HA
HAMBURG

MASTER THESIS
Kiibra Tokuc

Suitability of Micro-Frontends
for an Al as a Service Platform

Faculty of Engineering and Computer Science
Department Computer Science

HOCHSCHULE FUR ANGEWANDTE
WISSENSCHAFTEN HAMBURG

Hamburg University of Applied Sciences

Kibra Tokuc

Suitability of Micro-Frontends for an Al as a Service
Platform

Master thesis submitted for examination in Master s degree
in the study course Master of Science Informatik

at the Department Computer Science

at the Faculty of Engineering and Computer Science

at University of Applied Science Hamburg

Supervisor: Prof. Dr. Ulrike Steffens
Supervisor: Prof. Dr. Lars Hamann

Submitted on: 22.12.2023

Kibra Tokuc

Thema der Arbeit

Eignung von Micro-Frontends fiir eine Al as a Service Plattform

Stichworte

Micro-Frontends, Frontend Architekturen, Module Federation, Al as a Service Platform,

Synthetische Datengenerierung

Kurzzusammenfassung

Die Microservices-Architektur fordert die Entwicklung von wartbaren, erweiterbaren und
skalierbaren Softwarelosungen in cloudbasierten, verteilten Umgebungen. Die Plattform
des Forschungsprojekts DaFne, ein “Artificial Intelligence as a Service” (AlaaS), nutzt
diese Ansatze bereits im Backend. Dadurch stellt es eine Plattform bereit, die erweit-
erbar ist und es ermdglicht, neue Al Software Services fiir die Generierung von syn-
thetischen Daten hinzuzufiigen. Wéhrend das Backend bereits erweiterbar ist, zeigt
der urspriingliche Architekturentwurf einen UI-Monolithen als einzigen Frontend-Dienst.
Diese Arbeit erforscht die Anwendung von Micro-Frontends unter Nutzung der Library
Module Federation, um auch im Frontend eine Erweiterbarkeit zu ermdglichen. Die Plat-
tform wird dabei in einzelne Frontend-Module aufgeteilt, die aus verschiedenen Doménen
stammen und unterschiedliche Anforderungen an den Tech Stack haben. Unter Beriick-
sichtigung der Prinzipien und Herausforderungen von Micro-Frontends und der Entwick-
lung einer Event-basierten Kommunikationsstrategie wird der erstellte Systementwurf
in Form eines Prototyps umgesetzt, der das Ergebnis dieser Forschung darstellt. Als
Validierung wird ein extern mit Vue.js entwickelter Al Software Service in die React-
basierte Host-App integriert. Die Vorteile zeigen sich vor allem in der Flexibilitdt der
Systemgestaltung und im Maintenance-Bereich, allerdings eignet sich die Architektur
vornehmlich fiir grofsere Projekte mit mehreren Entwicklerteams aufgrund der komplexen

Herausforderungen und des hohen Implementierungsaufwands.

iii

Kibra Tokuc

Title of Thesis

Suitability of Micro-Frontends for an Al as a Service Platform

Keywords

Micro-Frontends, Frontend Architectures, Module Federation, Al as a Service Platform,

Synthetic Data Generation

Abstract

The microservices architecture promotes the development of maintainable, extensible,
and scalable software solutions in cloud-based, distributed environments. The DaFne
research project’s platform, characterized as "Artificial Intelligence as a Service" (AlaaS),
already leverages these approaches in the backend. Consequently, it provides a platform
that is extensible and allows for the addition of new Al software services for synthetic
data generation. While the backend is already extensible, the original architectural design
featured a UI monolith as the sole frontend service. This work explores the application
of micro-frontends using the Module Federation library to enable extensibility in the
frontend as well. The platform is divided into individual frontend modules originating
from different domains and having varying requirements for the tech stack. Taking
into account the principles and challenges of micro-frontends and the development of an
event-based communication strategy, the designed system architecture is implemented
as a prototype, representing the result of this research. As validation, an externally
developed Al software service using Vue.js is integrated into the React-based host app.
The advantages primarily manifest in the flexibility of system design and maintenance.
However, this architecture is best suited for larger projects with multiple development

teams due to the complex challenges and implementation effort involved.

v

Contents

List of Figures vii
List of Tables viii
1 Introduction 1
2 Background 3
2.1 Synthetic Data Generation Platform 3
2.1.1 DaFne: Platform Data Fusion Generator for Artificial Intelligence . 3

2.1.2 Artificial Intelligence as a Service 4

2.1.3 Quality Attribute: Extensibility 6

2.2 Architectural Styles and Patterns 9
2.2.1 Microservices Architecture L L. 9

2.2.2 Event-Driven Architecture (EDA). 10

2.2.3 Domain Driven Design (DDD) 11

2.24 API Gateway and Backend for Frontend (BFF) 12

2.3 The Ul Monolith 12
2.4 Micro-Frontends 15
2.4.1 Benefits of Adapting Micro-Frontends 16

2.4.2 Challenges and Decisions 17

2.4.3 Available Approaches for Implementation 20

3 Context and Requirements Analysis 23
3.1 Problem Scenario 23
3.2 Existing System: Module Federation and React 25
3.3 Domain Analysis 30
3.4 Requirements 34

4 System Design 37
4.1 Identification of Micro-Frontends 37

Contents

4.2 Updated Technology Stack 38
421 Vueds . ..o 40

4.2.2 Next.js. o 40

4.3 Communication between Micro-Frontends 40
4.4 Deployment and Maintenance 42

5 Implementation 46
5.1 Configuration of Apps 46
5.1.1 Bootstrapping and Loading Micro-Frontends 46

51.2 Routing 48

5.1.3 Performance Considerations 50

5.1.4 Fault Resilience o 51

5.2 UX/UI Consistency oo v it i e 53
5.3 Communication and State management 54
5.3.1 API Gateway and State Management 55

5.3.2 Authentication and Security 55

5.4 SEO with Next.js for Marketing App 57
5.5 Integration of Vue.js Application Neighborhood Generation 59
5.6 Deployment and Maintenance L. 60
5.6.1 CI/CD 61

5.6.2 Medusa Client 63

6 Evaluation 64
6.1 Constraint: Implementation of Microfrontend Architecture for extensibility 64
6.2 Consistency in User Experience 66
6.3 Performance 67
6.4 Communication and State Management 68
6.5 Security and Authentication oL 69
6.6 Search Engine Optimization 70
6.7 Deployment and Maintenance 71

7 Conclusion 72
Bibliography 75
A Appendix 82
Declaration of Autorship 85

vi

List of Figures

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2

4.1
4.2

4.3

4.4

5.1
5.2
9.3

6.1
6.2
6.3
6.4
6.5

Generic Platform Functionalities [KKZS22]
AlaaS stack [LPTT21, p. 443]
Al Software Services [LPTH21, p. 444]
(a) API Gateway and (b) Backend for Frontend [HRLI17, p. 904]
From Microservices Micro-Frontends [PPS21]

Horizontal vs. Vertical Split [Mez21, p. 177]

Vertical Split into three applications

Navigation Content of the Core Domain
High-Level System Design as Solution Strategy
Communication Design based on API Gateway and Event-Based Archi-

tecture L. e
Using AWS Cloudfront CDN and S3 Buckets to serve Build Files to the

Browser e
Automation Pipeline

File structure of Shell Application container
Routing behavior example between Container, Marketing and Auth

Implemented Security and Authentication Communication Flow

Neighborhood App Integrated into Dafne App
UML Diagram in Medusa Client showing the Federated Landscape
Switching between different Versions of the Design System
Lighthouse Analysis Output of Isolated Next.js App
Lighthouse Analysis Output of Integrated Next.js App inside the Con-

tainer App

vii

List of Tables

3.1 Domains of the DaFne Platform according to Domain Driven Design (DDD) 32
4.1 Identified Micro-Frontends inside the Domains 39
5.1 State Management and Data Fetching Technologies of each Micro-Frontend 55

6.1 Performance Comparison 68

viii

1 Introduction

Microservices and service-oriented architecture in general have established themselves as
a common practice in modern agile software development. Advantages such as improved
scalability, maintainability and extensibility are just some of the reasons why many com-
panies opt for this architecture. However, microservice architecture is not limited to
back-end development. There is also a paradigm shift from monolithic applications to
micro-frontend architectures in the frontend area. With micro-frontends, the frontend
code is also divided into smaller, independent units. These units can be developed as in-
dependent applications by different teams and can be deployed independently. The term
micro-frontends was first introduced by ThoughtWorks in 2016 [Thol6]. Since then, the
architecture has become increasingly popular in practice and is being adapted by large
companies such as DAZN, Zalando or Ikea. In the scientific literature, but also in com-
ments from the software developer community on social platforms, it is often emphasized
that the architecture tends to benefit larger software projects. The higher implementa-
tion effort pays off in the long run through easier and safer management of the software
project [TM22, PMT21, PPS21, PAMM20|. In this work, the micro-frontend approach
is applied to the Data Fusion Generator (DaFne) platform. The DaFne research project
aims to develop a platform for synthetic data generation, which makes it an Artificial
Intelligence as a Service (AlaaS) [LPTT21]. Users are offered a graphical user interface
through which they can access various machine learning algorithms for synthetic data
generation. The backend architecture of the platform was presented by Kunert et al.
(2022) [KKZS22|. In the microservice-based architecture, the user interface was initially
listed as a single service. The non-functional platform requirement extensibility aims to
ensure that the platform can be extended with different algorithms and ML models for
data generation without much effort.

Although methods for synthetic data generation are already widely researched and al-
ready accessible to computer science-savvy individuals, synthetic data may also be of
interest to domain experts in other disciplines, e.g., smart cities. Therefore, the platform

offers domain- and use-case-specific methods (e.g. Neighborhood Generation) for data

1 Introduction

generation in addition to generic in-house methods. When a new service is added, a
front-end for that service must also exist. The extensibility of the platform is therefore

also dependent on the extensibility of the user interface.

The objective of this work is to investigate how micro-frontend architecture facilitates

the extension of Al services on a software platform. The central research question is:

How can the micro-frontend architecture support the extensibility of an Al as

a Software Service platform at the front-end level?

To investigate this research question, the Design Science Research (DSR) methodology is
applied to create a practical prototype, aligning the research with a structured, problem-
solving approach. DSR involves iterative cycles of design and evaluation, with a focus
on developing innovative solutions to address real-world problems (Dresch et al., 2015).

This methodology forms the foundation of the thesis structure:

Chapter 2 provides a knowledge base, explaining prior platform characterizations, general
software architectural concepts followed by an introduction to monolith-based frontend
architectures and lastly micro-frontends. This chapter explores the necessity of micro-

frontends and their role in resolving frontend modularization challenges.

Chapter 3 analyzes the environment and organizational aspects, defines a problem sce-
nario, and conducts a Domain-Driven Design (DDD) analysis to set prototype require-
ments. It also references an existing system using Module Federation and React, devel-

oped as a preliminary experiment without comprehensive context and domain analysis.

Chapter 4 designs a system based on requirements and domain analysis from Chapter 3,
which is implemented in Chapter 5. Chapter 6 evaluates this implementation against the
requirements and the intended system design. The thesis concludes in Chapter 7 with a

summary and outlook.

2 Background

This chapter establishes the knowledge base required for the Design Science Research
methodology applied in this thesis. It starts by presenting general knowledge about
the Synthetic Data Generation Platform and its associated characteristics. The chapter
then gradually introduces the concept of micro-frontends, initially exploring relevant
architectural styles and patterns primarily known from backend development. This sets
the stage for a deeper examination of frontend applications as typical monoliths, thereby

providing a solid foundation for the introduction and understanding of micro-frontends.

2.1 Synthetic Data Generation Platform

This chapter broadly outlines the project context of this thesis, describing previous work
and research conducted within the DaFne research project. It details the DaFne platform
and its general functionalities, subsequently positioning it within the realms of Al as a
Service. Finally, the chapter scrutinizes the quality requirement of extensibility, which is

central to this thesis.

2.1.1 DaFne: Platform Data Fusion Generator for Artificial
Intelligence

DaFne is a multidisciplinary research project in cooperation with universities and indus-
try partners that targets the domains of artificial intelligence and smart cities. It aims
to integrate different approaches for data generation on a digital platform in the form of
services [KKZS22|. In addition to the infrastructural provision of services, one goal is to
improve the usability of these methods through a well-designed user interface. The func-
tionalities can be divided into generic methods and use case specific functions. Figure
2.1 shows an overview of the generic functionalities, which are divided into data-related,

generation-related and evaluation-related services.

2 Background

Figure 2.1: Generic Platform Functionalities [KKZS22|

First, the platform provides a data interface through which users can either upload their
own data or access (smart city) Open Data through an interface managed by the platform.
The variety of available data sets is also extendable by connecting new interfaces. The
data generation then can be done by 3 different methods. With the reproduction method,
the user can generate new rows of an existing dataset for either increasing the data
volume for ML tasks or to circumvent privacy restrictions that would prohibit the use of
the data. The rule-based method enables the user to compose a custom data set based on
defined rules for the columns. Data fusion allows multiple data sets, such as private and
public data, to be combined to increase the information value of a data set. In contrast
to generic methods, use case specific approaches provide algorithms that are designed
to solve a specific urban problem. One example is a neighborhood generation service
that can generate a livability index-optimized urban map for a selected geographic area.
The platform can be extended by multiple use case based algorithms. All the generated
datasets are lastly evaluated by the evaluation service so the user can have an insight on

the quality, usability and reliability of the data.

2.1.2 Artificial Intelligence as a Service

Cloud computing is defined as a “model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resource” with originally three
service models - Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and

Software as a Service (SaaS) [MGT11]. With the paradigm shift in software development

2 Background

and delivery, cloud computing has since spawned a variety of different service models.
The trend of Fverything as a Service simply means that almost any IT artifact can be
provided as a service in the cloud [DFZ*15] - so can Al Lins et al. (2021) [LPT*21]
introduce the definition of the emerging model Artificial Intelligence as a Service (AlaaS)
as “cloud-based systems providing on-demand services to organizations and individuals
to deploy, develop, train and manage Al models”. It increases the accessibility and
affordability of Al regardless of the organization’s technology background by guiding the
user through the process of developing, deploying or using ML models. This allows users
to only focus on training or configuring the models. An attempt to conceptualize the

term dividea AlaaS into the three layers of the conventional cloud service stack:

1. AI Software Services relating to SaaS, are ready-to-use applications that can
be divided into inference as a service (accessing pre-trained models) and machine

learning as a service (MLaaS, creation and customization of ML models).
2. Al Developer Services relating to PaaS, provide tools for coding Al capabilities.

3. Al Infrastructure Services relating to laaS, offer computational power for build-

ing and training AI algorithms, network and data storage, sharing capacities.

Figure 2.2: Alaa$S stack [LPT*21, p. 443]

By enabling the usage of generative models, the DaFne platform primarily forms an AI
Software Service. The generic methods can be regarded as machine learning as
a service (MLaaS) as they offer the training and the customization of ML models.

Using it requires a basic knowledge of the user about terms of ML, while the software

2 Background

service is only a guidance and assistance. The user is helped by the fact that he only
has to focus on training and parameterization instead of carrying out infrastructural
installation configurations. Typically reaching the final prediction results would include
the whole machine learning pipeline beginning with assistance in data pre-processing,
feature selection and parameterization up to model validation and data evaluation (see
fig. 2.3). Associated terms are deep learning as a service [BDEM T 18|, neural network as
a service [HSM14| and training as a service [ZFZT17].

In the example of the DaFne platform, the reproduction service enables the user to train
the models Conditional Tabular Generative Adversarial Networks (CTGAN) and Tabular
Variational Autoencoders (TVAE) [XSCIV19] on their own data set with possibility for

custom parameterization.

In contrast, use-case-specific models like the neighborhood generation or pedestrian path
generation simply provide an interface to query pre-trained models, making them avail-
able as inference as a service. This type of Al software service represents more of
a black-box model that can be used by users whose core competencies are not related
to AL. Any other tasks in the pipeline, such as training data provision, data storage, or
classification, are handled by the vendors. It is simply a matter of providing predictions

that benefit different areas of society.

At the same time, DaFne has the characteristics of a Platform as a Service (PaaS) with
the contribution feature [MGT11|. While the internal research team is also developing
generative models, the platform architecture is designed to allow contributions from
external actors to enable knowledge sharing. It is important to distinguish between use-
case-specific and generic approaches in this situation as well. With the hosting of urban
use cases, the project aims to create an ecosystem that can leverage advancements in
smart cities. Besides providing insights with synthetic data, a product feature called Use

Case Ezxplorer could inspire urban planners with new data ideas.

2.1.3 Quality Attribute: Extensibility

The success of software and the underlying platform primarily derive from its functional
value, such as the generation and evaluation of synthetic data in the case of DaFne. How-
ever, the long-term viability of a software system depends on qualitative criteria, often

referred to as “ilities” [Ingl8]. The general non-functional quality criteria for the DaFne

2 Background

Figure 2.3: Al Software Services [LPT121, p. 444]

platform have been defined and described as scalability, expandibility, flexibility, moni-
toring, and security [KKZS22|. Expandability is continued in this work as extensibility.
While scalability refers to computatation power, extensibility refers to the platform’s
ability to accommodate changes, enhancements, and customizations to the functionality.
It involves providing the means for architects and third-party developers to extend the
platform’s functionality seamlessly. In software architecture literature [Ingl8, FRSD21],
maintainability is often used as a generic category for the quality attributes modifiability,
extensibility and flexibility.

Maintainability refers to the degree of ease with which a software system can be ef-
fectively taken care of and modified. It encompasses the ability to make changes, ap-
ply patches, upgrade frameworks, and accommodate evolving requirements efficiently
[FRSD21|. It is crucial because as software operates, it inevitably undergoes changes,
which are essential to retain the software’s value over time. A significant portion of a
software project’s costs is attributed to maintenance rather than development, making
it essential to build software that is easy to maintain. Code that is straightforward to
maintain facilitates quicker maintenance tasks and helps minimize the overall lifetime
costs of the software [Ing18|.

Modifiability is another facet of maintainability and signifies the software’s capacity to
undergo changes without introducing errors or diminishing its quality. It is a vital qual-
ity attribute because software often requires alterations due to evolving needs or agile
development methodologies, and enhancing modifiability not only benefits maintenance
but also the entire software development process.

Extensibility and flexibility pertain to a software system’s ability to accommodate

2 Background

future growth and adapt to unforeseen changes. Extensibility revolves around the ease
of adding new functionalities and features, while flexibility deals with altering capabili-
ties for unanticipated uses. These qualities significantly influence the ease of performing
perfective maintenance, ensuring that a software system remains adaptable and open to

enhancements.

While modular architectures can contribute to maintainability, they cannot be univer-
sally applied, as monolithic architectures can also provide maintainability. Therefore, it
is advisable to introduce granularity only when needed for extensibility, such as when
additional contexts need to be incorporated into the application through new features
[FRSD21].

Designing maintainable systems can be supported by considering some metrics and

and principles:

e Reducing component coupling: Coupling refers to the degree of interdependence
between different modules or components within a system. It is essential to mini-
mize coupling and strive for loose coupling to ensure that changes to one module

do not significantly impact others.

e Increasing component cohesion: Cohesion measures the extent to which elements
within a module or component are closely related and functionally connected. De-
sign efforts should aim to enhance cohesion by avoiding the inclusion of disparate

elements within a module. High cohesion often aligns with loose coupling.

e Reducing component size: Large modules are often more complex and challenging
to modify, emphasizing the importance of reducing module size through strate-
gies such as splitting them into smaller, more manageable components to enhance

maintainability and flexibility.

e Reducing Cyclomatic complexity: Cyclomatic complexity is a quantitative software
metric to measure the complexity of a software module. It assesses the number of
linearly independent paths within a module or design element, with higher values

indicating increased complexity.

2 Background

2.2 Architectural Styles and Patterns

Architecture patterns are used to organize the high-level structure of a software. They
provide reusable solutions to common architectural problems related to relationships,
structures and behavior of components. The application of the patterns typically ad-
dresses non-functional requirements such as performance, scalability, extensibility, se-
curity or maintainability in addition to functional requirements [HA10|. While in the
literature the difference between styles and patterns is not always entirely clear [GS93,
KMLS18|, it can be said that styles tend to provide a framework and a general vo-
cabulary for designing software (e.g. Layered, Event-Driven, Object-Oriented), while
patterns provide solutions to specific problems within architectural styles [GS93|. Some

of the relevant approaches are explained below.

2.2.1 Microservices Architecture

Evolved from architectural style of SOA, microservices have become a common approach
to modularize the backend monolith [HRLI17]. First detailed explanation is provided
2014 by Martin Fowler [Fow14|. They describe it as a style for developing an applica-
tion as a collection of multiple small and loosely coupled services, which each have their
own processes and communicate via lightweight mechanisms such as HTTP (REST) API
[MGM™ 18| or messaging services like ActiveMQ (Apache), OMG DDS (omgwiki), AWS
SQS (Amazon) [ACCT21|. Each service follows the Single Responsibility Principle (SRC)
and has a clear purpose organized around business capabilities which form the explicit
boundary of the service.

Their service independence enables the application to be developed, deployed and scaled
independently with a diverse tech stack. The microservice architecture is particularly
suitable for large and complex applications that require high scalability and flexibility.
Under monolithic circumstances, this applications would suffer under the "dependency
hell” that impedes the maintainability. In addition to other benefits such as modular-
ity, agility, fault isolation and resilience, the style can also introduce some challenges
[PAMM20].

The cooperation between different microservices and the inter-process communication
for fluent business processes is one of the main challenges that has to be addressed with

either orchestration or choreography [MGM™18].

2 Background

When identifying services or decomposing a monolith, it is important to determine the de-
gree of modularity and to make certain trade-offs in relation to available resources. Strate-
gies for the decomposition process are widely discussed in literature [TS20]. One sug-
gestion [Ric23] is to decompose by identifying subdomains according to Domain Driven
Design, by business capabilities, by use cases (verbs) or by resources (nouns).

Another advantage of microservices is the ability to run services with heterogeneous data
sources and structures. At the same time, however, this poses a challenge in terms of
establishing data consistency [Fow14].

In addition, the complexity of the system increases with the number of services, which
can lead to a loss of control and overview and operational overhead. It is important
to implement a deployment automation including continous integration and continous
deployment [PAMM20].

2.2.2 Event-Driven Architecture (EDA)

The idea behind the event-based architecture style is the implicit invocation of procedures
and functions. It enables the components to be self-adaptive to changes that effect the
system [GS93|. Examples of application areas are real-time systems with high-volume
[oT-events [KBCT22] or in complex business processes [Tay09, Mic06| or in combination
with microservice architectures [MGM™18|. In these systems, components communicate
through the production, detection, and consumption of events. Events are extremely
loosely coupled and asynchronous. This means that the component producing the event
has knowledge only about its own states and none about which component is interested
in it and none about the subsequent processing of the event [Mic06]. With the result-
ing responsive and flexible interaction, a scalable, extensible, resilient and maintainable
overall system is enabled [Bel20].

The publish /subscribe pattern (also called the observer pattern) is a frequently applied
way to handle microservice communication [ACCT21|. It defines a one-to-many re-
lationship where consumer components can subscribe to events of interested producer
components. When the state of the publisher changes, the subsriber will be notified.
Techniques such as event emitter, custom events or reactive streams implement the pat-
tern [Mez21].

10

2 Background

2.2.3 Domain Driven Design (DDD)

While the microservice architecture represents design at a higher level of abstraction,
design is more an activity for the creation of a solution space [EK03|. Domain Driven
Design (DDD) introduced by Evans (2004) [Eva04], is a resource-oriented approach to
building microservice-based web applications. It provides a set of principles, patterns
and practices for identifying services by defining logical boundaries in the system called
bounded context exposing an API. Understanding and identifying the problem domain,
defining domain models, and capturing the business logic are the basis for this [SGHA17].
In the following, the key concepts of DDD are briefly explained:

e The core domain represents the most important part of a system and deals with the
general problem space that a company occupies and for which it provides solutions.
The domain includes everything related to the problem space: rules, processes,
ideas, and terminologies. The domain exists independently of the existence of an

application [Bel20].

e (Core subdomains are the application’s raison d’étre and provide the unique business
value as well as a competetive advantage to the organization. They are subordinate

to the main domain and contain the most complex business logic [Mez21].

e Supporting subdomains are also subordinate to the main domain but only provide

complementary value like discovery services [SGHA17, Mez21].

o (Generic subdomains are not necessarily needed for the core business, but are used to
complete the system. Therefore, they can be implemented with third-party services,

which means that they would be suitable for other domains as well [Mez21].

e The domain model represents a structual abstraction for the domain. It is a col-
lection of concepts and the relationships between them. The model is the basis for
communication between domain experts and developers and states a part of the

solution space [Bel20].

e Bounded contexts are logical boundaries that define the scope of a domain model.
With inputs, outputs, events, requirements, processes, and data models, they are
relevant to the subdomain. They are used to separate the domain model into
smaller, more manageable parts. Each bounded context has its own domain model
and is responsible for a specific part of the domain. The context is the basis for the

microservice architecture. Since they should have a strong focus, they should have

11

2 Background

strong internal cohesion and should not cross boundaries in the communication. In
order to minimize the impact of changes in one context on a neighboring context,
they should be loosely coupled. Communication between the contexts should only

happen based on a contract represented by APIs [Bel20, Mez21].

2.2.4 API Gateway and Backend for Frontend (BFF)

For the communication of the frontend application with the microservices in the backend,
the requests and responses can be exchanged via a single intermediate server. This
server is responsible for aggregating the requests and directing them to the appropriate
microservice, which also includes request shaping, caching and authentication. An API
Gateway provides a single point of entry to a backend that can be used by multiple
clients with different types. In order to distribute the logic in the gateway for different
types of requests depending on the type of clients and end devices, the pattern backend
for frontend can be used as shown in figure 1. Here, a separate gateway is provided for
each client type or Ul service as a central point for requests. In addition to performance,
the advantage here is that each front-end team can develop and handle its own interface

independently.

Figure 2.4: (a) API Gateway and (b) Backend for Frontend [HRLI17, p. 904|

2.3 The UI Monolith

The microservice architecture attempts to break through the backend monolith by di-

viding the application logic by individual services for one business function each. The

12

2 Background

individual microservices can be developed, deployed and scaled independently of each
other. When the application is divided into separate independent components in design
processes such as DDD, the user interface is barely considered or just considered as a
single service [SGHA17]. Web applications typically follow the client-server model, where
the server, known as the provider, owns and provides access to the resources for the client,
which is the service user [PAMM20]. However, even when developing the UI monolith,
different architectural approaches to system development are available depending on the

requirements and type of application.

Static Web Pages Static Web pages are the beginning of the Web, where HTML
pages are generated in advance during the build process and sent to the client. No
server-side processing is required at runtime for each user request, since the pages are
already populated with the required information. While efficient, this approach is more
suitable for simple non-dynamic applications such as blogs, documentation pages, or

landing pages [Mez21].

Single Page Applications Single Page Applications (SPA) are particularly well suited
for interactive and dynamic web applications. This is based on client-side rendering,
where the client (e.g. the browser) preloads the entire code, like the HTML and JavaScript
files, and manipulates the Document Object Model (DOM) on runtime with JavaScript.
When the user first accesses the application, the server or the Content Delivery Network
(CDN) only serves an empty root element <div id="root"> and some JavaScript
code to the client. Then, the root element is updated by the Single Page Applications
(SPA) with the necessary files such as JavaScript or CSS according to the user’s need.
Besides compiling the JSX files, the client is responsible for loading the data through
the API calls, handling events and promises. It uses only a “Thin Server” which acts
only as a data API and passes the JavaScript code to the client [Tha20]. When the user
clicks on a link, the page is not refreshed, but only the content is exchanged. This gives
users the feel of a native desktop application such as Google Docs [PAMM20]. Frame-
works and libraries such as React [Reab|, Angular [Ang| and Vue.js [Vue| support the
development of SPAs. These frameworks have standardized application lifecycle meth-
ods such as componentDidMount () and componentWillUnmount (). With calling
these methods, the developer can specify the application behaviour when the component

is inserted into the DOM and when the component is removed from the DOM. Because

13

2 Background

all code is downloaded at the beginning of the lifecycle, a resource-efficient application

design must exist to prevent long initial load times [PMT21].

Server Side Rendering (SSR) Server Side Rendering (SSR) is a technique for ren-
dering web pages on the server, which is particularly beneficial for Search Engine Opti-
mization (SEO) and performance. Search engines, such as Google, rely on the HTML
content of web pages to index and rank them. Since SSR provides pre-rendered HTML
content, it ensures that search engines can efficiently crawl and index the content of web
pages, potentially leading to improved search engine rankings and discoverability. The
client receives the HTML, CSS and JavaScript files generated from the server and dis-
plays them in the browser. Here the server also executes the JavaScript code responsible
for the application logic and delivers a ready-to-render HT'ML page that is already popu-
lated with the requested data [Tha20, Gee23|. To implement SSR, web developers often
use server-side frameworks and libraries, such as Next.js for React applications or Nuxt.js
for Vue.js applications. These frameworks simplify the process of server-side rendering by
offering built-in functionality and routing capabilities tailored to SSR. Moreover, using
these frameworks can be particularly useful for web applications with dynamic content
and interactive features, as it allows for a balance between server-generated content and
client-side interactivity. The disadvantage is that there is a higher load on the server,
especially when handling a large number of concurrent requests. Generating HTML con-
tent on the server for each request can be resource-intensive, potentially requiring more
server resources to maintain optimal performance. Besides, the implementation often in-
volves writing complex server-side code to handle data fetching, rendering, and routing.
Developers need to manage both client-side and server-side logic, which can increase the

overall code complexity of the application. [Gorl8].

Isomorphic Applications To overcome the disadvantages of SSR and SPAs a hybrid
approach called universal or isomorphic applications emerged. The application code is
shared between the client and the server and can be executed on both sides. The server
is responsible for data retrieval, compilation and rendering the initial HTML, in order
to pass the HTML file to the client. Then, the content only needs to get inserted into
the HTML template by the client. This approach benefits SEO, Time-To-Interaction
and A/B Testing by SSR [PMT21]. In addition, client side rendering allows the use of

interactive and complex Ul elements such as modals, as well as browser functions such

14

2 Background

as local storage or history [Gorl8|. Besides the benefits, two-sided rendering can create

scalability issues when there are millions of user requests to the server [PMT21].

JAMStack architecture JAMStack stands for JavaScript, APIS and Markup and is
a modern web development architecture with growing popularity [Mez21| that breaks the
typical client-server model [PAMM20]. The goal is to quickly develop secure pages and
dynamic applications without serving files from a web server and thus reducing download
times. This is made possible by deploying pre-rendered static sites directly to the CDN
without managing, scaling or patching servers. Popular frameworks that support the

implementation are are Next.js, Gatsby.js and Nuxt.js [Mez21].

2.4 Micro-Frontends

While microservices have established themselves as a common practice in modern ag-
ile software development, there is also a paradigm shift in the front-end to break the
previously described UI monolith. ThoughtWorks [Thol6] introduced the term micro-
frontends in 2016 as an architectural style that extends the concept of microservices
on the frontend side (see Fig. 2.5). It should be underlined that this approach is not
about the reusable components, where the reusable frontend code is also assembled into
a monolith at the end [Lan21]. A typical use case is migrating a legacy UI monolith into

a micro-frontend architecture [Mez21].

The idea behind micro-frontends is to treat a web application as a combination of func-
tions and business subdomains with the goal to enable independent development, de-
ployment and testing of individual parts of the application [Gee23]. They have much
in common with self-contained systems, where each system is an autonomous web ap-
plication that fulfills a use case without depending on other services within well-defined
technical boundaries [HRLI17|. Technical boundaries are also one of the main ideas in
micro-frontends, as individual applications should be able to be developed technology
agonostically within different teams. This isolates the team code from those of the other
features and domains, so there is a smaller codebase for each team with no dependency
on shared state and global configurations. Instead of relying on customized interfaces for
communication between services, more is being done with native browser features such

as events and local storage |Gee23|.

15

2 Background

Figure 2.5: From Microservices Micro-Frontends [PPS21|

2.4.1 Benefits of Adapting Micro-Frontends

Many larger corporations and complex projects, such as Zalando, DAZN, Ikea, or SAP,
that implement the micro-frontend architecture justify its use based on organizational,
market-related, or technical advantages. In the context of the DevOps culture within ag-
ile software development, microservices have enabled independence and flexibility within
teams. They, in fact, share the benefits of microservices as they are both modeled
around business domains and hide implementation details between them [PMT21]. As
a result, they simplify organizational processes, offer technical decision-making auton-
omy within teams, and boost work motivation. Additionally, decentralizing governance
enables the creation of more specialized domain-specific teams while reducing potential
conflicts in the development. [Sch, PPS21]. From a technical perspective, allowing teams
to develop features independently can significantly reduce time-to-market by accelerating

feature releases. This approach also facilitates faster Continuous Integration/Continu-

16

2 Background

ous Deployment (CI/CD) pipelines. Moreover, observability benefits from better-isolated
monitoring and logging, as well as improved fault isolation and detection. With this ar-
chitecture, if one service encounters an issue, it doesn’t cause the entire application to
break. Additionally, having a smaller surface for testing can lead to quicker build times
[PPS21, Mez21].

2.4.2 Challenges and Decisions

While the micro-frontend architecture promises improvements and developments in the
frontend landscape, it also comes with some challenges. One drawback is that the imple-
mentation can introduce a lot of redundant code and increase code size. This redundancy
can lead to performance issues as the application may load duplicate code for different
micro-frontends, consuming more resources and potentially slowing down the user expe-
rience. Additionally, there is a risk that the code can diverge significantly as teams work

independently, potentially affecting code quality [PPS21].

To address the drawbacks and harness the advantages, as of 2023, there is no universally
accepted standardization for micro-frontend development. However, within the litera-
ture, authors seem to agree on the general concepts [TM22, PAMM20, PPS21, Mez21|.
Different principles and challenges must be considered when deciding on a system design.
Finding a strategy for setting up a micro-frontend architecture means finding a balance
between specifications that are too loose and those that are too detailed [Mez21, chapter

9].

Luca Mezzalira, one of the dominating authors in the field of micro-frontends, struc-
tures the most important principles according to the following aspects [PMT21, Mez21,
TM22|.

Horizontal or Vertical Splitting
Just like the modularization of the backend into individual microservices, there is also

a decision to be made at the frontend level as to where and how granularly an overall

system should be split to individual applications.

17

2 Background

o Vertical Splitting is the division of the application by business domains according
to the principles of Domain Driven Design (DDD) and requires the setting of a

bounded context. In this approach, each micro-frontend represents an SPA.

e Horizontal Splitting is the division into several micro-frontends within a view. This
approach is well suited for the reusability of a subdomain when it is used within
multiple views. Moreover, the approach is chosen when search engine optimization

has a high priority.

Figure 2.6: Horizontal vs. Vertical Split [Mez21, p. 177]

Composition and orchestration

The next thing to decide is how and from where the applications will load the target

view when they are needed. Here it also depends on how the application is split.

1. Client Side Composition: An application shell loads multiple micro-frontends on
runtime directly from the CDN (more common for vertical split). The entry point
of the application is typically an HTML or JavaScript file, where the shell either
appends the HTML file to the DOM or initializes the JavaScript file. This approach
is especially, as with SPAs, good for creating a native-like dynamic app feel, since
the HTML markup is updated directly in the browser |Gee23|.

2. Server Side Composition: Microfrontends are composed on the server and sent to

the client as one HTML document (more common for horizontal splits).

3. Edge Side Composition: Composition is done at the CDN level and is sent to the

client pre-rendered.

18

2 Background

Routing

Another crucial decision is how and where to determine which micro-frontend should
be loaded for a given view. One significant challenge is that individual frontends form
autonomous applications that can have an internal routing system, which must be inte-
grated with the routing system of the overarching application shell during composition.

How the routing is handled depends on the composition approach.

o (lient Side Routing: Macro routing takes place in the application shell, while the

micro-frontend handles internal routing.

e Fdge Side Routing: Routing is based on the requested URL and handled at the
CDN level.

o Server Side Routing: Routing based on the requested URL and handled at the

server level.

Communication

The communication between micro-frontends poses a dilemma in itself because it con-
tradicts the principle that micro-frontends should not be aware of each other’s existence
[PPS21|. Therefore, it is essential to minimize communication while ensuring cross-
application communication. Both vertical and horizontal composition require a means
to exchange data and states. Given that individual applications may be built on different
technological stacks and should maintain loose coupling, developers often rely on asyn-
chronous messaging mechanisms, such as publish /subscribe systems like event emitters
or custom events. For exchanging data, native browser functionalities such as session or
local storage are commonly used to ensure technology agnosticism. While there are also
solutions to design and implement a remote shared state, it forms an antipattern to the

micro-frontends principle because it would increase the coupling [Mez21|.

UX/UI Consistency
The nature of micro-frontends, with its diversity of technologies, frameworks, and design

approaches, can lead to inconsistencies in UX/UI elements. Despite the use of different

applications, the merging of the applications into one user interface should provide a

19

2 Background

uniform overall impression. The key challenges here include creating a common design
system or at least shared design guidelines. Design systems are the representation of a
websites visual language including a collection of design elements such as colors or fonts
[God16]. Additionally, the use of reusable components, such as web components, can

help facilitate the maintenance of Ul consistency [Mez21].

2.4.3 Available Approaches for Implementation

Even though there is no widely accepted standard for micro-frontend development, there
are several approaches and frameworks available to implement the architecture. The
following list provides an overview of the most common approaches and their character-

istics.

e IFrames offer a unique solution for loading Micro-Frontends within a sandboxed
environment. They particularly support horizontal splitting, isolating each micro-
frontend to prevent issues like conflicting libraries and memory leaks. They are
particularly effective for desktop and B2B applications where the user’s environ-
ment can be controlled. With efficient memory management that disposes of ele-
ments upon URL changes, they streamline dependency management as well. This
makes them particularly well-suited for applications with limited interactivity re-
quirements, providing a straightforward means to present various micro-frontends
in a cohesive manner |TS20]. SAP has developed an open source micro-frontend

framework called Luigi based on the IFrames technology [SAP].

e Web Components represent a standardized approach for developing framework-
agnostic components. Leveraging Custom Elements, Micro-Frontends can be en-
capsulated within Custom Elements, enabling client-side composition of web pages.
This method effectively conceals the implementation details of each Micro-Frontend
through the use of web standards. However, a limitation of this approach is its
compatibility, as Web Components are only supported in the latest browser ver-
sions. To address this, polyfills are available to ensure compatibility with older
browser versions. This approach is well-suited for projects with extensive knowledge
of frontend technologies, especially when adopting a horizontal splitting strategy
[TS20, Mez21].

e single-spa framework is a JavaScript solution for frontend microservices, inspired

by modern frameworks and their component life cycles. It emerged from the need to

20

2 Background

use React and React Routing instead of AngularJS and UI Routers. single-spa func-
tions as a top-level router, dynamically loading micro-frontends using SystemJS,
which simplifies handling technologies like Web Components. It offers helper li-
braries for popular SPA frameworks, enabling the dynamic loading of these frame-
works as ES-Modules. Micro-frontends are registered in the root-config, providing
their names, code-loading functions, and status indicators. Each micro-frontend
manages its bootstrapping, DOM mounting, and unmounting. This approach al-
lows diverse applications to run concurrently without interference, listening for
specific routing events when active and remaining absent from the DOM when in-
active. single-spa accommodates the simultaneous use of Microfrontends developed
with diverse technologies, such as Angular and Vue.js, ensuring seamless coexistence
[ssa]. It supports the separation of Microfrontends into individual repositories with
versioning, global imports, and routing configuration between Micro-Frontends.
For sharing and provisioning Ul code, the source code is packaged into a runtime
package which is called parcels in the single-spa ecosystem and forms an advanced
feature of the frameworks. These parcels can be compared with components within
a framework and can vary in size, encompassing entire applications or individual
features [HJ20, ssb]. single-spa can fullfill both vertical split and horizontal split

use cases.

e Module Federation and Webpack 5 Module Federation is primarily not a
Micro-Frontend framework but rather a plugin of the JavaScript library Webpack
from version 5 onwards. It enables the sharing of (JavaScript) code with other
applications. This capability of sharing various types of code, including business
logic and state management code, paves the way for loading Ul code within micro-
frontend frameworks [HJ20]. Still, the main advantage of Module Federation is

that it can work with any file types that Webpack is able to process.
“If you can require it, it can be federated” [HJ20, p. 11]

Webpack is an open source build tool for JavaScript applications, which is used
for bundling frontend resources like JavaScript, CSS and images. During the Web-
pack build, a dependency graph is created that represents the relationships between
the different modules in the application. This gives Webpack an understanding of
which modules depend on each other, whether through imports or other links and
ensures a correct execution order of the modules [Webb|. Loaders are another essen-

tial feature of Webpack, enabling the processing of various file types beyond JSON

21

2 Background

and JavaScript. With loaders, developers can transpile code (babel-loader, ts-
loader, etc.), handle styling (css-loader, sass-loader, etc.), and incorporate different
frameworks (vue-loader, angular2-template-loader, etc.) [Webc|. The open-source
community contributes numerous loaders, further extending Webpack’s capabil-
ities. All these loaded files are converted into valid modules and added to the

dependency graph [Weba).

Zack Jackson |Zac|, one of the co-creators of Module Federation, along with Jack
Herrington |Jac|, appear to be the primary contributors who are actively develop-
ing various use cases of Module Federation within the frontend landscape. Their
experimentation includes exploring its application in server-side rendering (SSR),
different JavaScript framework or various build tools. Due to the openness of
this ecosystem, the use of Module Federation appears not to limit the use cases
for Micro-Frontend applications. It can be employed both on the client-side and

server-side, supporting both horizontal and vertical splits [Exa].

22

3 Context and Requirements Analysis

This chapter provides a context and environment analysis for the Design Science Re-
search, along with defining a problem space, examining the existing system, and con-
ducting a domain analysis. From these investigations, requirements for the final artifact,

the prototype, are derived.

3.1 Problem Scenario

The context and environment of the DaFne project primarily define the scope of the
Design Science research. This interdisciplinary project involves multiple teams with
diverse areas of expertise from various organizations, all united by a common overarching
objective: to develop methods for generating synthetic data, particularly for training Al
models. The ultimate deliverable of this research project is intended to be a prototype

for a cohesive platform.
The areas of expertise within the organizations can be divided into the following groups:

e Group A / Institution A comprises software developers and architects respon-
sible for integrating methods developed by data science and smart city experts into
a cohesive platform as Al software services. This group includes task forces with
backend and frontend developers, who are responsible for designing and developing
the main functionality as well as the supporting services for platform usage, like
authentication, user management, monitoring or job management. The backend
is constructed on a Kubernetes cluster, while the frontend operates with greater
technological freedom, constrained only by the need to prototype a micro-frontend
application architecture. Both frontend and backend focus on creating an archi-
tecture that facilitates the contribution feature, enabling an open platform for the

development and access of synthetic data methods.

23

3 Context and Requirements Analysis

e Group B / Institution A includes a data science team responsible for developing
generic synthesis methods in the form of ML as a service, such as Reproduction.
They have flexibility in choosing their technological stack, provided they can offer

valid interfaces for backend integration.

e Group C / Institution B consists of a data science team tasked with developing
evaluation methods for synthetic data. Close alignment with groups B and D is

necessary.

e Group D / Institution C comprises smart city experts responsible for developing
smart city use-case-specific synthesis methods in the form of inference as a service,
such as Pedestrian Path Simulation. Similar to group B, they have flexibility in

technological choices, as long as valid interfaces are provided.

e Group E / Institution D consists of a data science team that develops the
Neighborhood Generation feature as an inference-as-a-service, with the flexibility

to choose the preferred technology stack.

As can be derived from the organizational structure, the prototype requires a flexible
way to integrate both backend and frontend services. For the validation of the goal, here
with a focus on frontend integration, the integration of the Neighborhood Generation

feature is focused on. Some assumptions and constraints are set for this:

1. The developers assigned to the Neighborhood Generation feature have basic fron-
tend development skills and therefore limited knowledge of advanced frontend ar-

chitectures.

2. They are given the freedom to choose any frontend framework that suits their

preference and the needs of the feature.

3. Minimal, feature-specific guidelines are in place for the developer to ensure straight-

forward integration.

4. The developers do not need insight into the main code of the platform, but can

obtain it as it is an open source project.

5. A backend service providing the functionality for Neighborhood Generation is al-

ready available, with the developers handling the full-stack application.

24

3 Context and Requirements Analysis

6. The developers have the option to deploy their application independently but prefer
to integrate it into the existing platform to benefit from its community value and

supporting services.

7. The developers face time constraints that limit their ability to collaborate with

Group A on integrating the application.

3.2 Existing System: Module Federation and React

Based on the constraint that the front-end application of the DaFne platform must im-
plement a micro-frontend architecture, a first experiment with the structure of such an
architecture has already been carried out. In prior work, we collaboratively designed the
user flow for the generic reproduction algorithm, incorporating valuable user insights.
These designs have since been implemented using React 17 and TypeScript as well as
Module Federation as an approach for composing micro-frontends. The selection of the
frontend stack was primarily influenced by the expertise of the developer. Additionally,
Module Federation was selected, aligning with the initial literature research [Mez21],
which emphasized the advantages of this approach. The UI designs have been trans-
formed into three distinct vertically splitted micro-frontends, which are all composed on
the client side with a central shell element loading the applications based on the requested

routes (see Fig. 3.1). The applications serve following distinct purposes:

1. marketing: Dedicated to informing users about the platform’s features and en-

couraging their engagement.

2. auth: Designed for user registration and authentication, ensuring secure access to

the platform.
3. dafne: Provides all platform functionalities for generating synthetic data.

4. container: Is the central shell element that loads the micro-frontends. The con-
tainer application is suitable for providing a base layout and navigation for the

platform, but in this case, it does not contain any UI elements.

These React applications are set up in a mono repository using the Webpack build

tool, i.e. three different applications are housed in a single GitHub repository. A

25

3 Context and Requirements Analysis

Figure 3.1: Vertical Split into three applications

monorepo centralizes the codebase for multiple projects and allows for simpler develop-
ment processes and dependency management, especially in the context of this experiment
where one developer is working on all three applications. Conversely, a poly-repository
(polyrepo) approach, which allocates each application to its own repository, appears ex-
cessive for the scale of this project. The monorepo strategy thus offers a more pragmatic

and cohesive development environment for smaller-scale projects [Mez21].

React, renowned for its efficient development of user interfaces for SPAs, adopts a declar-
ative, component-based approach. Each component in React encapsulates a part of the
UI, encompassing its presentation, logic, and state. A significant feature of React is
the Virtual DOM, which acts as a lightweight abstraction layer, optimizing UI updates.
When a component’s state changes, React only updates the necessary parts of the actual
DOM, minimizing performance costs [Reab|. React Router complements this by provid-

ing client-side routing, allowing for effective management of different views within the

SPA |reaa).

The setup of each individual application follows the same principle as the webpack con-
figuration of the marketing app, therefore the structure is explained in more detail below

(see listing 1):

e Module Rules: Within the module object, the rules array specifies how to pro-
cess files. It instructs the system to process files with extensions .m.js or .js
(JavaScript files) using Babel. To integrate Babel into the Webpack build pro-

cess, the babel-loader is used. Babel serves as a JavaScript compiler, transforming

26

3 Context and Requirements Analysis

const devConfig = {
module: {
rules: [
{
test: /\.m?jsS$/,
exclude: /node_modules/,
use: {
loader: 'babel-loader',
options: {

presets: ['@babel/preset-react', '@babel/preset-env'],
plugins: ['@babel/plugin-transform-runtime']
}
}
}
]
}
mode: 'development',
entry: './src/index.]js',
devServer: {
port: 8081,
}I
plugins: [
new ModuleFederationPlugin ({
name: 'marketing',
filename: 'remoteEntry.ijs',
exposes: {
'./MarketingApp': './src/bootstrap'

by

new HtmlWebpackPlugin ({
template: './public/index.html'

Listing 1: Webpack configuration of the marketing application

ECMAScript 2015+ code into a version compatible with older browsers. The preset
@babel /preset-react allows Babel to compile JSX into JavaScripts and optimizes
React-specific features. @babel/preset-env ensures the JavaScript code is compat-

ible with different browser environments. [bab]

e Mode: The mode is set to development, which means Webpack will optimize
the build for development, enabling features like enhanced debugging. In this stage

of the experiment, no production build was made yet.

27

3 Context and Requirements Analysis

e Entry Point: The entry field specifies the initial file to be processed by Webpack,

which is . /src/index. js in this case.

e Development Server: The devServer configuration sets up a development server

for the application. It’s configured to run on port 8081.

e ModuleFederationPlugin: This is crucial for setting up Module Federation. It’s

configured with:
— name: Identifies the remote as marketing.

— filename: Specifies remoteEntry. js as the file to be generated by Web-
pack. This file will handle the exposure of modules from this application to

others.

— exposes: Defines what module(s) this application exposes. Here, ./Mar-
ket ingApp is exposed, which points to . /src/bootstrap. The bootstrap
file (see Listing 2) serves as an isolated entry point for the micro-frontend,
encapsulating the mounting logic for the application. It provides a method
to render the app both in development and when integrated into a container,
allowing for a seamless transition between these environments. By pointing
to ./src/bootstrap, the Module Federation setup exposes the module in a
way that’s decoupled from the app’s internal logic, making it easier for other
micro-frontends or a container to dynamically import and initialize the Mar-

ketingApp.

e HtmlWebpackPlugin: This plugin generates an index.html file for the applica-
tion, using the template provided at ./public/index.html. This is useful for

injecting scripts or linking to external resources.

The core concept of Module Federation lies in dividing modules between the host and
remotes. The host module serves as the entry point to the application, while the remotes
are independently developed micro-frontends (see listing 3). Module Federation comple-
ments React by enabling the host for dynamic loading of these remotes as modules by
specifying their location in the Webpack configuration. As illustrated in listing 4, the
React shell application employs lazy loading to dynamically load the mounting point
of each micro-frontend at runtime, depending on the requested route. This approach

ensures that the initial rendering of the container application does not immediately load

28

3 Context and Requirements Analysis

const mount = (el) => {
ReactDOM. render (
<App></App>,
el

}
// for isolation mode
if (process.env.NODE_ENV == 'development') {
const devRoot = document.querySelector ('#_marketing-dev-root');

if (devRoot) {
mount (devRoot) ;

}

// else: export the mount function if running through container
export { mount };

Listing 2: Initialization and mounting logic of marketing app in isolated and composed

environments
plugins: [
new HtmlWebpackPlugin ({
template: './public/index.html'

I
new ModuleFederationPlugin ({
name: 'container',
remotes: {
marketing: 'marketing@http://localhost:8081/remoteEntry.js’,
auth: 'auth@http://localhost:8082/remoteEntry.js’',
dafne: 'dafne@http://localhost:8083/remoteEntry. js'

Listing 3: Module Federation Plugin configuration of the application shell

the entire codebase, thereby preserving the app’s performance. Besides, it allows differ-
ent teams to independently develop and deploy distinct features or sections of the SPA,

which are dynamically assembled into a cohesive application.

In this scenario, a hierarchical relationship exists between the host and the remote,
where code sharing follows a unidirectional data flow since the host doesn’t expose any
modules. This unidirectional approach aids in ensuring that micro-frontends are self-
contained and isolated. Each micro-frontend independently manages its own logic, data,

and presentation, without depending on direct inputs or outputs from others. Although

29

3 Context and Requirements Analysis

there is no communication implemented at this stage, unidirectionality could potentially
be compromised when the applications need to interact, such as for sharing authentication

states.

However, an application is not limited to being only a host or a remote. Each application
can specify a list of remotes to which it has access. Additionally, it can release its own
modules to the outside world by adding them to the exposes property, allowing other

applications to consume them.

const Marketinglazy = lazy(() => import ('marketing/MarketingApp'))
const DaFnelazy = lazy(() => import ('dafne/Dafnelpp'))
const AuthLazy = lazy(() => import ('auth/AuthlApp'))
const renderMFE = (MFE) => {
return (
<React.Suspense fallback="Loading...">
<MFE />

</React.Suspense>
)
}
return (
<Routes>
<Route path="/" element={<Layout />}>
<Route index element={<Navigate to={"/marketing"} />} />
<Route path="/marketing/*" element={renderMFE (MarketingLazy)} />
<Route path="/auth/+" element={renderMFE (AuthLazy) }/>
<Route path="/dafne" element={renderMFE (DaFnelazy)} />
</Route>
</Routes>

Listing 4: Lazy Loading of micro-frontends (MFE) in the application shell

3.3 Domain Analysis

The previously described system, initially partitioned into micro-frontends based on
broad intuition for experimental purposes, requires an analysis to target the benefits
of a micro-frontend architecture. To determine the appropriateness of this division into
micro-frontends, domain-driven design (DDD) is employed as a methodology. This ap-
proach focuses on defining the modularization and granularity of the application. It’s
crucial to develop a strategy for segregating micro-frontends that strikes a balance be-

tween being too loose and too detailed [Mez21].

30

3 Context and Requirements Analysis

The initial design of the system already includes a representation of the core domain
of the platform by translating the business logic - obtained through the preceding user
and process analysis - into a user interface design. While the system first was designed
around the users’ needs, this design also provides the software architect with relevant
vocabulary as well as an information architecture that helps to obtain clear boundaries
for the code structure. The content and navigation of the dafne app, as shown in figure

3.2, partially show this information structure.

Although using DDD for the front-end landscape is an unusual use case for the method,
applying the main concepts provides support for identifying logical boundaries of a sys-
tem. By considering the organizational structure described in section 3.1 and the navi-
gation structure (Fig. 3.2), it is possible to identify bounded contexts and subdomains,
which can be regarded as groups of related business processes [Gee23|. In the following,

the platform is broken down and described according to the individual domains.

Figure 3.2: Navigation Content of the Core Domain

31

3 Context and Requirements Analysis

Table 3.1: Domains of the DaFne Platform according to Domain Driven Design (DDD)

1D Name Type

CD Synthetic data generation platform Core domain
GSD-1 Value proposition Generic subdomain
GSD-2 Authentication and user manage- Generic subdomain

ment

CSD-1 Generic data synthesis methods Core subdomain
CSD-2 Use case explorer Core subdomain
SSD-1 Job, data and model management Supporting subdomain
SSD-2 User support Supporting subdomain

Core domain: Synthetic data generation platform The main value of the plat-
form is to enable the user to generate synthetic data without the need for prior knowledge
of data science. Although the focus is that the synthetic data can be used in machine
learning use cases in the field of smart cities, the generic methods are also intended to
support domain-independent use cases. Project management, product development and

design as well as integration are the responsibility of Group A and B.

Generic subdomain: Value proposition In this domain, the main objective is to
effectively visualize all essential information related to the usage and features of the
platform, persuading the user to engage with the core subdomains and calling to action
for authentication. This domain is in the responsibility of the UX/UI designer and the
frontend developer of Group A.

Generic Subdomain: User authentication and management Authentication
and user administration are combined in this subdomain, as a single team member from
group A deals specifically with the logic of user and access administration. Authentica-

tion is the necessary condition for accessing the core subdomains.

Core subdomain: Generic data synthesis methods This core subdomain of the
platform, focusing on generic data synthesis methods, involves collaborative efforts from

Group A and B at the same institution. Group B is dedicated to developing generic

32

3 Context and Requirements Analysis

generative algorithms, such as tabular data reproduction (MLaaS), and exploring data
fusion and rule-based generation features, as illustrated in figure 2.1. They also inte-
grate evaluation methods from Group C and support group A with data science domain
knowledge. Group A is in charge of the platform’s design and software development,
ensuring the seamless integration of features into an Al Software Services Platform. This
encompasses architecting and developing a backend infrastructure for various ML models
and frontend development tasks. Consequently, the development of core functionalities,
integration, and deployment processes are closely interconnected in this domain, enabling

effective communication among team members across various research areas.

Core subdomain: Use case explorer This subdomain forms another main value
of the platform, along with the generic approaches to data synthesis. It focuses on
cataloging, detailing, and executing data use cases characterized as inference as a ser-
vice. Presently, these use cases are being developed by project members from various
institutions (Group D and E) who work independently and communicate irregularly.
Additionally, the subdomain is designed to accommodate new use cases from external
community contributors, thereby extending and enhancing the use case explorer. In this
domain, each use case is treated as a distinct function and possesses its own unique busi-
ness logic. Within this domain, each added use case represents an isolated feature and

has its own business logic.

e Core subsubdomain: Neighborhood Generation The Neighborhood Gener-
ation, an internal project developed by a partner in Group E, is an ’inference as
a service’ tool. It employs a Graph Neural Network (GNN) to analyze urban pat-
terns, learning the relationships between various types of Points of Interest (POIs)
within a city. Utilizing this model, the GNN can predict the function of a building
based on its neighboring structures. This functionality is particularly beneficial for
supplementing incomplete urban land-use data [Yal|]. From the user’s perspective,
the process is straightforward and interactive. The user selects a specific polygon
area or a city on the map and then clicks the "Generate" button. This action
triggers the pre-trained GNN model, which then processes the selected area and
returns an optimized urban plan for that region. This user scenario emphasizes
ease of use and the practical application of complex neural network analysis for

urban planning.

33

3 Context and Requirements Analysis

Supporting subdomain: Job, data and model management This subdomain is
for managing and monitoring running or past jobs, data sets or models. The user can
view the details of the triggered jobs and datasets here. Both core domains, generic

synthesis methods and use-case specific methods, are supported by this domain.

Supporting subdomain: User support This subdomain includes services that help
users use the platform and provide additional information about the platform’s features
when needed. Given the variety of user types, who have different skill sets and user roles,
this area is designed to serve them all. This includes users who contribute use cases and

need guidance on how to improve the platform.

3.4 Requirements

The identified and described domains serve as a basis for splitting contexts and gathering
requirements. This process allows for the identification of problems within each domain,
thereby establishing system requirements. However, this work will predominantly focus
on non-functional aspects related to the overall architecture, particularly considering the
quality attribute extensibility. While internal functional requirements are recognized,
they are secondary to the architectural considerations. The functional design of each
application, which is inside the area of responsibility of respective development teams,

falls outside the scope of this analysis.

The foundation for all requirements is determined by the constraint that the platform
should implement a micro-frontend architecture, with the assumption that a Ul monolith
can pose challenges when extending software with new features, especially in situations
where features are developed by independent teams. This approach is aimed at ensuring
modularization, maintainability, and independent feature development. Consequently,
the requirements arising from the core domain are related to general concepts of micro-
frontend architecture, with the simultaneous goal of integrating Al software services into

the platform.
1. Constraint: Implementation of Microfrontend Architecture for extensibility

a) Extending the platform with new features should be possible without affecting

the existing features.

34

3 Context and Requirements Analysis

b) Each micro-frontend should encapsulate either a single domain or a bounded

context of related domains using an ubiquitous language.

¢) The micro-frontends should be developed without prior knowledge of how they
will be deployed.

d) The architecture should allow the integration of applications developed with
different frontend frameworks, requiring the architecture to be technology-

agnostic.
e) A failure in one application should not affect the availability of another one.
2. Consistency in User Experience

a) Within the different domains, the user must be offered a coherent user interface

and user experience.
b) Develop and adhere to a shared style guide, theme or UI component library.
3. Performance

a) Packages used more than once have to be shared in the context of the whole

application.
4. Communication and State Management
a) Microfrontends should not rely on global variables and shared states.
b) Micro-frontends should never be directly linked for data transfer.

c) Global state storage should utilize native browser functionalities like local

storage or cookies
5. Security and Authentication

a) The access to the core subdomains CSD-1 and CSD-2 should be restricted to

authenticated users.

b) The authentication domain should inform concerned subdomains upon suc-

cessful authentication.

6. SEO: Enhancing the platform’s visibility and accessibility through search engines.

35

3 Context and Requirements Analysis

a)

Ensure that the value proposition domain is optimized for search engine crawl-

ing and indexing.

7. Deployment and Maintenance

a)

Implement automated CI/CD pipelines to ensure seamless deployment and

updates for each micro-frontend.

The different versions of the micro-frontends should be observable and acces-

sible through a central management interface.

The integration and interaction of the applications must be testable.

36

4 System Design

Based on the problem scenario, the existing initial system, and the domain analysis, this
chapter introduces a system design intended to address the identified requirements. It
begins by determining the granularity of modularization, identifying the micro-frontends
to be separated. Subsequently, the technology choices are updated, and the communi-
cation between the micro-frontends is described. Finally, the infrastructure required for

the deployment and maintenance of the application is outlined.

4.1 Identification of Micro-Frontends

Following the principle that each identified domain can represent a micro-frontend, the
division could be based on the table referenced in 3.1. If the degree of modularization
aligns with the overall scope of the project, which is a Minimum Viable Product (MVP),
and if this modularization is intended to add value rather than create additional effort,
then some domains can be combined if they can be put into one bounded context if share

a common vocabulary or ubiquitous language and data logic.

Furthermore, considering that the development of the Reproduction feature, its software
integration, and supporting services like monitoring on a dashboard are being conducted
by groups at the same institution, it is impractical to split the frontend services. This
decision is reinforced by the aim to maintain low coupling between features while ensur-
ing high cohesion within the dafne app’s functionalities. As a result, in the new system
design, the dafne will continue to be treated as a micro-frontend. It will implement all
generic data synthesis methods and supporting services, aligning with the core compe-
tencies of Institution A. Additionally, it will serve as a host for integrating additional
applications that provide use-case-specific features, as shown in Fig. 4.1. This arrange-
ment ensures a uni-directional data flow, aligning with React’s design principles and

maintaining a hierarchical structure in the application’s architecture. It’s worth noting

37

4 System Design

that only those applications that are relevant for the MVP and are highlighted in color
will be included in the system design. The most significant changes from the previous

system are introduced as follows:

e Splitting: Transition from vertical split to hybrid split as the dafne now also

serves as a host rather than only being a remote of the container App.

¢ Routing: Implementing client-side routing in the high-level BrowserRouter of
the container app with React Router 6, which protects restricted routes and adapts

to route changes within the internal MemoryRouter of the remotes.

e Communication: Implementing an API Gateway pattern to manage backend
communication and Custom Events for communication between micro-frontends in

order to react to authentication states, route changes, or notifications.

e container: Introduction of an AuthProvider to restrict access to applications of

core domains, namely the DafneApp and consequently the NeighborhoodApp.

e theme: Adding a remote Material Ul theme and a remote color palette, consum-

able by all applications.

e marketing: Switching from React to Next.js for static site generation, enhancing
SEO. This approach transitions from a typical SPA to an isomorphic application,
merging server-side and client-side rendering. Aiming the server to initially deliver
the SEO-friendly HTML, then the app to shift to dynamic client-side content.

e dafne: Changing to a horizontal split in order to enable the integration of use-
case-specific applications. Additionally, the application code will be written in

TypeScript in order to increase the reliability of the core subdomain.

e neighborhood: Adding a Vue.js application for the Neighborhood Generation to
the React application dafne.

4.2 Updated Technology Stack

The system design update introduces two new frontend frameworks to leverage the bene-
fits of the micro-frontend architecture. While detailed explanations are beyond the scope

of this section, key features and benefits of each framework are highlighted.

38

4 System Design

Table 4.1: Identified Micro-Frontends inside the Domains

Domain Micro-frontend

CSD-1 Tabular data fusion

CSD-1 Rule based tabular data generation

SSD-2 My account

SSD-4 Documentation and help

Figure 4.1: High-Level System Design as Solution Strategy

39

4 System Design

4.2.1 Vue.js

The integration of the Neighborhood Generation feature will be facilitated by incorpo-
rating the Vue.js framework into the system design. Vue.js specializes in building user
interfaces and Single-Page Applications (SPAs), with a focus on the view layer. It of-
fers reactive data binding and composable view components, simplifying the integration
with other libraries or existing projects. Vue.js is renowned for its simplicity and ap-
proachability, especially for those with basic HTML and JavaScript knowledge, making

it accessible even to developers without extensive frontend experience [Vue].

4.2.2 Next.js

Next.js [Nexal is a framework that utilizes the React library but offers capabilities beyond
traditional SPAs, such as server-side rendering and static site generation. These features
significantly enhance the performance and Search Engine Optimization (SEO) of web
applications [Nexb|. Contrary to client-side rendered React applications, which rely on
client-side routing, Next.js manages routing based on the file system. It can pre-render
pages on the server and deliver fully rendered HT'ML to the client, whereas traditional
React applications typically deliver only a root div initially. This approach is particularly
beneficial for applications requiring quick initial load times [T'S20], such as accessing a

platform’s landing page in the Marketing application.

4.3 Communication between Micro-Frontends

In adherence to the core principles of micro-frontends — wherein components are loosely
coupled, capable of functioning independently, and without direct links to one another,
communication between micro-frontends is designed to be event-driven. This autonomy
is facilitated by utilizing Custom Events, which leverage native browser functionalities
to eliminate the need for external libraries, thereby reducing dependencies and ensuring

compatibility across diverse JavaScript environments.

Custom Events Figure 4.2 depicts an architecture where each application is respon-

sible for executing its state management and logic, with the liberty to utilize its own

40

4 System Design

state management technologies, such as Redux, within its boundaries. The only connec-
tion between applications occurs when they dispatch events to the browser environment,
which can be consumed by interested applications executing their own event handlers.
The data and information relevant to the event are shared via the event details. It
is by design that only publish/subscribe relationships are established between the host
(Container) and the remotes, preventing child applications from directly subscribing to
each other’s events. Focusing on extending Al Software Service functionalities, each re-
mote application added to the dafne host, such as the Neighborhood Generation feature,
communicates its internal status (e.g., job status) through events to the platform. This
method of communication enables the integration of activities like the initiated Al service
into the dashboard and also facilitates providing feedback to users, such as notifications,

based on the status of these services.

Routing A crucial application of custom events is routing. While individual appli-
cations can operate autonomously using a browser router, a memory router is required
when micro-frontends are composed within the shell application. The browser router
takes advantage of the browser’s History API, enabling navigation that reflects in the
URL bar without server requests. Typically, there can only be one Browser Router
that directly manipulates the browser’s URL and history. Thus, when micro-frontends
are nested within a shell application, a memory router is introduced. Unlike the browser
router, the memory router retains the navigation state internally within the application’s
memory. Ensuring that only one application controls the browser’s history stack is cru-
cial for avoiding route collisions and unpredictable navigation behavior. The container
app synchronizes the browser’s URL with the user’s navigation within the application
by listening to custom events that contain the current micro-frontend route in the event

detail, ensuring seamless navigation coordination.

API Gateway Pattern Another significant design decision is the implementation of
the API Gateway pattern, which centralizes backend communication in a microservice
architecture. It routes requests to the appropriate microservices and returns the response
through the same channel. This strategy is particularly advantageous due to the close
collaboration within Group A, where the backend team can provide an architecture that

supports this approach.

41

4 System Design

Figure 4.2: Communication Design based on API Gateway and Event-Based Architecture
4.4 Deployment and Maintenance

Transitioning from a development environment to production will highlight the advan-

tages of the micro-frontend architecture. This chapter outlines a robust strategy for build-

42

4 System Design

ing and deploying micro-frontend applications, emphasizing the creation of production-
ready builds, the selection of suitable hosting solutions, and the implementation of con-
tinuous integration and deployment (CI/CD) processes. Each micro-frontend (MFE) will

be independently deployed to ensure modularity and facilitate seamless updates.

Webpack Build The first step in preparing for deployment is creating a production
build using Webpack. This involves compiling the application source files along with the
necessary configuration files. A critical detail is ensuring that the main.js file includes
the correct references to where the remoteEntry.js files for each MFE are located. This
information is essential during build time, as the location of the remoteEntry.js files
dictates how MFEs will load in production. A specific production configuration will be
created where the target domain for production is specified, replacing any development

or staging references.

AWS S3 Buckets and Cloudfront CDN For deployment, Amazon Simple Storage
Service (Amazon S3) buckets are chosen as the hosting solution. The S3 service will
house the built versions of all subprojects, effectively managing and storing the build
files. The advantage of S3 is its scalability, durability, and integration with AWS services
like TAM for access management [S3A]. Amazon CloudFront, a content delivery net-
work (CDN), will be used in conjunction with S3 to distribute the static files efficiently.
CloudFront’s edge locations will cache the content, reducing latency by delivering the
content from the nearest edge location to the user, which is particularly beneficial for a
distributed architecture like micro-frontends [Clo, S3C18|. In this context, it’s essential
to visualize the flow (see Fig. 4.3): When the container starts with index.html, it will
load main.js, which contains a reference to the remote entry of the marketing applica-
tion. Subsequently, the remote entry will be loaded, prompting the loading of main.js
for marketing, and so on. Cloudfront will ensure that the correct files are made available

in the user’s browser based on the specific requests.

Version Control and Automation GitHub is used as the version and version control
platform of choice for managing the code base. Within GitHub, a monorepo structure is
maintained, providing a unified repository for all micro-frontend projects. This approach
is particularly suitable for this experiment as it is carried out by a single developer.

This setup lends itself to the straightforward creation of a continuous integration and

43

4 System Design

Figure 4.3: Using AWS Cloudfront CDN and S3 Buckets to serve Build Files to the
Browser

continuous delivery (CI/CD) pipeline using GitHub Actions as an automation platform.
GitHub Actions [git] facilitates the automation of various tasks and workflows within
GitHub repositories, including building, testing and deploying code, as well as automat-
ing tasks such as code formatting, dependency management and issue tracking. This
automated pipeline (see Fig. 4.4) will trigger a build for each micro front-end applica-
tion when changes are pushed to the main branch of the respective project folder. After

the build, each application will be uploaded independently to an S3 bucket.

The container application, being the only application that depends on other applications,
is prioritized in the testing strategy. In order to develop a prototype test strategy, an
initial end-to-end test is planned that focuses on the container application. With the help

of Cypress [cyp]|, the entire application flow will be tested from start to finish, checking

44

4 System Design

whether the correct routes are being loaded after certain user interactions. Only when
the test is passed and the correct integration of the micro-frontends is confirmed can the

container application be deployed.

Figure 4.4: Automation Pipeline

45

5 Implementation

This chapter outlines the practical implementation of the designed system. It starts with
configuring the remote applications and then details specific implementation aspects of
certain application flows highlighting the communication strategy, using sequence dia-
grams for enhanced understanding. Additionally, it demonstrates an attempt to trans-
form the app into an isomorphic one by integrating static site generation with Next.js.
The incorporation of a Vue.js application extends the React-based DaFne app, showcas-
ing the platform’s extensibility. Finally, the implementation of the CI/CD pipeline and
the Module Federation Dashboard Plugin is presented.

5.1 Configuration of Apps

This section details with how general app-related tasks like mounting, loading, routing,
securing or performance optimizations are implemented in the designed federated micro-

frontend architecture.

5.1.1 Bootstrapping and Loading Micro-Frontends

With bootstrapping, every micro-frontend is initialized, ensuring it operates effectively
both in isolation and when integrated into a larger application. This setup is essential
for maintaining autonomy of individual components while allowing them to function

cohesively within a unified system.

Central to the bootstrapping process is the implementation of a mount function. This
function is not just about rendering the Micro-Frontend onto the DOM, but also about
configuring critical aspects like the routing strategy. The routing strategy is particularly
important in a micro-frontend setup, as it manages navigation and URL handling in a

way that prevents conflicts between multiple coexisting applications. It ensures that each

46

5 Implementation

Micro-Frontend has its own navigation context, avoiding disruptions in the overall user

experience.

As the other micro-frontends are set up following a similar approach, the bootstrap file
of the dafne app should showcase how each application is initialized (see Listing 5). This
includes setting up the mount function with parameters such as mountPoint for defining
where the micro-frontend will be rendered, initialPathname for setting the initial route,
and routingStrategy to determine how routing is managed (browser-based/memory-
based). Additionally, it involves integrating state management and wrapping the app

with necessary providers, like in this case the Redux Provider.

This mount function not only renders the app but also returns a cleanup function to un-
mount the micro-frontend when it’s no longer needed. This aspect is crucial for resource

management and preventing memory leaks.

The exported mount function can now be utilized by the container app. Instead of
directly loading the remote as in the initial design, the host now creates components
(such as DafneApp, AuthApp, or MarketingApp, see Figure 5.1) for each application to
be integrated, each with very similar logic. These Components handle navigation and
location changes (see next section 5.1.2), mounts the micro-frontend when needed, and
ensures it’s properly unmounted when the component is no longer needed. This setup
is typical in Module Federation scenarios where different applications or components are

dynamically loaded into a shared shell or host.
Every loading logic will work in a similar logic as depicted in Listing 6:

e An effect hook manages the mounting process. It calls the mount function with
parameters like the mount point, initial pathname, and routing strategy, ensur-
ing proper initialization and placement in the DOM. The hook is executed once,
controlled by the isFirstRunRef flag, to prevent multiple mountings of the micro-

frontend.

e A cleanup effect hook handles the unmounting process when the component is
removed from the DOM. This function unmounts the micro-frontend, releasing

resources and preventing memory leaks.

e The component renders a div element, referenced by wrapperRef, which acts as
the mount point for the micro-frontend. This allows precise control over the micro-

frontend’s display location.

47

5 Implementation

const mount = ({
mountPoint,
initialPathname,
routingStrategy,
oo |
mountPoint: HTMLElement;
initialPathname?: string;
routingStrategy?: RoutingStrategy;
P)o=> A

const router = createRouter ({
strategy: routingStrategy || 'browser',
initialPathname: initialPathname || '/',

})

ReactDOM. render (
<Provider store={store}>
<RouterProvider router={router} />

</Provider>
4
mountPoint
)
return () => queueMicrotask(() => ReactDOM.unmountComponentAtNode (mountPoint));
}i
if (process.env.NODE_ENV == 'development') ({
const devRoot = document.querySelector ('#_dafne-dev-root') as HTMLElement;

if (devRoot) {
mount ({ mountPoint: devRoot, routingStrategy: 'browser' });

}

export { mount };

Listing 5: bootstrap.tsx of Dafne application

5.1.2 Routing

As seen in Listing 6 and 5, the routing strategy is determined based on the runtime envi-
ronment. For implementing the routing solution presented in Section 4.3, each frontend
initializes a router with React Router 6, depending on the environment. In the mode
where the apps are composed through the container, the container uses a Browser-—
Router, and the remote employs a MemoryRouter. When a remote application runs
in isolation, as shown in the mount function in Listing 5, it is initialized with a Browser—

Router and does not require route synchronization.

The sequence diagram in Figure 5.2 exemplifies the routing behavior during user’s journey
from the Landing Page (MarketingApp) to the Sign Up Page (AuthApp). It is worth

48

5 Implementation

Figure 5.1: File structure of Shell Application container

highlighting that there is never direct communication between the applications; instead,
they communicate solely through events, where the handling logic is executed by each

app independently.

Each remote includes a NavigationManager (see Listing 7), which listens for nav-
igation events from the container (’[shell] navigated’) and navigates within the
remote application using the Memory Router. Concurrently, an event (’[auth] navi-
gated’) is dispatched by the remote app, which is subscribed by the container so that it
can update the browser path with the current location. Synchronization in the container
app occurs in the custom navigation event handler set up for each initialized remote com-
ponent, as seen in Listing 8. Depending on the requested path, the container ultimately

mounts and unmounts the remote components via its own routes configuration.

49

5 Implementation

const isFirstRunRef = useRef (true);
const unmountRef = useRef (() => { });
useEffect (() => {
if (!isFirstRunRef.current) {
return;

}

unmountRef.current = mount ({
mountPoint: wrapperRef.current,
initialPathname: location.pathname.replace (dafneRoutingPrefix, ""),
routingStrategy: "memory",

1)
isFirstRunRef.current = false;
}, [location]);

useEffect (() => unmountRef.current, []);
return (
<div ref={wrapperRef} id="dafne-mfe" />

Listing 6: DafneApp.js: Loading and unloading dafne MFE in container app

5.1.3 Performance Considerations

Given that each individual application can operate autonomously, they must be able to
load all necessary dependencies. However, it is crucial to ensure that redundant code is
not loaded during a composed execution through a host if it is already being used by
another application. The shared property in Module Federation plays a crucial role
in this context (see Listing 9). It allows for the specification of individual modules or
the entire dependency list to be shared across different micro-frontends. This mechanism
helps in preventing the duplication of common dependencies, reducing overall bundle size
and load times. The shared configuration also facilitates version management, ensuring

that different parts of the application use compatible versions of shared libraries.

When configuring shared modules, the host determines which version of the shared mod-
ule to use, while the remote declares what it can provide. This distinction ensures that
the correct versions are used and avoiding version conflicts. The specification of Single-
tons becomes particularly relevant when using libraries like React or React DOM, which
have an internal state. Singletons ensure that only a single instance of these libraries is
used at any given time in the application flow, maintaining consistency and preventing

potential state conflicts.

50

5 Implementation

Figure 5.2: Routing behavior example between Container, Marketing and Auth

5.1.4 Fault Resilience

While applications are already loaded lazily and bootstrapped, which can help delay the
display of errors in specific micro-frontends until they are loaded, additional measures are
necessary to prevent the entire application from breaking in case of an error. To address
this, error boundaries are wrapped around the micro-frontends. rror boundaries are
crucial to ensuring that a fault in one part of the application does not lead to a complete
application failure because they isolate the errors. The implementation of this strategy is
referenced in Listing 10, where a MicroFrontendErrorBoundary component is used

to wrap around the micro-frontend, providing a safeguard against potential failures.

51

5 Implementation

export function NavigationManager ({ children })
useLocation () ;
useNavigate () ;

const location =

const navigate =

useEffect (() => {

function shellNavigationHandler (event) {
const pathname = event.detail;

if (location.pathname === pathname ||
return;
}
navigate (pathname) ;
}
window.addEventListener (" [shell] navigated",
return () => {
window.removeEventListener (" [shell]

bi
}, [location]);
useEffect (() => {

window.dispatchEvent (

new CustomEvent (" [auth] navigated", {

)i

[location]);

}y

return children;

navigated",

{

!matchRoutes (routes, { pathname }))

shellNavigationHandler) ;

shellNavigationHandler) ;

detail: location.pathname })

Listing 7: Internal Navigation Manager of Auth Micro-Frontend with React Router 6

useEffect (() => {
const authAppNavigationHandler =
const pathname = event.detail;
const newPathname =
if (newPathname === location.pathname) {

(event) =>

return;

}

navigate (newPathname) ;
}
window.addEventListener (" [auth]
() => { window.removeEventListener (
navigated",
authAppNavigationHandler

navigated",

return
"[auth]

}

}, [location]);

Listing 8: Container handling integrated Au

{

"${authBaseName} ${pathname} "’

authAppNavigationHandler) ;

thApp’s Navigation

52

{

5 Implementation

shared: {
...packageJson.dependencies,
react: {

singleton: true,

requiredVersion: packageJdson.dependencies.react,
}I
"react—-dom": {

singleton: true,

requiredVersion: packageJson.dependencies["react-dom"],
}I

Listing 9: Container app Webpack Configuration: Sharing packages with other modules

const renderMFE = (MFE) => {
return (
<MicroFrontendErrorBoundary>
<React.Suspense fallback="Loading...">
<MFE />
</React.Suspense>
</MicroFrontendErrorBoundary>

Listing 10: Container app’s Micro-Frontend loading with Error Boundary
5.2 UX/UI Consistency

Among methods to ensure a cohesive design across micro-frontends, this work has focused
on employing the Material-UI design system. Material-Ul is a renowned React-based
framework that provides an extensive library of pre-defined design elements and styles
[MUI|. To facilitate this, a new remote application theme has been added, which includes
a color palette integrating the DaFne project’s color concept with primary or secondary
colors, as well as other design and layout-specific elements like typography (refer to
Listing 11). Developers of individual Micro-Frontends are given the flexibility to establish
their own design system, but when the application is executed through the container,
it has to access the remote theme object. While the remote theme module serves as a
React application for testing the theme in a web application, it only exposes the finalized
theme object and a palette object that contains the color values (Listing 12). This palette

object is especially critical for micro-frontends that do not implement React, given that

53

5 Implementation

MUI is a design system tailored specifically for React. Thus, this theme or palette are

added to the remote list of all micro-frontend applications except the container.

import { createTheme } from '@mui/material';
import palette from './shared-palette';
const customTheme = createTheme ({
typography: {
fontSize: 13,
}I
components: {

MuiCssBaseline: { ... },
MuiTypography: {... },
MuiButton: { ... },
MuiAppBar: { ... 1},

}I
palette: palette,
layout: {
drawerWidth: 240,
appBarHeight: 20,
}y
1)
export default customTheme;

Listing 11: Shared MUI Theme

new ModuleFederationPlugin ({

name: 'theme',

filename: 'remoteEntry.ijs',

exposes: {
'./theme': './src/shared-theme',
'./palette': './src/shared-palette',

by

Listing 12: Theme Config

5.3 Communication and State management

The communication solution depicted in Figure 4.2 shows the static structure of the event-
based communication landscape, including the API gateway. While the implementation
of routing-based events was described in section 5.1.2, this section takes a closer look

at how state management and API requests work together to enable communication

54

5 Implementation

between micro-frontends. This is further explored through a user flow that requires
authentication, as shown in the sequence diagram (Figure 5.3). The flow begins with a
user attempting to access the protected ’dafne/dashboard’ route but gets redirected to
the login page due to lack of authentication. Successful login then leads the user to the
dashboard, followed by an immediate logout. It should be noted that, compared to the
diagram 5.2, this sequence does not take into account the logic for routing, mounting

and unmouting in order to focus on state management and API communication.

5.3.1 API Gateway and State Management

As shown in Figure 5.3, the authentication communication process involves multiple
micro-frontends, none of which directly communicate with each other or share a com-
mon, global state management system. Each application independently chooses its state
management and data fetching methods. All remote applications can issue requests to
the API Gateway with their individual technology of choice, given that they are capable
of making HTTP requests. The table 5.1 below outlines the specific technologies used
by each application. Unlike other applications, the container app does not perform API
requests, focusing instead on administrative tasks like routing, security, and loading of
the micro-frontends. In addition, the remote application theme does not need to set
up state management or fetch data, as it only provides static modules. The browser’s
local storage serves as the sole global data and state storage solution, primarily used for

storing and accessing the JSON Web Token (JWT) for authentication purposes.

Table 5.1: State Management and Data Fetching Technologies of each Micro-Frontend

Micro-Frontend | State Management | Data Fetching
container React Context -
marketing React useState Fetch API

auth React useState Fetch API

dafne Redux RTK Query
neighborhood reactive (Vue) Fetch API

theme - -

5.3.2 Authentication and Security

When a user attempts to access a restricted route, such as any subroute within the

Dafne application, the container app employs the ProtectedRoute component as a

55

5 Implementation

Figure 5.3: Implemented Security and Authentication Communication Flow

56

5 Implementation

route guard. This component, which encapsulates the rendering function of the Dafne
app, verifies the presence of a token in the AuthContext, the internal state manager
for authentication in the container app. If no token is found, the user is redirected to the
Auth app’s login page to enter their credentials. Notably, the login request is executed
by the Auth app, not by the container. Upon successful login, the Auth app stores the
JWT token in the browser’s local storage and simultaneously dispatches an event. This
event prompts the container’s AuthProvider to retrieve the token from local storage,
updating the AuthContext with the user’s authentication status and directing the user
to their requested route. Given that there is no direct connection between the micro-
frontends and each app manages its own state, the Dafne app independently retrieves
the token from local storage. It parses the token information and updates the user object
in its Redux store. With a validated user in its global state, the Dafne app can then
perform requests to the API gateway for additional data using RTK Query.

5.4 SEO with Next.js for Marketing App

The plan to leverage the micro-frontend architecture for the diverse needs of a compre-
hensive system initiates the experiment of combining SPAs with static sites. Through
Static Site Generation and Server-Side Rendering, instead of only a root div for the
Shadow DOM of SPAs, the entire HTML content of the page is pre-rendered. This ap-
proach aims to integrate a Next.js application for the marketing content of the Landing
Page into the container application. The Module Federation Community continuously
expands the capabilities of Module Federation, and with the NextFederationPlugin,
even server-side rendered micro-frontend applications are enabled [Nex23]. As shown in
Listing 13, static chunks are now created for the remote entry. Since the Marketing App
content has not yet been designed and fully implemented, simple HTML tags were added
to the document for testing. When the Next.js application is run in isolation mode, the
HTML content of the page is displayed in the source code (see Appendix 20). However,
when the Next.js application is integrated into the container application, the HTML
content of the page is displayed in the browser, it is not visible in the source code (see

Listing 14), making this experiment obsolete in this setup.

57

5 Implementation

const NextFederationPlugin = require ('@module-federation/nextjs-mf');
module.exports = {
webpack (config, options) {
const { isServer } = options;
config.plugins.push (
new NextFederationPlugin ({
name: 'landing',
filename: 'static/chunks/remoteEntry.js',
exposes: {
'./NextApp': './pages/index.]js',
}I
remotes: {
theme: 'themelhttp://localhost:8085/remoteEntry. js',
}V
shared: {
'@nmui/material': {
singleton: true,
}I
}I
extraOptions: {
exposesPages: true
}I

1)
)i
return config;
}I
bi

Listing 13: NextFederationPlugin: Module Federation for Next.js

<!DOCTYPE html>

<html>
<head> <script defer src="/main.js"></script></head>
<noscript id="__next_css__DO_NOT_USE__"></noscript>

<body style="margin: 0">
<div id="root"></div>
</body>
</html>

Listing 14: Next.js source code after integration into SPA container

58

5 Implementation

5.5 Integration of Vue.js Application Neighborhood

Generation

The focus now shifts to implementing the extensibility of the Al as a Software Service
platform. To achieve this, a Vue application responsible for Neighborhood Generation
is being integrated as a remote into the Dafne app. The developer is instructed to
build using Webpack, utilize Module Federation, and adhere to the platform’s design
system, with access to examples in the Dafne repository for guidance. The loading of
this Vue app is managed within the internal routes of the Dafne app, similar to how
the container app incorporates React applications as remotes (refer to Listing 15). The
primary distinction in this integration is the necessity to include the VuelLoaderPlugin
and Vue-specific style loaders in the Webpack configuration to process the template-like
structure of .vue files. Another difference to the React applications is that the shared
Material Ul theme is designed for React applications and therefore cannot be imported
directly into the Vue application. To maintain design consistency, the Vue application
imports the ES module of the color palette from the remote theme application (see
listing 17) Sass operates as a CSS preprocessor during the compilation phase, before
the CSS is served to the browser [Sas]. In contrast, JavaScript functions within the
browser, manipulating the Document Object Model (DOM) and interacting with the
rendered HTML and CSS. Consequently, the Sass theme of PrimeVue [Pri] cannot be
directly altered using JavaScript, necessitating a workaround. This workaround involves
appending CSS variables to the DOM natively to align the Vue application’s styling with

the overall platform design.

Regarding the communication strategy of the neighborhood app, the same principle
applied to other applications was followed. While the remote app can function au-
tonomously, the overarching dafne app is interested in the app’s status. Consequently,
events are dispatched when the neighborhood app makes an API request. The response
from the request is included in the event details, enabling the dafne app to decide how
to handle this response. Typically, the response is added to the Redux notifications state
within the Dafne app, ensuring that the user is informed about the status or outcome of
the request (see Listing 16). This approach facilitates seamless interaction between the

remote neighborhood app and the dafne host application.

59

5 Implementation

path: 'use-case/neighborhood’,
element:
<MicroFrontendErrorBoundary>
<React.Suspense fallback={<CircularProgress />}>
<NeighborhoodLazy />
</React.Suspense>
</MicroFrontendErrorBoundary>

Listing 15: Routes configuration of the dafne app

useEffect (() => {
const handleJobCreated = (event: Event) => {
const customEvent = event as CustomEvent;

if (customEvent.detail) {
displayNotification(

{
type: customEvent.detail.type,

header: customEvent.detail.header,
message: customEvent.detail.message,
timeout: 10000,

bi
window.addEventListener ('jobCreated', handleJobCreated);

return () => {
window.removeEventListener (' jobCreated', handleJobCreated);

Listing 16: DaFne app handling events of neighborhood app

5.6 Deployment and Maintenance
Following the implementation of the applications, the next step is to transition them from

the development environment to production. This involves executing the deployment

strategy outlined in Section 4.4.

60

5 Implementation

async function fetchPalette() {
const palette = await import ('theme/palette');
return palette.default;

}

async function createPaletteVariables() {
const paletteData = await fetchPalette();
for (const category in paletteData) {
if (paletteData.hasOwnProperty (category)) {
const categoryData = paletteDatal[categoryl];
for (const color in categoryData) {
if (categoryData.hasOwnProperty (color)) {
const variableName = "--${category}-${color} ;
const colorValue = categoryData[color];
console.log('variableName', variableName) ;
document .documentElement.style.setProperty (variableName, colorValue);

Listing 17: Palette Loading Vue App

5.6.1 CI/CD

For this purpose, each micro-frontend application will have a dedicated YAML file set
up for the GitHub Actions workflow, enabling independent deployment. All the files
follow a logic similar to that demonstrated for the container app in Listing 18. However,
the container additionally conducts an end-to-end integration test on the development
server of the GitHub Actions virtual machine before the application can be built and
deployed. The workflows are automatically triggered by a push to the main branch of

each directory in the monorepo, with the following steps:

1. Dependency Installation and Application Build

2. AWS Integration: Synchronizes the build output (dist directory) with an S3

bucket, as specified in the repository secrets.

3. CloudFront Invalidation: After updating the S3 bucket, an invalidation is cre-
ated on an AWS CloudFront distribution. Invalidation instructs CloudFront to
refresh its cache of specified files, in this case, the index.html file in the /contain-

er/latest path. This ensures that users always receive the most updated version

61

5 Implementation

of the application. Without invalidation, CloudFront might continue serving an
older, cached version of the files, delaying visibility of the latest updates until the

cache expires naturally.

name: deploy-container

on:
push:
branches:
- main
jobs:
test:
runs—-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- run: npm install
— run: npm run start:theme &
— run: npm run start:marketing &
— run: npm run start:auth &
— run: npm run start:dafne &
— run: npm run start:neighborhood &
- run: npm run start:container &
- run: sleep 5
— run: npx cypress run
build:

needs: test
runs-on: ubuntu-latest
defaults:
run:
working-directory: container
steps:
- uses: actions/checkout@v2
- name: Install dependencies and build container app
run: |
npm install
npm run build
env:
PRODUCTION_DOMAIN: ${{ secrets.PRODUCTION_DOMAIN }}
- uses: shinyinc/action—-aws—-cli@vl.2

- run: aws s3 sync dist s3://${{ secrets.AWS_S3_BUCKET_NAME }}/container/latest

env:
AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS_KEY_ID }}
AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
AWS_DEFAULT_REGION: 'us-east-1"

- run: aws cloudfront create-invalidation —--distribution-id ${{ secrets.AWS_DISTRIBU

env:
AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS_KEY_ID }}
AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
AWS_DEFAULT _REGION: 'eu-west-1"

Listing 18: Github actions workflow for application shell deployment

62

5 Implementation

5.6.2 Medusa Client

As a complement to the CI/CD pipeline and version management, the Module Fed-
eration Dashboard Plugin has been integrated into the development server to support
development activities (see Listing 19). This plugin extracts data from the Webpack
build process and posts it on the Medusa Client’s dashboard [das23]. It processes and
presents this information in a user-friendly UI. This centralizes architectural information
and visualizes crucial details about the micro-frontends, such as module versions and
dependencies. Consequently, each build is saved as a distinct version on the dashboard,

following a selected versioning strategy, and can be managed effectively.

new DashboardPlugin ({

versionStrategy: require("../package.json") .version,

// version equal to 'dafnePrimaryBlue' in package. json

filename: 'dashboard. json',

environment: 'development',

dashboardURL: " ${process.env.DASHBOARD_BASE_URL}/update?token=${process.env.DASHRO
metadata: {

baseUrl: 'http://localhost:8085",
remote: 'http://localhost:8085/remoteEntry.js',

by

Listing 19: Module Federation Dashboard Plugin of theme app

63

6 Evaluation

This section assesses the implemented micro-frontend architecture, utilizing Module Fed-
eration, in relation to the defined requirements and the developed system design that
emerged from these requirements. In this evaluation, the requirements provide a struc-

tural framework, with each group of requirements forming a distinct subchapter.

6.1 Constraint: Implementation of Microfrontend

Architecture for extensibility

This section assesses the outcomes of the implementation in comparison to Requirement
Group 1, concentrating on the success and practicality of extending features within the
Dafne app. The final results, showcased in Figure 6.1, confirm the successful feature
extension in alignment with Requirement la. The Module Federation Dashboard Plugin,
integrated to assist the development process, visualizes the relations between applications
as seen in Figure 6.2. This visualization confirms that the initial system design depicted
in Figure 4.1 was realized post-implementation, maintaining a hierarchical structure with
unidirectional data flow and effectively splitting the Dafne app horizontally. It is worth
underscoring that the relationships depicted are not dependencies but rather connec-
tions, as each application is decoupled and independently functional. The success of this
extension, without compromising other features, is also attributed to the Error Bound-
ary, which maintains app stability even when the Neighborhood Service is unavailable
or errant, allowing other functionalities of Domain CSD-1 to function, as highlighted in

Requirement le.

As for Requirement 1b, merging selected domains into a bounded context proved to be an
effective micro-frontend identification strategy for a long-term, maintainable prototype.
This approach, which limits fragmentation within the Dafne platform due to the high

cohesion of Dafne elements, aims to isolate functions within the CSD-2 Use Case Explorer

64

6 Evaluation

Figure 6.1: Neighborhood App Integrated into Dafne App

due to their potential for loose coupling. These features are unique to inference as a
service models with unpredictable data models, lacking relevance to the entire platform.
It suffices that job details only reference the dashboard, enabling the app to reload as

needed.

In terms of integration flexibility referring to requirement 1d), any frontend application
constructed using Webpack can theoretically be integrated into the Dafne App, regardless
of the framework, as demonstrated with the integration of Vue.js. Nevertheless, the
routing solution posed significant challenges. For instance, transitioning from React
Router 5 to React Router 6 required considerable effort. Despite initial challenges in
developing the NavigationManager, its adaptability to the system design allowed for its
reuse across all React remote apps sharing the same React DOM and Routing Stack.
However, for developers like those in the Neighborhood Generation who prefer simpler
frameworks like Vue.js, the prospect of implementing a routing solution with Module
Federation could be daunting, especially for those with limited knowledge of advanced
front-end technologies. Module Federation - essentially an npm library for code sharing
rather than a framework for micro-frontends - might not easily facilitate straightforward
implementations in such scenarios. In the specific case of the Neighborhood Generation,
no routing setup was needed in the Vue app, as it was designed as a single-page feature.

While implementing a MemoryHistory-based routing solution in Vue for multiple routes

65

6 Evaluation

Figure 6.2: UML Diagram in Medusa Client showing the Federated Landscape

is feasible, it could be challenging for developers with limited knowledge of advanced

frontend technologies.

In conclusion, while the implementation of micro-frontend architectures using Module
Federation is feasible and offers flexibility in platform feature extension, exploring the
use of micro-frontend-specific frameworks like single-spa might be beneficial. Single-
spa offers framework-specific solutions to many challenges encountered in the Module
Federation environment, along with a supportive community (e.g. with a Slack channel)

and numerous examples to ease the learning curve [sin].

6.2 Consistency in User Experience

To ensure a consistent user experience, the design system of the application was inte-
grated into the federated landscape as a remote app. While successful, this approach
slightly deviates from the requirement of technological and framework neutrality. This
is because Material Ul, the chosen design system, is a React-based framework, whereas
the architecture also integrates a Vue.js application. These Vue.js application utilizes
a framework-specific component library named PrimeVue, which necessitates consider-

able manual effort for adaptation to the components used in the React applications.

66

6 Evaluation

Figure 6.3: Switching between different Versions of the Design System

As a workaround, only the color palette from the remote design system was fetched to

maintain at least color consistency across all apps.

Therefore, a framework-independent design system such as Bootstrap [boo|, which allows
identical components to be used in all applications, can provide a more viable approach
to maintaining user interface consistency. The combination with the Module Federation
Dashboard Plugin, managed through the central Medusa Client, illustrates the advan-
tages of having a design system as a remote app. For instance, if there’s a need to change
or test a new primary color in the color system, modifications only need to be made and
deployed in the remote theme. This eliminates the need for consuming apps to adapt
to these changes manually. To test different versions of the design system, developers
can simply switch between uploaded build versions using a dropdown selection Ul in the
Medusa Client, as shown in Figure 6.3. This approach demonstrates the flexibility and

convenience of managing Ul changes in a distributed micro-frontend architecture.

6.3 Performance

In assessing the performance, basic network traffic metrics for a specific user journey were
measured. The user journey begins at the index route, loads the marketing page, proceeds
to the authentication page upon user action, logs in the user, loads the Dafne dashboard,

and finally loads the neighborhood app inside dafne. The measurements compare the

67

6 Evaluation

versions with and without module sharing, as shown in the table below. It is notable
that the number of requests is significantly higher with shared dependencies, which also
explains the larger size of uploads. This is likely due to shared dependencies consisting of
more, but smaller, chunks for modules. Without module sharing, modules are bundled
into larger files. The data shows that the download size, and therefore the total size
of resources, is somewhat smaller with shared dependencies. However, no advantage in
terms of loading times was observed. On the contrary, disadvantages with regard to the
initial loading time were measured in several tests, which in any case requires further

investigation for later development cycles.

Table 6.1: Performance Comparison

With Shared Depen- | Without Shared De-
dencies pendencies

Number of requests | 86 56

Downloaded size 13.7 MB 14.2 MB

Uploaded size 57.9 KB 7.03 KB

Initial page load 770ms 643ms

Size of all resources 17.9 MB 19.2 MB

Transferred data 116kB 33.3 kB

6.4 Communication and State Management

The evaluation of the implementation of the communication strategy based on the re-
quirements shows that the requirements are met. The requirements were established
based on micro-frontend principles and the Domain-Driven Design concept that commu-
nication between bounded contexts should be loosely coupled. While backend services
typically communicate based on contracts or well-defined APIs, in this case, the frontend
communication was facilitated through Custom Events, resulting in a reactive system.
Although the requirements were met, the manual handling of events can quickly become
cumbersome as there is no central event registry or event bus that the developers can

access. Instead, they must find the events in the code at the appropriate location.

It’s worth noting that alternative communication mechanisms, such as event buses or
event streaming platforms such as Kafka [kaf|, could potentially offer more streamlined
and manageable event handling. Such systems might enable more efficient event process-

ing and a cleaner separation of concerns.

68

6 Evaluation

Concerning backend communication, the API gateway pattern has successfully enabled
interactions with backend services. Similarly, state management objectives were achieved
without using to a global state. Each micro-frontend maintains its state independently,
adhering to its chosen technological framework. The local storage emerges as the only

centralized data store, aligning with the platform’s decentralized architecture.

Examples from the Module Federation repository demonstrate the feasibility of shared
contexts and technology-agnostic state management solutions [Exal. When the Dafne
platform evolves beyond the scope of an MVP, the exploration of such state manage-
ment strategies could prove beneficial. The current reliance on Custom Events for state
exchange, while effective, risks becoming convoluted as the platform scales. A transi-
tion towards a more structured and maintainable approach to state management and
inter-application communication could therefore be a strategic consideration for future

development.

6.5 Security and Authentication

Evaluating the implementation of security and authentication requirements indicates
successful fulfillment. The application responds reactively to changes in authentication
status, communicated via events and managed in local storage. A key element is the
container setting up an authentication context, from which access to the Dafne platform
is centrally protected and managed. Nevertheless, a discussion point arises regarding
which micro-frontend executes the business logic for authentication. In this case, the
Dafne app itself carries out the complete business logic for logout - internal state update
but also removing the JW'T token from the local storage -