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Abstract

This thesis documents the system requirements analysis of a fingerprint verifica-
tion system that deals with limited information due to a decrease of the sensor
capturing area. Basic parameters of correlation-based matching are identified
and examined through biometric tests in a specifically developed environment.
The results are evaluated with regard to the biometric performance as well as
the required computational power on an ARM Cortex M4 architecture.
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Kurzzusammenfassung

Diese Thesis dokumentiert die Systemanforderungsanalyse eines Fingerabdruck-
Verifikationssystems, das aufgrund der Verkleinerung der Sensorfläche mit einer
eingeschränkten Menge an Information arbeitet. Grundlegende Parameter des
korrelationsbasierten Matchings werden identifiziert und mittels biometrischer
Tests in einer eigens entwickelten Umgebung untersucht. Die Evaluation
der Ergebniss erfolgt hinsichtlich der biometrischen Performance sowie des
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1 Introduction

Please take a look at the fingerprint of your index finger. Have you ever considered
the regularity of the fine lines? Have you ever noticed the small irregularities within
the regular pattern?

Fingerprints are widely used to prove an individual’s identity. The applications that
utilize fingerprints range from security-critical ones to ones with a convenience back-
ground. A quick touch of the fingertip, and the individual is recognized. This principle
would be helpful and practical in many different situations. How often must a pass-
word or token be provided before access to a service or facility is granted? A high
security standard that implies the recognition of one individual among all individuals is
often not necessary. Furthermore, this is also not guaranteed with weak passwords or
transferable tokens.

Let us think about the following use case. Fingerprints can be utilized to enable a
convenient assignment of something within a small group of people, for instance some
friends, family or the residents of an apartment house. The attitude of sharing in a
modern and resource-conscious society can reveal many new applications for fingerprint
recognition.
A possible use case can be inside a car that is shared by lots of different parties. The
fingerprint authentication can be convenient for assigning some configurations to the
car, for example concerning the ergonomics or the entertainment system. This can be
extended to purchasable modules, which are unlocked by the car’s software when an
entitled individual presents their fingerprint.
Another example would be a room of shared use in the basement of an apartment
house. Something in this room is only available to residents of the house who are
registered for it. That can be for example bikes or gym equipment. The access to the
room is managed by fingerprint recognition. This has the advantage that no keys or
other tokens are required. A registration or termination process can be handled easily.
In addition, fingerprints cannot be passed to unauthorized individuals. In case of keys,
this can be probable if the residents know each other.

Such applications require a compact solution that can be integrated into large envi-
ronments. Even more flexibility is provided by a battery powered solution. A possible
realization is a device that includes a fingerprint sensor and a microcontroller.

13



1 Introduction

The recognition process comprises the capturing of a presented fingerprint, the com-
parison with a previously captured image of the fingerprint and the decision whether
access is granted or denied.

However, such a device comes along with some technical challenges:

• Computational power and memory available are restricted on a microcontroller.
In addition, the comparison of the fingerprints requires image processing, which
is a computationally intensive operation per se.

• For a versatile utilization, the device must be small and compact. The size of
the fingerprint sensor determines the size of the device. Furthermore, the sensor
accounts for most of the cost. Reducing the sensor size can solve these issues,
but it reduces the amount of information for the fingerprint recognition.

• The fingerprints for comparison must be securely stored on the device to prevent
identity-fraud.

This project targets the first two challenges with a system requirements analysis of a
fingerprint recognition system under limited information and restricted computational
power. The reduction of the sensor size and the implementation on a microcontroller
is investigated in order to find the boundaries of a reliable recognition. The associated
conditions as well as the conceptual formulation are described in chapter 3. Before
that, an introduction to the theoretical background is given in chapter 2. Chapter 4
describes the state of the art of fingerprint recognition with regard to this project. The
conception of the analysis and the associated development activities can be found in
chapter 5 and 6. The system requirements analysis is documented in chapter 7, 8 and
9, followed by the conclusion and an outlook in chapter 10 and 11.

Please note:

In addition to this thesis, the documentation of this project includes a number of
external files on the CD attached. A detailed description of the electronic appendix
can be found in appendix A. Throughout the thesis, these files are referred to as external
PowerPoint files, Excel files or database files. This comprises an implicit reference to
the given appendix section.

All figures in this thesis without source were created by the author as part of this
project.

14



2 Theoretical background

The following chapter provides an introduction to the topic biometric recognition using
fingerprints. Section 2.1 gives an overview about biometrics in general, followed by
section 2.2, which describes the fingerprint as a biometric characteristic.

2.1 Biometric recognition

Biometrics is a collective term for the utilization of anatomical and behavioral char-
acteristics of the human body for automatically recognizing individuals. Typical char-
acteristics are for instance fingerprint, face, voice, iris and hand geometry. The term
biometrics itself is derived from the Greek words bio (life) and metron (measurement).
[Mal+09, p.2]

2.1.1 Biometric systems

This subsection is correspondingly based on [Mal+09, p.3 ff.].

The operation of a biometric system can be broken down into three main processes,
namely, enrollment, verification and identification.

• An enrollment process is the initial registration. An individual is registered in the
storage of the biometric system. The stored characteristic is called an enrollment
template.

• In an identification process an individual does not explicitly claim an identity.
Their biometric characteristic is compared against all enrolled templates in the
data storage. This process conducts a one-to-many comparison.

• In a verification process an individual claims an identity. Their biometric char-
acteristic is only compared against their enrolled template in the data storage.
This process conducts a one-to-one comparison.

15



2 Theoretical background

The processes are visualized in the following figure 2.1.

Identification process

Enrollment process

Data
storage

Feature
set(s)

Enrollment
template

Template identifier
Subject identifier

Capture

Sample

Verification process

Data
storage
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Matching score

One enroll.
template

Subject identifier

Capture

Sample

Data
storage

Capture

Feature
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subject identifier(s)/not identified

Matching score

N enroll.
templates

Capture

Sample

Template 
creation

Pre-selection
& matching

Feature 
extraction

Feature
extraction

Matching

Feature 
extraction

Figure 2.1: Enrollment, identification and verification process, based on [Mal+09, p.4]

Depending on the application context, biometric systems implement an identification
or a verification process. Hence, these systems may be referred to as either an iden-
tification or a verification system. Both system types require an initial enrollment
process.
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2 Theoretical background

Identification and verification systems can be structured into system modules that
implement the main parts of the different processes. These modules are shown in
figure 2.1 and briefly explained in the following:

• Capture:
This module describes sensing and capturing of a digital representation of the
biometric characteristic. The captured characteristic is referred to as a sample.
The capturing may also include other (non-biometric) data.

• Feature extraction:
This module describes the further processing of the sample in order to facilitate
the comparison. The generated compact but expressive impression is called a
feature set.

• Template creation:
This module describes the creation of an enrollment template from one or more
feature sets.

• Pre-selection (only for identification systems):
This module describes an optional filtering or classification step before matching.
That reduces the effective size of the template database in an identification
process.

• Matching:
This module describes the comparison (matching) of feature set and enrollment
template. The similarity between them is computed in terms of a matching score.
This score is compared to a defined threshold in order to make the final decision
as to whether match or non-match.

• Data storage:
This module describes the storage of templates and other information of the
individuals.

Identification and verification processes differ in terms of their output. An identification
process conducts a one-to-many comparison. Output is a candidate list, which contains
the identifiers of all enrollment templates that match with the current feature set. If
no match occurred, this list is empty. In figure 2.1 an empty candidate list is illustrated
by »not identified«. A verification process conducts a one-to-one comparison. The
output corresponds to the decision, match or non-match.

An example for a verification process is a contactless payment using a bank card with an
integrated fingerprint sensor. By presenting the card to the base-station, the individual
claims an identity. In order to prove whether the card presenter is the card owner,
a fingerprint is captured. The captured sample goes through the feature extraction
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module and is compared against the pre-saved template. If the algorithm on the card
decides for a match, the identity of the individual is confirmed and the payment is
authorized towards the point of sale.

An example for an identification process is an access system based on a fingerprint
recognition. The individual presents their finger directly without providing any other
information of their identity. The captured sample goes through the feature extraction
block and is matched against all templates of the database. An optional pre-selection
step classifies the feature set in order to reduce the number of comparisons. Access is
granted if the matching process succeeds at least once.

This project addresses only the verification case with the one-to-one comparison
mode.

2.1.2 Performance of biometric verification systems

Error rates and charts to evaluate the performance of a biometric verification sys-
tem are explained below. The impact of the test size on the error rates is described
afterwards.

Error rates

This part is correspondingly based on [Mal+09, p.14 ff.].

On a high abstraction level, the two parts of the one-to-one-comparison in a verification
process can be referred to as reference and input. The reference is the enrolled template
in the data storage. The input is the biometric characteristic just captured.

There are two possible hypotheses:

• H0: The input does not come from the same individual as the reference.

• H1: The input comes from the same individual as the reference.

Furthermore, there are two possible associated decisions:

• D0: Non-match

• D1: Match
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Corresponding to the hypotheses and the decisions, there are two types of errors:

• False match

◦ D1 is decided when H0 is true.

• False non-match

◦ D0 is decided when H1 is true.

The probabilities of these errors are the corresponding error rates:

• False match rate

◦ FMR = P (D1|H0)

• False non-match rate

◦ FNMR = P (D0|H1)

FMR and FNMR are error rates of the matching module in one-to-one comparison
mode. With respect to the entire verification process, two other error rates are more
common and will be used throughout this thesis:

• FAR: False acceptance rate

• FRR: False rejection rate

Their exact meaning is dependent upon the type of biometric claim1 made by the
individual. The meaning of the terms acceptance and rejection also depends on that.
For example, in a border control, »accepting« means to be not an enrolled subject.
Transit is possibly rejected in case of a match. On the other hand, for the previous
example of a contactless payment, »accepting« means to be an enrolled subject. The
payment is authorized in case of a match.

In this project only the specific positive claim2 is the scenario of interest. This corre-
sponds to the contactless payment example. Consequently, the error rates are defined
as:

• FAR = FMR

• FRR = FNMR

1Biometric claim as defined in [Mal+09, p.6]: »A biometric claim (or claim of identity) is defined as the
implicit or explicit claim that a subject is or is not the source of an specified or unspecified biometric
enrollment template.«

2The individual is enrolled as a specified biometric enrollee, [Mal+09, p.7]
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The accuracy of a biometric system can be evaluated by collecting scores generated
from a large number of comparisons. These matching scores can be parted into two
distributions:

• Genuine distribution

◦ Scores of comparisons between reference and input from the same individual

• Impostor distribution

◦ Scores of comparisons between reference and input from different individuals

In the same way, the terms genuine and impostor are used throughout the thesis to
refer to the relation of input and reference.

The matching score is compared with the system threshold in order to meet the final
decision, match or non-match.

• t: System threshold

If the score is greater than or equal to the threshold the decision is match. Otherwise
it is non-match. Figure 2.2 illustrates the computation of FAR and FRR over the
distributions for a given threshold.
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Matching score
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Impostor distribution
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Figure 2.2: Distribution chart, t = 0.625
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The probability, which is the number of matching scores divided by the total number of
impostor respectively genuine comparisons, is plotted against the matching score. This
chart can also be used to evaluate the discriminability between genuine and impostor
comparisons. The further apart the maxima of the distributions, the better is the
entire system performance. The error rates defined by the overlapping area are thus
decreased. Throughout the thesis this chart is called distribution chart.

Both error rates are functions of the system threshold. Therefore the following deno-
tations are more correct:

• FAR(t)

• FRR(t)

There is a strict tradeoff between these two error rates in every biometric system.
Decreasing the threshold makes the system more tolerant against input variations and
noise. Consequently, the system is less secure but more user convenient due to a less
number of false rejections. Increasing the threshold makes the system more secure but
less convenient to the user. The error rates evolves as follows:

• Decrease of t

◦ FAR(t) increases

◦ FRR(t) decreases

• Increase of t

◦ FAR(t) decreases

◦ FRR(t) increases

The evaluation of the system performance is advisable at all operating points, which
are defined by the system threshold. Hence, each operating point consists of a pair of
FRR and FAR. The DET3 curve is a plot of FAR against FRR for all operating points.
An example is shown in figure 2.3. The closer the curve to the lower left corner, the
better is the entire system performance.

3DET - Detection-Error Tradeoff
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Figure 2.3: DET chart

The intersection with the angle bisector shows the point where FAR is equal to FRR.
This operating point, called EER4, is commonly used as a compact parameter to de-
scribe the performance of a verification system.

The plots shown in figure 2.2 and 2.3 as well as the EER will be used throughout this
thesis to evaluate the biometric performance.

Test size

This part is correspondingly based on [MW02, p.15 f.].

The goal of a performance test is the understanding and predicting of the error rates of
a biometric system when applied to the entire population. A test group of individuals
provides only a limited variance of the biometric characteristic. Consequently, the
accuracy of the determined error rates is dependent on the number of individuals and
the number of comparisons made. The larger the test group, the more accurate the
error rates are likely to be.

4EER - Equal-Error Rate
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Lower bounds for the needed number of comparisons for a certain level of accuracy are
given by the »Rule of 30«. The rule gives a minimum number of errors in order to be
90% confident that the true error is within an error band of the observed value:

• 11 errors

◦ True error rate is within ±50 % of the observed value.

• 30 errors

◦ True error rate is within ±30 % of the observed value.

• 260 errors

◦ True error rate is within ±10 % of the observed value.

For example, an FAR test that comprises 30 errors in 10,000 impostor comparisons:

FARobs = 0.03 %

FARtrue = FARobs ± 30 % = [ 0.021 %, 0.039 % ]

Another example would be an FAR that corresponds to a 4-digit PIN5. In order to
determine the true error rate within an error band of 10%, the number of comparisons
must be at least

N =
nErrors
FARP IN

=
260

0.01 %
= 2,600,000 .

These examples reveal the need for a large test group. The error with single compar-
isons are not a valid measure of the biometric performance.

A performance test of a verification system, as described in this section, is called
a biometric test throughout the thesis. Each of these tests includes an number of
comparisons that enables the significance of the error rates. The result evaluation
afterwards is carried out in terms of the distribution chart, the DET chart and the
EER.

5PIN - Personal Identification Number
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2.2 Fingerprint recognition

The analysis of fingerprint structures as a method for recognition goes back over 100
years. Today fingerprints are a widely deployed biometric characteristic. This is due
to the history of forensics and law enforcement. More recently, fingerprints and also
other biometric technologies are increasingly utilized in a large number of non-forensic
applications, e.g. unlocking of smart devices. [Mal+09, p.1 f.]

Another reason for its suitability as a biometric characteristic is the uniqueness and the
consistency of the fingerprint. The structural pattern on each finger of every person
is considered unique. The consistency of fingerprints has been proven based on the
anatomy and morphogenesis of friction ridge skin. Thus, the individuality of fingerprints
is empirically accepted. [PPJ02]

2.2.1 The fingerprint as a biometric characteristic

This subsection is correspondingly based on [Mal+09, p.38 ff.].

Fingerprints are composed of ridges and valleys. These structures are fully formed
before birth and normally do not change throughout life. However, heavy workload
for hands as well as cuts and bruises because of accidents may change parts of the
fingerprint. Figure 2.4 shows the captured ridge-valley structure of a fingerprint. Ridges
are normally illustrated black whereas valleys are illustrated white.

Figure 2.4: Example of a captured fingerprint, based on [Mai+02a, DB2]
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Based on the mode of acquisition, fingerprint images may be classified as off-line or
live-scan. An off-line image is obtained by ink and paper and digitized afterwards. A
live-scan image is obtained by using a sensor that is capable of digitizing the fingerprint
directly on contact. Typical live scan sensing mechanisms are e.g. optical FTIR6, ca-
pacitive, thermal, pressure-based or ultrasound. For further information about sensing
technologies please be referred to [Mal+09, p.57 ff.].

The capturing is followed by the feature extraction. A pixel intensity value in a fin-
gerprint image is not invariant over time of capture. Consequently, there is a need
for salient, time invariant features. These features should enable, on the one hand, to
discriminate between different fingers and, on the other hand, to recognize impressions
of the corresponding finger. One differs between intra-class variations and inter-class
variations:

• Intra-class variations

◦ Variations within different captured images of the same finger

• Inter-class variations

◦ Variations between captured images of different fingers

A desired fingerprint representation defines a feature space with low intra-class and high
inter-class variations. The main factors that cause problematic intra-class variations
are listed below:

• Displacement

• Rotation

• Partial overlap

• Non-linear distortion due to variable fingertip pressure during capturing

• Changing skin condition

• Sensor noise

Next to the saliency of the fingerprint representation, the suitability for easy extracting,
storability in a compact fashion and utility for matching are important properties. A
salient representation does not necessarily mean a suitability for automatic recogni-
tion.

6FTIR - Frustrated-Total Internal Reflection
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Fingerprint patterns exhibit various features when analyzed at different scales. A dis-
tinction is made for three levels:

• Level 1 – Global features:
At a global level, the ridge flow patterns make a definition of structure types
possible. Examples of some types are shown in figure 2.5. Singular points, called
loop and delta, are marked in orange. Global features are useful for classification
and indexing. However, for matching purposes, the feature distinctiveness in the
coarse structure is not sufficient.

b) c) d)a)

Figure 2.5: Examples for fingerprint types, a) left loop, b) right loop, c) whorl, d) arch
with singular points (square – loop type, triangle – delta type),
based on [Mai+02a, DB2]

• Level 2 – Local features:
At a local level, an analysis of the local ridge characteristics, so-called minute
details, is possible. Over 150 various types have been identified, but only two of
them are stable and robust to fingerprint impression conditions. These so-called
minutiae are ridge endings and ridge bifurcations. An overview of commonly
occurring ridge characteristics is shown in figure 2.6.

• Level 3 – Intra-ridge features:
At a very fine level, an extraction of characteristics within a ridge is possible.
This includes width, shape, curvature and edge contours of a ridge. Furthermore,
sweat pores inside a ridge or narrow incipient ridges can be features. The reliable
extraction of these details requires a high resolution capturing in good quality.
This is usually not practical in a commercial non-forensic application. Sweat
pores are shown in figure 2.6.

26



2 Theoretical background

Bifurcations

Endings

Short ridge

Sweat pores

Island

Figure 2.6: Level 2 & 3 features, based on [Mai+02a, DB2]

Due to feature extraction errors because of intra-class variability, reliable matching of
fingerprints is a sophisticated challenge. The design of a matching algorithm needs to
characterize a realistic model of the expected variations among the representation of
mated pairs.

Approaches of fingerprint recognition can be coarsely classified into the following three
categories:

• Minutiae-based recognition

• Non-minutiae feature-based recognition

• Correlation-based recognition

These categories are briefly explained in the following sections.
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2.2.2 Minutiae-based recognition

This subsection is correspondingly based on [Mal+09, p.97 ff.].

Minutiae-based recognition is the most common approach due to its history in forensics.
The following procedure summarizes the feature extraction process in its most common
way used for automatic applications:

• Directional field estimation and adaptive noise filtering

• Enhancement, binarization and thinning7

• Minutiae extraction and filtering

After different pre-processing steps, the minutiae are extracted from the captured
image and saved as feature vectors. A post-processing stage is used to filter spurious
minutiae.

The exact definition of the feature vector depends on the matching algorithm. Mostly,
a single minutia is characterized by location and orientation. In this case, two minutiae
are considered »matching« if the spatial distance as well as the direction difference
between them is smaller than a defined tolerance. A final decision is met after finding
the alignment that results in the maximum number of minutiae pairings.

A minimum of 12 minutiae is considered as a sufficient evidence in many courts of law
for a proof of identity. This is referred to as the 12-point guideline.

The main drawback of minutiae-based algorithms is the handling of bad-quality finger-
prints. Missing some minutiae and extracting some spurious minutiae leads to errors in
the matching stage. Furthermore, partial fingerprints may not contain enough minutiae
to ensure a reliable recognition.

2.2.3 Non minutiae-based recognition

This subsection is correspondingly based on [Mal+09, p.216 ff.].

The use of non minutiae-based features is often an alternative or supplement to
minutiae-based approaches. Examples for non minutiae-based feature are:

• Size of the fingerprint and shape of the external fingerprint silhouette

• Number, type and position of singularities

7The process in which each ridge breadth is thinned to one pixel.
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• Global and local texture information

◦ Spatial repetition of basic elements, characterized by properties such as
scale, orientation, frequency, symmetry etc.

• Geometrical attributes and spatial relationship of the ridge lines

• Level 3 features (e.g. sweat pores)

The extraction of these features may be more reliable in low-quality fingerprint images
even though their distinctiveness is generally lower than that of minutiae.

2.2.4 Correlation-based recognition

This subsection is correspondingly based on [Mal+09, p.172 ff.].

Correlation-based approaches superimpose the input on the reference and compute the
distance between the corresponding pixels for different alignments. The result is a
similarity measure for every alignment. This kind of approach is the investigation area
of this project. A more extensive introduction to typical issues and existing approaches
can be found in chapter 4.

There are both purely correlation-based approaches as well as combined ones with
other features. For instance, the similarity of small regions surround minutiae can be
used as an additional consolidation stage to assess the quality of a matched minutiae
pair.
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2.3 Collection of fingerprint images

The characteristics of fingerprint images, which are described in the previous section,
are exemplified below.

Figure 2.7 shows four images of the same finger. The similarity is easy to recognize
for the human eye. A comparison at pixel level is complicated by various factors. The
different background and thus the difference in the valley intensities is disadvantageous.
Furthermore, ridge intensity and breadth are different in each image. Non-linear dis-
tortion due to variable fingertip pressure is particularly noticeable above the loop of the
image on the far right. The ridge thickness is clearly increased in comparison to the
image next to it.

Figure 2.7: Fingerprint images from the same finger, based on [Mai+02a, DB2]

Figure 2.8 shows examples for not desired variability of an impostor comparison (a&b)
and a genuine comparison (c&d). In addition, compared to the previous figure, this
one reveals the general diversity that can appear with different capturing sensors, even
if the two sensors belong to the same category of capacitance sensors.

b) c) d)a)

Figure 2.8: a) & b) Fingerprint images from different fingers with low inter-class variability,
c) & d) Fingerprint images from the same finger with high intra-class variability,
based on [Mai+02b, DB3]
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Figure 2.9 shows some examples for poor quality images.

b) c) d)a)

Figure 2.9: Fingerprint images with low quality, based on [Mai+02a, DB2]
a) Non-uniform fingertip pressure during capturing
b) Skin condition - high moisture
c) Skin condition - low moisture
d) Partial overlap

Some examples for scars and ceases in fingerprints are shown in Figure 2.10.

b) c)
d)

a)

Scars

Ceases

Figure 2.10: Fingerprint images with scars and ceases,
a) & b) based on [Mai+02a, DB2], c) based on [Mai+02b, DB3]
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3 Analysis of the conceptual
formulation

As mentioned in the introduction, a smaller fingerprint sensor leads to lower hardware
costs and more compactness, but also to several technical challenges. The question
arises as to whether fingerprint recognition can be carried out reliably when dealing
with partial fingerprints and restricted computational power.
Partial fingerprints may contain far fewer minutiae than required to fulfill the 12-point
guideline. This limitation of distinctive information creates a need for a different match-
ing approach. The hosting company set the focus of this project to correlation-based
approaches. Consequently, the information reduction results in features that are com-
posed of image gray-scale values instead of minutiae.

A system requirements analysis must be carried out for a fingerprint verification system
that uses correlation-based matching. This system must provide a reasonable biometric
performance. The key parameters of correlation-based matching must be identified
and investigated concerning their impact on biometric performance and computational
effort. The determination of the best possible performance is not the goal of this
project. The analysis must make a statement possible, which addresses the feasibility of
correlation-based matching under the conditions of this project. Each of the following
parameters describes one condition.

As mentioned in section 2.1.2, a biometric test requires a certain test size to measure
the error rates with a certain statistical confidence. The hosting company set two
databases of the FVC8 as input for the analysis:

• FVC2000 DB2 - 880 images at 500 dpi resolution

• FVC2002 DB3 - 880 images at 500 dpi resolution

Section 4.4 provides more information about the databases and the contained finger-
print images. Regarding the enrollment and the verification process in figure 2.1, the
capturing module in this project consists of processing the FVC images instead of
capturing with hardware.

8FVC - Fingerprint Verification Competition
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The impact of different sensor sizes is investigated by cropping the images. The
following range of sensor capturing areas must be analyzed:

• 25 mm2 to 50 mm2

The impact of different sensor resolutions is investigated by scaling down the images.
Upscaling would not result in a higher amount of information and is therefore of no
interest. The following resolutions must be analyzed:

• 250 dpi, 375 dpi, 500 dpi

The target hardware architecture for the verification system is ARM Cortex M4 with
the following configuration:

• Clock rate: 96 MHz

• Available memory: 32 kB

• Programming language: C

There is no predetermined matching algorithm defined by the hosting company. A
comprehensive research is recommended to obtain an overview about disclosed tech-
niques.

Enrollment and verification must be implemented as separate parts of the algorithm.
The verification process is time critical whereas the enrollment process is not. The
following timing requirement is applied as an orientation:

• Maximum duration of a verification process: 1 s

The resources must be measured using the microcontroller NXP LPCXpresso5411x.
Due to the home office guideline during this project, the measurement takes place
inside the MCUxpresso IDE9. The analysis of the resources must be focused on the
following parameter:

• Duration of a verification process

• Required memory for a verification process including the enrollment template

The conclusion of this project must include a statement to the question whether fin-
gerprint recognition can be carried out under the described conditions. This must
comprise a minimum sensor size together with the associated expected computational
effort.

9IDE - Integrated Development Environment
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The following chapter provides an overview about image matching using correlation
and its state of the art concerning fingerprints. In section 4.1 the so-called template
matching is described in general. This is described in particular when matching finger-
print images in section 4.2. Furthermore, section 4.3 outlines the carried out algorithm
research and section 4.4 gives additional information about the FVC databases.

4.1 Template matching using correlation

Fingerprint recognition can be treated as a template matching problem. This section
gives a general introduction to this topic when working with gray-scale images and
correlation-based methods. It is correspondingly based on [BB16, p.565 ff.].

The basic questions arise as to when two images are considered as the same or similar
and how this similarity can be measured. Two images are compared using the pixel
information position and intensity. A series of effects complicates this comparison.
Different lighting or different camera conditions might change the pixel values in a
non-linear way. Furthermore, noise, quantization errors as well as minute shifts and
rotations can create large numerical pixel differences, even if the pair of images are
perceived as identical by a human viewer. Human perception incorporates a much wider
concept of similarity including the recognition of structure and content. The challenge
of comparing images at a structural or semantic level is a big field of research.

However, template matching describes a simpler problem of comparing images at the
pixel level. A given sub-image10, called template, has to be localized within some larger
image. Positions with high similarity are obtained by shifting and rotating the template
over the search image and measuring the difference. The essential questions are:

I What is a suitable difference measure?

II How can brightness and contrast changes be compensated?

III What total difference means a match?

10A subset of an image.
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In the following, various distance functions are described together with first approaches
to face these questions. For reasons of clarity and comprehensibility, rotation is not
taken into account.

4.1.1 Problem definition

In order to answer the first question, the problem can be defined in the following way.
A reference image (template) and a larger search image are given:

• R: Reference image

◦ Dimension MR × NR

◦ Pixel coordinate (r, s)

• I: Search image

◦ Dimension MI × NI

◦ Pixel coordinate (i , j)

The objective is to find the position where the similarity between the shifted template
and the corresponding sub-image of the search image is a maximum. The amount of
the shift is defined as offset, which corresponds to a pixel coordinate of the reference
image:

• (r, s): Offset

Various measures of similarity for computing a distance between images have been
proposed. The result of these measures is defined by the distance between the shifted
template and corresponding sub-image of the search image for each offset:

• d(r, s): Distance

Figure 4.1 on the next page illustrates the definition above. R(r,s) denotes the reference
image shifted by an offset.

35



4 State of the art

Search image I

MI

NI

R0,0

Rr,s

r

s

Image column

Image row

(0,0)

MR

NR

S
ea

rc
h
 r

an
g
e

Figure 4.1: Definition - template matching, based on [BB16, p.566]

Figure 4.2 illustrates the distance computation for one offset.

Figure 4.2: Distance computation for one offset, based on [BB16, p.566]

The computation is usually done pixelwise for each pixel of the template. The set of
all possible template coordinates are specified by the following short notation:

• {(i , j) ∈ R | 0 ≤ i < MR, 0 ≤ j < NR}: Possible template coordinates

◦ Short notation (i , j) ∈ R
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4.1.2 Correlation-based distance measures

The Euclidean distance, a basic measure for distance, is shown in the following equa-
tion.

dE(r, s) =

[ ∑
(i ,j)∈R

(
I(r + i , s + j)− R(i , j)

)2 ]1/2
(4.1)

The best matching-position is defined by the minimum of the square of the Euclidean
distance:

d2E(r, s) =
∑
(i ,j)∈R

(
I(r + i , s + j)− R(i , j)

)2
(4.2)

Equation (4.2) is also called sum Of squared differences (SSD). It can be expanded
to

d2E(r, s) =
∑
(i ,j)∈R

I2(r + i , s + j)︸ ︷︷ ︸
A(r,s)

+
∑
(i ,j)∈R

R2(i , j)︸ ︷︷ ︸
B(r,s)

− 2 ·
∑
(i ,j)∈R

I(r + i , s + j) · R(i , j)︸ ︷︷ ︸
C(r,s)

.

(4.3)

The above equation can be parted into three terms:

• A(r, s)

◦ Sum of squared values of the sub-image of I at offset (r, s)

• B

◦ Sum of squared values of the template

• C(r, s)

◦ Linear cross correlation between the sub-image of I at offset (r, s) and R

The linear cross correlation is generally defined as follows:

(I ∗ R)(r, s) =

∞∑
i=−∞

∞∑
j=−∞

I(r + i , s + j) · R(i , j) (4.4)
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Assuming that the pixel values of both images are zero outside their boundaries, the
equation results in

MR−1∑
i=0

NR−1∑
j=0

I(r + i , s + j) · R(i , j) =
∑
(i ,j)∈R

I(r + i , s + j) · R(i , j) , (4.5)

which is equivalent to the term C(r, s) from equation (4.3).

The term B is the signal energy of the template. This is a constant value for all offsets
and can therefore be ignored. The term A is the signal energy of the corresponding
sub-image of the search image at the current offset. This term can only assumed as
constant in an image with a high repetitive pattern and steady capturing conditions. In
this case, the minimum distance can be found by computing only the maximum value
of the correlation term C. Unfortunately, this assumption does not hold for most of
the images. Consequently, the cross correlation strongly varies with intensity changes
in the search image.

In order to overcome this dependency, the normalized cross correlation takes into
account the terms A and B as follows:

CN(r, s) =
C(r, s)√
A(r, s) · B

=
C(r, s)√
A(r, s) ·

√
B

(4.6)

=

∑
(i ,j)∈R I(r + i , s + j) · R(i , j)[∑

(i ,j)∈R I
2(r + i , s + j)

]1/2
·
[∑

(i ,j)∈R R
2(i , j)

]1/2
The result of the normalized cross correlation is in the range [0, 1], whereby the fol-
lowing indications are given:

• Maximum agreement CN(r, s) = 1

• Minimum agreement CN(r, s) = 0

The expression in equation (4.6) compensates intensity changes within the search
image. However, it measures the absolute distance. An altering of the overall intensity
of the search image may also change the results dramatically. A solution to this problem
is a comparison of the difference of pixel intensity values and average values.
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The average value of the template and the corresponding sub-image of the search
image are defined as follows:

R̄ =
1

MI · NI
·
∑
(i ,j)∈R

R(i , j) (4.7)

Īr,s =
1

MI · NI
·
∑
(i ,j)∈R

I(r + i , s + j) (4.8)

This modification turns equation (4.6) into the so-called correlation coefficient:

CL(r, s) =

∑
(i ,j)∈R

(
I(r + i , s + j)− Īr,s

)
·
(
R(i , j)− R̄

)[∑
(i ,j)∈R

(
I(r + i , s + j)− Īr,s

)2]1/2 · [∑(i ,j)∈R
(
R(i , j)− R̄

)2]1/2 (4.9)

The result of the correlation coefficient is in the range [−1, 1], whereby the following
indications are given:

• Maximum agreement CL(r, s) = 1

• Minimum agreement CL(r, s) = 0

• Maximum disagreement CL(r, s) = −1

The normalized cross correlation and the correlation coefficient provide first approaches
to handle brightness and contrast changes, as indicated in the second question at the
beginning of this section.

The third question was about the amount of agreement that indicates a match. The
sum of squared differences and the Euclidean distance provide a score that is not
normalized. The normalized cross correlation and the correlation coefficient have the
advantage that they provide a matching score in a defined range. This can be used
directly with a suitable threshold in order to decide about match or non-match.

If rotation is considered, the equations above are computed additionally for the search
image rotated around its center. The angle of rotation defines the amount of rota-
tion:

• ϕ: Angle of rotation
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Please note that the matching score of the comparison is usually the highest score of
a correlation map. The correlation map is defined as the entirety of scores for every
offset of every rotation.

• C(r, s, ϕ): Correlation map

The computation of a single score of the correlation map is referred to as a correlation
operation (C-OP) in this project.

These are the definitions for the general case. There are a few differences when
matching fingerprints, which are described in the following section.

4.2 Fingerprint matching using correlation

In the previous section, template matching is described as the determination of offset
and angle with the highest agreement of a reference image within a larger search image.
For fingerprint recognition, the scenario is reverse in terms of the image sizes. The
entire finger is captured during the enrollment process to guarantee a certain amount
of overlap with the single image captured during the verification process. Consequently,
for fingerprint recognition, the reference is the larger search image. Usually the same
sensor is used for enrollment and verification. For sensor sizes where partial fingerprints
are captured, the enrollment template usually consists of several images. In this section,
the terms are used as follows to distinguish the images:

• Reference

◦ The image(s) captured during the enrollment process

• Input

◦ The image captured during the verification process

The distance measures provide a matching score of the input within the reference. In
addition to displacement and rotation, further intra-class variations, which are more
difficult to handle, are mentioned in section 2.2.

Correlation-based approaches in particular suffer from these variations. The fingertip
pressure may cause non-linear distortion. Due to non-uniform pressure, this can even be
different in sub-regions of the same image. Moreover, based on the moisture of the skin,
the captured fingerprints may have either thinner or thicker ridges. Additionally, the
quality of the captured images may vary with time, which complicates the correlation
process. [RRJ02]
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However, algorithms of the fingerprint verification competitions demonstrated that
these methods have been used successfully for fingerprint matching, [Lin+07]. Bazen
stated that the gray-scale information in a fingerprint image contains much richer and
more discriminatory information than only minutiae locations; merely a small part of
the local ridge-valley structure is characterized by those locations, [Baz+00].

Different approaches for handling the intra-class variations have been examined. In or-
der to provide an insight into their variance, some general considerations are described
below in an exemplary way.
As mentioned before, particular distance measures can compensate contrast and bright-
ness differences.
A pre-processing stage can prepare reference and input for matching. For instance,
image normalization assures the use of the entire gray-scale range. Furthermore, a
filtering stage can reduce artifacts from capturing like sensor noise.
The effect of non-linear distortion can be reduced by dividing the fingerprint images
into smaller regions and computing the similarity on a local base, [ZBS14].

The best strategy depends on the target application and is a tradeoff between compu-
tational cost and biometric performance. Zanganeh stated that although correlation-
based methods are more reliable than minutiae-based approaches, their main drawback
is their computational cost, [ZBS14].
By computing the score of every possible displacement and rotation, the best align-
ment can be found with certainty. However, this leads to a significant increase in the
number of correlation operations during the normally time-critical verification process.
The key to reducing this number is to find the best alignment without computing every
score. This can be done by using other features of the fingerprint for a pre-alignment,
for example singular points or minutiae. Another approach to reduce the time for a
verification process may be the execution of computational expensive operations during
the enrollment process.

The design of a correlation-based matching algorithm involves many degrees of free-
dom. This is due to the diverse target applications and their circumstances. For
example, fingerprint recognition can be implemented as part of an IoT11 application
with restricted resources as well as on a smart phone with a multi-core environment.
Moreover, the quantity and the quality of information, which strongly depend on size
and resolution of the fingerprint images, have a significant impact. As mentioned be-
fore, the biometric performance is a tradeoff between security and convenience, which
additionally affects the design of an algorithm.

11IoT - Internet of Things
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4.3 Research

4.3.1 Intention

In order to get an overview of common practice and to find appropriate algorithms
for this project, a research is carried out. The following basic requirements for the
selection of promising algorithms are applied:

I Pure correlation-based matching

II Partial fingerprints (restricted information)

III Restricted computational power

4.3.2 Outcomes

This algorithm research comprised over 35 papers and theses published between 1998
and 2019. Two periods with an increased number of publications can be observed in
the early 2000s as well as between 2014 and 2018. The first period was around the
fingerprint verification competitions. The second period was after the introduction of
the first fingerprint sensors in smart phones.

None of the proposed approaches cover all of the requirements above. Most of the
result evaluations focus primarily on the biometric performance. Requirement III in
particular is barely considered. In this context, there is often no separation between
enrollment and verification or identification. In addition, pure correlation algorithms
are rare. Most of the approaches utilize the regions around minutiae. In summary,
algorithms that fully meet the criteria for this project cannot be found.

The following points outline the common practice that can be observed:

• Most of the algorithms use standard fingerprint normalization and enhancement
techniques to preprocess the images.

• The features are mostly square-shaped regions, called windows, composed of the
gray-scale values. The edge length varies between 16 px and 50 px.

• Some algorithms select regions based on the amount of discriminatory informa-
tion. Most of the algorithms use the regions around minutiae to guarantee that.
With partial fingerprints, there is often no selection and all available information
is used.
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• Large displacements and rotations are compensated by a coarse alignment. This
is mostly based on singular points or minutiae. A fine alignment is often done by
shifting the feature pixelwise over a bigger search window for different rotations.
The compensation of rotation is a bigger issue than displacement.

• A variety of approaches are used for the matching stage:

◦ The correlation score is used as a validation stage for minutiae matching.

◦ The peak or average values of the distance functions Euclidean distance,
normalized cross correlation and correlation coefficient are used as matching
score.

◦ The relative matched positions of the window features are used as score.

In the electronic appendix an examination of the algorithms of helpful papers can be
found. Those are compared concerning the following criteria:

• Algorithm parts:

◦ Enhancement / pre-processing

◦ Feature representation

◦ Alignment – displacement / rotation

◦ Matching score computation

• Reaction to / measures to:

◦ Intra-class variations

◦ Reduction in computational effort

◦ Guarantee of enough discriminatory information

The papers compared are listed below:

• [Baz+00] A Correlation Based Fingerprint Verification System

• [Kov00] A Fingerprint Verification System Based on Triangular Matching and
Dynamic Time Warping

• [RRJ02] Fingerprint Matching using Feature Space Correlation

• [NJ04] Local Correlation-based Fingerprint Matching

• [Lin+07] Correlation Based Fingerprint Matching with Orientation Field Align-
ment
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• [Li+08] Fingerprint Matching Using Correlation and Thin-Plate Spline Deforma-
tion Model

• [WS11] Fingerprint recognition system for low quality images

• [ZBS14] Partial Fingerprint Identification Through Correlation-based Approach

• [SSB19] Fingerprint-Matching Algorithms

4.4 FVC databases

In order to establish a common benchmark for fingerprint recognition algorithms, the
first fingerprint verification competition was organized in 2000. This benchmark should
allow to compare the biometric performance and to track improvements in fingerprint
recognition algorithms. As part of this competition, four databases were created us-
ing three different state-of-the-art sensors and an artificial generator. The so-called
FVC2000 was an international open competition where companies and academic insti-
tutions could participate. It was not meant as an official performance certification, it
was conceived as a technology evaluation12. [Mai+02a]

Further competitions with further specially collected databases were in 2002, 2004 and
2006. A web-based evaluation system called FVC-onGoing was set up in 2009. For
more information about the circumstances and the results of all of the competitions,
please refer to [Bio20] and the links provided there.

The overview on the next page summarizes the features of the two FVC databases
that are set by the hosting company as input of the system requirements analysis. In
addition, an image of each database is shown in figure 4.3.

12Technology evaluation as defined in [MW02, p.7]: »The goal of a technology evaluation is to com-
pare competing algorithms from a single technology. Testing of all algorithms is carried out on a
standardised database collected by a “universal” sensor. [...]«
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FVC2000, DB2, [Mai+02a]

• Capacitive sensor »TouchChip« by ST Microelectronics

• Resolution: 500 dpi

• Image size: 256 px× 364 px

• 110 fingers (100 finger in evaluation set A, 10 finger in training set B)

• 8 impressions per finger

FVC2002, DB3, [Mai+02b]

• Capacitive sensor »100SC« by Precise Biometrics

• Resolution: 500 dpi

• Image size: 300 px× 300 px

• 110 fingers (100 finger in evaluation set A, 10 finger in training set B)

• 8 impressions per finger

Information on the collection process of both databases can be found in appendix D.

a)

b)

Figure 4.3: a) FVC2000 DB2 image, based on [Mai+02a, DB2]
b) FVC2002 DB3 image, based on [Mai+02b, DB3]
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Due to the lack of correlation-based algorithms that meet all the requirements defined
for the research, the system requirements analysis is realized in a very fundamental way.
The research revealed a high degree of variance in the disclosed approaches. Even if
no approach as a whole can be adapted to this project, promising components need
to be examined in order to understand the dependencies between biometric perfor-
mance and computational effort. Moreover, the examination of different sensor sizes
and resolutions require a pre-processing stage for the preparation of the fingerprint
images.

In order to handle this variability, a decomposition of enrollment and verification process
into modules is necessary. An environment is required that implements a fingerprint
verification system in a modularly configurable manner.

The target hardware architecture cannot be used as platform for such an environment.
Consequently, the computational effort on the embedded system must be measured
separately. In order to establish a relation to the results of the analysis environment,
the measured value must be scalable. This is described in detail in section 7.3.

In the process of the analysis, essential parameters of each module must first be iden-
tified and then examined independently. Investigating the impact of a parameter in
terms of the biometric performance requires a biometric test for each parameter value.
In the following, an estimate of the possible scope of such an investigation is made.
The feature size is used as example parameter. The research revealed square-shaped
window features with a minimum and maximum edge length as used below. A corre-
sponding parameter sweep can be set up as follows:

• Parameter sweep featureSize

◦ From 16 px to 50 px in steps of 2 px

This results in 18 biometric tests. A consideration of the three different image distance
functions increases this count to 54.
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For a single biometric test, the number of comparisons is at a maximum if the ratio
of enrollment and verification images is one to one. With the 880 images of a FVC
database, this results in

nCompar isons = nImages,enrol lment · nImages,ver if ication

= 440 · 440 = 193,600

for the maximum number of comparisons13. Consequently, the total number of com-
parisons within the feature size investigation amounts to more than 10 million.

Due to that scope, the environment must be capable to handle a high amount of data
and long test duration. With the estimated number of comparisons, duration can be
expected in an hour-span and memory consumption possibly up to a GB-range.
Besides that, the result processing of a single biometric test is not possible before
it is completed. All data of the test must be available for a result processing after
test execution. The selection of applications used for development of the analysis
environment is mainly affected by these circumstances.

With regard to the amount of data, an underlying database system is reasonable.
The layer above must provide the interface to the database as well as a performant
environment for computing. In addition, a user interface for the configuration of a
biometric tests must be provided.

Figure 5.1 on the next page illustrates the functional interaction of the analysis envi-
ronment in its simplest form. The fingerprint pattern symbolizes the FVC databases
as input for the analysis. The charts symbolize the outcomes of a biometric test. The
orange-black token symbolizes the user.

13Please note that this assumes a separated enrollment process for each of the four enrollment images
per volunteer, which is not common. The calculated number of comparisons is a possible extent.
The comparison scheme used in this project is explained in section 7.2.2.
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Computing
environment

Database
system

Figure 5.1: Analysis environment - functional interaction

The hosting company recommended the database system SQLite14, which is used for
biometric tests in similar applications in the department.
Due to its performance and the characteristic as a interpreter language, MATLAB®

is selected as computing environment. It additionally provides a comprehensive set of
image processing algorithms through the Image Processing Toolbox. Please be referred
to [The21] for more information on this add-on.
Different SQLite interfaces are available for MATLAB®. The open source interface
mksqlite in version 2.7 is used in this project. Please be referred to [Kor21] for more
information on the interface.

The environment must be additionally feature a high extensibility. An implementation
of further parameters should be a common measure in order to react to the dynamic
analysis process. At the same time, a reproducible test handling and result evaluation
must be assured to compare different setups.

Furthermore, in order to ensure a certain structure compatibility of the implementations
of matching algorithms within the department of the hosting company, the following
three basic functions should be implemented:

• createEnrollmentTemplate

• createVerificationTemplate15

• matchTemplates

14SQLite is a software library that provides a relational database management system, [SQL21]. The
tutorial in the source can be recommended by the author.

15A so-called verification template is created from the captured fingerprint during the verification pro-
cess. The term template is here not used only for the enrollment process.
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At this point it is useful to clarify the procedure of the verification system of this
project. Figure 5.2 illustrates this procedure. It shows the mentioned pre-processing
stage for the input images as well as the algorithm implementation structure.

Image pre-
processing

createEnrollment-
Template

createVerification-
Template

match-
Templates

Image
Matching
score

Enrollment template

Verification template

Enrollment sample

Verification sample

Figure 5.2: Verification system - procedure

The parts of the flow chart in figure 5.2 correspond to the following modules of enroll-
ment and verification process as shown in figure 2.1:

• Image pre-processing

◦ Capture of both processes

• createEnrollmentTemplate

◦ Feature extraction and template creation of the enrollment process

• createVerificationTemplate

◦ Feature extraction of the verification process

• matchTemplates

◦ Matching of the verification process

The main information between two modules is transferred in a so-called information
container. Its content is one or more gray-scale images.
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The following terms are used to refer to the different types of these information con-
tainers in the verification system:

• Image

◦ Raw image from a fingerprint database

• Enrollment sample

◦ Pre-processed image for enrollment

• Enrollment template

◦ Enrollment part of the comparison composed of enrollment sample(s)

• Verification sample

◦ Pre-processed image for verification

• Verification template

◦ Verification part of the comparison composed of one verification sample
respectively its features

The verification system described above is implemented by the analysis environment.

The complete development, implementation and testing of the analysis environment
is part of this project and described in the next chapter 6. The system requirements
analysis is documented from chapter 7 on.

The environment is called Correlation Analysis Environment (CAE).
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6 Correlation Analysis Environment
(CAE)

This chapter describes the development of the environment that forms the foundation
for the analysis of correlation-based matching algorithms. As mentioned in the concep-
tion, the system requirements analysis is a dynamic process. The CAE must feature
a high extensibility in order to enable a simple implementation of further parameter
during the analysis.

The following sections describe the development of the framework that makes this
extensibility possible. This is referred to as CAE version 0.9. It provides the basic
functionality and the prepared configurability, but with limited configuration options.
The requirement analysis and the consequent architecture overview is described in
section 6.1, followed by the fine architecture in 6.2 and the implementation in 6.3.
The description of the extension process can be found in section 6.4. Section 6.5
describes the testing procedure applied.

The documentation of the CAE includes a set of external files. Please be referred to
the electronic appendix, which is described in appendix A.

6.1 Requirement analysis and architecture overview

In the following, the requirements for the development of the analysis environment are
described. An architecture is derived directly from these requirements and then refined
in the next section.

6.1.1 MATLAB®-SQLite interface

As described in the conception, due to the number of comparisons and the expected
amount of data, an underlying database system must be used. MATLAB® and SQLite
are the applications selected for the development of the CAE.
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The following terms are used throughout this chapter to describe the components of
these applications.

• Process

◦ A MATLAB script that includes one or more CAE modules as well as sup-
porting functionality

• Module

◦ A MATLAB section inside a process

• Function

◦ A MATLAB function, called by a module

• Database

◦ An SQLite database in the form of a .db file that contains one or more
SQLite tables

• Table

◦ An SQLite table that contains one or more columns

The use of the interface between the applications is structured in two levels. Figure 6.1
shows these levels with the corresponding components.

457pt

MATLAB SQLite

Process

Module

Database

Table

Open / close

Read

Write

Figure 6.1: Structure of the MATLAB®-SQLite interface

At the so-called process level, the connection to a database is managed. This is referred
to as open or close. At the so-called module level, data in form of a number of rows
of a table are transferred. This is referred to as read or write. The arrow directions of
the commands read and write in the figure above illustrate the data flow.

A function does not use the interface. All necessary information is provided by the
module with the function call.
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6.1.2 System overview

The FVC databases are the input of the analysis. In addition to the images, the
hosting company provides SQLite databases that consist of basic information on the
fingerprint images for each FVC database. This includes the path to the image file,
identification numbers for each image and each volunteer as well as further information.
The images must be imported into the CAE and labeled using the information in the
provided SQLite database. The output of the CAE must be the characteristic charts
for performance evaluation as well as further information of the carried out biometric
tests like the computational effort.

With regard to the scope of the analysis, some specific requirements for the user
interface are appropriate. Corrupted result as a consequence of bugs or wrong user
input are highly critical, especially because they might not directly visible during result
evaluation. Thus, the complete procedure must be logical and transparent to the
user. Even if the analysis of single comparisons are out of the scope of this project,
for testing and debugging purposes the access to the insight of the modules must be
possible. Furthermore, wrong user input must be avoided. Subsequently, with respect
to a continuation of the project, the CAE must be programmed and documented in a
comprehensible way.

Figure 6.2 shows the CAE as a black box. The user interface as well as input and
output are illustrated with the symbols that have already been used in previous figures.
The little database symbol inside the fingerprint illustrates the SQLite database that
is provided to each FVC database.

CAE

Figure 6.2: System overview - CAE as a black box

The CAE procedure may include several biometric tests. A series of biometric tests
that are carried out simultaneously in the environment is referred to as a CAE test
throughout the thesis. The parametrization of a biometric test is called a test config-
uration.
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6.1.3 Process level

A CAE test involves a complex procedure from configuring a series of biometric tests
up to comparing the results of those tests. An implementation of this procedure in
one single process would be limiting and inflexible. In the event of an error, the entire
procedure would have to be repeated. In general, a division of a CAE test into different
processes contributes to its reproducibility and to the extensibility of the environment.
Furthermore, this supports a modular overall structure and thus facilitates programming
and testing. The connection between the processes must be handled by a defined
format of input and output databases.

The requirements above make the following division reasonable:

• CAE test

I Creation process that comprises the setting of one or a series of test con-
figurations

II Execution process that comprises a biometric test per test configuration

III Evaluation process that comprises the result evaluation of each test config-
uration and its visualization

Figure 6.3 illustrates the CAE on process level. Within the creation process, the input
databases must be imported. Between the processes, data is stored in two different
databases. User interaction is required to start each process.

CAE

Creation Execution Evaluation

CAE_test.db CAE_test_executed.db

Figure 6.3: CAE - Process level view
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6.1.4 Database interaction

The CAE must be structured in configurable modules of a fingerprint verification sys-
tem. This is explained in the next section 6.2. First, the interaction of these modules
with the database system is explained.

Figure 6.4 illustrates two modules within a process. The arrow on the bottom of the
figure indicates the temporal sequence. The arrows from and to the database relate
to the command types introduced in figure 6.1. During a process, an active database
connection is established between the open and close commands. At module level, it
is possible to work with the data from the opened database using the commands read
and write.
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Figure 6.4: CAE - Database interaction

Each process opens a database at the beginning, works with it and closes it at the
end. In order to realize this in compliance with the procedure in figure 6.3, the input
database of the execution process must be copied and renamed. Thus, the output
database of the creation process remains unchanged. This ensures the reproducibility
of a CAE test.
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6.2 Detailed architecture

This section describes the deeper levels of the architecture and the implementation of
the verification system.

6.2.1 Module level

A module is located within a process. Figure 6.5 illustrates the basic functionality of
this level. The interaction with the database takes place via tables.

Module

Configuration table row 

Result table row
of this module 

Result table row
of previous module(s)

Figure 6.5: CAE - Module level

There are two main types of tables in the CAE. A result table represents the input
respectively the output of an module. This includes necessary information to relate
the data of the different tables as well as the corresponding information containers. A
configuration table includes the parametrization to the instructions that are applied to
a information container inside the module.

Thus, the functionality of an module can be described by an entirety of configurations
that are applied to an entirety of one information container type and saved as an
entirety of another information container type.
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6.2.2 Function level

A function is located within a module. Figure 6.6 illustrates its basic integration.

Module Configuration table row 

Result table row
of this module 

Result table row
of previous module(s)

Function

Figure 6.6: CAE - Function level

A function implements the application of one configuration to one information con-
tainer. As a result, one new information container is stored in the result table of the
module.

There is no interaction with the database on this level. A function is called inside a
loop of a MATLAB® section, which represents the module.

6.2.3 Verification system

The section describes the structure of the verification system, that is implemented in
the test execution process.

The structure of the verification system is based on the considerations in the concep-
tion. Figure 6.7 on the next page shows the module structure derived from figure 5.2.
The figure below illustrates this in terms of a CAE test. The dashed lines illustrate
the flow. They are not meant as input or output of the modules because a database
interaction as shown in figure 6.4 is applied to every module.

The individual modules are briefly outlined below the figure on the next page.
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Execution process

modifyDB

enrollment-
Handler

verification-
Handler

matchHandler

Figure 6.7: CAE - Module structure of the verification system

• modifyDB

◦ This module describes the pre-processing of all images of the input FVC
database. The output is the entirety of the enrollment and verification
samples for all applied CAE test configurations.

• enrollmentHandler

◦ This module describes the processing of all enrollment samples. The output
is the entirety of the enrollment templates for all applied CAE test config-
urations.

• verificationHandler

◦ This module describes the processing of all verification samples. The out-
put is the entirety of the verification templates for all applied CAE test
configurations.

• matchHandler

◦ This module describes the matching of all combinations of enrollment and
verification templates that fulfill the matching configurations. The output
is the entirety of the scores and further results for all applied CAE test
configurations.
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6.3 Implementation

This section describes the CAE hierarchy of MATLAB® scripts and functions as well
as the implementation of the distance measures. Please be referred to the commented
source code of the corresponding files in the electronic appendix for the detailed im-
plementation.

6.3.1 Hierarchy of scripts and functions

The names of the source files, which implement the architecture hierarchy of processes,
modules and functions, are listed below:

• Script createTest.m (creation process)

◦ Function createConfigurationStruct.m

• Script executeTest.m (execution process)

◦ Function createSample.m (module modifyDB)

◦ Function createEnrollmentTemplate.m (module enrollmentHandler)

◦ Function createVerificationTemplate.m (module verificationHandler)

◦ Function matchTemplates.m (module matchHandler)

• Script processResults.m (evaluation process)

The SQLite commands open and close on the process level are realized by direct
commands to the interface. The table creation as well as the commands read and
write are wrapped in MATLAB® functions, which implement the desired functionality
by several commands to the interface. The names of the function are listed below:

• SQLite integration

◦ Function sqlite_create.m

◦ Function sqlite_set.m

◦ Function sqlite_get.m

◦ Function sqlite_getRowCount.m
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6.3.2 Image distance functions

The distance measures, described in section 4.1, are implemented in a manner that
enables an easy porting to the target hardware architecture. They are listed below with
their underlying equations and their short names within this project:

• Sum of squared differences, based on equation (4.2)

◦ Short name - SSD globalN

• Euclidean distance, based on equation (4.1)

◦ Short name - euclid globalN

• Normalized cross correlation, based on equation (4.6)

◦ Short name - normCC

• Correlation coefficient, based on equation (4.9)

◦ Short name - corrCoeff

The implementation of the correlation coefficient is based on the implementation in
[BB16, p.571].

The CAE implementation of a distance measure are referred to as an image distance
function in the following chapters.

6.3.3 Information on applications and interfaces

The CAE is programmed and used with MATLAB® R2020a Update 5 (9.8.0.1451342)
featuring the add-ons Parallel Computing Toolbox version 7.2 and Image Processing
Toolbox version 11.1.

The SQLite interface mksqlite is used in version 2.7.
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6.4 Extension

The CAE can be expanded by adding a new parameter, which means a new column, to
a configuration or a result table. The implementation of the functionality of this new
parameter is limited to the corresponding function.

For example, a parameter that affects only the creation of a verification template is im-
plemented in the function createVerificationTemplate. This isolation of the parameter
implementation is possible for the following reasons.

• The overall procedure of the processes is independent of the parameters.

• The SQLite interface on the module level works with tables respectively single
rows of the tables. Therefore, a new column does not affect the module imple-
mentation.

• Due to the independence of the modules to each other, other modules do not
have to be taken into account. The change of the information container by the
parameter is stored implicitly in its pixel values.

However, in addition to the implementation on the function level, the CAE have to be
changed on definite locations. The following procedure outlines the required steps for
adding of a new configuration parameter to the CAE:

• Define the new parameter for database creation (function sqlite_create.m)

• Make the parameter configurable
(user input area in process createTest.m / function createConfigurationStruct.m)

• Implement the parameter in the corresponding function

• Testing procedure (please be referred to the following section)

Due to the architecture, a new configuration parameter can simply be added without
changing the implementation outside a function.

During this project, four CAE versions are used throughout the process of the system
requirements analysis.
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6 Correlation Analysis Environment (CAE)

6.5 Testing

The proper functionality of the environment must be ensured after every change outside
of the user input areas. The validity of the results must be guaranteed during the
entire analysis process. Consequently, a comprehensive testing is required with each
new version.

The test procedure can be described with a bottom-up approach. The functions are
tested first, followed by the module level and the process level. At the end of the
procedure the environment in its entirely is tested.

The release of the version 1.00 includes a complete test of all parts of the environment.
For further versions, the comparability of CAE tests of different versions is utilized in
order to reduce the extent of the test procedure. A configuration from a previous
version can be realized with the current version by setting all added configuration
parameters to their identity value. Thus, the correctness of the overall procedure can
be confirmed by the equality of the results of these tests.

Consequently, as of version 1.01, the test procedure is divided into two main parts.
First, every component that has been changed from the previous version is tested.
Second, the overall functionality is tested by comparing the results of a CAE test with
those of the previous version.

The specific tests for all versions are documented in an external Excel file. The script
testBench.m, which contains the tests of the parameter functionality, is also included
in the electronic appendix.
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7 Structure of the system
requirements analysis

The system requirements analysis involves the implementation of parameters of
correlation-based matching in the CAE and the investigation of their impact on bio-
metric performance and computational effort. This chapter describes preliminary con-
siderations as well as the documentation structure of the analysis in the thesis.

The methodology of the analysis is explained in the following section 7.1. The prepa-
ration of the FVC databases is described in section 7.2. The measurement of the
computational effort on the target hardware architecture is described in section 7.3.

The documentation of the analysis can be found in chapter 8 and 9. This division
corresponds to the two phases of the analysis process, which are explained in the
following.

7.1 Methodology

7.1.1 Analysis process

The algorithm research reveals so-called windows as features of correlation-based
matching. A score is calculated for each window. These scores are combined into
one matching score of the comparison. This characteristic of correlation-based match-
ing enables a qualitative analysis of single features.

Due to this possibility, the analysis process can be divided into two phases:

• Phase 1 – Analysis of verification templates composed of one feature

◦ Short name: Phase 1 - Distinction

• Phase 2 – Analysis of verification templates composed of several features

◦ Short name: Phase 2 - Algorithm
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7 Structure of the system requirements analysis

This simplification contributes to a clear structure of the analysis process. In the first
phase, the distinction based on one feature is examined. Afterwards in the second
phase, the impact of using several features is examined. A direct analysis of the case in
the second phase is expected to lead to unclear results because the property of a single
feature represents an additional variability. In addition, the insights of the first phase
can be assumed as given in the second phase. That reduces the number of variations
and increases the scope of the analysis.

Both phases are each divided into three different parts. The first part comprises the
creation of reference outcomes and the optimization of the CAE test duration. Subse-
quently, an independent investigation of the parameters of correlation-based matching
can take place. A further division of that into a second and a third part is done because
of the trade-off between biometric performance and computational effort. Hence, the
second part of each phase includes the parameters that are expected to improve the
biometric performance. The third part includes the parameters that are expected to
reduce the computational effort.

In summary, the system requirements analysis is carried out as follows:

• Phase 1 - Distinction

◦ Part 1 – Positioning

◦ Part 2 – Optimization of the biometric performance

◦ Part 3 – Reduction of the computational effort

• Phase 2 - Algorithm

◦ Part 1 – Positioning

◦ Part 2 – Optimization of the biometric performance

◦ Part 3 – Reduction of the computational effort

This structure plus a phase introduction and a phase conclusion outline the chapters
8 and 9. The conclusion includes the summary of the phase and a comparison of the
reference outcomes with the outcomes of a final configuration.

Each part of a phase involves several investigations. In this project, the term investi-
gation refers to the analysis of one parameter such as feature size or rotation.
The analysis process is characterized by a step-by-step procedure. Consequently, a new
investigation is not started until the previous one is finished. Under certain circum-
stances, the outcomes of an investigation can affect the configurations of the following
ones.
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7 Structure of the system requirements analysis

An investigation includes one or more CAE tests, which comprise one or more con-
figurations. For each configuration, a biometric test, which is defined by the set of
configuration parameters, is carried out.

Figure 7.1 illustrates the described structure using the example of the investigation of
the feature size.

b)

Phase 1 – Distinction

Part 2 – Optimization of the biometric performance 

INV1 – Feature size

T01 – 1_01_featureSize_paramSweep

Configuration 1:
• Configuration parameter featureSize = 32px × 32px
• Configuration parameter imageDistanceFunction = Euclidean dist.
• […]

Phase 2 – Algorithm […]

Part 1 – Positioning […]

Part 3 – Reduction of the computational effort […]

INV2 – […]

Configuration 2: […]

T02 – […]

Figure 7.1: Analysis structure in this project,
»[...]« implies structure levels that are not shown for reasons of clarity,

INV: investigation, T: CAE test
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7 Structure of the system requirements analysis

The following formatting applies to the thesis and the electronic appendix:

• The investigation with number 1 is abbreviated by INV1. The numbering takes
place consecutively for the entire project.

• The CAE test with number 1 is abbreviated by T01. The numbering takes place
consecutively for the entire project.

◦ The name of a CAE test follows the structure
» phaseNr_testNr_investigationIdentifier_testIdentifier «, for example
» 1_T01_featureSize_paramSweep «.

The documentation of the analysis in the thesis includes all investigations and the
structure levels above them. Configurations and outcomes of the CAE tests are doc-
umented in an external PowerPoint file. In addition, the outcome database of this
project is provided as electronic appendix in form of an SQLite database file.

As mentioned in the conception in chapter 5, a single comparison is only analyzed in
corner cases and for testing the CAE. The results of that are therefore not explicitly
documented.

7.1.2 Documentation structure of an investigation in the thesis

At the beginning of an investigation subsection, an outline is provided. This includes
an overview of the CAE tests as well as information about the parameter investigated.
Subsequently, the relevant outcomes, separated concerning biometric performance and
computational effort, are documented. Finally, the insights gained and their influence
on the further analysis are described.

In summary, every investigation subsection is structured with the following headlines:

• Outline

• Biometric performance

• Computational effort

• Insights gained

The names of the CAE tests in the outlines can be used for an orientation within the
documentation in the electronic appendix.

The parameter under investigation is referred to as parameter throughout the following
chapters. A CAE test configuration is referred to as configuration.
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7 Structure of the system requirements analysis

The outcomes of the CAE tests are mainly documented using tables. The values in
the tables are partly colored to indicate a good / best performance or a bad / worst
performance within the table.

7.2 Preparation of the FVC databases

The following section describes the actions required to enable the usage of the FVC
databases.

7.2.1 Problem formulation

An analysis of different sensor sizes requires cropping the fingerprint images. This leads
to comparisons of partial fingerprints, which does not conform to the original use case
of the databases. The original use case of the FVC2000 DB2 can be derived from the
following two bullet points, which are quoted verbatim from [Mai+02a]. The complete
description of the database collection process can be found in appendix D.

• »The presence of the fingerprint cores and deltas is not guaranteed since no
attention was paid on checking the correct finger position on the sensor.«

• »The acquired fingerprints were manually analyzed to assure that the maximum
rotation is approximately in the range [-15°,+15°] and that each pair of impres-
sions of the same finger has a nonnull overlapping area.«

An utilization of the databases as planned in this project was not intended during
the collection process. An overlapping area cannot be guaranteed with partial finger-
prints.

In order to focus the analysis on correlation-based matching, errors of the capturing
stage need to be excluded from the start. The verification system of this project works
with already collected databases. Thus, capture errors comprise unsegmented images
and genuine image pairs with insufficient overlap. To avoid this, two initial actions are
required that form the foundation of the sample creation:

• The definition of a cropping center for each image

• The definition of the maximum size of a cropped image
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7 Structure of the system requirements analysis

The center of the image cannot be used for the first definition because some fingerprints
are only captured in a part of the image. Additionally, it is not assured that the same
part of the finger is captured for all images from the same volunteer. Consequently, a
static cropping center does not fulfill the requirements.

The hosting company provides an SQLite database that consists of basic information on
the fingerprint images for each FVC database. This includes a COG16 that represents
the center of the captured fingerprint within the image. The coordinates of those
points can therefore be used as the foundation for the first definition above.

The maximum size of a cropped image is given by the maximum sensor size to analyze.
The mentioned capture errors are avoided even with smaller cropped images as long
as they relate to the same cropping center.

Assuming segmented samples, the compliance of the following condition would prevent
all capture errors:

• For genuine comparisons, the verification template has a complete overlap with
the enrollment template.

Using the FVC databases with the pre-calculated COGs, this is realizable if the enroll-
ment template contains a larger area of the fingerprint than the verification template.
This conforms to the use case of matching algorithms that deal with partial fingerprints,
but it requires a visual inspection of every possible genuine comparison to assure the
above condition. If the condition is not satisfied, changing the COG of the problematic
images is the method to react.

In order to simplify this inspection, the number of possible combinations need to be
limited by defining the size of enrollment and verification template. This has to be
done separately for both analysis phases. Furthermore, with regard to the effort and
the accuracy of a visual inspection, the above condition need to be changed:

• For genuine comparisons, the verification template has as much as possible over-
lap with the enrollment template.

As long as each cropping operation relates to the definitions of cropping center and
maximum size, this condition is sufficient for the analysis in this project. The definitions
hold throughout the analysis process and therefore do not influence the independence
of a parameter investigation.

16COG - Center Of Gravity – Centroid of the image based on the pixel gray-scale values
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7 Structure of the system requirements analysis

7.2.2 Definition of the comparison scheme

The analysis and the visual inspection require a definition of the extent of a biometric
test. It includes the number of enrollment and verification images per volunteer and
the maximum size of a sample. This is called the comparison scheme of the phase.

Number of enrollment and verification images per volunteer

In order to achieve a certain independence of the comparisons while maintaining a
certain test size, a biometric test have to feature the following conditions:

• Every fingerprint image is either part of an enrollment or a verification template.

• Every volunteer is represented by one enrollment template.

Due to the size of the databases and their utilization, three out of eight images are
used for enrollment. This results in the following number of comparisons per biometric
test:

• Total comparisons: 60,500

◦ Genuine comparisons: 550

◦ Impostor comparisons: 59,950

The number of genuine comparisons is the critical one in terms of a sufficient test
size. The application of the »Rule of 30« is a measure for predicting the error rates
of a biometric system when applied to the entire population. This is only necessary to
assess the error rates of the final configuration of the second phase.
The impact of a parameter is investigated by evaluating the development of the error
rates for various parameter values. Consequently, the independence of the comparisons
can be reduced in favor of the test size. The number of the genuine comparisons can
be increased by disregarding the second condition above. Therefore, for the first phase,
each of four of the eight images are used for an individual enrollment.

Maximum size of a sample

The following selection of the sizes follows the previous considerations. In order to
guarantee a sufficient overlap, the enrollment template must be larger than the verifi-
cation template.
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7 Structure of the system requirements analysis

For partial fingerprints, an enrollment template usually consists of several samples.
During the enrollment process, the individual usually presents their finger several times
in order to capture different parts of the fingerprint. Some algorithms check the overlap
of the captured samples in order to guarantee as much fingerprint area as possible.

Due to the small number of enrollment images per volunteer, this is not possible with
the FCV databases. Moreover, the composition of an enrollment template describes a
sophisticated challenge, which is only indirectly addressed by the analysis of correlation-
based matching. Hence, a division of the enrollment images into sensor-sized enroll-
ment samples is not carried out. The size of an enrollment sample corresponds to the
size of an entire image in this project. This applies to both phases.

The maximum size of a verification template corresponds to the different scenarios of
the analysis phases. It describes the boundaries for which the visual inspection ensures
a minimum of capture errors.
For the second phase, this size is defined by the maximum sensor size. With a resolution
of 500 dpi, 144 px×144 px corresponds to an area of 53.51 mm2. That is slightly larger
than the largest sensor size to analyze.
For the first phase, this size is defined by the maximum feature size. A feature size of
72 px × 72 px is selected. That size fits four times into the above size of the second
phase. Furthermore, it is larger than the common feature sizes found in the algorithm
research.

Figure 7.2 shows an image of the FVC2000 database with the applied verification
sample sizes. The blue rectangle corresponds to a phase-2-sample. The cyan one
corresponds to a phase-1-sample. The orange circle indicates the COG of the image.

Figure 7.2: Maximum sizes of a verification sample, based on [Mai+02a, DB2]
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Comparison scheme

In the following, the comparison schemes are summarized:

• Phase 1 - Distinction

◦ Enrollment images per volunteer: 4/8

◦ Size of an enrollment sample: Corresponds to the enrollment image

◦ Enrollment templates per volunteer: 4

◦ Verification images per volunteer: 4/8

◦ Maximum size of a verification sample (feature): 72 px× 72 px

◦ Verification templates per volunteer: 4

◦ Comparisons per biometric test: 193,600 (incl. 1,760 genuine ones)

• Phase 2 - Algorithm

◦ Enrollment images per volunteer: 3/8

◦ Size of an enrollment sample: Corresponds to the enrollment image

◦ Enrollment templates per volunteer: 1

◦ Verification images per volunteer: 5/8

◦ Maximum size of a verification sample: 144 px× 144 px

◦ Verification templates per volunteer: 5

◦ Comparisons per biometric test: 60,500 (incl. 550 genuine ones)

These schemes are the foundation of the biometric tests in the analysis phases and
thus also in the visual inspection.

A realistic use case of a matching algorithm is represented by the second phase. The
»Rule of 30« is applied in the conclusion of the second phase in order to assess the
accuracy of the final biometric performance of this project.

A comparison of images from different databases is not usual because of different
sensors. Due to the exaggerated displacement of the FVC2002 DB3, which complicates
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an utilization for partial fingerprints, this database is used for control tests to avoid
overfitting. The visual inspection is carried out for FVC2000 DB2.

7.2.3 Visual inspection

The following instructions outline the visual inspection of the image set of a volunteer.
The term inner rectangle refers to a phase-1-sample of maximum size whereas the
term outer rectangle refers to a phase-2-sample of maximum size.

I The outer rectangle of each image must contain only fingerprint pattern and no
background.

• If not, change the COG.

II All inner rectangles must be findable in every other entire image.

• If not, change the COG of the affected images or set the restriction
»onlyVerification« to the image(s) with small overlap to all other images.
The condition above must be remain satisfied.

III All outer rectangles must be findable in every other entire image.

• If not, change the COG of the affected images or set the restriction
»onlyEnrollment« to the image with the largest overlap to all other images.
Disregard fingerprint quality in the choice of the image. The conditions
above must be remain satisfied.

The inspection is carried out volunteer by volunteer.

7.2.4 Creation of the image role patterns

The COGs are changed directly in the SQLite database of the corresponding FVC
database. The restrictions are added as new columns in the same tables. Using this
information, nine different image role patterns are created for each phase. The roles
of images without restrictions are set randomly in compliance with the comparison
scheme.

These patterns are saved as MAT-files17 and can be selected as presets during test
creation.

17MAT-files are binary MATLAB® files that store workspace variables.
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7.2.5 Avoidance of overfitting

In order to avoid overfitting, so-called control tests are carried out. This type of
CAE tests provides input variation for identical test configurations. This supports the
evaluation process by confirming or refuting a tendency of the main test. The input
variation is realized through the image role patterns described above as well as through
the second fingerprint database. Extent and moment of these tests are adapted to the
current investigation.

The control tests are only documented in the external outcome database. Within the
thesis and the PowerPoint files, only their comparison with the main tests is of interest.
The control tests are indicated by the following abbreviations and text color:

• Control test with different image role pattern - CT P

• Control test with different image database - CT DB

7.3 Measurement on the target hardware architecture

The target hardware architecture for the verification system is ARM Cortex M4 with
the following configuration:

• Clock rate: 96 MHz

• Available memory: 32 kB

• Programming language: C

In the course of the system requirements analysis, the computational effort for various
configurations has to be evaluated. The duration of a verification process and the
maximum memory consumption are of interest.

Duration of a verification process

A verification process is composed of capturing the verification sample, creating the
verification template and matching it with the enrollment template. Due to the use of
the FVC databases, the capturing is not applicable to this project. Furthermore, the
duration of the template creation is negligible compared to the duration of matching.
The time needed for matching is referred to as the duration of a comparison in the
following.
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The duration of a comparison is affected by the properties of the templates and by
the matching conditions. An implementation of the various configurations on the
MCU18 is not reasonable. A measurement of this duration within the CAE does not
provide the circumstances of the hardware achitecture as well as the characteristics of
the programming language. Furthermore, the measured value would not represent a
realistic timing due to multithreading and pipelining of the operating system.

Hence, the duration has to be calculated using the results of both systems. This can
be realized by breaking down the matching operation into a scalable unit. The duration
of this smallest unit is measured on the MCU. The count of these are measured by
the CAE for every configuration applied. A scalable unit of correlation-based matching
that can be applied to all image distance functions is a correlation operation (C-OP).

As shown below, the duration of a comparison can be calculated by multiplying the
C-OP duration, measured on the MCU, with the C-OP count, measured with the
CAE.

tCompar ison = tC-OP · nC-OP . (7.1)

The properties of a correlation operation are examined in the following. Figure 7.3
shows the definition of template matching in terms of fingerprints.
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Figure 7.3: Definition - fingerprint template matching, based on figure 4.1

18MCU - Microcontroller Unit
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In the figure above, the matching operation is illustrated without considering rotation.
The correlation map contains a matching score for every offset. The orange pixels
indicate the first and last offset.

The size of the correlation map, which corresponds to the number of correlation oper-
ations, is calculated by

nC-OP = (ME −MV + 1) · (NE − NV + 1) . (7.2)

The CAE counts the correlation operations of every comparison and stores it as a result
parameter. An association of this number to various configurations is realized by the
test evaluation. The average number of the correlation operations of all comparisons
per configuration is stored in the outcome database.

The duration of a single correlation operation is affected by the size of the verification
template and the image distance function. Consequently, a measurement on the MCU
is necessary for every combination of both.

However, a direct measurement of the duration of a single correlation operation is
not reasonable. The image distance functions include computations that are required
once per comparison. Thus, one comparison with a sufficient amount of correlation
operations is implemented on the MCU for each image distance function. The size
of the verification template is implemented as configurable. The correct porting is
checked with the equality of the matching scores with the CAE implementation.

The number of cycles needed is measured using the integrated cycle counter in the
MCUxpresso IDE. This cycle count is converted into a time by

tC-OP =
nCycles

nC-OP,MCU · f
(7.3)

where nC-OP,MCU is the number of correlation operations of the MCU implementation
and f is the desired clock rate.

The cycles and the timings are documented in an external excel file. The measurement
on the MCU is carried out using a clock rate of 12 MHz. The cycles are scaled to a
clock rate of 96 MHz using the equation above.

The duration of a comparison describes an approximation of the duration of a veri-
fication process. The real duration is expected to be higher than the approximation.
The exact relation depends on the effort made for the creation of the verification
template.

75



7 Structure of the system requirements analysis

The MCU implementations of the image distance functions are attached as electronic
appendix.

Memory consumption

The memory consumption is maximum during matching. The templates, which are
stored as an array of pixel intensity values, are much larger than the memory overhead
needed for the correlation operation.

The correlation map is not stored in the MCU implementation. Any score lower than
the current highest score is discarded.

Consequently, the sizes of enrollment and verification template are a sufficient approx-
imation of the memory required.
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8 Analysis phase 1 - Distinction

8.1 Introduction

The first phase comprises the analysis of verification templates that are composed of
one feature. Figure 8.1 illustrates the comparison scheme of this phase as described in
section 7.2.2. An enrollment template consists of one sample, which is an entire image.
A verification template consists of one feature, which is cropped from the verification
sample.

b)

Figure 8.1: Comparison scheme of phase 1, fingerprint images are based on [Mai+02a, DB2]

The visual inspection guarantees a minimum of capture errors up to a cropping size
of 72 px × 72 px. A size of 32 px × 32 px is used until the parameter feature size is
investigated. This size is the most commonly chosen size in the approaches found
during research.

The main tests are carried out with FVC2000 DB2. The control tests are carried out
with FVC2002 DB3 (CT DB) as well as with FVC2000 DB2 using a different image
role pattern (CT P). The databases are referred to as DB2 and DB3 in the following.

The biometric performance is evaluated based on the EER. The DET and the distri-
bution chart of every main test can be found in an external PowerPoint file.

In this phase, the computational effort is evaluated based on the number of correlation
operations per comparison. This is done by comparing its increase or decrease in rela-
tion to the reference configuration within the investigation. The relation is described
by a so-called C-OP factor. An evaluation of the duration per comparison and the
memory consumption is done in the second phase.
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8.2 Part 1 - Positioning

8.2.1 INV1 - Reference outcomes

Outline

The aim of the first investigation is the creation of reference outcomes with the two
FVC databases. This includes the following CAE tests:

• 1_T01_initialTest_DB2

• 1_T02_initialTest_DB3

A biometric test is carried out for each implemented image distance function.

Biometric performance

Table 8.1 shows the biometric performance of the initial configurations.

Table 8.1: INV1 - Biometric performance - references of the first phase

Image distance function
EER

DB2 DB3

SSD globalN 30.3% 39.8%

euclid globalN 30.3% 39.4%

normCC 40.4% 42.8%

corrCoeff 22.2% 31.1%

The following observations can be made:

• The correlation coefficient (corrCoeff ) provides the best EER.

• The normalized cross correlation (normCC) provides the worst EER.

• The sum of squared differences (SSD) and the Euclidean distance (euclid) provide
a similar EER, which is in between of the EER of the two other distance functions.
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• The biometric performance with DB3 is worse overall, but not equally bad for all
image distance functions. The differences are shown in table 8.2.

Table 8.2: INV1 - EER difference between DB2 and DB3

b)

Image distance function EER difference 

EER DB2 – EER DB3  from table 8.1

SSD globalN -9.5%

euclid globalN -9.1%

normCC -2.4%

corrCoeff -8.9%

Furthermore, each image distance function shows its own characteristic in the shape
and position of the impostor and genuine distributions. However, during the develop-
ment of the CAE, the difficulty in visually assessing the DET and distribution chart were
revealed, especially when it comes to small differences. Consequently, these charts are
not part of an investigation documentation. Nevertheless, the charts of this investiga-
tion are shown in appendix B in order to visualize the performance development of this
phase.

Computational effort

Table 8.3 shows the number of correlation operations (C-OPs) with the two
databases.

Table 8.3: INV1 - Computational effort - references of the first phase

Input database
Enrollment template

size
Verification template 

size
C-OPs

DB2 256px × 364px 32px × 32px 74,925

DB3 300px × 300px 32px × 32px 72,361

The following observations can be made:

• The effort with DB3 is slightly less than with DB2. This is due to the higher size
of the DB2 images, which is equivalent to the size of an enrollment template.
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Insights gained

Each image distance function provides an amount of distinction, even in the basic
implementation. However, their biometric performance varies strongly, which can be
explained by the effort involved in calculating the score. As expected, the correlation
coefficient provides the best performance.

There is no difference in performance between the Euclidean distance and the sum of
squared differences. The additional square root operation of the Euclidean distance
affects the score distributions, but not the relation of them. Hence, the error rates of
all operating points are equal for both image distance functions. The inequality of the
EER in table 8.1 is due to the error in the EER calculation. Consequently, a continuous
investigation of both distance functions does not contribute to the analysis.

The biometric performance with DB3 is lower than with DB2. This can be explained
by the higher difficulty level of DB3. In addition to more rotation and displacement,
this database contains specially dried and moistened samples. Furthermore, no visual
inspection was made for this database. Nevertheless, the outcomes with DB3 are
consistent and show similar relations between the image distance functions as with
DB2. DB3 can therefore be used for control tests as intended.

As a result of the insights, the further analysis focuses on the following three distance
functions:

• euclid globalN

• normCC

• corrCoeff

8.2.2 INV2 - Image role pattern

Outline

The impact of the image role pattern on the biometric performance is documented
below. This investigation includes a CAE test for each of the nine pattern presets:

• 1_T03_imageRolePattern_random1 ...
1_T11_imageRolePattern_random9
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The investigation is carried out based on the correlation coefficient. This distance
measure is the most comprehensive approach and provides the best performance yet.
Investigations like this one, where the impact of the image distance function is not of
interest, can thus be focused on the actual parameter.

Biometric performance

Table 8.4 shows the biometric performance for each pattern preset.

Table 8.4: INV2 - Biometric performance with different image role patterns

b)

Image role pattern EER

FVC_DB2_880_4e4v_random1 22.2%

FVC_DB2_880_4e4v_random2 22.0%

FVC_DB2_880_4e4v_random3 21.8%

FVC_DB2_880_4e4v_random4 22.7%

FVC_DB2_880_4e4v_random5 22.3%

FVC_DB2_880_4e4v_random6 22.7%

FVC_DB2_880_4e4v_random7 21.6%

FVC_DB2_880_4e4v_random8 21.9%

FVC_DB2_880_4e4v_random9 21.8%

The following observations can be made:

• The best EER can be achieved with FVC_DB2_880_4e4v_random7.

• The worst EER can be achieved with FVC_DB2_880_4e4v_random4 and
FVC_DB2_880_4e4v_random6.

Computational effort

The image role pattern has no impact on the correlation operations.
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Insights gained

The image role pattern has a minor impact on the biometric performance. The visual
inspection for this phase can therefore be rated as successful.

The seventh pattern is used in the further analysis of this phase. The sixth one is used
as control test pattern.

8.2.3 INV3 - Reduction of the CAE test duration

Outline

The aim of this investigation is to shorten the CAE test duration in this phase. This
includes the following CAE tests:

• 1_T12_durationReduction_noParfor

• 1_T13_durationReduction_parfor

• 1_T14_durationReduction_impostorSkip_1 ...
1_T14_durationReduction_impostorSkip_16

• CT P & CT DB for T14

The investigation is carried out based on the correlation coefficient.

The first measure is the utilization of the parallelization capability of MATLAB®.

The second measure is the reduction of the impostor comparisons. A biometric test
under the defined comparison scheme of this phase comprises the following number of
comparisons:

• Total comparisons: 193,600

◦ Genuine comparisons: 1,760

◦ Impostor comparisons: 191,840

The number of impostor comparisons is much higher than the number of genuine
comparisons and therefore offers a possibility to shorten a biometric test. The score
distributions are Gaussian. With respect to the number of genuine comparisons, the
skipping of impostor comparisons is not expected to change the characteristic of the
distribution. However, due to the finite number of comparisons, the outcomes are
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affected. Consequently, this measure must be evaluated in terms of its impact on the
biometric performance.

In order to weight the volunteers equally, the following scenarios are investigated:

• 100% impostor comparisons

◦ Each verification image per volunteer is used for impostor comparisons.

• 50% impostor comparisons

◦ Two of four verification images per volunteer are used for impostor compar-
isons.

• 25% impostor comparisons

◦ One of four verification images per volunteer is used for impostor compar-
isons.

• 12.5% impostor comparisons

◦ One of four verification images of every second volunteer is used for impostor
comparisons.

• 6.75% impostor comparisons

◦ One of four verification images of every fourth volunteer is used for impostor
comparisons.
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CAE test duration & biometric performance

Table 8.5 summarizes the outcomes of this investigation19.

Table 8.5: INV3 - CAE test durations

b)

CAE test configuration CAE test duration EER

Without parallelization, 100% impostor comparisons 16.5h 21.6%

Parallelization, 100% impostor comparisons 2.68h 21.6%

Parallelization, 50% impostor comparisons 1.35h 21.9%

Parallelization, 25% impostor comparisons 0.69h 23.1%

Parallelization, 12.5% impostor comparisons 0.35h 23.0%

Parallelization, 6.75% impostor comparisons 0.18h 22.9%

The following observations can be made:

• A parallelization shortens the CAE test duration by about a factor of 6, which
corresponds to number of physical CPU20 cores.

• A skipping of impostor comparisons also shortens the duration, but it affects the
biometric performance. The maximum EER differences between a complete and
a reduced set are given in table 8.6 for the main test and the control tests.

Table 8.6: INV3 - EER difference in main and control tests, iC : impostor comparison

CAE Test Maximum EER difference 

max( EER 100% iC – EER reduced iC )

Main test -1.5%

CT P -0.3%

CT DB +0.7%

19The durations are measured with an AMD Ryzen 5 1600X Six-Core Processor with 3.60 GHz together
with 16.0 GB RAM on Windows 10 (64-Bit).

20CPU - Central Processing Unit
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Insights gained

A parallelization is recommended. Without this, MATLAB® runs the CAE in a sin-
gle process on just one CPU core. Furthermore, the degree of parallelization can be
configured through the number of processes. Together with the execution of sev-
eral MATLAB® instances, this enables an adjustment of the applied resources to the
current needs.

The reduction of the number of impostor comparisons also shortens the execution time,
but it affects the biometric performance. A correlation between the error rates and
the amount of reduction cannot be observed. In addition, the impact on the biometric
performance is less in the control tests and shows the opposite trend with DB3. This
can therefore be explained by the finite number of comparisons. Remaining outliers are
weighted more heavily and the impostor distribution is changed slightly, which affects
the EER.
This makes the skipping of impostor comparisons a valid measure in the further analysis
as long as the reference test used for the outcome evaluation is based on the same
degree of reduction. The control tests can be based on a higher reduction than the
main test, but must be consistent in itself. Only the reduction scenarios described
above are used.

These two measures offer the possibility to scale a CAE test with regard to the re-
sources. Their use is flexible in the further analysis and documented in the external
PowerPoint file.
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8.3 Part 2 - Optimization of the biometric
performance

8.3.1 INV4 - Basic rotation

Outline

The impact of rotation on the biometric performance and the computational effort is
documented below. The investigation includes the following CAE tests:

• 1_T15_basicRotation_idaSweep_reference

• 1_T16_basicRotation_3-3-1_idaSweep

• 1_T17_basicRotation_6-6-1_idaSweep

• 1_T18_basicRotation_9-9-1_corrCoeff

• 1_T19_basicRotation_12-12-1_corrCoeff

• 1_T20_basicRotation_15-15-1_corrCoeff

• 1_T21_basicRotation_6-6-2_corrCoeff

• 1_T22_basicRotation_6-6-3_corrCoeff

• 1_T22a_basicRotation_6-6-6_corrCoeff

• CT P for T15 and T16

• CT DB for each CAE test

The investigation was initially carried out based on the following three image distance
functions:

• euclid globalN

• normCC

• corrCoeff
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Due to the outcomes and the duration of the first tests, the further investigation was
carried out based on the correlation coefficient.

Rotation is implemented by rotating the enrollment template using the MATLAB®

function imrotate. The image is rotated around its center using a bicubic interpolation.
The rotated image is large enough to contain the entire rotated image. Thus, it is
larger than the original image. Please be referred to the MATLAB® documentation
for more information about imrotate.

The CAE implementation of rotation enables a configuration of the maximum clockwise
rotation, the maximum counterclockwise rotation and the step size in degree. The
rotation range examined, which is configured by this parameter set, is simply referred
to as rotation in the following. A higher rotation means therefore a larger rotation
range considered.

Biometric performance

For reasons of comprehensibility, the impact on the biometric performance is described
using the outcomes of the correlation coefficient. Subsequently, the different image
distance functions are compared, followed by the analysis of various step sizes.

Table 8.7 shows the biometric performance of the correlation coefficient for different
rotations.

Table 8.7: INV4 - Biometric performance when considering rotation - corrCoeff

Image distance
function

Rotation
( 1° steps )

EER

DB2 DB3

corrCoeff

noRotation 23.1% 30.6%

-3° … +3° 21.1% 29.5%

-6° … +6° 20.1% 28.9%

-9° … +9° 20.2% 28.8%

-12° … +12° 20.2% 28.8%

-15° … +15° 20.9% 28.6%
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The following observations can be made:

• With rotation, an improvement in the EER can be observed for both databases.
The improvement is higher with DB2 than with DB3.

• The positive impact decreases with higher rotations.

◦ Compared to the best configuration with DB2, a higher rotation leads to a
deterioration in the EER.

This can be explained by the development of impostor and genuine distribution. The
error rates are defined by the overlap of these distributions. Thus, a deterioration of
the biometric performance corresponds to a moving of the distributions towards each
other. The following figure 8.2 illustrates this by using the change in the mean values of
the two distributions. A consideration of rotation leads to more correlation operations
and thus to higher matching scores. An improvement in the EER can be observed
as long as the mean of the genuine distribution increases more than the mean of the
impostor distribution. With regard to figure 8.2, where the change in the mean values
to the previous rotation is shown, the EER is improved as long as the blue curve is
above the orange curve.
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Figure 8.2: INV4 - Change in the mean values with DB2,
the dashed curve shows a fitting of the measurement points by an exponential function
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This effect can be observed with both databases. Table 8.7 shows a further improve-
ment for higher rotation with DB3. However, the development of the mean values is
similar to that of DB2. Consequently, a deterioration of the biometric performance is
expected for higher rotations than ±15°.

Table 8.8 shows the biometric performance of the different image distance functions
when considering rotation.

Table 8.8: INV4 - Biometric performance when considering rotation

b)

Image distance
function

Rotation
( 1° steps )

EER

DB2 DB3

euclid globalN

noRotation 31.0% 36.4%

-3° … +3° 27.3% 36.0%

-6° … +6° 26.7% 35.6%

normCC

noRotation 42.6% 37.0%

-3° … +3° 38.4% 34.1%

-6° … +6° 37.1% 33.4%

corrCoeff

noRotation 23.1% 30.6%

-3° … +3° 21.1% 29.5%

-6° … +6° 20.1% 28.9%

The following observations can be made:

• The image distance functions euclid globalN and normCC show similar tendencies
as corrCoeff. The described effect of rotation on the distributions is confirmed.

So far, all rotations are based on a step size of one degree. Table 8.9 on the next page
shows the biometric performance in dependency to the step size for the correlation
coefficient.
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Table 8.9: INV4 - Biometric performance for various rotation step sizes

Image distance
function

Rotation step size
( -6° … +6° )

EER

DB2 DB3

corrCoeff

1° 20.1% 28.9%

2° 20.4% 29.0%

3° 20.7% 28.9%

6° 21.3% 29.3%

The following observations can be made:

• An increase of the step size leads to a deterioration in the biometric performance
with both databases. This can be explained by the missing of actual matching
scores at the rotation steps not taken into account.

Computational effort

Table 8.10 summarizes the outcomes concerning the computational effort.

Table 8.10: INV4 - Computational effort when considering rotation

Rotation
( 1° steps )

Number of rotation steps C-OP factor

noRotation 1 1

-3° … +3° 7 7.5

-6° … +6° 13 14.8

-9° … +9° 19 22.8

-12° … +12° 25 31.5

-15° … +15° 31 41.0

The following observations can be made:

• The C-OPs increase with a higher factor than the number of rotation steps.
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This is due to the increased size of the enrollment template. As mentioned in the
outline of this investigation, the enrollment template is larger after rotating. Thus,
more offsets are taken into account, which means a higher number of correlation
operations.

Insights gained

The consideration of rotation improves the biometric performance, but comes along
with an enormous increase in the computational effort. The number of correlation
operations is multiplied by a factor higher than the number of the rotation steps con-
sidered.
With every further rotation step, the extent of improvement decreases. At a certain
point, the performance is impaired by every further rotation. This can be explained by
a higher increase in the impostor scores than the genuine scores.
Furthermore, a step size higher than one degree reduces the improvement.

The three image distance functions show a similar development when rotation is taken
into account.

The performance improvement is less with DB3. This is expected because the collection
process of this database allows more rotation of the fingerprints compared to DB2.
With DB3 and a rotation of ±6°, the normalized cross correlation performs better
than the Euclidean distance. This is a difference to DB2, where the Euclidean distance
shows generally a higher performance. Nevertheless, the correlation coefficient shows
the best performance for both databases.

For further investigations, rotation is only taken into account if a dependency of the
investigated parameter on rotation is expected.

8.3.2 INV5 - Feature size

Outline

The impact of the feature size on the biometric performance and the computational
effort is documented below. The investigation includes the following CAE tests:

• 1_T23_featureSize_noRot_8px-72px_4pxStep

• 1_T24_featureSize_3-3-1_24px-56px_16pxStep

• CT P & CT DB for T23
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With the comparison scheme of this phase, a verification template consists of one fea-
ture. Thus, a variation in the feature size corresponds to a variation in the verification
sample size. The defined maximum size of a verification sample is 72 px× 72 px in this
phase.

The CAE implementation of the cropping operation enables a configuration of the edge
length. The parameter sweep is set up as follows:

• Sweep of parameter feature size

◦ From 8 px to 72 px in steps of 4 px for each of the three distance functions

All features of the same image, regardless of their size, are based on the same cropping
center. This is shown in figure 8.3 with an example image. The aspect ratio of the
feature is one to one throughout this investigation.

72px × 72px60px × 60px
48px × 48px36px × 36px

12px × 12px

24px × 24px

Figure 8.3: INV5 - Examples of feature sizes, fingerprint images are based on [Mai+02a, DB2]

In the second CAE test, the dependency of rotation on the feature size is examined
using the correlation coefficient and a reduced parameter sweep.

Biometric performance

Figure 8.4 shows the EER for each configuration of the sweep described above. The
gray trace provides a relation to the amount of information by showing the pixel count
for each feature size.
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Figure 8.4: INV5 - Biometric performance for various feature sizes

The following observations can be made:

• The EER traces of the image distance functions do not show a consistent relation
to the pixel count, especially for large features. Consequently, a higher amount
of information does not automatically lead to an improvement in performance.

• An increase in the feature size leads to an improvement in the EER up to a
certain size, which is different for each of the image distance functions. For
euclid globalN and normCC, the performance is slightly decreasing after that
size. For corrCoeff, the decrease is expected to be outside of the sweep range.

Table 8.11 on the next page summarizes the feature sizes with the best performance.
For the outcomes in that table, the following observations can be made:

• The features sizes with the best EER are consistent for the two databases. The
difference for normCC follows the previous insight that this image distance func-
tion is more advantageous with DB3 than with DB2.

• The pattern control test reveals the same best feature sizes as the main test.
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Table 8.11: INV5 - Feature sizes with the best biometric performance

Image 
distance 
function

Feature size with the best EER

DB2 & DB2 (CT P) DB3

euclid globalN 40px × 40px 40px × 40px

normCC 32px × 32px 40px × 40px

corrCoeff 72px × 72px 68px × 68px

The effect of the parameter feature size on the score distributions is explained in the
following. The development in the scores is reverse to that of rotation. As the amount
of information in the verification template increases, the template becomes more se-
lective, the scores are decreased. The performance is improved as long as the mean
of the impostor distribution decreases more than the mean of the genuine distribution.
The following figure 8.5 illustrates this using the outcomes of the Euclidean distance
with DB2. Please note that the change in mean is shown as an absolute value. Thus,
the EER is improved as long as the blue curve is below the orange curve.
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Figure 8.5: INV5 - Change in the mean values with DB2,
the dashed curve shows a fitting of the measurement points by an exponential function
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As opposed to the development caused by rotation (figure 8.2), a larger change in the
mean value means a larger decrease of the scores in the figure above.

Using the correlation coefficient with DB2, the performance is continuously improved
throughout the sweep, even for the largest feature size. It is expected that the described
effect leads to a performance deterioration outside the sweep range. The development
of the performances with DB3 confirms this expectation.

Table 8.12 shows the EER improvement through considering rotation in dependency
to the feature size.

Table 8.12: INV5 - EER improvement through considering rotation

Feature size EER improvement

From noRotation to ( -3° … 3° in 1° steps )

24px × 24px 1.7%

40px × 40px 2.6%

56px × 56px 3.9%

The following observations can be made:

• The improvement is greater with larger features. This can be explained by the
rotation operation itself. Outer pixels in an image are much more affected by
rotation. Consequently, a compensation of rotation improves the performance
more when larger features are used.

Computational effort

As described in section 7.3, the duration of one comparison is calculated by

tCompar ison = tC-OP · nC-OP .

Both factors depend on the feature size. Thus, an evaluation of the computational
effort only concerning the number of correlation operations is not sufficient in this
investigation.

Figure 8.6 on the next page shows the duration of one C-OP as measured on the MCU.
The gray trace provides the number of C-OPs per comparison. The resulting duration
per comparison is shown in the following figure 8.7.
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Figure 8.6: INV5 - Duration of one C-OP for various feature sizes, the number C-OPs are based on
the configuration of T23 and the comparison scheme of this phase
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Figure 8.7: INV5 - Duration of one comparison for various feature sizes, the timings are based on the
configuration of T23 and the comparison scheme of this phase
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The following observations can be made:

• The durations tC-OP and tCompar ison increase with higher feature sizes. Due to
the decrease of nC-OP , the slope of tCompar ison is lower than the slope of tC-OP .
This is consistent for the three image distance functions.

• As already indicated by the underlying equations of the distance functions,
corrCoeff lasts the longest, followed by normCC and euclid globalN. This applies
to all feature sizes.

• The slope of the durations is not equal for all distance functions. With the
increase of the feature size, the duration of corrCoeff increases the most, followed
by euclid globalN and normCC. This is the same for both charts because nC-OP

is constant for one feature size.

• The outlier with corrCoeff at a feature size of 68 px×68 px is due to unexpected
optimization behavior of the compiler of the MCU IDE. For reasons of time, the
cause is not investigated further in this project.

In summary, the computational effort for one comparison increases with the feature
edge length in an approximately linear way.

Insights gained

The development in the biometric performance can be explained by non-linear distor-
tion of the captured fingerprint. With smaller features, the amount of information is
restricted, but a good alignment can be assured. With larger features, the correlation
suffers from non-linear distortion despite the increased amount of information.

The three image distance functions response differently to that. The correlation coef-
ficient provides the best performance. The gap to the other distance functions grows
with higher features sizes.

The following examples expound the relation of biometric performance and computa-
tional effort using the outcomes of the correlation coefficient.
For an edge length of 72 px compared to 36 px, the EER improves about 7.5% and the
number of C-OPs increases by a factor of approximately 2.4.
Another example using the edge lengths of 56 px and 28 px exhibits a greater EER
improvement with approximately the same increase factor for the number of C-OPs.

Therefore, the selection of the feature size is a tradeoff between biometric performance
and computational effort. Please note that the verification template is composed of
one feature in this phase. The pixel count grows quadratically with the feature edge
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length. Thus, a doubling of the feature edge length corresponds to a quadrupling of the
feature count. Consequently, a statement to the optimal feature size depends strongly
on the performance improvement when more than one feature is used.

The feature size of 36 px× 36 px is selected for further investigations. With regard to
a desired independence of the feature size, this is a size that guarantees a sufficient
amount of information for all image distance functions.
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8.3.3 Interim conclusion

Development of the score distributions

The last two investigations make the draw of an interim conclusion possible. The
parameters can be categorized into two types concerning their effect on the score
distributions:

• Score-increasing type

• Score-decreasing type

As described in the investigations of the parameters rotation and feature size, the
biometric performance is improved as long as the distance between the distributions
grows. Figure 8.8 and 8.9 show one example of both types using the correlation
coefficient.
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Figure 8.8: Parameter rotation - score-increasing effect

Figure 8.8 shows the score-increasing effect when considering rotation.
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Figure 8.9: Parameter feature size - score-decreasing effect

Figure 8.9 shows the score decreasing-effect when expanding the feature size.

Both DET charts indicate an improvement in the system performance. The corre-
sponding distribution charts show the effects mentioned above, which have a direct
impact on the mean of the distributions. The standard deviation is indirectly affected
by the change in the mean values within the limited score range.

This characteristic is expected for all parameters that have a direct impact on the
computation of the matching score. Due to the identical processing of genuine and im-
postor comparisons, the score distributions do not change independently of each other.
A parameter that improves the performance by simultaneously increasing the genuine
scores and decreasing the impostor scores is not expected to be existent. Hence, an
evaluation of the outcomes is only reasonable for both distributions together.

Performance of the image distance functions

All outcomes up to this point show the correlation coefficient as the best image distance
function for both databases, followed by the Euclidean distance and the normalized
cross correlation. The two latter show a different performance with the two databases
compared to the correlation coefficient with the corresponding database:

• The Euclidean distance is worse with DB3 compared to DB2.

• The normalized cross correlation is better with DB3 compared to DB2.
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Concerning the effects on the score distributions described above, the image distance
functions show a consistent reaction to the parameters. However, the intensity of this
reaction is different. This can be explained by the characteristic of the functions them-
selves, but also by their performance. For example, an improvement observed around
an EER of 40% cannot be expected to have the same extent around 20%.
Concerning the computational effort, each image distance function shows a similar
relation to the feature size. With larger features, the relative difference between them
becomes smaller.
The correlation coefficient shows the best performance for both databases. Its com-
putational effort is the highest of the image distance functions, but is acceptable in
relation to the performance. Due to the consistency of the reaction of the image
distance functions to the parameters, this is not expected to change in the further
analysis. Consequently, the correlation coefficient is assessed to be the appropriate
image distance function for this project.

However, the outcomes of the normalized cross correlation and the Euclidean distance
contribute to the analysis process and help to understand the effect of the parameters
under investigation. Consequently, these two image distance functions are further taken
into account for this part of the first phase.

Documentation of further investigations

In order to focus on the parameter under investigation in the following, some changes
are intended for the documentation. The following observations are assumed as given
because they are expected to remain constant for the analysis:

• The performance with DB2 is generally better than with DB3.

• The impact of the current parameter on the biometric performance is less with
DB3 than with DB2.

• The relation between the image distance functions remain as described above.

In the following, the documentation within the thesis takes place only in terms of the
impact of the current parameter. Observations regarding the performance ratio of the
databases or the image distance functions are only mentioned if the assumptions above
are refuted. In addition, the outcomes of the control tests are only mentioned if they
contradict the outcomes of the main test.

Nevertheless, all outcomes are documented in the external database file.
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8.3.4 INV6 - Feature shape (aspect ratio)

Outline

The impact of the parameter feature shape on the biometric performance and the
computational effort is documented below. The investigation includes the following
CAE tests:

• 1_T25_featureShape_1296pixel

• 1_T26_featureShape_576pixel_corrCoeff

• CT P for T25

• CT DB for T25 & T26

In the previous investigation, the amount of information contained in the features are
examined. With a constant aspect ratio of 1:1, the pixel count of a feature is varied.

This investigation targets the reverse scenario. With a constant pixel count, the aspect
ratio of a feature is varied. The basis is a 36 px× 36 px feature, which contains 1296
pixels. The shape variations are shown in figure 8.10 using an example image. The
aspect ratios 16:1 and 1:16, which are also to be examined, are not illustrated for
reasons of size.

2.25:1

36px × 36px

1:2.25

1:4

1:9

4:1

9:1

Figure 8.10: INV6 - Examples of aspect ratios, fingerprint images are based on [Mai+02a, DB2]

These aspect ratios were selected with the premise to avoid rounding the edge lengths.
A constant pixel count is guaranteed as long as the edges are shortened respectively
extended by the same factor.

In the second CAE test, the dependency of the parameter impact on the pixel count
is examined using a 24 px× 24 px as a basis.

A feature with a longer vertical edge is referred to as a vertical feature in the following.
A feature with a longer horizontal edge is referred to as a horizontal feature.
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Biometric performance

Table 8.13 shows the biometric performance for vertical features using the correlation
coefficient.

Table 8.13: INV6 - Biometric performance for vertical features

Feature aspect ratio Feature size EER - corrCoeff

1:1 36px × 36px 21.1%

1:2.25 24px × 54px 21.4%

1:4 18px × 72px 22.0%

1:9 12px × 108px 21.8%

1:16 9px × 144px 22.2%

The following observations can be made:

• This variation leads to a deterioration in the EER compared to square-shaped
features.

Table 8.14 shows the biometric performance for horizontal features using the correla-
tion coefficient.

Table 8.14: INV6 - Biometric performance for horizontal features

Feature aspect ratio Feature size EER - corrCoeff

1:1 36px × 36px 21.1%

2.25:1   . 54px × 24px 19.7%

4:1 72px × 18px 18.8%

9:1 108px × 12px- 19.9%

16:1x 144px × 9px - 20.1%
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The following observations can be made:

• Each variation leads to an improvement in the EER compared to square-shaped
features. The best biometric performance is achieved with an aspect ratio of 4:1.

The control tests confirm the tendency, but differ in terms of the improvement for the
various aspect ratios. Table 8.15 shows the biometric performance of all test forms for
the best aspect ratios. Furthermore, the different image distance functions are taken
into account.

Table 8.15: INV6 - EER comparison of main and control tests

Image distance
function

Feature 
aspect ratio

EER

DB2 DB2 (CT P) DB3

euclid globalN

1:1 30.7% 29.6% 35.9%

2.25:1 30.3% 28.6% 35.7%

4:1 31.0% 29.4% 35.8%

normCC

1:1 43.2% 40.7% 36.5%

2.25:1 43.2% 40.1% 36.3%

4:1 44.0% 40.4% 36.9%

corrCoeff

1:1 21.1% 21.1% 28.8%

2.25:1 19.7% 19.8% 27.6%

4:1 18.8% 18.8% 28.1%

The following observations can be made:

• All image distance functions show an improvement in the EER for the aspect
ratio of 2.25:1.

• A further improvement with an aspect ratio of 4:1 can only be observed using
corrCoeff with DB2. The outcomes with DB3 and the outcomes of the other
distance functions contradict this.

The general tendency of improvement with horizontal features can be explained by the
shape of the finger. The fingerpint as a whole has a longer vertical edge. A horizontal
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features outside the core tends to contain a greater change in curvature of the ridges
than a vertical feature at the same position. This can also be seen in figure 8.10
to some extent. More curvature means more distinctive information, which leads to
better distinction. Thus, the biometric performance is improved.

The second CAE test confirm the outcomes of the first one for a reduced pixel count.

Computational effort

Table 8.16 summarizes the outcomes concerning the computational effort. The number
of correlation operations is only shown for DB3 due to the square-shaped images in
this database. With DB2, a difference in the computational effort between vertical
and horizontal features can be observed. This does not correspond to the use case of
square-shaped sensors.

Table 8.16: INV6 - Computational effort for various feature aspect ratios

Feature aspect ratio C-OP factor - DB3

1:1 1

1:2.25 / 2.25:1 0.974

1:4 / 4:1 0.923

1:9 / 9:1 0.794

1:16 / 16:1 0.653

The following observations can be made:

• An adapted feature aspect ratio leads to a reduction of the C-OPs. The reduction
is greater with a larger difference between width and height of the feature. This
can be explained by a smaller search range with such shaped features.

Insights gained

The parameter feature shape is a score-decreasing type. The greater the difference
between width and height of the feature, the lower are the means of the distributions.
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With the same pixel count, a better biometric performance can be observed for hori-
zontal features compared to vertical features.

The change of the feature aspect ratio generally leads to a decrease in the computa-
tional effort compared to square-shaped features.

Consequently, with a feature aspect ratio of 2.25:1, the biometric performance is im-
proved and the computational effort is slightly reduced.

8.3.5 INV7 - Resolution

Outline

The impact of the parameter resolution on the biometric performance and the com-
putational effort is documented below. The investigation includes the following CAE
tests:

• 1_T27_resolution_noScaling (48x48)

• 1_T28_resolution_downScaling1.5 (48x48)

• 1_T29_resolution_downScaling2 (48x48)

• 1_T30_resolution_36x36_noScaling

• 1_T31_resolution_36x36_downScaling1.5

• 1_T32_resolution_36x36_downScaling2

• 1_T33_resolution_72x72_noScaling

• 1_T34_resolution_72x72_downScaling1.5

• 1_T35_resolution_72x72_downScaling2

• CT DB for T27-T29

As described in the analysis of the conceptual formulation in chapter 3, the resolution
must be analyzed by scaling down the images. The following resolutions are investi-
gated:

• 250 dpi

• 375 dpi

• 500 dpi
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The resolution of the FVC databases is 500 dpi. The corresponding downscaling op-
erations are implemented in the CAE using the MATLAB® function imresize. The
image is resized using a bicubic interpolation. Please be referred to the MATLAB®

documentation for more information about imresize.

A comparison is only reasonable if enrollment and verification template are identical in
resolution. Hence, the downscaling operation is applied consistently to all images for
one test configuration.

The investigation is carried out based on the following feature sizes:

• 36 px× 36 px

• 48 px× 48 px

• 72 px× 72 px

Biometric performance

Table 8.17 shows the biometric performance based on a feature size of 48 px × 48 px

in the resolutions to be investigated.

Table 8.17: INV7 - Biometric performance for various resolutions

Resolution

EER

euclid globalN normCC corrCoeff

500dpi 30.6% 44.4% 16.8%

375dpi 27.6% 39.8% 15.2%

250dpi 27.2% 38.0% 15.4%

The following observations can be made:

• The downscaling operation results in an improvement in the EER for all image
distance functions compared to the original resolution.

• The best performance is achieved at 250 dpi using euclid globalN and normCC.
When using corrCoeff a downscaling to 250 dpi leads to a deterioration compared
to 375 dpi.
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A possible explanation to this improvement is the interpolation within the scaling oper-
ation. The bicubic interpolation is taking into account the nearest 4-by-4 neighborhood
to calculate the new pixel value. This corresponds to a low-pass filtering. At the same
time, when scaling down by a factor of two, the area of four pixels is represented by
one pixel after the operation. This conversion contributes to a pixel-wise comparison
and compensates possible information loss. Furthermore, unnecessary information in
the fingerprint like sensor noise are removed by the filtering.

Table 8.18 summarizes the dependency of the biometric performance on the feature
size in relation to the resolution.

Table 8.18: INV7 - Dependency on the feature size

Original 
feature size

Resolution
Feature size 
after scaling

EER

euclid globalN normCC corrCoeff

36px × 36px 500dpi

36px × 36px

30.7% 43.2% 21.1%

48px × 48px 375dpi 27.6% 39.8% 15.2%

72px × 72px 250dpi 28.2% 40.2% 12.6%

The following observations can be made:

• The best resolution in terms of the image distance functions is reverse to the
previous table. When using corrCoeff a further improvement can be observed for
250 dpi. When using euclid gobalN and normCC a downscaling to 250 dpi leads
to a deterioration compared to 375 dpi.

These outcomes show the already observed dependency of the image distance func-
tions on the feature size. The correlation coefficient shows the best performance with
a feature size of 72 px×72 px. The performance of the other distance functions deteri-
orates with that size. This confirms the beneficial effect of the downscaling operation
as described above. Therefore, a comparison at a resolution of 250 dpi is recommended
for all image distance functions.
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Computational effort

The downscaling operation reduces the pixel count of enrollment and verification tem-
plate. Consequently, the number of correlation operations as well as the duration of
one correlation operation is affected. Table 8.19 summarizes the outcomes concerning
the computational effort based on a feature size of 72 px × 72 px and the timings of
the correlation coefficient.

Table 8.19: INV7 - Computational effort for various resolutions

Resolution
Feature size 
after scaling

nC−OP,factor ⋅ tC−OP,factor = tComparison,factor

500dpi 72px × 72px 1 ⋅ 1 = 1

375dpi 48px × 48px 0.45 ⋅ 0.49 = 0.22

250dpi 36px × 36px 0.25 ⋅ 0.31 = 0.078

The following observations can be made:

• The downscaling operation comes along with an enormous saving of computa-
tional effort. The number of the C-OPs as well as the duration of one C-OP are
reduced by a factor of the same order of magnitude.

Insights gained

The downscaling of the images reveals the ideal way to meet the challenges of this
project. In addition to improving the biometric performance, the computational effort
can be significantly reduced. Furthermore, the memory required is less due to the
decreased size of enrollment and verification template.

In addition, the downscaling enables an utilization of large feature sizes. The pixel
count is reduced without decreasing the captured fingerprint area. Thus, feature sizes
that ensure the best performance using the correlation coefficient can be managed with
regard to the computational effort.

The parameter resolution is a score-increasing type. The higher the downscaling factor,
the higher are the means of the distributions.
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8.3.6 INV8 - Low-pass filtering

Outline

The impact of the parameter low-pass filtering on the biometric performance and the
computational effort is documented below. The investigation includes the following
CAE tests:

• 1_T36_lpf_reference

• 1_T37_lpf_avg3

• 1_T38_lpf_avg5

• 1_T39_lpf_avg7

• 1_T40_lpf_binom3

• 1_T41_lpf_binom5

• 1_T42_lpf_binom7

• 1_T43_lpf_gaussian3

• 1_T44_lpf_gaussian5

• 1_T45_lpf_gaussian7

• 1_T46_lpf_gaussian5_1.9

• 1_T47_lpf_gaussian5_1.3

• CT DB for T36 & T43-T45

The previous investigation shows the benefit of filtering unnecessary information in the
fingerprint. The low-pass filtering, but without changing the resolution, is examined in
the following.

The periodic ridge-valley pattern describes the information in a fingerprint. Thus,
unnecessary information can be described by frequencies higher than the one of the
pattern. In order to remove this frequencies, a linear low-pass filter can be applied.

The output pixel value of a filter is a weighted average of its own value and its neigh-
borhood. The filter size defines the size of this neighborhood. The weighting defines
the filter type. Please be referred to [BB16, p.89 ff.] for an introduction to filters in
image processing.
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The following filter types in sizes 3, 5 and 7 are implemented in the CAE:

• Simple average filter (box filter)

• Binomial filter

• Gaussian filter with a configurable cutoff frequency

Filtering is only reasonable when applied to enrollment and verification image in the
same manner.

Biometric performance

Table 8.20 shows the biometric performance for all applied filters using the correlation
coefficient.

Table 8.20: INV8 - Biometric performance for different low-pass filters - corrCoeff

Filter type Filter size

EER - corrCoeff

DB2 DB3

None (reference) - 21.1% 28.8%

Box

3 19.2% -

5 18.3% -

7 18.2% -

Binomial

3 19.2% -

5 19.0% -

7 18.5% -

Gaussian

3 19.1% 28.3%

5 18.5% 29.3%

7 18.0% 30.1%

The following observations can be made with DB2:

• The filter types, regardless of their size, improve the EER. The best performance
is achieved with a Gaussian filter with a size of 7.

111



8 Analysis phase 1 - Distinction

The following observations can be made with DB3:

• A Gaussian filter with a size of 5 or 7 deteriorates the EER compared to the
reference. An improvement is achieved with a Gaussian filter with a size of 3.

Table 8.21 shows type and size of the filter with the greatest EER improvement for
each of the three image distance functions.

Table 8.21: INV8 - Best filter configurations

Filter type Filter size

Greatest EER improvement

euclid globalN normCC corrCoeff

Box / Binomial / 
Gaussian

3 X

5 X (Box, Gaussian)

7 X (Binomial) X

The following observations can be made:

• The filter type with the greatest EER improvement varies for the different image
distance functions. However, the best filter size for each image distance function
is consistent between the filter types.

With higher filter sizes than the marked ones in the table above, a decrease in perfor-
mance up to a deterioration compared to the reference can be observed.

The Gaussian type in the appropriate size provides the greatest improvement for each
of the image distance functions. The further CAE tests of this investigation show a
negligible effect of the cutoff frequency of the Gaussian filter.

Computational effort

The parameter has no impact on the number or on the duration of the correlation
operations.
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Insights gained

The filtering with an appropriate low-pass improves the biometric performance without
affecting the computational effort of the comparison. The performance differences
between the filter types are marginal, especially when using the correlation coefficient.

The development in the EER demonstrates the typical characteristic of the defined pa-
rameter types from the interim conclusion. As the filter size increases, an improvement
is followed by a deterioration in the biometric performance. With low-pass filtering, this
point is reached earlier for the Euclidean distance and the normalized cross correlation
compared to the correlation coefficient. Furthermore, this point is reached earlier with
DB3 for all image distance functions compared to DB2.

The parameter low-pass filtering is a score-increasing type. The higher the filter size,
the higher are the means of the distributions.

8.3.7 INV9 - Normalization & gray-scale reduction

Outline

The impact of the normalization and the associated possible reduction of the gray-scale
depth is documented below. The investigation includes the following CAE tests:

• 1_T48_normalization_reference

• 1_T49_normalization_range255-8bit

• 1_T50_normalization_range127-7bit

• 1_T51_normalization_range63-6bit

• 1_T52_normalization_range31-5bit

• 1_T53_normalization_range15-4bit

• 1_T54_normalization_range7-3bit

• 1_T55_normalization_range3-2bit

• 1_T56_normalization_range1-1bit

• 1_T57_normalization_range1_rot_fs

• 1_T58_normalization_range15_rot_fs

• CT DB for T48-T58
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The gray-scale depth of the fingerprint images is 8 bit. Therefore, the pixel intensity
values can range from 0 to 255. Due to various reasons, for example a certain sensor
characteristic or dry skin, the entire range is usually not used. Thus, the minimum
and maximum intensity can be slightly different for each image, even for images of
the same finger. A gray-scale normalization ensures the utilization of the entire range.
Please be referred to [BB16, p.37 ff.] for more information about the intensity range
and general image statistic.

The CAE implementation enables a gray-scale normalization that ensures a range from
0 to a desired maximum value. Figure 8.11 shows an example fingerprint before and
after normalization. The original image is on the left. The pixel intensities of the
middle image use the entire range, while those of the right one use a reduced range.

Intensity range: 93-253 Intensity range: 0-255 Intensity range: 0-63 

Figure 8.11: INV9 - Examples of gray-scale normalization to a desired range,
fingerprint images are based on [Mai+02a, DB2]

In addition, the effect of reducing the gray-scale depth are examined. This is done
by adjusting the maximum intensity within normalization to a value below 255. For
example, the image on the right in figure 8.11 features a 6 bit depth with a maximum
intensity of 63. A reduction to one bit describes the binarization of an image.

These two operations are referred to as the parameters normalization and gray-scale
reduction. Both are only reasonable when applied to enrollment and verification tem-
plate in the same degree.

Biometric performance

Table 8.22 shows the biometric performance for the configurations of the parameter
normalization.
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Table 8.22: INV9 - Biometric performance for normalized images

Normalization /
gray-scale depth

EER

euclid globalN normCC corrCoeff

Not normalized / 8bit (reference) 30.7% 43.2% 21.1%

Normalized / 8bit 26.6% 36.1% 21.1%

The following observations can be made:

• A high improvement can be achieved for euclid globalN and normCC. The per-
formance of corrCoeff does not change through normalization.

The correlation coefficient takes into account relative distances. Consequently, as
opposed to the other two image distance functions, the normalization does not affect
the computation of the matching score.

Table 8.23 shows the biometric performance for the configurations of the parameter
gray-scale reduction using the correlation coefficient.

Table 8.23: INV9 - Biometric performance for different gray-scale depths - corrCoeff

Normalization /
gray-scale depth

EER - corrCoeff

DB2 DB3

Normalized / 8bit (reference) 21.1% 28.8%

Normalized / 7bit 21.1% 28.8%

Normalized / 6bit 21.1% 28.8%

Normalized / 5bit 21.1% 28.8%

Normalized / 4bit 21.3% 29.0%

Normalized / 3bit 21.6% 28.8%

Normalized / 2bit 23.5% 33.2%

Normalized / 1bit 22.3% 36.7%

The following observations can be made:
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• No improvement in the EER can be achieved. Up to a reduction to 5 bit the
performance is preserved.

• A reduction to 1 bit indicates an opposite tendency for the two databases com-
pared to a reduction to 2 bit. While this binarization leads to an improvement
with DB2, it leads to a further deterioration with DB3.

Table 8.24 shows the impact of binarization compared to a full gray-scale depth for all
image distance functions.

Table 8.24: INV9 - Biometric performance for binarized images

Image distance 
function

EER - 8bit depth → EER - 1bit depth

DB2 DB3

euclid globalN 26.6% → 22.7% 32.9% → 43.4%

normCC 36.1% → 39.8% 35.9%  → 42.0%

corrCoeff 21.1% → 22.3% 28.8% → 36.7%

The following observations can be made:

• Except for the Euclidean distance with DB2, the binarization leads to a deterio-
ration in the performance. This deterioration is greater with DB3 compared to
DB2.

The further CAE tests of this investigation show no dependency of normalization and
gray-scale reduction on the parameters feature size and rotation.

Computational effort

The two parameters of investigation have no impact on the number or on the duration
of the correlation operations.

However, reducing the gray-scale depth provide the opportunity of saving computational
effort and memory with the MCU implementation. Assuming a reduction to half the
range, the intensity values of two pixels can be stored in one byte. Furthermore, this
enables a parallel processing of the pixel values. A parallelizable operation within the
correlation is the multiplication instruction.
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A parallelization involves preventing of overflows and generally optimizing the algorithm
to a high degree. Such an optimization is out of the scope of this project. Nevertheless,
the two parameters feature a potential to save computational effort.

Insights gained

A gray-scale normalization improves the biometric performance when using image dis-
tance functions that take absolute distances into account. It has no impact on the
performance of the correlation coefficient.

The peformance can be preserved up to a gray-scale reduction to 5 bit. This can be
beneficial if the algorithm is optimized for parallel processing of several pixels.

The parameters normalization and gray-scale reduction are score-decreasing types. The
normalization operation per se as well as the reduction to less than 5 bit reduce the
mean of the distributions.

8.3.8 INV10 - Information in the correlation map

Outline

The impact of the parameter bestXScoresMean on the biometric performance and the
computational effort is documented below. The investigation includes one CAE test:

• 1_T59_bestXScoresMean

• CT DB for T59

In all previous CAE tests, the highest score in the correlation map represents the match-
ing score of the comparison. The question arises whether the biometric performance
can be improved by taking into account more than one score.

The number of the scores can be configured using the parameter bestXScoresMean.
The X highest scores form the matching score by calculation of their mean. Thus, a
parameter value of one provides the same matching score as in the previous analysis.
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Biometric performance

Table 8.25 shows the biometric performance for different values of the investigated
parameter.

Table 8.25: INV10 - Biometric performance - parameter bestXScoresMean

bestXScoresMean

EER

euclid globalN normCC corrCoeff

1 30.5% 43.2% 21.1%

2 31.0% 43.9% 21.5%

4 32.0% 45.4% 22.2%

8 33.8% 47.8% 23.5%

16 36.0% 49.8% 26.2%

The following observations can be made:

• The best EER is achieved when only the highest score forms the matching score.
As the number of the scores considered grows, the performance deteriorates.
This is consistent for the three image distance functions.

Computational effort

The parameter has no impact on the number or on the duration of the correlation
operations.

Insights gained

An improvement cannot be achieved by taking into account more than the highest
score in the correlation map.

The parameter bestXScoresMean is a score-increasing type. The lower the number of
the scores considered, the higher are the means of the distributions.
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8.4 Part 3 - Reduction of the computational effort

The correlation coefficient is used throughout this part. The parameters investigated
do not affect the inside of a correlation operation. Consequently, a similar impact is
expected for all image distance functions.

8.4.1 INV11 - Offset step size

Outline

The impact of the parameter offset step size on the biometric performance and the
computational effort is documented below. The investigation includes one CAE test:

• 1_T60_offsetStepSize

• CT DB for T60

The number of correlation operations can be reduced directly by not taking into account
every offset.

The CAE implementation provides a configurable offset step size, which is applied to
every row of the search image. In addition, a step size of two within a column is applied
in order to create a kind of checkerboard pattern. Figure 8.12 illustrates this for an
offset step size of 2 and an offset step size of 4. The positions of the colored circles
symbolize the considered offsets.

One pixel

Image column

Im
a
g
e 

ro
w

Figure 8.12: INV11 - Example of two offset step sizes
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Biometric performance & computational effort

Table 8.26 shows both the biometric performance as well as the impact on the com-
putational effort.

Table 8.26: INV11 - Impact of various offset step sizes

385pt

Offset step size C-OP factor

EER - corrCoeff

DB2 DB3

1 1 20.2% 29.0%

2 0.50 20.7% 29.5%

4 0.25 22.0% 30.1%

6 0.17 23.4% 30.3%

8 0.13 25.3% 30.9%

The following observations can be made:

• The C-OP factor is the reciprocal of the offset step size.

• The EER deteriorates progressively with increasing step sizes. The deterioration
is greater with DB2 than with DB3, especially with large step sizes.

This is the expected relation between biometric performance and computational effort
when skipping alignments. The decrease in performance can be explained by the missing
of actual matching scores at the offsets not taken into account.

Insights gained

The skipping of offsets provides high effort savings with an acceptable performance
deterioration. For example, a step size of two almost preserves the performance and
saves half the correlation operations.

The parameter offset step size is a score-increasing type. The lower the step size, the
higher are the means of the distributions.

120



8 Analysis phase 1 - Distinction

8.4.2 INV12 - Termination at a certain score

Outline

The parameter earlyReturn, which terminates the correlation at a certain score, is
examined. Its impact on the biometric performance and the computational effort is
documented below. The investigation includes the following CAE tests:

• 1_T61_earlyReturn_reference

• 1_T62_earlyReturn_0.5_0.531

• 1_T63_earlyReturn_0.6_0.631

• 1_T64_earlyReturn_0.7_0.731

The image distance functions create a correlation map composed of scores for every
offset of every rotation step. The highest score in the map is the matching score of
the comparison. The decision whether match or non-match is met after comparing
the matching score with the system threshold. If the score is greater than or equal to
the threshold, the decision is match.

The exact value of the matching score is not of interest. Furthermore, if one score
reaches the threshold, all subsequently calculated scores of the correlation map will not
change the decision. This characteristic of correlation-based matching offers a high
potential for saving computational effort, but premises a known system threshold.

The CAE implementation includes a termination mechanism of the correlation process.
When a certain score is reached, the comparison is finished and this current score is
set as matching score.

The impact of this parameter is investigated for a configuration without considering
rotation and one with considering rotation.

Biometric performance

First a reference test is carried out in order to decide on reasonable values for the
parameter earlyReturn. Figure 8.13 shows the distribution chart of one of the refer-
ence configurations. The vertical lines indicate the matching scores that are applied
as parameter values. Ideally, the termination shortens the genuine comparisons with-
out affecting the biometric performance by shortening the impostor comparisons. In
order to understand the effect, termination scores that are expected to decrease the
performance are also applied.
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Figure 8.13: INV12 - Distribution chart of the reference configuration (w/o rotation)

For the configuration that considers rotation, similar termination scores are applied,
taking into account the shift in the distributions. Table 8.27 shows the parameter
values and the biometric performance for all configurations of this investigation.

Table 8.27: INV12 - Biometric performance - parameter earlyReturn

Rotation earlyReturn EER

noRotation

1 (no termination)

20.2%
0.5

0.6

0.7

( -3° … 3° ) 
in 1° steps

1 (no termination)

17.4%
0.531

0.631

0.731
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The following observations can be made:

• The EER does not change for any of the termination scores applied. This holds
for both types of configurations.

The DET chart in figure 8.14 shows the reason for that.
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Figure 8.14: INV12 - Change in the DET and distribution chart through earlyReturn

The biometric performance is decreased for system thresholds higher than the applied
termination score of 0.5. The EER corresponds to a lower system threshold and is
therefore not affected. The deterioration in performance can be explained with the
distribution chart of the figure above. Terminating the correlation process increases
the probability for scores slightly higher than the termination score. This extends the
overlapping areas between the distributions when these scores are used as a system
threshold. Thus, the corresponding error rates FAR and FRR are increased for these
operating points.

For higher termination scores, the change in the DET charts decreases. With a termi-
nation score of 0.7, a deterioration is no longer discernible in the DET chart.
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Computational effort

Table 8.28 summarizes the outcomes concerning the computational effort.

Table 8.28: INV12 - Computational effort - parameter earlyReturn

Rotation earlyReturn

C-OP factor

Genuine comparisons Impostor comparisons

noRotation

1 (no termination) 1 1

0.5 0.588 0.926

0.6 0.736 0.984

0.7 0.857 0.999

( -3° … +3° ) 
in 1° steps

1 (no termination) 1 1

0.531 0.320 0.898

0.631 0.515 0.979

0.731 0.731 0.999

The following observations can be made:

• The lower the termination score, the greater are the savings for both types of
comparisons.

• As expected, the genuine comparisons are more affected than the impostor com-
parisons.

• The savings are greater with configurations that take rotation into account.

The last observation can be explained by the enormously increase in the correlation
operations with rotation. Consequently, the savings are greater in the event of a
termination.

The C-OP factor for the impostor comparisons can be used to evaluate the impact of
the parameter on the biometric performance. A factor of one proves the preservation
of the performance for all operating points.
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Insights gained

The termination of the correlation process at a certain score provides effort savings
with a performance preservation. For the test configurations in this investigation, an
effort saving of nearly 15% can be achieved for genuine comparisons. When rotation
is considered, this saving increases to approximately 27%.

This is expected to grow with the biometric performance. A better performance means
a better separation of the distributions. Thus, the potential for reducing the number
of correlation operations is higher.

The parameter earlyReturn cannot be categorized in the defined types because it has
no direct impact on the calculation of the correlation scores.
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8.5 Conclusion

In this section a conclusion is drawn for the first phase of the system requirements
analysis. This comprises a summary of the investigations and a CAE test that combines
all parameters in one configuration. The outcomes of that are then compared to the
references outcomes of the phase.

Table 8.29 summarizes this phase. This includes the investigations, the impact of the
corresponding parameters on biometric performance and computational effort as well
as their type categorization. The type describes the development of the scores for the
trend of the parameter value that leads to an performance improvement.

Table 8.29: Phase 1 conclusion - overview

Investigation Impact of the parameter
Parameter type
1 – score-increasing
2 – score-decreasing

INV4 - Basic rotation
Performance improvement 

with enormous increase in effort 
1

INV5 - Feature size
Performance improvement 

with increase in effort 
2

INV6 - Feature shape 
INV6 - (aspect ratio)

Performance improvement 
with effort savings

2

INV7 - Resolution
Performance improvement 

with effort savings
1

INV8 - Low-pass filtering
Performance improvement 
without impact on effort

1

INV9 - Normalization
No improvement (corrCoeff) / 

performance improvement (other),
no impact on effort 2

INV9 - Gray-scale reduction
Potential effort savings 

with performance preservation

INV10 - Information in the  
I NV10 - correlation map

No improvement, 
no impact on effort

1

INV11 - Offset step size
Effort savings 

with slight performance deterioration
1

INV12 - Termination at          
I NV12 - certain score

Effort savings 
with performance preservation

-
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The analysis reveals a number of parameters that enable an adaption of correlation-
based algorithms to the conditions of this project. As expected, an improvement in
the biometric performance is usually associated with an increase in the computational
effort. The parameters resolution and feature shape are exceptions, which are hereby
highlighted.

One single conlusion configuration that combines the beneficial parameters is defined.
This enables a comparison with the reference outcomes of this phase. The reference
configuration of the first investigation is described below:

Phase 1: Reference configuration

• An enrollment template...

◦ is the entire image

◦ in its original state.

• A verification template...

◦ is composed of one feature of a size of 32 px× 32 px

◦ in its original state.

• A comparison...

◦ is carried out using all image distance function,

◦ taking into account every offset,

◦ without considering rotation and

◦ without terminating at a certain score.
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The following conclusion configuration targets a balance between biometric perfor-
mance and computational effort. An algorithm optimization is out of scope for this
project. Thus, the impact of the parameters on each other is not examined. Fur-
thermore, the selection of the parameter values describes a compromise taking into
account all image distance functions. For each image distance function, two biometric
tests are carried out, one with consideration of rotation and one without.

Phase 1: Conclusion configuration

• An enrollment template...

◦ is the entire image,

◦ filtered by a Gaussian filter with a size of 5,

◦ scaled down by a factor of 2,

◦ normalized and reduced in gray-scale depth to 4 bit.

• A verification template...

◦ is composed of one feature of a size of 54 px× 24 px (aspect ratio 2.25:1),

◦ filtered by a Gaussian filter with a size of 5,

◦ scaled down by a factor of 2,

◦ normalized and reduced in gray-scale depth to 4 bit.

• A comparison...

◦ is carried out using all image distance function

◦ taking into account every second offset,

◦ without considering rotation / with considering rotation of ±3° in 1° steps,

◦ without terminating at a certain score21.

21Due to the comparison scheme of this phase, this parameter not set. The final configuration of the
second phase comprises an utilization of this parameter.
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8 Analysis phase 1 - Distinction

Table 8.30 shows the biometric performance of the configurations described above.
The following table 8.31 shows the number of correlation operations. As mentioned
before, the duration of a comparison as well as the needed memory is evaluated in the
second phase.

Table 8.30: Phase 1 conclusion - biometric performance

Configuration

EER

SSD globalN euclid globalN normCC corrCoeff

Reference 30.3% 30.3% 40.2% 22.2%

Conclusion 24.4% 24.4% 33.8% 19.7%

Conclusion w/Rotation 22.4% 22.5% 29.5% 16.9%

Table 8.31: Phase 1 conclusion - number of correlation operations

Configuration

C-OPs

SSD globalN euclid globalN normCC corrCoeff

Reference 74,925

Conclusion 8,721

Conclusion w/Rotation 66,285

The performance of all image distance functions is improved by the conclusion
configuration with a saving of nearly 90% of the correlation operations. In addition,
the downscaling leads to a shorter duration of a correlation operation, which reduces
the computational effort even further.
The consideration of rotation leads to an improvement in the performance for all image
distance functions, but results in an almost complete loss of the effort savings.

The DET charts and the distribution charts of all image distance functions are shown
in appendix B.

The correlation coefficient provides the best performance. Due to its capability to
handle large features, there is further optimization potential, which is exploited in the
second phase of the systems requirement analysis.
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9.1 Introduction

The second phase comprises the analysis of verification templates that are composed
of several features. Figure 9.1 illustrates the comparison scheme of this phase as
described in section 7.2.2. An enrollment template consists of three samples, which
are the entire images. A verification template consists of several features, which are
cropped from the same verification sample.

Figure 9.1: Comparison scheme of phase 2, fingerprint images are based on [Mai+02a, DB2]

The visual inspection guarantees a minimum of capture errors up to a cropping size of
144 px× 144 px. This describes the maximum size of a verification sample.

The main tests are carried out with FVC2000 DB2. The control tests are carried out
with FVC2002 DB3 (CT DB) as well as with FVC2000 DB2 using a different image
role pattern (CT P).

The biometric performance is evaluated based on the EER. The DET and the distri-
bution chart of every main test can be found in an external PowerPoint file.

In this phase, the computational effort is evaluated based on the duration of a compar-
ison and the memory required to store the enrollment and verification template. Both
values are evaluated by comparing their increase or decrease in relation to a reference
configuration within the investigation. The relation is described by a so-called duration
factor as well as a so-called memory factor.
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9 Analysis phase 2 - Algorithm

In order to maintain the independence of a parameter investigation, the beneficial
parameters of the first phase are only applied in the conclusion of this phase.

The changes made concerning the documentation of an investigation in the interim
conclusion of section 8.3.3 persist for this phase.

The entire analysis of this phase is carried out using the correlation coefficient.
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9.2 Part 1 - Positioning

9.2.1 INV13 - Reference outcomes

Outline

The aim of this investigation is the creation of reference outcomes for the second
phase with the two FVC databases. This includes the following CAE tests:

• 2_T65_initialTest_DB2

• 2_T66_initialTest_DB3

A biometric test is carried out using a single feature with a size of 36 px× 36 px.

Biometric performance

Table 9.1 shows the biometric performance of the initial configurations. Please note
that all the performances documented in this chapter are based on the correlation
coefficient. Hence, the image distance function is not mentioned in the tables or in
the observations.

Table 9.1: INV13 - Biometric performance - references of the second phase

Database EER

DB2 17.6%

DB3 25.8%

The following observations can be made:

• As in the first phase, a better EER can be achieved with DB2 than with DB3.
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Computational effort

Table 9.2 shows the duration of a comparison and the memory required to store the
enrollment and verification template.

Table 9.2: INV13 - Computational effort - references of the second phase

Database
Enrollment 

template size
Verification 

template size
Duration per 
comparison

Memory 
consumption

DB2 3 × 256px × 364px 36px × 36px 39.9s 274.26kB

DB3 3 × 300px × 300px 36px × 36px 38.6s 271.30kB

The following observations can be made:

• The duration and the memory consumption are slightly less with DB3 compared
to DB2. This is due to the higher size of the DB2 images.

Insights gained

The biometric performance is better compared to the reference outcomes of the first
phase. This can mainly be explained by the comparison scheme, which features an
enrollment template composed of three samples instead of one. Another reason is the
larger feature.

The outcomes with DB3 show the known relation to DB2. Thus, DB3 can be used
for control tests in this phase.

The computational effort is much higher than the conditions defined for this project.
These reference outcomes are the basis to show the development of the biometric
performance and the computational effort in this phase. Thus, a comparison to the
project conditions is not reasonable until the phase conclusion.

Furthermore, the outcomes appear to contradict the promising trend of the first phase.
Please note that the beneficial parameters of the first phase are not applied within the
investigations in this phase. Furthermore, this phase features a different compari-
son scheme. Consequently, a comparison of the outcomes of the two phases is not
intended.
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9.2.2 INV14 - Reduction of the CAE test duration

Outline

The aim of this investigation is to shorten the CAE test duration in this phase. This
includes the following CAE tests:

• 2_T67_durationReduction_reference

• 2_T68_durationReduction_corrCoeff_Mf

The measures of the first phase, which are parallelization and the reduction of impostor
comparisons, can be applied to the CAE tests of this phase.

However, the number of correlation operations is increased due to the use of several
features and several enrollment samples. Despite the decreased number of compar-
isons, a longer CAE test duration is expected compared to the first phase.

A possibility to reduce this is the utilization of the MATLAB® function normxcorr2,
which implements the correlation coefficient. This function calculates the cross corre-
lation in the frequency domain in a highly optimized manner. Please be referred to the
MATLAB® documentation for more information about normxcorr2.

The function is implemented in the CAE like the other image distance functions. The
equality of the score distributions to the former implementation of the correlation
coefficient is checked by the test procedure of the CAE version 1.03.

CAE test duration

Table 9.3 summarizes the outcomes of this investigation22. Both biometric tests are
carried out parallelized and without skipping impostor comparisons.

Table 9.3: INV14 - CAE test durations

Image distance function CAE test duration

corrCoeff 4.55h

corrCoeff_Mf 0.83h

22The durations are measured with an AMD Ryzen 5 1600X Six-Core Processor with 3.60 GHz together
with 16.0 GB RAM on Windows 10 (64-Bit).
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The following observations can be made:

• The use of corrCoeff_Mf, where Mf stands for MATLAB® function, shortens
the CAE test duration by about a factor of 5.5.

Insights gained

The duration of a CAE test is shortened by using the corresponding MATLAB® im-
plementation of the correlation coefficient.

Nevertheless, in order to measure the number of correlation operations or configure the
interior of a matching score computation, the former implementation must be used.

9.2.3 INV15 - Image role pattern

Outline

The impact of the image role pattern on the biometric performance is documented
below. This investigation includes a CAE test for each of the nine pattern presets:

• 2_T69_imageRolePattern_random1 ...
2_T77_imageRolePattern_random9

Biometric performance

Table 9.4 on the next page shows the biometric performance for each pattern preset.
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Table 9.4: INV15 - Biometric performance with different image role patterns

b)

Image role pattern EER

FVC_DB2_880_3e(1eT)5v_random1 8.55%

FVC_DB2_880_3e(1eT)5v_random2 8.36%

FVC_DB2_880_3e(1eT)5v_random3 8.55%

FVC_DB2_880_3e(1eT)5v_random4 9.27%

FVC_DB2_880_3e(1eT)5v_random5 10.0%

FVC_DB2_880_3e(1eT)5v_random6 8.00%

FVC_DB2_880_3e(1eT)5v_random7 9.09%

FVC_DB2_880_3e(1eT)5v_random8 9.27%

FVC_DB2_880_3e(1eT)5v_random9 9.45%

The following observations can be made:

• The best EER can be achieved with FVC_DB2_880_3e(1eT)5v_random6.

• The worst EER can be achieved with FVC_DB2_880_3e(1eT)5v_random5.

Computational effort

The image role pattern has no impact on the duration or on the memory consump-
tion.

Insights gained

The image role pattern has a minor impact on the biometric performance. The impact
is higher than that of the patterns in the first phase. This can be explained by the
visual inspection. Due to the complexity of the comparison scheme in this phase, the
inspection ensures the best compromise for some volunteers. Nevertheless, the visual
inspection for this phase can also be rated as successful.

The sixth pattern is used in the further analysis of this phase. The fifth one is used as
control test pattern.

136



9 Analysis phase 2 - Algorithm

9.3 Part 2 - Optimization of the biometric
performance

9.3.1 INV16 - Feature count

Outline

The impact of the feature count on the biometric performance and the computational
effort is documented below. The investigation includes the following CAE tests:

• 2_T78_featureCount_108_xof4

• 2_T78a_featureCount_108_xof4_reverseFeatureOrder

• 2_T79_featureCount_108_xof9

• CT P & CT DB for T78 & T79

As opposed to the first phase, several features are used in this phase. The verification
sample is divided into sub-images of equal size that form the verification template.
With regard to the division, two cases are examined. In the first one, the sample is
divided into nine features. In the second one, the sample is divided into four features.
The position of the features within the sample is illustrated in figure 9.2 for both
cases.

1 8 3

6 5 7

4 9 2

1 3

4 2

Verification sample

Feature

Figure 9.2: INV16 - Feature position

The feature count is distinguished as follows:

• 1 of 9: The template is composed of the feature in position 1.

• 2 of 9: The template is composed of the features in position 1 and 2.

• 3 of 9: The template is composed of the features in position 1, 2 and 3.

• 4 of 9: ...
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Thus, the feature count involves fix feature positions. For one verification sample, the
first feature is the same for each feature count applied. This is implemented in the
same manner for the division into four features.

The investigation of the parameter feature count is carried out based on a sensor
size of 108 px× 108 px, which corresponds to the size of the verification sample. The
feature size results from the division case. Figure 9.3 illustrates this with the example
of a feature count of 2 of 9.

Verification image
256px × 364px

Verification sample
108px × 108px

→ Sensor size

Verification template (2 of 9)
36px × 36px

→ Feature size

Figure 9.3: INV16 - Phase 2 scenario, fingerprint images are based on [Mai+02a, DB2]

The variation of sensor size and feature size is the main part of the analysis in the this
phase. In the following, these two parameters define a so-called phase 2 scenario.

The CAE handles several parts of enrollment template and verification template within
the comparison as follows. The highest score of one feature is found in the correlation
maps of all parts of the enrollment template. All feature scores are then combined into
one matching score by calculating their mean.

Biometric performance

Table 9.5 shows the biometric performance for various number of features when the
sample is divided into nine features.
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Table 9.5: INV16 - Biometric performance for various number of features (max. 9)

Phase 2
scenario

Feature count

EER

DB2 DB3

Sensor size:

108px × 108px

Feature size:

36px × 36px

1 of 9 17.3% 25.8%

2 of 9 13.5% 21.8%

3 of 9 12.7% 21.8%

4 of 9 11.5% 21.1%

5 of 9 11.6% 19.8%

6 of 9 11.8% 20.7%

7 of 9 12.3% 20.6%

8 of 9 12.0% 20.7%

9 of 9 11.6% 20.2%

The following observations can be made:

• The greatest EER improvement is achieved using 4 features with DB2 respectively
5 features with DB3.

• For feature counts higher than that with the best performance, the EER does
not develop consistently.

The last observation can be explained by the amount of information, which varies
for the feature positions. A feature that captures the singularity of a delta region
contains more distinctive information as a feature that captures a regular part of the
ridge-valley pattern. Moreover, the weight of one feature with regard to the matching
score decreases with each additional feature. Consequently, as the number of features
increases, the biometric performance is expected to converge towards a certain value.

Table 9.6 on the next page shows the biometric performance for various numbers of
features when the sample is divided into four features.
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Table 9.6: INV16 - Biometric performance for various numbers of features (max. 4)

Phase 2
scenario

Feature count

EER

DB2 DB3 DB2 T78a
Reverse order of feature 2 & 3

Sensor size:
108px × 108px

Feature size:
54px × 54px

1 of 4 11.27% 19.27% 11.27%

2 of 4 8.00% 15.82% 10.18%

3 of 4 8.00% 16.36% 8.00%

4 of 4 7.64% 15.45% 7.64%

The following observations can be made:

• The greatest EER improvement is achieved using 4 features.

• The performance is overall better compared to the previous table.

• From 2 features to 3 features, no improvement is achieved with DB2. A dete-
rioration can be observed for that with DB3. The CAE test T78a features a
reverse order of the feature positions 2 and 3. This results in a compensation of
the effect.

The better performance with a division into four features can be explained by the larger
size of those features. Nevertheless, the best performance can be achieved with four
features for both cases of division. For the scenario in table 9.6, a higher number of
features is not expected to significantly improve the performance.

The impact of the feature order on the biometric performance can be explained by the
finite number of comparisons. This is expected to be compensated if a higher variance
of the fingerprints can be guaranteed.

The parameter feature count does not affect the interior of a score computation.
Therefore, a categorizing concerning its effect on the mean values is not reasonable.
The matching score is averaged by taking into account more than one feature. This
improves the error rates if the standard deviation of the distributions is decreased.

That effect can be observed in the distribution charts of this investigation up to four
features. For a higher number of features, the standard deviation varies slightly but does
not show a consistent trend. The mean values of the distributions are not significantly
affected. This confirms the above explanation of the development of the EER values
and their associated convergence.
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Computational effort

Table 9.7 summarizes the outcomes concerning the computational effort.

Table 9.7: INV16 - Computational effort

Phase 2
scenario

Feature count Duration factor Memory factor

Sensor size:
108px × 108px

Feature size:
36px × 36px

1 of 9 1 1

2 of 9 2 1.005

3 of 9 3 1.009

4 of 9 4 1.014

…

Sensor size:
108px × 108px

Feature size:
54px × 54px

1 of 4 1.67 1.006

2 of 4 3.34 1.016

3 of 4 5.01 1.027

4 of 4 6.68 1.037

The following observations can be made:

• The duration increases proportionally with the number of features.

• For a feature count that covers the entire sensor, the duration is lower with larger
features.

• The memory consumption is affected slightly by the increase of the verification
template.

Insights gained

An use of several features improves the biometric performance with an increase in
the computational effort. The duration of the comparison scales with the number of
features, whereas the memory consumption is slightly affected.
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The best performance can be achieved with four features. However, two features are
reasonable in terms of the duration of a comparison.

Moreover, a higher feature size is generally beneficial for the biometric performance
and the duration.

The effect of the parameter feature count can be described as a score-averaging type.

9.3.2 INV17 - Sensor size

Outline

The impact of the sensor size on the biometric performance and the computational
effort is documented below. The investigation includes the following CAE tests:

• 2_T80_sensorSize_96

• 2_T81_sensorSize_108

• 2_T82_sensorSize_120

• 2_T83_sensorSize_132

• 2_T84_sensorSize_144

• CT P for each CAE test

This investigation aims at the question of a sufficient sensor size. A CAE test is carried
out for each of the following sizes. The areas relate to a sensor resolution of 500 dpi.

• 96 px× 96 px - 23.78 mm2

• 108 px× 108 px - 30.10 mm2

• 120 px× 120 px - 37.16 mm2

• 132 px× 132 px - 44.97 mm2

• 144 px× 144 px - 53.51 mm2

In order to make a comparison of the outcomes possible, four features that cover the
entire sensor area are used. Consequently, the feature size differs for the different
sensor sizes.
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Biometric performance

Table 9.8 summarizes the outcomes concerning the biometric performance.

Table 9.8: INV17 - Biometric performance for various sensor sizes

385pt

Phase 2 scenario
Sensor size / Feature size

Feature count EER

096px × 096px / 48px × 48px 

4 of 4

8.54%

108px × 108px / 54px × 54px 7.64%

120px × 120px / 60px × 60px 6.18%

132px × 132px / 66px × 66px 5.46%

144px × 144px / 72px × 72px 4.18%

The following observations can be made:

• The EER is improved with larger sensor sizes.

• The improvement can be described as continous if the effect of the finite number
of comparisons is taken into account.

The score-averaging effect of the parameter feature count is expected to be similar for
the different sensor sizes investigated. Consequently, the improvement in the biometric
performance can be explained by the increase in the feature size.

Computational effort

Table 9.9 on the next page summarizes the outcomes concerning the computational
effort.
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Table 9.9: INV17 - Computational effort for various sensor sizes

385pt

Phase 2 scenario
Sensor size / Feature size

Feature count Duration factor Memory factor

096px × 096px / 48px × 48px 

4 of 4

1 1

108px × 108px / 54px × 54px 1.16 1.01

120px × 120px / 60px × 60px 1.33 1.02

132px × 132px / 66px × 66px 1.36 1.03

144px × 144px / 72px × 72px 1.67 1.04

The following observations can be made:

• The duration of a comparison is higher with larger sensors.

• The memory consumption is affected slightly by the increase of the verification
template.

• The gray-marked duration factor at a feature size of 66 px × 66 px is due to
unexpected optimization behavior of the compiler of the MCU IDE. For reasons
of time, the cause is not investigated further in this project.

The duration factor describes the exact relation as observed with the feature size in
figure 8.7. This can be explained by the proportional increase in the duration with the
number of features.

Insights gained

The impact of the different sensor sizes corresponds to that of the parameter feature
size. The question of a sufficient sensor size can therefore be answered by the best
combination of feature size and feature count.

Due to the size of the enrollment template, the memory consumption is slightly af-
fected.

The parameter sensor size is a score-decreasing type. The larger the sensor, the lower
are the means of the distributions.
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9.4 Part 3 - Reduction of the computational effort

9.4.1 INV18 - Enrollment sample count

Outline

The impact of the enrollment template size on the biometric performance and the
computational effort is documented below. The investigation includes the following
CAE tests:

• 2_T85_sampleMerge_108_3

• 2_T86_sampleMerge_108_2

• 2_T87_sampleMerge_108_1

• CT DB & CT P for each CAE test

For the comparison scheme of this phase, three out of eight samples per volunteer are
used to create the enrollment template. A reduction of this count is investigated. In
order to keep the outcomes comparable, unused enrollment samples are not used for
verification.

Biometric performance

Table 9.10 summarizes the outcomes concerning the biometric performance.

Table 9.10: INV18 - Biometric performance for various enrollment sample counts

Phase 2
scenario

Enrollment 
sample count

EER

DB2 DB3

Sensor size:
108px × 108px

_

Feature size:
54px × 54px

_

Feature count:
2 of 4

3 8.00% 15.82%

2 9.82% 18.00%

1 12.36% 26.73%
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The following observations can be made:

• The EER is deteriorated with a lower enrollment sample count.

• The deterioration is greater with DB3 compared to DB2.

Computational effort

Table 9.11 summarizes the outcomes concerning the computational effort.

Table 9.11: INV18 - Computational effort for various enrollment sample counts

Phase 2
scenario

Enrollment 
sample count

Duration factor Memory factor

Sensor size:
108px × 108px

_

Feature size:
54px × 54px

_

Feature count:
2 of 4

3 1 1

2 0.67 0.67

1 0.33 0.35

The following observations can be made:

• The duration and memory consumption are affected in a similar way.

• The duration increases proportionally with the number of enrollment samples.

• The memory consumption increases nearly proportionally with the number of
enrollment samples. This is due to the memory consumption of the verification
template.

Insights gained

A reduction of the number of samples in the enrollment template provides high effort
savings, but decreases the biometric performance.

The parameter enrollment sample count is a score-increasing type. The higher the
number of samples in the template, the higher are the means of the distributions.
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9.5 Conclusion

In this section a conclusion is drawn for the second phase of the system requirements
analysis. A summary of the investigations is followed by a comparison of the reference
and the CAE test with the best performance achieved. Finally, the concluding config-
uration of the system requirements analysis is described, which combines the insights
of both phases.

Table 9.12 summarizes this phase. This includes the investigations, the impact of the
corresponding parameters on biometric performance and computational effort as well
as their type categorization. The type describes the development of the scores for the
trend of the parameter value that leads to a performance improvement.

Table 9.12: Phase 2 conclusion - overview

b)

Investigation Impact of the parameter

Parameter type
1 – score-increasing
2 – score-decreasing
3 – score-averaging

INV16 - Feature count
Performance improvement 

with enormous increase in duration
and minor increase in memory consumption 

3

INV17 - Sensor size
Performance improvement 
with increase in duration 

and minor increase in memory consumption 
2

INV18 - Enrollment 
INV18 - sample count

Effort savings (duration & memory cons.)
with performance decrease

1

The investigations in this phase are focused on the amount of information, represented
by the size of enrollment and verification template. An improvement in the biometric
performance is invariably associated with an increase in the computational effort.

Table 9.13 shows the outcomes of the reference configuration and the configuration
with the best biometric performance achieved.
The enrollment template consists of three enrollment samples for both configurations.
The phase 2 scenarios in the table represent the two extrema concerning the size of
the verification template. Moreover, no pre-processing is applied to the templates and
the biometric tests are carried out using the correlation coefficient.
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9 Analysis phase 2 - Algorithm

Table 9.13: Phase 2 conclusion - impact the of amount of information

Configuration Phase 2 scenario EER Duration factor Memory factor

Reference

Sensor size:
108px × 108px

_

Feature size:
36px × 36px

_

Feature count:
1 of 9

17.6% 1 1

INV17 - T84

Sensor size:
144px × 144px

_

Feature size:
72px × 72px

_

Feature count:
4 of 4

4.18% 9.62 1.07

The biometric performance represented by the EER is improved to 4.18%. This corre-
sponds to 23 false rejections out of 550 genuine comparisons. However, the computa-
tional effort of a verification process is far beyond the conditions of this project, even
without considering any rotation. The duration with the second configuration is ap-
proximately 384 s. The memory required is approximately 293 kB. The question arises
of a reasonable amount of information in in relation to the restricted computational
power.

The main conditions concerning the correlation-based algorithm and the associated
verification system in this project are mentioned again below:

• Sensor area range: 25 mm2 to 50 mm2

• Maximum duration of a verification process: 1 s at 96 MHz

• Available memory on the MCU: 32 kB

The analysis of the second phase reveals two features as an optimal number. With a
feature size of 72 px × 72 px, this corresponds to an area of 26.76 mm2. In addition,
duration and memory can be reduced by using two enrollment samples instead of three.
In addition, the analysis of the first phase reveals a number of parameters that have a
beneficial impact concerning the above conditions.

148



9 Analysis phase 2 - Algorithm

The following configuration combines the insights of both phases into a final
configuration, which targets the conditions of this project. However, the configuration
describes a compromise between biometric performance and computational effort.

Phase 2: Final configuration

• An enrollment template...

◦ consists of two samples,

◦ filtered by a Gaussian filter with a size of 5,

◦ scaled down by a factor of 2,

◦ normalized and reduced in gray-scale depth to 4 bit.

• A verification template...

◦ is composed of two features of a size of 108 px×48 px (aspect ratio 2.25:1),
which corresponds to an area of 26.76 mm2,

◦ filtered by a Gaussian filter with a size of 5,

◦ scaled down by a factor of 2,

◦ normalized and reduced in gray-scale depth to 4 bit.

• A comparison...

◦ is carried out using the correlation coefficient,

◦ taking into account every second offset,

◦ without considering rotation,

◦ with terminating the comparison at a score of 0.57 or higher.

The enrollment template and the verification template are scaled down by a factor of
two. Thus, the effective size of a feature is 54 px× 24 px. With regard to the duration
of one correlation operation, this corresponds to a feature of 36 px× 36 px.

Table 9.14 on the next page shows the biometric performance and the computational
effort when using this configuration.
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9 Analysis phase 2 - Algorithm

Table 9.14: Phase 2 conclusion - outcomes of the final configuration

EER

Duration
Memory 

consumptionGenuine 
comparison

Impostor 
comparison

6.55% 1.97s 4.35s 48.03kB

The DET and the distribution chart of this configuration are shown in appendix C.

In the following, the biometric performance and the computational effort of the
final configuration are evaluated with regard to their accuracy and compared with the
conditions of this project. A statement as to whether correlation-based matching is
convenient in the target use case can be found in the project conclusion in chapter 10.

Biometric performance

The EER in the table above corresponds to the following number of errors:

• 36 false rejections out of 550 genuine comparisons

• 3,902 false acceptances out of 59,590 impostor comparisons

This consequences in the following error rates and related error bands concerning the
»Rule of 30«23:

• FRRtrue = FRRobs ± 30 % = [ 4.585 %, 8.515 % ]

• FARtrue = FARobs ± 10 % = [ 5.895 %, 7.205 % ]

These are the error rates for the system operating point that is based on the correspond-
ing threshold of the EER. Further operating points are documented in appendix C.

The number of false rejections is slightly higher than the required 30 errors for an error
band of 30%. A further analysis based on the EER is therefore not recommended. In
order to achieve a balance between the number of false rejections and the number of
false acceptances, an operating point with a lower threshold can be used. However,
a further optimization in terms of the entire system performance requires an adapted
comparison scheme or a bigger database.

23With a minimum number of 260 errors, one can be 90% confident that the true error is within a 10%
error band of the observed value. This is applied to FARobs .
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9 Analysis phase 2 - Algorithm

With regard to the use cases mentioned in the introduction and the described bound-
aries of the database, the biometric performance achieved with the final configuration
can be rated as a sufficiently reliable. The verification template corresponds to an area
of 26.76 mm2. Consequently, a sensor of a size of 108 px× 108 px, which corresponds
to an area of 30.1 mm2, is adequate.

Duration of a verification process

The average duration of a genuine comparison is used as the final value. Due to the
specific positive claim in this project, the duration of an impostor comparison is of
decreased interest.

As described in section 7.3, the duration of a comparison is an approximation of the
duration of a verification process. The following equation relates both durations while
taking the applied parameters into account:

tV er if ication = tCompar ison · xC + tvT (9.1)

with tvT : Time for creating the verification template
xC: Time factor for optimizing the correlation process

The preparation of the verification template in general as well as the implementation
of the following parameters are assigned to tvT :

• Feature size

• Feature shape

• Feature count

• Low-pass filtering

• Resolution

• Normalization

• Gray-scale reduction

The analysis reveals the potential of the parameters to reduce the duration of a com-
parison. At the same time, the parameters increase the time required to create the
template. With respect to the final configuration, this time can no longer be considered
negligible.
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9 Analysis phase 2 - Algorithm

The implementations of the parameters offset step size and earlyReturn are assigned
to xC. They have to be applied to the interior of the image distance function. Thus,
their impact on the duration can be seen as a factor that increases the duration of a
correlation operation.

In summary, the duration of a verification process is higher than the measured duration.
However, the duration of a comparison is expected to be the bulk of the verification
process. The final configuration features a measured duration of 1.97 s, which is nearly
twice the value of the target.

Memory consumption

The memory consumption of the templates is higher than 48 kB. This is about 150%
of the available memory on the MCU. The real memory consumption is higher due to
the memory required for the implementation of the parameters and the image distance
function. However, this is expected to be insignificantly compared to the memory
required to store the templates.
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10 Conclusion

The system requirements analysis reveals various parameters that enable an adaption of
the correlation-based matching algorithm to the project conditions. High adaptability
is a characteristic of correlation-based matching. The search for the best alignment
describes a tradeoff between biometric performance and computational effort. The
rich amount of information in the gray-scale values can be utilized to different extents.
Thus, the accuracy of the recognition can be adjusted with the effort made.

The final configuration of the algorithm represents a combination of the beneficial
parameters using the correlation coefficient. A reliable recognition is achieved with
this configuration. The related computational effort is in the same order of magnitude
as the defined conditions, but exceeds their maxima. However, a potential for further
improvement is expected for all parameters.

In order to give an example for the optimization potential, the final configuration is
compared to the one that features the best performance in the analysis. This config-
uration utilizes the maximum sensor size to be analyzed.
The biometric performance is nearly preserved with the final configuration. The verifi-
cation process is about 200 times faster and features a memory consumption of about
16%. Especially the downscaling operation is herewith highlighted. A reduction of the
resolution leads to a perfomance improvement with enormous effort savings. There-
fore, correlation-based matching is expected to be also appropriate with low-resolution
sensors.

The analysis reveals that an increase in the amount of information does not auto-
matically mean an improvement in the performance. Beyond a certain point, only
the effort is increased. The feature size and the feature count applied in the final
configuration represent a good balance. Consequently, the amount of information in
the smallest sensor size analyzed, which is 25 mm2, is evaluated to be sufficient for
fingerprint recognition. However, a larger sensor offers the possibility of selecting the
features with regard to their quality and distinctiveness.

The correlation coefficient is successfully implemented on the target hardware archi-
tecture. The regularity of the correlation offers various possibilities for optimizing the
implementation.
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10 Conclusion

In summary, the system requirements analysis proves the suitability of correlation-based
matching for usage with limited information of partial fingerprints in an embedded en-
vironment with restricted computational power. The defined conditions are expected
to be achievable. An optimization beyond that is assessed as possible.
With a mature correlation-based matching algorithm, a fingerprint-based configura-
tion assignment in a shared car can therefore be a convenient and sufficiently secure
solution.

In addition, correlation-based matching can be realized in the sense of an approximation
procedure. The search for the best alignment can be implemented by a variable step size
of offset and rotation. Increasing the maximum duration therefore results in a higher
matching score. Thus, the system operating point can also be adjusted using the
maximum duration of a verification process. This offers a higher flexibility concerning
the specific use case of the application.
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11 Outlook

The extensibility of the analysis environment enables a continuation of this project
in terms of a more specialized analysis up to an algorithm optimization. A list of
interesting issues to analyze is given in the following:

• Selection of the features concerning their information quality and distinctiveness

• Utilization of the position of the matching score

• Forming of the matching score with several features

• Expansion of the parameter offset step size in synergy with earlyReturn, further-
more consideration of rotation for a limited number of offsets

• Composition of the enrollment template with sensor-sized enrollment samples

Moreover, a combined approach that correlates the regions surround minutiae offers
several advantages. Due to the knowlege of the positions of the corresponding minu-
tiae, the number of correlation operations can be limited. In addition, these regions
provide a certain distinctiveness.

With regard to the MCU implementation, the following optimization measures are
assessed as promising:

• Reduction of the gray-scale depth and associated parallelization of the computa-
tions on the pixel intensity values

• Analysis of the interior of one correlation operation

◦ Termination when a certain score can no longer be achieved

◦ Reduction of the accuracy of the computation

The principle of measuring the smallest unit on the MCU and scaling it with information
measured in the CAE can be expanded to a building-block principle. For example, the
parameters low-pass-filtering or normalization can be broken down to a pixel operation.
Thus, the accuracy of the duration measurement can be increased. The computational
effort of an enrollment process can be analyzed in the same way.
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A Electronic appendix

The contents of the CD attached to this thesis are outlined in the following:

• Folder 1_Thesis - Contains the thesis as .pdf file

• Folder 2_ElectronicAppendix

◦ Folder CAEv1.03

∗ Contains the sources of the CAE in version 1.03 and the presets of the
image role patterns

◦ Folder FVC

∗ Contains the FVC databases and the related SQLite databases provided
by the hosting company as well as the changed one for DB2 after the
visual inspection

◦ Folder MCU_Measurement

∗ Contains the C-sources of the MCU implementation

◦ Folder mksqlite-2.7-win64

∗ Contains the SQLite interface mksqlite in version 2.7

◦ File CAE_outcomes.db - outcome database of the project

◦ File CAE_SQLiteTableDefinitions.xlsx - CAE parameter documentation

◦ File CAE_TestProcedure.xlsx - CAE testing documentation

◦ File CAEv0.9_Architecture.pptx - CAE architecture - module level

◦ File MCU_Measurement.xlsx - Measurement of C-OP duration

◦ File Research.pptx - Comparison promising papers

◦ File SRA_testDocumentationCAE.pptx - Analysis docu of CAE tests

The CD attached is available from Prof. Dr. Heike Neumann and Thomas Suwald
(NXP Semiconductors Germany GmbH).
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B Phase 1 - Development of the
biometric performance

The DET charts and the distribution charts of the configurations described in sec-
tion 8.5 are shown on the following pages. Each image distance function fills a single
page.

For reasons of clarity, only the graphs of the reference configuration and the conclusion
configuration with considering rotation are illustrated together per chart.
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B Phase 1 - Development of the biometric performance
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Figure B.1: Phase 1 - Development of the DET chart - SSD globalN
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Figure B.2: Phase 1 - Development of the distribution chart - SSD globalN
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Figure B.3: Phase 1 - Development of the DET chart - euclid globalN
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Figure B.4: Phase 1 - Development of the distribution chart - euclid globalN
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Figure B.5: Phase 1 - Development of the DET chart - normCC
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Figure B.6: Phase 1 - Development of the distribution chart - normCC
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Figure B.7: Phase 1 - Development of the DET chart - corrCoeff
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Figure B.8: Phase 1 - Development of the distribution chart - corrCoeff
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C Phase 2 - Final biometric test

The DET chart of the final configuration, which is described in section 9.5, is shown be-
low together with the detailed performance of various operating points in Table C.1.
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Figure C.1: Phase 2 - Final biometric test - DET chart - corrCoeff

Table C.1: Phase 2 - Various operating points of the final configuration

FRR 
~1/100

FAR 
~1/10

EER
FRR 
1/10

FAR 
1/100

FAR
1/1000

FRR 1.09% 4.91% 6.55% 10.0% 20.2% 40.2%

FAR 33.7% 9.98% 6.55% 3.67% 1.00% 0.10%

System threshold 0.309 0.366 0.385 0.410 0.468 0.585
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C Phase 2 - Final biometric test

Figure C.2 shows the distribution chart of the final configuration. The vertical lines
indicate some of the operating points given in table C.1. Please note that a termination
score of 0.57 is applied in this configuration.
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D FVC database collection

The following information of the database collection process is quoted verbatim from
the indicated sources.

FVC2000, DB2, [Mai+02a]

»

• The fingerprints are mainly from 20 to 30 year-old students (about 50 percent
male)

• Up to four fingers were collected for each volunteer (forefinger and middle finger
of both the hands).

• The images were taken from untrained people in two different sessions and no
efforts were made to assure a minimum acquisition quality.

• All the images from the same individual were acquired by interleaving the acqui-
sition of the different fingers (e.g., first sample of left forefinger, first sample of
right forefinger, first sample of left middle, first sample of right middle, second
sample of the left forefinger, ...).

• The presence of the fingerprint cores and deltas is not guaranteed since no at-
tention was paid on checking the correct finger position on the sensor.

• The sensor platens were not systematically cleaned (as usually suggested by the
vendors).

• The acquired fingerprints were manually analyzed to assure that the maximum ro-
tation is approximately in the range [-15°,+15°] and that each pair of impressions
of the same finger has a nonnull overlapping area.

«
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D FVC database collection

FVC2002, DB3, [Mai+02b]

»

• A total of ninety students (20 years old on the average) enrolled in the first
two years of the Computer Science degree program at the University of Bologna
kindly agreed to act as volunteers for providing fingerprints:

◦ volunteers were randomly partitioned into three groups(30 persons each);
each group was associated to a DB and therefore to a different fingerprint
scanner;

◦ each volunteer was invited to present him/herself at the collection place in
three distinct sessions, with at least two weeks time separating each session;

◦ forefinger and middle finger of both the hands (four fingers total) of each
volunteer were acquired by interleaving the acquisition of the different fingers
to maximize differences in finger placement;

◦ no efforts were made to control image quality and the sensor platens were
not systematically cleaned;

◦ at each session, four impressions were acquired of each of the four fingers
of each volunteer;

◦ during the second session, individuals were requested to exaggerate dis-
placement (impressions 1 and 2) and rotation (3 and 4) of the finger, not
to exceed 35 degrees;

◦ during the third session, fingers were alternatively dried (impressions 1 and
2) and moistened (3 and 4).

In FVC2002 the data collection was carried by two final-year students, completing their
Laurea thesis at BioLab.

At the end of the data collection, we had collected foreach database a total of 120
fingers and 12 impressions per finger (1440 impressions) using 30 volunteers. The
size of each database to be used in the FVC2002 test, however, is established as 110
fingers, 8 impressions per finger (880 impressions) (Fig. 2). Collecting some additional
data gave us a margin in case of collection errors, and also allowed us to systematically
choose from the collected impressions those to include in the test databases.

An automatic all-against-all comparison was first performed by using an internally-
developed fingerprint matching algorithm, to discover possible data-collection errors.
False match and false non-match errors were manually analyzed: two labeling errors
were discovered and removed. Fingerprints in each database were then sorted by quality
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D FVC database collection

according to a quality index [9]. The top-ten quality fingers were removed from each
database since they do not constitute an interesting case study. The remaining 110
fingers were split into set A (100 fingers -evaluation set) and set B (10 fingers - training
set). To make set B representative of the whole database, the 110 collected fingers
were ordered by quality, then the 8 images from every tenth finger were included in set
B. The remaining fingers constituted set A.

After training sets B were made available to the participants, some of them informed
us of the presence of fingerprint pairs whose relative rotation exceeded the maximum
specification of about 35 degrees. We were not much surprised by this, since although
the persons in charge of data collection were informed of the constraint, the require-
ment of “exaggerating rotation but remaining within a maximum of about 35 degrees
between any two samples” is not simple to implement in practice, especially when the
volunteers are untrained users. A further semiautomatic analysis was then necessary
to ensure that, in the evaluation sets A, the samples were compliant with the initial
specifications: maximum rotation and non-null overlap between any two impressions
of the same finger. Software was developed to support us in this daunting task. All
of the 12 originally collected impressions of the same fingers were displayed at the
same time and the authors selected a subset of 8 impressions by point and click. Once
the selection was made, the software automatically compared the selected impressions
and a warning was issued in case the rotation or displacement between any two pairs
exceeded the maximum allowed. Fortunately, the 12 samples at our disposal always
allowed us to find a subset of 8 impressions compliant with the specification.

«

168



Versicherung über die
Selbstständigkeit

Hiermit versichere ich, dass ich die vorliegende Arbeit im Sinne der Prüfungsord-
nung nach §16(5) APSO-TI-BM ohne fremde Hilfe selbstständig verfasst und nur die
angegebenen Hilfsmittel benutzt habe. Wörtlich oder dem Sinn nach aus anderen
Werken entnommene Stellen habe ich unter Angabe der Quellen kenntlich gemacht.

Hamburg, 17. März 2021

Ort, Datum Unterschrift

169


	List of tables
	List of figures
	List of abbreviations
	Introduction
	Theoretical background
	Biometric recognition
	Biometric systems
	Performance of biometric verification systems

	Fingerprint recognition
	The fingerprint as a biometric characteristic
	Minutiae-based recognition
	Non minutiae-based recognition
	Correlation-based recognition

	Collection of fingerprint images

	Analysis of the conceptual formulation
	State of the art
	Template matching using correlation
	Problem definition
	Correlation-based distance measures

	Fingerprint matching using correlation
	Research
	Intention
	Outcomes

	FVC databases

	Conception
	Correlation Analysis Environment (CAE)
	Requirement analysis and architecture overview
	MATLAB®-SQLite interface
	System overview
	Process level
	Database interaction

	Detailed architecture
	Module level
	Function level
	Verification system

	Implementation
	Hierarchy of scripts and functions
	Image distance functions
	Information on applications and interfaces

	Extension
	Testing

	Structure of the system requirements analysis
	Methodology
	Analysis process
	Documentation structure of an investigation in the thesis

	Preparation of the FVC databases
	Problem formulation
	Definition of the comparison scheme
	Visual inspection
	Creation of the image role patterns
	Avoidance of overfitting

	Measurement on the target hardware architecture

	Analysis phase 1 - Distinction
	Introduction
	Part 1 - Positioning
	INV1 - Reference outcomes
	INV2 - Image role pattern
	INV3 - Reduction of the CAE test duration

	Part 2 - Optimization of the biometric performance
	INV4 - Basic rotation
	INV5 - Feature size
	Interim conclusion
	INV6 - Feature shape (aspect ratio)
	INV7 - Resolution
	INV8 - Low-pass filtering
	INV9 - Normalization & gray-scale reduction
	INV10 - Information in the correlation map

	Part 3 - Reduction of the computational effort
	INV11 - Offset step size
	INV12 - Termination at a certain score

	Conclusion

	Analysis phase 2 - Algorithm
	Introduction
	Part 1 - Positioning
	INV13 - Reference outcomes
	INV14 - Reduction of the CAE test duration
	INV15 - Image role pattern

	Part 2 - Optimization of the biometric performance
	INV16 - Feature count
	INV17 - Sensor size

	Part 3 - Reduction of the computational effort
	INV18 - Enrollment sample count

	Conclusion

	Conclusion
	Outlook
	Bibliography
	Electronic appendix
	Phase 1 - Development of the biometric performance
	Phase 2 - Final biometric test
	FVC database collection

