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Kurzzusammenfassung
Diese Studie bietet einen umfassenden Überblick über verfügbare Clustering-Methoden und

analysiert deren Leistung auf den Merkmalsvektoren von LIDAR-Ceilometerdaten. Nach der

Identi�zierung relevanter Merkmale der Cluster und der Auswahl der entsprechenden Metriken

fährt die Arbeit mit dem Vergleich verfügbarer Methoden zur Partitionierung von Daten fort.

In Anbetracht der Tatsache, dass die Daten hochdimensional sind, werden auch die dafür

spezialisierten Clustering-Methoden in die Untersuchung einbezogen. Die Studie beinhaltet

weiterhin eine Faktorenanalyse der Daten und eine anschließende Reduktion dieser Daten auf

niedrigere Dimensionen, die dann demselben Clustering-Analyseprozess unterzogen werden.
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Abstract
This study provides a comprehensive overview of available clustering methods and analyses

their performance on the feature vectors of LIDAR-ceilometer data. After identifying relevant

characteristics of the clusters and choosing the corresponding metrics, the work proceeds

with comparing available methods for partitioning data. Considering that the data is high-

dimensional, the specialized clustering methods are also included into examination. The study

further incorporates factor analysis of the data and subsequent reducing these data to lower

dimensions, which then undergo same clustering analysis process.
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1. Introduction

Wind pro�le data is a vital part of the weather forecast. The particular class of instruments

that measure aerosol backscatter pro�les is called automatic lidars and ceilometers, Illingworth

u. a. (2019). Automatic lidars and ceilometers (ALC) create wind pro�le by measure cloud

base, cloud thickness and aerosol layers. They do it by shining a laser pulse into the sky and

detecting the re�ection from aerosol particles with the help of a photocell in the receiver. The

return time of the single is then transferred into the spatial range with the speed of light.

Not only does it help to identify weather events and air quality, but it is also essential for

aircraft because backscatter pro�les provide information about fog and volcanic ash. These

ground-based pro�ling instruments are spread around Europe and incorporated into the E-

PROFILE network. E-PROFILE collects data from its members, including DWD - Deutscher

Wetterdienst, and o�ers an interactive map of wind pro�les gathered across all stations.

Usually, ceilometers’ measurements are a�ected by a high ratio of noise; that is why multiple

pro�les are averaged to intensify the signal.

The high sensitivity of ceilometers might produce false readings, for example, when icy

particles are reported as cloud height equal zero.

ALCs are capable of continuous 24–7 operation with high sampling rates. DWD utilizes

100 devices CHM 15k „NIMBUS“2 LIDAR-Ceilometer, which allows to measure the range up

to 15 km. This model has a very high-sensitivity due to its single wavelength backscattering

technique. The device is illustrated in �gure 1.1.

The ceilometer stores all measured backscatter pro�les in a day �le of NetCDF format

(Network Common Data File). For the detailed description of variables saved for each ceilome-

ter measurements, please refer to the manual G. Lu�t Mess- und Regeltechnik GmbH. The

visualization of data is presented in �gure 1.2.

All of the generous amounts of data by ALCs produced each day are stored without labels

and can only be interpreted by weather experts. Machine learning can potentially be utilized

to classify weather events in data produced by ceilometers.

In 2019, Niels Gandraß presented his work "Unsupervised Machine Learning: Feature

Extraction for Classi�cation of LIDAR-Ceilometer Aerosol-Backscatter Pro�les" - Gandraß

1



1. Introduction

Figure 1.1.: CHM 15k „NIMBUS“2 LIDAR-Ceilometer

Source:

www.lu�t.com/products/cloud-height-snow-depth-sensors-288/ceilometer-chm-15k-nimbus-2300/

Figure 1.2.: Wind pro�le from Hamburg 14.05.2021 21:00

Source: e-pro�le.eu/
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1. Introduction

(2019), where he developed a system that creates a feature representation of each measurement

and then proceeds with partitioning the dataset of these features into di�erent groups that are

meant to be representative of diverse weather events.

Since the data does not contain labels, only unsupervised learning can be used, e.g., clustering.

The work of Niels Gandraß introduces the data of the ceilometer and describes calibration

and normalization in great detail.

Considering that this work only deals with feature vectors created by the model of the

previous project, it is su�cient to know that data goes through the following stages:

Step 1: The NetCDF data of each day is calibrated.

Step 2: Data is reduced in size (for example, eight measurements are combined along the height

and four measurements along the time).

Step 3: Data is split into smaller slices.

Step 4: Autoencoder is trained on these slices to extract a feature vector.

Each slice contains 2048 backscatter variables, meaning that data is high-dimensional.

Clustering algorithms perform poorly on such types of data; that is why autoencoder was used

to reduce the data to manageable 32 dimensions. Autoencoder is a type of neural network that

learns an e�cient representation in an unsupervised manner, Kramer (1991). Autoencoder

attempts to copy input to the output. It consists of two parts - encoder and decoder. An encoder

maps the input object (in this case, slice of wind pro�le) to the code (representation), and a

decoder maps the code to a reconstruction of the input. The great advantage of the autoencoder

is its ability to capture nonlinear dependencies between an object’s variables.

After the autoencoder is trained and each weather slice is represented by a code, or so-called

feature vector, previous work proceeded with partitioning the dataset into groups. The chosen

clustering method was K-Means. The results looked promising but left room for improvement.

This work aims to explore other clustering algorithms and compare how they perform on

the feature vectors.

In case of successful partitioning, the labels of assigned clusters could be used to train the

classi�cator and, with that, provide a machine learning application that could automatically

analyze the weather data.

The study consists of two parts: the �rst part introduces the classical clustering algorithms

and analyses their performance on LIDAR data, and the second one deals with high-dimensional

methods. Both parts contain background, methodology and discussion sections. The work

ends with a conclusion chapter.

3



Part I.

Classical Clustering Methods
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2. Background

2.1. Clustering Validation

Clustering is a vital mining technique that identi�es subgroups of data. Overall, clustering

attempts to maximize the intra-cluster similarity and minimize inter-cluster similarity. There

are at least 100 clustering methods, and it is not a trivial task to choose which method suits

data the most. Usually, the choice of an appropriate algorithm is heavily in�uenced by the

characteristics of data, e.g., dimensionality and structure of the data, and the goal of clustering,

like classi�cation or exploration. Although, for many real-life datasets, it is rather hard to

make a prediction, which algorithm will show the best results. Therefore, it is common to

try and compare a few methods, which is also the goal of this work. The arising question is

how to determine which algorithm performed best. One of the possible options is showing

the data that was assigned to each cluster. Since this approach relies on human expertise, it

is not deterministic or reliable. Some clusters might have apparent separation, whereas the

di�erence between others can be subtle. To make the assessment of quality less questionable

and easier to interpret, people use various metrics that measure di�erent aspects of clusters.

These aspects are also referred to as desirable characteristic of clustering, among which are

the following ones:

• Between cluster separation

• Within cluster consistency

• Good representation of data by centroids

• Similar size of clusters

• Convex shape

and other, all presented by Hennig u. a. (2015).

Before attempting at clustering and validating, it is important to identify relevant charac-

teristics. These characteristics can then be measured by the corresponding cluster-quality

5



2. Background

measurement techniques. Most of the time, there are several requirements for a clustering

algorithm, resulting in multiple metrics, that are used to measure the cluster quality. However,

it is usually not possible to achieve great scores in all existing requirements.

The following paragraph introduces an example that aims to show the importance of the

clustering aspects.

Before attempting clustering and validating, it is crucial to identify relevant characteristics.

The corresponding cluster-quality measurement techniques can then measure these charac-

teristics. Most of the time, there are several requirements for clustering algorithms, resulting

in multiple metrics that are used to measure the cluster quality. However, it is usually not

possible to achieve great scores in all existing requirements.

The following paragraph introduces an example that aims to show the importance of the

clustering aspects.

A dataset published by Franck u. a. (2004) contains genetic information about 236 Australasian

tetragonula bees, and the goal of clustering this dataset is identifying species. The approach

to this problem is discussed in Hennig (2017). The �rst step would be identifying relevant

clustering characteristics. The de�nition of biological species requires close to no genetic

exchange between species, meaning that one of the aspects to measure would be cluster

separation. Small within-cluster distances is another characteristic that is relevant because

organisms of the same species must share many genes. On the other hand, the shape of the

within-cluster density, representation of clusters by centroids, entropy, and other possible

characteristics are not of concern for the overall goal. After all the relevant aspects are identi�ed,

one can proceed with choosing corresponding metrics. When the appropriate metrics are

found, clustering algorithms can be performed and assessed.

The same paradigm will be utilized with the LIDAR dataset.

Hennig u. a. (2015) brings attention to the problem that to the date of publishing (2015), there

was no existing research on investigating the characteristics of methods and how di�erent

clustering algorithms could be used to achieve set requirements. The literature research did

not produce any new papers on the topic. Therefore multiple clustering algorithms will be

introduced in this work, and their quality will be assessed with the help of several chosen

metrics.

There are various metrics available for di�erent aspects of clustering. For an overview,

please refer to Halkidi u. a. (2015). Another paper by Hennig (2017) proposes standardized

metrics that can be combined in di�erent ways to be better suited for individual purposes of

clustering.

6



2. Background

The following section brie�y introduces the aforementioned clustering characteristics and

identi�es the relevant ones for the LIDAR dataset. The section after that describes the metrics

that are suited for the chosen aspects of clustering.

2.1.1. Clustering Characteristics

Hennig u. a. (2015) provides at least 14 di�erent possible, desirable aspects of clustering. The

relevant aspects can be derived from the overall goal of clustering. We are interested in

identifying patterns in data that can potentially be used for classifying weather events. That

leads us to the �rst measurable aspect of the results: clear separating gaps between clusters.

Two approaches are utilized to assess the between cluster separation: measuring distances

between cluster centers or measuring the pairwise minimum distances between objects in

di�erent clusters.

Another primary aim in most cluster analysis studies is within-cluster similarity. It will also

be considered here as one of the critical aspects since weather events should be su�ciently

similar to each other in each class.

Another aspect is within-cluster gaps. A gap, in this case, is a split of a cluster into two

subgroups so that the minimum dissimilarity between these subgroups is still considerable. It

measures the within-cluster similarity from a di�erent perspective.

Characteristics, such as representation of objects by centroids and representation of dissimi-

larity structure by clustering, are mainly used for information reduction, which is not part of

the goal for the LIDAR-dataset.

Among other aspects, there are a few that can also be disregarded for the LIDAR dataset.

There are no expectations about the shape of clusters, and there is no limit to variables that

should be used for characterizing clusters. Variables can be either dependent or independent

in each cluster, and this aspect is also of no interest to us.

Another valuable characteristic of clustering is its stability. Similar data should produce

similar partitioning. It is an isolated aspect of the clustering since both desirable and not

desirable partitioning might be stable. To measure that, resampling or bootstrapping is used

alongside some type of classi�cation. Usually, the new data that was not in the cluster is

classi�ed using centroids and then compared with the results of the separate clustering run.

Since we are not aiming for a good cluster centroid representation and hence can not use

centroids as a classi�cation method, we refrain from measuring stability for the clusters

produced by methods in this work.

7



2. Background

2.1.2. Clustering Validity Metrics

Popular metrics, like the ones presented by Davies und Bouldin (1979), Dunn (1974) and Kauf-

man (1990), measure between cluster separation and within-cluster similarity simultaneously.

Hennig (2017) provides individual measurements for each aspect, which helps in the assess-

ment of individual characteristics of each clustering method.

Below are the indices for each relevant aspect of clustering. For notation refer to table 2.1.

Table 2.1.: General Notation

Symbol Meaning
D = {x1, ..., xn} set of objects

C = {C1, ..., CK} clustering set

K amount of clusters

n amount of objects

nj = |Cj | amount of objects in this cluster

For within-cluster similarity:

Iwithindis(C) =
1

n

K∑
j=1

2

nj − 1

∑
x6=y∈Cj

d(x, y), (2.1)

where d(x, y) is a distance function. To normalize the index within [0, 1] the value of

Iwithindis is divided by the maximum distance between two points in the dataset and subtracted

from one. The values closer to 1 are better.

For between-cluster separation:

Ip−sep(C) =
1∑K

j=1bpnjc

K∑
j=1

bpnjc∑
j=1

dj(i), (2.2)

where dj(i) is a fraction(p) of nodes distances between node i in cluster j and all other nodes

in other clusters sorted in an ascending order. bpnjc is an amount of these distances, taken

into calculation for cluster j.

This index allows tolerating odd, very small distances of clusters if in total separation

between clusters is good. To achieve that, this index takes the portion p, for example, p = 0.1,

of a cluster that is closest to the other cluster into the measurement. Whereas usual approaches,

like in Dunn (1974), consider only the minimal distance between two clusters, which is not

appropriate for more than two clusters since it only considers two closest clusters, and this

representation might not be typical for the entire result.

8



2. Background

2.1.3. Cluster Visual Representation

Even though visual assessment is not a reliable technique of identifying cluster quality, it is

still helpful to represent the results in an easily interpretable image.

Each clustering result will be accompanied by an image with ten random LIDAR measure-

ments assigned to each cluster.

Additionally, each method will have an average cluster representation: all LIDAR-images

will be averaged across all assigned LIDAR-measurements for each pixel for each cluster.

To appreciate the data distribution, cluster data will be reduced to two-dimensional points

and visualized with the help of UMAP method (for detail, please refer to section 2.4.3).

In total, for each clustering technique and hyperparameters, there will be three plots.

2.2. Clustering Technique Analysis

The following chapter is a survey on existing techniques for clustering data. Each clustering

algorithm is assessed regarding how well it might perform on the LIDAR data.

2.2.1. Centroid Clustering

The well-known type of clustering, K-means, also used in previous work, is a typical example

of a centroid-based clustering. It is the most widely used algorithm, as reported by Dubey

und Choubey (2017). Given a set number K of clusters, this approach tries to �nd K centroid

objects that would best represent other data points in each cluster. This approach is formalized

as minimizing the sum of square distances for each cluster, though �nding global optimum

is computationally hard. The main limitation of this technique is that it �nds only ellipsoid-

shaped clusters. The result of clustering depends on the initial position of centroids; that is

why K-Means attempts to initialize centroids multiple times. A survey by Dubey und Choubey

(2017) references several papers that attempt to optimize K-Means, make it more e�cient

or even take away the limitation of needing to specify the number of clusters in advance.

Nevertheless, this algorithm will not be considered further due to its inherent assumption

about cluster shape.

2.2.2. Spectral Clustering

First introduced by Donath und Ho�man (1973), spectral clustering is essentially a graph

partitioning technique, and it deals with similarity data. The similarity data can be built

from the original data, using various distance metrics. The spectral clustering comes from

9



2. Background

(a) Two circle clusters (b) Direct K-Means clustering (c) K-Means on eigenvectors of

Laplacian matrix

Figure 2.1.: Di�erence between K-Means and spectral clustering

a family of methods based on the spectral decomposition of the Laplacian matrix. The K

principal eigenvectors of the Laplacian matrix map the objects into K dimensions. The obtained

K-dimensional data is used to derive K clusters, usually by applying K-Means.

Spectral clustering not only can identify clusters of arbitrary shape but also �nds the global

optimal solution.

The described approach to spectral clustering is a generalization. There are numerous

variations of the algorithms proposed by authors. Possible diversion points include, but are

not limited to di�erent similarity graphs, types of graph Laplacian, type of eigenvectors for

clustering (�rst or last K-eigenvectors), and type of clustering method on eigenvectors. An

extensive survey can be found in the work of Von Luxburg (2007).

Section 2.2.1 notes that K-Means fails to identify clusters of non-convex shapes. To clarify

why this method works when applied on eigenvectors of Laplacian matrix, Ng u. a. (2001)

proposes the following example. The dataset is composed of two circles, as presented in the

�gure 2.1. When K-Means is applied directly to the data, it yields two clusters that are not of

the desired shape. Whereas the data mapped with eigenvectors consists of classical convex

shapes that can be successfully clustered with K-Means.

One of the recent popular takes on spectral clustering is spectral clustering with collaborative

representation, Wang u. a. (2015). Whereas the traditional similarity matrix consists of pairwise

distances, this approach considers each data object as a linear representation of all other objects.

The authors argue that pairwise metric is very sensitive to outliers, and the collaborative

representation does not su�er from this drawback.

The approach is summarized as follows:

10
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Step 1: Each data object y = Xα, where X are the other data points and α is the representation

coe�cient matrix of y over X .

Step 2: Calculate distance between representations using cosine similarity.

Step 3: Proceed with spectral clustering

Authors report improved accuracy and e�ciency on di�erent models for clustering tests.

A similar approach by Chen und Cai (2011) utilizes representation of data points, but instead

of using all available points, this approach creates a landmark representation. Landmarks are

several "characteristical" points in the dataset. They can be chosen randomly or with the help

of K-Means, and the amount of landmarks is signi�cantly smaller than the size of the dataset.

That makes computation much faster.

The algorithm scales linearly with the number of datapoints and is reported by the authors

to be as good as the state-of-the-art methods in 2011. The optimization parameter for this

algorithm is the number of landmarks. The results are also heavily in�uenced by a distance

measure: cosine, cityblock, and others.

Original spectral clustering, as well as both representative approaches, will be tested on

LIDAR-dataset.

2.2.3. Hierarchical Clustering

A hierarchical algorithm creates a nested sequence of partitions presented in a tree structure,

also referred to as a dendrogram. There are several levels of clusters; each big cluster includes

subclusters, which can also be further divided into smaller ones. These partitions can be built

in top-down or bottom-up approaches, also called divisive and agglomerative clustering.

Divisive clustering starts with all elements in one cluster and then performs some chosen

technique for cutting the data, then the process repeats for each cluster in an iterative matter.

The algorithm stops when each object is its own cluster or when the terminating condition is

met. For each iteration holds: once the splitting is done, it can not be reversed.

In contrast to that, agglomerative clustering starts with all objects each being one cluster of

one object and then merges clusters that are closer to each other. The process is repeated till

the end condition is met, or all objects belong to one cluster.

It is much more computationally intensive to �nd optimal splits in divisive clustering than

to �nd optimal merges in agglomerative clustering: 2n − 1 possible splits for the �rst level

cluster with all n objects vs.

(
n
2

)
with agglomerative clustering, Hennig und Meila (2015).

Therefore, agglomerative clustering is more widely used, whereas divisive clusters are a good

�t for clustering in which only a single variable is used for splitting.

11
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On the other hand, Roux (2018) reports that divisive algorithms appear to score slightly

better in the Silhouette index compared to agglomerative algorithms when used on a real-life

dataset including multiple variables in consideration.

Agglomerative clustering’s results depend on the chosen approach to calculate the dissim-

ilarity between the merged cluster and all the others. The need for these di�erent methods

comes from the fact that a distance between two clusters could be formulated in many ways.

Most famous methods include:

• Single linkage, also known as nearest neighbour: distance between two clusters is the

distance between their two closest objects.

• Complete linkage or farthest neighbour: distance between two clusters is the distance

between their two farthest objects.

• Average linkage, or UMGMA: distance between two clusters is the arithmetic mean of

all the distances between the objects of one and the objects of the other.

• Ward, or MISSQ: distance between two clusters is the magnitude by which the summed

square in their joint cluster will be greater than the combined summed square in these

two clusters.

Single, complete, and average linkage can be utilized with di�erent distance measures,

whereas ward will only work correctly when used with Euclidean distance. Single and complete

linkage is faster than the other ways, but ward and average linkage usually provide more

meaningful results, Abboud u. a. (2019).

There is no good heuristic about choosing the appropriate linkage method, so all four

introduced methods should be tested for agglomerative clustering.

2.2.4. Density-Based Clustering

Density-based methods attempt to identify clusters of high density separated by regions of low

density. All the data points found in regions of low-density are treated as noise. Density-based

clustering does not require a number of clusters. One of the main advantages of this technique

is the ability to identify clusters of di�erent shapes.

This clustering approach does not make an assumption about the underlying density or

variance of the data; it can therefore identify clusters that cannot be well described as groups

of low within-cluster dissimilarity.

A popular algorithm DBSCAN, proposed by Ester u. a. (1996), utilizes a spatial index structure

to perform scalable clustering. The two required parameters are r - distance threshold and k -
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density threshold. The density of each point x is the amount ki of neighbor points in radius r.

If a point’s ki is bigger than k, this point is a core point, and a cluster is formed; otherwise it’s

a border point and the algorithm searches for the next point. The algorithm visits all points in

this matter. Radius r is also referred to as eps, and the density threshold k as MinPts. The

choice of these parameters heavily in�uences the quality of the result. DBSCAN also has the

disadvantage of performing poorly if the density varies.

DENCLUE, o�ered by Hinneburg u. a. (1998), and DBCLASD by Xu u. a. (1998) were intro-

duced as an alternative to DBSCAN.

DENCLUE consists of in�uence and density function and is essentially a generalization over

DBSCAN. The in�uence function evaluates the impact of a data point on its neighborhood. The

density function is a sum of in�uence of all data points. DENCLUE is also reported to be a much

more e�cient algorithm than DBSCAN. Hinneburg und Gabriel (2007) presented DENCLUE

2.0, a faster version of the method that still converges exactly towards a local maximum and

only sacri�ces a small part of accuracy.

DBSCLAD has three important notations for de�ning a subset of data a cluster C :

• Nearest neighbor distance set of C has the expected distribution with a required con�-

dence level.

• C is maximal.

• C is connected.

A comparison study by Nagpal und Mann (2011) reports that DENCLUE indeed is the fastest

method. All three algorithms can identify arbitrary shapes. DBCLASD has the advantage of

requiring no parameter, whereas parameter estimation for DENCLUE is di�cult. According to

the study DENCLUE and DBCLASD handle noise much better than DBSCAN, though cluster

quality is best in DENCLUE and DBSCAN.

DBSCAN and DBCLASD will be considered for LIDAR-dataset.

Selecting parameters for DBSCAN is a rather tricky task. One of the methods developed

speci�cally for estimating the radius is AEC - Automatic Eps Calculation by Gorawski und

Malczok (2006). The AEC algorithm can only estimate radius in simple datasets with a small

noise ratio, while noisy datasets are much more common. That is why it will not be helpful for

the feature vectors of LIDAR-dataset.

Determining density threshold, or MinPts, has several rules of thumb: it should not be

less than the number of dimensions and should increase with the size of the dataset and

noise. Sander u. a. (1998) reports that their experiments indicate that the value of MinPts =

2 ∗ dimensions performs well for datasets where each point occurs only one time.
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Figure 2.2.: Sorted k-distance plot by Sander u. a. (1998): the sorted distances of each object to

the 3d neighbour.

For eps search the author o�ers a "sorted k-distance plot", where k =MinPts− 1. After

calculating the distance to the kth nearest neighbor and sorting these distances, the threshold

object can be identi�ed as an object near the �rst “valley” of the sorted k-distance plot. The

distance of this object is then used as eps. The example is presented in �gure 2.2.

2.3. Data Factor Analysis

Each slice of provided data consists of 2048 dimensions, e.g., it is considered to be high-

dimensional data. Classical clustering algorithms, especially the ones that are based on the

nearest neighbor approach, are reported to be ine�cient in high dimensions due to the curse

of dimensionality Kriegel u. a. (2009). Therefore the previous work on the subject concentrated

on reducing the dimensions with the help of an autoencoder. The feature vector, extracted by

autoencoder, consists of 32 dimensions. This amount can be classi�ed by several applications

as high-dimensional data as well. There is no agreed-upon threshold for assigning a label of

"high-dimensions" to a dataset, but regular clustering algorithms tend to have problems with

more than ten variables, Han u. a. (2011). This chapter investigates whether or not the data

compressed by an autoencoder is suitable for dimensionality-reduction techniques, like PCA,

UMAP, or t-SNE.

To assess whether or not data can be compressed that way, it is required to perform Kaiser-

Meyer-Olkin criterium and the Bartlett test for sphericity.
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2.3.1. Kaiser-Meyer-Olkin Criterium

Presented by Kaiser (1970), the Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy

is a statistical measure that indicates whether the variance in data is caused by underlying

structural factors, which would make the data suitable for factor analysis. KMO calculates the

proportion of variance among all the variables in the data. It takes values between 0 and 1,

and the results above 0.6 are considered su�cient to proceed with Factor Analysis.

2.3.2. Bartle�-Test

Bartlett’s test of sphericity, proposed by Armstrong und Soelberg (1968), shows whether the

observed variables of the data inter-correlate at all. In other words, this test checks whether

there is some redundancy among variables that a few factors could describe. For that, the test

calculates an observed correlation matrix against the identity matrix. The null hypothesis

of this test is that the variables do not correlate at all and are entirely independent of one

another. To assess whether or not the result of the dependence of variables is signi�cant, we

rely on the p-value. If the p-value is below a speci�c threshold (most common 0.05), the result

is considered signi�cant, and we can proceed with factor analysis.

2.3.3. Result Analysis

The encoded data of the LIDAR dataset (the 32-dimensional vector produced by the autoencoder)

got a Kaiser-Meyer-Olkin score of 0.749 for 16000 slices and 0.746 for 19200 slices. The score

in a range of 0.70s is described as middling by the author of an original paper. Dziuban und

Shirkey (1974) reports that with an increasing number of samples, the score improves. Due to

computational restriction, it was impossible to calculate the score for the entire dataset, but

the score appears to be consistent in the 0.70s sector with various amount of samples.

The Bartlett-Test on the encoded data of 16000 slices yielded a chi result of 502797.35 with a

p-value of 0.0; for the 19200 slices, a chi-value of 606846.33 and a p-value of 0.0.

Given that Bartlett-Test produced signi�cant results and the data also satis�ed the Kaiser-

Meyer-Olkin criterium, it is possible to proceed with dimensionality reduction techniques

such as PCA, UMAP and t-SNE, because the encoded data proved to be suitable for structure

detection.
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2.4. Dimensionality Reduction

In this chapter, several dimensionality reduction approaches will be considered, including their

advantages and disadvantages. Their performance will be assesses based on the results of

classical clustering algorithms applied to the data. All of these techniques are unsupervised,

i.e., do not require labels. The techniques will be applied to already reduced data - feature

vectors extracted by the autoencoder. The goal is to reduce 32 dimensions to 2. In addition to

improved performance of the clustering algorithms, it will also allow to visualize clustering.

2.4.1. Principal Component Analysis

Principal component analysis (PCA), as described in Abdi und Williams (2010), is a linear

transformation technique that utilizes orthogonal transformation, which preserves symmetric

inner product of data. A group of correlated variables is converted to a smaller group of uncor-

related variables. The process of converting data to fewer dimensions includes standardizing

data, building a co-variance matrix, extracting �rst k eigenvectors, which will represent new

dimensions.

PCA maximizes the variance of data and reduces noise, which is then utilized by clustering

techniques. Even though PCA is a widely spread technique, some papers advise against using it.

Yeung und Ruzzo (2001) reports that the PCA technique used for dimensionality reduction not

only failed to produce better results but also failed to capture the cluster structure. However,

this problem could be speci�c to the type of data. PCA and clustering were performed on

gene expression data. The authors also did not report on performing advised tests for factor

analysis, like Kaiser-Meyer-Olkin to see whether the data was suitable for PCA.

On the other hand, Ding und He (2004) argues that the use of PCA for clustering, speci�cally

K-Means, in this case, is justi�ed because principal components (PCs) are the continuous

solution of the cluster membership indicators.

The obvious drawback of the PCA algorithm is that it can only extract linear features. In

addition to that, Jolli�e (1982) draws attention to the problem that there is no way to say in

advance that low-variance components will be unimportant and that PCA will not actually

lose the discriminatory features in classi�cation.

2.4.2. T-distributed Stochastic Neighbor Embedding

T-distributed stochastic neighbor embedding (t-SNE) is a nonlinear dimensionality reduction

technique. It was proposed by Van der Maaten und Hinton (2008) and is widely used for data

visualization of high-dimensional clusters. The main advantage of this algorithm is its ability
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to deal with linearly nonseparable data. In contrast, the drawback is that it is not deterministic

and iterative, meaning that it produces di�erent results after every run. T-SNE calculates

the pairwise similarities for input dimensions and then again for reduced dimensions and

attempts to minimize the divergence between these distributions. The Sum of Kullback-Leibler

divergence is a measure that is being minimized with stochastic gradient descent.

T-SNE is a computationally intensive method. The recommended amount of dimension for

an input object is at most 50. This method requires several hyperparameters, for example,

perplexity, which is used to balance attention between local and global aspects of the data.

Results may change with di�erent hyperparameters, so it is important to run this method

multiple times with di�erent parameters and compare the results.

2.4.3. Uniform Manifold Approximation and Projection

Uniform Manifold Approximation and Projection (UMAP), introduced by McInnes u. a. (2018),

is another dimension reduction and visualization technique, similar to t-SNE. In comparison

to t-SNE, UMAP is a more popular technique for dimension reduction. It allows non-linear

reduction as well. The mathematics behind this algorithm are rather complex, but to put it

simply, UMAP constructs a representation of the high-dimensional graph and attempts to

optimize a low-dimensional graph to have a similar structure as the high-dimensional one.

UMAP constructs the high-dimensional graph with the help of fuzzy simplicial complexes,

which are essentially weighted graphs, where edge weight is the likelihood of two nodes being

connected. To determine the likelihood, UMAP uses the radius of a node. The choice for radius

is essential since too big radiuses lead to the network being wholly connected, and too small

radiuses result in too many isolated clusters. The radius is determined locally, depending on

the nearest neighbors. After the high-dimensional graph is computed, the low-dimensional

graph’s structure is optimized similarly to how t-SNE does it.

UMAP and t-SNE both use gradient descent but di�er in initialization. The original version

of t-SNE uses random initialization, whereas UMAP utilizes graph Laplacian. Becht u. a. (2019)

argues that UMAP is superior to t-SNE because it can capture the global structure better than its

predecessor. Kobak und Linderman (2019) provides another point of view: multiple experiments

in this paper showed that t-SNE is as capable of capturing the same global characteristics of

the data, given the informative initialization. This study also demonstrated that UMAP with

random initialization would perform as poorly as t-SNE.

Overall, this study provides an essential insight about both methods: an initialization

technique is crucial for the results.
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Nevertheless, the UMAP method is signi�cantly faster than t-SNE for the same amount of

dimensions and scales better. UMAP can be directly applied to the original data with thousands

of dimensions.

2.4.4. Overview

The main di�erence between the discussed methods is the ability to capture linear vs. non-

linear patterns. UMAP and t-SNE both perform similarly; hence only UMAP will be tested.

Data is rarely linear separable, that is why UMAP is expected to perform better than PCA.
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This section describes the practical part of the analysis, including the procedure, data, software

description, and the calculation of parameters for clustering methods.

3.1. Analysis Procedure

The methods chosen for the analysis are spectral clustering, landmark spectral clustering,

spectral clustering with collaborative representation, agglomerative clustering, DBSCAN, and

DBCLASD.

Some algorithms require the number of clusters to �nd; in that case this parameter is set to

8 to make it consistent with the previous study.

Landmark spectral clustering has two important parameters: p - the amount of landmarks

and the distance measure. Tested p values are 250, 500, 1000, tested distance measures: cosine,

cityblock.

Agglomerative clustering requires a choice of dissimilarity measure; the tested methods are

single linkage, complete linkage, average linkage, ward linkage.

For DBSCAN parameter estimation, please refer to 3.4.

All the aforementioned methods go through the following analysis steps:

• Calculating simple statistics: the number of clusters, data distribution.

• Calculating cluster validity metrics: within-cluster similarity and between-cluster sepa-

ration.

• Plotting the average representation of each identi�ed cluster.

• Plotting the random entities assigned to each cluster.

• Plotting the 2d-representation calculated with UMAP.

This process is repeated for encoded data (feature vector), data reduced by UMAP, data

reduced by PCA.
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3.2. Data Description

LIDAR data for this dataset consists of 6240 slices (similar amount as used for the test in the

previous work) from Leipzig 2018 (same resource). Each slice is a 256 by 8 matrix, where 256 is

the number of height bins and 8 is the number of samples. The normalization parameters for

backscatter were taken from the preceding work’s appendix: max is 5.657 e−6m−1sr−1, min

is -8.944 e−7m−1sr−1.

The feature vector for each slice is then generated with the help of the autoencoder model -

AutoEncoderArch7_1_3_1 from the preceding study, which results in the dataset of 6240 items

with 32 dimensions.

The reduction of data is performed with the UMAP and PCA methods. This generates two

datasets of 6240 items with two dimensions.

3.3. So�ware Description

DBSCAN clustering, as well as Agglomerative clustering implementation is provided by Pe-

dregosa u. a. (2011). DBCLASD implementation is an open source project: https://github.com/spalaciob/py-

dbclasd. Spectral clustering and its variations are a custom implementation.

3.4. Parameter Estimation for DBSCAN

As described in section 2.2.4, DBSCAN requires two parameters: density radius - eps and

density threshold - MinPts. The plot used for eps prediction are presented in �gure 3.1. The

parameters for each data type, e.g. encoded or reduced, are listed in table 3.1.

(a) Sorted distances to the 63th

neighbour of encoded data ob-

jects.

(b) Sorted distances to the 3d

neighbour of UMAP reduced

data objects.

(c) Sorted distances to the 3d

neighbour of PCA reduced

data objects.

Figure 3.1.: Sorted k-distance plots for eps estimation.
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Table 3.1.: DBSCAN Parameters

Data Type MinPts Eps
Encoded data 64 35

UMAP reduced data 4 0.15

PCA reduced data 4 2

DBSCAN with these parameters produced unsatisfactory results. The range of several

parameters was tested. For encoded data, a range of MinPts values between 16 and 80 failed

to produce better results. UMAP data has been partitioned in 50+ clusters with di�erent eps

parameters. Section 2.2.4 mentions that with more data, it is sensible to choose a higher value

of MinPts, that is why for reduced data MinPts has been assigned to 4 ∗ dimensions = 8.

3.5. Interactive Cluster Visualization

This additional tool, see �gure 3.2, allows to interactively explore 2D structure of the LIDAR

data. Hovering over the data points visualizes them underneath and allows fast comparison of

the weather slices. This tool also makes assessing the quality of the clustering algorithm easier.

It has been created with the help of Inc. (2015).
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Figure 3.2.: Interactive cluster visualization tool
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4.1. Clustering Metrics

4.1.1. Clustering on Encoded Data

Table 4.1 provides an overview of di�erent clustering methods and di�erent hyper-parameters

performed on the autoencoder feature vectors (encoded data). Agglomerative clustering with

single linkage seems to have outperformed others in between-cluster separation, but only

by assigning most data to one cluster. The same happens with DBSCAN and agglomerative

clustering with average linkage.

The within-cluster similarity is best for the spectral collaborative clustering and the clustering

that was used in the previous work.

Spectral clustering has a fair distribution over clusters and has a good within-cluster score.

These results show an interesting e�ect: assigning data to one cluster seems to improve the

between-cluster separation, but has no evident in�uence on within-cluster similarity. The

example of agglomerative clustering with single linkage demonstrated that the similarity of

the entire test dataset is at 0.72. Only a few methods perform better in this score and distribute

data over multiple clusters: original clustering from previous work, spectral clustering, and

spectral clustering with collaborative representation.

Several tests with di�erent hyperparameters in landmark spectral clustering show that

cityblock metric for distance outperforms cosine.

Density-based method DBSCAN identi�es most of the data as one cluster and a small portion

as noise.
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Table 4.1.: Metrics Result: Clustering on Encoded Data

Clustering Approach Between-cluster Separation Within-cluster Similarity Cluster Amount Data Distribution
Default 0.11 0.77 8 0.36 0.16 0.12 0.09 0.09 0.07 0.06 0.06

Spectral 0.10 0.74 8 0.26 0.12 0.12 0.11 0.1 0.1 0.1 0.09

Landmark.Spectral.p1000.cosine 0.08 0.71 8 0.4 0.39 0.06 0.05 0.04 0.03 0.02 0.01

Landmark.Spectral.p250.cosine 0.07 0.67 8 0.5 0.29 0.06 0.06 0.04 0.03 0.02 0.0

Landmark.Spectral.p500.cosine 0.08 0.72 8 0.42 0.4 0.05 0.04 0.03 0.03 0.03 0.01

Landmark.Spectral.p250.cityblock 0.11 0.72 8 0.38 0.18 0.14 0.08 0.07 0.06 0.05 0.04

Landmark.Spectral.p500.cityblock 0.11 0.73 8 0.35 0.17 0.16 0.08 0.07 0.07 0.06 0.04

Landmark.Spectral.p1000.cityblock 0.11 0.72 8 0.34 0.19 0.16 0.09 0.08 0.07 0.05 0.03

Spectral.Collaborative 0.08 0.78 8 0.29 0.21 0.13 0.08 0.08 0.08 0.07 0.07

DBSCAN.30 0.24 0.74 2 0.96 0.04

DBSCAN.33 0.28 0.74 2 0.98 0.02

DBSCAN.35 0.29 0.73 2 0.99 0.01

Agglomerative.ward 0.11 0.71 8 0.58 0.11 0.09 0.06 0.06 0.04 0.03 0.03

Agglomerative.complete 0.16 0.63 8 0.8 0.06 0.04 0.03 0.03 0.02 0.01 0.0

Agglomerative.average 0.21 0.68 8 0.91 0.05 0.03 0.01 0.0 0.0 0.0 0.0

Agglomerative.single 0.45 0.73 8 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4.1.2. Clustering on Reduced Data

Tables 4.2 and 4.3 show the metrics for clustering performed on the data reduced by UMAP

and PCA respectively. Data for metric calculation is encoded data, not reduced data.

Reducing data to two dimensions improved the within-cluster separation for UMAP but

slightly lowered the between-cluster separation index. Overall, UMAP outperformed PCA on

all the scores.

Density-based approaches identi�ed many more clusters (for example, 86 for DBCLASD on

UMAP reduced data). Smaller clusters have a better similarity within, scoring 0.85, which is the

highest result among all sampled methods and data types. DBSCAN algorithm with di�erent

parameters assigns approximately a third of data to one cluster on UMAP data, whereas

the distribution of data after DBCLASD is more uniformly. For PCA reduced data DBSCAN

interprets most of the data as one cluster for the entire range of hyperparameters.

Agglomerative clustering performs best with ward as the dissimilarity measure for PCA

reduced data. On the other hand, ward, complete and average linkage have relatively similar

performance on UMAP reduced data.

Spectral clustering consistently shows approximately even distribution and has above aver-

age scores in both metrics. The Landmark version of this algorithm still performs best with

cityblock as a distance measure.
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Table 4.2.: Metrics Result: Clustering on UMAP Reduced Data

Clustering Approach Between-cluster Separation Within-cluster Similarity Cluster Amount Data Distribution
Default 0.11 0.77 8 0.36 0.16 0.12 0.09 0.09 0.07 0.06 0.06

Spectral 0.10 0.75 8 0.17 0.17 0.12 0.12 0.11 0.11 0.1 0.1

Landmark.Spectral.p1000.cosine 0.11 0.70 8 0.43 0.35 0.1 0.1 0.01 0.01 0.0 0.0

Landmark.Spectral.p250.cosine 0.11 0.73 8 0.52 0.34 0.1 0.01 0.01 0.01 0.01 0.0

Landmark.Spectral.p500.cosine 0.14 0.74 8 0.79 0.1 0.07 0.02 0.01 0.01 0.0 0.0

Landmark.Spectral.p250.cityblock 0.10 0.75 8 0.18 0.16 0.16 0.13 0.12 0.12 0.1 0.04

Landmark.Spectral.p500.cityblock 0.10 0.75 8 0.18 0.16 0.16 0.13 0.12 0.11 0.1 0.04

Landmark.Spectral.p1000.cityblock 0.10 0.74 8 0.18 0.16 0.16 0.13 0.12 0.12 0.09 0.04

Spectral.Collaborative 0.06 0.70 8 0.22 0.22 0.21 0.14 0.14 0.03 0.02 0.02

DBSCAN.0.2 0.08 0.80 50 0.28 0.09 0.05 0.05 0.05 0.04 0.04 0.04

DBSCAN.0.23 0.09 0.77 26 0.3 0.28 0.1 0.07 0.07 0.03 0.03 0.03

DBSCAN.0.25 0.10 0.77 18 0.55 0.28 0.03 0.03 0.02 0.02 0.02 0.02

DBCLASD 0.06 0.85 86 0.15 0.11 0.06 0.04 0.03 0.03 0.03 0.02

Agglomerative.ward 0.11 0.75 8 0.21 0.19 0.17 0.1 0.1 0.09 0.08 0.06

Agglomerative.complete 0.10 0.75 8 0.22 0.15 0.14 0.13 0.13 0.12 0.08 0.02

Agglomerative.average 0.11 0.75 8 0.22 0.19 0.14 0.14 0.13 0.08 0.08 0.02

Agglomerative.single 0.14 0.74 8 0.99 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 4.3.: Metrics Result: Clustering on PCA Reduced Data

Clustering Approach Between-cluster Separation Within-cluster Similarity Cluster Amount Data Distribution
Default 0.11 0.77 8 0.36 0.16 0.12 0.09 0.09 0.07 0.06 0.06

Spectral 0.08 0.76 8 0.19 0.15 0.14 0.13 0.13 0.1 0.09 0.07

Landmark.Spectral.p1000.cosine 0.08 0.70 8 0.36 0.27 0.13 0.12 0.07 0.02 0.01 0.01

Landmark.Spectral.p250.cosine 0.07 0.77 8 0.25 0.21 0.21 0.17 0.06 0.05 0.03 0.01

Landmark.Spectral.p500.cosine 0.07 0.76 8 0.41 0.18 0.15 0.15 0.1 0.0 0.0 0.0

Landmark.Spectral.p250.cityblock 0.09 0.73 8 0.34 0.24 0.14 0.1 0.06 0.05 0.05 0.02

Landmark.Spectral.p500.cityblock 0.09 0.73 8 0.36 0.22 0.14 0.1 0.07 0.05 0.05 0.02

Landmark.Spectral.p1000.cityblock 0.09 0.73 8 0.36 0.22 0.14 0.1 0.07 0.05 0.05 0.02

Spectral.Collaborative 0.05 0.72 8 0.2 0.18 0.16 0.13 0.09 0.08 0.08 0.08

DBSCAN.2.5 0.15 0.76 20 0.89 0.07 0.01 0.0 0.0

DBSCAN.3 0.19 0.75 7 0.93 0.05 0.0 0.0 0.0 0.0 0.0

DBSCAN.3.5 0.19 0.74 4 0.95 0.04 0.0 0.0

DBCLASD 0.06 0.73 19 0.39 0.15 0.13 0.11 0.11 0.03 0.01 0.01

Agglomerative.ward 0.08 0.74 8 0.32 0.24 0.1 0.1 0.07 0.07 0.06 0.04

Agglomerative.complete 0.11 0.64 8 0.71 0.16 0.05 0.04 0.02 0.02 0.01 0.0

Agglomerative.average 0.15 0.70 8 0.72 0.1 0.08 0.07 0.01 0.01 0.01 0.0

Agglomerative.single 0.48 0.72 8 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4.2. Visual Representation

4.2.1. Clustering on Encoded Data

Figure 4.1 represents average data for each cluster and �gure 4.2 shows data assigned to each

cluster. All presented algorithms have diverse average images. DBSCAN appears to identify

images with low content of measurements as noise.

Overall, none of the methods seems to have any obvious pattern of assigning weather data

to clusters, as each of them includes images that visually would be better suited for another

cluster.

Even though all presented methods can distinguish between images with di�erent amounts

of data, clusters are not pure.
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4. Results

(a) Clustering method used in previous work. (b) Landmark spectral clustering (p = 500, dis-

tance metric: cityblock).

(c) Spectral clustering. (d) Agglomerative clustering (mode: ward).

(e) DBSCAN clustering (eps = 30).

Figure 4.1.: Average representation of each cluster of clustering methods on endcoded data.

Each rectangle in an image represents one cluster.
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4. Results

(a) Clustering method used in previous work. (b) Landmark spectral clustering (p = 500, dis-

tance metric: cosine).

(c) Spectral clustering. (d) Agglomerative clustering (mode: ward).

(e) DBSCAN clustering (eps = 30).

Figure 4.2.: Data partitioning of clustering methods.

A row represents one cluster. Each rectangle in a row is a random item from all measurements assigned

to this cluster. White boxes in a row mean that there were not su�cient items assigned to the

particular cluster.

27



4. Results

4.2.2. Clustering on Reduced Data

Same as before, �gures 4.4 and 4.3 represent the average of each cluster for all methods, and

�gures 4.6 and 4.5 demonstrate members of each cluster, however all clustering methods were

performed on the reduced data.

All clustering methods show variety in the average representation.

Regarding LIDAR data assigned to clusters, methods performed on UMAP reduced data

show a more apparent separation between classes, compared to clustering directly on encoded

data and clustering on PCA.

Density-based algorithms have more pure clusters because data is partitioned into much

smaller groups. (The �gure only provides an overview of the �rst 8 clusters.)
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4. Results

(a) Clustering method used in previous work. (b) Landmark spectral clustering (p = 500, dis-

tance metric: cityblock).

(c) Spectral clustering. (d) Agglomerative clustering (mode: ward).

(e) DBSCAN clustering (eps = 0.23). (f) DBCLASD clustering.

Figure 4.3.: Average representation of each cluster of clustering methods on UMAP reduced

data.

Each rectangle in an image represents one cluster.
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4. Results

(a) Clustering method used in previous work. (b) Landmark spectral clustering (p = 500, dis-

tance metric: cityblock).

(c) Spectral clustering. (d) Agglomerative clustering (mode: ward).

(e) DBSCAN clustering (eps = 2.5). (f) DBCLASD clustering.

Figure 4.4.: Average representation of each cluster of clustering methods on PCA reduced data.

Each rectangle in an image represents one cluster.
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4. Results

(a) Clustering method used in previous work. (b) Landmark spectral clustering (p = 500, dis-

tance metric: cityblock).

(c) Spectral clustering. (d) Agglomerative clustering (mode: ward).

(e) DBSCAN clustering (eps = 0.23). (f) DBCLASD clustering.

Figure 4.5.: Data partitioning of clustering methods on UMAP reduced data.

A row represents one cluster. Each rectangle in a row is a random item from all measurements assigned

to this cluster. White boxes in a row mean that there were not su�cient items assigned to the

particular cluster.
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4. Results

(a) Clustering method used in previous work. (b) Landmark spectral clustering (p = 500, dis-

tance metric: cityblock).

(c) Spectral clustering. (d) Agglomerative clustering (mode: ward).

(e) DBSCAN clustering (eps = 2.5). (f) DBCLASD clustering.

Figure 4.6.: Data partitioning of clustering methods on PCA reduced data.

A row represents one cluster. Each rectangle in a row is a random item from all measurements assigned

to this cluster. White boxes in a row mean that there were not su�cient items assigned to the

particular cluster.
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4. Results

4.3. 2D Visualization of Clusters

4.3.1. Clustering on Encoded Data

Figure 4.7 visualizes data structure in two dimensions with the help of UMAP.

DBSCAN fails to identify separate clusters. All the other clustering algorithms demonstrate

clusters with borders close to intuitive.

(a) Clustering method used in previous work. (b) Landmark spectral clustering (p = 500, dis-

tance metric: cityblock).

(c) Spectral clustering. (d) Agglomerative clustering (mode: ward).

(e) DBSCAN clustering (eps = 30).

Figure 4.7.: UMAP visualization of clustering methods on endcoded data.

Clustering and UMAP were both performed on the ecnoded data.
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4. Results

4.3.2. Clustering on Reduced Data

Both agglomerative and spectral clustering on UMAP reduced data and clustering used in the

previous work provide comprehensible partitioning. DBSCAN and DBCLASD identify more

clusters, and even though the partitioning is not intuitive, 4.5 showed that such small clusters

appear purer.

Clustering on PCA reduced data yield similar results, though some of the clusters’ borders

are fuzzier than clusters assigned on UMAP data. DBSCAN on PCA failed to capture the

structure as well, as with UMAP.
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4. Results

(a) Clustering method used in previous work. (b) Landmark spectral clustering (p = 500, dis-

tance metric: cityblock).

(c) Spectral clustering. (d) Agglomerative clustering (mode: ward).

(e) DBSCAN clustering (eps = 0.23). (f) DBCLASD clustering.

Figure 4.8.: UMAP visualization of clustering methods on the UMAP reduced data.
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4. Results

(a) Clustering method used in previous work. (b) Landmark spectral clustering (p = 500, dis-

tance metric: cityblock).

(c) Spectral clustering. (d) Agglomerative clustering (mode: ward).

(e) DBSCAN clustering (eps = 2.5). (f) DBCLASD clustering.

Figure 4.9.: UMAP visualization of clustering methods on the PCA reduced data.
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5. Discussion

The goal of this thesis is to examine how various clustering algorithms compare on LIDAR

data. Overall, when applied directly on the feature vector, no algorithms perform signi�cantly

better than the original K-Means. That is most likely due to the curse of dimensionality. Even

though not all algorithms cluster directly on the distance between objects, similar distance

functions are utilized in some steps in all algorithms. According to Aggarwal u. a. (2001), the

notion of distance becomes meaningless in high dimensions because the farthest and nearest

points approach the ratio of 1, essentially making the distance uniform. This e�ect is especially

pronounced for Euclidean distance measure and less for Manhattan (or cityblock). That is why

landmark spectral clustering with cityblock in visual assessment performed better than other

methods. High-dimensional data also su�ers from a high noise-to-signal ratio.

DBSCAN failed to identify clusters even with di�erent hyperparameters, which could mean

that data has a very variable density and is not suited for density-based algorithms.

The methods tested in this part are usually assessed on data with a low number of variables

and are not explicitly expected to work well with a high number of features. There are

more complicated methods, like CLIQUE, that were designed for high-dimensional data and

could potentially work better. However, the high-dimensional methods still rely on the same

technologies, like density and distance measure, but for example, search for clusters in subsets

of variables. This type of methods is discussed in the next part of the study.

The other explanation for the unsuccessful results could be the data itself. If the autoencoder

does not capture the essential structural elements of the data, then no sophisticated method

will be able to partition the data well. Most of the data have a high proportion of null-values in

the higher part of the image that are translated to 0 before autoencoder; this could potentially

disrupt the representation that autoencoder learns by shifting the focus on learning these

values and paying less attention to the actual area of interest in the lower part of the image.

When the data is reduced to two dimensions, all algorithms work well on identifying

borders of the cluster, which does not necessarily lead to good partitioning of the original data.

Double reducing of the data - by autoencoder and UMAP - inevitably leads to the loss of data.

Nevertheless, results on UMAP reduced data look better than for the algorithms applied on
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5. Discussion

encoded vectors. The density-based algorithms look especially promising because they identify

smaller clusters with higher within-cluster similarity. It could mean that the reasonable amount

of cluster could potentially be higher than eight.

PCA, as expected, achieved worse results than UMAP, mainly because it can only capture

the linear dependencies. However, it is still comparable to the clustering on the original data.

This indicates that there is not much di�erence between representing structural dependencies

in 32 and 2 dimensions.

Another exciting discovery involves the validity metrics. The between-cluster separation

metric does not seem to re�ect well the quality of clusters. The score can be arti�cially

boosted by assigning most of the data to one cluster. That is why it could not be used as an

optimization metric for algorithms. On the other hand, within-cluster similarity appears to be

a valid measure of the quality even though it should be considered carefully, together with the

cardinality - number of clusters - and data distribution over clusters.

This work presented the results of clustering exclusively on LIDAR data and has not utilized

any other dataset for algorithm quality validation. This has been a deliberate decision to avoid

confusion about methods’ performance. The clustering algorithms are very susceptible to the

data structure, and the results of clustering on other datasets would be misleading.

Overall, the clusters require an assessment by a weather expert. Even though some clusters

can look mixed to a general audience, they might identify the same weather events.
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Part II.

High-Dimensional Clustering
Methods
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6. Background

As indicated previously, the feature vectors of LIDAR data consist of high dimensions. All the

methods mentioned above are not speci�cally tailored for handling this type of data. There

exists a separate class of algorithms developed for partitioning data with a large number of

variables.

The most utilized group of such clustering algorithms is called subspace clustering. The

main idea behind it is that irrelevant features in�uence the appearance of clusters in the

full-dimensional space, as explained in Kriegel u. a. (2009). These features could be masking

the actual partitioning by introducing noise. The goal of subspace clustering is to identify

relevant features. For each cluster, a di�erent subset of features may be relevant. The subspace

method di�ers from PCA and other dimensionality reduction methods since it keeps the subset

of existing dimensions instead of creating new ones. The similarity between objects is assessed

by conventional measures such as distance and density. Clusters may overlap since an object

can be clustered with a di�erent subset of features in multiple groups.

Subspace search is further divided into two categories, bottom-up and top-down approach.

Han u. a. (2011) explains that the bottom-up approach �rst searches for clusters in lower

dimensions and only proceeds by including more dimensions if the clusters are identi�ed.

CLIQUE by Agrawal u. a. (1998) is an example of such an algorithm. CLIQUE is a grid-based and

density-based algorithm that produces deterministic results and does not assume any canonical

distribution for input data. CLIQUE has several modi�cation algorithms, like ENCLUS or

MAFIA, and all of them rely on grids to calculate clusters. However, using grids leads to a

signi�cant disadvantage of all these methods. Grid-based algorithms massively depend on

the positioning of the grids. Some neighboring objects can get separated by grid boundary,

which means that some clusters can be missed if they are shaped inadequately. Another

algorithm is SUBCLU, presented by Kailing u. a. (2004), which is a density-based cluster variant

of DBSCAN with the same user-de�ned parameters. It can detect clusters of arbitrary size

and shape. This paper argued that SUBCLU outperforms CLIQUE and is a more time-e�cient

algorithm. CLIQUE results are not calculated sometimes, even up to several days for more
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6. Background

than 25 dimensions; therefore it will not be considered further. SUBCLU algorithm will be

analyzed for LIDAR data.

Top-down approaches start with full space and search smaller subspaces recursively. Kriegel

u. a. (2008) explains that most of these approaches rely on "locality assumption", meaning that

the subspace is derived from the local neighborhood. The arising problem is that neighborhood

might contain much noise. This is a direct e�ect of the curse of dimensionality. PROCLUS

Aggarwal u. a. (1999) is one of such algorithms. It is a k-medoid-like method that starts by

creating k clusters and then proceeds to re�ne the subspace. For each medoid, the local

neighborhood is considered to identify a subspace by minimizing the standard deviation of

the objects’ distances to medoid in each dimension. By each iteration, medoids are replaced

by new ones in case if it improves cluster quality. PROCLUS is also sometimes referenced

as a projected clustering method, but literature is not consistent about terms "subspace" and

"projected" clustering. PROCLUS requires a number of clusters k and an average dimensionality

l. Average dimensionality is a very sensitive parameter. An unfortunately chosen value can

result in algorithm missing clusters.

High-dimensional clustering algorithms also include classes like correlation-based clustering

algorithms (or biclustering) that cluster objects and attributes simultaneously. The resulted

clusters have a small number of objects and a small number of attributes, as explained by Han

u. a. (2011), which is not the desired outcome for LIDAR data; ergo, biclustering algorithms are

not a good �t for this analysis.

Projection-based clustering has been explored in the previous chapter. Its main idea consists

of projecting the data into two dimensions and clustering with some algorithm.

Another exciting direction is concept clustering. It is explained well in Kaufman (2012). This

type of clustering utilizes not only the distance of objects but also some type of background

knowledge, which makes clustering more meaningful for the user. Background knowledge

could be de�ned attribute ranges, hierarchies over attribute values, implicative rules of con-

straints of one variable on others, rules for constructing new attributes, rules for ranking

variables according to their relevance, as described in Stepp (1987). Since this knowledge is not

available for the LIDAR dataset, methods from conceptual clustering will not be considered.
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7. Methods

Data overview and analysis procedure is described in 3. The following section describes the

hyperparameter selection and the used software.

7.1. Parameter Se�ings

PROCLUS cluster amount was set to 8, whereas the average dimensionality is tested in range

between 5 and 15.

SUBCLU algorithm requires same parameters as DBSCAN that is why same parameters have

been utilized, as for the DBSCAN: MinPts = 33, eps set to range of values [27, 30, 33, 36].

Since distance might change with fewer dimensions, SUBCLU was also tested with lower

MinPts values, for example 10, but that had no detectable e�ect on the quality of results.

7.2. So�ware

The algorithms’ implementation is provided by an R package "subspace".

Source: https://rdrr.io/cran/subspace/.

Partition creation is performed in an R script and the result analysis is generated with the

help of Python.
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8. Results

8.1. Clustering Metrics

The table 8.1 presents metric results. The result for both methods and di�erent hyperparameter

settings are consistent in range 0.07-0.08 for between-cluster separation (these numbers are

lower than for classical clustering algorithms applied directly on encoded data). The within-

cluster similarity vary between 0.76 and 0.81, which is comparable to classical algorithms. Both

algorithm identify a signifact part of data as noise (up to 58 percent by Subclu with epsilon

parameter set to 36).

Table 8.1.: Metrics Result: High-Dimensional Clustering on Encoded Data

Clustering Approach Between-cluster Separation Within-cluster Similarity Cluster Amount Data Distribution Noise Part
Proclus.Dim.5 0.07 0.77 8+noise 0.48 0.1 0.1 0.09 0.09 0.07 0.03 0.03 0.0 0.48

Proclus.Dim.6 0.07 0.78 8+noise 0.4 0.23 0.07 0.07 0.07 0.06 0.04 0.04 0.02 0.40

Proclus.Dim.7 0.07 0.79 8+noise 0.24 0.2 0.18 0.16 0.06 0.06 0.05 0.04 0.02 0.16

Proclus.Dim.8 0.07 0.78 8+noise 0.35 0.27 0.12 0.11 0.07 0.06 0.01 0.01 0.01 0.35

Proclus.Dim.9 0.08 0.78 8+noise 0.51 0.23 0.07 0.06 0.04 0.04 0.03 0.02 0.0 0.51

Proclus.Dim.10 0.08 0.79 8+noise 0.25 0.22 0.18 0.09 0.08 0.07 0.05 0.04 0.02 0.25

Proclus.Dim.11 0.07 0.79 8+noise 0.3 0.3 0.16 0.06 0.05 0.04 0.04 0.03 0.02 0.30

Proclus.Dim.12 0.08 0.78 8+noise 0.38 0.15 0.12 0.1 0.1 0.05 0.05 0.04 0.02 0.38

Proclus.Dim.13 0.07 0.81 8+noise 0.25 0.22 0.11 0.09 0.09 0.07 0.07 0.06 0.03 0.25

Proclus.Dim.14 0.08 0.79 8+noise 0.42 0.2 0.12 0.06 0.05 0.05 0.05 0.03 0.02 0.42

Proclus.Dim.15 0.08 0.79 8+noise 0.41 0.19 0.13 0.08 0.05 0.04 0.03 0.03 0.03 0.19

Subclu.Eps.27 0.07 0.76 4+noise 0.38 0.34 0.12 0.11 0.06 0.38

Subclu.Eps.30 0.08 0.76 4+noise 0.42 0.36 0.12 0.06 0.04 0.36

Subclu.Eps.33 0.07 0.77 4+noise 0.39 0.23 0.16 0.12 0.1 0.39

Subclu.Eps.36 0.08 0.76 4+noise 0.58 0.2 0.1 0.06 0.06 0.58

8.2. Visual Representation

Same as in the previous part, �gures 8.1 and 8.2 represent average data and examples of

images assigned to each cluster. To keep a clear overview, only one parameter setting has

been displayed for each cluster method. For visual assessment of other results please refer

to supplementary data. The chosen parameters present best visual results. PROCLUS has

several groups, that seem to exhibit consistent pattern, whereas other groups look rather messy.

SUBCLU clustering, on the other hand, does not have a clear pattern of assigning data.
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8. Results

(a) Clustering method used in previous work. (b) PROCLUS clustering (average dimension

amount = 14).

(c) SUBCLU clustering (epsilon = 36).

Figure 8.1.: Average representation of high-dimensional clustering methods and the clustering

method from previous work on endcoded data.

Each rectangle in an image represents one cluster. For PROCLUS and SUBCLU the last rectangle

represents data marked as noise.
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8. Results

(a) Clustering method used in previous work. (b) PROCLUS clustering (average dimension

amount = 14).

(c) SUBCLU clustering (epsilon = 36).

Figure 8.2.: Data partitioning of high-dimensional clustering methods and the clustering

method from previous work on endcoded data.

A row represents one cluster. Each rectangle in a row is a random item from all measurements assigned

to this cluster. White boxes in a row mean that there were not su�cient items assigned to the

particular cluster. For PROCLUS and SUBCLU the last row represents noise.
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8. Results

8.3. 2D Visualization

Both high-dimensional algorithms do not have clear cut borders for each group. As mentioned

previously, most of the data is treated as noise.

(a) Clustering method used in previous work. (b) PROCLUS clustering (average dimension

amount = 14).

(c) SUBCLU clustering (epsilon = 36).

Figure 8.3.: UMAP visualization of of high-dimensional clustering methods and the clustering

method from previous work on endcoded data.
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9. Discussion

This part of the thesis analysed the algorithms, that were speci�cally designed to treat high-

dimensional data. Both algorithms belong to the class of subspace search algorithms, meaning

that constructed clusters took into account only some features available from 32-dimensional

feature vector. The results clearly demonstrate that high-dimensional clustering does not

outperform the classical algorithms and can even be considered inferior to them.

It could mean, that most of the features carry important information and can not be disre-

garded for partitioning. However, factor analysis showed that feature vectors contain variables

that are in correlation and therefore could be reduced to lower dimensions. It is possible, that

meaningful combinations of features were simply not discovered by the algorithms.

PROCLUS is known to perform poorly if di�erent subspace clusters consist of di�erent

dimensionality. If LIDAR data has partitions with such characteristics, it could account for

unsatisfactory performance.

SUBCLU is a high-dimensional version of DBSCAN. The results could be explained by a poor

choice of parameter, since hyperparameter selection for DBSCAN is known to be complicated

and not straightforward. On the other hand, several parameter options were tested and failed

to produce qualitative partitioning. Previous discussion mentioned the idea that variable

density of the data could account for inadequate results. This argumentation holds for the

high-dimensional clustering as well.
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Part III.

Clustering Original Data
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10. Motivation

Previous results indicated that multiple dimensions produced by autoencoder might be re-

dundant. Factor analysis showed correlation between variables and it could possibly mean

that the particular model of autoencoder used in this study does not contribute to quality of

clustering results. To be able to better analyse the merit of this hypothesis, this additional

part investigates whether data reduced to 2 dimensions only by UMAP would yield better or

comparable results.
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11. Results

Table 11.1 shows the metrics results on clustering data reduced directly to 2 dimensions by

UMAP, skipping the dimensionality reduction by autoencoder. An interesting artifact can be

observed, where di�erent index shows much higher results than in the previous clustering

approaches (note the di�erence between default clustering observations and others).

Overall, di�erent clustering methods seem to have little impact on metrics, but di�er in data

distribution between identi�ed clusters.

11.1. Clustering Metrics

Table 11.1.: Metrics Result: Clustering on UMAP Reduced Original Data

Clustering Approach Between-cluster Separation Within-cluster Similarity Cluster Amount Data Distribution
Default 0.11 0.77 8 0.36 0.16 0.12 0.09 0.09 0.07 0.06 0.06

Spectral 0.95 0.03 8 0.18 0.14 0.13 0.13 0.12 0.11 0.11 0.08

Landmark.Spectral.p1000.cosine 0.95 0.03 8 0.42 0.18 0.13 0.12 0.09 0.04 0.01 0.0

Landmark.Spectral.p250.cosine 0.95 0.03 8 0.48 0.21 0.15 0.1 0.04 0.01 0.01 0.0

Landmark.Spectral.p500.cosine 0.95 0.03 8 0.37 0.18 0.16 0.09 0.09 0.06 0.03 0.01

Landmark.Spectral.p250.cityblock 0.95 0.03 8 0.24 0.15 0.13 0.12 0.11 0.09 0.08 0.08

Landmark.Spectral.p500.cityblock 0.95 0.03 8 0.24 0.17 0.13 0.11 0.11 0.08 0.08 0.08

Landmark.Spectral.p1000.cityblock 0.95 0.03 8 0.25 0.19 0.12 0.12 0.11 0.09 0.08 0.05

Spectral.Collaborative 0.95 0.02 8 0.31 0.15 0.13 0.13 0.13 0.06 0.06 0.02

DBCLASD 0.94 0.02 109 0.14 0.06 0.05 0.03 0.03 0.03 0.02 0.02 0.02

Agglomerative.ward 0.95 0.03 8 0.21 0.17 0.13 0.13 0.12 0.12 0.06 0.06

Agglomerative.complete 0.95 0.03 8 0.22 0.17 0.13 0.13 0.12 0.11 0.06 0.04

Agglomerative.average 0.95 0.03 8 0.26 0.2 0.18 0.13 0.08 0.06 0.05 0.04

Agglomerative.single 0.94 0.03 8 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

11.2. Visual Representation

Figures 11.1 and 11.2 do not show signi�cant improvement over the clustering done on data

reduced by autoencoder. On the other hand, the new results also do not appear to be worse.

The reduction techniques, whether autoencoder or UMAP, seem to produce comparable cluster

distribution.
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11. Results

(a) Clustering method used in previous work. (b) Landmark spectral clustering (p = 500, dis-

tance metric: cityblock).

(c) Spectral clustering. (d) Agglomerative clustering (mode: ward).

(e) DBCLASD clustering.

Figure 11.1.: Average representation of each cluster of clustering methods on original data

reduced to 2D by UMAP.

Each rectangle in an image represents one cluster.
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11. Results

(a) Clustering method used in previous work. (b) Landmark spectral clustering (p = 500, dis-

tance metric: cosine).

(c) Spectral clustering. (d) Agglomerative clustering (mode: ward).

(e) DBCLASD clustering.

Figure 11.2.: Data partitioning of clustering methods on original data reduced to 2D by UMAP.

A row represents one cluster. Each rectangle in a row is a random item from all measurements assigned

to this cluster. White boxes in a row mean that there were not su�cient items assigned to the

particular cluster.
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11. Results

11.3. 2D Visualization of Clusters

Data reduced directly by UMAP produced di�erent shape of data distribution with some of the

data groups being more clearly separated from others. Though it can be argued, that the data

in the middle of the plot has less clear borders between possible clusters.

(a) Clustering method used in previous work. (b) Landmark spectral clustering (p = 500, dis-

tance metric: cityblock).

(c) Spectral clustering. (d) Agglomerative clustering (mode: ward).

(e) DBCLASD clustering.

Figure 11.3.: UMAP visualization of clustering methods on original data reduced to 2D by

UMAP.
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12. Conclusion

The purpose of this thesis is to compare the performance of several clustering algorithms on the

LIDAR data, that has been previously reduced to a feature vector by the preceding work. The

feature vector is an encoding produced by an autoencoder and consists of 32 dimensions. The

original work only explored the partitioning done with K-Means, whereas this study explored

di�erent classes of clustering algorithms, like hierarchical, spectral, density clustering. The

second part investigates further methods, that are developed speci�cally for high-dimensional

data and belong to subspace clustering techniques. Several Python scripts were created to

enable automated analysis process. These scripts can be used by subsequent works on the

topic for a fast clustering evaluation.

Overall, this work shows that there is no method that outperformed others and should be

further considered and optimized. Only some of the methods, like density based clustering on

UMAP reduced data, had a visually better separation than the clustering used in the previous

work. On the other hand, these algorithms produced 20 to 80 groups, which is not necessarily

a meaningful partition.

All of the inspected methods were visualized in a 2D space with the help of UMAP. To

make exploration of such visualization easier, an additional tool was created that allows fast

comparison of di�erent slices by hovering over them. The quick manual assessment of the

2D map revealed that sometimes visually very similar objects are found further apart and

dissimilar objects are plotted very close to each other. However, on the �rst look data groups

have similarities within. It would be important to explore this map further to learn how valid

the 2D representation of the data is, and whether it should be considered a suitable visualization

of objects.

I believe, that the most reasonable direction for future studies on the topic would be exploring

di�erent hyperparameters and types of autoencoder models and �nding an appropriate way

of dealing with null values in the top part of each slice, that might be focusing attention on

the autoencoder on the wrong fragment of data. To appreciate the importance of di�erent

hyperparameters of autoencoder and their in�uence on the clustering result, please consider

following observation: when the autoencoder was trained on data normalized with di�erent

54



12. Conclusion

max and min backscatter values (with the actual maximum and minimum and not adjusted

values like used in the preceding and this work), the clustering results appeared random and

most of the algorithms classi�ed data to one cluster. This was probably due to the very bad

reconstruction after decoder, where output did not resemble input, which could mean that

feature vectors were not representative of the data. On the other hand, autoencoder model

and settings, as described in the methodology, had a much better reconstruction of the image,

but still had potential to improve.

Part 3 also provided reasons to believe that the problem lies in the current architecture of an

autoencoder. Clustering that was performed on the original data reduced directly by UMAP to

2 dimensions had similar results, based on the visual assessment. That might indicate that the

current autoencoder model does not contribute signi�cantly to the extracting of meaningful

features.

One of the possible modi�cation, that could be done to autoencoder architecture, is to

include self-attention layers, introduced by Bahdanau u. a. (2014). Attention mechanism allows

to better handle long-range dependencies. A self-attention layer complements convolutional

layers and helps to create a better representation of an object in a feature vector. A new

paper Chen u. a. (2021) describes the approach to clustering with the help of autoencoder that

combines convolutional and attention layers, and the feature vectors are then clustered with

the subspace clustering algorithm. The paper showed promising results and should therefore

be considered as a starting point for research in that direction.
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