2. The beam is a cantilever which is only one side fixed supported (yellow 

surface in Figure 4.3). To get the velocity of the beam, a vertical force (0; 0; 50 kN) acts on the 
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left corner of the free side (blue arrow in Figure 4.3), so that there are bending moment and torsion 

on the model. Afterwards, the beam is meshed with Mapped type and has a fixed element 

distribution number of 20, so that the beam will not be too soft. The three views of the meshed 

beam are shown in Figure 4.4. The layer position is in the xy surface. In the end, the Frequency 

Domain functionality is used to get the velocity and total kinetic energy Wk_tot of the beam. 

 

 

Figure 4.3: Cantilever beam in COMSOL with vertical force 

Figure 4.4: Three standard views of a meshed cantilever beam: a) xz view; b) xy view; c) yz view. 
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4.4 Comparison of model with different laminate parameters 

To analyse the vibration reduction potential of the PeCCF composite beam, the parameters of the 

composite material are varied. In this chapter, the tested parameters are fibre volume fraction, 

the Young’s modulus of the fibre coating and the fibre orientation. The fibre volume fraction 𝑣𝑓 

and Young’s modulus modulus  𝐸𝑐  can be changed in the parameter table under Global 

Definitions. The fibre orientation is set under Layered Material. In this chapter, the fibre volume 

fraction and Young’s modulus of fibre coating of beam model in chapter 4.3 are changed to 

investigate their influences of vibration reduction. Then the model in chapter 4.3 is compared with 

the models with different layer stacks, these are shown in Figure 4.5. All three-layer stacks consist 

of 6 layers and are symmetric. They have the same fibre volume fraction and Young’s modulus 

of fibre coating. The only difference is the fibre orientations which are [0°/45°/90°]𝑠 , 

[90°/45°/0°]𝑠 and [30°/10°/80°]𝑠 

 

After computing the function Frequency Domain the velocity along the beam at 90Hz of the 

different models are exported into Matlab since 90 Hz is the first resonant frequency of the 

investigated airplane cabin noise in chapter 2.6. The Matlab code is shown in Appendix D and 

the results are shown in Figure 4.6. The x-axis represents the x coordinate along the beam. 

Because the beam is fixed at x = 0 the y-value, the velocity is always zero. Therefore in all 

situations the sampling starts from x = 0.1 m. The yellow, pink, blue and black solid curves 

represent the model with the same layer stack sequence of [0°/45°/90°]𝑠. The only difference is 

that the black solid curve shows the velocity of the beam with a smaller Young’s modulus of the 

fibre coating of 0.5 GPa, the pink and blue curves are for the model with higher (0.8) and lower 

(0.2) fibre volume fractions. The green curve and black dotted curve represent the model with the 

same layer stack sequence of [−45°/45°/−45°]𝑠 but different Young’s modulus of fibre coating 

𝐸𝑐. Similarly, compared with the yellow curve the red, cyan and black dotted curves represent the 

Figure 4.5: a) Layer stack sequence [90°, 45°, 0°]𝑠; b) Layer stack sequence [30°, 10°, 80°]𝑠  
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5 Discussion of parameter optimisation  

In chapter 4 the influence of fibre orientation on vibration reduction has been confirmed. However, 

it is too complex to find out how the fibre orientation influences the effect of vibration reduction. 

In this chapter the parameters, layer sequence and fibre orientation, will be studied. Because 

there are thousands of possible combinations of fibre orientation, it is unpractical to find the best 

combinations manually. Therefore, an optimization method, the Genetic Algorithm (GA), is used 

to find the best combination. The fitness function of GA is the result of COMSOL, the total kinetic 

energy of the beam at the resonant frequency. At first, the fibre orientation for the beam with 

rectangular cross-section, T cross-section and double T cross-section were optimized. At the 

same time, the wingbox is simulated in COMSOL and optimized using the GA. This procedure is 

achieved with COMSOL and Matlab. The software COMSOL Multiphysics with Matlab integrates 

COMSOL and Matlab. The results of the COMSOL model are exported into Matlab and are then 

used as the population for the optimization procedure of the GA in Matlab. In the end, the best 

parameters for the COMSOL model are determined from this procedure. After optimization 

procedure for the fibre orientation, the stiffness of the optimized beams and wingbox are tested, 

to see if they are within reasonable range.  

5.1 Optimisation of beams with different cross-sections 

5.1.1 Optimization procedure for fibre orientation  

In reality, the cross section of spars in airplane wingboxs are not simple rectangular. In order to 

find the compellent results, two more different cross-sections, T cross-section and double T cross-

section are investigated as well. The dimensions of these three cross-sections are shown in 

Figure 5.1. All three cantilevers are 1.4 m long and consists of 4-layer laminates with the layer 

stack sequence of [wink1/wink2]𝑠 to shorten optimisation time. As same as in chapter 4.2, the 

load (0; 0; 50 kN) acts on the left corner of the free side of the cantilever which is same with the 

force in Figure 4.3. 



5 Discussion of parameter optimisation  36 

 

 

Then the optimization procedure GA starts via COMSOL and Matlab. The procedure steps are 

shown in Figure 5.3. At first, the parameters, also called the solutions of the fitness function, are 

set up under layered material in the COMSOL model (see Figure 5.2). Here the best solutions 

are two angles of fibre orientation in the layer stack [wink1/wink2]𝑠. Then the fitness function is 

defined in Matlab, this fitness value is the total kinetic energy of the beam 𝐸𝑘−𝑡𝑜𝑡. This total kinetic 

energy is the result of COMSOL model. So in the fitness function, there is a command code to 

run COMSOL and export fitness value 𝐸𝑘−𝑡𝑜𝑡 in Matlab. After the GA analysis the input fitness 

value and parameters are used to find a new group of solution which is then used as new 

parameters in the COMSOL model. The parameters and fitness value exchanging between the 

COMSOL and Matlab creates populations for GA. When the best solution for wink1 and wink2 is 

determined, the optimization procedure is completed. The Matlab code for the fitness function 

and GA is shown in Appendix E [29] [30] [31].   

 

Figure 5.1: Three different beam cross-sections and their measurements: a) rectangular cross-

section; b) T cross-section; c) double T cross-section. 

Figure 5.2: Parameters set up in COMSOL model 
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In Table 5.1 the best fibre orientation for beams excited at 20 Hz with different cross-sections are 

shown since the first natural frequencies of all beams are near 20 Hz. The results of the 

rectangular and double T cross-section are closer than 10° while the angular difference between 

the T and the double T is more than 50°. The reason may be that the rectangular and double T 

cross-sections both have two axes of symmetry, but the T cross-section has only one. All cross-

section types have the same wink2 which is 0°.  

 

Cross-section Wink1  Wink2  𝐸𝑘−𝑡𝑜𝑡  

Rectangular 66.1° 0° 66.12 J 

T 19.7° 0° 75.98 J 

Double T 74.0° 0° 73.98 J 

Figure 5.4 to Figure 5.6 show the optimization procedure in effect. The y-axes represent the 

fitness value. The x-axes show the GA generations. From the figures, we can see that it takes 65 

generations to find out the best fibre orientations for a rectangular cross-section whose minimum 

kinetic energy is 66.12 J. The T cross-section needed 85 generations to converge the best fitness 

Figure 5.3: Flow chart of the optimization procedure via COMSOL and Matlab.  

Table 5.1: The optimisation results at 20Hz of beams with different cross-section 
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Figure 5.7: First eigenmode of beam with rectangular cross-section 

Figure 5.8: Second eigenmode of beam with rectangular cross-section 
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Figure 5.9: Third eigenmode of beam with rectangular cross-section 

Figure 5.10: Forth eigenmode of beam with rectangular cross-section 
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The beam with T and double T cross-section have same eigenmodes as rectangular cross-section 

but different natural frequencies. Therefore, only the natural frequencies are compared. As in 

Table 5.3  shown, we can find that the natural frequencies for all beams are relative far away from 

the resonant frequency of cabin noise (90 Hz). This means that the optimized results are rational 

and meet the optimized condition. 

 

Cross-section 1.NF [Hz] 2.NF [Hz] 3.NF [Hz] 4.NF [Hz] 

Rectangular 7.97 28.51 49.50 129.73 

T 5.94 29.93 37.79 102.48 

Double T 5.59 32.06 35.45  99.09 

5.1.2 Comparing the optimized results with other fibre orientation 

Furthermore, these optimized fibre orientations (see Table 5.2) are compared with other common 

fibre orientations. They are compared with fibre orientation [0°/0°]𝑠  and [45°/−45°]𝑠  for both 

layers. As in Figure 5.11, Figure 5.12 and Figure 5.13 show the total kinetic energy of the beams 

from 80 Hz to 100 Hz for different fibre orientations are compared. In Figure 5.11 we can see that 

the optimized fibre orientation for a rectangular cross-section is better than orientation [0°/0°]𝑠, 

as the red curve is much higher than the yellow curve. The maximum reduction of level of kinetic 

energy is up to 20 dB . However, the blue curve and yellow are almost coincident, this could be 

caused by their similar fibre orientations. [45°/−45°]𝑠 and the optimized orientation [54.1°/44.8°]𝑠 

have similar first orientation. Their second orientation are symmetrical with x axis.  

Table 5.3: First four natural frequencies for beam with different cross-section 
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loading position. The same force (0; 0; 50kN) acts at the free side of the beam but on the 

symmetry line of the cross-section. In Figure 5.14, Figure 5.15 and Figure 5.16 the sampling 

positions on the beams for displacement are shown. At x = 0 the beam is fixed which means that 

the displacement is always zero. Therefore the sampling points start at x = 0.1 m. The distance 

between the adjacent two points is 0.1 m. The displacement in z-direction along the beam with 

different cross-sections are shown in Figure 5.17, Figure 5.18 and Figure 5.19. 

 

Figure 5.14: Sampling positions on the beam with rectangular cross-section  
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Figure 5.16: Sampling positions on the beam with double T cross-section  

Figure 5.17, Figure 5.18 and Figure 5.19 show the displacement in the z-direction for beam with 

rectangular, T and double T cross-section. The black and blue curves represent the optimized 

PeCCF beam for 90 Hz and 20 Hz. The red curves are for the beam made of aluminium. In these 

figures we can find that the optimized PeCCF beam for 20 Hz for all cross-sections are stiffer than 

aluminium beams since the blue curves in three figures are lower than red curves. In contrast, 

the optimized PeCCF beams for 90 Hz are much softer, because their displacements are 

maximum. This could be caused by the target frequency for GA procedure. In the optimization 

Figure 5.15: Sampling positions on the beam with T cross-section  
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Similarly, the GA is used to find out the best wink1 and wink2. The result are shown in Table 5.4, 

Figure 5.21 and Figure 5.22. As introduced in chapter 2, the resonance frequency of the Cessna 

cabin noise is 90 Hz. Furthermore, according to the COMSOL model the natural frequency of 

wingbox near noise resonant frequency is 92 Hz. Hence, the best fibre orientations are found at 

90 Hz and 92 Hz. For 𝑓 = 90 Hz the best fibre orientation is [42.0°/84.5°]𝑠, with this orientation 

the min. kinetic energy is 3.98 J. The result for 92 Hz is [36.2°/86.0°]𝑠 and 3.44 J which are not 

significantly different from the results at 90 Hz. 

 

Frequency Wink1  Wink2  𝐸𝑘−𝑡𝑜𝑡  

90 Hz 42.0° 84.5° 3.98 J 

92 Hz 36.2° 86.0° 3.44 J 

In Figure 5.21 and Figure 5.22 the solution-finding process at 90 Hz and 92 Hz are shown. They 

needed a similar amount of generation (62 and 61 respectively) to find the best solution. However, 

the GA process at 90 Hz was more changeable than at 92 Hz. This is because the blue curve in 

Figure 5.21 has higher peaks than in Figure 5.22. From these two figures, we can affirm the 

reliability of the result since the results at two close frequencies are so close to each other. 

Furthermore, it shows that the fibre orientation combination is more flexible in a complex structure 

as 50% of the results in chapter 5.1 are the same. 

Figure 5.20: a) Oblique view of wingbox; b) yz view of wingbox 

Table 5.4: The optimization results for wingbox at different frequencies 
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6 Conclusion and Future Work 

This chapter consists of two parts. The first part summarizes the whole thesis and concludes. The 

second part makes observations on all results in previous chapters and raises questions. Based 

on that prediction about the future development of the PeCCF composite structure and possible 

difficulties and problems with this development. 

6.1 Conclusion 

In this thesis a simulation framework for dynamically loaded PeCCF composite structure was 

constructed by the means of Matlab and COMSOL Multiphysics 5.5. Afterwards, its potential for 

vibration reduction was investigated.  

At first a dynamically loaded Timoshenko beam was simulated via COMSOL and Matlab. The 

results of both softwares are identical. Compared with the Matlab model the results of the 

COMSOL model also shows the natural frequencies and their shape modes when the beam 

undergose only axial deformation. Simultaneously, the influence of Yong’s modulus on the 

vibration reduction effect is proven, since the total kinetic energy of the system is much smaller 

by avoiding a specific value of Young’s modulus.  

Then a COMSOL model for the PeCCF composite structure is construted. Based on the 

microstructure and LW theory, the beam with different variables is compared. The results reveal 

that the vibration can be reduced by greater fibre volume fraction. The velocity magnitude 

decreases by 6 dB when the fibre volume fraction increases from 0.2 to 0.8. Moreover, the fibre 

orientation can influence the vibration control effect significantly while Young’s modulus of the 

polymer coating 𝐸𝑐  makes almost no difference. This can depend on the relative direction 

between the layer and loading. In addition, big difference of Young’s modulus between the carbon 

fibre and polymer coating may be another reason for the little impact of 𝐸𝑐. Even though we find 

that the fibre orientation can influence the damping effect of PeCCF structure, the exact effects 

of the fibre orientation on the vibration reduction ability are too complex to be understood as there 

are multiple possible combinations of fibre orientation.  

Hence, the fibre orientation is optimized via GA in Matlab and COMSOL. The model and the 

variables of the fitness function are set up in COMSOL. The fitness function is defined in Matlab 

which can control the COMSOL model and export the results from COMSOL and then use them 
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for finding the best solution (fibre orientation) of the fitness function. The fibre orientation is then 

determined for the min.total kinetic energy of the beam (fitness value). For this optimization the 

beam with different cross-sections and a wingbox model are created. 

In the end, the rationality of the optimization fibre orientations were tested. However, the beams 

with optimized fibre orientation for 90 Hz are much softer than aluminium beams while the 

optimized beams for 20 Hz are stiffer than aluminium beams. This could be caused by the target 

frequency for GA process. In the optimization procedure the goal is to avoid resonant frequency. 

To avoid 90 Hz the fibre orientation changes to the position which can not bearing bending load 

as well as 0°. Moreover, the optimized wingbox is softer than aluminium wingbox as well. This 

means that a siffness limitation must be set up for the GA optimization although the best fibre 

orientation can reduce the level of the total kinetic energy up to 20 dB. Otherwise, the optimized 

results will not fulfill the requirements as structure. 

 

6.2 Suggestions for future work 

The following suggestions are given for the further investigation of vibration reduction potential 

using PeCCF composite structures. 

• Stiffness limitations of the PeCCF composite structure in a valid range of optimization 

Although the models are optimized successfully, the results for beam and wingbox models are 

not satisfactory due to their low stiffnesses. Therefore, the stiffness should be set up in a valid 

range when the best combinations of fibre orientations are sought in future research. The 

standard structural stiffness of already existing airplane wings should be used as a boundary 

conditions for the optimization procedure. With this limitation, the optimized structure can not only 

reduce vibrations but also satisfy the basic stiffness requirements for mechanical structures in 

aircraft. 

• Considering the viscoelastic material laws influences on the damping effects  

In this work, elastic materials are demonstrated, whilst in reality, materials are viscoelastic. 

Moreover, the viscoelastic effect of the material is a key factor for the structural damping effect. 

In a further studies, this property should be taken into account. Hence, the results of the simulation 

are more plausible and closer to reality. After considering the viscoelastic property the optimized 
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structure can be used to reduce the vibration when the resonant frequencies of noise are difficult 

to avoid. 

• Considering the variational modulus of the polymer coating  

As structure batterie, the carbon fibres generate heat when they transfer electric energy 

Furthermore, during the flight, the altitude of the aircraft varies greatly. Both factors lead to a 

significant temperature change. At the same time, Young’s modulus of the polymer electrolyte 

coating varies considerably with temperature [33]. When the load and the carbon fibre orientation 

are aligned, this temperature change may have almost no effect on the structures vibration 

reduction effect as the longitudinal modulus of the fibre is much greater than that of the coating, 

although it does change a lot. However, if the force is perpendicular to the carbon fibres, which 

means that only the transverse modulus of the carbon fibre and composite matrix (2 GPa) works 

against the load. The transverse modulus of the fibre is 8 GPa while the modulus of the coating 

varies between 0.5 GPa and 2.0 GPa. In this situation, the variational modulus of the coating due 

to temperature must be considered.  
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Appendix A – Matlab code for Timoshenko beam  

Main Script 

 

clear 

clc 

  

disp('please wait!!!!!!-The job is under run') 

  

% Discretizing the Beam 

  

nel=15;                 % number of elements 

nnel=2;                 % number of nodes per element 

ndof=2;                 % number of dofs per node 

nnode=(nnel-1)*nel+1;   % total number of nodes in system 

sdof=nnode*ndof;        % total system dofs  

  

% Material properties 

E1=7.0*10^10;            % Youngs modulus 

  

% changed Youngs modulus 

E2=6.898*10^11;  

  

  

BB=0.03;               % Width 

HH=0.15;              % Height 

I=BB*HH^3/12;          % moment of inertia of cross-section 

mass = 2700.0;            % mass density of the beam 

 

Ae=BB*HH; 

nu=0.33;                      % poission ratio 

Kse=10*(1+nu)/(12+11*nu);     %Shear factor of rectangle  
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Ge1=E1/2/(1+nu);               %G modulus in N/m^2 

Ge2=E2/2/(1+nu);               %G modulus in N/m^2 

  

tleng = 1.4;             % total length of the beam 

leng = tleng/nel;       % uniform mesh (equal size of 

elements) 

 

lengthvector = 0:leng:tleng ; 

 

% Boundary Conditions 

bc = 'c-f' ;             % clamped-free 

%bc = 'c-c' ;            % clamped-clamped 

%bc = 'c-s' ;            % clamped-supported 

%bc = 's-s' ;            % supported-supported 

  

kk=zeros(sdof,sdof);    % initialization of system 

stiffness matrix 

 

kk1=kk; 

kk2=kk; 

  

kkg=zeros(sdof,sdof);   % initialization of system geomtric  

stiffness matrix  

 

kkg1=kkg; 

kkg2=kkg; 

  

mm=zeros(sdof,sdof);    % initialization of system mass 

matrix  

 

mm1=mm; 

mm2=mm; 
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index=zeros(nel*ndof,1);  % initialization of index vector 

  

for iel=1:nel           % loop for the total number of 

elements 

  

index=elementdof(iel,nnel,ndof);  % extract system dofs 

associated with element 

  

[k1,kg1,m1]=beamT(E1,I,leng,mass,Kse,Ge1,Ae); % compute 

element stiffness,geometric 

  

[k2,kg2,m2]=beamT(E2,I,leng,mass,Kse,Ge2,Ae); % compute 

element stiffness,geometric 

                                    

kk1=assembel(kk1,k1,index); % assemble element stiffness 

matrices into system matrix 

 

kkg1=assembel(kkg1,kg1,index); % assemble geometric 

stiffness matrices into system matrix 

 

mm1=assembel(mm1,m1,index); % assemble element mass 

matrices into system matrix 

  

kk2=assembel(kk2,k2,index); % assemble element stiffness 

matrices into system matrix 

 

kkg2=assembel(kkg2,kg2,index); % assemble geometric 

stiffness matrices into system matrix 

 

mm2=assembel(mm2,m2,index); % assemble element mass 

matrices into system matrix  

end 
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% 

% Applying the Boundary conditions 

[nbcd,bcdof] = BoundaryConditions(sdof,bc); % Reducing the 

matrix size 

  

[kk1,mm1] = constraints(kk1,mm1,bcdof) ; 

[kk1,kkg1] = constraints(kk1,kkg1,bcdof) ; 

% 

% Natural frequencies and Buckling load 

[vecfreq1 freq1]=eig(kk1,mm1);   % solve the eigenvalue 

problem for Natural Frequencies 

 

freq1 = diag(freq1) ; 

freq1=sqrt(freq1);   % UNITS :rad per sec 

freqHz1 = freq1/(2*pi)  % UNITS : Hertz 

  

[kk2,mm2] = constraints(kk2,mm2,bcdof) ; 

[kk2,kkg2] = constraints(kk2,kkg2,bcdof) ; 

% 

% Natural frequencies and Buckling load 

[vecfreq2 freq2]=eig(kk2,mm2);   % solve the eigenvalue 

problem for Natural Frequencies 

 

freq2 = diag(freq2) ; 

freq2=sqrt(freq2);   % UNITS :rad per sec 

freqHz2 = freq2/(2*pi)  % UNITS : Hertz 

  

nmax = 10000; 

nf = [0:1:nmax-1]; 

df = 1; 

FF = df*nf; 

Om = 2.0*pi*FF; 
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for i=1:nmax 

    Cmat21 = kk1 - Om(i)^2*mm1; 

    Nmat21 = inv(Cmat21); 

 

    Hb111(i) = Nmat21(17,21); 

    Hb221(i) = Nmat21(19,21); 

    Hb331(i) = Nmat21(21,21); 

     

    Kimat1=j*Om(i)*Nmat21; 

    Vb111(i) = Kimat1(17,21); 

    Vb221(i) = Kimat1(19,21); 

    Vb331(i) = Kimat1(21,21); 

     

    Cmat22 = kk2 - Om(i)^2*mm2; 

    Nmat22 = inv(Cmat22); 

 

    Hb112(i) = Nmat22(17,21); 

    Hb222(i) = Nmat22(19,21); 

    Hb332(i) = Nmat22(21,21); 

     

    Kimat2=j*Om(i)*Nmat22; 

    Vb112(i) = Kimat2(17,21); 

    Vb222(i) = Kimat2(19,21); 

    Vb332(i) = Kimat2(21,21);      

end 

%  

% Magnitude 

COMSOL=load('Displacement-Velocity-Frequenzgang-

10Elements.txt'); 

  

figure(1); 

set(gca,'FontSize',17); 
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semilogx(FF,20*log10(abs(Hb331)),'-.k+','linewidth',1);hold 

on;...  

semilogx(FF,20*log10(abs(Hb332)),'k-','linewidth',2);hold 

on;...  

semilogx(COMSOL(:,1),20*log10(abs(COMSOL(:,2))),'b-

','linewidth',2);hold off; 

grid on; 

 

xlabel('frequency [Hz]','FontSize',20,'FontWeight','bold'); 

ylabel('Transversal displacement 

20*log10(abs(v))[dB]','FontSize',20,'FontWeight','bold'); 

title('Frequenzgang des 2. und 3. sowie 4. 

Knoten','Fontsize',30,'FontWeight','bold') 

legend({'Matlab','10.Knoten-smaller Youngs 

Modulus','COMSOL-

FrequencyDomain'},'Location','northwest','Fontsize',18,'Fon

tWeight','bold'); 

 

figure(2); 

set(gca,'FontSize',17);  

semilogx(FF,20*log10(abs(Vb331)),'-.k+','linewidth',1);hold 

on;...  

semilogx(FF,20*log10(abs(Vb332)),'k-','linewidth',2);hold 

on;... 

semilogx(COMSOL(:,1),20*log10(abs(COMSOL(:,3))),'b-

','linewidth',2);hold off; 

grid on; 

xlabel('frequency [Hz]','FontSize',20); 

ylabel('velocity 20*log10(abs(v)) 

[dB]','FontSize',20,'FontWeight','bold'); 
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title('Frequenzgang des 2. und 3. sowie 4. 

Knoten','Fontsize',30,'FontWeight','bold','FontWeight','bol

d') 

legend({'Matlab','10.Knoten-smaller Youngs 

Modulus','COMSOL-

FrequencyDomain'},'Location','northwest','Fontsize',18,'Fon

tWeight','bold'); 

%  

% Plot Mode Shapes 

  

h = figure ; 

set(h,'name','Mode Shapes of Beam in 

Hz','numbertitle','off') 

PlotModeShapes(vecfreq1,freqHz1,lengthvector,nbcd) 

  

h = figure ; 

set(h,'name','Mode Shapes of Beam in 

Hz','numbertitle','off') 

PlotModeShapes(vecfreq2,freqHz2,lengthvector,nbcd) 

 

• Functions 

Function assembel 

function [kk]=assembel(kk,k,index) 

%---------------------------------------------------------- 

%  Purpose: 

%     Assembly of element matrices into the system matrix 

% 

%  Synopsis: 

%     [kk]=assembel(kk,k,index) 

% 

%  Variable Description: 
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%     kk - system matrix 

%     k  - element matrix 

%     index - d.o.f. vector associated with an element 

%----------------------------------------------------------

- 

  

  

 edof = length(index); 

 for i=1:edof 

   ii=index(i); 

     for j=1:edof 

       jj=index(j); 

         kk(ii,jj)=kk(ii,jj)+k(i,j); 

     end 

 end 

  

Function beamT (stiffness and mass matrix) 

function [k,kg,m]=beamT(E,I,leng,mass,Kse,Ge,Ae) 

  

%----------------------------------------------------------

--------- 

%  Purpose: 

%     Stiffness, Goemetric stiffness and mass matrices for 

Hermitian beam element 

%   ><  

% 

%  Synopsis: 

%     [k,m]=beam(E,I,leng,mass)  

% 

%  Variable Description: 

%     k - element stiffness matrix (size of 4x4)    

%     m - element mass matrix (size of 4x4) 
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%     E - elastic modulus  

%     I - second moment of inertia of cross-section 

%     leng - element length 

%     mass - mass density (mass per unit volume) 

%========================================================== 

phi=12*E*I/Kse/Ge/Ae/leng^2; 

 

Mmat1=Ae*mass*leng/((1+phi)^2)/210*[ [70*phi^2+147*phi+78           

(35*phi^2+77*phi+44)*leng/4    35*phi^2+63*phi+27            

-(35*phi^2+63*phi+26)*leng/4];... 

                                  

[(35*phi^2+77*phi+44)*leng/4   (7*phi^2+14*phi+8)*leng^2/4   

(35*phi^2+63*phi+26)*leng/4    -

(7*phi^2+14*phi+6)*leng^2/4];... 

                                  [35*phi^2+63*phi+27            

(35*phi^2+63*phi+26)*leng/4    70*phi^2+147*phi+78           

-(35*phi^2+77*phi+44)*leng/4];... 

                                  [-

(35*phi^2+63*phi+26)*leng/4  -(7*phi^2+14*phi+6)*leng^2/4   

-(35*phi^2+77*phi+44)*leng/4  

(7*phi^2+14*phi+8)*leng^2/4]]; 

  

Mmat3=mass*I/30/((1+phi)^2)/leng*[[36                 -

(15*phi-3)*leng           -36               -(15*phi-

3)*leng];... 

                             [-(15*phi-3)*leng  

(10*phi^2+5*phi+4)*leng^2   (15*phi-3)*leng     (5*phi^2-

5*phi-1)*leng^2];... 

                             [-36               (15*phi-

3)*leng             36                (15*phi-3)*leng];... 
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                             [-(15*phi-3)*leng  (5*phi^2-

5*phi-1)*leng^2    (15*phi-3)*leng   

(10*phi^2+5*phi+4)*leng^2]]; 

                          

% Calculate Element Stiffness Matrix  

%========================================================== 

Kmat=E*I/leng^3/(1+phi)*[[12       6*leng           -12       

6*leng];... 

                         [6*leng   (4+phi)*leng^2   -6*leng   

(2-phi)*leng^2];... 

                         [-12      -6*leng          12        

-6*leng];... 

                         [6*leng   (2-phi)*leng^2   -6*leng   

(4+phi)*leng^2]]; 

                      

  

%Element mass matrices 

kg = Mmat3; 

  

m = Mmat1+Mmat3; 

     

%Element stiffness matrices 

k = Kmat; 

 

Function Boundary conditions 

function [nbcd,bcdof] = BoundaryConditions(sdof,bc) 

  

%----------------------------------------------------------

---------------- 

% Purpose :                                                                 

%         To get the arrested degree's of freedom for the 

beam depending on 
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% type of the boundary conditions       

% 

% Synopsis :  

%          [nbcd,bcdof] = BoundaryConditions(sdof,bc) 

%  

% Variable Description: 

% INPUT parameters: 

%           sdof : system degrees of freedom 

%           bc : boundary condition type 

% 

% OUTPUT PARAMETERS : 

%           bcdof : boundary degrees of freedom 

%           nbcd : number of boundary conditions 

%---------------------------------------------------------- 

  

 if bc == 'c-c'     % clamped-clamped beam 

    bcdof = [1 2 sdof-1 sdof] ; 

    nbcd = length(bcdof) ; 

      

 elseif bc == 'c-f' % clamped-free beam 

      bcdof = [1 2] ; 

%     bcdof = [1 2 3] ; 

    nbcd = length(bcdof) ; 

      

 elseif bc == 'c-s'     % clamped-supported beam 

     bcdof = [1 2 sdof-1] ; 

     nbcd = length(bcdof) ;  

       

 elseif bc == 's-s'     % supported-supported beam 

     bcdof = [ 1 sdof-1] ; 

     nbcd = length(bcdof) ; 
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 end 

Function constraints 

function [kk,mm]=constraints(kk,mm,bcdof) 

  

%----------------------------------------------------------

------------ 

%  Purpose: 

%     Apply constraints to eigenvalue matrix equation  

%     [kk]{x}=lamda[mm]{x} 

% 

%  Synopsis: 

%     [kk,mm]=feaplycs(kk,mm,bcdof) 

% 

%  Variable Description: 

%     kk - system stiffness matrix before applying 

constraints  

%     mm - system mass matrix before applying constraints 

%     bcdof - a vector containging constrained d.o.f 

%---------------------------------------------------------- 

  

 n=length(bcdof); 

 sdof=size(kk); 

  

 for i=1:n 

    c=bcdof(i); 

    for j=1:sdof 

       kk(c,j)=0; 

       kk(j,c)=0; 

       mm(c,j)=0; 

       mm(j,c)=0; 

    end 

    kk(c,c)=1; 
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    mm(c,c)=1; 

 end 

 

Function element DOF 

function [index]=eldof(iel,nnel,ndof) 

%---------------------------------------------------------- 

%  Purpose: 

%     Compute system dofs associated with each element in 

one- 

%     dimensional problem 

% 

%  Synopsis: 

%     [index]=eldof(iel,nnel,ndof) 

% 

%  Variable Description: 

%     index - system dof vector associated with element 

"iel" 

%     iel - element number whose system dofs are to be 

determined 

%     nnel - number of nodes per element 

%     ndof - number of dofs per node  

  

%---------------------------------------------------------- 

 

 edof = nnel*ndof; 

 start = (iel-1)*(nnel-1)*ndof; 

  

   for i=1:edof 

      index(i)=start+i; 

   end 
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Function Mode Shape Plot 

function PlotModeShapes(vec,fsol,beam,nbc)  

  

%---------------------------------------------------------- 

% Purpose :                                                                 

%         To Plot the Mode Shapes   

% Synopsis :  

%          PlotModeShapes(vec,fsol,beam,nbc)  

% Variable Description: 

% INPUT parameters: 

%           vec : Eigenvector 

%           fsol : Eigenvalues 

%           beam : length vector of the beam (length 

discretization) 

%           nbc : Number of boundary conditions  

%---------------------------------------------------------- 

v = vec(1:2:end,:) ; 

V = zeros(size(v)) ; 

for i = 1:size(v,2) 

    V(:,i) = v(:,i)./(max(abs(v(:,i)))) ; 

end 

 

  

L = max(beam) ;         % Length of the beam 

n = 1 ; 

 

% Plot First Mode shape 

subplot(1,10,1) 

plot(V(:,nbc+1),beam,'-ob','linewidth',n) ; 

h = fsol(nbc+1) ; 

title(num2str(h),'FontSize',15) 

axis([-1 ,+1,0,L]) 
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axis off  

 

% Plot Second Mode shape  

subplot(1,10,2)  

plot(V(:,nbc+2),beam,'-ob','linewidth',n) ; 

h = fsol(nbc+2) ; 

title(num2str(h),'FontSize',15) 

axis([-1 ,+1,0,L]) 

axis off 

 

% Plot Third Mode shape 

subplot(1,10,3)  

plot(V(:,nbc+3),beam,'-ob','linewidth',n) ; 

h = fsol(nbc+3) ; 

title(num2str(h),'FontSize',15) 

axis([-1 ,+1,0,L]) 

axis off 

 

% Plot Fourth Mode shape 

subplot(1,10,4) 

plot(V(:,nbc+4),beam,'-ob','linewidth',n) ; 

h = fsol(nbc+4) ; 

title(num2str(h),'FontSize',15) 

axis([-1 ,+1,0,L]) 

axis off 

  

% Plot fifth Mode shape 

subplot(1,10,5) 

plot(V(:,nbc+5),beam,'-ob','linewidth',n) ; 

h = fsol(nbc+5) ; 

title(num2str(h),'FontSize',15) 

axis([-1 ,+1,0,L]) 
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axis off 

  

% Plot sixth Mode shape 

subplot(1,10,6) 

plot(V(:,nbc+6),beam,'-ob','linewidth',n) ; 

h = fsol(nbc+6) ; 

title(num2str(h),'FontSize',15) 

axis([-1 ,+1,0,L]) 

axis off 

  

% Plot seventh Mode shape 

subplot(1,10,7) 

plot(V(:,nbc+7),beam,'-ob','linewidth',n) ; 

h = fsol(nbc+7) ; 

title(num2str(h),'FontSize',15) 

axis([-1 ,+1,0,L]) 

axis off 

  

% Plot eighth Mode shape 

subplot(1,10,8) 

plot(V(:,nbc+8),beam,'-ob','linewidth',n) ; 

h = fsol(nbc+8) ; 

title(num2str(h),'FontSize',15) 

axis([-1 ,+1,0,L]) 

axis off 

  

% Plot ninth Mode shape 

subplot(1,10,9) 

plot(V(:,nbc+9),beam,'-ob','linewidth',n) ; 

h = fsol(nbc+9) ; 

title(num2str(h),'FontSize',15) 

axis([-1 ,+1,0,L]) 



0 Appendix A – Matlab code for Timoshenko beam  76 

 

axis off 

  

% Plot tenth Mode shape 

subplot(1,10,10) 

plot(V(:,nbc+10),beam,'-ob','linewidth',n) ; 

h = fsol(nbc+10) ; 

title(num2str(h),'FontSize',15) 

axis([-1 ,+1,0,L]) 

axis off 
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Appendix B – COMSOL Tutorial for Timoshenko 

beam 

After opening the COMSOL 5.5 the Model Wizard is selected via clicking 

 

Then the 2D space dimesion is selected because of 2D simulation in Matlab. 

 

Later the structure type, beam, is under Structural Mechanics selected. The choosing is confirmed 

by clicking Add 
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Clicking Study to get to study selection 

 

Here the Eigenfrequency is selected and confirmed by clcking Done.  
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Now a 2D beam is built. By right clicking Geometry the Line Segment is selected. 

 

The beam is 1.4 meters long, so Line Segement is set as follows. After adding the coordinates of 

start and end point, the beam is built by clicking Build Selected above. 
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Afterwards the material of the beam is selected. Under Home by clcking the Add 

Material a new window will pop up on the right. Under Built-in a material can be 

selected by double clicking.  

 

 

 

In material setting window the density, Young’s modulus and Poission’s ratio are input 

as follows: 
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Then Timoshenko is under beam setting window selected. 
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Besides, the cross section and the moment of inertia of the beam is set to the same 

values as in Matlab model under Cross Section Data. So that the natural frequencies in 

Matlab can be verified. 

 

 

For rectangular cross section the shear correction factor  k is set under parameters. a 

represents Poission’s ratio here. 

 

The beam is one end clamped, so that the Fixed Constraint is selected by right clicking 

Beam. In setting window the position of clamped constraint is input. 
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Then the model is meshed by clicking Build All. The settings are shown below: 
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In the end the number of desired natural frequencies is input in the setting window. The 

number of natural frequencies can not exceed the number of DOF of all model 

elements. After clicking Compute above, the model is calculated. 

 

 

 

After calculating the natural frequencies and their mode shape are shown under 

Results—Mode Shape. By clicking Plot or arrows the different mode shape of different 

natural frequencies are shown. 

 

  

 

 



0 Appendix C – Matlab code for comparing total kinetic energy of beam with different Young’s modulus  85 

 

Appendix C – Matlab code for comparing total 

kinetic energy of beam with different 

Young’s modulus 

 

 

% For Function 

close all 

clc 

clear all 

model = mphopen('D:\Comsol\Masterarbeit\W_Frequenzgang-2D-

Beam-Timo10-E7-90Hz.mph'); 

E1=7e9:1e8:1e11; 

aa=length(E1); 

AA=zeros(aa,2) 

for i =1:aa  

model.param.set('E1',E1(i)); 

model.study('std1').run; 

Ek=mphglobal(model,'beam.Wk_tot','dataset','dset1','solnum'

,1,'outersolnum',1); 

AA(i,1)=Ek; 

AA(i,2)=E1(i); 

end 

  

[Ekmin,Emodul]=min(AA(:,1)) 

AA 

  

figure(1) 

x=AA(:,2); 

y=AA(:,1); 

plot(x,y) 
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xlabel('Youngs Modules [Pa]','FontSize',25); 

ylabel('Ekin Totol Kinetic Energy [J]','FontSize',25); 

title('kinetic Energy Vs E-Modul at 60 Hz','FontSize',30); 
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Appendix D – Matlab code for comparing 

velocity along the beam with different 

parameters 

 

COMSOL1=load('Ec_2_velocity_Frequenz-04590-90Hz.txt'); 

COMSOL2=load('Ec_05_velocity_Frequenz-04590-90Hz.txt'); 

COMSOL3=load('Ec_2_velocity_Frequenz-04590-90Hz-Vf08.txt'); 

COMSOL4=load('Ec_2_velocity_Frequenz-04590-90Hz-Vf02.txt'); 

COMSOL5=load('Ec_2_velocity_Frequenz-90450-90Hz.txt'); 

COMSOL6=load('Ec_2_velocity_Frequenz-301080-90Hz.txt'); 

COMSOL7=load('Ec_05_velocity_Frequenz-45-45-90Hz.txt'); 

COMSOL8=load('Ec_2_velocity_Frequenz-45-45-90Hz.txt'); 

   

x=0.1:0.1:1.4; 

  

figure(1); 

set(gca,'FontSize',18); 

plot(x,20*log10(COMSOL1(1,2:15)./5e-8),'y-

','linewidth',6);hold on; 

 

plot(x,20*log10(COMSOL2(1,2:15)./5e-8),'k-

','linewidth',2);hold on; 

 

plot(x,20*log10(COMSOL3(1,2:15)./5e-8),'m-

','linewidth',3);hold on; 

 

plot(x,20*log10(COMSOL4(1,2:15)./5e-8),'b-

','linewidth',3);hold on; 
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plot(x,20*log10(COMSOL5(1,2:15)./5e-8),'r-

','linewidth',3);hold on; 

 

plot(x,20*log10(COMSOL6(1,2:15)./5e-8),'c-

','linewidth',3);hold on; 

 

plot(x,20*log10(COMSOL7(1,2:15)./5e-8),'g-

','linewidth',6);hold on; 

 

plot(x,20*log10(COMSOL8(1,2:15)./5e-8),'--

k','linewidth',2);hold off; 

 

grid on; 

  

xlabel('x coordinate of beam 

[m]','FontSize',24,'FontWeight','bold'); 

 

ylabel('Level of velocity [dB] rel. 5e-8 

m/s','FontSize',24,'FontWeight','bold'); 

 

title('Velocity along the beam at 

f=90Hz','Fontsize',30,'FontWeight','bold'); 

 

legend({'[0/45/90]s-Vf-0.5-Ec-2','[0/45/90]s-Vf-0.5-Ec-

0.5','[0/45/90]s-Vf-0.8-Ec-2','[0/45/90]s-Vf-0.2-Ec-

2','[90/45/0]s-Vf-0.5-Ec-2','[30/10/80]s-Vf-0.5-Ec-2','[-

45/45/-45]s-Vf-0.5-Ec-0.5','[-45/10/-45]s-Vf-0.5-Ec-

2'},'Location','northwest','Fontsize',18); 
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Appendix E – Matlab code for orientation 

optimisation 

Fitness function 

 

function f = Funktion_Orientation_neu(x) 

 

global model 

global wink1,global wink2, 

global m; 

import com.COMSOL.model.*; 

import com.COMSOL.model.util.*; 

m=m+1; 

  

wink1=x(1); 

wink2=x(2); 

 

model.param.set('wink1',wink1); 

model.param.set('wink2',wink2); 

model.study('std2').run;  

Ek=mphglobal(model,'lshell.Wk_tot','dataset','dset6','solnu

m',1,'outersolnum',1);  

  

AAA(m,1)=Ek 

AAA(m,2)=wink1 

AAA(m,3)=wink2 

  

f=Ek 
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Genetic Algorithm 

 

import com.COMSOL.model.* 

import com.COMSOL.model.util.* 

 

model = 

mphload('Z:\19_April_2021\Unit_cell_stiffness_with_Beam_Fre

qDomain_Ec2_klein_fRange_2schicht_Kasten.mph'); 

 

global model 

global wink1, 

global wink2, 

global m; 

 

m=0; 

fitFon=@Funktion_Orientation_neu; 

 

nvars=2; 

lb=[0 0]; 

ub=[90 90]; 

IntCon=[1 2]; 

opts = optimoptions('ga','PlotFcn', @gaplotbestf); 

opts.PopulationSize = 10; 

[x,fval,existflag,output, population,scores] = 

ga(fitFon,nvars,[],[],[],[],lb,ub,[],IntCon,opts); 

 

[x,fval] = ga(fitFon,nvars,[],[],[],[],lb,ub); 

x 

fval 

 

 






