
Masterarbeit

Thi Huyen Cao

Video-based Facial Expression Recognition
with Deep Learning

Fakultät Technik und Informatik
Department Informatik

Faculty of Computer Science and Engineering
Department Computer Science

Masterarbeit eingereicht im Rahmen der Masterprüfung
im Studiengang Master of Science Informatik
am Department Informatik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Kai von Luck
Zweitgutachter: Prof. Dr.-Ing. Andreas Meisel

Eingereicht am: 1. Juli 2022

Thi Huyen Cao

Video-based Facial Expression Recognition with
Deep Learning

Thi Huyen Cao

Thema der Arbeit

Videobasierte Gesichtsausdruckserkennung mit Deep Learning

Stichworte

Gesichtsausdruckserkennung, Deep Learning, diskrete Emotion, Cascade Network, C3D,
LSTM, BiLSTM, ConvLSTM, BU4FE, VGGFace

Kurzzusammenfassung

Gesichtsausdruckserkennung ist ein schnell wachsendes Foschungsgebiet im Bereich Com-
putervision. Sie kommt einer Vielzahl von Domänen zugute, darunter Mensch-Computer-
Interaktion, Robotik, Bildung, Unterhaltung, Medizin, Sicherheit und weiteren. Mit
dem Aufkommen von Deep Learning wurden viele neuronale Netze dafür genutzt, welche
vielversprechende Ergebnisse erzielten. Eine Vielzahl von frühen Studien konzentrierten
sich jedoch auf statische Bilder und beachteten die zeitliche Charakteristik des Gesicht-
sausdrucks nicht. Ziel dieser Arbeit ist es, einen umfassenden Überblick über den Stand
der Technik der Gesichtsausdruckserkennung und Deep Learning zu geben. Darüber hin-
aus wird ein Experiment durchgeführt, um weitere Erkenntnisse darüber zu gewinnen,
wie verschiedene Arten von neuronalen Netze bei der dynamischen Gesichtsausdruck-
serkennung abschneiden. Während des Experiments werden Details über das Train-
ingsverfahren sowie die Bewertung verschiedener Trainingstechniken vorgestellt.

Thi Huyen Cao

Title of Thesis

Video-based Facial Expression Recognition with Deep Learning

Keywords

Facial Expression Recognition, Deep Learning, discrete emotion, Cascade Network, C3D,
LSTM, BiLSTM, ConvLSTM, BU4FE, VGGFace

Abstract

iii

Facial Expression Recognition is a rapidly growing field of research in Computer Vision.
It benefits a wide variety of domains including human computer interaction, robotics,
education, entertainment, medicine, safety, security, and so on. With the rise of Deep
Learning, many Neural Networks have been exploited and achieved promising results.
Yet, most studies in the early stages focused on static image while ignoring the temporal
characteristic of facial expression. This work aims to deliver a comprehensive overview of
the state of the art of Facial Expression Recognition and Deep Learning. Furthermore, it
conducts an experiment to gain more insights on how different types of Neural Network
perform towards dynamic Facial Expression Recognition. Throughout the experiment,
details about the training procedure as well as evaluation of different training techniques
will be presented.

iv

Contents

List of Figures vii

List of Tables ix

Acronyms x

1 Introduction 1

2 Literature review 3
2.1 General concepts . 3

2.1.1 Face Detection and Tracking . 3
2.1.2 Neural Network . 6
2.1.3 Deep Learning techniques . 12

2.2 Sota FER . 21
2.2.1 Emotion approaches . 21
2.2.2 Datasets . 22
2.2.3 Challenges . 24
2.2.4 Proposed methods . 25

2.3 Research resume . 29
2.3.1 Objective . 29
2.3.2 Scope . 30

3 Experiment 31
3.1 Design . 31
3.2 Implementation details . 34

3.2.1 Preprocessing . 34
3.2.2 Dataset . 39
3.2.3 Training procedure . 43
3.2.4 Cascade Network . 45
3.2.5 Alternatives . 63

v

Contents

3.2.6 Fusion . 67
3.3 Evaluation . 68

3.3.1 Human ground truth . 68
3.3.2 Best models . 70

4 Summary 78
4.1 Conclusions & future work . 78
4.2 FER in real-time . 80

Bibliography 84

Selbstständigkeitserklärung 90

vi

List of Figures

2.1 The timeline of deep-learning-based face detection algorithms [35] 4
2.2 General components of deep trackers . 6
2.3 Example of convolution operation . 8
2.4 Residual learning: a building block [25] . 9
2.5 Inner structure of Convolutional Long Short-Term Memory (ConvLSTM)

[41] . 11
2.6 5-fold Cross Validation [3] . 13
2.7 Example of Confusion Matrix . 20
2.8 Ekman’s basic emotions within the emotional space spanned by the Va-

lence, Arousal, and Dominance axis of the VAD model. Ratings are taken
from [38] [10] . 22

2.9 Facial Expression Recognition (FER) framework 27

3.1 Experiment summary . 34
3.2 Detected, tracked, and resized face . 35
3.3 AU score curve . 36
3.4 Dataset statistic . 38
3.5 Preprocessed final results . 38
3.6 Cross Validation summary . 40
3.7 Data Augmentation summary . 42
3.8 Online and offline Data Augmentation examples 42
3.9 Data Augmentation examples . 48
3.10 Best classifier loss and accuracy . 50
3.11 Result of unfreezing 1-2 last convolution blocks 51
3.12 Confusion Matrix . 52
3.13 Spatial extractor architecture . 53
3.14 Feature maps . 54
3.15 LSTM baseline . 57

vii

List of Figures

3.16 Baseline performance . 58
3.17 Dropout effect . 59
3.18 Comparison among different drop rates . 59
3.19 Comparison among different extracted features 60
3.20 Data Augmentation effect . 62
3.21 Comparison among different C3D networks 64
3.22 C3D baseline summary . 65
3.23 Data Augmentation online vs offline . 66
3.24 Experiment setup for human ground truth 68
3.25 Human ground truth . 69
3.26 Mislabeled "angry" samples . 70
3.27 1D-CNN as temporal extractor . 71
3.28 Normalized Confusion Matrix . 74
3.29 Error Analysis for VGGFace+1D-CNN . 77

viii

List of Tables

2.1 Equations of LSTM and ConvLSTM . 11
2.2 An overview of FER datasets. Sub.=Subject; P=posed; S=spontaneous;

Condit.=Collection condition; Elicit.=Elicitation method; E.=Expressions:
6 = anger, disgust, fear, happiness, sadness, and surprise; 7 = {6 expres-
sions} ∪ {neutral}; 8 = {7 expressions} ∪ {contempt}; + = with com-
pound expressions . 23

2.3 Action Unit example . 25
2.4 EMFACS for 6 basic emotions . 25
2.5 Examples of handcrafted feature . 26
2.6 Comparison of different types of methods for dynamic image sequences in

terms of data size requirement, representability of spatial and temporal
informa- tion, requirement on frame length, performance, and computa-
tional efficiency. FLT = Facial Landmark Trajectory; CN = Cascaded
Network; NE = Network Ensemble . 27

3.1 Pre-trained networks . 32
3.2 Pre-trained networks performance. The top-1 and top-5 accuracy refers

to the model’s performance on the ImageNet validation dataset. 46
3.3 FER2013 . 46
3.4 Fine-tuning result . 51
3.5 Classification result . 52
3.6 Best models . 71
3.7 Fusion . 73

ix

Acronyms

CNN Convolutional Neural Network.

ConvLSTM Convolutional Long Short-Term Memory.

DL Deep Learning.

FER Facial Expression Recognition.

LRCN Long-term Recurrent Convolutional Network.

LSTM Long Short-Term Memory.

ML Machine Learning.

NN Neural Network.

RNN Recurrent Neural Network.

SOTA state of the art.

x

1 Introduction

Emotions are very important to human communication. In fact, emotion is such an
essential factor of what makes us who we are. We express emotions on a daily basis
regardless of our background, age, gender, culture, etc. We operate partly consciously or
unconsciously on our perception of others’ emotions while constantly expressing our own.
Yet, emotions are very complex. Our desire to understand their core is known for decades
in a number of fields including psychology, sociology, medicine, and computer science.
One of the biggest research areas is called Affective Computing. It is interdisciplinary
and focuses on developing machines/systems with the ability of recognizing, interpreting,
processing, and stimulating human emotions, or in other words having emotions. Our
dream of having some forms of artificial intelligence as companions is reflected in a lot
of books, movies, and articles. With the advanced technology nowadays, we are close
to our dream more than ever. In the last decades, there has been growing interest in
Affective Computing thanks to its benefits in a variety of domains such as data analysis,
human computer interaction, robotics, education, entertainment, autonomous driving,
and so on. Concrete examples can be further read in [13].

One of the core studies in Affective Computing is about recognizing emotions. A lot of fac-
tors can contribute to Emotion Recognition encompassing facial expression, voice, text,
context, gesture, posture, electroencephalography (EGG), along with others. Among
them, facial expression is considered as the source of most information when it comes to
detecting emotions. Therefore, Emotion Recognition and Facial Expression Recognition
(FER) are often mentioned together or implied as one [13].

The very first step of Emotion Recognition is the choice of emotion theories. Emo-
tion approach is a controversial topic, especially in psychology. Two commonly known
approaches are discrete emotion and continuous emotion. Discrete emotion refers to a
limited number of universal emotions whereas continuous emotion distributes emotions
along the axes. FER task prefers discrete emotion rather than continuous emotion due
to its simplicity in the mean of algorithm and data.

1

1 Introduction

In the early stages, most studies focused on analyzing static images independently while
ignoring the temporal relationships among frames. However, the information of how the
face changes throughout the expression is as important as how it looks like at a single
moment. Recently, with the rise of Deep Learning (DL), dynamic FER has been tackled
in many studies with promising results.

This thesis covers a comprehensive overview of the state of the art of Deep Learning
as well as Facial Expression Recognition. Gaps will be identified and a corresponding
experiment will be conducted to extend the current knowledge.

The thesis is divided into 4 chapters. This chapter gives a brief introduction to FER
and DL. The rest of the thesis is organized as follows. Chapter 2 summarizes related
literature around a number of topics including Face Detection, Face Tracking, different
types of Neural Network, DL training techniques, DL evaluation techniques, emotion
approaches, emotion datasets, challenges of FER, and the algorithms which have been
exploited to solve the FER task so far. In the end, the knowledge gap will be identified
and the objectives and scope of the thesis will be defined correspondingly. Chapter 3
will follow up with an experiment to serve the defined objectives. It will cover all the
details from designing to executing to validating results. The last chapter aims to give
a summary of all the work done and future perspectives of FER. Gained knowledge will
be highlighted.

2

2 Literature review

This chapter aims to introduce the general concepts around Deep Learning and the state
of the art of Facial Expression Recognition. It covers current methods for preprocessing
faces from data sources, a range of different types of up-to-date Neural Network as well
as how to train and evaluate them. In addition, it lists a number of approaches, datasets,
and challenges related to FER. Many aspects have also been explained in detail in the
author’s previous works [13] [11].

2.1 General concepts

2.1.1 Face Detection and Tracking

Detection

Face Detection serves as the first essential step for any tasks involving the facial area. It
helps reduce redundant information in the surrounding area. Haar-feature-based Cascade
Classifier a.k.a Haar Cascade by Paul Viola and Michael Jones [45] [46] is known as the
breakthrough in the field of Face Detection and is also one of the most commonly used
algorithms till now.

It is a Machine Learning (ML) algorithm, trained with a lot of images with and without
faces, known as positive and negative samples. The training process is simplified as
follows (detailed explanation in [11]). Firstly, it calculates so-called haar features 1.
Secondly, it applies an efficient boosting algorithm called Adaboost to pick up the most
relevant features. It learns a range of weak classifiers and combines them weightedly to
a strong classifier. Lastly, it introduces the concept of Cascade of Classifier to increase

1A haar feature considers adjacent rectangular regions at a specific location in a detection window,
summarizes the pixel intensities in each region and calculates the differences between these sums.

3

2 Literature review

the detection performance and reduce computation at the same time by rejecting non-
face regions at the early stages. Cascade of Classifier contains multiple stages that use
classifiers with increasing complexity. As that, the early stages use quite simple classifiers
and cost consequently less computing power, however, remove efficiently a lot of negative
sub-windows. Sub-windows that pass will be further processed in later stages with more
complex classifiers. In summary, Haar Cascade is a robust and computationally efficient
face detector. Pre-trained networks are available here 2. Nonetheless, this approach of
hand-crafted feature extraction is not powerful enough to handle faces in uncontrolled
environments with high precision. [35] provides a comprehensive survey of the state of the
art of Face Detection. It summarizes a number of new approaches to Face Detection and
their evaluated performance on popular benchmarks including 1) Cascade-CNN Based
Model 2) R-CNN and Faster-RCNN Based Model 3) Single Shot Detector Models (SSD)
4) Feature Pyramid Network Based Model (FPN), and so on.

In fact, with the rise of Deep Learning in recent years, many face detectors trained with
DL have been exploited and achieved the state of the art of Face Detection in terms of
accuracy and speed. Some popular well-known networks are:

• Multi-task Convolutional Neural Network (MTCNN) [49]

• RetinaFace [16]

• TinaFace [51]

Figure 2.1: The timeline of deep-learning-based face detection algorithms [35]

Many of them do not limit to localizing the faces but they also detect precise facial
landmarks. They are very well documented and lots of them come with implementation

2https://github.com/opencv/opencv/tree/master/data/haarcascades

4

https://github.com/opencv/opencv/tree/master/data/haarcascades

2 Literature review

and pre-trained parameters as open-source packages (e.g. mtcnn, retina-face). Figure
2.1 illustrates more examples of Face Detection algorithms proposed from 2015 to 2020.
To monitor the best models for Face Detection on certain datasets, the author highly
recommends a brief glance on this site 3.

Tracking

Detecting faces in videos can be done frame-basedly. However, it tends to ignore the
correlation among frames which can bring some advantages in case of occlusion or fast
movement. Therefore, tracking is recommended as the extended step while dealing with
video data sources. Tracking takes advantage of the face location in previous frame and
provides consequently a better result as well as faster processing time. [2] described
some of the popular trackers with their advantages and disadvantages such as Boosting,
MIL, KCF, TLD, MedianFlow, MOSSE, and CSRT. Ultimately, the decision of a suitable
tracker depends on the task requirements itself (accuracy, inference time), as well as the
quality of data. CSRT is, for example, a very good candidate if there is no high priority
for processing time. MedianFlow, on the other hand, offers high speed and a quite good
result if there is no large jump of motion in the video.

Motivated by its huge success in plenty of applied fields, DL has also been introduced to
single object tracking, known as deep tracker. [4] gives comprehensive insights into lots of
proposed deep trackers in terms of architecture and performance. It explains in detail the
components of such deep trackers as shown in figure 2.2 as well as their recorded accuracy
on a number of popular visual benchmark datasets such as OTB-2013, OTB-2015, and
LaSOT. In each timestamp, the feature extraction module extracts features from target
templates in the motion module and the search frame. Then, these two kinds of features
are fed through the regression module to generate the bounding box. For more details
about each module, please refer to [4].

Some popular successful deep trackers use the family of Siamese networks: SiamFC,
SiamRPN, SiamRPN+, SiamRPN++. A detailed explanation of such networks is out of
the scope of this work. Please refer to its original papers for more information.

3https://paperswithcode.com/task/face-detection

5

https://paperswithcode.com/task/face-detection

2 Literature review

Figure 2.2: General components of deep trackers

2.1.2 Neural Network

DL is a big part of the ML landscape. It uses deep artificial Neural Network (NN)
as learning model. Deep Neural Networks have been proven to be capable of solving a
lot of challenging tasks including face recognition, voice recognition, image recognition,
object detection, video classification, sentiment analysis, along with others. Its power
lies in the ability of applying a specific set of algorithms on the learning model to map a
number of inputs to a number of output classes, in mathematical term, a complex function
approximation. It is done by constructing a number of layers (data representation), each
contains a number of neurons. The information is passing through the layers depending
on whether the neurons are activated or not. This process is controlled by a system of
parameters including number of neurons in each layer, their weights and biases, number
of layers, their type, activation functions, cost function, optimization function, learning
rate, regularization methods, batch size, and so on. The goal of DL is to find the best set
of parameters so that the right information is filtered out. The learned information will
then help solve the task. In other words, the art of DL is about learning how to learn. In
many cases, it is even able to learn directly from raw data which opens the opportunity
of building an end-to-end pipeline.

The process of finding the best parameters is simplified as follows (detailed explanation
in [11]). Firstly, the parameters are chosen randomly or due to previous work or devel-
oper’s personal experience. Secondly, the input values are calculated all the way from
input layer through hidden layers to output layer. This step is called forward propaga-
tion. The predicted output will then be compared to the correct output, also called label

6

2 Literature review

or ground truth based on a given cost function (e.g. linear, square, or cross entropy).
Depending on the difference between the calculated output and the ground truth, the pa-
rameters are updated in the corresponding direction based on gradient descent algorithm
(backward propagation). This whole process is iterative and should be repeated until the
requirements are met. Indeed, training a DL model is empirical and resource-consuming
in terms of time, human effort, and computation. In the later section, the author will
discuss more about a systematic hyperparameter tuning process.

In the last years, DL have been researched more than ever. At this point, it serves a range
of industries from robotics, self-driving car, health care to education, security, marketing,
logistics, and a lot more. To fulfill the tasks demanded by such a big spectrum of applied
fields as well as to take advantage of the increasing computation and cloud resources,
more and more efficient NN are designed. Below is a short introduction of some which
are relevant to FER.

Convolutional Neural Network (CNN), C3D, and Residual Network

The traditional network of pure fully connected layers suffers from a lot of challenges
when it comes to complex tasks: 1. exploding number of parameters and 2. missing
information of pixel in neighborhood or information in the past sentences or segments.
CNN was born as the breakthrough in the field of image recognition. The very first suc-
cessful CNN architecture was proposed back in 1998 by Yann LeCun, one of the pioneers
of the Deep Learning revolution. The network was originally designed for handwritten
digit recognition, which is later applied to a range of other areas such as document recog-
nition/extraction (e.g. paychecks), image recognition. As core, a CNN contains 3 main
types of layer: convolutional layer (CNN), pooling layer (POOL), and fully connected
layer (FC). CNN layer applies the mathematical convolution operation (*) by sliding a
filter kernel or convolutional kernel (f=nxn) through all possible locations in the input
(image in input layer or feature maps in hidden layers). Figure 2.3 illustrates the oper-
ation. By doing so, it captures very well the relationship among neighbor pixels which
is essential for extracting spatial information. Furthermore, weights are shared across
regions which helps reduce the number of parameters. POOL layer is constructed by slid-
ing the kernel through the input and calculating either the average or max value of the
region (AVERAGE-POOLING or MAX-POOLING). As that, it helps reduce the spatial
size while remaining the depth and as a consequence leads to a significant decrease in

7

2 Literature review

the number of parameters and corresponding computation. FC layer lies mostly at the
end of the network and serves as classification layer.

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

Input

∗
1 0 1
0 1 0
1 0 1

Kernel

=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

Output

1 0 1
0 1 0
1 0 1

Figure 2.3: Example of convolution operation

Thanks to its power of extracting spatial features, many efficient CNNs were designed and
have gained huge success at the annually ImageNet Image Large Scale Visual Recogni-
tion Challenge (ILSVRC) e.g. AlexNet, ZF-Net, Inception (GoogLeNet), VGG, ResNet,
ResNeXt, SENet, PNASNet-5. These networks were afterward used as transfer learning
to many other tasks. This topic will be further discussed in the later section.

Moving to video data sources, the traditional CNN tends to miss the correlation among
frames since it only focuses on extracting features in each separated frame. In fact, these
temporal features play a very important role when dealing with frame sequences as they
encode the motion information across the sequence. As a solution, C3D was introduced
in 2010, also known as 3D ConvNet or 3D CNN [30]. It was originally explored to solve
the task Human Action Recognition. As the name suggests, C3D uses 3D kernel instead
of 2D and as a result, be able to capture both spatial features in each frame as well as
temporal features in multiple adjacent frames. Despite that, the learning capacity of
C3D when it comes to features in time is limited and sometimes referred as shallow. To
deal with deep sequence which requires deep memory inside the network, other network
types were subsequently introduced, but more on that later.

Despite the learning ability of CNN, training a deeper CNN is more difficult. The thread
of exploding and vanishing gradient descent is one of the well-known struggles. [25]
investigated further the problems of training and optimizing deeper CNN and proposed a
more proficient CNN architecture called Residual Network. As core, it contains so-called
residual block which is built from normal layer with shortcut connection or residual
connection. Shortcut connections are those skipping certain layers in between. For
instance, see figure 2.4.

8

2 Literature review

Figure 2.4: Residual learning: a building block [25]

[34] summarized some firm arguments why Residual Network can train more layers.

• Layers with shortcut connection can realize entity mapping and by all means, can
not cause training worse. Therefore, it is theoretically possible to add as many
residual blocks as desired.

• Residual Network behaves as an ensemble of multiple sub-networks.

Another similar architecture is called DenseNet [27] which contains basically more short-
cut connections. In a dense block, there are connections among all inputs and outputs
from each layer. DenseNet is proven to be able to train even deeper networks.

Recurrent Neural Network (RNN), LSTM, BiLSTM, and ConvLSTM

Another common data source is time series or sequential data. Its typical characteristics
of variational length and the distribution of information through the sequence demand
a different type of network. RNN fills this gap. There are a lot of works around the
concept of RNN in the 80s. Unlike CNN, RNN is designed to capture the dynamics
of sequences by default. It processes the sequence timestep by timestep. In order to
remember the information in the previous sequence, it has an internal memory that is
created through the feedback connection. A RNN layer of n neurons can be unrolled
in time as n feed-forward layers with shared weights. A slightly different aspect of the
training process is the backpropagation algorithm called Backpropagation Through Time
(BPTT). It is simplified as follows. The loss is accumulated across all timesteps. Weights
are then updated in the backward direction. Nevertheless, this way of training can be

9

2 Literature review

slow if the sequence happens to be too long. Therefore, a modification of BPTT was
introduced to solve this problem called Truncated BPTT(k1, k2) (TBPTT) with k1 being
the number of forward steps until updating and k2 being the number of timesteps used in
backpropagation. However, this simple RNN still suffers from other training problems.
Concretely, to calculate the derivative of Loss with respect to Weight in the very first
layers, one has to repeat the multiplication of derivatives from one step to another until
the wanted layer. If the gradient is too big or too small, there is a good chance that the
training process ends up with the exploding and vanishing gradients.

Almost a decade later until 1997, [26] proposed a special RNN architecture, marked
the breakthrough of RNN in processing sequential data: the Long Short-Term Memory
(LSTM) network. The design of LSTM is to memorize long-term dependencies. In order
to achieve that, LSTM has an internal memory cell as well as several gate controls GC
which manage the information flow. Input-GC/output-GC/forget-GC is composed of
a sigmoid layer with a value range of (0,1). Those gate controls determine how much
information should be passed through each gate (0=none, 1=all). Furthermore, LSTM
resolves the problem of vanishing gradients found in the original RNN [26]. Ever since
then, RNN is commonly chosen as baseline architecture for any task involving sequences
and have gained a big reputation.

Followed the success of LSTM, multiple options have been explored. Among them, one
has been investigated and proven to be even more effective than the above described
LSTM in many cases: the bidirectional LSTM a.k.a BiLSTM. The core idea of a bidirec-
tional RNN was first introduced back in 1997 by Mike Schuster and Kuldip K. Paliwal
[40]. Instead of only remembering information from the past as unidirectional LSTM,
BiLSTM offers an additional training capacity of learning simultaneously from the past
and from the future or, in other words, in positive and negative time directions. In fact,
in many scenarios, the information in the future is just as important as the one in the
past. The simple example below demonstrates this point. Without the information in
the future, it is very difficult to predict the word after Robin.

Robin [Scherbatsky] is my favorite character in the series "how I met your mother".

Robin [Hood] is a folk hero who steals from the rich to help the poor.

In the last years, there are a number of works which confirmed the effectiveness of BiL-
STM as well as provided detailed performance comparison among unidirectional LSTM

10

2 Literature review

and BiLSTM e.g. for traffic prediction [39], forecasting time series [42], human activity
recognition [6].

Nonetheless, [41] pointed out that LSTM seems to perform poorly on image sequence
since it does not take spatial correlation into consideration. They then came up with a
new architecture called ConvLSTM. ConvLSTM resolves the learning problem by taking
advantage of the convolution operation in both input-to-state and state-to-state transi-
tions to capture underlying local spatial features. Figure 2.5 visualizes the inner structure
of ConvLSTM.

Figure 2.5: Inner structure of ConvLSTM [41]

LSTM ConvLSTM

it = σ(Wi.xt +Wi.ht−1 + bi)

ft = σ(Wf .xt +Wf .ht−1 + bf)

C̃ = tanh(Wc.xt +Wc.ht−1 + bc)

Ct = ft ⋆ Ct−1 + it ⊙ C̃

ot = σ(Wo.xt +Wo.ht−1 + bo)

ht = ot ⊙ tanh(Ct)

it = σ(Wxi ∗Xt +Whi.Ht−1 +Wci ⊙ Ct−1 + bi)

ft = σ(Wxf .Xt +Whf .Ht−1 +Wcf ⊙ Ct−1 + bf)

C̃ = tanh(Wxc.Xt +Whc.Ht−1 + bc)

Ct = ft ⊙ Ct−1 + it ⊙ C̃

ot = σ(Wxo.Xt +Who.Ht−1 +Wco ⊙ Ct + bo)

ht = ot ⊙ tanh(Ct)

Table 2.1: Equations of LSTM and ConvLSTM

As a matter of fact, all the inputs Xn, cell outputs Cn, hidden states Hn, and gates
it, ft, ot of the ConvLSTM are 3D tensors whose last two dimensions are spatial dimen-
sions. The key equations of LSTM and ConvLSTM are shown in table 2.1 with Wab

as the weight matrix from a to b relationship; ⊙ denotes the Hadamard product and
* the convolution operator. Also, it is to notice that the ConvLSTM does not use the
simple LSTM but a modification with peephole connections which was proposed in 2000
[24]. The design of peepholes was made to fuse the information of the cell into the gates
by direct multiplicative connections between cell and gates. [24] stated that this LSTM

11

2 Literature review

variant can learn the fine distinction between sequences of spikes separated by either 50
or 49 discrete time steps, without the help of any short training exemplars.

Other networks

Besides ConvLSTM, there are many other ways to capture spatial-temporal features.
One commonly used candidate is the hybrid network which combines multiple types of
networks together to take advantage of them all.

In addition, there are a number of special networks for certain purposes which can not
be all discussed here. AutoEncoder is a very strong network when it comes to the task
of representation learning or, in simple words, learning the core knowledge embedded in
the data.

Ultimately, the goal of DL is to find the best model. Yet sometimes one model can not
capture all the necessary aspects. [23] covers an extensive review of ensemble learning and
determines that by combining several individual models, the generalization performance
improves. It also discussed a number of fusion strategies that are broadly used.

2.1.3 Deep Learning techniques

Set up datasets

No matter which network topology is applied, training a DL model requires in general a
big amount of data. To avoid the learn-by-heart phenomenon where the model happens
to create a huge mapping of input to output without really capturing the features, data
is normally split into different sets. A common one is train and validation set (sometimes
refers as dev or development set): one for the training and one for performance validation
during the hyperparameter tuning process. Thus, the parameters are changed during
training so that the performance on both train and validation set are not too bad which
leaves a certain bias on the statement about network quality provided by validation set.
Therefore, in many cases, another set is wanted for a more reliable result called the test
set. The idea of test set is to apply the best-trained model on a number of completely
new samples to provide an unbiased estimation of the final model before moving to the
real application. A classic ratio of train/validation/test set is 60%/20%/20%. In the
era of Big Data where the amount of samples is counted in millions or even billions, the

12

2 Literature review

percentage of validation and test set can be reduced so that 1. There is still enough data
for training and 2. The evaluation of algorithm takes less time which enables testing more
algorithms and as a result speeds up the process of finding the best algorithm among all.
The number can go to less than 10% or occasionally even less than 1%.

Some noticeable disadvantages of this 3 datasets approach are that the number of samples
for learning reduces drastically and the result relies on a random choice of validation
set. A solution for this problem is so-called k-fold Cross Validation. The procedure
is described as follows. Firstly, the train set is divided into k folds: 1 for validation
and k-1 for training. Secondly, the training is executed as usual, thus k times. In each
iteration, another fold is chosen as validation set. After the loop is done, the final result is
calculated as average of the result after each iteration. Figure 2.6 illustrates an example
of 5 folds.

Figure 2.6: 5-fold Cross Validation [3]

This approach is indeed expensive in terms of computation, yet valuable especially in
case of small dataset. The decision of k depends on a lot of factors. Common questions
that should be concerned about before making this decision are:

• Are the computation resources available?

• Is the train set big enough for learning?

• Is the validation set representative enough to measure the quality of algorithms?

13

2 Literature review

Hyperparameter tuning

The difficulty of training a DL model lies in the huge number of hyperparameters.

• number of layers, number of neurons in each layer

• type of network, type of layer

• weight initialization method

• learning rate

• optimization algorithm

• cost function

• and so on

Training a network can be simplified, in technical terms, as finding the best set of hy-
perparameters so that the model has the best generalization capacity. This process is
unfortunately complex and resource-consuming because of the search around the huge
combination of hyperparameters. A key aspect here is to construct a systematic way of
finding and monitoring each modification of the parameters.

One of the simplest possible ways to get good hyperparameter is to brute force all possible
combinations a.k.a Grid Search. This approach is unfortunately extremely computation-
ally expensive and considered as inefficient when the data used for Grid Search is big.
Random Search is another option that uses randomly candidates in the parameter’s dis-
tribution. Yet those 2 options suffer hardly from the high computation cost. Bayesian
Optimization algorithm is a more efficient way for hyperparameter tuning as it redeems
the drawbacks of Grid Search and Random Search. It builds a probability model of the
objective function to propose a better set of hyperparameters to evaluate and update
the model correspondingly. As a result, it tends to find the best combination in fewer
iterations.

F (score|hyperparameters)

14

2 Literature review

Thus, there is no guarantee that Bayesian Optimization will always perform best among
those search algorithms. If the resources are abundant, it does not seem such a bad idea
to try Grid Search.

Another way to optimize the training process is to understand the current performance of
the model. By monitoring the loss and accuracy course, the weights and feature maps, one
can simply determine the capacity of the model, whether it is currently in Underfitting
or Overfitting area, whether it is learning well or experiencing some problems. With
that precious knowledge, bad parameters can be fast eliminated and the model can be
pushed in fewer steps in the right direction and can achieve its best performance in a
more efficient manner.

One of the biggest problems most DL practitioners face sooner or later is the phenomenon
called Overfitting. Overfitting refers to the scenarios where a model performs quite
well on train set but poorly on validation set, in other words, a poor generalization.
It indicates that the model tends to learn by heart the samples and not the features
embedded in the data. To fight against Overfitting, there are plenty of regularization
techniques to try. Thus, be aware that there is no guarantee that certain methods will
work 100% in all cases.

[32] emphasizes the crucial role of regularization in DL and presents an overview of
regularization methods based on five main elements of NN training (data, architecture,
error term, regularization term, optimization procedure). In addition, they summarized a
number of works in different regularization categories and gave concrete recommendations
for users of existing regularization methods. Below is a brief description of some worth-
a-try techniques.

• L2 a.k.a weight decay belongs to the category of regularization via regularization
term. [32] states that regularization can be achieved by adding a regularizer R into
the loss function where λ is a weighting term controlling the level of regularization
wanted.

R =
λ

2m
∥w∥2

A simple explanation of the effectiveness of weight decay is that by adding a term
based on weight to the loss function, the weight is automatically kept small as the
loss is optimized. This leaves a lot of neurons with near-zero weights or, in common

15

2 Literature review

terms, deactivated. Smaller network corresponds normally with less Overfitting.
Weight decay has gained big popularity and is still used successfully until now.

• Dropout, Normalization, and Data Augmentation are the three most popular meth-
ods in the category of regularization via data. They seem to distinguish at first sight
but are very similar in the way they use some sort of transformations with (stochas-
tic) parameters to either 1. perform feature extraction, modify feature space or the
distribution of the data to some representation simplifying the learning task or 2.
generate more data.

– Data Augmentation applies the transformation on the input data in order to
invent more data from the limited dataset. It is crucial for certain applications
where it is hardly possible to get more data such as health care, military, and
security. By augmenting available data, Data Augmentation also generates a
variety of contexts and backgrounds which sometimes enhance the quality of
the data itself. More data corresponds commonly with better generalization.

– Normalization applies the transformation on the input and hidden layers (In-
put or Batch Normalization) to re-balance the distribution of data. An un-
wanted imbalance of data range can have a negative effect on the training
process e.g. sample with input x1 in range [0,1] and x2 in range [10000-
1000000]. Ultimately, data with higher value (x2) will have more impact on
the training while others tend to be ignored. This will slow down the learning
process if not even prevent the model from learning enough features. Nor-
malization solves this problem. A balanced and stable distribution of data
help accelerate the training. [29] also pointed out the effectiveness of Batch
Normalization against Overfitting and determined that by normalizing layer
inputs, Batch Normalization allows us to use much higher learning rates and
be less careful about weight initialization.

– Dropout applies the transformation on the input and hidden layers. The key
of Dropout is to randomly drop units and all their connections during training.
At each time, a thinned network with fewer neurons is trained. A network
of n units can then be seen as 2n possible thinned networks [43]. Train-
ing with Dropout is like training a collection of 2n networks with extensive
weight sharing where each network gets trained rarely or at all. [43] stated
that Dropout is a technique that prevents Overfitting and provides a way of

16

2 Literature review

approximately combining exponentially many different NN architectures ef-
ficiently. Dropping units results in a smaller network and as a result less
Overfitting. By combining different models, Dropout demonstrates a strong
improvement in performance. Dropout is nowadays one of the most power-
ful regularization techniques. [22] investigated more about the application of
Dropout in RNN and came to the conclusion that the variational inference
based Dropout technique, also referred as recurrent Dropout outperforms the
naive Dropout. The fundamental difference between these two is the con-
nections dropped. While naive Dropout masks only connections from inputs
to outputs, recurrent Dropout masks additionally the recurrent connections.
Their proposed technique also suggests using the same mask at each timestep.

• Regularization via optimization covers 3 types of method corresponding with 3
phases of the training: weight initialization, weight update, and training termina-
tion. The general recommendation in [32] is to try several methods before picking
the best one:

– Initialization: Random weight initialization (Xavier, He) etc.

– Update: Adam, Momentum, RMSProp, learning rate schedules etc.

– Termination: Early stopping, fixed number of iterations etc.

Transfer learning

It is no need to "reinvent the wheel". Learned knowledge should be applied if and
where it’s possible. Transfer learning addresses exactly this issue by extracting useful
information from data in a related domain and transferring them to a new task. On
one hand, it helps avoid redundant resources needed to re-learn similar features. On the
other hand, it is believed that prior knowledge assists the new learning process. That
means that learning for new tasks based on previously gained knowledge might be faster
and more efficient. [48] studied the transferability of deep NN and concluded that the
transferability of features decreases as the distance between the base task and the target
task increases. And even though the transfer effect is low, transferring features from
distant tasks can still be better than using random features. [52] conducted an insightful
survey about over 40 representative transfer learning approaches and their applied fields.
They emphasized the potential of transfer learning in the modern ML landscape, yet

17

2 Literature review

pointed out some areas which need to be further researched such as how to measure the
transferability across domains and avoid negative transfer, interpretability of transfer
learning, effectiveness and applicability, along with others.

In fact, there are a lot of pre-trained successful networks which are accessible for commu-
nity such as the winners of ImageNet Image Large Scale Visual Recognition Challenge
(ILSVRC) including AlexNet, ZF-Net, Inception (GoogLeNet), VGG, ResNet, ResNeXt,
SENet, PNASNet-5. One well-known approach is called fine-tuning. Fine-tuning a net-
work means to keep a number of base layers frozen (mostly CONV layers), replace some
layers at the end with some new ones and a suitable output layer and then re-train
the network with new data. By doing so, the new network has the ability of capturing
not only certain basic information from pre-trained network such as edge, basic pattern,
curve but also new features needed for the new task. One example mentioned in [52]
is about fine-tuning AlexNet for the detection of Alzheimer’s disease. The process is
described as follows: 1. Use pre-trained AlexNet as a starting point 2. Replace the last 3
fully connected layers with one softmax layer, one fully connected layer, and one output
layer 3. Fine-tune the new network with Alzheimer’s dataset. A detailed comparison of
fine-tuning different popular pre-trained models for the task of detecting plant disease
can be further read in [15] where DenseNet is reported to achieve the best performance.

Despite the various advantages of decrease in training time, data, resources, and enhance-
ment of performance, transfer learning faces like almost every other technique certain
limits. One of its biggest limitations is so-called negative transfer. Negative transfer
refers to the case where transfer learning undesirably hurts the performance of the target
task instead of improving. Transfer learning works well under the assumption that the
new task is similar to the old task. If it is not satisfied, negative transfer may occur. Fur-
thermore, regardless of how similar developers determine the relationship between those
tasks, the algorithm may not always be of the same opinion. After all, it is difficult to
define the factors based on which the algorithm make decision about the transferability.
[50] presents a systematic survey on negative transfer with review of fifty representative
approaches for overcoming negative transfer according to four categories: secure transfer,
domain similarity estimation, distant transfer, and negative transfer mitigation.

18

2 Literature review

Evaluation

It is to distinguish between evaluation during training and model final evaluation. It is
essential to provide fast evaluation during training such as Accuracy or F1 score. For
final evaluation, it is recommended to apply techniques that provide more insights such
as Confusion Matrix or detailed Error Analysis. Below is a brief description of those
methods mentioned above.

• Accuracy is a commonly used evaluation metric. It is defined by the percentage
of number of correctly predicted samples to the total number of samples. Yet one
drawback of this simple metric is that it is not reliable in case of imbalanced data
since the result hardly relies on the performance of dominated classes.

• F1 score is a function of Precision and Recall as illustrated in the equations below
with FP=False Positive, TP=True Positive, and FN=False Negative. Precision
measures how many of the predicted positives is actually positive. A high False
Positive is easily to determine with Precision which is important for e.g. spam
email detection. Detecting a spam as non-spam (FN) can be more tolerated than
a non-spam as spam (FP) as important emails might be lost. A high Precision is a
decisive factor for such models. Recall measures, on the other hand, how many of
the positive samples are correctly predicted. Using Recall metric, a high FN is easy
to detect. In case of fraud detection, anomalies detection, or disease prediction,
detecting a positive case as negative (FN) is very critical. For such models, Recall
is a more reliable metric to go with. F1 score combines those 2 metrics. Either a
bad Recall or a bad Precision will both results in a bad F1 score.

Precision Recall F1 score

P =
TP

TP + FP

=
TP

Total Predicted Positive

R =
TP

TP + FN

=
TP

Total Actual Positive

F1 = 2 ∗ P ∗R
P +R

• Confusion Matrix, also known as error matrix, is a detailed presentation of the
predicted result in matrix form. It consists of 2 dimensions: actual and predicted.
All the correctly predicted samples are located on the diagonal of the matrix. Colors
are commonly used to highlight the result statistics. In case of imbalanced data,

19

2 Literature review

it’s better to use percentage or range [0,1] to display the result instead of absolute
number. Figure 2.7 shows an example of Confusion Matrix where 75 samples of
class A are predicted as class A (75%), 5 as class B (5%) and 20 as class C (20%).

A
75

75%

1
1%

0
0%

0
0%

100
2%

B

5
5%

90
90%

0
0%

0
0%

100
2%

C

20
20%

3
3%

99
99%

0
0%

200
3%

D

0
0%

2
2%

0
0%

80
80%

0
0%E

0
0%

A

4
4%

B

1
1%

C

20
20%

D

6000
94%

E

A
ct

ua
l

Predicted

Figure 2.7: Example of Confusion Matrix

• Error Analysis is a collection of any method which helps analyze the result, espe-
cially the wrong predicted samples, for example, a table of wrong predicted samples
with detailed note of the sample’s characteristic as well as the predicted score.

Nonetheless, it depends on you to apply certain metrics for certain phases. Yet it is very
important to set up the evaluation metrics so that performance can be tracked efficiently
and the network is evaluated in a reliable manner. In fact, if the training is stuck at
some points, an Error Analysis might shed some light on the matter e.g. data mismatch,
different data distribution, low data quality, and so on.

20

2 Literature review

2.2 Sota FER

2.2.1 Emotion approaches

There are 2 popular approaches when it comes to FER: discrete (categorical) and con-
tinuous (dimensional) approach.

Discrete emotion model refers to a limited number of universal basic emotions. One of
the well-known models is the set of 6 emotions {anger, disgust, fear, happiness, sadness,
surprise} proposed by Ekman and Friesen. In [19], they investigated the question whether
any facial expression is indeed universal. They came up with an experiment, in which
they demonstrated the fact that the members of a preliterate culture who had minimal
exposure to literate cultures would associate the same emotion with the same facial
expression as do members of literate cultures. The experiment was done by telling 342 Ss4

a story, showing them 3 faces, and asking them to select the one which showed the emotion
in the story. The result gave strong evidence of their hypothesis of universal emotions.
The approach was followed by a lot of researchers with different number of emotions e.g.
{fear, anger, joy, sadness} {anger, fear, sadness, disgust, surprise, anticipation, trust,
joy}. Still, there is no consensus about the precise number of basic emotions after all.

On the other hand, continuous approach characterizes emotions on a dimensional basis.
After their hypothesis, there is no distinguished emotion. Instead, there are certain
factors that define emotions. These factors can be seen as axes in a coordinate system
and each emotion can be shown as a point in this n-factor/n-dimension system. Some
well-known models [18] are:

• two-dimensional model of valence (a pleasure-displeasure continuum) and arousal
(activation-deactivation) a.k.a circumplex model of affect [37]

• three-dimensional model of tension arousal, energetic arousal, and valence

• three-dimensional model of Pleasure (Valence), Arousal, and Dominance a.k.a
PAD or VAD model [38]. Figure 2.8 visualizes the 6 basic emotions by Ekman in
the VAD model.

.

4Ss were members of the Fore linguistic-cultural group, which up until 12 years before the experiment
was an isolated, Neolithic, material culture.

21

2 Literature review

Figure 2.8: Ekman’s basic emotions within the emotional space spanned by the Valence,
Arousal, and Dominance axis of the VAD model. Ratings are taken from [38]
[10]

There are continuous debates around these two approaches. The main argument for
dimensional over categorical approach lies in its ability of capturing all possible human
emotions. [18], for instance, works with emotion perceived by music and did a detailed
comparison of multiple models from both approaches. [9] also shed some light on the
matter from another perspective: neuroimaging studies. They indicate that there is still
inefficient evidence whether certain brain circuits define certain basic emotions. Yet, they
emphasized that the reason could also lie in the stimuli method, the measurement tool,
or the research design itself. More research will undoubtedly clarify this concern.

For FER, both approaches have been adapted. So far, categorical approach is more often
chosen because of its simplicity in terms of model and dataset.

2.2.2 Datasets

There are a lot of datasets serving FER. Thus, they differ from a number of characteristics
[13]:

• Environment: laboratory-controlled, in the wild (web, movies, and real world ap-
plication)

• Emotion approach: categorical, dimensional

22

2 Literature review

• Ground truth: emotion, action units (AUs)

• Size: total size, number of objects, number of emotions, resolution, frame rate

• Type: static images (2D), frame sequences, video (3D)

• Model of face: 2D, 3D

• Color: gray, RGB

• Intensity: only peak emotion, neutral-peak-neutral a.k.a onset-apex-offset

• Capture: posed, spontaneous

• Bias: gender, ethics, background

Table 2.2 shows the summary of some popular FER benchmark databases. A further
read about each dataset can be found in [33] [20].

Database Sub. Samples Condit. Elicit. E.
CK 97 486 image sequences Lab P, S 7

CK+ 123 593 image sequences Lab P, S 8
MMI 25 740 images + 2900 videos Lab P 7

JAFFE 10 213 images Lab P 7
TFD N/A 112,234 images Lab P 7

BU-3DFE 100 2500 3D images Lab P 7
BU-4DFE 101 606 3D sequences Lab P 7

Oulu-CASIA 80 2880 image sequences Lab P 7
4DFAB 180 1,800,000 3D faces Lab P, S 7
RaFD 67 1608 images Lab P 8
KDEF 70 4900 images Lab P 7

Bosphorus 105 4888 images Lab P 7
AFEW N/A 1809 videos In the wild (Movie) P, S 7
SFEW N/A 1766 images In the wild (Movie) P, S 7

FER-2013 N/A 35,887 images In the wild (Internet) P, S 7
RAF-DB N/A 29672 images In the wild (Internet) P, S 7+
AffectNet N/A 450,000 images In the wild (Internet) P, S 7

ExpW N/A 91,793 images In the wild (Internet) P, S 7
EmotionNet N/A 1,000,000 images In the wild (Internet) P, S 23+

Table 2.2: An overview of FER datasets. Sub.=Subject; P=posed; S=spontaneous; Con-
dit.=Collection condition; Elicit.=Elicitation method; E.=Expressions: 6 =
anger, disgust, fear, happiness, sadness, and surprise; 7 = {6 expressions} ∪
{neutral}; 8 = {7 expressions} ∪ {contempt}; + = with compound expressions

23

2 Literature review

Each dataset has its own strengths and weaknesses. While datasets in laboratory have
in general good light condition with faces that are recorded in frontal position, it fails
to cover the complex environment in the real world. On the other hand, while datasets
collected from the internet can expose a variety of different setups, they commonly suffer
from low quality. In the early days, FER works mostly on images which results in a
big number of static datasets. Later on, there are more and more works focusing on the
dynamic characteristic of FER. Recently, there are some datasets that even capture the
3D model of face. It opens a bright chance to solve problems like occlusion.

DL requires in general a big amount of data. Indeed, it is possible to combine different
datasets. If this is the case, please be aware of the data distribution and quality before
mixing them together.

2.2.3 Challenges

One of the biggest problems FER faces is data. The process of creating ground truth for
training data might suffer from certain biases from the annotator (person or algorithm).
It is especially difficult to create reliable labels for dimensional emotion approach as it
requires expertise in the area. Collecting or creating more high-quality data can also be
a problem in terms of time, human effort, and budget. Combing datasets has to be done
under careful consideration of data imbalance. In case it is hardly possible to manually
get more data, Data Augmentation is highly recommended to generate more data from
the available data.

[33] emphasized that there are many other factors which can have an impact on emotion
detection besides facial expression:

• context

• electroencephalography (EEG)

• audio

• mimics

They affirmed the effectiveness of using facial expression alone, yet pointed out the
potential of a multimodal system that is capable of capturing and processing data from
multiple channels.

24

2 Literature review

Ultimately, a FER system should be applied in the real world which does not have the
ideal environment as in the experiment. Some limitation that it might encounter is the
limited computation and memory such as in mobile devices, edge devices, the imperfect
light and contrast, the occlusion by objects in the surrounding or even by glasses, beard,
etc. that might degrade the performance of the model. Thankfully, there is continuous
research in this area e.g. hardware development to fulfill the high requirement of such
tasks, network optimization methods to reduce size while avoiding accuracy degradation
- more on that later.

2.2.4 Proposed methods

From the perspective of Facial Analysis, there are 2 levels of expression descriptor: global
and local expression. It results in 2 research areas called Facial Expression Recognition
(FER) and Facial Action Unit Recognition (FAUR), one tries to decode the global facial
expression and one only certain regions.

Action Unit Movement
AU1 Inner Brow Raiser
AU2 Outer Brow Raiser
AU4 Brow Lowerer
AU5 Upper Lid Raiser
AU6 Cheek Raiser
AU7 Lid Tightener
AU9 Nose Wrinkler
AU15 Lip Corner Depressor
AU17 Chin Raiser
AU20 Lip stretcher
AU26 Jaw Drop

Table 2.3: Action Unit example

Emotion Action Units
Happiness 6,12
Sadness 1,4,15
Surprise 1,2,5B

Fear 1, 2, 4, 5, 7, 20, 26
Anger 4, 5, 7, 23
Disgust 9, 15, 16

Table 2.4: EMFACS for 6 basic emotions

Action Unit is defined as the movement of specific facial regions such as eyes, mouth,
cheeks, and so on. Table 2.3 shows an example of some Action Units. For more, see here 5.
While FAUR serves multiple purposes, it is also used to enhance FER. Concretely, a set of

5https://www.cs.cmu.edu/ face/facs.htm

25

https://www.cs.cmu.edu/~face/facs.htm

2 Literature review

Action Units can define a specific emotion. Table 2.4 6 presents a simple mapping based
on the Emotional Facial Action Coding System (EMFACS) by Ekman and Friesen.

With the rise of ML and DL, many researchers have adopted the new approach of working
directly with raw data instead of using Action Units for FER. Facial features are directly
either handcrafted or deep-learned from raw data.

In the previous work [13], the author has summarized a number of handcrafted features
which are evaluated in many works. Sometimes, a combination of different handcrafted
features can further improve the performance.

feature cate-
gory

description examples

appearance encodes pixel in-
tensity informa-
tion

Local Binary Pattern (LBP), Gabor, Histogram
of Oriented Gradients (HOG), Three Orthog-
onal Planes (TOP), Gaussian Laguerre (GL),
Weber Local Descriptor (WLD), Discrete Con-
tourlet Transform (DCT)

geometric encodes feature
embedded on
landmarks loca-
tion

distance among landmarks, angle between neu-
tral face and input face, angle formed by the seg-
ments joining three landmarks , Local Curvelet
Transform (LCT)

motion captures changes
among frames

Motion History Images

Table 2.5: Examples of handcrafted feature

With the features available, a ML classifier will be trained to recognize the emotion
underneath. Some popular choices are K-nearest neighbor, Support Vector Machine
(SVM), Hidden Markov Model (HMM), Decision Tree (DT). Yet the performance of
such classifiers is very limited and they are often categorized as "shallow learning".

Recently, DL has become the state of the art of FER. With its ability to learn directly
from raw data, DL opens the opportunity of training an end-to-end FER pipeline. Figure
2.9 summarizes once again the FER framework with the current ML methods.

6https://www.tu-chemnitz.de/informatik/KI/projects/facedetection/index.php

26

https://www.tu-chemnitz.de/informatik/KI/projects/facedetection/index.php

2 Literature review

Figure 2.9: FER framework

[33] provides a comprehensive survey about deep FER. It introduces a range of neural
networks and training techniques used for static and dynamic FER including:

• Transfer learning (fine-tuning pre-trained networks)

• Design special auxiliaries, layers, and blocks for FER

• Ensemble networks a.k.a fusion

• Design special network architectures

Table 2.6 shows some networks and techniques used for sequences and their performance
in comparison [33].

Network type data spatial temporal frame length accuracy efficiency
Frame aggregation low good no depends fair high

Expression intensity fair good low fixed fair varies

Spatio-
temporal
network

RNN low low good variable low fair
C3D high good fair fixed low fair
FLT fair fair fair fixed low high
CN high good good variable good fair
NE low good good fixed good low

Table 2.6: Comparison of different types of methods for dynamic image sequences in
terms of data size requirement, representability of spatial and temporal
informa- tion, requirement on frame length, performance, and computational
efficiency. FLT = Facial Landmark Trajectory; CN = Cascaded Network; NE
= Network Ensemble

27

2 Literature review

As visualized in table 2.6, the 2 best candidates for dynamic FER are Cascade Network
and Network Ensemble since they are capable of learning both temporal and spatial
features well. This ability is essential for FER on sequences.

Cascaded Network is about combining the strength of different types of networks. One
well-known example of Cascaded Networks is the hybrid network Long-term Recurrent
Convolutional Networks (LRCN) which combines CNN as front-end layers and LSTM
as back-end layers so that the network can take advantage of the excellent ability of
decoding spatial features from convolutional network as well as of extracting temporal
features from recurrent network. As a consequence, LRCN is known to be "doubly deep",
deep in space and deep in time. It has been proven to be a very effective architecture
while working with image sequences or video such as Human Action Recognition, Lip
Reading, and without exception FER.

In addition to CNN, other network frameworks can also be used for learning spatial
features such as C3D as introduced in the previous section. [33] emphasized the power
and high potential of transfer learning from a range of successful object detection models
and face recognition models to FER. Because those networks have been trained to learn
the basic spatial features embedded in almost every visual data such as curve, line, edges
or even high-level features such as a nose, an eye, a face, etc. [33] also pointed out that
transfer learning is the mainstream in deep FER to solve the problem of limited data
and bad generalization. [21] and [44] demonstrated some examples of transfer learning
for FER: finetuing DCN, GoogLeNet, CaffeNet, VGG16, VGGFace with the database
FER2013 of 35889 images. In fact, fine-tuning network that is pre-trained with face data
(VGGFace) happens to achieve the best result.

Similarly, there are also alternatives for learning temporal features. As mentioned in the
previous section, there are a number of new recurrent network architectures that can
capture long-term dependencies even better than LSTM e.g. BiLSTM and ConvLSTM.
However, [44] compared unidirectional and bidirectional LSTM for FER and observed
that BiLSTM was prone to overfitting on their training set and therefore does not perform
well on their validation set even with increasing number of layers.

Network Ensemble is about fusing multiple separate trained networks together. Those
networks can be trained on the same or different data sources. [21] showed a fusion of 3
models (CNN-RNN and C3D trained with image sequences and SVM trained with audio
data) that gave impressive results. Additionally, there are many works that investigate

28

2 Literature review

different fusion strategies including score average fusion, SVM-based fusion, and neutral-
network-based fusion [33].

2.3 Research resume

In the previous sections, the author has 1. walked through the general concepts of
DL including a short description of some well-known network architectures and training
techniques and 2. given an introduction and an overview of the state of the art of FER.

In conclusion, Deep Learning is undoubtedly the way for FER. A number of works have
demonstrated the effectiveness of different DL models for FER and achieved unsurpris-
ingly the state of the art. Most works focus on evaluating their proposed algorithms on
classic databases such as CK+, AFEW, JAFFE, FER2013, etc.

The author deeply believed in the spatio-temporal characteristic of FER and the high
potential of such networks which can capture both those features. However, there are
just a few works on dynamic FER which experiment on modern datasets such as MMI or
BU4FE. Additionally, there are even fewer works that investigate in detail the training
procedure and effectiveness of training techniques. This thesis should fill the gap.

2.3.1 Objective

The objective of this work is to reach the following goals through practical experiment
on modern datasets:

• To find out the performance of different types of NNs on the task FER. Does a par-
ticular network perform especially well on FER? Or does a combination of different
networks (a.k.a fusion) have any advantages overall? Can transferred knowledge
from pre-trained networks enhance FER? (a.k.a transfer learning techniques)

• To compare different training techniques and evaluate their effectiveness through
visualization and diagnosing the network performance during the learning proce-
dure

• To re-evaluate the effectiveness of DL on FER. Is the best model sufficient for FER
in real-life applications?

29

2 Literature review

• Giving detailed Error Analysis to find out which emotion happens to be recog-
nized easily and which laboriously. Are there any noticeable relations among those
emotions and are there any failure patterns e.g. emotion A is often predicted as
emotion B.

In addition, there will also be a brief research on the real-time FER including tools to
optimize NNs for edge devices such as OpenVino, as well as the development of hardware
for real-time inference.

2.3.2 Scope

The experiment will be executed on the BU4FE dataset. The access to MMI dataset was
unfortunately not possible in the timeline of this work. Categorical approach is chosen,
with 6 basic emotions {happiness, sadness, surprise, fear, anger, disgust}. Recognition
of other types of emotion e.g. neutral, anxiety, depression, etc. is out of the scope of this
work.

30

3 Experiment

This chapter is about designing and conducting an experiment that serves the objectives
mentioned above. It provides a detailed description of the dataset, the preprocessing
step as well as the training procedure and the evaluation of the results.

3.1 Design

This experiment is designed to classify 6 basic emotions {happiness, sadness, surprise,
fear, anger, disgust} from the dataset BU4FE from University Binghamton. Below are
some of its characteristics based on the categories listed in subsection Datasets in the
previous chapter.

• Environment: laboratory-controlled with setup and instruction from professional
psychologist

• Emotion approach: categorical

• Ground truth: emotion

• Size

– Number of objects: 101 (Unfortunately, there is a missing video of emotion
"happiness" for object F016. For this experiment, a request of missing data
is not done. Instead, all videos from object F016 is simply left out.)

– Number of emotions: 6

– Resolution height x width: 480 x 640

– Frame rate: 25 frames per second

31

3 Experiment

• Type: 3D video sequence with the resolution of approximately 35,000 vertices;
Model of face: 3D (However, the experiment simply uses 2D frontal view.)

• Color: RGB

• Intensity: neutral-peak-neutral a.k.a onset-apex-offset

• Capture: posed

• Bias: objects of both genders with a variety of ethnic/racial ancestries, including
Asian, Black, Hispanic/Latino, and White

In the author’s previous work [12], it is pointed out that neutral faces at the beginning
and end of each video could mess up the training. The author is aware that there are also
works that try to address this issue by providing on-the-fly prediction based on partial
expression sequences [7]. Nonetheless, for the purpose of this work, the author will focus
on recognizing the emotion by cutting off the neural emotion in the video. As human
emotion is expressed continuously from neutral to peak emotion and back, it is necessary
to determine when the actual emotion takes place. Building such a detector of neutral
vs non-neutral emotion is unfortunately out of the scope of this thesis. In addition,
to increase the data volume, the author proposes several augmentation methods. The
detailed process of preparing data is covered in the next subsection.

As the dataset consists of dynamic sequences, the author proposes networks that are
capable of encoding both spatial as well as temporal features. Since each network has
its own learning capacity, Cascade Network is known as one of the best candidates while
dealing with mixed features.

Network Special characteristic Pre-trained with
VGG16 consistent convolution blocks ImageNet

ResNet50 residual blocks ImageNet
DenseNet201 dense blocks ImageNet

VGGFace pre-trained with faces Faces

Table 3.1: Pre-trained networks

To encode features in space or, in other words, pattern, structure, information among
pixels, the author will use Convolutional Neural Network. Instead of training some CNN
blocks from scratch, the author will take advantage of pre-trained networks and fine-tune
them so that their learned knowledge can be transferred to this task. The pre-trained

32

3 Experiment

networks are chosen because of their popularity, performance, and their characteristics
of innovative architecture (see table 3.1).

The chosen networks will be fine-tuned on another dataset (FER2013) instead of BU4FE
to avoid bias.

To encode features in time a.k.a temporal relationship among frames, how the face is
moving, the author proposes the following networks:

• LSTM (bidirectional and unidirectional)

• 1D-CNN

Alternatives for Cascade Network are, for example, C3D and ConvLSTM. Although the
origin network of CNN and LSTM is popular for extracting either features in space or
features in time, these 2 networks are altered to capture the other type of feature as well.
While C3D tries to remember spatial features through its convolution operation with
3D kernel, ConvLSTM attempts to perform the convolution of CNN as part of LSTM.
Therefore, they are just as suitable for spatio-temporal data as Cascade Network.

Finally, there might be different networks that work fine. They are then fused together
to see whether Network Ensemble results in better performance.

The whole experiment is summarized once again in figure 3.1.

The experiment was done in the renderfarms provided by CSTI [1]. Below are some of
their hardware information:

• OS: CentOS Linux release 7.7.1908 (Core)

• GPU: 4 NVIDIA Quadro P6000 each with ≈ 24 GiB

• CPU: Intel Core Processor (Broadwell, no TSX) 2.3 GHz 18 cores 18 threads

• RAM: ≈ 163 GiB

33

3 Experiment

image
sequences

Preprocessing

Face Detection Face Tracking Cut off
neutral faces

image

BU4FE

FER2013

VGG16
ResNet50
DenseNet201
VGGFace

LSTM (bi- and
unidirectional
1D-CNN

Training

Dataset

Evaluation

Temporal ExtractorSpatial Extractor

Cascade Networks

Alternatives: C3D, ConvLSTM Fusion

Figure 3.1: Experiment summary

3.2 Implementation details

3.2.1 Preprocessing

Certain steps in the preprocessing (Face Detection + Face Tracking) were already done
in the author’s previous work. Below is the summary of the result. For more details,
follow [12].

Haar Cascade face detector was chosen over other deep face detectors e.g. MTCNN
thanks to its efficiency at frontal faces. The algorithm implementation as well as pre-
trained weights are provided by the open-source library OpenCV. After finding the face
in the first frames, trackers were applied to track through the video based on their advan-
tages over frame-to-frame detection as discussed in the previous chapter. The detected
bounding box is extended 10 pixels in the vertical direction before the tracking process
to ensure that big movement of mouth (for instance while expressing emotion "surprise")
will not be missed. As the face tends to move very minimally, the author decided to go

34

3 Experiment

(a) Detected face with dimension 159x159 (width x height), ex-
tended by 10 pixel in the height dimension for tracking

(b) Resized face

Figure 3.2: Detected, tracked, and resized face

with simple trackers provided by OpenCV instead of deep trackers. Different trackers
including CSRT, KCF, MedianFlow were compared after some tests on a part of the
dataset (24 videos). The results are as expected: All trackers performed well enough,
no failed example was recorded. MedianFlow was chosen to proceed with the rest of the
dataset due to its fastest inference time. Faces were resized to 160x160 and saved with
lossless compression for further process. Figure 3.2 visualizes an example of object 42
displaying emotion "happy".

This work continues with the final step of preparing data for training: cutting off neutral
faces at the beginning and end of videos. Based on the fact that neutral faces in the
dataset hardly display a move, the author proposed a simple method based on Action
Unit score to separate them from the rest of the frames. OpenFace [5], an open-source
tool indicated for facial behavior analysis, was used to generate Action Unit (AU) score
for each frame. OpenFace is able to recognize a subset of AUs, specifically: 1, 2, 4, 5, 6,
7, 9, 10, 12, 14, 15, 17, 20, 23, 25, 26, 28, and 45. AU 1 displays, for example, when the
inner brow is raising. A full description with visual examples of all AUs can be further
seen here1. OpenFace provides 2 scores for each AU: one indicates the presence of AU
(e.g. AU01_c) and the other the intensity (e.g. AU01_r). Presence is encoded as 0 for

1https://www.cs.cmu.edu/ face/facs.htm

35

https://www.cs.cmu.edu/~face/facs.htm

3 Experiment

absent and 1 for present. Intensity can range from 0 to 5 with 5 being the maximum
intensity. For this work, only the intensity score was used. For each frame, the average
intensity scores of all AUs were calculated. AU 45 (blink) tends under observation to
add a little noise to the result and was, therefore, left out.

Each video contains 3 phases: onset, peak, and offset where the face displays a neutral
state, moves to a peak emotion and then goes back to neutral state. The AU score
calculated is in fact synchronized with the movement. Concretely, at onset and offset
states, AU scores are quite small while they are at peak especially high. The score
distance among phases is different for each particular emotion but the trend is indeed
clear to see. Below is an example of AU scores of video M042_happy_tex.avi

Figure 3.3: AU score curve

With the average AU scores available, the neutral faces were cut off after the following
algorithm (see algo 1). Basically, all frames from the beginning or end of the video which
have an AU score less than half of the maximum AU score were cut off. The number of cut
frames should not exceed 50% of the total number of frames. Under careful observation,
the offset phase seems to be quite long and therefore 10 last frames will always be cut
off. Another noticeable point is that many objects end the offset phase with a smile,
blink, or slightly move of the head which causes the AU scores to be very high despite
the neutral emotion. Therefore, in case the maximum AU scores lie in the last 20 frames,
the sample will be marked as "anomaly" and will not be processed with the proposed
algorithm but will be manually reworked instead.

36

3 Experiment

Algorithm 1 Cutting off neutral faces algorithm
1: min_frames_end← 10 ▷ minimum number of frames to cut

from the end of the video
2: min_intensity_allowed← 50% of maximum AU score
3: max_frames← video length

2 ▷ maximum number of frames allowed to cut
4: i← 0

5: while True do
6: frame_begin← frame from the beginning of the video by i
7: if AU score(frame_begin) < min_intensity_allowed then
8: Cut off frame_begin
9: else

10: Stop cutting from the beginning
11: end if
12: frame_end← frame from the end of the video by i
13: if AU score(frame_end) < min_intensity_allowed OR i < min_frames_end then
14: Cut off frame_end
15: else
16: Stop cutting from end
17: end if
18: if stop cutting from both beginning and end

OR number of cut frames ≥ max_frames then
19: Exit program
20: end if
21: i← i+ 1

22: end while

The author is aware and confident that there are more precise ways to do so. Yet building
such a neutral face detector or a complex algorithm to detect the rise and fall of AU score
curve can be time-consuming and will not be done within this work.

In summary, the data were preprocessed as follows: Faces were detected, tracked, resized,
and stored; Neutral faces from the onset and offset phases were cut off. Figure 3.5
visualizes an example of the final result. Some statistics from the original dataset and
the preprocessed dataset are drawn in 3.4. It appears obvious that after preprocessing
most videos have a length of fewer than 100 frames.

37

3 Experiment

(a) Frame length sorted (b) Frame length in group

Figure 3.4: Dataset statistic

(a) Detected, tracked, and resized faces

(b) Cut off neutral faces

Figure 3.5: Preprocessed final results

38

3 Experiment

3.2.2 Dataset

Cross Validation

As briefly introduced above, the final dataset contains 600 videos from 100 objects. It is
indeed a small dataset for the FER task. A traditional split of a fixed train, validation,
and test set raises a lot of bias since the quality of trained models relies hardly on the
chosen validation set. Therefore, Cross Validation is adopted. The procedure divides the
train data into k non-overlapping folds with k-1 folds for training and 1 validation fold.
K models are trained and evaluated separately and the final performance is the average
performance reported in each fold. By using a different validation set each iteration, the
performance of trained models can be estimated in a more precise and reliable way. As a
result, it is more likely to find the most robust algorithm. The configuration of the Cross
Validation is considered carefully under the given data and infrastructure. The following
parameters were applied:

• The optimal number of folds recommended in many papers are 3, 5, and 10. These
numbers are determined through a number of practical studies. The main argument
is based on the trade-off between the bias of the estimator and the computation cost.
A higher k is claimed to have low bias but comes with a high cost in computation.
On the opposite, a very low k tends to bring a lot of noise to the estimation despite
its advantage in computation. A special case, known as Leave One Out Cross
Validation (LOOCV), describes an extreme version of Cross Validation, where each
sample has the opportunity to represent the entire validation set. The benefit of
LOOCV is its robustness in estimating. Yet its most disadvantage is the maximum
computation cost. If an accurate estimate of model performance is critical and
the dataset is small, LOOCV might be a good candidate to go with. In this
experiment, a good estimation has indeed the highest priority. The data volume
is small in terms of number of samples. However, given its characteristic of image
sequences with 3 color channels, it might require a lot of memory and computation
time. In addition, the validation set has to contain enough data to represent the
model performance. Hence, k=5 is chosen as the best balance between the given
requirement and condition.

• The purpose of this training is to find models which can give good predictions on
completely new people. As that, it should be simulated in the process as well. Each
fold, therefore, contains videos from different objects. For each object, there are 6

39

3 Experiment

videos corresponding 6 emotions. Since the class distribution is balanced, each fold
consists of all videos from a number of objects.

Figure 3.6 visualizes how the dataset is split up for Cross Validation. A separate test set
is left out for final evaluation.

F001-F015, F017-F058, M001-M043

F011-F015, F017-F058, M011-M043

Test data

20 objects

F011-F015,
F017-F027

F028-F043
 F044-F058, M011 M028-M043
M012-M027

Fold 0
16 objects

Fold 1

16 objects

Fold 2

16 objects

Fold 3

16 objects

Fold 4

16 objects

Training data
80 objects

F001-F010
M001-M010

All data
100 objects

600 samples

480 samples 120 samples

96 samples
 96 samples 96 samples 96 samples96 samples

Figure 3.6: Cross Validation summary

Data Augmentation

Be aware of the small dataset, Data Augmentation was applied to increase the data vol-
ume. The effectiveness of Data Augmentation is well-known. By letting the model see
more data, the network is able to learn more robust features, hence a better generaliza-
tion. There are 2 main types of Data Augmentation known as online and offline Data
Augmentation. Offline means expanding the existing dataset through a number of trans-
formation methods. This type is yet simple but less commonly used. Ultimately, the
model is trained with more data but it is still seeing the very same data every epoch. Es-
pecially for large datasets, increasing the data volume requires more memory and might
not always be a possible option. The second and more common type is online Data
Augmentation. This is also the method that is implemented by Keras ImageDataGener-
ator class. Online or sometimes also called in-place, on-the-fly means generating for each
epoch new data based on a set of transformation methods. This ensures that the model

40

3 Experiment

will see new variations of the data each and every epoch. As a consequence, it is more
effective and helps achieve better generalization. Another important point when it comes
to Data Augmentation is the decision of transformation methods. "Invented" data from
Data Augmentation has to reserve the main characteristics of the original data. Shifting
the face too far to the left or right might be a poor choice as part of the face, part of the
features set might be cut off. In addition, the same transformation should be applied to
all frames in a sequence to avoid confusing the trained model.

For this experiment, both methods were indeed explored. Online Data Augmentation
is the first obvious choice as the generalization capacity is the most important target.
However, while training Cascade Network with a pre-trained spatial feature extractor,
extracting spatial features every epoch takes unfortunately a lot of time, which slows
down the training process significantly. A rough estimation as demonstrated below shows
a clear concern. It might take up to over 4 months to execute only 20 runs with the
given hardware (see section Design). For this reason, the author decided to also exploit
offline Data Augmentation. By doing so, there is a good opportunity to evaluate the
effectiveness of these 2 methods as well.

feature extracting time / epoch 1 hour
number of epochs 30
number of folds 5
1 experiment 1*30*5=150 hours ≈ 6.25 days

number of experiments 20
total training time 125 days ≈ 4.2 months

Figure 3.7 summarizes the process of Data Augmentation and the chosen transformation
methods. Some examples are drawn in figure 3.8. All the transformation methods are
carefully chosen so that the main area of face is reserved and the facial movement is
clear to identify. As visualized below, for offline Data Augmentation each transformation
method was applied separately while online Data Augmentation chose a random mixture
from all given transformation methods.

41

3 Experiment

Offline Data Augmentation Generator

flip horizontally
guassian blur
salt and pepper noise
modify brightness
modify contrast
rotate left
rotate right

Augmented data

Origin data

Total data for train

Train

(a) Offline

Origin data

Online Data Augmentation Generator
a random transformation from:

flip horizontally
zoom

shift left and right

modify brightness
shear

rotate

Augmented data for
epoch n

Train epoch n

Total data for train

 epoch n

(b) Online

Figure 3.7: Data Augmentation summary

(a) Origin

(b) Online augmented (randomly transformed)

(c) Offline augmented (left to right: flip horizontally, gaussian blur, salt and pep-
per, modify brightness, modify contrast, rotate left, rotate right)

Figure 3.8: Online and offline Data Augmentation examples

42

3 Experiment

3.2.3 Training procedure

The preprocessed, as well as augmented data, were then trained after the standard Cross
Validation procedure. For each run, a fold was chosen as validation set. If Data Augmen-
tation was used at any point, it was only used to the train data and not to the chosen
validation set. The final result was averaged epoch-wise from all folds. Once again, the
following networks were chosen for training. The detailed training process is presented
in the next sections.

• Cascade Networks

• Alternatvies: C3D and ConvLSTM

Strategy

Training NN is an imperative process. Finding the best model is, in other words, finding
the optimal hyperparameter set. The process is therefore often referred as "hyperparam-
eter tuning". In this work, tuning hyperparameter is relied on the practical recommen-
dation from Prof. Dr. Andrew Ng in his courses at 2Coursera and university Stanford.
In summary, if the model tends to underfit, it is recommended to use a bigger and more
complex network or train longer. On the contrary, if it is overfitted, then regularization
such as Dropout, L1, L2 or Data Augmentation or Early Stopping should be applied.
Alternatives could be using a different network architecture.

All models were built with Keras Functional API to have more advanced control over the
process than the simple commonly used Sequence API. According to the data statistic
after preprocessing, almost 98% videos (587 out of 600) have a length of less or equal
to 100. Therefore, the dimension of input is set to 100x160x160x3. Longer videos were
truncated and shorter videos were zero-padded, which were later masked out during
training if possible. Output layer used softmax as activation function and contained
6 neurons corresponding to 6 emotions which indicates that the output will show the
probability of each class. The class with the highest confidence is taken as the predicted
label. If multiple classes have the same confidence, the first-mentioned one is simply
taken. Accuracy was chosen as the main metric during training. All models used Adam
as optimizer and a small learning rate of 0.0001. A bigger learning rate prevented the
model from learning properly. Data was shuffled during training. Random seed was set to

2https://de.coursera.org/

43

3 Experiment

have minimum consistency among experiments. The following callbacks were configured
to monitor the train performance.

• Tensorboard for tracking and visualizing model accuracy, loss as well as graph

• ModelCheckPoint for saving model and weights at best performance. The saved
weights/model can be loaded for further training.

• CSVLogger for streaming the results to a CSV file. The results from all folds were
then collected, averaged, and visualized.

As the training was proceeded with Cross Validation, it is not recommended to early
stop the training since the purpose is to evaluate the algorithm across all folds and not
to find the best model, particularly for each fold. A better approach would be to treat
the number of epochs as a hyperparameter and tune it along with others. With a fixed
number of epochs for each run, it is very simple to average the results across folds which
helps give a more reliable estimation of the model performance.

Finalizing model

Once the training is done or, in other words, the best set of hyperparameters is found, it
is time to choose the final model. In fact, there are multiple ways of doing so. One is to
take the best models from each fold and evaluate them on the test set, the average score is
then the final performance of the experimented algorithm. Another more commonly used
procedure is to train a final model with all available data for training. Without sacrificing
an amount of data for validation, it is more likely that the final model performs even
better. The process is proceeding as follows: All folds are executed lastly with Early
Stopping. The number at which training was stopped is recorded and an average is
calculated. This number of epoch is then used to train the final model.

The final model will be evaluated on the test set. The evaluation metrics and further
details will be covered in the later section. As the test set is fixed, there is a degree of
bias that is unavoidable. A possible solution for it is so-called nested Cross Validation
in which the same procedure is done with the test set (see algorithm 2).

44

3 Experiment

Algorithm 2 Nested Cross Validation
1: Split all data in K1 folds
2: for each k1 ∈ [1...K1] do ▷ go through outer folds
3: test← data of fold k1
4: train← data of all other folds
5: Split train in K2 folds
6: for each k2 ∈ [1...K2] do ▷ go through inner folds
7: validation← data of fold k2
8: train_in← data of all other folds
9: m[k2]← model trained on train_in and evaluated on validation

10: end for
11: M ← final model for fold k1 based on m[1],...m[K2]
12: score[k1]← evaluated of M on test

13: end for
14: final_score← average of score[1], score[2]...score[K1]

However, due to the limitation of time and computation, the author decided not to pursue
this approach.

In the following, the detailed training process for each chosen network will be unfolded.

3.2.4 Cascade Network

Cascade Network is the first candidate for FER. By cascading multiple types of networks,
it is able to learn multiple types of features especially well. For FER, it is crucial to
recognize both spatial and temporal patterns. The training for Cascade Network is split
into 2 phases as described in figure 3.1:

1. Train spatial feature extractor

2. Train the Cascade Network of spatial feature extractor in phase 1 and temporal
feature extractor

45

3 Experiment

1. Spatial feature extractor

In order to extract visual features from frames, the author proposed using transfer learn-
ing instead of training from scratch. Transfer learning is widely adopted and proved to
be effective, especially while training with limited data. The author chose 4 pre-trained
models as basis and fine-tune them with new data. The pre-trained models are chosen
based on their popularity, performance, innovative architecture, and especially the simi-
larity in purpose to FER as summarized in 3.1. VGG16, ResNet50, and DenseNet201 are
very well-known participators of the ImageNet challenge with remarkable results which
indicates their capacity of extracting visual information.

Network Top-1 Accuracy Top-5 Accuracy Parameters
VGG16 0.713 0.901 138,357,544

ResNet50 0.749 0.921 25,636,712
DenseNet201 0.773 0.936 20,242,984

Table 3.2: Pre-trained networks performance. The top-1 and top-5 accuracy refers to the
model’s performance on the ImageNet validation dataset.

VGGFace, on the other hand, is originally developed for face recognition tasks such as
face identification and verification. It is, therefore, trained and evaluated with/on large
benchmark face recognition datasets, demonstrating that the model is effective at gener-
ating basic features from faces [36]. The data for fine-tuning was chosen to be related to
FER, yet not the BU4FE to avoid bias in the later training phase. FER2013 was used.
FER2013 is a publicly available dataset. It consists of 35889 images: 28709 for training,

Emotion Train Public test Private test
angry 3995 467 491
sad 4830 653 594

disgust 436 56 55
surprise 3171 415 416

fear 4097 496 528
happy 7215 895 879
neutral 4965 607 626

Table 3.3: FER2013

3589 for public test, and 3589 for private test. The image is in grayscale, has a dimension
of 48x48 and displays one of the following 7 emotions {angry, sad, disgust, surprise, fear,
happy, neutral}. One noticeable point is that the data distribution of FER2013 is in fact

46

3 Experiment

imbalanced. Table 3.3 shows that "happy" has the highest number of samples, about
25% the train set while "disgust" accounts for only 1.5%. Data Augmentation was used
to increase the volume of data. Data was loaded and augmented during training a.k.a
online augmentation with the Keras ImageDataGenerator class. It is to notice that while
augmentation, especially offline augmentation refers to a combination of original and
augmented samples, ImageDataGenerator works slightly differently. ImageDataGenera-
tor will generate a different batch each time, replace the original with the new batch and
feed it to the training. Given that the model is constantly seeing new data, it is able to
learn more robust features and as a result, enhances the generalization ability.

train_aug = ImageDataGenerator(

rotation_range=10, # rotation

zoom_range=0.1, # zoom

width_shift_range=0.1, # horizontal shift

height_shift_range=0.1, # vertical shift

shear_range=0.15, # shear intensity

horizontal_flip=True, # horizontal flip

brightness_range=[0.4, 1.5], # brightness

fill_mode=’nearest’, # fill with same neighbour pixel

preprocessing_function=func_preprocessing)

The degree of changes were kept minimal so that the face and the emotion are still
well presented. Vertically flipping the face is definitely not a meaningful thing to do.
Concretely, the following transformations are applied to the data at each training epoch.
Figure 3.9 visualizes some examples of Data Augmentation.

• Rotate randomly between −10◦ and 10◦

• Zoom randomly between 0.9 and 1.1. Any value smaller than 1 will zoom on the
image and larger will zoom out.

• Shift randomly in the horizontal direction between 10% the image width to the left
and 10% the image width to the right

• Shift randomly in the vertical direction between 10% the image height up and 10%
the image height down

• Apply Shear transformation 3 with a shear_range=0.15 which represents a Shear
angle in a counter-clockwise direction in degrees. Shearing is sort of stretching the

3https://en.wikipedia.org/wiki/Shear_mapping

47

3 Experiment

image at a certain angle with one axis fixed. In a simple term, it generates the
object from different points of views.

• Flip horizontally

• Change the brightness randomly between 0.4 and 1.5. Any value smaller than 1.0
darkens the image, whereas values above 1.0 brighten the image.

• If the image is transformed in a way that some pixels are moved outside the image
and leaves some empty area, then the fill_mode=’nearest’ indicates that this area
will be simply replaced with the nearest pixel values.

(a) Origin

(b) Augmented

Figure 3.9: Data Augmentation examples

The networks and pre-trained weights were loaded using Keras Application 4. VGGFace
was loaded using the python package keras-vggface 5.

The training process proceeds as follows: Firstly, the pre-trained network and its weights
are loaded without its original classifier. A new classifier for the new task is then added
on top of the loaded base. For the network to learn properly, it is important not to

4https://keras.io/api/applications/
5https://github.com/rcmalli/keras-vggface

48

https://keras.io/api/applications/
https://github.com/rcmalli/keras-vggface

3 Experiment

plug randomly initialized fully connected layers on top of the pre-trained base because
the large gradient updates triggered by the random weights could wreck the learned
weights in the base. Therefore, all layers from the base will be firstly frozen and only the
classifier will be trained. Next, a couple of last layers or last convolution blocks will be
unfrozen and jointly trained with the newly-added classifier. There is no need and also
not recommended to unfreeze all layers from the base. As it is believed that the early
layers are capable of extracting basic features and as a consequence don’t need to be
re-trained while the last layers are able to encode high-level features for the original task
and have to be adjusted to the new task. Another reason is that the more layers we re-
train, the more capacity the network has, the bigger the risk of Overfitting is. Finally, the
network can be further refined if needed. For example, in case of a large Overfitting gap,
it might be a good solution to re-train it with more regularization. Another essential
point is to keep the learning rate small and adaptive in order to make sure that the
updates are stable and not affect negatively the previously learned ability.

Some basic setups for the training are listed below.

• All models were built with Keras Functional API.

• The hyperparameter tuning was done with KerasTuner 6, a library with strong in-
tegration with Keras workflows that offers tuning for model architecture, training
process as well as data preprocessing. Bayesian Optimization was used to search
for the best set of hyperparameters because of its efficiency and low resource con-
sumption in comparison to Grid Search. The search matrix covers for instance the
number of fully connected layers for the classifier, the number of neurons in each
layer, the degree of regularization, the optimizer, the number of convolution layers
to unfreeze, along with others.

• For training, accuracy of the validation set was chosen as the optimizing metric.
The training process was monitored by Tensorboard, a visualization extension cre-
ated by Tensorflow team that provides result graphs such as accuracy and loss,
network insights such as architecture, hyperparameters information such as their
distribution, histogram or trends and many other functionalities. Early Stopping
was used to stop the iteration in case the validation accuracy increases continuously
- a sign of inefficient learning. Learning rate was slowly reduced if there was no
improvement after a defined number of epochs.

6https://keras.io/guides/keras_tuner/getting_started/

49

https://keras.io/guides/keras_tuner/getting_started/

3 Experiment

• For testing, multiple metrics were used to have better insights including Accuracy,
Precision, Recall, F1, Confusion Matrix, and an Analysis.

An example of the process of fine-tuning VGG16 is given in detail in the following. A
similar process was done for ResNet50, DenseNet201, and VGGFace. As mentioned
above, the training consists of 3 phases: training classifier, fine-tuning and refining. In
phase 1, the following search was initialized for the classifier: 1-2 fully connected layers,
each with either 256, 512, or 1024 neurons, follows by a Dropout layer with a drop rate
in the range from 0.2 to 0.9. The model was built with all layers from the base frozen,
SGD as optimizer, categorical_crossentropy as loss function, and accuracy as metric. 20
trials were executed and Bayesian Optimization algorithm was used to find the best set
of parameters. The top 3 best classifiers recorded very promising results with no sign of
Overfitting. Figure 3.10 visualizes the performance of the best classifier.

(a) Accuracy (b) Loss

Figure 3.10: Best classifier loss and accuracy

The best classifier was chosen to proceed with phase 2, the fine-tuning. Experiments
of unfreezing 1-2 last convolution blocks showed that the network with 2 last blocks
unfrozen gained a slightly better result (see figure 3.11). Nonetheless, the training was
early stopped where the accuracy of train set reached only 80%. Figure 3.11 visualizes
the result of fine-tuning. A degree of Overfitting is to acknowledge. In phase 3, the
refinement, some attempts against Overfitting such as an increase of drop rate reported
unfortunately no clear improvement.

50

3 Experiment

Figure 3.11: Result of unfreezing 1-2 last convolution blocks

The overall result of fine-tuning chosen pre-trained networks is displayed in table 3.4

Network
Unfrozen

convolution
blocks

Test Accuracy #params Note

VGG16 2 65% 38,677,511 -
ResNet50 2 63% 24,189,959 strongly overfitted
VGGFace 2 69% 39,727,111 -

Table 3.4: Fine-tuning result

The fact that VGGFace achieved the best result was as expected since it was pre-trained
with faces. However, it was surprising that ResNet50 and DenseNet201 scored lower
than VGG16 even though they record better results on the ImageNet dataset. These
2 networks showed an extremely high Overfitting gap, especially DenseNet201. Many
attempts (different architecture, different amount of regularization, etc.) have been made,
yet no reasonable result was recorded with DenseNet201. A detailed investigation in this
matter could unfortunately not be done in the timeline of this work. Thus, it raises
the attention when it comes to choosing a pre-trained network for fine-tuning: Certain
architecture might suit better certain domains. It could be difficult for certain networks
to transfer their knowledge and adapt to new tasks, hence difficult to be fine-tuned.

51

3 Experiment

Table 3.5 shows the detailed performance of fine-tuned VGGFace for each emotion. A
Confusion Matrix and a normalized Confusion Matrix are also presented in 3.12

precision recall f1-score #samples
angry 0.63 0.61 0.62 491
disgust 0.68 0.69 0.68 55
fear 0.53 0.51 0.52 528
happy 0.83 0.91 0.87 879
neutral 0.69 0.66 0.67 626
sad 0.54 0.51 0.53 594
surprise 0.79 0.81 0.80 416

Table 3.5: Classification result

(a) Origin (b) Normalized

Figure 3.12: Confusion Matrix

It is clear to see that "happy" achieved the best performance with an accuracy of 91%.
The values of Precision, Recall, and F1 also align with this statement. The result raised
no surprise as "happy" tend to have a very clear facial expression. Also, the high number
of train samples of "happy" could play a role in its success. Emotion "sad" and "fear"
have high proportions as well, yet their results are very poor, slightly over 50%. It is
important to keep this validation in mind while training this spatial extractor with the
temporal extractor to see whether this bias has any noticeable effect on the final result.

52

3 Experiment

2. Temporal feature extractor

The best spatial extractor architecture is visualized in figure 3.13. The network contains 5
CNN blocks. The result from the convolution operations is then flattened. The classifier
contains 2 fully connected layers with a degree of neurons dropped and a softmax layer
of 7 neurons corresponding to 7 emotions.

conv1

conv2

conv3

224 x 224 x 64

112 x 112 x 128

56 x 56 x 256

28 x 28 x 512 14 x 14 x 512
7 x 7 x 512

convolutional + ReLU

max pooling

fully connected + ReLU

dropout

conv4
conv5

1024

softmax

7

dense

1024

dense_1

flatten

20588

Figure 3.13: Spatial extractor architecture

The features can basically be extracted from any layer. However, it is believed that the
layers close to input can only detect simple patterns whereas the ones close to output are
likely to be able to extract complex patterns. The evidence for that could be observed
in the feature maps. A feature map or also called an activation map is the result of the
convolution operation or, in other words, the result from applying filters to the input.
Figure 3.14 visualizes the feature maps from each convolution block which could provide
more insights into the internal representation that the model has for the input at different
points in the model. Although there are more filters in the later layers (64-128-256-512),
64 feature maps were visualized consistently for all layers.

53

3 Experiment

(a) input (b) conv1

(c) conv2 (d) conv3

(e) conv4 (f) conv5

Figure 3.14: Feature maps 54

3 Experiment

It is obvious to see that in the early stages the model sees a lot of fine details of the input
without much interpreting. As the network goes deeper, more abstracts are identified
which is clear evidence that the model is forming more and more general concepts that
can be used to make a classification. Yet how the model recognizes emotion "happy"
based on those abstraction, those concepts is unclear. We unfortunately lack the ability
to understand those deeper and deeper feature maps.

Based on the assumption that deep layers hold more important concepts and patterns
related to the prediction as demonstrated above, the author decided to take the output
after all convolution operations as the feature extraction. The last max pooling layer
has dimension of 7x7x512 which results in 25088 features after flattening. Furthermore,
as the extractor was pre-trained with FER dataset, there is a possibility that even the
dense layer in the classification part can hold certain information which can be useful for
making classification. As that, the author chose to exploit features from layer "dense"
(see figure 3.13) with 1024 neurons as well. Extracting features from all samples took
a lot of time and was done in advance. They were then stored in Hierarchical Data
Format 5 (HDF5) under the following naming structure fold-<i>-features-<number of
features>.h5. HDF5 is a widely used library to store extremely large and complex data
collection. The saved collections in each .h5 file are:

• ’features’: extracted features, each with dimension of 1x1024 or 1x25088

• ’masks’: numpy array with the same dimension as ’features’ with value of either 1
for not masked frame or 0 for masked frame. Both ’masks’ and ’features’ will be
used as inputs to the train model so that the model know where the real sequence
ends.

• ’labels’: one hot encoded label. For example, given the labels list of [angry,
disgust, fear, happy, sad, surprise], their one hot representations are in order:

1

0

0

0

0

0





0

1

0

0

0

0





0

0

1

0

0

0





0

0

0

1

0

0





0

0

0

0

1

0





0

0

0

0

0

1


• ’names’: full name of each video. For instance M042_happy_tex.avi

55

3 Experiment

The extracted features were then ready for further training.

The following networks were chosen to explore temporal features. They were trained on
the extracted spatial features from dataset BU4FE with the configured Cross Validation
procedure.

• LSTM is de facto standard when it comes to extracting features in time. Its
default characteristic of holding long-term dependencies is essential for FER. Once
the features in space or, in other words, information in each frame are extracted,
they are then fed to the LSTM in a sequence. LSTM will then hopefully be able
to figure out the change in motion across frames.

• BiLSTM or bidirectional LSTM is a variation of the traditional LSTM. By examin-
ing the sequence in both forward and backward directions, BiLSTM might be able
to unfold even more information.

• 1D-CNN is shown in many recent studies to have comparative results as RNN on
sequence modeling. [8] conducted an empirical evaluation and highlighted that
CNN even outperforms RNN across a diverse range of tasks and datasets. They
raised the attention that the common association between sequence modeling and
RNN might need to be reconsidered. With that said, 1D-CNN is also a very
potential candidate.

In the following, a detailed process of hyperparameter tuning for LSTM will be presented.
The same procedure was applied for BiLSTM and 1D-CNN and therefore would be
skipped.

A very simple baseline of only 1 LSTM layer with 128 neurons was chosen to begin with.
Figure 3.15 summarizes the architecture with 1024 features as well as 25088 features as
input. Some parameters were set after experimental runs:

• Inputs: features and masks of either 100x1024 or 100x25088

• Optimizer: Adam with a fixed learning rate of 0.0001 for training; and with learning
rate decay of factor 0.5 if accuracy does not improve after 5 epochs for finalizing
model

• Batch size: 32

• Epoch: 40

56

3 Experiment

• Shuffle data during training: True

• Early Stopping: not for training but for finalizing model with patience of 10 epochs

• ModelCheckPoint: saving only best weights based on accuracy of validation set

• CSVLogger: saving each iteration result to a csv file for further analysis

Figure 3.15: LSTM baseline

Baseline
As seen in figure 3.16, no matter how many features were used as input, the model
experienced a very high Overfitting. The train accuracy increased very fast and reached
100% after about 20 epochs. The train loss decreased correspondingly as expected. Yet
the validation accuracy increased until slightly over 50% for 1024 features and almost
58% for 20588 features and then stayed stable. The validation loss reduced alignedly.

57

3 Experiment

(a) Accuracy (b) Loss

Figure 3.16: Baseline performance

Given a classification task for 6 classes, a random baseline is 100/6=16.67%. Both
show obviously better performance than a random baseline. Baseline model with 25088
features as input achieved even comparative result in comparison to the author’s last
experiment on Long-term Recurrent Convolutional Network (LRCN) in [12] where the
spatial features were extracted during training from some convolution layers instead of
from pre-trained extractor. This showed the first evidence of the effectiveness of using
a pre-trained spatial extractor as well as careful data preprocessing. In addition, a
noticeable point is that validation accuracy among folds differed clearly [59%, 61%, 63%,
53%, 51%]. While fold 0, 1, and 2 achieved reasonable and quite similar results, fold 3
and 4 had much worse scores. A random fixed validation set in this case would, as a
consequence, give a less reliable result than averaging performance among folds according
to Cross Validation procedure. For example, if fold 2 were chosen as validation, the model
would slightly be overrated. Deploying such a model in real applications might expose
surprise and unexpected results.

The high accuracy of the train set as well as the course of loss demonstrated that the
network has enough learning capacity. However, the ability for generalization seemed to
be limited. As next steps, a number of regularization methods were tried to boost it.

Dropout
Dropout is considered as one of the most powerful regularization techniques nowadays.
In each iteration, a number of random neurons and their connections are removed which
leads to a different version of the network, a smaller one. Training with Dropout is like

58

3 Experiment

training a number of different networks and ensemble their power together. Dropout
was experimented with drop rate in a range from 0.0 to 1.0 where 0.0 means keeping
all neurons and 1.0 means dropping all neurons. Furthermore, 2 types of Dropout were
exploited: input or also called naive Dropout and recurrent Dropout. Input Dropout
refers to dropping neurons on the input/output at each step while recurrent Dropout
drops neurons on the recurrent connection from timestep to timestep. Both could of
course be used together. In fact, applying a small input dropout of 0.2 to the model with
25088 features as input showed a clear improvement. The gap of Overfitting was reduced
by about 7%. Validation loss decreased continuously and faster accordingly as visualized
in 3.17. The evidence showed that a bigger drop rate might uplift the validation accuracy
further, which means a better generalization.

(a) Accuracy (b) Loss

Figure 3.17: Dropout effect

Figure 3.18: Comparison among different drop rates

59

3 Experiment

Figure 3.18 features the result of different drop rates. As bigger drop rates were applied,
the training was slowed down. This was after observation minimal and totally acceptable.
Increasing Dropout probability to 0.4 showed further slight improvement. A brutal drop
rate of 0.8 slowed down training significantly without further enhancement. Training the
model 20 epochs more showed no difference. Applying recurrent Dropout as well as a
mixture of both types presented the same result as naive Dropout. In conclusion, a naive
Dropout of 0.4 gained the best result.

25088 vs 1024 features
The same Dropout effect was observed with 1024 features as input. The best model so
far for 1024 features used a brutal dropout of 0.7 whereas for 25088 only 0.4. It is clear
to see that 25088 features achieved a better result. It was indeed under expectation.
Extracting features from the classifier part is rarely exploited as the features are filtered
out for the particular task and don’t contain general patterns anymore. Even though the
spatial extractor was trained for the same task, extracting features from layer "dense"
(1024 features) might scan out the particular features that the temporal extractor needs
later on. That could be one possible explanation why 25088 features performed better
than 1024. For further experiments, the author decided to use 25088 features as input
only.

Figure 3.19: Comparison among different extracted features

Data Augmentation
Many studies have pointed out the effectiveness of Data Augmentation in fighting against
Overfitting. By letting the model process more samples, it will be able to generalize

60

3 Experiment

better. As argued before, online Data Augmentation would require extracting spatial
features on the fly and cost a lot of time. Therefore, offline Data Augmentation was
used. After the validation fold was chosen in each run, augmented data for the train
data was loaded. The following transformation methods were implemented.

1 flipped_horizontally = cv2.flip(image, 1)

2 guassian_blur = cv2.GaussianBlur(image, (3, 3), 0)

3 brightness_higher = cv2.convertScaleAbs(image, alpha=1, beta=50)

4 brightness_lower = cv2.convertScaleAbs(image, alpha=1, beta=20)

5 contrast_higher = cv2.convertScaleAbs(image, alpha=2, beta=0)

6 contrast_lower = cv2.convertScaleAbs(image, alpha=1.7, beta=50)

7 rotate_left = imutils.rotate(image, 8) // PyImageSearch

8 rotate_right = imutils.rotate(image, -8) //PyImageSearch

9 salt_and_pepper = salt_and_pepper(image, 0.01) // add 1% noise

10

11 def salt_and_pepper(image, amount):

12 b, g, r = cv2.split(image)

13 b = salt_and_pepper_one_channel(b, anount=amount)

14 g = salt_and_pepper_one_channel(g, anount=amount)

15 r = salt_and_pepper_one_channel(r, anount=amount)

16 return cv2.merge((b, g, r))

17 def salt_and_pepper_one_channel(image, amount):

18 s_vs_p = 0.5

19 out = image.copy()

20 # Salt mode

21 num_salt = np.ceil(amount * image.size * s_vs_p)

22 coords = [np.random.randint(0, i - 1, int(num_salt))

23 for i in image.shape]

24 out[coords] = 255

25 # Pepper mode

26 num_pepper = np.ceil(amount * image.size * (1. - s_vs_p))

27 coords = [np.random.randint(0, i - 1, int(num_pepper))

28 for i in image.shape]

29 out[coords] = 0

30 return out

In total, for each video, there are 9 augmented one corresponding 9 methods as shown
from line 1-9. Features were extracted from all augmented videos and stored for training.
The train data was increased slowly with augmented data. Applying Data Augmentation
indicated a noticeable improvement both in train and validation set. The best result was
recorded when applying all augmented data, which means the train data was increased
10 times. As visualized in figure 3.20, the train accuracy curve suggests a huge speedup

61

3 Experiment

in training where it reached 100% after only 20 epochs. In addition, validation accuracy
increased clearly and achieved 70%, shrank the Overfitting gap to 30%.

Figure 3.20: Data Augmentation effect

In summary, both Dropout and Data Augmentation demonstrated once again their repu-
tation for fighting high variance a.k.a Overfitting. The Overfitting gap was reduced from
43% to 30%. The best-recorded validation accuracy was 70% which was averaged from
all folds [72.9% 71.9% 71.9% 69.8% 64.6%]. Further attempts to close the Overfitting
gap would require deep analysis and insights from the network as well as data and were
unfortunately not done within this work.

Final model
Once the best set of hyperparameters was chosen, a final run was executed for each fold
with Early Stopping. Train was stopped if the validation accuracy did not improve after
10 epochs. Lastly, a final model was trained with all train data available. As there was
no validation set, the train was stopped at epoch 11 which were calculated by the number
of epochs at which each fold was (early) stopped.

fold max validation accuracy epoch
0 75% 9
1 77% 22
2 77% 4
3 63.54% 4
4 66.67% 16

62

3 Experiment

3.2.5 Alternatives

C3D and ConvLSTM were chosen as alternatives for Cascade Network. Both those
architectures have the potential to extract spatio-temporal features. Concretely, C3D
uses 3D kernel to scan through the input and therefore is able to detect changes among
neighbor frames while ConvLSTM performs the convolution operation as part of the
LSTM network. The raw videos were fed directly to the train model. In order to apply
online Data Augmentation as well as to satisfy the memory need, a custom generator
was implemented. Videos were loaded batch-wise and transformed if configured before
feeding to the train model. The following ImageDataGenerator object was optionally
passed to the generator which contains the transformation methods.

transformer = ImageDataGenerator(

rotation_range=10,

zoom_range=0.1,

width_shift_range=0.1,

height_shift_range=0.1,

shear_range=0.15,

horizontal_flip=True,

brightness_range=[0.4, 1.5],

fill_mode=’nearest’)

For each iteration, if Data Augmentation was configured, a new batch was generated by
applying a random mixture from flipping horizontally, rotation between −10◦ and 10◦,
zooming in and out, shifting right and left, applying shear transformation, modifying
brightness on the origin videos. A brief description of the training process for C3D
is demonstrated below. ConvLSTM was trained in a similar manner and would be
skipped.

As a starting point, the following parameters were configured.

• Inputs dimension: 100x160x160x3

• Optimizer: Adam with a fixed learning rate of 0.0001 for training; and with learning
rate decay of factor 0.5 if accuracy does not improve after 5 epochs for finalizing
model

• Batch size: 16 (A bigger batchsize exceeds the available memory.)

• Epoch: 20

63

3 Experiment

• Shuffle data during training: True

• Early Stopping: not for training but for finalizing model with patience of 10 epochs

• ModelCheckPoint: saving only best weights based on accuracy of validation set

• CSVLogger: saving each iteration result to a csv file for further analysis

Baseline
It was very hard to find a reasonable baseline for C3D. Different network architectures
were experimented. Figure 3.21 shows the result of a simple C3D with 1,2, or 3 convolu-
tion layers, each with 16 or 32 neurons. As observed, a deeper network performed clearly
better. Concretely, model with 2 convolution layers of 16 neurons achieved about 7%
higher than model with 1 convolution layer no matter with 16 or 32 neurons (see the red
and dark blue dash lines). Increasing the number of convolution layers to 3, the accuracy
reached slightly higher as displayed by the green dashed line. Yet it is clear to see that
all models learned very fast and reached 100% on training set at very early epochs 8-10.
A big gap of Overfitting remained no matter how long the model was trained.

Figure 3.21: Comparison among different C3D networks

The final chosen baseline contained 3 convolution layers of 16 16 and 32 neurons, followed
by a Flatten layer and 2 dense layers of 512 neurons which scored about 65% on validation
set after 30 epochs. Below is its summary.

64

3 Experiment

Figure 3.22: C3D baseline summary

Against Overfitting
The same large Overfitting was observed as the baseline of Cascade Networks. Bigger
kernel size was exploited k=5, 7, 9 with the hope that it might be able to capture motion
among more frames. Yet it showed no effect. Other methods such as using BatchNormal-
ization, using leaky relu as activation function, different initialization methods (7he_-
normal/8he_uniform), average pooling brought no further improvement either. Dropout
was applied with different rates on both convolution layers as well as dense layers. No
significant increase of validation accuracy was recorded.

Most surprised was the result observed while applying Data Augmentation. Online Data
Augmentation was the first choice. However, instead of improving generalization, the

7https://www.tensorflow.org/api_docs/python/tf/keras/initializers/HeNormal
8https://www.tensorflow.org/api_docs/python/tf/keras/initializers/HeUniform

65

https://www.tensorflow.org/api_docs/python/tf/keras/initializers/HeNormal
https://www.tensorflow.org/api_docs/python/tf/keras/initializers/HeNormal
https://www.tensorflow.org/api_docs/python/tf/keras/initializers/HeUniform

3 Experiment

Figure 3.23: Data Augmentation online vs offline

training process was slowed down for no result. By looking at the red line and dashed
line, it is to recognize that despite the slow training, the Overfitting gap did not decrease.
With further training till 70 epochs, the train accuracy slowly increased while the valida-
tion accuracy remained around 40%. The author hardly found a reasonable explanation
for this phenomenon. Attempting to understand whether the transformation methods
were poor choices, the author decided to run the same model with a more simple Image-
DataGenerator. Data was only augmented by slightly modifying brightness and shifting
left/right.

simple_transformer =ImageDataGenerator(

width_shift_range=0.1,

height_shift_range=0.1,

horizontal_flip=True,

brightness_range=[0.4, 1.5],

fill_mode="nearest")

Yet the result shed no light on this matter. Ultimately, Data Augmentation is no magic
pill. If the network does not have the capability to understand certain complex patterns,
Data Augmentation might confuse the network instead of helping it. One last experiment
was executed with offline Data Augmentation. The result is visualized as the yellow lines
in figure 3.23. By increasing 9 times the train data, the network seemed to map the input
to the output very fast. Evidence is that train accuracy reached 100% in only 7 epochs
and validation accuracy scored low and stayed stable very soon which is more or less a

66

3 Experiment

symbol of the so-called learn-by-heart phenomena. That means the model tried to map
the input exactly to the output instead of learning the underneath features, patterns,
and concepts.

3.2.6 Fusion

There are indeed different fusion techniques: early fusion, middle fusion, and late fusion.
Early fusion, also known as feature level fusion, refers to merging input from multiple
modalities into an input vector before feeding to the model. The merging inputs could be
raw or extracted features. The merging techniques are for example concatenation, pooling
or applying gate unit. Middle fusion or intermediate fusion, joint fusion is, as the name
suggests, the process of joining representations from intermediate layers. Lastly, late
fusion or decision-level fusion consists of unimodal decision values and leveraging them
to make a final decision. That means that all models are trained separately in the first
step. Some examples of aggregation methods are averaging, majority voting, weighted
voting, using a meta-classifier such as Decision Tree or Support Vector Machine, using
the maximal value among all, along with others. More about their key characteristic can
be further read in [28]. In this work, the author decided to exploit only late fusion. One of
its advantages is that it allows easy training and more flexibility at predictions. Training
each modality is independent and the number of modalities to fuse can be decided at the
very end. Furthermore, the experiment covers training different network architectures
with very different styles of learning, it is better to let them learn their best skills before
combining their power.

Concretely, once the best models were finalized for each type of network, they were
then fused together to see whether the result could be further enhanced. The output of
softmax layer from each model was taken as input for the fusing process. Moreover, 3
merging methods were tested. F(xi) denotes the vector score of softmax layer and Wi

the performance of model i.

Average:

f(x1, x2, ..., xn) =
f(x1) + ...+ f(xn)

n
(3.1)

Weighted average:

f(x1, x2, ..., xn) =
W1 ∗ f(x1) + ...+Wn ∗ f(xn)

n
(3.2)

67

3 Experiment

Max:
f(x1, x2, ..., xn) = max(f(x1), ..., f(xn)) (3.3)

3.3 Evaluation

3.3.1 Human ground truth

Figure 3.24: Experiment setup for human ground truth

This work followed the categorical emotion approach which states that there are indeed
universal basic emotions regardless of gender, background, ethics, and so on. Therefore,
they should be easily recognized. However, as the dataset was created in laboratory
environment and the objects were provoked to express those emotions, the author decided
to set up a small experiment to evaluate the human ground truth on the chosen test set

68

3 Experiment

before further evaluation. Again, the chosen test set contains 120 videos from 20 people.
All videos were randomly mixed. A group of people was asked to identify the emotion in
each video. The choices were a fixed set of [angry, disgust, fear, happy, sad, surprise]. The
environment was set up so that each object can perform the annotation uninterruptedly.
Furthermore, the object was asked to give the best judgment instead of guessing. As
that, they can replay each video as many times as necessary. Figure 3.24 shows the
experiment setup.

The box and whisker plot summarizes the result, which brings up a lot of unexpected
points. Each box visualizes one emotion. The lines extending along the box are called
whiskers and denote the following key values: maximum, upper quartile, median (the
yellow line), lower quartile, and minimum. There is only one outlier for emotion "happy"
which is plotted as an individual dot.

Figure 3.25: Human ground truth

It is clear to see that the overall result is not as high as expected. Instead of reaching
roughly 100% for all emotions, the result is far worse. Median values recorded are happy:
90.63%, surprise: 81.25%, sad: 75.6%, disgust: 75%, angry: 50%, fear: 34% which
yields an average of only 67.81% in total. Furthermore, the result differs significantly
among classes. Emotion "happy" has the highest score of over 90%. "Disgust", "sad",

69

3 Experiment

and "surprise" have lower results of around 80%. Especially bad results were recorded
at emotion "angry" and "fear" with not more than 50%. In addition, the long box at
emotion fear or, in other words, the broad data distribution demonstrates that the opinion
among annotators for samples of this emotion distinguished a lot. Further analysis of all
samples where more than 50% of annotators mistook showed that "angry" was mostly
mislabeled as "disgust". The rest was mislabeled as "sad" or "fear". More details are
visualized in figure 3.26. A review of some mislabeled samples across all classes showed
in fact unclear states of emotion (e.g. a happy face with no smile) which explains more
or less the unexpected evaluated ground truth.

Figure 3.26: Mislabeled "angry" samples

Evaluation of trained models in the next subsection will be based on and respectively
compared with this evaluated ground truth.

3.3.2 Best models

From each chosen network architecture, the best one was picked for final evaluation.

Architecture

For Cascade Networks, the spatial and temporal extractors were trained separately. Con-
cretely, after fine-tuning a number of pre-trained CNN networks on the FER2013 dataset,

70

3 Experiment

VGGFace was chosen as the spatial extractor. Output from Flatten layer of 25088 neu-
rons was used as input to feed the temporal extractors which are of the following variants.
All models ended up with a softmax layer as output layer.

• one LSTM layer with 128 embedding outputs. The final model used a drop rate of
0.4 and was trained with 9 times offline augmented data.

• one BiLSTM layer with 128 neurons. The final model used a brutal drop rate of
0.7 and was trained with 3 times offline augmented data.

• the temporal extractor contains 4 1D convolution layers, 2 max pooling layers, and
1 fully connected layer as visualized below:

Conv1a
64

Conv1b
64

M
ax

 P
oo

lin
g

Conv2a
64

Conv2b
64

M
ax

 P
oo

lin
g

Fc3
128 So

ftm
ax

Fl
at

te
n

Figure 3.27: 1D-CNN as temporal extractor

The final ConvLSTM network has 2 2D ConvLSTM layers of 8 neurons, followed by a
Flatten layer. The C3D network consists of 3 3D convolution layers of 16 16 and 32
neurons, all with a kernel size 3x3, each followed by a max pooling layer.

Accuracy

These models were evaluated on the chosen test set. Table 3.6 summarizes the result.

Test accuracy

Cascade
Networks

VGGFace + LSTM 62.5%
VGGFace + BiLSTM 62.5%
VGGFace + 1D-CNN 65%

C3D 50%
ConvLSTM 44.2%

Human ground truth 67.8%

Table 3.6: Best models

It is obvious that all best models exceed the random baseline of 100/6=16.67%. Among
all chosen experimented network architectures, a combination of fine-tuned VGGFace
and 1D-CNN achieved the highest accuracy, only 2.8% less than the human ground

71

3 Experiment

truth. Furthermore, when the samples were correctly predicted, the confidence scores
were pretty high. The overall confidence scores were after observation a lot better than
from other candidates.

angry: [’0.53’, ’0.96’, ’0.98’, ’1.00’, ’1.00’, ’1.00’, ’1.00’, ’1.00’, ’1.00’, ’1.00’]
disgust: [’0.54’, ’0.62’, ’0.77’, ’0.80’, ’0.97’, ’0.99’, ’0.99’, ’1.00’, ’1.00’, ’1.00’, ’1.00’, ’1.00’,
’1.00’, ’1.00’, ’1.00’, ’1.00’]
fear:[’0.55’, ’0.60’, ’0.75’, ’0.84’, ’0.98’, ’0.98’, ’1.00’, ’1.00’, ’1.00’]
happy:[’0.94’, ’1.00’, ’1.00’, ’1.00’, ’1.00’, ’1.00’, ’1.00’, ’1.00’, ’1.00’, ’1.00’, ’1.00’, ’1.00’,
’1.00’, ’1.00’, ’1.00’, ’1.00’, ’1.00’]
sad:[’0.60’, ’0.60’, ’0.64’, ’0.74’, ’0.75’, ’0.95’, ’0.97’, ’1.00’, ’1.00’, ’1.00’, ’1.00’, ’1.00’,
’1.00’]
surprise:[’0.74’, ’1.00’, ’1.00’, ’1.00’, ’1.00’, ’1.00’, ’1.00’, ’1.00’, ’1.00’, ’1.00’, ’1.00’, ’1.00’,
’1.00’]

This strengthens the result from recent studies about the effectiveness of 1D-CNN when
working with sequences. In this experiment, 1D-CNN did indeed outperform LSTM
and BiLSTM. Besides, all Cascade Networks demonstrated strong results of over 60%.
Compared to the simple LRCN trained in [12], this shows evidence that transfer learning
does have a positive impact after all. Alternative networks without separate temporal
and spatial extractors such as C3D, ConvLSTM gained also quite low scores, both not
more than 50%. There are a lot of studies that demonstrated the effectiveness of C3D,
yet only on short sequences. This work showed its limitation in handling long ones.

Fusion

Different networks were merged together by the 3 chosen merging methods: average,
weighted average, and maximum. The results are shown in table 3.7. Average and
weighted average fusion of 2 types of LSTM networks showed slight improvement from
62.5% to 63.33%. Another little enhancement was found when merging the best Cascade
Network VGGFace+1D-CNN with the best alternative C3D.

72

3 Experiment

average weighted average maximum
VGGFace+LSTM 63.33% 63.33% 62.5%VGGFace+BiLSTM
VGGFace+LSTM

63.33% 63.33% 62.5%VGGFace+BiLSTM
VGGFace+1D-CNN
C3D 47.5% 46.67% 48.33%ConvLSTM
VGGFace+1D-CNN 62.5% 65.83% 63.33%C3D
All 63.33% 64.17% 62.5%

Table 3.7: Fusion

Emotion

Further details on the performance of particular emotions are shown in the normalized
Confusion Matrix below (see figure 3.28). The first insight is that the accuracy differs
a lot among classes regardless of network architecture. This is indeed aligned with the
recorded human ground truth. It seems that even though they are universal emotions,
some of them happens to be recognized easier while other are more difficult.

Concretely, for Cascade Networks, irrespective of the combination, emotion "happy"
scored consistently highest (85%) while emotion "fear" landed lowest (20-45%). This
actually lines up with the evaluation of the fine-tuned spatial extractor on the FER2013
dataset. In fact, it draws more evidence that the transferred knowledge from fine-tuning
process seems to play an important role in the final prediction.

In addition, in comparison to the human ground truth, results from emotion "surprise"
are also similar which strongly suggests that "happy" and "surprise" are the two emotions
that can be identified easiest. The high confidence scores of almost 100% for correctly
labeled samples listed above backed up this proposition as well. A simple explanation
could be the consistent and clear motion while expressing those emotions: a smile for
happiness or a big mouth with raised eyebrows for surprise. Especially, the result from
VGGFace+1D-CNN seems to align even closer to the ground truth where "happy" scores
best, "disgust", "sad", and "surprise" have reasonable scores and the lowest belongs to
"angry" and "fear". It shows undeniable evidence that Cascade Networks are capable of
capturing the necessary features to make such correct decisions as human, as a result, in
possession of corresponding generalization ability.

73

3 Experiment

(a) ConvLSTM (b) C3D

(c) VGGFace+LSTM (d) VGGFace+BiLSTM

(e) VGGFace+1D-CNN

Figure 3.28: Normalized Confusion Matrix

74

3 Experiment

Training techniques

The following hyperparameters were tuned during training:

• Number of layers, number of neurons in each layer

• Activation function: relu or leaky relu

• Initialization methods: glorot_uniform, he_uniform, he_normal

• Dropout types, drop rate

• Data Augmentation: online or offline

• For CNN: kernel size, pooling layers, BatchNormalization

Overall, the author found it extensively hard to fight against Overfitting. Regardless of
the chosen network architecture, all models overfitted very early. Especially, C3D mapped
the input to the output very fast without really extracting the needed features which
is known as learn-by-heart phenomenon. Similar to C3D, it was incredibly difficult to
regularize ConvLSTM network. No matter which regularization techniques were applied,
no significant improvement was acknowledged. As the network did not react to Data
Augmentation clearly, it was impossible to compare the effectiveness of online vs offline
Data Augmentation in a reliable manner. Fortunately, Dropout and Data Augmentation
were helpful while applying to Cascade Networks. The Overfitting gap sank by 13%.

Cross Validation was conclusively a good choice. The author acknowledged the difference
among folds. The accuracy among folds varied considerably, mostly around 5-10% and
sometimes up to 40%. Without Cross Validation, the result would rely hardly on the
randomly chosen validation set which is not a reliable performance measure for testing
algorithm. By applying Cross Validation procedure, a much better algorithm could be
picked based on accuracy averaged from all folds.

Error Analysis

Despite the fact that the best model achieved a comparative result towards human,
the author decided to examine the mislabeled samples further. Figure 3.29 showed all
mislabeled samples from VGGFace+1D-CNN with detailed output of softmax layer which

75

3 Experiment

indicates the probability of each class being the right label. The same analysis could be
done for other models and would be skipped.

The table consists of 8 columns of index and name of the mislabeled sample, correct label,
predicted label, and predicted scores for all classes C1-C6 (angry, disgust, fear, happy,
sad, surprise). For each row, 2 numbers are marked green which are at the correct label
and the wrongly predicted label. The red number indicates all other classes which have
a probability of bigger than 0.01. For example, row 2 displays the sample of emotion
"angry" from object M002 which was mislabeled as "sad". The confidence score given
to C1 - angry and C5 - sad of 0.22 and 0.76 are marked green. Besides, the model also
predicts this sample as C3 - fear with a probability of 0.02 which is marked red.

Overall, there are 42 mislabeled samples including angry (10), disgust (4), fear (11),
happy (3), sad (7), and surprise (7). There are very less numbers marked red which
suggests that when the model did mislabel, it indeed only confused the correct label with
another class. Further observation indicates that the model gave the wrong class in most
cases a rather high confidence score. 2 explanations are either the model lacks certain
abilities to learn the difference among certain emotions or that these emotions themselves
have so much in correlation that is hard to separate cleanly. Digging further into the
analysis, the author found some shreds of evidence for the second proposition. The model
confused "angry" quite often with "disgust" and "sad" similar as observing at human.
In fact, by rechecking a number of mislabeled samples, similar motions around the eyes
region can be seen at the expressions of emotion "angry", "sad", and "disgust". It can
be a possible reason why it is hard for both human and machine to distinguish those
emotions. Furthermore, the author found some videos with very poor quality. Even
though the object got professional instructions to provoke these emotions, some still
looked very unnatural. For example, emotion "happy" can be identified quite easily with
a smile and raised cheek. Yet some videos failed to express so. Object M002 expressed
happiness with one facial expression throughout the whole sequence and it is difficult
to say for sure whether a smile is displayed. Similarly, object M001 expressed emotion
"happy" confusingly with a lower brow and no smile.

76

3 Experiment

Figure 3.29: Error Analysis for VGGFace+1D-CNN

77

4 Summary

4.1 Conclusions & future work

Based on the literature review, this thesis conducted an experiment of classifying 6 basic
emotions {anger, sadness, disgust, surprise, fear, happiness} from the dataset BU4FE
using different Neural Networks and DL techniques.

All 5 chosen architectures achieved better accuracy than a random baseline of 16.67%.
The best results are observed at Cascade Networks with fine-tuned spatial feature ex-
tractor. A combination of fine-tuned VGGFace and a simple 1D-CNN gained the highest
score of 65% on the test set. Furthermore, re-evaluating the ground truth of the test
set showed a surprising bad result of only 67.8%. As that, it is safe to say that the
best algorithm performed nearly as well as human. Different late fusion techniques were
exploited. Yet no significant enhancement was found. A slight improvement was shown
while fusing the best Cascade Network with C3D using weighted average method. Ulti-
mately, the result of the trained model can only be as good as the data it sees. When it
has already reached its capacity, it is extremely hard to improve beyond. Even though
the error rate is still quite high, the author deeply believed that FER algorithm is ready
for real-life applications. In the end, it is undeniable that even for human, emotion is
very complex, especially in the way it is interpreted. While building applications, it is
important to bear this fact in mind instead of expecting unrealistic results from the built
models.

The fact that VGGFace+1D-CNN gained the best performance raises 2 important points.
Firstly, it validated once again the effectiveness of transfer learning, especially when
knowledge is transferred from a similar task. Among all chosen pre-trained networks
for fine-tuning, VGGFace is indeed the only network that was pre-trained with faces.
Secondly, the result shows that 1D-CNN outperformed LSTM and BiLSTM which are
the standard choices when it comes to sequences. It confirmed once again the results in

78

4 Summary

recent studies about the effectiveness of 1D-CNN when dealing with temporal data. The
common association between sequence modeling and RNN needs to be reconsidered and
1D-CNN should be conceded as a potential candidate for such tasks.

Among all emotions, "happiness" and "surprise" were found to have consistently good
results whereas "fear" mostly worst result. Emotion "anger" was often mistaken as
"disgust" and "sadness". A reasonable explanation could be the clear presence of certain
elements such as a smile and raised cheek (happy) or a big opened mouth (surprised).
On the other hand, lower brow was found often in all 3 emotions "anger" "disgust" and
"sadness" which might confuse the trained models. Without further factors, it is even
difficult for human to distinguish those emotions.

Training NN is hard, especially due to the limited dataset. Regardless of the chosen
architectures, a big gap of Overfitting was to see. The author found extensively dense to
fight against Overfitting. A number of regularization methods were exploited. Yet only
some seemed to show effect. The author acknowledged the effectiveness of Dropout and
offline Data Augmentation while training Cascade Neworks. However, no improvement
was found while applying them to C3D and ConvLSTM. Most unexpected was that even
online Data Augmentation had no effect on C3D. The training process was slowed down
noticeably for no result.

The author endorsed the observable difference among folds. A fixed chosen validation
set would have brought a lot of bias to the performance estimation of the tested algo-
rithms. An average score of folds provided a much more reliable result. Therefore, Cross
Validation is ultimately the right procedure.

In conclusion, FER is ready for real-life application and Deep Learning is the right choice
for this task. However, more works need to be done in order to continuously 1. expand the
dataset both in volume and quality and 2. re-evaluate and improve the current successful
Neural Networks as well as encourage new architectures to come on the scene.

Nonetheless, many of the applied fields of FER require the task to be handled in real-time.
[31] listed some examples including:

• intelligent monitoring: In a classroom or especially online classroom, the emotional
states of participants can be detected and analyzed. Based on their concentration
and mental state, corresponding actions might be executed such as a break, easier
or more difficult exercises or certain actions towards the unfocused individuals to
regain their attention.

79

4 Summary

• criminal interrogation: During questioning, real-time detection of the psychological
state of the investigated person can help determine whether she/he is lying or
concealing the truth.

• telemedicine: FER can assist doctors in understanding the patients precisely and
as a result giving better treatment.

• fatigue-driving detection: It can be dangerous in terms of traffic safety. Identifying
the state of the driver can help the system make judgments and give warnings in
time.

• intelligent robots such as hospital/hotel lobbies, education assistants, and so on: It
is important for such systems to react in a human manner towards users. In order
to do so, it firstly needs the ability to understand the expressed emotion.

Real-time FER faces a lot of challenges. Inference time is for instance critical. Yet the
outcome is futuristic and worth further researching. Therefore, the author dedicates the
last section to summarize the current development of real-time FER.

4.2 FER in real-time

In order to facilitate real-time applications, FER needs to be fast and be able to handle
unideal environments such as occlusion, imperfect brightness, and so on. Furthermore,
it has to deal with the memory and computation limitation on the devices the system
is occupied such as mobile and edge devices. In the following, the author will discuss 2
main aspects pertaining to real-time DL application in general and FER in particular.

Hardware

Hardware is more or less a general topic when it comes to not only FER but all DL
applications. It is important to continuously improve the quality of current hardware
both for training and production. For running in real-time, it is essential to have as
low inference time as possible. There are 1FPGAs and 2ASICs developed explicit for
DL, for example 3TPU which was originally designed by Google can accelerate NN on
Tensorflow software significantly. Besides cost and power, another essential key when

1Field programmable gate array
2Application-specific integrated circuit
3Tensor processing unit

80

4 Summary

it comes to designing processor for edge, mobile, and embedded applications is thermal
dissipation. 4VPU by Intel is exactly a designed chip that provides ultra-low power capa-
bilities without compromising performance. The author deeply believes in the potential
of Edge Computing and Artificial Intelligence or also known as Edge AI. Without doubt,
the author expects many more applications in the context of smart cities, 5IoT networks
in the near future.

Another less discussed, yet very important point regarding to hardware is how to choose
the right hardware, especially for inference at the edge. It depends on a lot of factors
such as the system requirements in terms of performance and power consumption, the
available budget, along with others. Therefore, it is essential to analyze the problem
carefully before moving to the implementation. FPGA can be easily reprogrammed and
could be a very good choice if the system has to fulfill multiple purposes. Even though
it is possible to inform about the characteristic of each type of hardware as well as their
advantages and disadvantages, the best way to figure out the most suitable hardware is
indeed through testing. In addition, it helps save a lot of money investing in the hardware
upfront. One of the few platforms which enables hardware testing is Intel DevCloud. It
allows developers to easily test a range of Intel processors.

Neural Network

There are a number of things about NN for real-time DL applications and FER which
have been investigated in recent studies.

1. developing the right algorithm to handle data with limitation

2. designing and training the right network for running on specific types of devices

3. optimizing the trained model for specific types of devices

Limitations mentioned in 1 which can hinder FER are e.g. occlusion by glasses, masks,
jewelry or non-frontal face. In fact, there are different ways to overcome those issues.
The first one is by training FER models on datasets with occluded objects. Another
way is by completing occluded regions before further process. Generative adversarial
net, abbreviated as GAN and its variants have been shown to be very helpful in this
matter. It can be used to regenerate the occluded areas, to construct frontal faces
based on the angles as well as to generate data with specific characteristics e.g. masks,

4Vision processing unit
5Internet of Thing

81

4 Summary

bear, glasses, skin winkles, make-up, nose ring which can then be used to train certain
models. [17] summarized the related work around face frontalization and face synthesis
and found out that most works proposed to solve the pose and occlusion sep arately. As a
consequence, the effect of synthesis is worse clearly if both occlusions and pose variations
exist simultaneously. Then, they proposed BoostGAN to achieve both frontalization and
deocclusion. Finally, they validated their method on a number of benchmarks and took
it under comparison with other state of the art (SOTA) GAN.

The second trend is about designing and training device-oriented models. There is no
surprise that a lot of applications are nowadays designed for mobile and edge devices.
However, these devices usually have limited resources in terms of memory and compu-
tation. Yet, most effective NNs tend to have large parameter sizes and require massive
computational resources. Therefore, it is obviously difficult to apply such models on these
devices. In order to solve this problem, many researchers have introduced a number of
DL models designed for specific types of devices. [14] mentioned some mobile DL models
such as BlazeFace, MobileFaceNet, MnasNet, and EfficientNet and proposed in addition
their own for FER with less than 0.5 million parameters without sacrificing the accu-
racy. Another possibility to handle the limitation of mobile devices is to store the model
and run the heavy work in the cloud. Nevertheless, [31] investigated this approach and
pointed out its disadvantage of communication delay where data has to be uploaded to
the cloud and result has to be sent back to end devices. It further proposed a lightweight
edge computing-based distributed system using Rasberry Pi.

Building models for specific devices can be expensive in case of cross-device applications.
Furthermore, it is inflexible as new devices are coming in the future. The last trend tries
to optimize the trained model for specific devices like edge devices by e.g. reducing the
complexity of the model so that it will take up fewer resources to store and run. There
are 2 typical ways to do so including reducing the model size and reducing the number
of operations or layers which are introduced in detail 6here. Reducing the size of the
model means removing unimportant or redundant parameters. Reducing the number of
operations means reducing the number of operations or calculations needed to execute
the network. While reducing the size of the model helps reduce the time it takes to load
and compile the model, reducing the number of operations will reduce the time needed
to perform inference. Both will help decrease the execution time which is crucial for
real-time applications. Furthermore, the lower the size of the model is, the less space

6https://www.udacity.com/course/intel-edge-ai-for-iot-developers-nanodegree–nd131

82

4 Summary

will be required for storing the model. There are a number of techniques to reduce the
model size including:

• Quantization is about converting high precision weights to low precision weights.
For example: converting 32-bit floating-point FP32 to 16-bit floating-point FP16
or 8-bit fixed-point INT8

• Model compressing refers to reducing the model size while storing by finding clever
ways to represent weights in memory.

• Knowledge distillation is to train a small network to imitate the knowledge of the
large network trained in advance [47]. This is often compared to a "teacher-student"
relationship where the large network as a teacher transfers its generalization ability
by different methods to the student - the small network.

Reducing the number of operations can be done either by using more efficient layers or
by removing connections in between neurons a.k.a pruning. Convolutional layers in CNN
model often require a lot of computational power and can be easily fixed by replacing them
with less compute-intensive layers such as depthwise separable convolution. Another
technique is to use downsampling layers to reduce the number of parameters fed to the
next layers. Pruning aims to reduce redundant weights and networks by selecting and
deleting trivial parameters that have a small impact on the model’s accuracy and then
retrain the model to recover the performance [47].

A further read on all techniques for model optimization can be found 7here and [47]. One
of the toolkits for this purpose is the open-source library OpenVINO.

Besides optimizing the model, optimizing the pipeline such as the preprocessing step, the
network, etc. can also speed up the run time.

7https://www.udacity.com/course/intel-edge-ai-for-iot-developers-nanodegree–nd131

83

Bibliography

[1] Homepage Creative Space for Technical Innovation (CSTI). URL: https://csti.
haw-hamburg.de/.

[2] Object Tracking using OpenCV (C++/Python). URL: https://learnopencv.
com/object-tracking-using-opencv-cpp-python/.

[3] scikit-learn. URL: https://scikit-learn.org/.

[4] Advances in Deep Learning Methods for Visual Tracking: Literature Review and
Fundamentals. International Journal of Automation and Computing, 2021. doi:

10.1007/s11633-020-1274-8.

[5] Tadas Baltrušaitis, Amir Zadeh, Yao Chong Lim, and Louis-Philippe Morency.
OpenFace 2.0: Facial Behavior Analysis Toolkit. IEEE International Conference
on Automatic Face and Gesture Recognition, 2018.

[6] Luay Alawneh, Belal Mohsen, Mohammad Al-Zinati, Ahmed Shatnawi, and Mah-
moud Al-Ayyoub. A Comparison of Unidirectional and Bidirectional LSTM Net-
works for Human Activity Recognition. In 2020 IEEE International Conference on
Pervasive Computing and Communications Workshops (PerCom Workshops), pages
1–6, 2020. doi:10.1109/PerComWorkshops48775.2020.9156264.

[7] Wissam J. Baddar and Yong Man Ro. Learning Spatio-temporal Features with Par-
tial Expression Sequences for on-the-Fly Prediction, 2017. arXiv:1711.10914.

[8] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. An Empirical Evaluation of
Generic Convolutional and Recurrent Networks for Sequence Modeling. CoRR,
abs/1803.01271, 2018. URL: http://arxiv.org/abs/1803.01271, arXiv:
1803.01271.

[9] Lisa Feldman Barrett and Tor D. Wager. The structure of emotion: Evidence from
neuroimaging studies. Current Directions in Psychological Science, 15(2):79–83,
2006. doi:10.1111/j.0963-7214.2006.00411.x.

84

https://csti.haw-hamburg.de/
https://csti.haw-hamburg.de/
https://learnopencv.com/object-tracking-using-opencv-cpp-python/
https://learnopencv.com/object-tracking-using-opencv-cpp-python/
https://scikit-learn.org/
https://doi.org/10.1007/s11633-020-1274-8
https://doi.org/10.1007/s11633-020-1274-8
https://doi.org/10.1109/PerComWorkshops48775.2020.9156264
http://arxiv.org/abs/1711.10914
http://arxiv.org/abs/1803.01271
http://arxiv.org/abs/1803.01271
http://arxiv.org/abs/1803.01271
https://doi.org/10.1111/j.0963-7214.2006.00411.x

Bibliography

[10] Sven Buechel and Udo Hahn. Emotion Analysis as a Regression Problem — Di-
mensional Models and Their Implications on Emotion Representation and Metrical
Evaluation. 08 2016. doi:10.3233/978-1-61499-672-9-1114.

[11] Thi Huyen Cao. Bachelor thesis: German Word Level Lip Reading with Deep Learn-
ing. URL: https://reposit.haw-hamburg.de/handle/20.500.12738/
8807.

[12] Thi Huyen Cao. Hauptprojekt: Implementation of an end-to-end Deep Learning
pipeline for Facial Expression Recognition. URL: https://users.informatik.
haw-hamburg.de/~ubicomp/projekte/master2021-proj/cao_hp.pdf.

[13] Thi Huyen Cao. Seminar: Facial Expression Recognition. URL:
https://users.informatik.haw-hamburg.de/~ubicomp/projekte/

master2020-proj/cao.pdf.

[14] ChangRak Yoon and DoHyun Kim. Mobile Convolutional Neural Networks for
Facial Expression Recognition. 2020.

[15] Bincy Chellapandi, M. Vijayalakshmi, and Shalu Chopra. Comparison of Pre-
Trained Models Using Transfer Learning for Detecting Plant Disease. In 2021
International Conference on Computing, Communication, and Intelligent Systems
(ICCCIS), pages 383–387, 2021. doi:10.1109/ICCCIS51004.2021.9397098.

[16] Jiankang Deng, Jia Guo, Yuxiang Zhou, Jinke Yu, Irene Kotsia, and Stefanos
Zafeiriou. RetinaFace: Single-stage Dense Face Localisation in the Wild. CoRR,
abs/1905.00641, 2019. URL: http://arxiv.org/abs/1905.00641, arXiv:
1905.00641.

[17] Qingyan Duan and Lei Zhang. Look more into occlusion: Realistic face frontaliza-
tion and recognition with boostgan. IEEE Transactions on Neural Networks and
Learning Systems, 32(1):214–228, 2021. doi:10.1109/TNNLS.2020.2978127.

[18] Tuomas Eerola and Jonna K. Vuoskoski. A comparison of the discrete and
dimensional models of emotion in music. Psychology of Music, 39(1):18–49,
2011. arXiv:https://doi.org/10.1177/0305735610362821, doi:10.

1177/0305735610362821.

[19] Ekman, P., and Friesen, W. V. Constants across cultures in the face and emotion.
Journal of Personality and Social Psychology, 17(2), 124–129, 1971. URL: https:
//doi.org/10.1037/h0030377.

85

https://doi.org/10.3233/978-1-61499-672-9-1114
https://reposit.haw-hamburg.de/handle/20.500.12738/8807
https://reposit.haw-hamburg.de/handle/20.500.12738/8807
https://users.informatik.haw-hamburg.de/~ubicomp/projekte/master2021-proj/cao_hp.pdf
https://users.informatik.haw-hamburg.de/~ubicomp/projekte/master2021-proj/cao_hp.pdf
https://users.informatik.haw-hamburg.de/~ubicomp/projekte/master2020-proj/cao.pdf
https://users.informatik.haw-hamburg.de/~ubicomp/projekte/master2020-proj/cao.pdf
https://doi.org/10.1109/ICCCIS51004.2021.9397098
http://arxiv.org/abs/1905.00641
http://arxiv.org/abs/1905.00641
http://arxiv.org/abs/1905.00641
https://doi.org/10.1109/TNNLS.2020.2978127
http://arxiv.org/abs/https://doi.org/10.1177/0305735610362821
https://doi.org/10.1177/0305735610362821
https://doi.org/10.1177/0305735610362821
https://doi.org/10.1037/h0030377
https://doi.org/10.1037/h0030377

Bibliography

[20] Olufisayo Ekundayo and Serestina Viriri. Facial Expression Recognition: A Review
of Trends and Techniques. 2021.

[21] Yin Fan, Xiangju Lu, Dian Li, and Yuanliu Liu. Video-based emotion recognition
using cnn-rnn and c3d hybrid networks. In Proceedings of the 18th ACM Interna-
tional Conference on Multimodal Interaction, ICMI ’16, page 445–450, New York,
NY, USA, 2016. Association for Computing Machinery. doi:10.1145/2993148.
2997632.

[22] Yarin Gal and Zoubin Ghahramani. A Theoretically Grounded Application of
Dropout in Recurrent Neural Networks, 2016. arXiv:1512.05287.

[23] Mudasir A. Ganaie, Minghui Hu, Mohammad Tanveer, and Ponnuthurai N. Sug-
anthan. Ensemble deep learning: A review. CoRR, abs/2104.02395, 2021. URL:
https://arxiv.org/abs/2104.02395, arXiv:2104.02395.

[24] F.A. Gers and J. Schmidhuber. Recurrent nets that time and count. In Proceedings of
the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN
2000. Neural Computing: New Challenges and Perspectives for the New Millennium,
volume 3, pages 189–194 vol.3, 2000. doi:10.1109/IJCNN.2000.861302.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning
for Image Recognition, 2015. arXiv:1512.03385.

[26] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Com-
putation, 9(8):1735–1780, 1997. doi:10.1162/neco.1997.9.8.1735.

[27] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger.
Densely Connected Convolutional Networks, 2018. arXiv:1608.06993.

[28] Huang, SC., Pareek, A., Seyyedi, S. et al. Fusion of medical imaging and elec-
tronic health records using deep learning: a systematic review and implementation
guidelines. 2020. URL: https://doi.org/10.1038/s41746-020-00341-z.

[29] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. 2015. URL: http:

//arxiv.org/abs/1502.03167v3.

[30] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3D Convolutional Neural Networks
for Human Action Recognition. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 35(1):221–231, 2013. doi:10.1109/TPAMI.2012.59.

86

https://doi.org/10.1145/2993148.2997632
https://doi.org/10.1145/2993148.2997632
http://arxiv.org/abs/1512.05287
https://arxiv.org/abs/2104.02395
http://arxiv.org/abs/2104.02395
https://doi.org/10.1109/IJCNN.2000.861302
http://arxiv.org/abs/1512.03385
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1608.06993
https://doi.org/10.1038/s41746-020-00341-z
http://arxiv.org/abs/1502.03167v3
http://arxiv.org/abs/1502.03167v3
https://doi.org/10.1109/TPAMI.2012.59

Bibliography

[31] JIANNAN YANG , TIANTIAN QIAN, FAN ZHANG , AND SAMEE U. KHAN,
(Senior Member, IEEE). Real-Time Facial Expression Recognition Based on Edge
Computing. 2021.

[32] Jan Kukacka, Vladimir Golkov, and Daniel Cremers. Regularization for Deep Learn-
ing: A Taxonomy. CoRR, abs/1710.10686, 2017. URL: http://arxiv.org/abs/
1710.10686, arXiv:1710.10686.

[33] Shan Li and Weihong Deng. Facial Expression Recognition: A Survey. 2018. URL:
http://arxiv.org/abs/1804.08348.

[34] Prof. Dr.-Ing. Andreas Meisel. HAW Deep Learning Project.

[35] Shervin Minaee, Ping Luo, Zhe Lin, and Kevin W. Bowyer. Going Deeper Into Face
Detection: A Survey. CoRR, abs/2103.14983, 2021. URL: https://arxiv.org/
abs/2103.14983, arXiv:2103.14983.

[36] Andrea Vedaldi Omkar M. Parkhi and Andrew Zisserman. Deep face recognition.
2015. URL: https://www.robots.ox.ac.uk/~vgg/publications/2015/
Parkhi15/parkhi15.pdf.

[37] James Russell. A circumplex model of affect. Journal of Personality and Social
Psychology, 39:1161–1178, 12 1980. doi:10.1037/h0077714.

[38] James A. Russell and Albert Mehrabian. Evidence for a three-factor theory of
emotions. Journal of Research in Personality, 11(3), 273–294, 1977.

[39] Pei-Wei Tsai Rusul L. Abduljabbar, Hussein Dia. Unidirectional and Bidirectional
LSTM Models for Short-Term Traffic Prediction. 2021. doi:https://doi.org/
10.1155/2021/5589075.

[40] M. Schuster and K.K. Paliwal. Bidirectional recurrent neural networks. IEEE Trans-
actions on Signal Processing, 45(11):2673–2681, 1997. doi:10.1109/78.650093.

[41] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and
Wang-chun Woo. Convolutional LSTM Network: A Machine Learning Approach for
Precipitation Nowcasting. CoRR, abs/1506.04214, 2015. URL: http://arxiv.
org/abs/1506.04214, arXiv:1506.04214.

[42] Sima Siami-Namini, Neda Tavakoli, and Akbar Siami Namin. The performance of
lstm and bilstm in forecasting time series. In 2019 IEEE International Conference

87

http://arxiv.org/abs/1710.10686
http://arxiv.org/abs/1710.10686
http://arxiv.org/abs/1710.10686
http://arxiv.org/abs/1804.08348
https://arxiv.org/abs/2103.14983
https://arxiv.org/abs/2103.14983
http://arxiv.org/abs/2103.14983
https://www.robots.ox.ac.uk/~vgg/publications/2015/Parkhi15/parkhi15.pdf
https://www.robots.ox.ac.uk/~vgg/publications/2015/Parkhi15/parkhi15.pdf
https://doi.org/10.1037/h0077714
https://doi.org/https://doi.org/10.1155/2021/5589075
https://doi.org/https://doi.org/10.1155/2021/5589075
https://doi.org/10.1109/78.650093
http://arxiv.org/abs/1506.04214
http://arxiv.org/abs/1506.04214
http://arxiv.org/abs/1506.04214

Bibliography

on Big Data (Big Data), pages 3285–3292, 2019. doi:10.1109/BigData47090.
2019.9005997.

[43] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15(56):1929–1958, 2014. URL: http://
jmlr.org/papers/v15/srivastava14a.html.

[44] Valentin Vielzeuf, Stéphane Pateux, and Frédéric Jurie. Temporal multimodal fusion
for video emotion classification in the wild. CoRR, abs/1709.07200, 2017. URL:
http://arxiv.org/abs/1709.07200, arXiv:1709.07200.

[45] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple fea-
tures. In Proceedings of the 2001 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. CVPR 2001, 2001.

[46] Paul Viola and Michael Jones. Robust real-time face detection. International Journal
of Computer Vision, 2004.

[47] Yingchun Wang, Jingyi Wang, Weizhan Zhang, Yufeng Zhan, Song Guo, Qinghua
Zheng, and Xuanyu Wang. A survey on deploying mobile deep learning applica-
tions: A systemic and technical perspective. Digital Communications and Net-
works, 8(1):1–17, 2022. URL: https://www.sciencedirect.com/science/
article/pii/S2352864821000298, doi:https://doi.org/10.1016/j.
dcan.2021.06.001.

[48] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable
are features in deep neural networks? CoRR, abs/1411.1792, 2014. URL: http:
//arxiv.org/abs/1411.1792, arXiv:1411.1792.

[49] Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao. Joint Face Detection
and Alignment Using Multitask Cascaded Convolutional Networks. IEEE Signal
Processing Letters, 23(10):1499–1503, 2016. doi:10.1109/LSP.2016.2603342.

[50] Zhang, Wen and Deng, Lingfei and Zhang, Lei and Wu, Dongrui. A Survey on
Negative Transfer, 2020. URL: https://arxiv.org/abs/2009.00909, doi:
10.48550/ARXIV.2009.00909.

[51] Yanjia Zhu, Hongxiang Cai, Shuhan Zhang, Chenhao Wang, and Yichao Xiong.
TinaFace: Strong but Simple Baseline for Face Detection. CoRR, abs/2011.13183,
2020. URL: https://arxiv.org/abs/2011.13183, arXiv:2011.13183.

88

https://doi.org/10.1109/BigData47090.2019.9005997
https://doi.org/10.1109/BigData47090.2019.9005997
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/1709.07200
http://arxiv.org/abs/1709.07200
https://www.sciencedirect.com/science/article/pii/S2352864821000298
https://www.sciencedirect.com/science/article/pii/S2352864821000298
https://doi.org/https://doi.org/10.1016/j.dcan.2021.06.001
https://doi.org/https://doi.org/10.1016/j.dcan.2021.06.001
http://arxiv.org/abs/1411.1792
http://arxiv.org/abs/1411.1792
http://arxiv.org/abs/1411.1792
https://doi.org/10.1109/LSP.2016.2603342
https://arxiv.org/abs/2009.00909
https://doi.org/10.48550/ARXIV.2009.00909
https://doi.org/10.48550/ARXIV.2009.00909
https://arxiv.org/abs/2011.13183
http://arxiv.org/abs/2011.13183

Bibliography

[52] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu,
Hui Xiong, and Qing He. A Comprehensive Survey on Transfer Learning. Proceedings
of the IEEE, 109(1):43–76, 2021. doi:10.1109/JPROC.2020.3004555.

89

https://doi.org/10.1109/JPROC.2020.3004555

Erklärung zur selbstständigen Bearbeitung einer Abschlussarbeit

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig
verfasst und nur die angegebenen Hilfsmittel benutzt habe. Wörtlich oder dem Sinn
nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich
gemacht.

Ort Datum Unterschrift im Original

90

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Literature review
	General concepts
	Face Detection and Tracking
	Neural Network
	Deep Learning techniques

	Sota FER
	Emotion approaches
	Datasets
	Challenges
	Proposed methods

	Research resume
	Objective
	Scope

	Experiment
	Design
	Implementation details
	Preprocessing
	Dataset
	Training procedure
	Cascade Network
	Alternatives
	Fusion

	Evaluation
	Human ground truth
	Best models

	Summary
	Conclusions & future work
	FER in real-time

	Bibliography
	Selbstständigkeitserklärung

