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Kurzzusammenfassung

Die große Vielfalt an an Reinforcement Learning Algorithmen macht es schwer zu bes-
timmen, welcher Algorithmus für welche Aufgabe verwendet werden soll. Die wis-
senschaftlichen Arbeiten, die solche Algorithmen präsentieren, enthalten oft wieder-
sprüchliche Ergebnisse und machen es dadurch noch schwerer zu verstehen, ob die Er-
weiterungen der grundlegenden Algorithmen eine Leistungsverbesserung aufweisen. In
dieser Arbeit wird ein Ansatz vorgestellt, um eine kontinuierliche Kontrollaufgabe für
einen Agenten zu analysieren, eine Gruppe von Algorithmen auf der Grundlage der Merk-
male auszuwählen und Sie strukturiert für das Problem zu konfigurieren. Die Konzepte
der ausgewählten Algorithmen werden vorgestellt und es wird gezeigt, wie Sie die grundle-
genden Reinforcement Learning Algorithmen verbessern, gefolgt von einer Vorhersage
Ihrer Leistung in der erwähnten kontinuierlichen Kontrollaufgabe. Weitergehend präsen-
tiert diese Arbeit einen Ansatz zum Finden von Parametern und einer Analyse der Algo-
rithmen, wie schnell funktionierende Parameter gefunden werden konnten und inwiefern
welche Veränderungen die Leistung am stärksten beeinflusst hat. Die Abweichung der
einzelnen Durchläufen wird durch eine Reevaluierung der besten Parameter Konfigura-
tionen für die Algorithmen reduziert und die stabilsten ausgewählt. Abschließend wird
ein detaillierter Einblick in das Verhalten während des Trainings und der Evaluation mit
den gewählten Parametern präsentiert, wie die Algorithmen lernen und die Umgebung
erkunden, um die Vorhersagen über die Leistung der Algorithmen zu beantworten.
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Abstract

Due to the broad variety of Reinforcement Learning algorithms, it is difficult to deter-
mine which one to use for what task. Papers that present said algorithms often claim
contradictory results which worsens this problem and makes it harder to understand if
their extensions of the base algorithms bring an overall improvement in performance.
This work presents an approach to analyze a custom created continuous control task,
pick an algorithm or a group of algorithms based on found characteristics and provide a
structure to configure the algorithms parameters. The concepts of chosen algorithms are
shown and how they claim to improve on the basic Reinforcement Learning algorithms,
followed by predictions about their performance on the environment. A structured way
for finding suitable parameters for the algorithms is presented, and the algorithms are
further analyzed, how fast a good set of parameters was found and what changes influ-
enced the performance the most. The run to run variance is reduced by reevaluating the
best parameter sets found for each algorithm multiple times and picking the most stable
ones. Finally, an in depth view of the algorithms behavior while training and evaluating
with found parameter sets is presented, how the algorithms learn and explore, to answer
the predictions made about their performance.
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1 Introduction

With the growth in machine learning research, a lot of improvements were made in
Reinforcement Learning. It is a field of machine learning that is concerned with solving
sequential decision-making problems, where an agent learns to solve complex tasks like
playing chess or controlling a robot.

The agent acts in an environment based on observations of it and learns from feedback
signals that he receives for his actions. Through the course of multiple interactions, he
improves his behavior in an effort to optimize the signals he receives.

Reinforcement Learning started with two basic ideas, learning through trial and error,
that originated from animal learning behavior, and a research field about optimal con-
trol through dynamic programming, maximizing or minimizing a feedback signal from a
system. These two, historically separated ideas, were followed by another idea that con-
nected them, called temporal difference learning. It describes learning to be influenced by
changes in temporally sequential predictions. This connection resulted in modern rein-
forcement learning, where an agent learns through said predictions to optimize a feedback
signal from an environment while learning through trial and error [32, ch. 1.7].

Basic Reinforcement Learning algorithms, e.g., Q-Learning or SARSA, have a big issue.
They have to store a value for each action in each possible observation, that repre-
sents how good an action is, which made them not applicable in many interesting tasks.
Especially, learning from images was unthinkable, since the combination of pixels in rea-
sonably sized images was too large to store. Even if it could be stored, an agent has
to visit each observation to learn how his action impacts the environment at that state,
making learning unfeasible.

DeepMind, an AI research company, presented the first deep learning model that used
Q-Learning on image data. They created an agent that learned to play Atari 2600
games using Neural Networks as a function approximation for the stored values [20].
With many more so-called deep Reinforcement Learning algorithms surfacing afterwards,
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1 Introduction

the company OpenAI, known for AI research and deployment, published a framework
called baselines that includes stable implementations of the more popular and influential
algorithms, as well as educational resources containing theories of said algorithms [3].

1.1 Motivation

Many real world applications are continuous control tasks with complex environment
states, like driving an autonomous car or controlling a robot through their sensory repre-
sentation of their surroundings, where an agent has to act very precisely to achieve good
performance. Many newer Reinforcement Learning algorithms are designed for contin-
uous control tasks, but the amount of algorithms makes it difficult to decide which one
to use. Papers of some algorithms even claim contradictory performance, e.g., the SAC
publication [13] claims that its algorithm outperforms the algorithm presented in the
TD3 publication [12] on almost every environment tested, while the second one claims
the opposite. This problem can come from many things, like how they implemented
the algorithm, the environments stochasticity, which random seeds they used, what pa-
rameters they used as well as the general randomness of training Neural Networks, as
described in a case study about algorithm implementation variance [11].

The motivation of this work is to analyze continuous control Reinforcement Learning
algorithms through their performance, stability, behavior, what their concepts are and
to what extent these concepts matter for a continuous control task. We use a stable
implementation framework that extends on OpenAI’s baselines, to reduce the mentioned
variance in the algorithms performances. Due to the contradictions in performances on
the popular benchmark suits, we want to create a difficult custom continuous control task
that we use for the analysis and evaluation, where the agent has to simultaneously control
a robots linear and angular accelerations through images as his environment observation.
Additionally, we want to present a structured way for deciding on an algorithm and
searching for a working configuration of parameters.

1.2 Structure of the thesis

In chapter 2, theoretical foundations of reinforcement learning and frameworks used for
the analysis and environment creation are presented.

2



1 Introduction

In chapter 3, we describe our created environment, how we trained Reinforcement Learn-
ing agents on it and validated it to be suitable for the further analysis.

In chapter 4, the analysis of environment characteristics and Reinforcement Learning
algorithms is done, providing a guideline to pick an algorithm through said character-
istics and algorithm concepts. We end the chapter by making predictions about the
performance of the analyzed algorithms on our environment.

In chapter 5, our experiments and their results are shown, giving instructions on how
to configure algorithm parameters for an environment and presenting plots of the agents
learning behavior and movement in the environment.

In chapter 6, we discuss our structured approach, analyze the results and make a con-
clusion about our predictions made in chapter 4.

The final chapter 7 provides a summary of the thesis and ends with related and future
work.

3



2 Basics

The goal of this chapter is to provide a basic understanding of reinforcement learning and
their basic algorithms, which are the foundation of every following algorithm discussed
and analyzed in this work. Secondly we present frameworks used to build an environ-
ment to run reinforcement learning algorithms on. Finally, we present an optimization
framework to find optimal parameters in a given time frame for each algorithm on the
build environment.

2.1 Reinforcement Learning

Reinforcement Learning is learning from interaction [32, ch. 1]. An Agent acts in an
Environment, which provides him with a feedback signal about his behavior and the
environments current representation, called an observation or state. The feedback signal
is a scalar and is called the reward. An agent gets a starting state and acts based on it,
getting a reward and a following state afterwards. He then acts again based on the new
state, and receives a new reward and state. This loop continues until the environment
terminates, e.g. reaching a goal. A run till termination is called an episode. A discount
factor gamma is introduced for the agent, that weighs down each following reward per
step taken. A discount factor getting smaller makes the agent more short-sighted, since
future rewards are getting less valuable. It makes the agent learn to collect good rewards
faster, e.g. getting faster to a goal. The agent’s objective is to maximize the discounted
long term reward [32, ch. 1.3].

2.1.1 Markov Decision Process

To be able to make a decision through a state, the environment has to be a Markov
Decision Process. It is a mathematical framework, which defines the feedback loop of an
agent acting in an environment, getting a state and a reward after acting:

4



2 Basics

Figure 2.1: The agent-environment interaction in a Markov decision process [32, ch. 3.1]

Figure 2.1 shows the agent and environment loop. The agent acts with his action A on a
step t, and the environment replies with a following state S and R on the following step
t+1. The following equation (2.1) describes the dynamics of an MDP:

p(s′, r|s, a) .= Pr{St = s′, Rt = r|St−1 = s,At−1 = a} (2.1)

It shows the probability of transitioning to state s’ and getting a reward r by taking
action a in state s. The probability of a following state depends only on the action and
state taken, not on the history of states [32, ch. 3.1].

2.1.2 Value Functions and Policies

An agent wants to learn a policy which maximizes his discounted long term reward. The
policy π is the agent’s behavior policy, that maps a state to a probability for each possible
action in that state.

There are two major ways of learning a good policy and a combined way: Learning
a value representation of the states in the environment, learning a policy directly or
learning both.

The algorithms presented in this chapter are the foundations of the algorithms picked in
chapter 4.
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2 Basics

Value based Reinforcement Learning

In Value based RL, the agent learns a function that assign a value to a state vπ(s), called
the state value function, or to a state action pair qπ(s,a), called the q function under
the agent’s policy π. The value of a state is the expected reward for the agent if he
transitions into that state and follows his policy (or for the q function, the expected
reward for taking the action in the current state and following his policy). Transitioning
into a state can have a negative reward, but from there on the agent could get a lot of
positive rewards, so the immediate reward for going into that state may be low, but its
value high [32, ch. 1.3]. This makes it a sequential decision-making problem.

With a given value function, an agent’s policy can be to just act greedy in respect to the
value function. This means, that he always takes the action in each state that transitions
into a state with the highest value from the current value function. In an environment
where it is not clear which action leads to which state, the q function is used, since it
directly assigns a value to each action in a state. The agent would start in a state s and
follow his current q function, getting a value for each action in his current state, picking
the highest valued one and repeats until termination. Value based agents do not need to
learn a policy directly, they only learn the state value or q function and derive the policy
from it.

To act optimally in an environment through value functions, an agent seeks to learn one
of the following two functions:

q∗(s, a) = E[Rt+1 + γmaxa′q
∗(St+1, a

′)|St = s,At = a]

=
∑
s′,r

p(s′, r|s, a)[r + γmaxa′q∗(s
′, a′)] (2.2)

v∗(s) = maxaE[Rt+1 + γv∗(St+1)|St = s,At = a]

= maxa
∑
s′,r

p(s′, r|s, a)[r + γv∗(s
′)] (2.3)

Equation (2.2) and equation (2.3) are the bellman optimality equations and assign the
maximum expected return on a state or a state-action pair. Acting greedy in respect to
the optimal value function results in having an optimal policy [32, ch. 3.6]. The value
of a state-action pair is the possibility of a following state and reward occurring after
taking the action times the reward with the discounted q value of the following state,

6



2 Basics

choosing the optimal action in it. This gets summed for each possible following state and
reward.

Learning and Approximation

Since the environment dynamics are not given in most environments, the v* or q* func-
tion have to be learned by interacting with the environment. A common way of learning
the q* function is the Q-Learning Algorithm, where the values are updated towards the
optimal function by taking a sample in the environment:

δt = Rt+1 + γmaxaQ(St+1, a)−Q(St, At)

Q(St, At)← Q(St, At) + αδt
(2.4)

Equation (2.4) [32, ch. 6.5] shows how Q-Learning updates Q values. The Q value of a
state S and action A on timestamp t gets updated by the summation of the old Q value
and the temporal difference error (TD error) times a learning rate alpha, that indicates
how much an update changes the current value. The TD error is the reward the agent
gets from the environment plus the difference of the Q value of the next state, taking
the maximal action, and the value of the current state. It is called bootstrapping, since
we update the current Q value on the estimate of the Q values for the current and next
state [32, ch. 6.5].

For this algorithm, we need to store an entry for each state and action pair, which is
not feasible for bigger state spaces. An environment with 30 ∗ 30 mono images as its
observation, with a byte per pixel, would already have 256900 different states. Function
approximation is needed instead of the tabular case, for example a neural network, which
is often used when having an image as a state. Another benefit of using function ap-
proximation is to generalize in the state space, learning behavior in not visited states, so
that not each state has to be visited at least once to have a value estimate for it [32, ch.
9]. Instead of a table that returns a Q value by indexing a state and action, a neural
network gets a state as an input and outputs a Q value for each possible action.

7



2 Basics

Policy Gradient based Reinforcement Learning

In Policy Gradient based Reinforcement Learning, the agent learns a policy directly,
which approximates the value function through a parameter vector that has to be differ-
entiable with respect to its parameters [32, ch. 9]:

π(a|s, θ) = Pr{At = a|St = s, θt = θ} (2.5)

Equation (2.5) [32, ch. 13] shows that the probability of an action a in a state s is
determined by the parameter vector θ. Given a θ and a state, the function returns a
probability distribution for the actions in that state. An agent samples an action directly
from the policy. In this work, θ represents a Neural Network.

The REINFORCE algorithm updates the policy towards the optimal policy:

θ ← θ + αGt
Oπ(At|St, θt)
π(At|St, θt)

(2.6)

Equation (2.6) updates after each episode for each step t taken [32, ch. 13.4]. Gt is the
discounted sum of rewards until the current step. Gt is an unbiased value of vπ, since
there is no bootstrapping and the true returns experienced are used. Gt gets multiplied
by a step-size and a vector of the gradient of the probability of taking the action a under
the current policy divided by the probability of the action. This vector points towards
the parameter space that increases the probability of the action taken. The intuition is
to update the action towards the direction of the vector by the reward experienced. It
increases the probabilities of actions that had a more positive reward, which decreases
the probabilities of actions that had a less positive reward [32, ch. 13.3].

Actor Critics

Actor critic methods combine Value based Reinforcement Learning with Policy Gradient
based Reinforcement Learning. The actor is the behavior policy, that the agent uses
to sample an action from and the critic is the value function, that the agent uses to
approximate the expected return of a state. The basic idea is to have an actor pick an
action and a critic that informs the actor about how good the action was.

8



2 Basics

An extension of the REINFORCE algorithm replaces the episodic returns using the critic,
called A2C, is shown in the following equation (2.7) [32, ch. 13.5]:

δt = Rt+1 + γv(St+1, wt)− v(St, wt)

w ← wt + αwδOv(St, wt)

θ ← θt + αδδt
Oπ(At|St, θt)
π(At|St, θt)

(2.7)

The exponents on the step size parameters’ α indicate that a different step size can
be used for the critic and actor update. The TD error gets calculated using the critic
that approximates the value function. This specific version of the TD error is called the
advantage, hence the name A2C, meaning advantage actor critic. It adds the reward
sampled with the next state value and subtracts the current state value, representing
how our action taken compares to the mean value of the current state. It shows how
much more reward the sampled action has received over the mean value, what we would
expect to receive. The critic has an added differentiable parameter vector w, in our case
a neural network, for function approximation. If δt was positive, we update our value
function to increase its value for the current state, and if it was negative, we decrease
it. The actor update, the update of the policy’s parameter vector θ, now includes delta,
which enables updates on each step instead of sampling a whole episode and using Gt. As
in REINFORCE, we push the policy towards picking actions that maximize the expected
reward, but through the critics estimate of the expected reward.

Another approach for actor critics is to approximate the q* function and have the actor
learn to exploit the Q function, called Deterministic Actor Critic (DPG), as shown in
equation (2.8) [31]:

δt = Rt+1 + γQ(St+1, µ(St+1, θ))−Q(St, At, wt)

w ← wt + αwδtOwQ(St, At, wt)

θ ← θt + αθOθµ(St, θ)Oµ(St+1,θ)Q(St, At, wt)

(2.8)

The TD error gets calculated by the Q function. The difference between the Q-Learning
approach is that the actor approximates the max action, instead of choosing the max
action through the Q function directly. The value functions parameters w will get up-
dated as in the A2C algorithm, but with the Q function instead of the value function.
The policy here is depicted as µ and gets updated to pick an action that maximizes the

9
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current Q function. In this algorithm, µ is deterministic and returns an action given a
state, instead of a distribution over actions, as shown in equation (2.9).

µ(s, θ) ≈ a∗(s) = argmax
a

Q∗(s, a) (2.9)

The idea is to learn the q* function and let an actor learn to exploit it.

2.1.3 Continuous Actions

Policy gradient based algorithms, and therefore actor-critic algorithms, can be extended
for continuous control. In continuous control tasks, the actor returns not a chosen action
from a set of actions, but a continuous value for an action, e.g., the velocity of a robot.
In this work, the robots actions are the angular and linear velocity, that the agent sets
through two continuous values. The REINFORCE algorithms and its extensions like
A2C do this by returning a mean and a standard deviation for each action, instead of a
probability for discrete actions.

Figure 2.2: Continues Actions visualized [32, ch. 13.7]

Figure 2.2 shows four actions with their distribution, given by the outputs of an actor
for each action. An action gets sampled from the distribution for each pair of the mean
and standard deviation. In this work, the agent would return the mean and standard
deviation pair for the angular and linear velocity.

The problem with Q-Learning is that we have to calculate the action that maximizes
the Q function in the next state. Normally, one can just calculate it for each action by
the function Q(s,a), but with a continuous action, we can’t exhaustively evaluate the
Q function, since an action has no discrete set of values. DPG addresses this problem
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by having an actor directly approximate the max action and returns a continuous value
directly [2].

2.1.4 On Policy and Off Policy

On-Policy means sampling data from the agent’s policy and only using that to update
the policy. After the update, the sampled data can not be reused, since the agent’s
policy changed and will now behave differently from the one that gathered the data.
REINFORCE and A2C are On-Policy for example, since they update the current policy
based on the data they collected and use the new policy to collect new data. They have
no separate policy to collect data.

Off-Policy means updating the agent’s policy by data gathered from a different policy
[32, ch. 5.4]. This is used in Q-Learning and DPG for example, since the Q value of a
state gets updated by the maximum valued action in the next state. It allows sampling
data with a random policy and update the state action estimates by using the greedy
policy in the Q value updates. This enables reusing old data for updating the trained
policy.

2.1.5 Exploration and Exploitation

Exploring is a big part of Reinforcement Learning algorithms. To learn a good policy or
value representation of the states, an agent must explore the environment and sample
from a lot of different states. Exploitation means to maximize the expected reward for
the agent based on his current knowledge [32, ch. 1.1]. In the On-Policy case, the
learned policy is stochastic and the agent explores naturally, since he samples from the
distribution over the actions.

In the Off-Policy case, the policy to sample data can be a randomized policy to improve
the exploration. Q-Learning introduces a random variable ε, that makes the agent pick a
random action with a probability of ε and otherwise picks the action that maximizes the
current q function. DPG is used in continuous action spaces and adds a random noise
to the value for exploration [31].
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2.2 Robot Operating System

The Robot Operating System (ROS ) is an open source development kit for robotics
applications and offers a broad variety of software, e.g., many Simultaneously Localization
and Mapping (SLAM) algorithms [25]. In this work, we use a SLAM algorithm called
Gmapping, that creates a 2D map from a LiDAR source by detecting walls and adding
them to a map [23]. ROS is a distributed system where multiple nodes communicate
through topics by publishing and subscribing or through direct function calls, called
services. A ROS-Master manages the connection between the nodes and acts as a name-
and parameter server for other nodes to look up available services, topics, nodes and
globally available parameters. When a node subscribes a topic, the ROS-Master looks for
another node publishing on the same topic and signals both to create a TCP connection
between them. The publishing node sends the data through that TCP connection to the
subscribing node. Services are distributed similarly, a node registers a function and if
another node wants to call that function, they create a TCP connection and the function
gets called [24]. ROS includes a way to start multiple nodes at once through an XML
file with RosLaunch, which is used in this work to start parts of our environment. Using
ROS, one can replace nodes in the distributed systems with other nodes that provide the
same topics and services. This opens up the possibility to exchange a simulation with a
real world robot, as long as the data provided by the nodes is from the same type.

2.3 Unity

Unity is a real time development platform that has a physics and rendering engine and
is used for developing games and creating simulations. A Unity project contains assets,
files for the project, e.g., written code, and contains objects in a scene which defines the
environment [17]. Objects interact with the scene through the physics engine and are
visualized through the rendering engine.

2.3.1 ZeroSim

ZeroSim is a Unity project that provides a connection to ROS and tools for building
robots and environments for robots. A robot can have a variety of sensor, a 2D or 3D
LiDAR, cameras, IMU’s and more. These sensors acquire data in the Unity scene and
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publish it directly to ROS topics. A robot can be controlled by using a differential driver,
that moves the robot through publishing on a velocity topic in ROS. It provides a bridge
from ROS to Unity and enables one to create fast and stable environments [33].

2.4 Hyperparameter Optimization

In Hyperparameter Optimization, the task is to optimize an objective function with a set
of parameters and their respective ranges. Most machine learning algorithms, e.g., Rein-
forcement Learning algorithms, have a lot of parameters that require tuning, since they
considerably impact the performance [7]. To evaluate Reinforcement Learning algorithms
in an unbiased way, without manually testing values, a Hyperparameter Optimization
framework is used for multiple tuning runs, called trials.

2.4.1 Optuna

In Optuna, the objective function contains the range of values for each parameter, where
a value for each parameter is chosen in a trial of the objective function. The return of
the objective function indicates how good the current trial with its chosen parameters
is. The objective function in this work is to train the agent on a map with a given
Reinforcement Learning algorithm and return his score after evaluating the trained agent
[4]. Optuna tries to improve the parameters for the next trial based on the returned
value of the objective function using a Tree of Parzen Estimators (TPE) by default.
It approximates the performance of hyperparameters based on past measurements and
models the probability of a score for a given hyperparameter [6].
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In this chapter, we present the environment used to analyze reinforcement algorithms.
We present the basics of the environment, our implementation, followed by our rewarding
metrics and how we integrated Reinforcement Learning agents. After that, we validate
our environment as a suitable environment for reinforcement learning algorithms in the
continuous control task for chapter 4.

3.1 Environment

The task is to control the Loomo Segway, a robot at our lab, from a starting point to a
goal point.

Figure 3.1: Loomo Segway [1]

The agent controls the robot by giving angular and linear velocity commands and has
to avoid driving the robot into a wall or other obstacles. The agent receives a pixelated
image of him and his surroundings, containing the goal if in reach and an added a-star
path from him to the goal as the environments state.
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Figure 3.2: Environment State Representation

Figure 3.2 shows the visualized environment state. The walls are colored in red and the
robot in gray, with the darker gray being the front of the robot. The green path is the
a-star path that ends on the goal. Each pixel represents 6.5cm2. In this example, the
state is a 51∗51 image and each pixel can have 6 different values, meaning that the state
space is 62601.

SLAM creates the map through a 2D LiDAR on top of the robot and the goal and path
are added to the state. The state could be created from other sources, for example
cameras or a satellite, without needing to know the robots internal state, its current
linear and angular velocity. It removes the need for a bidirectional communication from
an actor to the robot, only needing the actor to send commands to the robot.

3.1.1 Implementation

To implement this environment as an MDP, to build an agent-environment loop, we use
the OpenAi framework gym. It represents an interface standard for creating environ-
ments, shown in equation (3.1). The two basic functions are step and reset, where reset
is called at the start of an episode to get a starting state and step is called subsequently
until termination.
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state = environment.reset()

next_state, reward, done,_ = environment.step(action)
(3.1)

The step function takes an action as an argument and returns a following state, a reward
for the action taken in the last state,

Figure 3.3: Component Diagram Environment

Our gym implementation, named RosGym throughout this work, starts a RosLaunch
file containing multiple nodes and is visualized by figure 3.3. All nodes have their own
function: The Environment node implements the reset and step functions from the agent-
environment loop as a ROS-Service that the RosGym uses on his step and reset functions.
It needs the robots position for drawing the robot into a state and gets it from the robot
by subscribing to his position data, named tf or transform frames. It subscribes to the
maps by the MapService node to draw the walls surrounding the robot, the a-star path
and the goal. The MapService node subscribes to the published maps from the Slam
node that runs Gmapping, and adds weights for the a-star pathing algorithm around
walls, so that the a-star path does not go near walls, to keep a set distance to them.
The Slam node itself uses the robots transform frames and LiDAR data to create the
maps for the MapServer. A ParameterServer node keeps a config file that lets us change
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the behavior of the Environment node, e.g., how much distance the a-star path keeps
from walls, how fast the robot can drive or how much reward the robot gets on reaching
the goal. The Environment node publishes a velocity, that it receives from the agent
as an action, and a VelocityPublisher node subscribes to the message and publishes it
cyclically to the robot. The robot takes these velocity messages and sets it as his linear
and angular velocity to drive.

On the reset function, the RosGym calls the ROS-Service reset from the Environment
node. Figure 3.4 represents the behavior of a RosGym reset call with a simulated robot.

Figure 3.4: Sequence Diagram Reset

The environment publishes a message to unpause the simulation and publishes velocity
commands to stop the robot. It then resets the robots position in the simulation to
the starting position, followed by a sleep for a set timing, that represents how long an
action is executed by the robot. A pause message gets published afterwards to stop the
simulation from running until the agent calls another action and the environment creates
a state that returns it to the agent.
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The step function, shown in figure 3.5, behaves similarly, but takes an action as an
argument: An action for the RosGym consists of two values with a range from minus

Figure 3.5: Sequence Diagram Step

one to one, where the first value, if positive, represents a multiplier with the maximum
linear velocity and a negative first value a multiplier with the minimum linear velocity.
The second value represents a multiplier with the maximum rotation, the angular velocity,
where a negative value rotates the robot to the right and a positive value to the left. An
action containing two ones would make the robot drive forward and to the left with his
maximum angular and linear velocity for the set sleep time of the environment after
executing an action. The step function returns more than just a following state after
taking an action, it contains a reward and a termination signal, created in the SetReward()
function.
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Rewarding

The Environment node calculates a reward by looking at the action the agent took based
on the state and how it influenced the environment. After executing the action, if the
agent is at the goal or too close to a wall, the termination flag is set to true, signaling
an end of episode. A positive reward follows for reaching the goal and a negative for
terminating on a wall. On a non-terminating state, the a-star path is used for calculating
the reward. If the agent rotates the robot towards facing the path up close to him and
drives towards the path’s direction, the agent gets rewarded. Both conditions have to be
fulfilled for the agent to receive a positive reward. The agent gets an additional reward
facing towards the path with his front, to incentivize not driving backwards. Getting
closer to the goal by shortening the a-star path also gives him an additional reward, to
make the agent drive faster.

Figure 3.6: Example State Representation

In figure 3.6, a positive rewarding action would be rotating slightly to the left to keep on
track with the a-star next to the robot and drive forwards, since he is front facing towards
the path. Rotating right or driving backwards would result in a negative reward.
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Reinforcement Learning Integration

For running Reinforcement Learning algorithms on our environment, we chose to use
the framework Stable Baselines 3 and its experimental extension Stable Baselines 3 -
Contrib. This framework provides an extension of the OpenAi Reinforcement Learning
algorithms and improves upon them by adding more algorithms and providing a wider
range of customization to them. It contains every algorithm that we decide to use in
chapter 4 based on OpenAi’s Reinforcement Learning algorithm list [26].

We use a Unity simulation with the plugin ZeroRos to create a stable training environ-
ment for the robot. We model our lab room in Unity for the robot to learn how to drive
and use the Loomo Segway’s size for the simulated robot, to have him look identical in
the environment states when switched to a real Loomo Segway.

Figure 3.7: Simulated Lab Room

Figure 3.7 shows a top-down view of the modeled lab room. We increased the size of the
rooms and door entries and remove chairs and other obstacles to create an easier training
environment. We picked multiple starting points for the robot with multiple goal points
for each starting point. In this image, the robot is marked as red and the goal point as
blue. We extended the basic functionality of the ZeroRos plugin by adding a parameter
to increase the simulation speed, for faster training wall-time. The sleep functionality
in the Environment node takes this factor into account, enabling training on a faster
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simulation and evaluating it on a different real time speed factor. To enable resetting
the episode, we added a listener for a teleport command to teleport the robot back to
his starting position, with the option to make his starting rotation random. We added a
listener for pausing and unpausing the simulation, giving us more control over the basic
functionality of the simulation for a better training environment. If the simulation could
not pause, and the agent takes a long time after calling step to calculate a new action
for the new step, the robot would continue to drive with the last action and make the
environment noisy in respect to the time the agent takes before sending a new action.
This would provide a big problem, especially on a slower GPU that takes a longer time
to update the neural networks.

To train a Reinforcement Learning algorithm on our RosGym, we created a scrip that
manages multiple configurations for starting the training or evaluating and agent.

Figure 3.8: Example RosGym Configuration

The most important parameters for our RosGym are shown in figure 3.8. algorithm sets
the Reinforcement Learning algorithm, num_env how many simulations are running in
parallel, randomize_start_rotation if we want to randomize the agent’s rotation at the
start of an episode, simulation_speed how fast the simulation runs, action_runtime how
long an action gets executed in Hz, max_steps_learntime for how many steps the agent
trains and evaluate_episodes for how often he gets evaluated with evaluate_steps steps.
The state_length parameter sets the length of the state image for the Environment
node and the mem_size parameter stands for how many images the agent gets as an
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environment state. Since a single image as a state does not contain the current movement
of the robot, we created a stacked frame that gives the agent a sense of movement by
having a frame from the past and the current frame as a state. This technique was used
in Atari games with agents learning based on the frames of the game, e.g., in learning to
play the Atari game Pong to see the movement of the ball [20].

The alg_params parameter are parameters for the Reinforcement Learning algorithm.

Figure 3.9: Example Algorithm Configuration

We used a CnnPolicy in figure 3.9, meaning that the agent gets his input from a Con-
volutional Neural Network, named the DefaultCnn in our work, with the output size of
the features_dim, in this case 512:

Figure 3.10: DefaultCnn Visualized

We used the CNN shown in figure 3.10 to have a relatively small network structure for a
faster training wall-time. The input is two stacked 51 ∗ 51 images, which are decreased
to 23 ∗ 23 with six filters, a kernel of eight and a stride of two, to decrease the image
size. Another convolutional layer with a stride of two and kernel size of five decreases

22



3 Approach

the features to a set of twelve filters, followed by a final convolutional layer with a kernel
size of three and 24 filters. The output gets flattened and is the input for a feature repre-
sentation by a fully connected layer with the features_dim as a size. These features will
then proceed to be the input of the critic and policy layers, configured by a parameter
named net_arch, where vf is the critic and pi is the actor network.

3.1.2 Validation

To validate our environment as a suitable learning problem for Reinforcement Learning
algorithms in the continuous control task, we first have to test if an agent is capable of
learning and achieving higher rewards while training longer, continuously improving on
reaching the goal and not terminating on walls. To train an agent for the validation,
we use the Proximal Policy Optimization algorithm. More about this algorithm will be
presented in chapter 4 chapter, but it is a good starting point for testing an environment,
since it is the default Reinforcement Learning algorithm used in OpenAi, due to its
stability in learning and robustness to parameters [27]. We use the default algorithm
parameters from the framework, our presented default critic and actor layers with the
DefaultCNN as the neural network structure and run it three times on our example start
and goal position, seen in the simulated lab room image before for 400.000 steps. We run
three simulations in parallel for the agent to collect data from, meaning that the agent
learns from a total number of 1.200.000 training steps.
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Figure 3.11: Mean Reward of the last 150 steps for the Validation

Figure 3.11 shows the reward logs from multiple runs of the Proximal Policy Optimization
algorithm. The X-Axis shows the training step, up to the full 1.200.000 steps, and the Y-
Axis the mean reward collected by the agents last 150 steps, to get a smoothed value. The
runs themselves, separated by their color are visualized by an exponential moving average
filter with a weight of 0.6, to make it less noisy. Each run has a steady improvement in
performance and each agent learns a mostly positive behavior, ending in achieving more
reward than punishment on an average of 150 steps. This validates the assumption that
agents can learn to drive to the goal through our partially observable state representation,
and we can use this to run different Reinforcement Learning algorithms on it and analyze
their behavior. It also validates our DefaultCNN as a suitable convolutional neural
network for the image input.
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This chapter is the focus of our work. As mentioned before, we lean on OpenAi’s work
in choosing Reinforcement Learning algorithms in this work. We characterize our en-
vironment presented in chapter 3 and follow up with a categorization from OpenAi’s
presented Reinforcement Learning algorithms and continue with a filtering process, to
find out which we want to further analyze and evaluate through our environments char-
acteristics. Furthermore, we present the concepts of our picked choices and end this
chapter with a prediction for each of the choices, how they will perform and why they
will perform that way, with a final verdict of which we predict to be a good choice for
any similar characterized environment. Our predictions will be answered through the
experiments and results in chapter 5 and the discussion in chapter 6.

4.1 Environment Characteristics

In this section we show the environmental characteristics that we have chosen to find
suitable Reinforcement Learning algorithms for.

An environments state is the first thing to look at, how big the state space is and how
observable it is. Our state space is a 51∗51 image with six possible values for each pixel,
giving 6 to the power of 2601 different possibilities, which indicates the need for function
approximation.

By observability, we mean how much information the state gives. Our state is not fully
observable and includes a lot of randomness, since we create an approximation of the
robots position and surroundings based on sensor data that contains noise. We leave out
the robots internal state as well.

Through these conditions, we don’t know or can reasonably model the environment’s
dynamics, we can’t take a good guess how the state changes after taking an action. We
don’t see the full map and the current movement of the robot.
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Looking at the action for the environment next, we have a continuous action, making
it a continuous control problem. The action selection also has to be very precise, since
both of our two values per action have to be correct to receive a positive reward.

The rewarding is not sparse, meaning we don’t just reward on termination, but on each
step. We can give the agent for each action a meaningful feedback signal.

Another thing to look at is the sample efficiency, how easy it is to sample from the envi-
ronment and how fast it is. Training on the real robot would be very sample inefficient.
In our case, we have high a sampling efficiency due to the use of our simulation that can
be sped up and the possibility to run simulations in parallel.

4.2 Algorithms

Based on our environment characteristics, we conclude which algorithms are in ques-
tion to further analyze and make predictions about their performance for the continuous
control task. First, we give a general categorization based on OpenAi’s presented algo-
rithms.

4.2.1 Categorization

Figure 4.1: OpenAI Reinforcement Learning Algorithms [22]
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There are two general categories in Reinforcement Learning algorithms based on the
knowledge and predictability of the environment dynamics. The Model-Based RL side
groups the algorithms into two parts, one where the environment dynamics are known,
e.g. AlphaZero which was used in chess [30], and one where the environment model is
learned and used to train the agent. The Model-Free RL algorithms use samples from the
environment to train an agent. The Q-Learning algorithms learn a value representation
of the environment states and actions and act based on these values. The algorithms on
the right side under Q-Learning are all only learning a state representation, e.g. DQN,
standing for Deep-Q-Network, which is the realization of Q-Learning with neural net-
works as function approximation [20]. The left side under the Policy Optimization group
represents algorithms where a policy is learned directly that tries to maximize the ex-
pected discounted reward, e.g., A2C. The algorithms in between Policy Optimization and
Q-Learning are learning a policy that tries to maximize a learned state representation,
learned by a critic. DDPG for example is an extension of DPG for function approxima-
tion, providing more stability like DQN for Q-Learning [19]. The middle ones and the
most left ones are all, except the Policy Gradient algorithm, actor critic methods, that
learn a policy and a value function simultaneously to update through TD errors after an
arbitrary number of steps instead of sampling a whole episode. The algorithms on the
Q-Learning category are all Off-Policy algorithms and can update the agent with old
samples, while the most left algorithms are On-Policy, meaning they have to throw the
sampled data from the agent-environment interaction away after updating the policy.

4.2.2 Filtering

We start in the same order as before, from the right side to the left side, based on
figure 4.1. The Model-Based RL algorithms can not be used in this work. AlphaZero
expects the environment dynamics, which are not given in our case, and the algorithms
that try to learn the environment dynamics can not be used as well, since our state space
is not fully observable and has too much randomness, as described in the characteristics
of our environment. This leaves us with the Model-Free RL algorithms. The Q-Learning
based algorithms on the right side can also not be used, since we are using continuous
actions, leaving us with the Policy Optimization algorithms. We will not use the Policy
Gradient algorithm, since A2C gives us an improved version, where the agent can learn
after each step instead of after each episode. PPO and TRPO both prove to be useful
extensions of the A2C algorithm, making it more stable and sample efficient by making
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sure that the updated policy will not be too far away from the previous policy, so that an
update won’t drastically impact the policy’s performance after a single update [29] [28].
This leaves us with using PPO and TRPO for the On-Policy case. The algorithms in
the middle, DDPG, TD3, SAC all derive from DPG. TD3 and SAC are both extensions
of DDPG, addressing issues in overestimation of actions and stability while learning [12]
[13]. We will remove DDPG from our list and keep the other two.

We decided to include a newer Reinforcement Learning algorithm named TQC to our
list. It combines QR-DQN and SAC, both on the OpenAi presentation and gives us an
actor critic version of QR-DQN [18]. This gives our work a look at a newer approach, the
distributional approach in Reinforcement Learning, where a critic does not directly learn
the value of the state, which represents the expected mean reward following the current
policy after going into that state, but a distribution of a reward [9]. It enables us to learn
multiple possible values with their own probability for a state for example. This learned
distribution is called the value distribution. It aims to address instability in learning
and improve the function approximation, arguing that approximating a distribution of a
value of a state has more value than approximating only the mean value of a state.

4.2.3 Concepts

Our final list of choices, based on our environment characteristic, contains TRPO, PPO,
TD3, SAC and TQC. We will present their concepts and continue with predictions based
on their concepts matched with our environment characteristics. We are going to look at
the On-Policy algorithms first and how they handle the shortcomings of this algorithm
class.

maximize L(θ) = Eπθ [
∞∑
t=0

γtR] (4.1)

To show the concepts of the following two algorithms, we present a simplified view of
the goal of policy gradient algorithms in equation (4.1). The goal is to maximize the
the expected discounted long term reward through updating a policy parameter vector
θ [34].

TRPO and PPO are similar to A2C and thus REINFORCE and address a major problem
in On-Policy policy gradient algorithms. The policy used to sample data from is the pol-
icy that gets updated. This means, that a big update would completely change the policy
and maybe for the worse, since a policy that would collect bad data will also not learn
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well, since the data is bad. TRPO, named Trust Region Policy Optimization, updates
the policy by the largest step possible while satisfying a KL-Divergence constraint, which
describes the distance between two probability distributions. The algorithms equations
are shown in equation (4.2).

Ât = δt = rt+1 + γV (st + 1)− V (st) = Q(st, at)− V (st)

ρt(θ) =
πθ(αt|st)
πθold(αt|st)

L(θ) = Et[ρt(θ)Ât]

maximize L(θ) subject to DKL(θold, θ) ≤ β

(4.2)

Â is the advantage function, which represents how much more advantageous it is to take
action a in state s, since the Q value is the expected value by taking that action, and
the value function V returns the expected value of the whole state. It is approximated
by the TD-error advantage, as done in chapter 2. ρ represents the difference between
the old policy before taking an update and the policy after updating. The L function
represents the performance of the current parameter vector θ, that parameterizes the
policy, and the task is to maximize it. Maximizing L means to push the parameter
vector θ in the direction of the Advantage-Function, meaning that we want to increase
the probability of actions that led to a higher reward then currently expected by the
critic. DKL represents the KL-Divergence between the policy before the update and
after updating. It searches for a parameter vector θ that maximizes the performance of
the policy while respecting the constraint, represented by β. It improves the stability a
lot, since keeping the updates based on the distributions close instead of simply taking a
step results in a more monotonic improvement while not diverging through updates that
reduce the current performance [28]. Solving this constraint problem to make a policy
update is a complex task that hurts the scalability and provides problems with using
bigger neural networks [29].

PPO, named Proximal Policy Optimization, addresses this problem by moving the con-
straint to the objective of the policy. In this work, we focus on the clipping version of
PPO that proved to be the most successful [29]. In PPO, the policy does not get updated
directly with a step size, but gets clipped to update only to a set distance.

Lclip(θ) = Et[min(ρt(θ)Ât, clip(ρt(θ), 1− ε, 1 + ε)Ât)] (4.3)
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Equation (4.3) shows the function that PPO maximizes. The epsilon parameter repre-
sents a bound of how far the policy can change. If our advantage of taking an action in a
in state s is high, we update our policy towards increasing the possibility of taking that
action while being clipped by an upper bound, to only allow a minimal update. Similarly,
if the advantage is negative, meaning we want to decrease the possibility of the action,
we add a lower bound to not decrease the possibility too far. This results in a less com-
plex algorithm and improves in runtime, while achieving similar performance compared
to TRPO. This improvement allows us to use multiple updates on a sampled batch of
transitions due to respecting the clipping of the policy and fixes the problem with using
bigger networks, since we don’t need to solve a complex constraint optimization and can
use the simple gradient updates [29].

To reiterate, TRPO updates a policy by solving a constraint optimization problem, im-
proving the performance of the policy while staying in between a set KL-divergence
distance, while PPO adds a clipping towards the normal gradient update which em-
ulates the same behavior. These On-Policy algorithms explore naturally through the
stochasticity of the policy, since actions for a given state are sampled from the policy’s
probability distribution.

TD3, called Twin Delayed Deep Deterministic Policy Gradient, stabilizes DDPG and
thus DPG by adding multiple ideas. In Q-Learning, a big problem is the overestimation
of a Q value. The Q value includes the maximum of the next Q value, which is a
maximum over estimated values. Sutton and Barto present an intuitive example: If we
have an MDP where the true Q value of each state is zero, but the estimated values
are randomly with some being positive, then the maximum Q value will be positive,
introducing a positive bias favoring the Q values that are greater than the others [32,
ch. 6.7]. TD3 uses the same solution as presented by Sutton and Barto in [32, ch. 6.7],
called Double-Q learning, using two Q functions that are both randomly initialized and
the smallest Q value from both Q functions is used as the Q value. Another idea from
TD3 is to update the policy less frequently then the two Q functions. The policy in the
Off-Policy actor-critic algorithms learns to exploit the current Q function by learning
to output the maximum Q value. Updating the Q function more often then the policy
results in a more stable learning process, since it does not directly learn to exploit it
and lets it update more often. TD3 makes use of target networks as well, that represent
delayed copies of the Q functions and are used in the TD error for calculating the max
Q value, to further improve stability. Another approach from TD3 is to add noise to the
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action sampled from the policy while updating, as seen in equation (4.4):

δt = Rt+1 + γmaxa=π(a|St)Qtargetmin(St+1, µ(π(a|St)))−Qmin(St, At) (4.4)

Creating the TD error, we see that the action that maximizes the Q value of the target
network in a state St is returned by the policy π. The µ function here represents the
additional action noise and aims to reduce occurrences of narrow peaks in the value
estimations. The min under the Q and target Q function represent that both of the
double Q and double target Q functions will be evaluated and the minimum resulting Q
value for each one used. TD3 explores like DPG, by adding random noise to the action
while training the agent [12].

SAC, named Soft Actor Critic, takes a new approach to Off-Policy learning to address
the big issue of exploration by learning a stochastic policy. It changes the Reinforcement
Learning task from maximizing the expected reward to maximize the expected reward
in addition to keeping an entropy. It learns a policy that maximizes the expected return
while keeping a set randomness. The entropy of a policy for a given state is an indicator
of how random the current policy is for that state. E.g., a policy that would only favor
a single action in a given state would have a low entropy in that state. The agent gets
rewarded at each time step by how high the entropy of the policy for the current state
is.

maxπE[
∞∑
t=0

γtR]

maxπE[
∞∑
t=0

γt(R+ αH(π(∗|St))]
(4.5)

Equation (4.5) shows a simplified view of the goal of Reinforcement Learning agents.
The first equation shows the basic Reinforcement Learning task, to find a policy that
maximizes the expected, discounted reward. The second equation shows the task for
the SAC, to maximize the expected discounted reward in addition to H, a function
representing the entropy of the policy in a current state. Alpha is a hyperparameter
that gives a weight to the entropy. The higher alpha is, the more important the entropy
gets and vice-versa. A higher alpha would lead to a higher exploration rate, since the
policy outputting actions is learning to be more random. SAC incorporates the double
Q-Learning as done in TD3, but explores through the learned stochastic policy, like the
On-Policy algorithms [13].
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The final algorithm we want to look at is TQC, named Truncated Quantile Critics, and is
an extension of SAC that also learns a stochastic policy. It addresses the overestimation
bias of Off-Policy algorithms by learning a value distribution instead of learning the
mean value, building on the idea of QR-DQN. Since TQC combines QR-DQN and SAC,
it helps to look at QR-DQN and where it came from and derive TQC from that point.
One of the first distributional Reinforcement Learning algorithms was C51. It learns a
probability distribution for a set of rewards [8].

Figure 4.2: DQN and C51 [8]

Figure 4.2 visualizes DQN and C51 and puts them next to each other for comparison.
The left side shows the output from a DQN Q function approximation. Given an input
state, the function approximation returns a Q value for each state. The C51 function
approximation has a set of value expectations named zi, we will call it an indexed value
expectation for simplicity. In this case, there are five indexed value expectations, from
z0 to z4, where z0 is the expected maximum return and z4 the minimum expected return
for that action in a given state. Each of the indexed value expectation has a probability
attached to it, how likely this return would be for the agent. The Q value is simply
the summation of each indexed value expectation times its probability, represented in
figure 4.2 by the height of the bar. This approach outperformed DQN in almost every
tested environment [8]. QR-DQN represents the value distribution with fixed probabil-
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ities for adjustable expectations of the value instead of having fixed expectations with
adjustable probabilities. This approach proved to be even another step better than the
C51 approach and was around 33% more successful on the same tasks [9] and is added
in figure 4.3.

Figure 4.3: DQN, C51 and QR-DQN [8]

On the right sight, we see that QR-DQN outputs multiple expected returns, where each
return from this learned distribution has the same probability of occurring. Each value is
called a quantile, and the Q value is calculated similarly as in C51, by the summation of
each quantile’s discrete return value times the probability, which each quantile shares. An
example would be to have five quantiles that each have the probability of twenty percent,
so QR-DQN would output five values that are expected to happen with a probability of
said percentage.

TQC combines this idea of representing a quantile distribution for an action and extends
it to the continuous space by combining it with the SAC algorithm. Another idea it
adds, to address the overestimation bias further, is to drop some quantiles controlled by
a hyperparameter, an idea similar to randomly dropping neurons in a neural network to
generalize better [18].

4.3 Predictions

Based on our analysis of the concepts, we predict that PPO and TRPO should both do
well, having a stable learning curve slowly increasing the reward collected. Since we are
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not using a lot of layers in our neural networks, we predict that they both will achieve
similar performance. In the Off-Policy case, we predict that TD3 will have the hardest
time of all algorithms, since random noise on the exploration will cause problems with
our rewarding system, because both acceleration values have to be accurate to receive
rewards. Based on the way SAC and TQC explore, we predict that they will not have
problems like TD3. We predict that they will both learn faster than the On-Policy
algorithms, but less stable, and that TQC will outperform SAC and be as successful
as the On-Policy algorithms, measured by the reward collected on the evaluation of the
agent after training, learning faster than they do while having a less stable learning
curve.

Our final prediction and deduction for the reader is to use PPO in a sample efficient
environment, e.g., learning in a simulation, and to use TQC in a sample inefficient
environment, e.g., training a robot in the real world.
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In this chapter, we provide a structured approach to answer our predictions made in
chapter 4. Reinforcement Learning algorithms have a lot of parameters that require
fine-tuning, since they impact the agent’s performance substantially and a good set of
parameters can be very specific to an environment with its own unique characteristics.
Some Reinforcement Learning algorithms are said to require less tuning, like PPO, and
their default parameters should generally work on a broad variety of environments [27].
We used PPO with the default parameters for validating our environment, and they
worked well enough, but they still require tuning for each environment to achieve better
performance, especially because we want to evaluate them head to head for our continuous
control task.

We start our experiments with creating a hyperparameter study through the framework
Optuna for each Reinforcement Learning algorithm and pick the best four parameter sets
for each algorithm to further analyze their behavior, performance and stability. The first
section shows our experiment structure, followed by a presentation of the results, to be
discussed chapter 6.

5.0.1 Hyperparameter Optimization

To find better hyperparameters, we use Optuna with the default optimization strategy
TPE. Each algorithm will have 60 trials, where each iteration uses three parallel sim-
ulations with 400.000 steps, leading to 1.200.000 environment interactions, as done in
section 3.1.2.

We use the simulated lab room introduced in chapter 3, where we again use the red
spot as the starting position and the blue spot as our goal. The robot starts with a
random starting rotation at the start of an episode and each algorithm uses the same
Convolutional Neural Network (CNN) structure, named DefaultCnn, to create a feature
output of the image for the agent and critic networks.

35



5 Experiments and Results

5.0.2 Hyperparameters

Optuna expects an objective function for the hyperparameter optimization that needs a
range of possible values for each parameter. The following enumeration in section 5.0.2
shows a description for each parameter with our value choices. These parameters are
based on the implementation from OpenAi and the extension through StableBaselines 3
and StableBaselines 3 - Contrib. StableBaselines 3 provides an optimized parameter list
for a lot of different environments and a parameter range list for each of their algorithms
[5]. We used the later one for this work and customized it by minimizing a lot of
parameters, like the learning rate from a maximum of 1 to a maximum of 0.001, for
a more stable parameter search. We decreased the batch sizes to have enough space for
our GPU used, the RTX Titan, that has 24 GB of video memory [21], and we run each
parameter study with three environments in parallel.

• Shared by every algorithm:

– gamma: The discount factor for future rewards.
[0.9, 0.95, 0.98, 0.99, 0.995, 0.999, 0.9999]

– learning_rate: The learning rate, defines the step size of moving towards
minimizing the loss function for a neural network.
[0.00001 to 0.005]

– net_arch: The network architecture of the critic and policy, each entry rep-
resents a fully connected layer.
"small": [64, 64], "medium": [256, 256], "big": [400, 300]

• TD3, SAC, TQC :

– learning_starts: How many steps are made before starting to train the agent.
[0, 1000, 5000]

– batch_size: The number of random transitions that are taken from a history
buffer to update the agent every train_freq steps.
[8, 16, 32, 64, 128, 256]

– buffer_size: The size of the history buffer, the maximum number of saved
transitions, since Off-Policy algorithms reuse them to update every train_-
freq steps.
[40 000, 400 000]

36



5 Experiments and Results

– tau: Weight factor when copying the neural networks weights of the critic to
the target network.
[0.001, 0.005, 0.01, 0.02, 0.05, 0.08]

– train_freq: Number of steps taken in the environment before updating the
policy and critics.
[1, 8, 16, 32, 64, 128, 256, 512]

• TD3 :

– noise_type: Action noise type, where normal represents a Gaussian function
and ornstein-uhlenbeck represents the Ornstein Uhlenbeck process.
["ornstein-uhlenbeck", "normal", None]

– noise_std: The standard deviation of the action noise.
[0.0 to 1.0]

• ’SAC, TQC :

– ent_coef: The entropy coefficient, how much the entropy weighs for the agent.
auto here means that it scales up and down based on the certainty of the
policy in the current state. If the policy in a current state is uncertain, then
the entropy coefficient grows to increase the exploration for the agent and
decreases it if the policy of the agent is sure about which action leads to a
high expected reward [14].
[’auto’, 0.001, 0.01, 0.1]

• TQC :

– n_quantiles: Number of quantiles per critic. 10 Quantiles would mean that
every return value of a quantile has a predicted chance of 10% to appear.
[5 to 50]

– top_quantiles_to_drop_per_net: How many top valued quantiles will get
dropped to decrease the overestimation bias.
[0 to n_quantiles-1]

• PPO, TRPO :

– batch_size: The minibatch size used to update the neural networks. Each
entry in the minibatch represents an environment transition from the last n_-
steps taken.
[8, 16, 32, 64, 128, 256]
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– n_steps: How many environment transitions are sampled to update the policy.
[16, 32, 64, 128, 256, 512, 1024, 2048]

– gae_lambda: Factor for weighing each step in to calculate the advantage of an
action taken in a state. A gae_lambda factor of 0 would result in the default
advantage case, where the advantage is delta_t as in equation (2.7).

G1
t = Rt+1 + γV (St+1)

G2
t = Rt+1 +Rt+2γ

2V (St+2)
(5.1)

In equation (5.1), G1
t represents the estimated return for a current step, rep-

resented by the next reward sampled and the discounted value of the next
state. G2

t represents the n-step return of the estimated reward with two steps
as a return, using the sampled reward of the second step and the value func-
tion of the second state added to the current sampled reward. With that, we
bootstrap to the second state and not to the next state as done in the normal
TD-learning case. Gae_lambda averages over each possible n-step reward to
take every state value into account and get an averaged state value, where the
weight factor grows exponentially for each n-step return that gets averaged in.
It builds a bridge between the updates after one step, as done in the advantage
or Q-Learning, and the full return of an episode when updating the agent as
in REINFORCE while providing a smoother version of the n-step TD returns.
[0.8, 0.9, 0.92, 0.95, 0.98, 0.99, 1.0]

• PPO :

– clip_range: The ε parameter of the optimization goal of PPO, equation (4.3).
[0.1, 0.2, 0.3, 0.4]

– n_epochs: How often the policy gets updated using the current sampled tran-
sitions. This results in multiple updates for each currently sampled transitions
and is allowed due to the policies restriction to move too far away from the
old policy.
[1, 5, 10, 20]

– max_grad_norm: An additional clipping parameter for the whole gradient
update.
[0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 5]

38



5 Experiments and Results

– vf_coef: Weighting factor for the critics value of a state while calculating the
advantage.
[0.0 to 1.0]

• TRPO :

– n_critic_updates: Number of critic updates per policy update.
[5, 10, 20, 25, 30]

– cg_max_steps: Maximum number of steps for computing the gradient, based
on the KL-divergence constraint.
[5, 10, 20, 25, 30]

– target_kl: Target KL-Divergence between the policy before updating and
after updating.
[0.1, 0.05, 0.03, 0.02, 0.01, 0.005, 0.001]

5.0.3 Objective Function

Using these parameter ranges and our lab room simulation, we can model the objective
function for Optuna.

Function objective(trial, algorithm, learn_steps, evaluate_steps,
evaluate_episodes):

parameters = sample_parameters(trial, algorithm)
environment = create_environment(RosGym, number_environments=3)
agent = create_agent(algorithm, parameters, environment)
agent.learn(learn_steps)
return agent.evaluate(evaluate_steps, evaluate_episodes)

Algorithm 1: Objective Function

Algorithm 1 represents the objective function for Optuna to maximize, by evaluating
the performance of the current sampled parameters after each trial of the current study.
We call the function with our specified Reinforcement Learning algorithm and with our
current trial, which keeps the information about how each run performed in past itera-
tions and what parameters to suggest next. We input a set time for the agent to train
and evaluate and start to sample parameters for the current trial iteration from Optuna.
Given our algorithm, the environment and the current parameters for the algorithm, the
agent starts learning and returns the reward received after evaluating. This repeating
process improves the parameters for the algorithm to find a better set on the long run.
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5.0.4 Gathered Data

The objective function returns the score achieved by the agent through driving in the
environment. Since a robot in our environment can gather more rewards by driving
cleanly to the goal then he gets punished by driving into a wall, say at the very end
instead of hitting the goal position, we log how often he gets to a goal or terminates
on walls for the results. This does not impact the score for the objective function and
will be domain specific knowledge used for the further analysis. We add a position
logging to see how the agent explores, based on the Reinforcement Learning algorithm
and configuration, by creating a 2D map of his spots visited per time-span while training
and in the evaluation for the best trials of each algorithm.

5.1 Results

This section shows the results of the hyperparameter optimization. We then elect the
best four parameter sets for each algorithm, by picking the two with the highest value
from the objective function and the two with the highest goal to terminating on a wall
difference. These parameter sets are tested for their stability, by re-running each set
five times, to elect the best set per algorithm. The best sets exploration, stability and
learning behavior results are shown afterwards.

5.1.1 Hyperparameter Optimization Results

First, the studies of each trial while running the hyperparameter optimization are shown,
followed by the importance of the parameters, how much each parameter impacted the
agent’s performance,
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Figure 5.1: Optimization Histories
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Figure 5.2: Parameter Importance
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Figure 5.1 shows the results from the evaluation of the studies. The X-Axis shows the
number of the trial, the Y-Axis the returned value from the objective function and the
title the algorithm name. The blue dots are representing a trial with the score returned
from the agent’s evaluation. The red line represents the currently maximum returned
value from the objective function. Note that the algorithm PPO has a blue dot after
the 60 number. The total amount are still 60 trials, but a server-side error stopped a
running trial, which was set to disabled but increased the count of later trials by one.

Figure 5.2 shows the importance of each parameter for each algorithm based on our cho-
sen intervals for the RosGym. The title shows the name of the Reinforcement Learning
algorithm and the X-Axis the importance in percent for the objective value, for each
parameter shown on the Y-Axis. The importance means how much changing it im-
pacted the result of the objective function, how the agent trained and his score of the
evaluation.

5.1.2 Elected Trials Results

Based on figure 5.1 and looking at each goal to wall-crash difference, the best trials
per study are chosen. Each of these four per algorithm is tested for their stability, by
re-running them five times.

Figure 5.3 shows a bar-plot for each algorithm. Each plot contains three bars for a trial
with the trials number next to it. These trial numbers represent the run with one of the
top four parameter sets from the hyperparameter optimization. The blue bar of a trial
shows the average score of five iterations of training and returning the evaluated score,
as done in the objective function. The orange bar shows the minimum achieved return
of the five iterations and the gray bar the highest return. This is done for each of the
four best trial for each algorithm.

Figure 5.4 compares the highest average score achieved from the best trial, which is
defined by the highest average score from five iterations of the objective function. The
X-Axis shows the Reinforcement Learning algorithms name and the Y-Axis the averaged
score.
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Figure 5.3: Reevaluation Scores
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Figure 5.4: The Highest Average Reevaluation Scores

45



5 Experiments and Results

Section 5.1.2 shows the hyperparameters of the best trial per algorithm, and thus the
best parameters for each algorithm for our testing environment, based on the respective
ranges of parameters and number of trials.

• TD3 :

– batch_size: 8
– buffer_size: 40000
– gamma: 0.98
– learning_rate: 0.0000037
– learning_starts: 0
– net_arch: [400, 300]
– noise_std: 0.63978348
– noise_type: None
– tau: 0.005
– train_freq: 32

• SAC :

– batch_size: 64
– buffer_size: 400000
– ent_coef: 0.1
– gamma: 0.95
– learning_rate: 0.000538
– learning_starts: 5000
– net_arch: [256, 256]
– tau: 0.01
– train_freq: 64

• TQC :

– batch_size: 128
– buffer_size: 40000
– ent_coef: 0.1
– gamma: 0.9
– learning_rate: 0.0001153
– learning_starts: 0
– n_quantiles: 28
– net_arch: [400, 300]
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– tau: 0.005
– top_quantiles_to_drop_per_net: 8
– train_freq: 1

• PPO :

– batch_size: 8
– clip_range: 0.3
– gae_lambda: 0.8
– gamma: 0.95
– learning_rate: 0.000047
– max_grad_norm: 2
– n_epochs: 1
– n_steps: 1024
– net_arch: [400, 300]
– vf_coef: 0.02424428

• TRPO :

– batch_size: 8
– cg_max_steps: 5
– gae_lambda: 0.95
– gamma: 0.98
– learning_rate: 0.000072
– n_critic_updates: 5
– n_steps: 256
– net_arch: [400, 300]
– target_kl: 0.01
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5.1.3 Best Trials Training Results

Figure 5.5: Mean Reward Plot

Based on the stability testing, by re-running each promising parameter set five times,
we show an in-depth view of each best parameter set’s training, starting with the re-
ward received while training in figure 5.5. The X-Axis shows the current step of the
environment, and the Y-Axis the mean reward collected over the last 150 steps, as done
in chapter 3. The graphs color shows the Reinforcement Learning algorithm that runs
with their respective best trials parameters. The graphs are smoothed by an exponential
moving average filter with a weight of 0.95.

Figure 5.6 presents the mean episode reward achieved by the algorithms. It calculates
the mean for the next point by averaging over each received episode reward. The graphs
are again smoothed by an exponential moving average filter with a weight of 0.95. Note
that TD3 is not represented here, meaning that the agent did not drive into a wall, nor
reached the goal.

Followed after the mean rewards and mean episode rewards received, we show important
loss plots in figure 5.7, once for the critics that try to create a value representation
of the states, and once for the actors, that learn a behavior policy based on the critic’s
representation. The plots show the step size on the X-Axis and critics loss on the Y-Axis.
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Figure 5.6: Mean Episode Reward Plot

Figure 5.7: Critic Losses

The left graphs are smoothed by an exponential moving average filter with a weight of
0.9 and the right by 0.6. These losses represent the error in the critic while predicting the
value of a state, based on the TD-error. If the agent collects the reward that the critic
predicted, then this value goes down. E.g., if the agent collects a higher than expected
reward after taking an action in a state, this value goes up, followed by a bigger update
to the function approximation with the current learning rate, to train the critic to predict
it better next time.

49



5 Experiments and Results

Figure 5.8: Actor Losses

The X-Axis of each plot in figure 5.8 shows the current step in the environment and
the Y-Axis the loss. These plots show the losses of the agent’s actor, where the top
left plot shows the Off-Policy actor losses. The top right shows the same, but removes
TD3 to show a closer up view between SAC and TQC. The bottom left plot shows
the KL-Divergence loss instead of a direct actor loss, which represents the mean of
the KL-Divergence on updating, since it updates the policy by maximizing the policies
objective through a constraint optimization search. The bottom right plot shows the
policy gradient loss of PPO, representing how much the policy is changing on updates.
This directly correlates with the clipping of the policy. This loss going down indicates
that the policy takes actions that are expected from the critics state representation and
does not need to update much, since the probabilities of taking actions in a state are
already close to the advantage calculated from the critic. The top plots are smoothed
the same way as the critic loss plots, the Off-Policy ones with a weight of 0.6 and the
On-Policy plots by 0.9.
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5.1.4 Exploration

To finalize the results of the best parameter set’s evaluation, we present how they explored
the lab room while training and evaluating. Figure 5.9 shows a rotated and mirrored

Figure 5.9: Lab Room 2D View

view of the training environment, with the red object being the robot and the blue field
the goal.

The following plots, figure 5.10, figure 5.11, figure 5.12, figure 5.13 and figure 5.14, are
a 2D view of the agents current position. The title of the plot shows the algorithm
name and in which step they were taken with a sample size of 240.000 steps, to show
the difference in exploration in later training stages. The bottom right plot shows the
positions of the agent while evaluating. A red dot represents the agents starting position,
a darker blue dot the agent’s goal point. The cyan dots are the agents position, meaning
that he was at that spot in between the time frame.
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Figure 5.10: TD3 Exploration Footprint

Figure 5.11: SAC Exploration Footprint
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Figure 5.12: TQC Exploration Footprint

Figure 5.13: PPO Exploration Footprint
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Figure 5.14: TRPO Exploration Footprint
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In this section, we discuss the results of the experiments from the previous section.
These results are the foundation of analyzing the behavior of each algorithm and are
used to answer our predictions made in chapter 4. We discuss our presented structure
and answer which algorithm we predict to be good and suitable for a continuous control
environment.

6.1 Hyperparameter Optimization Evaluation

The experiments start with a structured way to find a good set of hyperparameters for
each algorithm in a given time, in our case 60 trials, where each trial trains an agent for
400.000 steps with three parallel simulations.

6.1.1 Optimization History Evaluation

We start with evaluating our hyperparameter optimization. In the optimization history
plots in figure 5.1 we evaluate the general pruning of Optuna, if the framework can find
a good set of hyperparameters with our given parameter ranges. Each study finds better
functioning trials over time. In the TD3 study, no trial finds a set which results in
achieving a positive score, while the rest do, meaning that the algorithm is not suitable
for our environment, at least given our parameter ranges. The other studies find a set
with a positive score and improve over time as well, with TQC finding a good trial only
after 30 trials. It indicates that this algorithm had a harder time finding a good set and
parameters had to be finely tuned, but after finding a good set, many more trials resulted
in a positive score, proving that Optuna works. PPO and TRPO both have a lot of trials
with good scores and are generally more broadly scattered around, while the Off-Policy
algorithm have more tight groups of trials with similar performances. They either find
a good set that works, or a set that doesn’t and the performance stays relatively the
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same. The On-Policy algorithms on the other hand can be tuned more fine-grained and
get lots of different trial scores. It shows that they are less hard to tune and why PPO
performed good as an environment evaluation, many parameter sets just work.

6.1.2 Parameter Importance Evaluation

The following figure 5.2 shows the parameter importance for each study, to see which
parameter for which algorithm impacted the result of the objective function the most.

Starting with TD3, the biggest impact for the agent was made through the noise_-
std parameter, controlling the noise, the net_arch parameter, controlling the size of
the agents policy and value function networks and tau, the weight factor for the target
network updates. The noise in particular has the highest impact of 22% on the agent’s
performance, since it controls the exploration of the agent. What we did not expect was
the low importance for the noise_type parameter, which contains the option to use no
noise at all. It seems that this algorithm failed to learn a good policy with either a noise
active or no noise active at all, meaning that the exploration through added noise to the
action was not enough to find a good policy. Since our environment rewards based on the
correctness of both actions, an added noise results in a high probability that the reward
will be negative. Furthermore, the calculation of the TD-error in TD3 uses the noise
for calculating the max Q value, which results in a high probability of a wrong max Q
value. This kind of exploration is thus not very suitable for our environment.

SAC had a strong importance for the learning_rate, that controls the neural network
update step size and gamma, that makes the agent short- or long-sighted, both around
30%. The first one makes sense, since it controls how much the agent updates, but looking
at the other algorithms, no other seems to give that much weight to it. It hints that
the pruner tried a wider range of the learning rate and the results had a big difference
in performance on SAC. The importance of other parameters is thus perceptually less
important in this study, in particular ent_coef, controlling the stochasticity and thus
the exploration of the agent, but is still the fourth most important parameter. gamma
also had a lot of impact, since it controls how fast the agent tries to reach the goal.
This parameter has to be tuned specifically for each environment, represented by its high
parameter importance in each study that had successful trials.

TQC gave the most weight to the ent_coef parameter, since it has to explore a lot to
learn the distribution of rewards for the states. The n_quantiles parameter, controlling
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how many quantiles for the reward distribution are learned per action in a state, is also
important with 10%. TQC seems to be harder to tune, given that the importance for
the parameters are all closer together and that the optimization took a lot of trials to
find a suitable set.

TRPO gave next to gamma with 31% a lot of weight to the target_kl parameter hav-
ing 16% and the cg_max_steps parameter having 11%. These are the two parameters
controlling the learning of the agent through the KL-Divergence constraint optimization
and thus impact the agent’s performance a lot.

PPO gave a lot of weight to gae_lambda with 39%, considerably impacting the agent’s
performance through changes of said parameter. gae_lambda weighs in how much the
multistep returns are weighed in while calculating the advantage of the agent in a current
state. This advantage is directly bound to the agent’s maximization task with the clipping
added while updating, resulting in a big impact of the agent’s performance. Interestingly,
the net_arch parameter had little to no impact for this algorithm, proving further why
it is a good algorithm to test environments or to have a good working reinforcement
learning algorithm. It does not depend on a very specific neural network size and in our
case worked with every of our chosen sizes.

6.2 Elected Trials Evaluation

Picking the four best trials for each study and reevaluating them multiple times, we see
that each algorithm but TD3 found a suitable set for our environment that had a stable
performance, always getting a positive score, seen in figure 5.3. This was very important,
since a lot of run to run variance can impact the performance, seen by how many trials
had a very good run but a bad one, e.g., trial 44 from PPO. The best run in said trial
had the highest score achieved by any algorithm, but contained a run with a negative
score and generally had a lower average score, making this parameter set too noisy. In
figure 5.4 we can see that PPO, TRPO, TQC and SAC had a trial with only positive
scores of the multiple re-evaluations. PPO, TRPO and TQC had a similarly high average
score on their best trial set, with TRPO having the highest. This parameter set from
TRPO outperformed every other algorithm, proving our assumption of PPO and TQC
being the best ones for our environment as false. It seems that directly optimizing the
KL-Divergence, without the approximation made through the clipping as done in PPO,
results on average in finding a better policy.
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Looking at the parameter sets values that achieved the best average score in section 5.1.2,
we can see that gamma was on every algorithm a rather lower value of or under 0.98,
indicating that our environment was a shortsighted problem, where he received the most
reward through getting fast to the goal. This happens through the rewarding system that
rewards fast movement and the big reward on reaching the goal. Every good running al-
gorithm used the higher neural network size of 400 and 300 neurons for this environment,
hinting at a rather complex approximation problem. Another similarity is that a high
entropy of 0.1 resulted in a better policy for SAC and TQC, showing the importance
of exploration in our environment. The Off-Policy algorithms learned the best with a
smaller batch size, since the current transitions are used directly to update the agent,
while SAC and TQC used a higher batch size to have a bigger pool of transitions from
the memory buffer. TD3, as seen in figure 5.2, did not learn well with either a noise
active or without and the best run used no noise while training.

6.2.1 Best Trials Training Evaluation

Following with an in depth view of the agent’s performance on the best trials in figure 5.5,
we see how TQC learned a good policy the fastest and kept it stable. It did not improve
much afterwards but found it very fast, due to the sample efficiency from Off-Policy
learning. SAC on the other hand did not find a good policy very fast, but in a reasonable
time, and like TQC, stagnated around an average value of the last 150 steps. TD3
completely failed to learn a policy and stagnated on a value quickly, not getting an
average score above zero. The On-Policy algorithms had a different behavior, they did
not stabilize on a set value but continued to get an improved score, further shown in the
followed image of the episodic mean rewards, figure 5.6. PPO continuously improves,
getting a higher reward per episode after time and receiving the highest mean reward
while training the agent, resulting in an agent’s policy that takes a longer time driving
to the goal, but collecting a lot of reward on the way. TRPO seems to stagnate for
some time, but after around 400.000 steps, getting to a higher plateau. The general
reward collected over the last 150 steps increases for TRPO, as in PPO, continuously
over time. In general, we have a behavior similar to what we saw in the optimization
history. The Off-Policy algorithms stagnate on a value, while the Off-Policy algorithms
have a smoother learning curve and thus cover more different scores. In the policy
learning theorem, the policy always improves after each update and the new policy is
kept close to the old policy in the cases of TRPO and PPO. This behavior can be seen
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in the stable and small improvements over time. What is interesting to look at is how
fast TQC found a very good policy. If the sample efficiency of our environment would
be low, e.g., we train on a real robot, then this algorithm would be, as predicted, a very
good choice. In just 350.000 steps, the algorithm performed on average from the last 150
steps as good as PPO on around 780.000 steps, being more than twice as fast. Looking
at the trend, PPO and TRPO, with their continuously improving scores, are proving to
be a better choice for longer training sessions, especially seeing how they improve the
episodic reward over time.

Looking at the losses for the agents critics in figure 5.7, we see that each of the algorithms
performed well in learning to predict the value of a state. Each algorithm stagnates after
around 800.000 to 900.000 steps. The agents actors behave similarly, stagnating on a
value at around 400.000 steps, seen in figure 5.8. TD3 is an outlier, since the actor
loss gets really high and the policy is not finding a lot of rewards. In general, each
good learning algorithm has a stable loss curve for their respective actors and critics,
meaning that they have a stable learning experience, as represented before by the scores
achieved.

6.2.2 Exploration Evaluation

To finalize the behavior analysis of the algorithms, the exploration results are evalu-
ated.

TD3 learned a policy that just drives in a circle, avoiding walls to not get punished.
Seeing that the agent directly learned to drive like that, after around 240.000 steps,
means that he exploits the current value representation and does not find a way out
of the current behavior. This is generally a failure of exploration and shows that, as
predicted, the way of exploring with random noise is not suitable in our environment.

SAC explored a lot, with the ent_coef being on the highest value of 0.1 from our re-
spective ranges. The exploration seems to narrow down after some time, explained by
the agent learning a good value representation, but increases at the end of training. This
happens due to the sudden spike seen in the figure 5.5 in around 1.01 million steps area,
where the agent had a negative spike in performance, increasing the exploration again.
After training, where the policy is set to deterministic in the Off-Policy case while eval-
uating, the agent had a narrowed down movement and learned a good policy. He was
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still close to walls and not narrow enough to achieve higher scores, but still learned to
get to the goal reasonably well.

TQC, with the same ent_coef as the best trial in SAC, explored a lot on every stage
of training and learned a similarly narrow path to the goal. The higher score that it
achieved must mean that the agent drove faster and more often to the goal, with a
generally better movement then SAC, but due to the learned entropy with a similar
noisy and big footprint.

The On-Policy algorithms explore directly through the stochasticity of their policy and
their exploration views are very similar. We can see the improvement of the policy directly
on each time window, by the narrowed down footprint over time, and on the evaluation,
the policy finds a very narrow footprint in reaching the goal for both algorithms. This,
however, highlights the problem of the On-Policy algorithms at the same time. If an
agent’s policy changes for the worse, it could get stuck in a bad policy, in our case on a
narrow path, that only worsens the policy with bad collected data that does not contain
enough information to improve the policy. A problem stated in section 4.2.3. On the
other hand, on a good trained agent, we get the behavior we prefer, a narrow path to
the goal with a smaller footprint.

The Off-Policy algorithms, especially due to the entropy coefficient, keep a bigger explo-
ration footprint while training and evaluating.

6.3 Verdict

Starting with our optimization, we can see that Optuna improved the hyperparameters
over time with multiple trials. We found a good parameter set with our more limited
range of hyperparameters and showed that they are suitable in finding a good set to solve
our task. Our way of reevaluating the best trials shows how much a run to run variance
can impact the results and why this part of our work was important to further analyze the
algorithms performances and behavior. The authors of the algorithms papers claimed a
lot of contradictory results, where this big run to run variance could have impacted their
results by a lot. We see that PPO for example had the best single run in the re-evaluation
of trial 44, while the rest of runs in that trial were not as close as good. Putting them
in perspective with our own controlled environment and giving each algorithm the same
amount of training time to find a suitable set, with averaging over multiple runs, we

60



6 Discussion

build an even playing field that gave us a more clear perspective on their performance
and behavior.

Looking at our predictions made in section 4.3, we see that they were mostly confirmed
by our results. TD3 did not learn a good policy in our environment, where the other Off-
Policy algorithms did. TQC was a very good upgrade of SAC through the introduction
of distributional reinforcement learning, as claimed by the authors of TQC [18], and
achieved a better performance. They both learned very sample efficient, especially TQC,
that learned very fast and achieved an average score as high as the Off-Policy algorithms
twice as fast while training. Their performance while training was not as smooth as
the ones from the Off-Policy algorithms and stagnated. On the Off-Policy side, PPO
and TRPO learned a policy as good as TQC and had a stable, continuously improving
performance. We predicted a similar score from both of the Off-Policy algorithms, but
surprisingly, TRPO outperformed PPO and achieved the highest average score in the
evaluation.

Our final verdict is to use TQC for a sample inefficient continuous control task. It was
hard to tune for our environment, but given our approach, one should be able to find
a good parameter configuration to use it for a continuous control task, learning a good
policy fast. If the environment is sample efficient, one should use PPO or TRPO. Given
how important the network architecture is for TRPO in respect to PPO and how easy
PPO ’s hyperparameters are to tune, PPO proves to be the easier algorithm to use and
to get running for an environment. Looking at our results however, TRPO outperformed
every algorithm on average and should be considered and tested on a sample efficient
environment first. They learned slower than TQC, that even outperformed PPO on av-
erage, but the agents had a stable and continuously improving learning curve. Especially
the presented footprint showed us how they learned a policy that narrowed down the
path to the goal after each time-window for our continuous control problem and that
precise movement was more important than learning a policy fast.
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We finalize our work by providing a short summary, mention related work and discuss
future expansion.

7.1 Summary

Summing up the thesis, we created an environment to analyze continuous control al-
gorithms using ROS and Unity, where a robot has to drive to a goal while avoiding
walls, and validated it with OpenAI’s default Reinforcement Learning algorithm PPO.
We highlighted important characteristics of our environment, most notably that it is a
model-free continuous control task that needs precise actions from an agent to get re-
wards, has a high sample efficiency and a large state space. Based on that, we concluded
to analyze model-free actor critic algorithms, On-Policy and Off-Policy ones. For the
Off-Policy algorithms, we picked TD3, an algorithm that provides a robust implementa-
tion of Q-Learning for continuous control, SAC, that adds an entropy term to make the
learned policy stochastic, and TQC, that extends SAC by predicting the distribution of
possible Q-Values instead of a flat value. Our On-Policy actor-critic algorithms chosen
were TRPO, that uses a KL-divergence to not update the policy too much, and PPO,
that uses a clipping parameter to approximate the same behavior in a computational
faster and less complex way. Given their concepts, we predicted that TRPO and PPO
will have the most stable learning behavior and perform the best, but take more time to
learn a good policy then the Off-Policy algorithms. We predicted that SAC and TQC
will perform similarly to TRPO and PPO through the added entropy, but have a less sta-
ble learning curve, while TQC itself outperforms SAC through the addition of learning
a distribution. We predicted TD3 to perform the worst due to the lack of stochastic-
ity in the learned policy and how it explores. Our final prediction was to use PPO in
sample efficient continuous control environments and TQC in sample inefficient ones. To
answer these predictions and further analyze the behavior of the algorithms, we used the
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hyperparameter optimization framework Optuna. With the best parameter sets found in
our given time and parameter ranges, we reevaluated them with multiple runs, to reduce
the run to run variance, and picked the ones with the highest average score. We showed
an in depth view of the best runs performance from the picked trials of through the loss
functions of the actor and critics and plots from the rewards collected while training.
To give perspective about their exploration behavior, we added a 2D view of the train-
ing environment, containing their positions from training sections and the evaluation as
points. We discussed the hyperparameter optimization results first, that Optuna found
better parameters for each algorithm over time, proving it as a good way to search for
functioning parameters. Our results showed the importance of the parameters from each
algorithm as well, showing us that the discount factor played the biggest role in achieving
a good performance, especially for the On-Policy algorithms. The On-Policy algorithms
were the easiest to tune and continued to achieve better performance over the training
duration, while the Off-Policy algorithms were harder to tune, learned faster but had a
stagnation in their performance. Looking at the exploration footprints, SAC and TQC
had a noisy exploration through the entropy term and their evaluation footprint was still
relatively big in perspective to the On-Policy algorithms. The On-Policy algorithms had
a footprint that narrowed down per training step and a very narrow path to the goal
at the evaluation. As predicted, TD3 did not manage to perform good on our environ-
ment and learned a policy that just drove in circles avoiding walls and never reached
the goal. TQC learned a good policy twice as fast as the On-Policy algorithms and
outperformed SAC, making it the best choice for a sample inefficient environment. PPO
performed as good as TQC after training and was the easiest to tune. TRPO, in con-
trary to our predictions, outperformed every algorithm tested on average. Even though
TQC learned a good policy very fast, the smaller footprint was an important factor for
our environment, since the robot learned a more robust path to the goal, and makes the
On-Policy algorithms the better choice for our task and is our choice for sample efficient
environments.

7.2 Related Work

[10] presents a benchmark suite containing multiple continuous control tasks. They
benchmark multiple algorithms, containing TRPO, REINFORCE and DDPG.
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[16] addresses the problem of reproducibility in Reinforcement Learning benchmarks in
continuous control tasks. They address the problem of tuning hyperparameters, show
their significance, talk about noisy results of benchmarks, environment stochasticity and
general variance in Reinforcement Learning algorithms.

[15] investigates the challenges in reproducing results from the algorithms papers and
highlights the problems in experimental reporting differences and algorithm performance
variances, which makes it hard to value extensions of algorithms. They suggest guidelines
to make future deep Reinforcement Learning algorithm reports more reproducible and
comparable.

[11] is a case study about algorithm performance variances through implementation dif-
ferences. They mention how PPO runs better through code-level optimizations that are
missing in TRPO and is the reason why it performs better in the paper publication of
PPO.

7.3 Future Work

This work can be extended in multiple ways.

More algorithms can be added to analyze and compare them to the ones presented here.

One could run the hyperparameter optimization more exhaustively to find out if the
results change and test new parameter ranges.

We only had time for testing the algorithms on the modeled lab room with the set goal
and starting point, but many more start and goal points are already programmed in, as
well as two more maps. One could use them to analyze how generalized the algorithms
can learn if trained on multiple stages and tasks.

Adding dynamic objects into the environment would be interesting too, it makes it more
stochastic and thus more difficult for the algorithms to learn a good policy.

A very interesting extension would be to further analyze the algorithms by running them
on the real Loomo Segway and compare how the simulated training translates to the real
world. It is already possible to do so and tested, but not exhaustively enough, especially
in an analytic context, and could be a big point of interest for future expansion.
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Another interesting point would be to run the concepts presented here, with picking the
right algorithm and optimizing the parameters, on other environments, to see how this
approach translates to other tasks and how the results look like there.

Finally, what is missing in a lot of testing environments is a way of visualizing the
exploration as done in this work, so adding metrics to visualize them and to test how
similar the exploration behavior is would also be a good extension.
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