=

L I

> >

MBURG

BACHELOR THESIS
Finn-Frederik Jannsen

Hierarchical temporal memory
for in-car network anomaly
detection

Faculty of Computer Science and Engineering
Department Computer Science

FAKULTAT TECHNIK UND INFORMATIK
Department Informatik

HOCHSCHULE FUR ANGEWANDTE
WISSENSCHAFTEN HAMBURG

Hamburg University of Applied Sciences

Finn-Frederik Jannsen

Hierarchical temporal memory for in-car network
anomaly detection

Bachelor Thesis submitted as part of the Bachelor Examination
of the course Bachelor of Science Technische Informatik

at the Department Computer Science

of Faculty of Computer Science and Engineering

of Hamburg University of Applied Sciences

Supervisor: Prof. Dr. Franz Korf
Second Reviewer: Prof. Dr. Stephan Pareigis

Submitted on: 31. August 2021

Finn-Frederik Jannsen

Title of Thesis

Hierarchical temporal memory for in-car network anomaly detection

Keywords

HTM, Hierarchical temporal memory, Network Anomaly Detection, ML, IVN

Abstract

Automotive networks experience a transition from traditional bus systems to ethernet
based communication in an attempt to optimize the communicational infrastructure
of vehicles. The increased number of devices and additional interfaces in a combined
network can produce new attack vectors. In order to keep such networks from being
compromised, available solutions for anomaly detection and response methods need to
be evaluated. This work examines the Machine Learning (ML) framework Hierarchical
Temporal Memory (HTM) in terms of applicability for realtime anomaly detection by
examining it’s execution speed and detection performance. In addition techniques are
invented that proved necessary for the system to reliably work in this environment. The
framework’s potential use is succesfully demonstrated on a realistic communication sce-
nario which is interrupted by Denial of Service (DoS) attacks. Great noise robustness
and detection rates can be achieved. While detection delay still amounts to a few 100 ms,

better timings might be possible for less noisy input.

Finn-Frederik Jannsen

Thema der Arbeit

Hierarschischer Temporalspeicher fiir Anomalieerkennung in Fahrzeugbordnetzen

Stichworte

HTM, Hierarschischer Temporalspeicher, Netzwerk Anomalieerkennung, ML, IVN

Kurzzusammenfassung

iii

Automobilnetzwerke erfahren einen Ubergang von traditionellen Bussystemen zu Ether-
net basierten Netzwerken mit dem Ziel, die kommunikative Infrastruktur von Automo-
bilen zu optimieren. Die steigende Anzahl an Geréten und zusétzlichen Schnittstellen
ermoglichen das Auftreten neuer Angriffsvektoren. Um das Netzwerk vor deren Ef-
fekten zu schiitzen, miissen verfiighare Losungen zur Anomalieerkennung und Vertei-
digungsmechanismen evaluiert werden. Diese Arbeit untersucht das Machine Learning
(ML) Framework Hierarchical Temporal Memory (HTM) in Bezug auf Anwendbarkeit
fiir Echtzeit-Anomalieerkennung durch die Evaluation von Geschwindigkeit und Erken-
nungserfolg. Aufierdem werden Mechanismen entwickelt, die fiir den erfolgreichen Einsatz
in dieser Umgebung von Noten sind. Der potentielle Nutzen des Frameworks wird erfol-
greich anhand eines realistischen Kommunikations-Szenarios demonstriert, welches von
DoS-Attacken unterbrochen wird. Gute Rauschrobustheit und Erkennungsraten kon-
nen erzielt werden. Wihrend die gemessene Erkennungsverzogerung noch wenige 100 ms

betragt, werden bessere Resultate fiir rauschfreieren Input erwartet.

v

Contents

List of Figures vii
List of Tables viii
Parameter symbols & Abbreviations ix
1 Introduction 1
2 Basics 3
2.1 Anomalies 3
2.2 In-Vehicular Network, 3
2.3 Hierarchical Temporal Memory 5
2.3.1 Encoder 5

2.3.2 Spatial pooler 8

2.3.3 Temporal memory 11

3 Problem Statement & Related Work 16
4 Analysis 18
4.1 Network of the Demonstrator 18
4.2 Data Sources e 19
4.3 Requirements 20

5 Design & Implementation 22
5.1 Components e e e 22
5.1.1 Traffic capture 23

5.1.2 Metric preprocessoro e e 23

5.1.3 Hierarchical temporal memory 25

514 SP & TM e 26

5.1.5 Anomaly reporter 27

Contents

5.1.6 Run configuration oL 28

6 Evaluation 30
6.1 Anomalies L 30
6.2 Testing methodology 31
6.2.1 Test scenario: Videostream DoS-attack 32

6.3 Detectionrates 36
6.3.1 Detection results L o 37

6.4 Anomaly window 41
6.5 Timings 42
6.5.1 Detectiondelay L 42

6.5.2 Processing delay o 44

6.6 Memory consumption L o 45
6.7 Tuning of parameters 46
6.7.1 Input & Encoding 47

6.7.2 Spatial Pooler & Temporal Memory 48

7 Conclusion 50
7.1 Outlook 51
Bibliography 52
A Appendix 55
Selbststindigkeitserklarung 56

vi

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

4.1
4.2

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Types of anomalies 4
Main aspects of HTM Algorithm 6
Encoding of scalar values 7
Spatial Pooler input and output oo 9
Learning in Spatial Pooler 0oL 10
HTM high-order memory example 12
Temporal Memory prediction 14
Temporal Memory bursting 15
Network topology of SecVI Demonstrator. 19
Example metric measurement sample of videostream from simulated cam-

era to monitor, sorted by iteration.o oL L 20
Data flow diagram of NADS 23
Rolling window vs. static window 24
Input measurements for videostream using a rolling window 34
Input measurements for videostream using a static window 35
Confusion matrix 36
Detection results using a rolling window 39
Detection results using a static window 39
Detailed view of anomaly scores during anomaly 41
Results of always learning with a collective anomaly 43
HTM memory consumption 46

vii

List of Tables

6.1 Optimized configuration for videostream using a rolling window 37
6.2 Optimized configuration for videostream using a static window 38
6.3 Detection results for videostream 40
6.4 Detection delay for videostream 44
6.5 Processing delay for videostream 45
6.6 Default HTM parameters 49

viii

Parameter symbols & Abbreviations

By, boost strength.

Do local area density.
Twin window size.

fs sampling rate.

g.inhib global inhibition.
Neelpercol Cells per column.
Neol COlumn count.

Ppot Potential percentage.
Tpot potential radius.

S€gmar Max segments per cell.

SYNcon Synapse permanence connected.

SyYngec Synapse inactive decrease.
SYNine Synapse active increase.
tm.sYNactive activation threshold.
tm.synge. permanence decrease.
tm.syn;ne permanence increase.

tM.sYNinitperm initial permanence.

tm.synmaee MAax synapses per segment.

tm.syn.min minimum threshold.

1X

Parameter symbols & Abbreviations

tM.SYNpew NEW synapse count.

CAN Control Area Network.

DoS Denial of Service.

ECU Electronic Control Unit.

FPR False Positive Rate.

HTM Hierarchical Temporal Memory.

IDS Intrusion Detection System.

IVN In-Vehicular Network.

MA moving average.

ML Machine Learning.

NAD Network Anomaly Detection.
NADS Network Anomaly Detection System.
NN Neural Network.

NUC Next Unit of Computing.

OTA Over-the-Air.

RDSE Random Distributed Scalar Encoder.

RNN Recurrent Neural Network.

SDN Software-Defined Networking.
SDR Sparse Distributed Representation.

SP Spatial Pooler.

Parameter symbols & Abbreviations

std standard deviation.

TM Temporal Memory.
TPR True Positive Rate.

TSN Time-Sensitive Networking.

TSSDN Time-Sensitive Software-Defined Networking.

V2V Vehicle-to-Vehicle.

X1

1 Introduction

The progression of technology in vehicles has increased the number of connected de-
vices like Electronic Control Units (ECU), entertainment systems, sensors and actors,
to provide new features. To connect all those devices, Ethernet-based In-Vehicular Net-
works (IVNs) appear to be suitable candidates [17]. Ethernet fulfills realtime latency
and speed requirements and allows for protocol-independent transmissions. Even non-
supported communication standards, such as Control Area Network (CAN), can be gated
through the network using specialized hardware or software. Though CAN has been used
as the bus for ECU communication for some time now, higher level control and diagnosis
by autonomous systems is another reason to shift towards Ethernet. The addition of
devices, some of which allow for wireless communication (e.g. for Over-the-Air (OTA)
updates or Vehicle-to-Vehicle (V2V) communication), is also adding more attack vec-
tors to the system via various interfaces [20]. Opening up the network this way calls
for protection from attackers that could potentially gain access to the network and it’s
containing devices [20].

Software-Defined Networking (SDN) is lately used in IVNs [8] to allow for precise control
over network flows. In combination with Network Anomaly Detection Systems (NADS)
it can act as a powerful countermeasure to attacks and other malicious network streams
(e.g. caused by defective devices). In addition to pre-defined networking rules enacted
in the SDN controller, rules may need to be added or altered upon events that impact
the network (e.g. addition of devices or occurence of an anomaly).

Network Anomaly Detection (NAD) can assist the SDN controller in establishing new
policies. While a proper network configuration or signature based Intrusion Detection
Systems (IDSs) are powerful methods against known attacks, these cannot protect against
unknown exploits appearing in the future. Hence nowadays a combination of different
security layers are used together, covering the potential blind spots of one another.

By analyzing the network traffic or individual flows of it, it’s possible to detect abnormal
behaviour and to prevent such traffic from disturbing the network [13]. Reports about

network anomalies are sent to the SDN controller so that rules can be changed, poten-

1 Introduction

tially blocking the forwarding of undesired Ethernet frames [13].

A variety of NADS already exist [3] and are typically deployed in data centres around
the world. An Ethernet-based IVN however is a recent development with a different
set of requirements (e.g. realtime communication) and a new set of network topologies.
In addition, new Machine Learning (ML) frameworks are developed regularly and with
them new potential solutions to the problem appear. This work will focus on exploring
the applicability of one of these solutions (Hierarchical Temporal Memory (HTM)) in
IVNs.

In the first section (s. section 2) an introduction to the 2 most fundamental topics
that shape this work will take place. Here the basics of the NADS (s. 2.3) and the
network (s. section 2.2) it is deployed in are explained. This is followed by a descrip-
tion of the problem statement and its relations to other topics and works (s. section
3). Furthermore an analysis (s. section 4) of the given environment is done to assess
the required steps for creating a solution to the problem. In there the requirements (s.
section 4.3) are declared, a specification of the network (s. section 4.1) is given and also
which data sources are available (s. section 4.2).

After that, the design & implementation (s. section 5) of the attempted solution will be
presented by explaining the architecture of the system and how it is supposed to satisfy
the given requirements.

Tests are done using the proposed solution and the results are then evaluated in order
to quantify the performance of the system (s. section 6). This will show how well re-
quirements are satisfied and thus lead to the conclusion (s. section 7) about this work.
Finally an outlook of the future is given, discussing further possible developments of the

topic and the area in general.

2 Basics

In this chapter the network of the SecVI Demonstrator, the CoRE Group testing en-
vironment for IVN related developments, as well as the fundamental principles of the
applied ML algorithm HTM will be briefly explained.

2.1 Anomalies

Anomalies can be defined slightly different depending on the data in which they ap-
pear. For anomalies within a time series however, two general categories apply: A point
anomaly consists of very few data points that differ too much from the rest of the series.
An example of this can be seen in figure 2.1 [12]. The second type is collective anomalies,
which are built from multiple data points and deviate from the usual sequence for an
extended period. Furthermore, anomalies can also be contextual. These express similar
features like the rest of the time series but appear in a different context from the rest.

In this work, the detection of anomalies in time series by using common network metrics

is the primary intention.

2.2 In-Vehicular Network

The network in which the NADS should be deployed in is an IVN. Traditionally these
networks consist of an ever growing number of buses and protocols. Typical members of
an IVN are ECUs, which are communicating via CAN messages. Due to the variety of new
standards for inter-communication (besides CAN) applied in cars, such as for navigation,
management and entertainment systems, Ethernet-based networking is considered as
unifying medium in recent times.

In cars however, there is a need for realtime communication when it comes to certain

connections. For these connections, both delay and the resulting jitter (s. section 5.1.2)

2 Basics

Figure 2.1: General types of anomalies in univariate time series [12].

of transmissions need to behave as expected. NAD can be used to detect violations of
this behaviour. To achieve stable properties for the metrics, Time-Sensitive Networking
(TSN) can provide the necessary basis. It was initially developed for the purpose of
realtime audio/video-streams. TSN mostly consists of expansions to the IEEE 802.1Q
standard, a priority-based VLAN networking technology, and is managed by the IEEE’s
TSN Task group [11]. Although the NAD is aimed towards such networks, it is developed
and tested in a network using only strict priority queueing and IEEE 802.1Q VLANS as
an approximation of TSN. This is due to the unavailability of switches capable of Time-
Sensitive Software-Defined Networking (TSSDN), a combination of TSN and SDN, at
the time of establishing the Demonstrator. Despite the current lack of capable hardware,
TSSDN has been proven possible and would combine the benefits of both technologies
[10].

A number of different flows are available in the provided network. A flow is described as
the communication between two specific devices, such as the monitor and the camera.
But it can also be narrowed down to only include traffic passing through specific ports
to monitor certain applications or protocols. Network flows might be called a stream
and vice versa in networking, since their described properties are very similar, if not the

same.

2 Basics

2.3 Hierarchical Temporal Memory

HTM is a framework for sequence learning, meaning that it’s processing a sequence of
inputs to learn relations, and is designed after the way cortical neurons work in the
neocortex [9]. It was proven that HTM can work in realtime and that it’s producing
good results for prediction tasks [14, 6]. Using the predictions it can serve as a base
for anomaly detection in streaming data by comparing the input with the corresponding
prediction [2|. Starting as a science project to mimic neurological behaviour, HTM
developed into a framework with functionality close to other ML solutions. In this work
a fork of the original software, called htm.core, is used [5]. It’s introducing Python and
C++bindings as well as improvements to the codebase, increasing the effectiveness of
partial algorithms, computational speed and ease of use.

The basic functionality of HTM is described in Figure 2.2. It mainly consists of 2 parts:
the Spatial Pooler (SP) and Temporal Memory (TM). Internally, Sparse Distributed
Representations (SDR) are used as the main data structure for processing. An SDR
consists of a bit-array, where 0 bits are considered inactive and 1 bits are considered
active. SDRs are called sparse because of the low percentage of active bits that effectively
represent the data and are called distributed due to the an even distribution inside the
array.

The SP creates a SDR of the input, extracting spatial features and also cancelling out
noise. The TM learns sequences and makes predictions for future inputs. In combination

the algorithms are able to learn and extract spatiotemporal features.

2.3.1 Encoder

In HTM the data is represented by SDRs. Encoding data into a bit-array is necessary
for the SP to form a SDR from (s. section 2.3.2). While this process creates a data
representation much like an SDR, it might yet be lacking some of its properties (e.g. even
distribution) depending on the encoder, which are manifested by the SP afterwards.
For the system to accept input, data needs to be encoded using the following basic
principles [15]:

The encoder must create bit-arrays where the active bits represent the semantics of the
input in a way that similar data causes an overlap of bits [15]. Furthermore, the output
must always have the same size and sparsity (fraction of active bits). Therefore the most

important configurable parameters are the number of active bits or percentual sparsity

2 Basics

Predictions
Classification

Data=—>| Encoder | mmp Classifier | =—p

SP mini-columns l

Local

Inhibition \

Feedforward Feedforward
D . More
Excitable
— Target Level
Potential !
: -
Connectnons\o %
00 Pl
- 21 I .
2
@ Active Inputs ' Active Mini-columns Less Excitable
O Inactive Inputs g Inactive Mini-columns 0 |
0 0.02 0.04 0.06 0.08 0.1

Activation Frequency

Figure 2.2: Main aspects of HT'M Algorithm. A Data is encoded to a binary represen-
tation by using an encoder. The data is then processed by the SP, which
creates a SDR that is fed into the TM (sequence memory). The TM learns
and predicts sequences. An anomaly score is produced using the prediction
error. B The SP converts the binary input into a SDR by forming synaptic
connections between each mini-column and their corresponding input space
(gray area). Active inputs excite columns and strengthen connection perma-
nences while inactive ones deteriorate connections. The local inhibition (blue
circle) causes only the most excited mini-columns to activate within a certain
area. [7|

2 Basics

Figure 2.3: Encoding of scalar values into a 10bit long SDR with a number of 3 active
bits and a resolution of 1. Deliberately overlapping nearby values creates a
meaning of similarity.

and the total number of bits used for encoding. The goal is to achieve an output similar
to that of sensory organs in humans and other animals. For each data type this results
in different methods of translation.

First there are scalar values, which is also the type of data this work will use. To get
similarity of values to show up on the output, numbers in a narrow range should have
overlapping bits in their SDRs. An example of scalar encoding can be seen in figure 2.3.
The scalar encoder adds two important parameters: a minimum and maximum value.
Values outside of this range can be either discarded or get interpreted into a periodic
range. Additionally, an option exists to wrap values on the edge of the range around the
beginning and end of the resulting array.

An alternate version of the scalar encoder is the Random Distributed Scalar Encoder
(RDSE). Here values are distributed randomly using a hashing function, which also gets
rid of the restricted value range in exchange for potential collisions. Which of these
encoder types are used and how they’re configured will be explained in section 5.1.3.
Other typical data types that can be encoded are dates, images, text, gps coordinates and
many more. With more complex data the encoding methods also become more complex.
A date for example can be encoded using the months, weeks and days represented as
numbers with scalar encoding. These will then be added together by appendation while
single parts (e.g. months) can be varied in size to increase or decrease weighting (semantic

importance).

2 Basics

2.3.2 Spatial pooler

SDRs have been documented to be common representations of sensory feedback in a
neural context [7]. Favorable properties of them include both a distinct representation
of items with little to no interference, as well as allowing for a large capacity of patterns
[7]. The SP is the key component for the creation of these SDR in a digital format (s.
section 2.3).

Spatial pooling is described as following: Spatially similar active bits on the input pat-
terns (encoded bit arrays) are bundled together (pooling). This can be seen in figure
2.2B, where the input is represented as a grid of active and inactive bits on the bottom
layer and SP columns (above the input layer) are arranged to cover equally distributed
regions of it. Here many active bits are condensed to just a few active columns. Just as
the input is arranged in a grid-like manner from a bit-array, the same is done in reverse
with the SP columns, meaning that a flattened binary representation of the columns
creates a bit-array that is the SDR output of the SP. A visualization of the effect of this
process is shown in figure 2.4.

Input is processed by the SP by creating connections between columns and input bits.
Each connection holds a permanence value describing its’ strength between 0 and 1 and
is initialized with a random value in a small range around synapse permanence connected
(SYNcon)- SYNecon is a threshold for permanence, above which connections are considered
synapses. These are the only connections that can contribute to the activation of a col-
umn. Initialized permanences are uniformly distributed across all connections, meaning
that 50 % of all connections are synaptic in the beginning and therefore randomly con-
nected to a unique attribute of the input. Eventually, connections between SP columns
and input bits within their perceptive field are either boosted and become synapses or are
deteriorated over many iterations. This is done by decreasing permanences by synapse
inactive decrease (synge.) for inactive synapses and increasing them by synapse active
increase (syninc) for active synapses but only when a column has been activated. By
doing this, a column spezializes for particular inputs and recurring patterns are expressed

more precisely and stable in the output.

Other than that, the following parameters contribute to the behaviour of the SP as well:
One setting is the size of the SP itself, namely the column count (n.), which describes
how many columns are used for mapping the input. For each of these columns the per-
ceptive field is described by the potential radius (rpe), used to calculate a squared pool

of inputs with sides of length 2 * rp,; + 1, to which the column has potential connections

2 Basics

Figure 2.4: Sequence of inputs and outputs of the SP. A single line represents a single
SDR where the white dots show active bits. The representation’s sparsity is
drastically reduced and is even stabilized along the sequence (it has become
good practice to encode input with a fixed sparsity regardless). [7]

2 Basics

..... ® o o o0 000 L Lol ol o | 80 000 | 1O
o @ | ee 0 ® O | 0 | | [Ceeceoceecoce ©
eee o o 00000000000 O | Ocee
e | @ | | 1o | e | o
| eeeee® eeeee®
e & | | ® | @0 O]
OO
@ ee eee
o o 00 0 o

LA O o o e o0 o0
Column 595 Connection History Column 595 Connection History
Time Step: @ Time Step: 313
|| Input Encoding | Input Encoding
@ Newly Connected Synapses: @ @ Newly Connected Synapses: 33
O Newly Disconnected Synapses: @ O Newly Disconnected Synapses: 126

Figure 2.5: Single SP column’s input connections before and after learning. Synapses
were created and pruned to specialize towards specific input patterns. Ex-
ample is provided by htm-school-viz|4], an interactive HTM visualization for
learning purposes.

10

2 Basics

(see gray square in figure 2.2 B). Within this field only a maximum of potential percent-
age (ppot) inputs, which are determined during initialization of the SP, can be connected
to a column. Thereby the likelihood that each column is connected to a unique set of
inputs increases. This is is important since columns usually have an overlapping 7, and

neighbouring columns behaving identically is not desirable.

SP columns have two metrics: The overlap score is the number of active inputs on a
column’s synapses and will be used for selecting the columns to activate. The active
duty cycles is a count of the column’s activations.

Furthermore there are two mechanisms that prevent overuse and high idle times of
columns.

First, inhibition is used to only activate a limited number of columns in a certain area. It
is configured by the parameter local area density (D), stating the percentage of allowed
active columns in an inhibition radius, which is in turn internally calculated using the
aforementioned potential connection pools size (see blue circle in figure 2.2 B). As an
alternative there is also an option to set the inhibition radius to be global. global in-
hibition (g.inhib) lowers execution time significantly but topological information (useful
for image processing or multivariate input) is lost. Only the columns with the highest
overlap scores (amount of active synapses) in that radius become activated, effectively
providing a winner selection as well as creating the desired fixed sparsity.

Second, boosting is promoting columns to prevent inactivity and overuse of frequently
winning columns. For each column the overlap score is multiplied by a value either above
or below 1 to either increase or decrease the columns chances of activation. The factor of
multiplication is determined by the number of active duty cycles in a vicinity, meaning
that columns that have been activated very often get their overlap score lowered while
their neighbours get it boosted, giving other columns a chance to win the selection as
well. Hence similar subsets of input can cause a variety of neighbouring columns to learn
from their input instead of overfitting to a single one. To allow for configuration of this

behaviour the factor is further multiplied by the boost strength (Bsgy).

2.3.3 Temporal memory
TM is the second algorithm in HTM that’s learning from input. As it’s name implies,

it learns temporal features and is therefore mainly used for prediction and consequently

for anomaly detection as well.

11

2 Basics

« Active cells
After learning - Predictive cells
Inactive cells
A B’ o D’
x BH cu Yu

Figure 2.6: HTM high-order memory example. After learning, two sequences with dif-
ferent beginnings but same middle part use different cells of the columns for
prediction. This way the correct ending of the sequence can be predicted out
of context differentiation.|6]

The SP’s SDR output is used as input by the TM for further processing. This time
a number of columns, matching the number of input bits (SP’s n.), are forming the
internal data structure. In the TM, columns are activated simply by active bits in the
SP’s output.

On top of that, each column contains cells per column (neeipercor) cells. The amount
of cells is configurable by adjusting nceipercor and will affect the memory capacity for se-
quences. Multiple cells per column are important for learning a large variety of sequences
with different contexts. Additional cells can not only store more information, but also
remember the different paths that have led to the current column in the past. This
effectively creates a high-order memory by connecting different origins to the current
input. An example of this effect can be seen in figure 2.6. Using a single cell for each
column creates a single-order memory since the previous cell could have a large number
of possible predecessors.

Each cell of a column can hold max segments per cell (segpq;) number of dendritic
segments, which in return can hold up to max synapses per segment (tm.syn,q,) number
of synapses. These synapses will, throughout learning, be created between segments of
cells of different columns, which effectively provides the remembrance of sequences in the
TM. Just like the synapses of the SP, a permanence describes the connection strength
and is initialized with initial permanence (tm.syninitperm). Whenever a column is acti-
vated, one of its segments will be chosen to learn, depending on the fact if the column
was predicted or is bursting (see below). A general rule is that only segments with at
least minimum threshold (tm.syn,) number of active synapses are eligible for learn-
ing. However, on a learning segment, there will be active and inactive synapses, both of

which will get their permanences changed by permanence increase (tm.syn;,.) for active

12

2 Basics

and permanence decrease (tm.synge.) for inactive ones. In addition, new synapse count
(tm.synpew) number of synapses will be created and connected to previous active cells,
when a segment is learning.
Regarding the main algorithm of the TM, two key methods make up its functionality:
predicting and bursting.
A prediction means that for each iteration there are cells in some columns, that are
excited into a predictive state. This functionality requires dendritic segments being con-
nected to previously active cells through synapses. Segments will activate when atleast
activation threshold (tm.syngctive) number of synapses connected to it are active. The
creation of dendritic segments is part of bursting (see next paragraph). These predeces-
sor cells have been active before and have essentially seen the predicted cells being active
afterwards. How this process works can be seen in figure 2.7.

Now, as to what happens when there is no predicted cell in an activated column, either
in the beginning or somewhere else in the sequence:
Bursting will activate all cells of a column, whenever it is activated by input but contains
no cell in a predictive state. With all cells being active now, a winner cell is selected,
which is usally the one with the least segments for even saturation. Dendritic segments
are connected to known winner or correctly predicted cells of the previous iteration
through new synapses. In figure 2.8 an example is showing how this process happens

over 2 iterations of unknown inputs.

An anomaly score is calculated directly by the TM at the end of each iteration and
depends on how many columns activate and contain a cell in a predictive state. Calcula-
tion of this score is done by dividing the number of bursting columns by the total number
of active columns. A high share of correctly predicted columns will create a score close

to 0, while a lot of bursting will take it closer to 1.

13

2 Basics

Reoccurence of learned sequence (Predicting)

Ll O 1O R 1O 1O BA O] |O
Ol O] O] O] |0 @ |O O] O
1st O| |O| |O|r®| |O] |O]| [O] |O] |O
lteration |O| |O| 7@ |O| O O] |O] O] |O
®-|O|i|0]I|O| |Of O] |O] |0O] |@
ONOHONHO O] 1O]1e] O] O
O 1O] O] |O] |0 O] O] O] |0
O 1O 1O O |Of @ O] O] O
2nd OINICINICINI INICINICINICINICINI®.
Iteration |O| O] (@] |O| |O] [O] |O] |O] |O
@ (O O O] O] 0] |0]|0| | @
O O] |Of [O] O] O] |®] |O] |0

D active input --> predicting segment

. active cell @ previous winner cell

@ predictive cell

Figure 2.7: TM Predicting: When processing a previously learned sequence (see right
example), each active cell will activate its synapses to stimulate other cells.
Cells that get stimulated by many synapses and thus reach a defined perma-
nence threshold will enter a predictive state. This means that they are part
of columns expected to be active next, as they have been previously in the
same sequential context. Columns that have been incorrectly predicted will
raise the anomaly score. Cells can predict several other cells but for clarity
reasons only few segments are highlighted.

14

2 Basics

Input of unlearned sequence (Bursting)

) &

1st
lteration

000000
OO0O00OO
OO0O0O0OO
000000
OO0O00OO
000000
OO000COO
L GO 0

2nd
lteration

O OO0 | = O O0QA

O®0000
000000
000000
O00®00
2990090000
®00000
000000
09000090

[] active input —> newly created segment

@ -active cell @) previous winner cell

Figure 2.8: TM Bursting: When an unlearned input (see left example) is seen active
for the first time, bursting takes place and activates all cells within that
column. Usually a winner cell is selected and connected to previous active
or winner cells (in case of bursting), forming a synapse. Though for the first
input no connections can be formed as there are no previous winner cells.
Bursting creates many segments but for clarity reasons only few segments
are highlighted.

15

3 Problem Statement & Related Work

Inter-vehicular networks are growing in size and complexity with the addition of new de-
vices and functionality. Like many technological advancements, this growth will eventu-
ally lead to new attack vectors and other problem sources. The system of an autonomous
or software-assisted car can have a direct impact on the health of any living being in its
vicinity, both in the car and in the surroundings of it. That means that the system must
rely on safety-critical technologies (e.g. automatic brakes).

These technologies need to be secured so that the safety-aspect is not compromised by ex-
ternal tampering or malfunctional network traffic. Many advancements have been made
by the research community working towards this goal, but there is not yet any solution
that covers all security aspects. Cybersecurity is usually a never ending race between
newly developed security solutions and newly developed workarounds of these. Hence it
is crucial to continue developing new systems to ensure the highest possible security that
can be achieved at the very moment.

Concerning the security of IVN, there are a number of solutions out there that intend to
cover different aspects. One attempt at achieving anomaly detection in IVNs is proposed
by Philipp et al. [13] and describes ingress control in an IEEE 802.1Q standardized net-
work, which enacts link-layer anomaly detection. IEEE 802.1Qci, an amendment within
the aforementioned standard, defines methods for per-stream filtering and policing. In
[13] it is shown that proper traffic shaping and prevention of flows that violate the es-
tablished rules can result in a good reaction to anomalous traffic. Nevertheless it is also
demonstrated that by itself this method is not enough since it’s showing some false neg-
ative results.

Another work related to the security of an IVN is the traffic analysis in V2X application-
level gateways proposed by Szancer [18]. By definition it is not a solution targeted at IVN
since its main goal is to prevent malicious traffic entering the vehicle by analyzing V2X
traffic on the application layer. However, for the IVN to be secure, the traffic entering
from the outside needs to be secured as well, as it is entering the IVN after passing the

V2X gateway.

16

3 Problem Statement & Related Work

Using the same framework as this paper (HTM), Wang et al. tried to achieve better
security of IVNs. The team is taking a different approach compared to this work in a
sense that the analyzed data consists of CAN packet data fields, while prediction and
comparison of single fields is used to evaluate abnormality. This means that only CAN
traffic is monitored. Meanwhile this paper will base it’s data on metrics that are impor-
tant to the link-layer of an Ethernet network, which can also be measured for gated CAN
traffic.

Furthermore, a survey [16] shows that, regarding NAD in connected vehicles, safety is of-
ten underrepresented in many works and ideas to countermand attacks are often missing.
Therefore the search for the best solutions in terms of delay and reliability is important
to eventually reach levels that can be considered safety compliant.

Looking at the works in this area of research, it becomes clear that several aspects of
the network need to be secured separately and that a combination of different solutions
is critical to cover the system as a whole. As a result it’s been determined that this
work will investigate the ML framework called HTM, which has not yet been applied as
a NADS in this kind of network topology, in order to find out whether it is a suitable
addition to the various NAD techniques or not. HTM has, in theory, a high affinity for
this particular setting since it is proven to be well-suited for analyzing streaming data
[2], especially to find anomalies while also dealing with noise at the same time [14].
Another advantage of HTM is that it’s capable of online unsupervised learning. This
means that in the case of any changes to the network, e.g. by a software update or
alternation of the hardware setup, it is possible to adapt to the changes by allowing it
to learn new patterns over a short time, whereas other frameworks such as Recurrent
Neural Networks (RNN) would have to be trained beforehand.

17

4 Analysis

To establish a working NADS it is important to investigate the environment it will be
placed in later. Finding out what the key aspects of the network are, as well as what
input is available for monitoring is crucial for the development of the system, as it will
implicate what requirements may be possible to be achieved. Having this focus will help
getting the most out of the detection rates and speed and also point out what kind of

anomalies could be detected with the planned system.

4.1 Network of the Demonstrator

The network in which the NADS will be developed is hosted at the HAW Hamburg
by the CoRE working group and is called the SecVI Demonstrator. Its internal layout
can be seen in figure 4.1. It consists of an SDN capable switch that is managed by a
SDN controller. Using VLANs the network is split into a front and rear part with an
interconnect. Furthermore the CAN network is split into a left and right portion in both
the front and rear part, while each one is connected through a CAN gateway to the main
network. Besides the CAN network, on which a recorded playback is being transmitted,
there is also a simulated camera in the rear part that is streaming a video to a monitor in
the front part of the network. Then there are several Next Units of Computing (NUC) or
Raspberry PI 4 based computing units intended for a number of different purposes. Their
main purpose is to provide platforms for developing monitoring and defense systems as
part of research projects. Traffic passing through port 1 to 12 of the SDN switch is
mirrored to NADS1 (core-NUC3) while traffic going through port 13 to 24 is sent to
NADS2 (core-NUC4). The traffic arriving at these devices can be captured to create a
dataset for learning and testing. For this paper a personal computer will be used to test
the proposed NADS on parts of that dataset.

Regarding the technical specifications of the network, as mentioned in section 2.2, it is
designed to follow the IEEE 802.1Q standard with the addition of strict priority queueing.

18

4 Analysis

SDN Controller
core-NUC1
192.168.0.3
| ZC_RR
core-pi4-03
Mngmt ba2/18 br2A18 10.0.0.3
can3 Edgecore 24 Port SDN Switch
> v 2L

CANPlayback . '.‘ h .

core-laptop-2| Meni ——— ——
LI i brifi-12 oo wans | br2/13-24 s Lamrd

core-pid-06 192.168.0.24 192.168.0.24 core-pid-05
10.0.0.6 10.0.0.5
cand) cant bri/s be1jm B2 br2/24 be2/17
ZC RL
core-pi4-04
10.0.0.4
ACDC_Edge NADS 1 NADS 2
core-pid-08 core-NUC3 core-NUC4
10.0.0.43 10.0.0.44

Figure 4.1: Network topology of SecVI Demonstrator.

This will not fulfill the TSN specifications but they have a great number of design rules
in common. What this means is that a certain amount of stability in high priority traffic
can be expected.

In this work, the flow that will be monitored is made up of transmissions from the camera

to the monitor.

4.2 Data sources

Network traffic is mirrored from one half of the car to the NADS responsible for that
part of the network. Here it can be preprocessed into a format that will be analyzed later
on. Due to the time sensitive nature of the traffic and the advertised abilities of HTM to
extract spatiotemporal features from time series, it seems meaningful to transform the
traffic into metrics that express these properties. Metrics that count towards carrying
such properties are jitter, avg. gap between frames, bandwidth and frequency. An ex-
ample measurement of these with a resolution of 1ms can be seen in figure 4.2. Since

two of these metrics carry information about the timings (jitter and avg. gap) and the

19

4 Analysis

Jitter Avg. gap
0.0015
0.00075 - o
w
= ~ 0.0010
— (=8
— 0.00050 ~]
E (=11
= =]
" 0.00025 —h I H ” ' H z 0.0005
0.00000 1 | : 0.0000 | . | |
100 200 300 400 100 200 300 400
measurement (#) measurement (#)
Bandwidth Frequency
60000
40
o H*
£, 40000 bt
£ g
= vl
‘% 20000 3

0 T T T 1 T T 1
100 200 300 400 100 200 300 400
measurement (#) measurement (#)

Figure 4.2: Example metric measurement sample of videostream from simulated camera
to monitor, sorted by iteration.

other two about the volume of the traffic (bandwidth and frequency), analyzing a com-
bination of those metrics in unison could provide a great method of finding correlations
and thereby detecting violations of those as well. This is called cross-validation and it

can also increase the certainty of a result in some situations.

4.3 Requirements

As this application will not be part of any functional system in the car, but is mainly
purposed for monitoring, it doesn’t need to meet many requirements. A lot of common
network participators of an IVN need to fulfill either safety- or realtime-related require-
ments. At the very least these must not be disturbed by this application, which is mostly
ensured by mirroring the traffic to a separate device for analysis.

Nevertheless, for the NADS to be practical, the following requirements have been defined

with limitations and possibilities in mind:

e Detection should be as close to realtime as possible in order to support rapid

countermeasures.

20

4 Analysis

e Detection should identify anomalous behaviour without seeing it beforehand in

order to be applicable to unknown attacks.

e The system should not need to rely on human operators while running, making it

a better fit for autonomous cars.

21

5 Design & Implementation

A foundation of the system can now be laid out after analyzing the environment it will
be used in. During the design phase there are a few things to consider in order to make
the system capable. The main aspect that would be advisable to achieve next to good
detection rates is to get timings as low as possible. Having a NADS react as fast as
possible in a TSN is a given considering the impact, a flawed security potentially has in a
safety-critical situation. This means that parallelization of time consuming work should
be done where it’s possible, next to optimizing the code for high efficiency and avoiding
unnecessary operations. Therefore the applications is split up into 4 asynchronously

communicating components.

5.1 Components

Components are divided by simple tasks that need to be executed in the workflow:

In figure 5.1, each component and their interface to the next one is displayed as a data
flow diagram. The Traffic capture component (s. section 5.1.1) provides packets to the
Metric Preprocessor (s. section 5.1.2), where jitter, avg. gap, bandwidth and frequency
are calculated. This data is handed over to the HI'M algorithm as a tuple, where it
is encoded, pooled and is then finally processed by the TM (s. section 5.1.3). As the
final step, the anomaly score is given to the anomaly reporter, where a decision is made
whether an anomaly report should be sent or not. Each component has its own thread
and is buffering incoming data using thread-safe queues, while HT'M internally executes
3 sequential processing steps in a single thread. All parameters for the components that

have and will be mentioned are declared in a single configuration file (s. section 5.1.6).

22

5 Design & Implementation

Figure 5.1: The systems data flow diagram, also showing the participating components.
HTM is a single component consisting of 3 parts.

5.1.1 Traffic capture

Traffic capturing is done by using the python library pyshark, which is a python wrapper
for tshark, a common network sniffing application. The component is providing the
traffic to other components by implementing a simple callback for each captured packet.
In case only a certain connection should be monitored, there is an option to pass a
capture filter as an argument. By doing that, streams between devices can be analyzed

separately for better results and better identification of the problem source.

5.1.2 Metric preprocessor

The preprocessor is preparing the metrics for the HTM algorithm. On each packet it is
calling methods that calculate bandwidth, frequency, jitter and the average gap between
packets. Packets that have been captured contain a lot of information, including arrival
time, length (size), headers, payloads and many more. For calculation of above mentioned
metrics, just two data fields are of importance:

Arrival time, which is given in seconds and is including decimals, reaching a precision
of 100ns on our machines. Length, which is the total packet size including all headers,
given in bytes.

A window size (T) of choice (e.g. 1, 10 or 30 ms) is used for metric calculation periods.

Both a rolling window with a configurable sampling rate (fs) and a static window have

23

5 Design & Implementation

Figure 5.2: Rolling window with fs= 4 and static window

been implemented to compare their effectiveness in observing such periods (s. figure
5.2 for window type reference). While a static window provides a fixed deadline where
data can be discarded, the rolling window had to be implemented using a queue. This
queue holds pairs of data with timestamps, is being filled with incoming data and gets
it’s oldest entries outside of the measurement period removed regularly.

During these periods, each packet size is added up, resulting in the bandwidth:

m
Thw = E stzen,
n=1

where m is the number of packets and thereby the packet frequency.
Avg. gap and jitter are metrics that depend on the time between incoming packets. By
adding up all inter-packet delay and dividing it by the number of packets, the avg. gap
is calculated: .
Tqa.gap = (Z delayy)/m

n=1
Lastly, jitter is calculated by the following method, using the minimum and maximum
delay that occured:

Tjit = delaymaz — delaymin

and is describing the variance of the delays during the period.
Once calculated, the four values are pushed into a thread-safe queue as an Array, which

will be accessed by the HT'M component next.

24

5 Design & Implementation

5.1.3 Hierarchical temporal memory

Aside from configuration (s. section 2.3), HTM is fairly easy to use. First of all the
encoder, SP and TM are initialized using a set of parameters during startup.

During processing, the encoder prepares the data of each iteration, followed by calling
a compute method on the SP, creating an SDR of the encoded data. Lastly, another
compute method is called on the TM with this SDR. With that an anomaly score is
produced by the TM (s. section 2.3.3), which can now be used for further processing (s.
section 5.1.3). A quick breakdown of this process is displayed in figure 5.1.

Anomaly window

An Anomaly window will be established as an interpretation of the anomaly score. This
is done because the anomaly score is naturally noisy, especially when using a high reso-
lution for metric sampling. By applying a smoothing technique, such as using a moving
average (MA) of the score and adding a threshold, it could be possible to provide some
noise reduction. A major downside of doing so is an increase in delay and also potential
false negatives. Hence two variants for windows, using either a simple threshold or a
combination with MA, are implemented and compared against each other to determine
a reliable method.

Once the anomaly score crosses above the threshold, an anomaly window will begin for
a configured duration. The state of the observed flow counts as anomalous during an
active window. In addition, occurences of scores above threshold during this state will
prolong the window for another full duration.

An implementation of this higher-level analysis is a method to counter unwanted be-
haviour due to the use of high resolutions, its effects will be explored in section 6.4. In
there, both threshold and minimum duration will be tested for reasonable configurations.
The general goal is to reduce false positives and to cover whole durations of anomalies
to provide a stable anomaly state.

The calculation and decision making for anomaly windows is done by the same thread
that’s doing the HTM calculations because the result needs to be available before the

next iteration (s. section 5.1.4).

25

5 Design & Implementation

Encoder

In this work, HTM input consists of scalar values. Therefore the scalar encoders will
be used going forward. Though, as described in section 2.3.1, there are two methods of
scalar encoding available: default encoding using a limited value range and RDSE.

RDSE uses MurmurHash3, a widely used non-cryptographic hashing function for lookups,
to map each value to a number of buckets equal to the number of active bits for repre-
sentation (s. algorithm 1). Both encoder types have been implemented to monitor the

impact on the results.

Algorithm 1 RDSE mapping

1: output = bit-array|size|
2: index = int(input * resolution) // starting index based off of input without fractionals
3: for offset=0,1,2,. .. jactiveBits do
4 hash buffer = index + offset > map similar values until a number of buckets
equal to the amount of activeBits has been found

bucket = MurmurHash3(hash buffer, seed)

bucket = bucket % size // move buckets to available range

output|bucket] = 1 // use bucket as index for activated bit
end for

Before encoding, it might provide an advantage to normalize input values depending on
their behaviour (e.g. high variance). A normalizer class has been added for such pur-
poses, which provides the variables necessary for normalization. It can be configured to
simply provide a maximum value to divide the input by, but is also able to take input
values over a time period to calculate standard deviation (std), mean or max. The latter
method can either finish after observing that period or continue updating with after an
interval of choice.

This means that the following basic normalization options can be used:

x T — mean

Tnorm = and Tpopm = d
Tmaz st

5.1.4 SP & TM

As mentioned in section 5.1.3, the SP & TM are easy to use and implement. For each of
them there is a parameter class, that must be populated with the settings mentioned in
section 2.3.2 and 2.3.3. A single exception is that the column dimensions of the TM are

not configured separately and must be the same as the SP (s. section 2.3.3 for reasoning).

26

5 Design & Implementation

Then both SP & TM are created by calling their constructors and passing their respective
parameter class instances. Though a great number of single task methods are provided,
both components have a compute method which combines the typical processing steps
for HTM. These methods take a boolean, enabling or disabling learning, as well as the
input (encoder output for SP & SP output for TM) as parameters.

One more notable built-in feature of HTM is storing and loading SP & TM as a whole,
allowing for persistence of learned structures and also pre-learning and distribution of
the model.

However, the high resolutions used in this work are causing a large number of itera-
tions, more than is seen in previous HTM application examples. This led to a potential
improvement for this system, which is the temporary blocking of learning in the TM
during an anomaly window. A Denial of Service (DoS) attack for example can last a
few seconds atleast, spanning over thousands of iterations which would be learned as
reoccuring sequences by the TM. The effect of this behaviour and its countermethod will
be explored in section 6. Note that this is only important for the TM since the SP is only
learning and providing representations of incoming data. The technique would also not
apply to the first anomalous input which would lower it’s effect on systems using longer

measurement periods and therefore less iterations overall.

5.1.5 Anomaly reporter

When an anomaly has been detected, it needs to be reported by the anomaly reporter.
During an anomaly window, a packet is broadcasted regularly on the network with the

following contents:
e Destination MAC (broadcast): FF:FF:FF:FF:FF:FF
e EtherType = 0xFFAD
e Payload:
— Code (64bit): 1 (Anomalous behaviour) or 3 (Heartbeat)
— Sequence number (64 bit): Number of report

— Report ID (String - UTF8): "AnomalyHTM ", followed by an instance name

27

5 Design & Implementation

In addition the reporter will send a heartbeat every 10 seconds. This lightweight protocol
has been defined for anomaly reporting in the SecVI Demonstrator network and can be
recognized by the SDN controller.

When such broadcasts arrive at the SDN controller, network flows could be reconfigured
to block or reroute specific traffic in response to the anomaly. Furthermore, by using
unique instance names for the NADS, problem sources (devices or flows) can be narrowed

down efficiently.

5.1.6 Run configuration

An instance of this NADS is set up using a configuration file with a Dictionary, containing
all parameters for the various components. An example of it can be seen in listing 5.1,
including a few comments about important settings. For an explanation of SP & TM

configuration values refer to section 2.3.2 and 2.3.3.

Listing 5.1: Run configuration for the NADS

"enc": { # All encoders listed in this part will be auto. created
"Jitter": { # Each encoder has a meta and param section

"meta": { # In meta various top-level settings are described
"type": "SCALAR", "col": "jitter", "normalize": False,
"store": True # Option to store measurements for tests

by

"param": { # settings directly used in encoder initialization
"size": 300, "sparsity": 0.1, "minimum": 0.0, "maximum": 0.0015

b
"bandwidth": {

"meta": {
"type": "RDSE", "col": "bandwidth", "normalize": True,
"constant_max": 500, "store": True
s
"param": {
"resolution": 0.1, "size": 300, "sparsity": 0.1
}
}
by
"application": {
"mode": "SIM_ LIVE", # Simulated live analysis (by loading a pcap)
"model": "", # Option to reload a previously trained model
"resolution_shift": 3, # Resolution configured by decimal shifting and

28

5 Design & Implementation

"resolution_mult": 1.5, # multiplication, T_win = 1s#1.5/1000 = 1.5ms
"max_polling": 2, # Max sampling frequency f_s for rolling windows
"window_metrics": False, # True = static window, False = rolling window
"l _iterations": 800, # Learning time in seconds

"l iterations_min": 140, # Enforced startup learning time

"stop": 801, # Finishing time

"seconds": True, # Base calculations on seconds, not iterations
"interface": "", # Interface to monitor during live tests

"pcap": "networklog_medium_video.pcap", # Pcap to load for simulation
"report_interface": "Ethernet", # Interface to report anomalies on
"learn": True, # True = learning, False = inference only
"always_learn": False, # Enforce learning during anomaly windows
"padding": False, # Fill gaps occuring in measurement with 0 values

"anom_thresh": 0.005, # MA threshold for anom window

"anom_thresh_max": 0.1,
"num_above_thresh": 1500
Hy
"sp": {"boostStrength": 1.5,

"columnCount": 128,

"localAreaDensity": 0.

"potentialRadius": 32,

"potentialPct": 0.5,

SCORE threshold, for immediate anom window

Anom window duration in measurement periods

4,

"globalInhibition": False,

"synPermActiveInc": 0.

"synPermConnected": 0.

"synPermInactiveDec":
"tm": {"activationThreshold":

"cellsPerColumn": 2,

"initialPerm": 0.21,

"maxSegmentsPerCell":

05,
1,
0.008},

126,

"maxSynapsesPerSegment": 126,

"minThreshold": 3,

"newSynapseCount": 64,

"permanenceDec": 0.1,

"permanenceInc": 0.1}

#
#
#
#
#
#
#
#
#
5, #
#
#
#
#
#
#
#
#

B str

n _col

D loc

r_pot

p_pot

g.inhib
syn_inc
syn_con
syn_dec
tm.syn_active
n_celpercol
tm.syn_initperm
seg_max
tm.syn_max
tm.syn_min
tm.syn_new
tm.syn_dec

tm.syn_inc

29

6 Evaluation

In this chapter the evaluation of the most important aspects of the system will take place.
This includes a look at the detection rates of the algorithm, the temporal behaviour and
also the tuning of HT'M parameters. For proper evaluation, anomaly types need to be
defined and recreated in test runs if possible. Due the high impact on detection results of
many settings for input and HTM itself, focus of this evaluation will not be to test as many
scenarios as possible, but rather to increase the performance of the system. Additionally,
the lack of real-world data sets of a yet emerging environment, namely in-car ethernet
networking, provides another challenge for finding suitable test scenarios. Therefore,
the main part of the evaluation will be the exposure of strengths and weaknesses of the
algorithm in our given setting, as well as the trade-off measures that needed to be taken

for better results.

6.1 Anomalies

Concerning the anomalies it needs to determined what types the system will likely detect
and which ones are likely to be overlooked. The main factor for distinguishment is
the impact each type has on the input of this system. For this system, 4 metrics are
considered (s. section 4.2) to provide the data for anomaly detection: jitter, avg. gap
between frames, bandwidth and frequency. By monitoring these metrics, the system is
performing link-layer anomaly detection. This means that it inherits the typical strengths
and weaknesses that come with this category.

Based on this, the following causes could be expected to create detectable anomalies:

e DoS attacks cause a packet flood with the intention to disrupt the communication
between devices by exceeding hardware capacities. An attack of this type has a

high chance of impacting all of the above metrics.

30

6 Evaluation

e Man-in-the-middle attacks can, depending on the type, introduce additional delay

when altering packets.

e There is also a chance that a device will malfunction in any way and cause irregular
network flow. One example is when a device is throttling performance due to
overheating or a process is taking up all resources of a device. Another example

could be a defect sensor sending malformed packets.

On the other hand there are anomaly sources that might leave little to no traces in the

above metrics instead:

e Application-level attacks that change the content of the communication but don’t

alter it’s behaviour.

e Shutting down the communication of a participant of a flow (metrics are only

collected on active communication).
e Many other anomalies can occur that can only be detected by different input.

It’s common for anomaly detection systems to specialize for certain features, as trying to
cover too many areas at once lowers success rates and increases false positives. Instead,
weaknesses can be covered by combining multiple detection systems and techniques (e.g.

Application-level gateway|18], Watchdog etc.), each specialized for different anomaly
types.

6.2 Testing methodology

In order to properly measure the performance of the system, a testing environment with
reproducable properties is necessary. Rather than running the same configuration on
the SecVI Demonstrator and risking deviations of behaviour of some sort, testing will be
done on recordings of the traffic. This way the scenario will stay the same over many
tests, leaving only randomness inside the HTM algorithm (e.g. random SP initialization)
as factors that could alter the behaviour of the NADS between runs.

Fortunately pyshark provides all required tools: instead of live processing it’s also pos-
sible to store the captured traffic into a file and load it again later. Though a replay
doesn’t provide the data in the same speed as in reality (usually it’s faster), the arrival
time of each packet can be used to perform time-based calculations like metric calculation

and duration of anomaly windows. Hence setting up a test case consists of recording the

31

6 Evaluation

flow that is to be analyzed, launching a simulated attack (such as DoS) and storing the
capture file for later use.

Time is measured from the beginning of a capture. During tests and captures no coun-
termeasures will be taken, as it is not part of this work. In order to validate the results,
each parameter set presented in this work has been subjected to at least 10 test runs.
Finally, test runs have been performed on a computer running Windows 10, using the

following components:
e CPU: AMD Ryzen 3600

RAM: 32 GB DDRA4-3200

GPU: AMD Radeon RX6800

Mainboard: MSI MS-7B&6

e HDD: Western Digital WDS100T2B0C-00PXHO0

For this NADS’s performance however, only the CPU and RAM have any impact, with

the only exceptions being edge cases, such as insufficient RAM and paging as a result.

6.2.1 Test scenario: Videostream DoS-attack

Communication between the camera and monitor of the Demonstrator (s. figure 4.1) will
serve as a base for the first test. The camera sends a continuous stream of video data to
the monitor.

The traffic of this network flow has been captured for a total duration of little over 800
seconds or 13:20 minutes. During the capture, three DoS attacks are launched from
another device in the network at different points in time to serve as anomaly sources.
Target of the attacks is the monitor, while the malicious packets contain a spoofed IP-
address which belongs to the camera. Spoofing the IP address is important to actually
inject the packets, since the SDN controller will already block unknown routes between
devices.

The exact beginning and ending time of the attacks, according to arrival of the first and

last DoS packets, are as follows:
e Attack 1 starts at 176.794 s, ends at 209.466 s, lasting 32.672s.

e Attack 2 starts at 542.717s, ends at 580.432s, lasting 37.715s.

32

6 Evaluation

e Attack 3 starts at 654.861 s, ends at 687.517s, lasting 32.656s.

In figure 6.1 all four input values are displayed in temporal arrangement. Here measure-
ments are taken over a period of 100 ms using a rolling window, which is sampled every
5ms during continuous packet flow.

Figure 6.2 contains the same measurement but with a static window of length 1.5 ms.
This highlights key differences between the window types in a sense that the expression
of flow behaviour in the metrics varies greatly, depending on the choice of measurement
configuration.

Therefore both input methods will be investigated in their detection efficiency and other
performance aspects in the following paragraphs. Noticable consistency in measurements
can be seen during the attacks on all metrics except jitter, while normal behaviour ap-
pears volatile in comparison. In theory, HTM should be able to adapt to the high variance

of the flow and be raising the anomaly score when it’s missing.

33

6 Evaluation

0.0015 A

JI (! r |
W h | |I,4R P' | x | |
% 00010 | |’5 n (R AN A ' , |
— | | | | |
g YA | Y 1L ' 1t
£ 0.0005 \RAll 5 TR \\ i ' |
| | ’l f . | Ii'I Lb
0.0000 A '
0 100 200 300 400 500 600 700 800
point in time (s)
0.0015 A
s I
g 000101 || ‘ I AN | LI
- \ ||l\||'|| Il | 'H'l
9 000054 || Il | | LT
L I|I |i| |i |I J ' ’I- _".Ir . f."-
| f
0.0000
0 100 200 300 400 500 600 700 800
point in time (s)
400000
m
=
=
o 200000
N
u
0 M
0 100 200 300 400 500 600 700 800
point in time (s)
300
*
200 1
¢
L&
2 100 -
0- M

T T T T T T T T T
0 100 200 300 400 500 600 700 800
point in time (s)

Figure 6.1: Input Measurements for Test: Videostream DoS-attack. The following met-
rics are shown from top to bottom: jitter, avg. gap, bandwidth and frequency.
One measurement consists of a maximum of 100 ms of data, using a rolling
window with fs= 20. Attack-related measurements have a gray shaded back-
ground.

34

6 Evaluation

0.0010 4

jitter (s)

0.0005 A

0.0000 A

T T T T T T T
0 100 200 300 400 500 600 700 800
point in time (s)

0.0010 4

0.0005 4

avg. gap (s)

0.0000 +

T T T T T T T T
0 100 200 300 400 500 600 700 800
point in time (s)

10000

7500 +

5000 +

size (byte)

2500

T T T
0 100 200 300 400 500 600 700 800
point in time (s)

W
Lo R =
] 1

packets (#)
J
]

=
[=] o
1

T T T T T T T T
0 100 200 300 400 500 600 700 800
point in time (s)

Figure 6.2: Input Measurements for Test: Videostream DoS-attack. The following met-
rics are shown from top to bottom: jitter, avg. gap, bandwidth and frequency.
One measurement consists of a maximum of 1.5 ms of data, using a static win-
dow. Attack-related measurements have a gray shaded background.

35

6 Evaluation

Figure 6.3: Confusion matrix based on actual and measured anomalies (anomaly win-
dow).

6.3 Detection rates

Anomaly detection systems are evaluated by their detection performance, which is typ-
ically measured by the True Positive Rate (TPR), False Positive Rate (FPR) or other
performance metrics. In general, the calculation of these rates is a comparison between
actual anomalies and the detection on their respective input. Anomaly windows have
been chosen as an interpretation of the anomaly score produced by the TM and will
therefore provide the base for detection rates in this work.

Out of the available performance metrics, the following methods have been chosen for

this work’s evaluation and are based on the confusion matrix in figure 6.3:

e Coverage quality during anomalies: TPR, defined by the total time of positive

anomaly detection during anomaly occurence:

TP

TPR= ——
R TP+ FN

e False positive detection outside of expected anomalies: FPR, defined by the total

time of positive anomaly detection during normal behaviour.

FP

FPR=———
R=rpirn

36

6 Evaluation

SP parameters | value TM parameters | value
Bstr 3 Ncelpercol 6

Teol 128 S€gmaz 256
Dloc 0.4 LM sYNactive 10

Tpot 64 tm.sYninitperm 0.21
Dpot 0.2 tm.sYynmaz 256
SYNine 0.12 tm.sYNmin 8
SYNeon, 0.2 tm.sYNpew 128
SYNdec 0.008 tm.syngec 0.1
g.inhib true tMm.SYNine 0.1
Jitter encoding | value Application parameters | value
Type Scalar Window rolling
Normalization | none Sampling resolution 100ms (5ms)
Max. 0.0015 Initial learning time 50s
Min. 0.0 Learn during anomaly true
Size 300 Padding false
Sparsity 0.1 Anomaly threshold 0.1
Periodic false Anom. window duration | 2s

Table 6.1: Optimized configuration for videostream using a rolling window. Only jitter is
used for input. Values that directly differ from the other method are displayed
in bold.

6.3.1 Detection results

Now following are the detection results and configurations for the test scenario. Following
a number of reconfigurations, the parameters of table 6.1 and 6.2 have provided the
best detection results. In section 6.7, important decision-making steps for choosing the
parameters will be further evaluated.

Two possible solutions are provided, with the key difference being that one is using a
rolling window (s. table 6.1), while the other one is using a static window (s. table 6.2)
for metric observation and collection. In order to produce satisfying detection results, the
chosen input of the static window consists of all 4 presented network metrics. Meanwhile
the rolling window method relies only on jitter. Due to the choice of a multivariate
input for the static window, the performance boosting g.inhib setting had to be turned
off. The actual detection results of the test, including the anomaly score and anomaly
window (1=active, O=inactive), are displayed in figure 6.4 (rolling window, for related

input see jitter in figure 6.1) and 6.5 (static window, for related input see figure 6.2). So

37

6 Evaluation

SP parameters | value TM parameters | value
Bstr 1.5 Ncelpercol 6
Teol 128 S€9max 256
Dloc 0.4 IM.sYNactive 10
Tpot 64 tm.sYNinitperm 0.21
Dpot 0.2 tm.sYnmaz 256
SYNine 0.12 tm.sYynmin 8
SYNeon, 0.2 M. SYNpew 128
SYNdec 0.008 tm.SYNgec 0.1
g.inhib false tMm.sYNine 0.1
Jitter encoding | value Avg. gap encoding | value
Type Scalar Type Scalar
Normalization | none Normalization none
Max. 0.0015 Max. 0.0015
Min. 0.0 Min. 0.0
Size 300 Size 300
Sparsity 0.1 Sparsity 0.1
Periodic false Periodic false
Bandwidth encoding | value Frequency encoding | value
Type Scalar Type Scalar
Normalization none Normalization none
Max. 10000 Max. 50
Min. 0 Min. 0
Size 300 Size 300
Sparsity 0.1 Sparsity 0.1
Periodic false Periodic false
Application parameters | value
Window static
Sampling resolution 1.5ms
Initial learning time 50s
Learn during anomaly false
Padding false
Anomaly threshold 0.1
Anom. window duration | 4.5s

Table 6.2: Optimized configuration for videostream using a static window. All 4 available
metrics are used as input. Values that directly differ from the other method

are displayed in bold.

38

6 Evaluation

far, all attacks have been properly detected, while the static window method is showing

some difficulties at establishing a continuous detection of the 2nd attack.

1.0 4 = Anomaly

T Score
Anomaly

= Window

0.8 1

0.6 - i

0.4 4

0.2 1

L
T

anomaly scare

0.0
T T T T T T T T
0 100 200 300 400 500 600 700 800
point in time (s)
Figure 6.4: Detection results using a rolling window.
1.0 4 — _ Anomaly
Scare
_ Anomaly
Window
0.8
o
3 0.6
wy
=
£
S 0.4 1
=
1]
0.2
0.0

T T T T T T T T
0 100 200 300 400 500 600 700 800
point in time (s)

Figure 6.5: Detection results using a static window.

39

6 Evaluation

Method | rolling window | static window

TPR 0.97607 0.89206
FPR 0.01009 0.00474

Table 6.3: Detection rates for both input methods in comparison.

Based on the results, TPR and FPR can now be calculated for either method. The
outcome of this calculation can be seen in table 6.3. Since a forced learning period is
used, during which anomalies are ignored, that part is excluded from the calculation of
the rates.

The detection rates show that both methods are reliable at overall detection of the
attacks, while also causing false positives less than 1% of the time.

A great coverage of the attacks can be achieved by using only jitter and a rolling window,
measuring a TPR of 0.976 or 97.6 %. While better rates have been achieved for this
method by counterintuitively enabling learning during anomalies, this came at the cost
of processing time which has been prioritized.

The static window method with multiple metrics instead performs worse with a TPR of
0.892 or 89.2 %, mainly due to the bad coverage of the 2nd attack.

Finally, regarding the FPR, it’s important to consider that it depends heavily on the
proportion of non-anomalous against anomalous flow included in the test. The share of
anomalous flow in this example is roughly 14 %. This is fairly high, considering that
in a real-world scenario a response to the attacks should stop these from continuing or
repeating. Furthermore the behaviour of the flow would be normal nearly 100 % of the
time. To investigate this issue, an extended test including another 20 min of normal
data in prior has been conducted. Since no false positives occured during the extended
period of that test, an equally lower FPR was the result. In spite of these observations the
shorter version is presented because it further highlights the speed in which the algorithm
can adapt to the input.

Another observation concerning the false positives is that they mostly occur right after
an anomaly. This could be happening due to contextual information in the TM still
being messed up by the anomaly. A second potential reason is that the reestablishment

of normal communication causes some irregular behaviour as well.

40

6 Evaluation

e
o
1

e
=]
]

o
Y
1

anomaly score

(=]
3
]

2
(=]
]

T T T T T T T
0 50 100 150 200 250 300 350 400
measurement (#)

Figure 6.6: Typical behaviour of anomaly score during a collective anomaly, such as a
DoS attack, which spans over many measurement periods. The timespan of
this example is 2s.

6.4 Anomaly window

Previously described in sec. 5.1.3, anomaly windows are used as a final interpretation of
the anomaly score. It has been suggested that an MA could be used as a countermeasure
to noise in the resulting anomaly score. Though based on the results of numerous testing
using high resolutions with many iterations per second, there are multiple reasons not to
use an MA for such purpose.

One of them is the high amount of anomaly scores valued 0 during an anomaly. When
using high resolutions, scores above 0 are generally produced much less often than scores
equal 0. A demonstration of this can be seen in figure 6.6, where 2s worth of anomaly
score results from the rolling window setup during the first attack are displayed. The
result of this effect, in combination with MA| is that a sufficient smoothing length would
have to be chosen to bridge these gaps, which causes an equally large delay until detec-
tion of actual anomalies.

Another reason is the lack of necessity to reduce noise in the anomaly score results,
when the configuration of the system and input collection is well done. As a matter of
fact, data sequences of normal behaviour express very few noise in the score after just a
few seconds of learning (s. figure 6.4):

The number of scores above 0 is small and they mostly consist of low values (e.g. 0.01),

which can be ignored using a simple threshold.

41

6 Evaluation

This doesn’t mean that there are no scenarios where such a post-processing method
would be beneficial. It rather depends entirely on the given data and the HTM model
configuration. But even then, a more sophisticated approach of filtering the score could
be of greater benefit to the system than a mere MA.

As a result, the raw anomaly score and a threshold have been chosen for the configura-

tions as the anomaly window method.

In section 5.1.4 it has been explained that the high number of iterations could lead
to fast learning of the anomalies themselves. The proposal to mitigate this effect was to
disable learning in the TM during an active anomaly window. By applying this technique
it was possible to keep the specialization towards normal behaviour of most configura-
tion variants clean. This solution additionally improved the execution speed during the
anomalies and their congested input. Tests have been conducted with this setting enabled
and disabled and the static window configuration shows the necessity of this mechanism
for it’s success (s. results of disabled setting in figure 6.7). While the rolling window
method only runs slightly faster with this setting enabled, the static window method
shows significantly worse detection and execution speed (roughly 40 times slower) when
it is disabled. The difference between these two likely stems from the increased resolution
used with the static window which creates at least 3 times as much measurements for
this test.

6.5 Timings

As mentioned in section 5, a fast reaction is a feature that would be well received within
a safety-critical TSN environment. Timings are measured by comparing the beginning
of an anomaly to the time when it is detected by the system.

Furthermore, the processing time of each component should be as low as possible because
of the sequential nature of the system. The slowest component in the processing chain

will dictate the maximum frequency, in which data can be processed.

6.5.1 Detection delay

The detection delay is defined by the amount of time between the first packet out of

order and the time of the iteration, where the anomaly is detected by the system. It

42

6 Evaluation

1.0 1 Anomaly
T Score
Anomaly
= Window
0.8 1
g
3 0.6 1
o
)
o
g 0.4 1
=
o
0.2 1
0.0 A

T T T T T T T T
0 100 200 300 400 500 600 700 800
point in time (s)

Figure 6.7: Detection results of rolling window configuration but with setting to suppress
learning during anomalies disabled. The detection of the 2nd attack is now
much worse.

is further influenced by the window size for metric collection and the sampling rate for
rolling windows, since these values depict the smallest amount of time until the data is
exposed to the HTM system.

Another factor for increased delay could be the interpretation method of the anomaly
score (s. section 5.1.3), since some methods require knowledge of previous iterations and
therefore introduce delay. In the final configurations of this work, only the newest score
is interpreted (s. section 6.4), which doesn’t add additional delay.

The actual delay measured for the described scenario is shown in table 6.4. It shows that
the rolling window method has managed faster timings, staying well below 1s, than the
static window method, which needs at least 1s for detection.

Determining whether or not this speed is sufficient for realtime detection depends on
the type of flow it is applied to. Some connections (e.g. actuation, like breaking and
steering) might need to be secured within just a few dozen ms at most after the start of
an anomaly. The achieved delays of the rolling window method are on par with average
human reaction times [1] and may suffice for less critical connections in the network, such
as a camera used for parking. There the displayed video stream could be switched to a
different camera without drastically impacting the driver’s visual decision basis.

Nevertheless, the best result of 117.2ms demonstrates adequate detection speed for an

43

6 Evaluation

Method | rolling window | static window
Attack 1 0.1172s 1.1425s
Attack 2 0.6808 s 2.6606 s
Attack 3 0.2029 s 1.1697s

Table 6.4: Detection delay for both input methods in comparison.

input with much noise. The difference in delay between the methods mostly results from
differently shaped input, which hints further optimization potential.

Additional improvements to the system or input could therefore provide even better
results. Monitoring real TSN communication with time-critical properties for example
would produce more stable metrics, eventually increasing the sensitivity of the system
towards the violations of typical behaviour. As can be seen in figure 6.1 jitter, there is
currently no obvious pattern to normal behaviour except for oscillation within a value
range. Yet the detection of lack of that behaviour can take place within the fraction of
a second.

A conclusion drawn from the detection delay is that sampling the input more frequently
doesn’t necessarily speed up detection, since the less frequently sampling method (5 ms vs.
1.5ms) achieved faster detection. Instead it is important to choose a sampling method
that amplifies the difference between normal and abnormal patterns (see difference of

jitter between figure 6.1 and figure 6.2).

6.5.2 Processing delay

Processing delay caused in each step of the workflow will add to the total time until
detection. More severe impacts of high processing times, which exceed the used time
period for a single measurement, could be: increasing buffer or stack use, leading to
inability of performing near real-time operation or even cause application crashes. A
runtime analysis provides further insight into the time needed for the various operations:
Built with efficiency in mind, the metric preprocessor and normalization step have proven
to not slow down overall system performance significantly. These pre-processing steps
have execution times around 16 ps/iter. on average with a standard deviation of 23 ps/iter.
(rolling window, worse performance due to queue management).

HTM however produces higher timings, as would be expected due to it’s higher com-
plexity. Being the slowest component of the system, HTM will set the limits for the

resolutions that can be achieved. A detailed dissection of it’s processing time is shown

44

6 Evaluation

Method rolling window | static window
Min 0.1013 ms 0.1225ms
Mean 0.2153 ms 0.5801 ms
99th Percentile 1.6339 ms 2.6932 ms
99.9th Percentile 6.2228 ms 12.0408 ms
Max 18.4723 ms 26.1325ms

Table 6.5: Processing delay for both input methods in comparison.

in table 6.5.

Next to min, mean and max, the 99th and 99.9th percentile have been included to get a
better view of worst case scenarios. Particularly the difference between 99th and 99.9th
percentile shows that there are few performance outliers. As for these, there is no guar-
antee that external factors like scheduling weren’t the actual cause. The 99th percentile
could be considered as a guideline for a realistical choice of the maximum resolution for
these configurations. This would mean that the rolling window method could also run
slightly faster subsampling while the static window method could use a longer resolution
for consistent performance.

While the measured processing delays should qualify the system for many realtime pur-
poses, porting the system over to the original C++implementation of HTM would further

reduce execution time and overhead.

6.6 Memory consumption

Using a large traffic capture file, an extended test has been performed to evaluate the
RAM usage of the proposed system and HTM configuration. As can be seen in figure
6.8, the system uses about 240 MB of memory when reaching a steady state. This would
mean that multiple instances could run on a single device, as long as it has enough

memory and processing power.

45

6 Evaluation

200 A

150 A

memory used (in MiB)

0 200 400 600 800 1000 1200
time (in seconds)

Figure 6.8: HTM memory consumption

6.7 Tuning of parameters

A great part of developing an HTM based system is to find a balance of parameters for
the encoding, SP and TM, that work well together. For this it’s important to keep the
separate responsibilities of each component in mind, which is as following:

The encoding step translates data into an HTM-compatible format,

the SP interprets that data and learns to distinguish input patterns from each other
(spatial features),

while the TM learns the order in which they appear and which patterns are related tem-
porally (temporal features).

Great inter-dependence of these 3 means that a misconfiguration on any part can have
a very negative effect on the end result. One big problem of the configuration process is
that without a suitable encoded input, the SP & TM will always produce dissatisfying
results. On the other hand, finding a good encoding setting can be challenging when a
lot of different data is fed into the system and the SP & TM are not yet optimized.

Hence, the following procedure is suggested for general tuning of the system for anomaly
detection, since it has delivered the best results of all approaches:

Based on the data that is to be encoded, roughly choose settings that can express differ-
ences in the data that shall be noticed.

Configure SP & TM to be just sensitive enough, so that normal flow behaviour produces
low and steady anomaly scores.

Revisit the encoding settings and try various methods (resolution, normalization etc.) by

46

6 Evaluation

monitoring the anomaly score output and trying to raise it on anomaly occasions while
still keeping it low during normal behaviour.
Do fine-tuning of the SP in regards to sensitivity for different input patterns, as it acts

like a second encoder.

Following these guidelines can provide a good basis for the system but in each step
there are many considerations, which will be explained in the following paragraphs. To
wrap up the configuration in the end, it might still be necessary to reconfigure the differ-
ent parts a number of times to better extract spatial or temporal features. An alternative
to the manual finalization can also be provided by particle swarm optimization, which
is included in the HTM framework. Though this would require the implementation of
an automated system performance metric (e.g. combination of TPR and FPR) and a

certain configuration baseline to produce desired results.

6.7.1 Input & Encoding

Encoding data in a way that it fits into a bit-array can be done in many different ways.
While very specialized methods can provide great results (e.g. mapping of single CAN
fields), this work is using scalar values in a time series and will therefore use the scalar
encoder.

An important note about the effectiveness of the RDSE versus the scalar encoder is that
the RDSE significantly reduces run-to-run consistency in comparison. Using it would
cause such a great inconsistency that the similarity between runs became unreliably
low. The scalar encoder instead produces results almost so consistent that deterministic
behaviour could be assumed, even though random factors are still used during the ini-
tialization of HTM.

The following settings are available in regards to input and will have an impact on the

system performance:
e Sparsity, describing the share of bits used to represent the data.

e Minimum and maximum value. Values outside of this range can either be clipped

into the range or the range can be repeated periodically.

e One setting out of size, radius or resolution. In combination with the sparsity
and value range, each of these result in a rule of three and are therefore mutually

exclusive.

47

6 Evaluation

e Normalization or raw input. Other forms of pre-processing such as filters might be

used instead. This is not an encoder setting.
e Insertion of zero padding when no measurements are available

The value range (minimum and maximum) should be chosen so that the typically pro-
duced values can be accomodated. In this system the choice is to clip values into that
range rather than using a periodic range. This was based on the assumption that it
wouldn’t normally happen and that it would be interpreted as abnormal behaviour if
encoded arrays would have active bits at the edge of their boundaries.

The sparsity should be sparse in general, allowing for many different data representations
but also some overlap. For this system a general value of 0.1 or 10 % has been chosen
since other variations have shown no real benefit and other settings can compensate for
higher or lower choices of sparsity.

One of such settings that compensate the sparsity is the size, radius or resolution. In
this work, a constant size of 300 has been chosen, since it allowed for an even balance
of multiple inputs. This way, only the value range remains a changeable factor for the
actual resolution or overlap of the encoding, eliminating two other factors from the con-
figuration process. The ranges have been picked by observing the highest and smallest
values occuring in the metric measurements. Different structuring of the range by lower
maximum limits and periodicity, higher maximum limits or other variants have not ben-
efited the results.

Additionally, neither the normalization methods nor the use of padding have improved

the system in this test scenario.

6.7.2 Spatial Pooler & Temporal Memory

Using the default HTM configuration (s. table 6.6) as a baseline, a manual heuristic
search for parameters has been performed. Single parameters have been incremented
and decremented in steps while monitoring the resulting anomaly scores in regards to
FPR and TPR. By locking one or more parameters to a fixed value, such as n.,;= 256,
other parameters can be searched thoroughly to establish a number of well working vari-
ants. Then the best performing models are used as a new baseline and the process is
repeated until the system performs well enough on a parameter set. Additionally, many
steps can be tested at the same time by running multiple instances of the program at

the same time.

48

6 Evaluation

SP parameters | value TM parameters | value
Bstr 0 Ncelpercol 32
Neol 1024 S€9mazx 255
Do 0.05 M. SYNactive 13
T'pot 16 tMm.SYNinitperm 0.21
Dpot 0.5 tm.sYNmaz 255
SYNine 0.05 tm.sYynmin 10
SYNecon, 0.1 tm.sYNpew 20
SYNdec 0.008 tm.syNgec 0.1
g.inhib false tm.syNine 0.1

Table 6.6: Default HT'M parameters.

During this process some parameters quickly showed favorable value ranges:

SYNdecs S€Gmazs tM-SYNmaz, tM.SYNgee and tm.syn;n. have remained unchanged through
most tests after good default performance and various failed attempts to adjust them.
neol has worked best below a quarter of it’s default value, which decreases the capacity
and size of spatial patterns in the SP. This then acts like a compression layer which
reduces the dimensionality of the data, further reducing noise. A similar technique is
often used on recreational neural networks (e.g. autoencoder).

Concerning the TM, the ncepercor has been kept below 10 most of the time. One reason
for this is that a higher ncepercor increases execution time. Another reason is that the
sequential patterns of the testing data are rather short-lived. A ncepercor 0f 6 provides

a well balance between high-order memory capability and execution time for the test data.

These findings have provided the minimal basis for final tuning of the remaining pa-

rameters using the described search process.

49

7 Conclusion

In this work an HTM-based NADS for IVN has been implemented and evaluated. Around
the HTM framework a number of options have been added for reactive online learning
suppression, input normalization, output interpretation and padding. To insert data into
the HTM system, traffic capture and network metric calculation modules have been im-
plemented with full control over resolution and the type of measurement windows. By
using these options in a large variety of constellations and observing their effectiveness,
the ability of HT'M to work in a realtime environment and also what steps it takes have
been evaluated. It has been found that many of these constellations work well while some
excel in either detection performance, hardware performance or provide a good mix of
both.

HTM could fulfill the provided requirements to a degree. It shows sufficient performance
for realtime environments in terms of execution speed. With detection delays of a few
100ms at most in a noisy dataset, as well as achieving good detection rates, the HTM
framework has demonstrated it’s potential benefits for realtime anomaly detection. HTM
is capable of providing sufficient detection to serve as a decision basis for responses to
attacks or other types of anomalies within the IVN. Another property that is often men-
tioned about HTM is it’s robustness when it comes to input containing a lot of noise,
which could be observed in the tests as well.

As with many other types of ML-based NAD, the effectiveness of the system depends
on some optimization for the flow that is to be monitored. This is due to each type
of communication (e.g. steer-by-wire and videostream) expressing different behaviour.
Part of this optimization can be automated using the particle swarm optimization for
parameters, which is included in HTM.

Thanks to the simple structuring of the encoding process, it is possible to easily imple-
ment custom encoders for a variety of purposes, such as the mapping of CAN fields for
application layer detection [19]. Other than that, HTM also provides other mechanisms
that are typically used in ML, such as categorization or image processing. This enables

it for a similarly wide range of applications to that of Neural Networks (NN).

50

7 Conclusion

The framework also shows some niche advantages over NNs in a few areas, including:
Online learning capabilities, allowing for changes in communication behaviour (e.g. through
an update of a program) to get learned during runtime. Simple deployment, since no
external libraries besides HTM are needed for the system to work. And lastly the ability

to use multivariate inputs as a means of cross-validation.

7.1 Outlook

For future work regarding ML-based systems in an IVN it would be interesting to see if
and in which categories HT'M can provide an edge over NNs. Especially the performance
in a TSN-based network on streams with more stable patterns remains to be seen, as
it could provide an environment for even faster detection times and accuracy for all
types of NADSs. Due to properties like online unsupervised learning it can also be
applied in different ways from NNs. For example by creating subsequent HTM systems
dynamically. These could then further process the information provided by the parent
system (e.g. detecting the streams of a range of sensors and monitoring their sending
behaviour with subsystems). While the community around HTM is small in size when
comparied to NNs, the project is enjoying rather frequent additions and updates. As
each problem has a different best solution, the larger variety of sophisticated approaches

will only benefit the outcome.

51

Bibliography

[1]

2]

3]

4]

5]

6]

7]

ABBASI KESBI, Reza ; MEMARZADEH-TEHRAN, Hamidreza ; DEEN, M.J.: A
Technique to Estimate the Human Reaction Time Based on Visual Perception. In:
Healthcare Technology Letters 4 (2017), 01

AHMAD, Subutai ; LAVIN, Alexander ; PURDY, Scott ; AGHA, Zuha: Unsupervised
real-time anomaly detection for streaming data. In: Neurocomputing 262 (2017),
S.134-147. — URL https://www.sciencedirect.com/science/article/
pi1i/S0925231217309864. — Online Real-Time Learning Strategies for Data
Streams. — ISSN 0925-2312

AHMED, Mohiuddin ; NASER MAHMOOD, Abdun ; HuU, Jiankun: A survey of
network anomaly detection techniques. In: Journal of Network and Computer Ap-
plications 60 (2016), S. 19-31. — URL https://www.sciencedirect.com/
science/article/pii/S1084804515002891. — ISSN 1084-8045

COMMUNITY htm: him-school-viz. GithubRepository. Jun 2021. — URL https:
//github.com/htm-community/htm-school-viz

COMMUNITY htm: htm.core. GithubRepository. Feb 2021. — URL https://

github.com/htm-community/htm.core

Cul, Yuwei ; AHMAD, Subutai ; HAWKINS, Jeff: Continuous Online Sequence
Learning with an Unsupervised Neural Network Model. In: Neural Computation 28
(2016), 11, Nr. 11, S. 2474-2504. — URL https://doi.org/10.1162/NECO_
a_00893. — ISSN 0899-7667

Cul, Yuwei ; AHMAD, Subutai ; HAWKINS, Jeff: The HTM Spatial Pooler—A
Neocortical Algorithm for Online Sparse Distributed Coding. In: Frontiers in Com-
putational Neuroscience 11 (2017), S. 111. — URL https://www.frontiersin.
org/article/10.3389/fncom.2017.00111.— ISSN 1662-5188

52

Bibliography

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

HarBA, Khalid ; MAHMOUDI, Charif ; GRIFFOR, Edward: Robust Safety for
Autonomous Vehicles through Reconfigurable Networking. In: FElectronic Pro-
ceedings in Theoretical Computer Science 269 (2018), Apr, S. 48-58. -~ URL
http://dx.doi.org/10.4204/EPTCS.269.5. — ISSN 2075-2180

HAWKINS, Jeff ; AHMAD, Subutai: Why Neurons Have Thousands of Synapses,
a Theory of Sequence Memory in Neocortex. In: Frontiers in Neural Circuits 10
(2016), S. 23. — URL https://www.frontiersin.org/article/10.3389/
fncir.2016.00023. — ISSN 1662-5110

HAckEL, T. ; MEYER, P. ; KorF, F. ; ScaMmipT, T. C.: Software-Defined Net-
works Supporting Time-Sensitive In-Vehicular Communication. In: 2019 IEEE 89th
Vehicular Technology Conference (VTC2019-Spring), 2019, S. 1-5

IEEE 802.1 TSN Task Group: [EFEE 802.1 Time-Sensitive Networking Task
Group. Online. — URL https://1.1ieee802.0rg/tsn/

Kim, S.: Detecting contextual network anomaly in the radio network controller

from bayesian data analysis. (2015)

MEYER, P. ; HACKEL, T. ; KORF, F. ; SCHMIDT, T. C.: Network Anomaly Detection
in Cars based on Time-Sensitive Ingress Control. In: 2020 IEEE 92nd Vehicular
Technology Conference (VTC2020-Fall), 2020, S. 1-5

PapiLLA, D. E. ; BRINKWORTH, R. ; MCDONNELL, M. D.: Performance of a hi-
erarchical temporal memory network in noisy sequence learning. In: 2013 IEEE
International Conference on Computational Intelligence and Cybernetics (CYBER-
NETICSCOM), 2013, S. 45-51

PURDY, Scott: Encoding Data for HTM Systems. (2016), 02

RAJBAHADUR, Gopi K. ; MALTON, Andrew J. ; WALENSTEIN, Andrew ; HASSAN,
Ahmed E.: A Survey of Anomaly Detection for Connected Vehicle Cybersecurity
and Safety. In: 2018 IEEE Intelligent Vehicles Symposium (IV), 2018, S. 421-426

STEINBACH, Till: FEthernet-basierte Faohrzeugnetzwerkarchitekturen fiir zukiinftige
Echitzeitsysteme im Automobil. Springer Vieweg, 2018. — ISBN 978-3-658-23499-7

SZANCER, S.: Traffic Analysis in V2X Application-Level Gateways. (2021)

53

Bibliography

[19] WANG, Chundong ; ZHAO, Zhentang ; GONG, Liangyi ; ZHU, Likun ; Liu, Zheli ;
CHENG, Xiaochun: A Distributed Anomaly Detection System for In-Vehicle Net-
work Using HTM. In: IEEE Access 6 (2018), S. 9091-9098

[20] WaAszZECKI, P. ; MUNDHENK, P. ; STEINHORST, S. ; LUKASIEWYCZ, M. ; KARRI,
R. ; CHAKRABORTY, S.: Automotive Electrical and Electronic Architecture Security
via Distributed In-Vehicle Traffic Monitoring. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 36 (2017), Nr. 11, S. 1790-1803

54

A Appendix

55

Erklarung zur selbststandigen Bearbeitung einer Abschlussarbeit

Gemiéf der Allgemeinen Priifungs- und Studienordnung ist zusammen mit der Abschlussarbeit eine
schriftliche Erklarung abzugeben, in der der Studierende bestétigt, dass die Abschlussarbeit ,,— bei einer
Gruppenarbeit die entsprechend gekennzeichneten Teile der Arbeit [(§ 18 Abs. 1 APSO-TI-BM bzw. § 21
Abs. 1 APSO-INGI)] — ohne fremde Hilfe selbsténdig verfasst und nur die angegebenen Quellen und
Hilfsmittel benutzt wurden. Wortlich oder dem Sinn nach aus anderen Werken entnommene Stellen sind

unter Angabe der Quellen kenntlich zu machen.*

Quelle: § 16 Abs. 5 APSO-TI-BM bzw. § 15 Abs. 6 APSO-INGI

Erklarung zur selbststindigen Bearbeitung der Arbeit
Hiermit versichere ich,

Name:

Vorname:

dass ich die vorliegende Bachelorarbeit — bzw. bei einer Gruppenarbeit die entsprechend

gekennzeichneten Teile der Arbeit — mit dem Thema:
Hierarchical temporal memory for in-car network anomaly detection

ohne fremde Hilfe selbstédndig verfasst und nur die angegebenen Quellen und Hilfsmittel
benutzt habe. Wortlich oder dem Sinn nach aus anderen Werken entnommene Stellen

sind unter Angabe der Quellen kenntlich gemacht.

Ort Datum Unterschrift im Original

56

