
BACHELOR THESIS
Nhat Khanh Huy Tran

Development of a Machine
Learning System for
Aspect-Based Sentiment
Analysis and Text
Summarization of Video Game
Reviews on Steam

FACULTY OF COMPUTER SCIENCE AND ENGINEERING
Department Computer Science

Fakultät Technik und Informatik
Department Informatik

HAMBURG UNIVERSITY
OF APPLIED SCIENCES
Hochschule für Angewandte
Wissenschaften Hamburg

Bachelor Thesis based on the examination and study regulations
for the degree programme
Bachelor of Science Angewandte Informatik
at the Department of Computer Science
of the Faculty of Engineering and Computer Science
of the University of Applied Sciences Hamburg

Supervising examiner: Prof. Dr. Marina Tropmann-Frick
Second examiner: Prof. Dr. Stefan Sarstedt

Day of delivery: 31. August 2021

Nhat Khanh Huy Tran

Development of a Machine Learning System for
Aspect-Based Sentiment Analysis and Text

Summarization of Video Game Reviews on Steam

Nhat Khanh Huy Tran

Title of Thesis

Development of a Machine Learning System for Aspect-Based Sentiment Analysis and
Text Summarization of Video Game Reviews on Steam

Keywords

Aspect Extraction, Sentiment Analysis, Aspect-Based Sentiment Analysis, Text Summa-
rization, Data Visualization, Video Games, User Reviews, Unsupervised Learning

Abstract
As video games’ popularity as a form of entertainment grows, so as the difficulties in
dealing with the enormous amount of reviews generated by users. NLP (Natural lan-
guage processing) techniques can be used to summarize the opinions in these reviews,
which helps developers immensely in understanding customers and supports potential
customers’ buying decisions. This study introduces SteamInsider - an unsupervised ma-
chine learning system for aspect-based sentiment analysis, text summarization, and data
visualization of video game reviews on Steama. The system uses a simple rule-based ap-
proach to extract the most important keywords from a game’s user reviews and cluster
them into groups, which are called aspects. We then perform sentiment analysis on each
sentence that belongs to an aspect using a pre-trained RNN-based sentiment classifier.
Based on reader’s preferences like aspects, polarities, time, etc., certain sentences are
extracted, and then clustering methods are used to identify salient opinions and generate
a customizable extractive summarization. A dashboard for visualizing the results and
further complex analyses is also created. The unsupervised system shows great useful-
ness and efficiency, which can potentially be applied to other domains like mobiles app,
product, hotel or restaurant reviews, etc.

ahttps://store.steampowered.com/

iii

Nhat Khanh Huy Tran

Thema der Arbeit

Entwicklung eines Machine-Learning-Systems zur aspektbasierten Sentiment-Analyse und
Textzusammenfassung von Videospiel-Rezensionen auf Steam

Stichworte
Aspektextraktion, Sentimentanalyse, Aspektbasierte Sentimentanalyse, Textzusammen-
fassung, Datenvisualisierung, Videospiele, Benutzerrezensionen, Unüberwachtes Lernen

Kurzzusammenfassung

Mit der Popularität von Videospielen als Unterhaltungsform wächst auch die
Schwierigkeit, mit der enormen Menge an Bewertungen umzugehen, die von den Nutzern
generiert werden. NLP-Techniken (Natural Language Processing) können verwendet
werden, um die Meinungen in diesen Bewertungen zusammenzufassen, was Entwick-
lern immens hilft, Kunden zu verstehen und Kaufentscheidungen potenzieller Kunden zu
unterstützen. Diese Studie stellt SteamInsider vor – ein unbeaufsichtigtes maschinelles
Lernsystem für aspektbasierte Stimmungsanalyse, Textzusammenfassung und Datenvisu-
alisierung von Videospielbewertungen auf Steama. Das System verwendet einen einfachen
regelbasierten Ansatz, um die wichtigsten Schlüsselwörter aus den Benutzerbewertungen
eines Spiels zu extrahieren und sie in Gruppen, die als Aspekte bezeichnet werden, zu
gruppieren. Wir führen dann eine Sentiment-Analyse für jeden Satz durch, der zu einem
Aspekt gehört, indem wir einen vortrainierten RNN-basierten Sentiment-Klassifikator
verwenden. Basierend auf den Vorlieben des Lesers wie Aspekten, Polaritäten, Zeit usw.
werden bestimmte Sätze extrahiert und dann werden Clustering-Methoden verwendet,
um auffallende Meinungen zu identifizieren und eine anpassbare extraktive Zusammen-
fassung zu generieren. Außerdem wird ein Dashboard zur Visualisierung der Ergebnisse
und weiteren komplexen Analysen erstellt. Das unbeaufsichtigte System zeigt eine große
Nützlichkeit und Effizienz, die möglicherweise auf andere Domänen wie mobile Apps,
Produkt-, Hotel- oder Restaurantbewertungen usw. angewendet werden kann.

ahttps://store.steampowered.com/

iv

Contents

List of Figures vii

1 Introduction 1
1.1 Opinion summarization of video games reviews 1
1.2 Transfer learning in natural language processing 2
1.3 Objectives . 4
1.4 Structure . 4

2 Conceptual backgrounds 6
2.1 Opinion summarization . 6
2.2 Aspect-based sentiment analysis . 8
2.3 Text summarization . 10
2.4 Data visualization . 11
2.5 Related work . 13

3 Data and system overview 15
3.1 The Steam platform . 15
3.2 Reviews scraping . 16
3.3 System overview . 17
3.4 Database model . 18

4 Methods 22
4.1 Review preprocessing . 22
4.2 Aspect extraction . 26

4.2.1 Keyword extraction . 27
4.2.2 Keywords embedding . 29
4.2.3 Keywords clustering . 31

4.3 Sentiment analysis . 34

v

Contents

4.4 Text summarization . 36
4.4.1 Sentences embedding . 36
4.4.2 Sentence clustering . 36

4.5 Data visualization . 38

5 Experiments and evaluation 47
5.1 Dataset . 47
5.2 Aspect extraction . 47
5.3 Sentiment analysis . 51
5.4 Text summarization . 52

6 Conclusion 54
6.1 Summary . 54
6.2 Future work . 55

Bibliography 58

Declaration 62

vi

List of Figures

1.1 The process of transfer learning [29]. 2
1.2 Classification of transfer learning types [29]. 3
1.3 The general procedure of sequential transfer learning [29]. 3

2.1 Overview of the game The Witcher 3: Wild Hunt on Steam. 7
2.2 The 3 subtasks of aspect-based sentiment analysis in a sample sentence of

a Stream review . 8
2.3 Different text summarization types based on various factors [16] 10
2.4 Steam’s customer reviews data visualization 11

3.1 A positive and a negative review on Steam 16
3.2 System overview . 17
3.3 ER Diagram of our system . 19
3.4 Table GAMES: Games in our system. 20
3.5 Table REVIEWS: Reviews of each game. A review can belong to only one

game and have multiple sentences. 20
3.6 Table SENTS: Sentences of each review. A sentence can belong to only

one review and have multiple keywords. 20
3.7 Table KWS: Keywords (or keyphrases). A keyword can belong to only

one cluster, but multiple sentences. 20
3.8 Table KWS_SENTS: A bridge table to model the many-to-many relation-

ship between sentences and keywords. 21
3.9 Table CLUSTERS: Clusters (or aspects) of keywords. A cluster can have

multiple keywords. 21

4.1 Reviews preprocessing pipeline . 23
4.2 Some available markup tags in Steam . 23
4.3 Language processing pipeline in spaCy . 26
4.4 POS tagging accuracy (%) of trained pipelines for English in spaCy 26

vii

List of Figures

4.5 Regular expression for extracting noun chunks from POS tags strings . . . 28
4.6 SBERT architecture with classification objective function, e.g., for fine-

tuning on SNLI dataset. The two BERT networks have tied weights
(siamese network structure) . 30

4.7 A dendrogram (right) representing nested clusters (left) [11] 32
4.8 Overview page of the dashboard . 39
4.9 Game selector . 40
4.10 Aspects selector . 40
4.11 Timeline selector . 40
4.12 Number of mentions selector . 41
4.13 Mentions overview . 41
4.14 Reviews overview . 41
4.15 Aspects sentiment chart . 42
4.16 Summary . 42
4.17 Overview page of the dashboard . 44
4.18 Mentions decomposition tree . 44
4.19 Mentions and reviews list . 45

5.1 List of games used in our study and additional information about them . . 48
5.2 Using the mentions decomposition tree to check the quality of our aspect

extraction . 49

viii

1 Introduction

1.1 Opinion summarization of video games reviews

Gaming is currently the world’s favorite form of entertainment, as the gaming industry
generated more revenue than TV, movies, and music did last year. The gaming sector is
estimated to be worth $159.3 billion in 2020, which is a sizeable increase of 8.5% from
2019. Current forecasts estimate the video games industry to be worth $268.8 billion by
2025. [8]

As the popularity of video games grows, so as the competition between video game
companies. Publishers and developers often struggle to find out what gamers really
want and how to best cater to their needs and interests. Thus, it is important for them
to understand the strengths and weaknesses of not only their own products but also
of the most successful titles. Additionally, the opinions of other people about a game
can significantly affect potential customers’ buying decisions. Video games reviews offer
user-generated data that can be processed and studied in order to identify both people’s
concerns and the user-perceived quality of the game. [25]

A number of video game retailers, distributors (Steam, GOG1, etc.) offer a wide selection
of games, spanning various genres. By visiting such stores, not only are people able to
look through a game’s description and its features, delve into the reviews of the game
provided by other users and experts, but they can also contribute their own reviews. As
some of the most popular titles can have millions of reviews, manually going through all
of them and extracting the relevant information is an insurmountable task. Thus, the
large scale of information poses the need and challenge of building a system that can
automatically summarize users’ opinions in those reviews.

1https://www.gog.com/

1

1 Introduction

Figure 1.1: The process of transfer learning [29].

1.2 Transfer learning in natural language processing

Acquiring enough high-quality labeled data is crucial for training good machine learning
models, but it is costly and time-consuming, especially in the realm of NLP, where most
collected data is unstructured and highly domain-specific. This leads us to transfer
learning, which is a method that reuses a pre-trained model developed for a task and
applies it to another task. The process of transfer learning is illustrated in figure 1.1.

Classification of transfer learning types

In recent years since the introduction of BERT (Bidirectional Encoder Representations
from Transformers) [12] by researchers at Google AI Language in 2018, transfer learn-
ing in the form of pretrained language models has become ubiquitous in NLP and has
achieved state-of-the-art results on a wide range of tasks. However, transfer learning
is not recent phenomenon in NLP as lots of approaches for transfer learning have been
studied since the mid 2000s. [29] There are different types of transfer learning common in
current NLP. Differences between approaches are shown in figure 1.2. They are classified
based on:

• Whether the source and target settings deal with the same task.

• The nature of the source and target domains.

2

1 Introduction

Figure 1.2: Classification of transfer learning types [29].

Figure 1.3: The general procedure of sequential transfer learning [29].

3

1 Introduction

• The order in which the tasks are learned.

Sequential transfer learning

The biggest breakthroughs so far in the field of NLP use sequential transfer learning.
With this type of learning, we first pre-train representations on large corpora of unlabelled
domain-general text such as the entire Wikipedia, books, etc. using our method of choice
and then to adapt these representations to a supervised target task such as classification,
sequence labeling, or Q&A, etc. using a much smaller set of labeled data. The general
procedure of sequential transfer learning can be found in figure 1.3.

Throughout our study, we will use be using these general pre-trained language models.
This type of model is robust because it allows us to perform different tasks such as aspect-
based sentiment analysis and text summarization without the need for labeled data or
training our models and thus makes our system unsupervised and highly applicable to
other domains.

1.3 Objectives

The study proposes a machine learning system for automatic summarization of opinions
found in users’ video games reviews on Steam. The objectives of the thesis are:

• To gather a large number of reviews from several different games on Steam for
experiments and evaluation.

• To utilize and combine existing unsupervised methods to perform aspect-based
sentiment analysis and text summarization of the reviews.

• To build a dashboard that enables beautiful visualization of the results and further
analyses.

1.4 Structure

The study is split into six chapters:

• Chapter 1 (this chapter) gives a brief introduction to the problem of opinion sum-
marization of video game reviews and why transfer learning methods are important.

4

1 Introduction

• Chapter 2 presents the conceptual backgrounds for the core building blocks of
our system, which are aspect-based sentiment analysis, text summarization, and
data visualization. Related works and state-of-the-art methods are also discussed
in comparison with our methods.

• Chapter 3 gives an overview of our system, its core building blocks, their inspira-
tion and motivation are explained. The process of gathering the data as well as a
database model storing the reviews collected are presented.

• Chapter 4 goes into details of our methods for doing aspect extraction, sentiment
analysis, text summarization, and data visualization.

• Chapter 5 presents the experiments and evaluation of our system.

• Chapter 6 summarizes all the work done, discusses the potential of the proposed
system, techniques, and future work that can be done on top of this study.

5

2 Conceptual backgrounds

2.1 Opinion summarization

Opinions can bow be found practically everywhere from social networks like Facebook,
Twitter to news portals, e-commerce sites, etc. thanks to the explosive growth of the
web over the last two decades. While these opinions are supposed to be helpful, the vast
availability of such opinions becomes overwhelming to users as there is just too much to
digest. Consider a user looking to buy a game on Steam. Figure 2.1 shows an overview
of the game The Witcher 3: Wild Hunt1 on Steam. As one of the most successful video
games of all time, the game accumulates nearly half a million reviews in 28 different
languages on Steam ever since its release. Other more popular titles can have millions
of reviews. Such overwhelming amounts of information make summarization of the web
very critical.

Over the last decade, this special task of summarizing opinions has stirred tremendous
interest amongst the NLP communities. Opinions mainly include opinionated text data
such as reviews, tweets, Facebook posts, etc. Opinion summarization attempts to gener-
ate a concise and digestible summary of a large number of opinions. [19]

The simplest form of an opinion summary is the result of sentiment prediction, which
is the task of identifying whether the underlying sentiment of a piece of text is positive,
negative, or neutral, and then aggregating the sentiment scores. The sentiment can
sometimes be given directly by the user without us having to predict. On the Steam
platform, in addition to writing the review, the user is also asked to provide their overall
feeling about the game: Recommended (i.e., a positive review), or Not Recommended
(i.e., a negative review). In figure 2.1, as the number of positive reviews outweighs
negative ones heavily, an overall sentiment of Overwhelmingly Positive for both recent

1https://store.steampowered.com/app/292030/The_Witcher_3_Wild_Hunt/

6

2 Conceptual backgrounds

Figure 2.1: Overview of the game The Witcher 3: Wild Hunt on Steam.

and all reviews, which acts as the simplest form of summary for users’ perceptions about
the game, is shown.

Beyond such summaries, the newer generation of opinion summaries includes structured
summaries that provide a well-organized breakdown by aspects, various formats of textual
summaries, and temporal visualization. The different formats of summaries complement
one another by providing different levels of understanding. [19] For example, sentiment
prediction on reviews of a game can give a very general notion of what the users feel
about the game. If the user needs more specifics, then the aspect-based summaries or
textual summaries may be more useful. Regardless of the summary formats, the goal of
opinion summarization is to help users digest the vast availability of opinions in an easy
manner. The approaches utilized to address this task vary greatly and touch different
intertwined areas of research including language modeling, text classification, information
extraction, text summarization, topic modeling, data visualization, and so on. Some of
these approaches rely on simple heuristics, while others use robust machine learning or
deep learning models.

7

2 Conceptual backgrounds

Figure 2.2: The 3 subtasks of aspect-based sentiment analysis in a sample sentence of a
Stream review

In the following sections, we will go into detail about the 3 core related research areas used
to build our opinion summarization system, which are aspect-based sentiment analysis,
text summarization, and data visualization.

2.2 Aspect-based sentiment analysis

Rather than simply classifying user reviews as positive, negative, or neutral, over a period
of time, sentiment analysis has evolved into a more sophisticated paradigm which is called
aspect-based sentiment analysis. This task is quite new as it has just been formally
defined since 2014 in SemEval2 (International Workshop on Semantic Evaluation) [27].
Figure 2.2 illustrates the 3 subtasks of aspect-based sentiment analysis on a sample
sentence of a Steam review. Those 3 subtasks are:

• Opinion target extraction: We extract the opinion target, also referred to as
aspect term, from the sentence, in this case, soundtracks, graphics.

• Aspect category detection: Given some predefined categories, the task is to
identify the categories of the aspect terms. The aspect of soundtracks is sound and
the aspect of graphics is graphics.

2https://semeval.github.io/

8

2 Conceptual backgrounds

• Sentiment polarity identification: In this task, we try to identify the sentiment
of an aspect term, either positive or negative. In our example, both aspect terms
are identified as positive.

For this kind of task, one can simply fine-tune a pre-trained language model such as
BERT using labeled training data to solve the 3 subtasks to obtain the triples (opinion
target, aspect category, and polarity) as shown in figure 2.2. Recent results showed
that BERT with fine-tuning achieved state-of-the-art performance in many extraction
tasks, outperforming previous customized neural network approaches. [31] However, a
significant amount of high-quality labeled training data is still required for this fine-
tuning approach to work. Labeled training data can be obtained by using crowdsourcing
platforms such as Amazon Mechanical Turk, MicroWorkers, ClickWorker, MicroTask,
Scale, etc. to employ data labeling workers. But this also introduces new problems as
preparing crowdsourcing task, launching and post-processing the results are usually very
time-consuming. The process often needs to be repeated a few times to make necessary
adjustments. Malicious crowdworkers is also a problem that needs to be addressed to
ensure the quality of our data. Labels for a sentence must be collected several times
to reduce possible errors and the results have to be cleaned before they are usable for
downstream tasks. Even worse, this expensive labeling process must be repeated to train
a new model from a different domain [31].

For our study, reviews from different genres of games or even different games often have
really diverse sets of possible aspect categories. So trying to predefine commonly found
aspects in video games such as gameplay, story, sound, graphics, combat, etc. for all
games may not be the best idea as we will miss lots of aspects. Games always contain
much more distinguished features and mechanics than other domains such as hotels,
restaurants, smartphones, movies, etc. Even if we manage to create a high-quality labeled
dataset for a set of games, there is little chance that the models trained on such dataset
will work on unseen games.

Motivated by the aforementioned issues, we investigate the problem of extracting aspects
and their corresponding sentences without the need for labeled data or predefined aspects.
This leads us to use a simple rule-based approach to extract certain keywords from
sentences. Then clustering method helps us group similar keywords together to form
aspects. The sentiment classification, which is also unsupervised, is performed on all
sentences in each aspect.

9

2 Conceptual backgrounds

Figure 2.3: Different text summarization types based on various factors [16]

2.3 Text summarization

Text summarization refers to the task of creating a summary of a longer piece of text.
The objective of this task is to create a coherent summary that captures the key ideas
in the text [33]. It is useful to do a quick read of large documents, store only relevant
information, and facilitate better retrieval of information at the end.

There are various types of text summarization, which are shown in figure 2.3 together
with the factors determining summarization type. The important ones to understand
are:

• Single-document versus multi-document summarization: In single-document
summarization, the summary is generated from a single document, whereas in
multi-document summarization, many documents are used for generating a sum-
mary. Redundancy is one of the biggest problems in summarizing multiple docu-
ments. [16]

• Extractive and abstractive: Extractive summarization creates a summary by
selecting a few relevant sentences from the original document, whereas abstractive
summarization uses words and phrases different from the ones occurring in the
source document. Due to its simplicity and feasibility, extractive summarization
has become a standard in text summarization, whereas abstractive summarization
is more of a research topic than a practical application.

10

2 Conceptual backgrounds

Figure 2.4: Steam’s customer reviews data visualization

• Generic and query-focused: Query-focused summarization refers to creating the
summary of the text depending on the user query, whereas generic summarization
creates a general summary.

In our study, once we derive all the aspects and tag specific sentences with them from
the previous step, it is possible to group the sentences by aspects. Given the huge
volume of video game reviews on Steam, there will still be lots of sentences under an
aspect. We solve this problem by using clustering methods to pick and choose the most
salient sentences for each aspect. And we intend to generate summaries based only
on certain aspects that the users are interested in, which means that the type of text
summarization we perform is multi-document, extractive, query-based, and unsupervised
summarization.

2.4 Data visualization

Data visualization is the presentation of data in a pictorial or graphical format. [30]
Seeing analytics presented visually makes it easier for decision-makers to understand
difficult concepts or discover new patterns. Beyond static charts and graphs, interactivity
can be utilized to help us drill down into visuals for more details and dynamically change
what data we see and how it is processed. This greatly enhances user experience as it not

11

2 Conceptual backgrounds

only allows a much greater amount of data to be presented in space but also facilitates
more in-depth and complex analytics comparing to static visualization.

Data visualization is important because of the way the human brain processes informa-
tion. It is much simpler to visualize large amounts of complex data using charts or graphs
instead of poring over spreadsheets or reports. Data visualization is a quick, easy way to
convey concepts in a universal manner – and we can experiment with different scenarios
by making slight adjustments.

Here is how data visualization can help us make sense of video game reviews [30]:

• Comprehend reviews quickly: By using graphical representations of reviews
information, we are able to see large amounts of data in clear, cohesive ways –
and draw conclusions from that information. And since it is significantly faster to
analyze reviews in graphical format (as opposed to reading through random reviews
in their plain text format), we can address problems or answer questions in a more
timely manner.

• Pinpoint emerging trends: Using data visualization to discover trends – both
in our own game or in the market – can give us an edge over the competition, and
ultimately affect the bottom line. It is easy to spot outliers that affect the game
quality and address issues before they become bigger problems.

• Identify relationships and patterns: Even extensive amounts of complicated
reviews start to make sense when presented graphically. We can recognize pa-
rameters that are highly correlated. Some of the correlations will be obvious, but
others will not. Identifying those relationships helps us focus on areas most likely
to influence our most important goals.

• Communicate the story to others: Once we have uncovered new insights from
visual analytics, the next step is to communicate those insights to others. Using
charts, graphs or other visually impactful representations of data is important in
this step because it is engaging and gets the message across quickly.

The Steam platform does provide us with a simple interactive visualization of customer
reviews as seen in figure 2.4. Two vertical bar charts show the number of positive and
negative reviews of all and also recent (last 30 days) reviews respectively. A time slider
can be used to focus on a specific timespan. We can also tweak lots of different filters
such as review type, purchase type, language, playtime, etc., or click directly on the

12

2 Conceptual backgrounds

graphs to extract a subset of reviews from the whole. Our study takes this visualization
a step further and introduces new elements such as aspect-based sentiment analysis, text
summarization, mentions analysis, etc.

2.5 Related work

The importance of analyzing user reviews has drawn a great deal of interest among
researchers. There have been a plethora of studies utilizing various techniques for opinion
summarization of user reviews from different domains such as Amazon product reviews,
IMDB movie reviews, hotel, and restaurant reviews, etc.

Despite the widespread appeal of video games, there has been little discussion on this
particular domain. [37] proposes an aspect-based summarization system for Steam re-
views. They employ a modified double propagation (DP) algorithm for extracting aspect-
sentiment word pairs. Following this, they use a seed list and word similarity to categorize
aspect terms into groups, thus producing an aspect-based summary. [25] tries to solve
the problem of video game reviews summarization by applying k-means clustering in
order to identify groups of similar sentences. They then utilize word lists with the aim
of mapping the produced clusters to predefined game aspects, like graphics, gameplay.
Subsequently, they apply sentiment analysis using a rule-based method in order to ex-
tract the sentiments that pervade each cluster. As discussed in previous sections, the
results of these studies are not so good because they rely heavily on these seed list and
predefined aspects. And as the number of topics discussed in video games is so vast and
different, it is infeasible to use only k-means and seed list to extract all the aspects from
the reviews.

One of the simpler approaches to the task of opinion summarization is general-purpose
summarization [7, 24], which tries to optimize the salience of the overall generated con-
tent. Aspect-based summarization is more challenging as it is aspect-centric and focuses
on maximizing the diversity of opinions being discovered in the final summary. Super-
vised methods for opinion summarization such as [32] depend on large annotated dataset
of document-summary pairs to train their models, which makes them difficult to adapt
across different domains [5]. Motivated by recent works such as [3, 38], we propose an
unsupervised extractive summarization framework built on top of an unsupervised as-
pect extraction module and unsupervised sentiment analysis module, which makes our
approach applicable to other domains.

13

2 Conceptual backgrounds

Video game reviews are posted online to capture a wide range of human emotions owing
to reviewers’ social and cultural backgrounds. State-of-the-art methods for opinion sum-
marization [5, 1] do not allow for customizable while generating summaries from such
a diverse range of opinionated text. We, however, argue that readers should be able
to customize the shape and content of such summaries to suit their varying interests.
To our knowledge, only [2, 15] have motivated the need for controllable summarization.
However, both of them are supervised techniques and require gold-standard summaries
for training their models. Our proposed framework is unsupervised and extractive in na-
ture, which additionally lets our readers control several attributes of the summary such
as its length, specific aspects of interest it must focus on, timespan, sentiments, etc.

Many studies just stop at producing a framework for opinion summarization. Our study
goes one step further and tries to build a visualization tool for the results generated.
Many commercial or academic summary visualization systems [17, 21] have been built
for generating and exploring summaries. While these summary visualization systems are
effective for reducing redundancy that occurs in reviews, there are two major limitations.
First, the generated summaries are mostly static and the granularity of the summary can-
not be tailored to user needs. For example, summaries that are generated by aggregating
positive and/or negative sentiments over sound may be too general for users who are only
interested in information about voice acting. At the same time, it is also too detailed
for users who simply wish to know the overall aggregated rating. Second, most existing
summarization systems cannot explain the summary that is generated or allow users to
explore different aspects of the generated summary. To address these limitations, we
develop a visualization prototype that can:

• Generate extractive summaries according to user’s preferences.

• Enable users to interactively explore different aspects, keywords, sentiments, etc.
by defining their own level of desired granularity.

14

3 Data and system overview

3.1 The Steam platform

Steam is a digital game distribution platform, developed by Valve Corporation. Steam
is the largest digital distribution platform for PC gaming, with over 10,000 games [10]
released on the site and over 120 million monthly active players in 2020 [9]. Steam offers
digital rights management (DRM), multiplayer gaming, and social networking services,
through two major components of the Steam platform: the Steam Store 1, and the Steam
Community 2.

Games can be purchased directly from the Steam Store or from third-party vendors and
then activated through the Steam platform, which are playable for a user after logging
in on Steam using the Steam client. The Steam client will verify ownership of the game
and any available updates will automatically be installed. Install the latest update is
required in order to play a game through Steam.

In addition, Steam Community offers users social network-like features such as friend
lists. Game developers and journalists can publish news updates for games on so-called
channels. In general, although it is not compulsory for developers to post announcements
about game updates to one or more channels (e.g., to the Product Update channel),
developers often do post news updates about their games to keep users informed about
the latest news about their games. [20]

The Steam Community also permits users to post reviews of games once they played
them. Different from other popular application distribution platforms which use a 5-
star rating system for reviews, players are asked to provide their overall feeling about
the game: Recommended (i.e., a positive review), or Not Recommended (i.e., a negative
review). The number of playing hours of the reviewed game, the number of played games,

1https://store.steampowered.com/
2https://steamcommunity.com/

15

3 Data and system overview

Figure 3.2: System overview

Reviews in English accounts for nearly 50% of the total number of reviews for every
game. In this study, we choose to focus only on English reviews as they are available
in abundance compared to other languages and most of the pre-trained models we use
are trained using English data. When posting a review, the user has to provide the
language the review is written in. As this is not checked for by the system, a few
reviews in unwanted languages can still slip in, which must be addressed later during our
preprocessing step.

3.3 System overview

This section gives an overview of the entire system and formally defines the problem. We
will go into a more in-depth discussion of each component in chapter 4.

The pipeline of our system in Figure 3.2 works as follows:

• Reviews scraping: Collect the reviews of a game using the reviews scraper.

• Reviews preprocessing: Preprocess the reviews and split each of them into
sentences. These sentences also need to be cleansed and filtered as some contain
inappropriate symbols or structures which will decrease the effectiveness of our
system in the later steps.

17

3 Data and system overview

• Aspect extraction: Use a heuristic-based approach that utilizes part-of-speech
(POS) tagging and certain rules to extract keywords (or keyphrases). We then com-
pute the sentence embeddings of each extracted keyword using SBERT (Sentence-
BERT) [28], and apply agglomerative clustering to cluster similar ones together into
groups, which are called aspects. Keywords are also extracted together with the
sentences in which they are found so these sentences can be used in the subsequent
steps.

The two following components come after aspect extraction and can be performed simul-
taneously:

• Sentiment analysis: Use a pre-trained RNN-based sentiment classifier to classify
the sentences found in the previous step as positive, negative, or neutral.

• Text summarization: For each aspect, apply SBERT to compute the sentence
embeddings and use a combination of HDBSCAN and agglomerative clustering
to cluster sentences. We then find the sentence lying closest to the center of each
cluster and call it an opinion. We rank the opinions by the size of their clusters and
pick out the 5 most popular opinions. We assume that the bigger the cluster, the
more popular an opinion is. And thus for each extracted aspect from the previous
step, we have a list of the 5 most important opinions, which will act as a summary
for that aspect.

The last step utilizes the output from the previous steps, which is saved into an SQL
database model.

• Data visualization: Connect Power BI to our database model and put together
interactive dashboards that help us visualize and perform further complex analysis
with time, aspects, keywords, etc.

3.4 Database model

A good database design is crucial in ensuring consistent data, elimination of data redun-
dancy, efficient execution of queries, and high-performance application. Taking the time
to design a database saves time and frustration during development, and a well-designed
database ensures ease of access and retrieval of information.

18

3 Data and system overview

Figure 3.3: ER Diagram of our system

19

3 Data and system overview

Figure 3.4: Table GAMES: Games in our system.

Figure 3.5: Table REVIEWS: Reviews of each game. A review can belong to only one
game and have multiple sentences.

Figure 3.6: Table SENTS: Sentences of each review. A sentence can belong to only one
review and have multiple keywords.

Figure 3.7: Table KWS: Keywords (or keyphrases). A keyword can belong to only one
cluster, but multiple sentences.

20

3 Data and system overview

Figure 3.8: Table KWS_SENTS: A bridge table to model the many-to-many relationship
between sentences and keywords.

Figure 3.9: Table CLUSTERS: Clusters (or aspects) of keywords. A cluster can have
multiple keywords.

The database model is a vital component in our machine learning system. We collect,
store and update the data in our database at every aforementioned step. For creating
our database, we use SQLite, a popular SQL database engine. Figure 3.3 shows the
entity-relationship diagram of our entire system. Detailed definition of each table can be
found in figures 3.4, 3.5, 3.6, 3.7, 3.8, 3.9.

21

4 Methods

4.1 Review preprocessing

It is common knowledge that words that appear in reviews often have many structural
variants. Thus, before any NLP task can be applied to the reviews, data preprocessing
techniques must be utilized. Such preprocessing techniques are essential in order to
convert our initial reviews into a suitable format which will increase the effectiveness of
any NLP system. [25] In our approach, we build a pipeline to preprocess the reviews, split
them into sentences, and apply a set of cleansing operations to make sure each sentence
that goes into the next steps is as structured and meaningful as possible. Figure 4.1
shows the entire pipeline.

There are 2 sets of operations. The first set of operations is used on the original reviews
that come directly from Steam. The reviews need to be cleaned extensively so that the
sentence boundary detection of the sentence tokenization can work properly:

• Remove short reviews: Steam reviews have a length requirement of only one
character so there are lots of short and meaningless reviews such as "Yes.", "Great.",
"Good game.", "Bad.", "!", etc. which contribute nothing to our aspect-based sen-
timent analysis or text summarization. There are also spam reviews such as "So
goooooooooooooooooooooooood!!", "Good good good good good good good good good",
etc. We remove any review where the number of unique tokens is less than 3.

• Remove Steam markup tags: Steam allows the users to use markup tags to
add formatting to the text of the reviews. An example of a couple of tags can be
found in figure 4.2. These tags do not add any value to the data and need to be
removed.

22

4 Methods

Figure 4.1: Reviews preprocessing pipeline

Figure 4.2: Some available markup tags in Steam

23

4 Methods

• Remove HTML tags: HTML tags sometimes appear in the reviews. These tags
do not add any value to the data and only enable proper browser rendering. We
remove them all.

• Remove URLs: URLs (Uniform Resource Locators) are references to a location
on the web, but do not provide any additional information. We remove them all.

• Normalize single quotes: The single quote (’) can sometimes be found in non-
ASCII versions in the reviews and cannot be interpreted by most of our models
in the later steps. Single quotes are important than double quotes because they
appear in lots of negative contractions such as don’t, doesn’t, won’t, wouldn’t, etc.
which our models must interpret. So we replace them with the normal ones.

• Remove non-ASCII characters: As mentioned in section 3.2, reviews in lan-
guages other than English can sometimes slip in. Languages that use non-ASCII
characters such as Thai, Chinese, Arabic, etc. will be removed cleanly in this step.
Whereas languages using all or mostly ASCII characters such as Spanish, German,
etc. can still be there in our data. But these cases are rare and acceptable. Non-
ASCII characters such as accented, musical characters, mathematical characters,
etc. cannot be interpreted by most of our models so we remove them.

• Remove ANSI escape sequences: We remove all ANSI escape sequences as
they contribute nothing to our data.

• Add missing punctuation: Users do not always put a period at the end of their
reviews. This greatly affects sentence tokenization as it depends on punctuation
for sentence boundary detection. We put a period at the end of a review in case it
is missing.

• Remove listing colons: Users sometimes use the colon together with a new line
to start listing things. The sentence tokenization cannot detect the first item in
the list as a separate sentence. So we replace the colon and the newline character
with a period. This helps the model detect the sentence boundary better.

• Do sentence tokenization: For splitting a review in sentences, we use spaCy1’s
en_core_web_lg2 with only tok2vec and parser enabled to perform the to-
kenization faster. A transformer model en_core_web_trf3 can also be used for

1https://spacy.io/
2https://spacy.io/models/en#en_core_web_lg
3https://spacy.io/models/en#en_core_web_trf

24

4 Methods

a small gain in accuracy, but the dependency parsing is so slow compared to the
other model that it is not worth it.

The second set of operations is used to clean up the sentences. This is crucial as some
sentences are still poorly structured, which will decrease the effectiveness of our system
especially during sentiment analysis and text summarization:

• Remove numbered bullet points: Reviewers sometimes use numbered bullet
points to list things out. These sentences starting with numbered bullet points can
create confusion for users when a sentence is shown with a random numbered bullet
point during summary and also decrease the accuracy of aspect extraction. So we
must remove them.

• Remove leading symbols: A sentence can sometimes start with special charac-
ters such as +, -, >, etc. These are the results when reviewers try to list things
out. We remove these unnecessary leading symbols.

• Uppercase first letter: The sentence tokenization does not always split a sen-
tence at period. It is more robust and knows when to split sentences at conjunc-
tions or other types of punctuation. This causes some sentences not to start with
an uppercase letter. Also when trying to list things out, reviewers do not always
capitalize the first letter of each bullet point. Some reviewers do not even care
about capitalization. We capitalize the first letter of a sentence.

• Remove multiple whitespace characters: Commonly found whitespace char-
acters such as the space (\s), the tab (\t), the new line (\n) and the carriage return
(\r) can appear consecutively multiple times in a sentence and create unnecessary
whitespaces. We replace them with a single whitespace.

• Remove short and poorly structured sentences: At the last preprocessing
step, to make sure that most of the sentences which go into our system are mean-
ingful and nicely structured, we remove all sentences that have less than 3 unique
tokens or an uneven amount of brackets, double quotes as these tend to be mistakes
during sentence tokenization and make the sentences hard to read or interpret.

25

4 Methods

Figure 4.3: Language processing pipeline in spaCy

Figure 4.4: POS tagging accuracy (%) of trained pipelines for English in spaCy

4.2 Aspect extraction

In this step, we attempt to extract the aspects of a game that are mainly discussed by the
reviewers. This can be quite challenging as video game aspects can be either explicitly
or implicitly mentioned in a review text. For example, the sentence "Easily my favorite
game with realistic graphics." clearly expresses an opinion about the aspect graphics. On
the contrary, the sentence "The grenade explosions look so fake." does not mention the
word graphics but it obviously refers to the graphics of the game, or possibly the physics
engine. [25] Reviewers can sometimes

In our study, we use a heuristic-based approach that uses POS tagging and certain rules
to extract keywords or keyphrases. The difference between keywords and keyphrases
is that keywords are single words, while keyphrases are made up of a few words. But
throughout this paper, we will refer to both of them as keywords. We then represent
each keyword using SBERT and apply agglomerative clustering to cluster similar ones
together into groups, which are called aspects. Keywords are also extracted together with
the sentences in which they are found so these sentences can be used in the subsequent
steps.

26

4 Methods

4.2.1 Keyword extraction

POS tagging

For this task, we employ spaCy4, a free and powerful open-source library for natural
language processing in Python. In order to perform POS tagging, spaCy needs a trained
pipeline that supports a tagger. spaCy first tokenizes the text to produce a Doc object.
The Doc is then processed in a processing pipeline. A typical language processing pipeline
in spaCy can be seen in figure 4.3. It normally includes a tagger, a lemmatizer, a parser,
and an entity recognizer. A trained component includes binary data that is produced by
showing a system enough examples for it to make predictions that generalize across the
language – for example, a word following “the” in English is most likely a noun. [14] The
trained pipeline and its statistical models enable spaCy to make predictions of which tag
most likely applies in this context.

In spaCy, there are several trained pipelines available for English. The more complicated
they are, the more accurate they can perform a task, but they are also a lot less efficient
than the simpler ones. The accuracy of different trained pipelines when doing POS tag-
ging can be found in figure 4.4. en_core_web_trf5 is an English transformer pipeline
(RoBERTa-based) [22]. Even though the difference is only 1% more in comparison to
other pipelines, the transformer-based pipeline actually makes a big difference in accu-
racy when performing POS tagging with the preprocessed sentences in our study. When
the grammar structures are complicated, which often are in the case of informal text
from users, the pipeline correctly identifies the correct POS tags where others fail.

Keyword rules

In essence, we try to extract noun (or pronoun) chunks from a sentence. We define a noun
chunk as a noun plus the adjectives that come before and describe them. For example,
big blue stone or amazing addicting gameplay, etc. An attempt to define noun chunks
more broadly to include more noun phrases like a lot of games (of is included), good
game from the sentence the game is good, etc. has not been successful as the grammar
structure is just too complicated to be defined by just using POS tagging. In theory,
this approach can work with the help of dependency parsing and predefined rules. But
they also introduce new problems as dependency parsing is much more computationally
expensive than POS tagging and finding the rules that can capture such complexity of

4https://spacy.io/
5https://spacy.io/models/en#en_core_web_trf

27

4 Methods

Figure 4.5: Regular expression for extracting noun chunks from POS tags strings

natural language, especially informal ones like our user reviews can prove to be a daunting
task.

As simple as the definition of our noun chunks, extracting them from a sentence is still
a non-trivial task. Some potential cases when trying to extract the noun chunks are:

• Adjectives can appear consecutively or be separated by commas.

• Nouns can appear consecutively or linked together by dashes.

spaCy’s POS tagger tags all kinds of punctuation such as periods, commas, hyphens,
quotes as PUNCT (for punctuation), which can be confusing when we are looking for
specific patterns that include commas and dashes. Secondly, stop words can also appear
as nouns or adjectives in a sentence. Removing these stop words helps us improve the
performance as there are fewer and only meaningful noun chunks left. We solve this by
introducing 3 new tags, which are COMMA (for commas), HYPHEN (for hyphens), and
STOP (for stop words). These help us define a simpler pattern when looking for noun
chunks. After POS tagging, we join the tags together and use the regular expression in
figure 4.5 to extract the noun chunks.

The tags are then mapped to their respective tokens to form the noun chunks. The noun
chunks are added together with the sentence ID (sent_id) of the sentence, from which
they come from. If a noun chunk appears multiple times in a sentence, the count is still
one.

28

4 Methods

There are lots of noun chunks that appear only once. There tends to be mispronunciation
or things that are hardly mentioned by other reviewers. We remove them as they make
up a big part of the noun chunks vocabulary and can slow down the performance of our
system in subsequent steps.

4.2.2 Keywords embedding

After extracting the keywords, we notice that many of them actually refer to the same
thing. For example, music, soundtrack, great music, great soundtrack, sound, sound
design, sound effects, etc. all belong to the aspect music. Keywords such as of graphics,
animations, pixel art, animation, visuals, etc. can all be classified under the aspect
graphics. In other cases, there can be small misspellings in the keywords. The keyword
dark souls is mentioned a lot in the reviews of Momodora: Reverie Under the Moonlight6

as the game series Dark Souls7 has a great influence on this title. But sometimes the
name of the game is misspelled as dark soul without an s at the end. In our study, we
try to group these similar keywords together using clustering algorithms.

But before clustering algorithms can be applied to the keywords, it is essential to convert
them into real-valued vectors. A basic approach to this task is utilizing word embedding
methods like word2vec [23] or GloVe (Global Vectors for Word Representation) [26] to
compute the vector representation of each word in a keyword and average them to get
the keyword embedding. This approach works with simple cases where the difference
in spelling and and meaning is small(for example bosses and boss, control and controls.
The problem is that word2vec and GloVe offer no context. So there is no difference
between a bank in central bank and a bank in river bank. The embeddings of central bank
and river bank will be closed to each other even though their meanings are completely
different. The keywords, which can compose of one or several words, can also be regarded
as sentences. A better approach would be using sentence embeddings where instead of
the individual words, the whole keyword is mapped to vectors of real numbers.

Sentence-BERT

In our study, we use a state-of-the-art sentence embedding technique called SBERT
[28] to compute the vector representation of our keywords and our extracted sentences

6https://store.steampowered.com/app/428550/Momodora_Reverie_Under_The_
Moonlight/

7https://store.steampowered.com/app/570940/DARK_SOULS_REMASTERED/

29

4 Methods

Figure 4.6: SBERT architecture with classification objective function, e.g., for fine-tuning
on SNLI dataset. The two BERT networks have tied weights (siamese network
structure)

from the review. With the introduction of BERT, lots of tasks have tried to utilize
this architecture, sentence embedding is no exception. A common method to address
clustering and semantic search are to map each sentence to a vector space such that
semantically similar sentences are close. Researchers have started to input individual
sentences into BERT and to derive fixed-size sentence embeddings. The most commonly
used approach is to average the BERT output layer (known as BERT embeddings) or
by using the output of the first token (the [CLS] token). This common practice yields
rather bad sentence embeddings, often worse than averaging GloVe embeddings. [28]

SBERT solves this problem by using a siamese network architecture that creates fixed-
sized vectors for input sentences. Figure 4.6 shows the SBERT architecture. A siamese
neural network (sometimes called a twin neural network) is an artificial neural network
that uses the same weights while working in tandem on two different input vectors to
compute comparable output vectors. The twin network helps fine-tune BERT by updat-
ing the weights such that the produced sentence embeddings are semantically meaningful
and can be compared with cosine-similarity. SBERT is trained on the combination of the
SNLI (Stanford Natural Language Inference) [4] and the Multi-Genre NLI [35] dataset.
The SNLI is a collection of 570,000 sentence pairs annotated with the labels contradic-

30

4 Methods

tion, entailment, and neutral. MultiNLI contains 430,000 sentence pairs and covers a
range of genres of spoken and written text. Two sentences A and B are fed into the two
BERT networks. Then a MEAN-pooling layer is applied, where the output of the CLS-
token is used to compute the mean of all output vectors. We concatenate the sentence
embeddings u and v with the element-wise difference |u− v| and multiply it with the
trainable weight Wt ∈ R3n×k:

o = softmax(Wt(u, v, |u− v|))

where n is the dimension of the sentence embeddings and k the number of labels. We
optimize cross-entropy loss. Semantically similar sentences can then be found using a
similarity measure like cosine-similarity or Manhattan/Euclidean distance. These sim-
ilarity measures can be performed extremely efficiently on modern hardware, allowing
SBERT to be used for clustering.

4.2.3 Keywords clustering

(Explain what is agglomerative clustering, and HDBSCAN. Their advantages over other
methods. Why choose agglomerative clustering over HDBSCAN in our study.)

For the task of clustering the keywords into groups, which we call aspects, clustering
algorithms can be used. There are lots of approaches to clustering. An exhaustive list of
different clustering algorithms can be found in [36]. But for our study, we only discuss
two clustering algorithms that work well with our use cases for keywords clustering when
doing aspect extraction and sentences clustering when doing text summarization. These
are agglomerative clustering and HBDSCAN [6].

Agglomerative clustering

Agglomerative clustering is really a suite of algorithms all based on the same principle.
The basic notion is that we start with each point in its own clusters and then, for each
cluster, use some criterion to choose another cluster to merge with. Repeat until there
is only one cluster left and we get a hierarchy, or binary tree, of clusters branching down
to the last layer which has a leaf for each point in the dataset. The most basic version of
this, single linkage, merges the clusters that are closest to each other, allowing the tree
to be ranked by distance as to when clusters merged or split. To decide which cluster to
merge, more complex variations use things like the mean distance between clusters, or

31

4 Methods

Figure 4.7: A dendrogram (right) representing nested clusters (left) [11]

distance between cluster centroids, etc. Once we have a cluster hierarchy, we can choose
a level or cut (based on some criteria) and take the clusters at that level of the tree. An
example of a cluster hierarchy can be seen in figure 4.7.

This approach has the advantage of allowing clusters to develop according to "the un-
derlying manifold" rather than being assumed to be spherical. We may look at the
dendrogram of clusters to get more information about how clusters break down and try
to pick a natural cut, but this is similar to using the "elbow method" for finding the
optimal k in K-Means: in theory, it is fine and simple, but when dealing with complex
real-world data, it rarely works. The issue of noise polluting our clusters is there because
we are partitioning rather than clustering the data. Contrary to the common belief that
agglomerative clustering’s performance is bad, it can be good if we get the right imple-
mentation. The sklearn8 implementation is fairly slow, but fastcluster9 provides high
performance agglomerative clustering if needed.

HDBSCAN (Hierarchical density-based spatial clustering of applications with
noise)

8https://scikit-learn.org/stable/
9https://pypi.org/project/fastcluster/

32

4 Methods

HDBSCAN is an algorithm recently developed by some of the same people who created
the original DBSCAN [13], a popular density-based algorithm that assumes dense regions
have clusters. DBSCAN’s shortcomings include the fact that it does not function well
with data with varying density and the distance parameter epsilon value must be chosen
carefully. HDBSCAN solves these issues by allowing for varying density clusters. The
algorithm begins similarly to DBSCAN: we transform the space according to data density,
leaving points dense regions alone while moving points in sparse regions further away. A
dendrogram is acquired by applying single linkage clustering on the transformed space.
Rather than using an epsilon value as a cut level as DBSCAN does, the dendrogram is
condensed by examining splits which results in a lower number of points splitting off as
points "falling out of a cluster". As a result, the tree is smaller, with fewer clusters that
"lose points". The tree can then be used to find the most stable and persistent clusters.

This method allows the tree to be cut at different heights, with the density clusters were
chosen based on cluster stability. The immediate benefit is that we can have varying
density clusters. The second advantage is that the epsilon parameter has been removed
because we no longer need to pick a dendrogram cut. Instead, we have a new parameter
min_cluster_size which is used to determine whether points are "falling out of a
cluster" or splitting into two new clusters. This trades an unintuitive parameter for one
that is not so hard to choose (what is the smallest cluster size we are willing to care
about?) When implemented properly HDBSCAN can be very efficient.

Picking the clustering algorithm

After getting the sentence embeddings of each keyword, we normalize them to the unit
length before passing them to the clustering algorithms. After closer inspection of the
results from the two aforementioned algorithms, we choose agglomerative clustering for
clustering keywords, as HDBSCAN identifies lots of meaningful and high-frequency key-
words, which should have belonged to an aspect, as noise. With agglomerative clustering,
the extracted aspect can contain a small number of keywords that should not be there.
But this is acceptable as they tend to be outnumbered by the correct keywords, which
will push them down the list when we order the most relevant keywords in an aspect by
their frequencies. An aspect is named after its keyword with the highest frequency. One
hundred aspects with the highest frequency are chosen for further analysis. Sentences
that contain no keyword or keywords which have not been chosen are also removed.

33

4 Methods

4.3 Sentiment analysis

(Overview. Explain the challenges. Give examples.) The sentiment analysis step focuses
on identifying the underlying sentiment that pervades each aspect. Since our aspects
consist of keywords that belong to sentences, we perform sentence-level sentiment anal-
ysis.

We want to classify each sentence as positive, negative, or neutral. As there is no sentiment
analysis dataset specific to our domain of video game reviews, we must either create
our own labeled dataset for training or turn to unsupervised methods for sentiment
classification.

Supervised approach

In order to create our own labeled dataset, several things should be taken into consider-
ation. Each review on Steam is marked with either Recommended or Not Recommended.
But each sentence in a review can express various sentiments, so labeling all sentences
from a Recommended review as positive and all sentences from a Not Recommended re-
view as negative is not a good solution. Furthermore, the number of sentences that
express neutral sentiment is large and should not be ignored. It seems feasible at first to
label a few thousand sentences ourselves for training, but this is not simply as a sentiment
expressed in a sentence may be interpreted differently by different people, at different
times and with a different mood, etc. And the number of sentences must also be really
large, i.e. 10,000 upwards as video game reviews composes of many different genres and
groups of players (hardcore, casual, etc.), reviewers (normal, professional, etc.). Another
approach would be using crowdsourcing. This approach probably yields the best results
for our sentiment analysis, but as described and explained in section 2.2, this process
is costly, time-consuming, and also requires careful setup of data and questions. Using
other datasets from similar domains like movie reviews, product reviews, app reviews,
etc. is also possible. This approach proves to be really effective, but choosing the right
dataset, finding or constructing the appropriate model, and fine-tuning it is non-trivial
tasks.

Unsupervised approach

There are several approaches for unsupervised sentiment classification such as using a
lexicon of sentiment words or pre-trained models. English has the advantage of being a

34

4 Methods

popular language and therefore lots of libraries with pre-trained sentiment models. Here
are some of them:

VADER [18]

VADER (Valence Aware Dictionary for Sentiment Reasoning) is a sentiment analysis tool
that uses a lexicon-based approach (a lookup table of positive and negative words) with
some simple heuristics (e.g. increasing the intensity of the sentiment if some words like
really, so, or a bit a present). The benefit of this approach is that sentences containing
negated positive words (e.g. not happy, not good) will still receive a negative sentence
sentiment thanks to the heuristics to flip the sentiment of the word following a negation.
Some simpler sentiment analysis tools will just take the average of the sentiments of the
words and would miss subtle details like this. The drawback of this approach is that
words which the sentiment analysis tool has not seen before will neither be classified as
positive nor negative (e.g. typos). The model is trained using social media text and as a
result, yields sub-optimal results when working with our video game reviews.

TextBlob10

Textblob’s sentiment analysis works in a similar way to VADER, which is using a lexicon-
based classifier, but the advantage is that it includes subjectivity analysis too (how
factual/opinionated a piece of text is). However, it does not contain the heuristics that
VADER has, and so it will not intensify or negate a sentence’s sentiment.

Flair11 Flair’s sentiment classifier is based on a character-level RNN which takes se-
quences of letters and words into account when predicting. The network has learned
to take negations into account as well as intensifiers. But probably one of its biggest
advantages is that it can predict sentiment for words that it has never seen before too
(such as typos). There is also a transformer-based model, which is slower, but slightly
more accurate. The models are trained over a combined corpus of sentiment datasets,
including movie reviews and Amazon product reviews12. This makes the models more
applicable in a much wider range of domains, even ones that have not been trained on.
Upon testing with our video game reviews, the transformer-based model performs better
than the RNN-based one when predicting positive and negative sentiments. However,
the transformer-based model fails to predict neutral sentences and always gives a very

10https://textblob.readthedocs.io/en/dev/
11https://github.com/flairNLP/flair
12https://github.com/flairNLP/flair/releases

35

4 Methods

polarized score, which leads to its predicting neutral sentences as either positive or neg-
ative. The RNN works slightly less accurately with positive and negative sentiments,
but for neutral sentences, the model successfully delivers a neutral score and thus will be
used for the text of our review.

Using Flair’s RNN-based sentiment model, we classify all the remaining sentences from
the previous step as positive, negative, or neutral.

4.4 Text summarization

This section explains how we create customized, aspect-based summaries of video game
reviews. The purpose of our summary is to capture the main opinions about each aspect
of the reviews. Traditional text summarization, on the other hand, selects a subset or
rewrites some of the original sentences to capture the main points. Existing techniques
of aspect-based summarization generate summaries based solely on the features of the
text, with little consideration for the reader. This lack of customization is a drawback
as different people often desire different content for their summaries. Each person has
a different perspective on the same text and highlights the need for customization of
summaries. In this study, we achieve customization by ensuring that summaries cover
the aspects the users are interested in.

4.4.1 Sentences embedding

Our approach for summarization is based on clustering algorithms, therefore the sentences
need to be transformed into real-value vectors first. For this task, we again use SBERT,
which has been mentioned and discussed in detail in the section 4.2.2.

4.4.2 Sentence clustering

Our method is extractive, i.e. it selects a subset of sentences from all the available
sentences of a game’s aspect. We take as input a set of sentences, each of which has been
annotated with not only an aspect but also other information such as the time it was
written, user’s recommendation, sentiment polarity using the methods described in the
previous sections. All of this information, depending on the user’s interest, can act as

36

4 Methods

filters for the set of extracted sentences. In order to avoid redundancy and cover as many
different opinions as possible, we go through each aspect and try to find the most salient
sentences. This also helps alleviate the computational strain as performing clustering
multiple times with a smaller set of sentences is faster than clustering once with all the
available sentences. With the most important sentences for each aspect identified, we
can create a personalized summary with all the aspects that the user is interested in. As
a departure from previous studies, we explicitly select the sentences that will form the
basis for summarization, in the following steps.

Sentences merging: To avoid selecting redundant sentences, we apply HDBSCAN to
merge similar sentences into clusters. For each sentence cluster, we define its represen-
tative sentence which is the sentence closest to its centroid.

Sentence ranking: We assume that larger clusters contain sentences that are popular
among reviews and, therefore, should have higher priority to be included in the set of
most salient opinions. We use the representative sentences of the top-k largest clusters,
as selected sentences. In the very rare cases where we are trying to get k clusters, but
HDBSCAN delivers less than k clusters, we must use agglomerative clustering with a
distance threshold of 0.6, decreasing by 0.1 until the clusters are fine-grained enough
and the number of required clusters k is met. With HDBSCAN, the strength of hav-
ing few parameters to set is also one of its weaknesses. If the result is not satisfactory,
there are a few parameter that we can try to tune like min_cluster_size, min_sam-
ples, cluster_selection_epsilon or alpha. Except for the 2 intuitive parame-
ters min_cluster_size, min_samples which we usually pick at the beginning, the
remaining 2 are quite unintuitive. That is why we need agglomerative clustering with its
simple parameter distance threshold.

Sentence filtering: As each sentence is annotated with not only an aspect but also
other information such as the time it was written, user’s recommendation, sentiment
polarity using the methods described in the previous sections. All of this information,
depending on the user’s interest, can act as filters for the set of extracted sentences. This
comes in handy when we come to our data visualization as users can select and filter
sentences as they see fit on the dashboard.

Summarization: At summarization time, we pick out the k most salient sentences from
each aspect and use them as summarization. The users can interact with the dashboard
and choose how many aspects, how many sentences for each aspect, etc. they want to

37

4 Methods

see. The summarization is really efficient and can be computed on the fly when there is
a user’s interaction with the dashboard.

4.5 Data visualization

The final component of our system is data visualization. After obtaining all the neces-
sary data and building appropriate models from the previous steps, we need to find a
convenient way for the users to explore and interpret the results. In this study, we build
an interactive dashboard that lets users explore the aspect-based sentiment analysis and
text summarization of a given game. The users in this case can be potential customers
who are considering buying that game and want to see what kind of mechanics, features,
etc. it offers. Another group of users are developers who want to know how their game
is doing, what their customers like or dislike about it. With this knowledge, they can
quickly pinpoint problems or things that their customers actually care about in their
game and learn valuable lessons for their next productions.

Existing summarization systems often fall short on two aspects. First, existing techniques
generate static summaries which cannot be tailored to specific user needs. Second, most
existing systems generate extractive summaries which select only certain salient aspects
from the summaries. Hence, they do not completely depict the overall opinions of the
reviews. Our system tries to overcome these shortcomings by allowing the user to interact
with the dashboard and generate tailored summaries on the fly.

For the choice of dashboard development, we employ Power BI for ease of use and quick
development. There are much more powerful Python tools suitable for this task such
as Plotly Dash13, Streamlit14, Voilà15, Panel16, etc. All offer really good customization
when creating dashboards, but also require a lot more time and effort for development,
deployment, and maintenance. A Power BI dashboard can act as a prototype for further
development of the visualization in another tool.

Our dashboard consists of two pages, which are Overview and Mention Analysis. We
will go into the details about all the components on each page and explain how they can
be used and work together.

13https://plotly.com/dash/
14https://streamlit.io/
15https://github.com/voila-dashboards/voila
16https://panel.holoviz.org/

38

4 Methods

Figure 4.8: Overview page of the dashboard

Overview page

Figure 4.8 shows the Overview page of our dashboard. This is the page the user will
come into contact with first upon using the dashboard. It shows the most important
information about a game such as the total number of sentences (we call them mentions
in this case), the total number of reviews, the sentiment among different aspects, and
the summary which composes of the most important mentions for each aspect. Blue is
for positive sentiment, red is for negative, and yellow is for neutral. Here are the details
of each component:

• Game selector: (Figure 4.9) A single-select drop-down for choosing a game to
analyze.

• Aspects selector: (Figure 4.10) A multi-select drop-down for choosing the aspects
in which we are interested.

• Timeline selector: (Figure 4.11) A time slider for choosing the time range of
interest.

39

4 Methods

Figure 4.9: Game selector

Figure 4.10: Aspects selector

Figure 4.11: Timeline selector

40

4 Methods

Figure 4.12: Number of mentions selector

Figure 4.13: Mentions overview

Figure 4.14: Reviews overview

41

4 Methods

Figure 4.15: Aspects sentiment chart

Figure 4.16: Summary

42

4 Methods

• Number of mentions selector: (Figure 4.12) A number slider for choosing how
many mentions for each aspect we want to see. It goes from a minimum of 1 to a
maximum of 5.

• Mentions overview: (Figure 4.13) A donut chart that shows the proportion of
each sentiment and the total number of mentions in the middle. The question mark
can be clicked to open the Mention Analysis page which enables us to dive deeper
into the details of those mentions.

• Reviews overview: (Figure 4.14) A donut chart that shows the proportion of
Recommended and Not recommended reviews with the total number of reviews in
the middle.

• Aspects sentiment chart: (Figure 4.15) A horizontal bar chart that shows the
proportion of each sentiment for each aspect. The total number of mentions of each
aspect is also displayed at the end of each bar chart. For a given game, we take
100 aspects in total, but only the top 22 are visible in the chart. The rest and less
important aspects can be found by scrolling down the bar chart. Upon hovering on
a bar, the top 8 most frequent keywords of that aspect are also shown. The chart
can also be used for choosing the aspects that we care about instead of manually
using the aspects selector. This helps us reduce the number of mentions shown in
the summary.

• Summary: (Figure 4.16) A table where each row is a mention with the aspect it
contains. This will act as a summary as we use the aspects selector or the aspects
sentiment chart to select the aspects of interest.

Mention Analysis page

Figure 4.17 shows the Mention Analysis page of our dashboard. The page can be accessed
by clicking the question mark symbol in the mentions overview. It helps us inspect the
mentions by sentiment, aspects, or keywords. Here are the components of this page:

• Mentions decomposition tree: (Figure 4.18) The tree starts at the root with
all the mentions. From here, we can break down the number of mentions by 3
factors which are Sentiment, Aspects, and Keywords. It automatically aggregates
the number of mentions and enables drilling down into these 3 factors in any order.
Moreover, we can let the tree automatically pick the next factor to drill down into
based on certain criteria such as the highest or lowest number of mentions.

43

4 Methods

Figure 4.17: Overview page of the dashboard

Figure 4.18: Mentions decomposition tree

44

4 Methods

Figure 4.19: Mentions and reviews list

45

4 Methods

• Game selector: (Figure 4.9) Similar to the game selector of the Overview page.
These two selectors are also connected.

• Mentions list: (Figure 4.19) A list of mentions. By clicking a node in the decom-
position tree, the list is filtered and shows us all the mentions in that node.

• Reviews list: (Figure 4.19) A list of reviews. By clicking one or more mentions in
the Mentions list, one or more reviews, from which the mentions come, are shown.

46

5 Experiments and evaluation

(We apply with our pipelines to n different more games, which have a varied number of
reviews, players’ sentiment. What is our bottleneck? (the aspect extraction step which
requires the BERT model))

(Intrinsic vs extrinsic evaluation?) (Compare our system with other related works.)
(Evaluate the results)

5.1 Dataset

We collect all the reviews written in English of 12 different games on Steam and put
them in the system. The dataset includes many different types of games from different
genres to ensure as much variety as possible. Moreover, the games are also chosen based
on the fact that we have played most of them and can have a rough idea about the games
like their features, strengths, weaknesses, etc. Some games which have never been played
before are also included to avoid confirmation bias while evaluating the effectiveness of
the system as we tend to search for, interpret, favor results in a way that confirms or
supports our prior knowledge or assumptions about the ones that have been played. The
games also vary in the number of reviews. Some with only hundreds, others with tens of
thousands. For a complete list of all the games used in our study and information about
them, see figure 5.1.

5.2 Aspect extraction

Using a transformer model for POS tagging during keywords extraction has proven to be
the bottleneck of our system as it is very computationally expensive to perform this task.
Our initial approach for reducing computational time is to set a limit of a maximum of

47

5 Experiments and evaluation

Figure 5.1: List of games used in our study and additional information about them

48

5 Experiments and evaluation

Figure 5.2: Using the mentions decomposition tree to check the quality of our aspect
extraction

49

5 Experiments and evaluation

5000 newest reviews for each game. But this is ineffective as games with lots of reviews
can accumulate 5000 reviews in just a couple of days and taking only these reviews into
consideration does not reflect the overall characteristics of those games very well. The
majority of reviews posted are short and often contribute nothing to our understandings
of a game (e.g. "Nice.", "Good!", "Bad game!", "LoL.", "I love it.", "The game sucks!"
etc.). And thus during aspect extraction, not a lot of keywords or aspects can be extracted
from games with lots of reviews in comparison to games with fewer reviews, but all or
most of which have been analyzed by the system. So for our experiments, we do not
limit the number of reviews anymore and take all the available reviews for each game into
consideration. After testing different distance thresholds for the agglomerative clustering
to group similar keywords together, we use 0.6.

As the system is unsupervised, we do not have the labeled test set to compute metrics
such as accuracy, precision, or recall for this task. We try to go through the top 10
extracted aspects of each game and carefully inspect the top 10 keywords of each of
those aspects to see if the aspects and the keywords that make them up are coherent.
With the help of the mentions decomposition tree in the dashboard, this task can be
performed easily by drilling down the Aspects and Keywords factors. Figure 5.2 shows
the tree in action. It has been found that the name of a game or keywords that belong
to that name is often one of the biggest clusters. We can easily set them as stop words,
but sometimes some keywords in the name of the game are actually important features
or mechanics that should not be removed. Our system allows us to control and filter the
extracted aspects according to our preferences, if an unwanted aspect appears, you just
have to remove it from the selection. Besides the name of the game, there are also a
few keywords that should have been classified as stop words but are not such as hours,
plenty, kind, etc. This is not a big problem as the frequency of the most important
aspects heavily outweighs these tiny amounts of stop words.

The aspects extracted in the games that we have played and already knew about are great
as they capture the main features of those games. For example, with Momodora: Reverie
Under the Moonlight we can quickly see that lots of players talk about combat, bosses,
music, metroidvania, dark souls, etc. as the game is a 2D metroidvania side scroller that
takes lots of inspiration from the series Dark Souls. The boss fights and soundtracks are
also some of the highlights of the game. For Baba is You, the most important keywords
are puzzle, baba, level, brain, solution, rules", etc. as it is a Sokoban puzzle game where
the rules and mechanics of the game can be changed by forming different sentences by
pushing the word blocks. The keywords are sometimes grouped together incorrectly when

50

5 Experiments and evaluation

a keyword has two completely different meanings. For example, the game Hollow Knight
has a world where everyone is insects or bugs. But bugs can also be errors, flaws, or faults
in the game. Even though SBERT introduces context, the keywords can come in a single
word such as bugs, bank, souls, etc. and there is no context for SBERT to distinguish
these two like in central bank and river bank.

For games that we have never played before, we can infer from the extracted keywords
what their main features are. For What Remains of Edith Finch, the aspect story greatly
outweighs others so we can infer that the game places a heavy focus on telling an in-
triguing story. Other aspects such as art, walking simulator gives us an idea about what
makes the game special. With Unravel Two, the most important aspects are friend,
multiplayer, puzzles, co op. This quickly helps us understand that the game is a co-op
puzzle game, which is great for playing with friends.

5.3 Sentiment analysis

For the task of sentiment analysis, using the Flair RNN model provides us much better
performance not only in terms of accuracy but also speed as explained in section 4.3.
Another advantage of using these pre-trained model is that the data preprocessing steps
is built in. So there is no need for complicated preprocessing steps.

The RNN-model gives predictions ranging from -1 to 1, with -1 being the most negative
and 1 being the most positive. Upon trying out the model on different sets of sentences,
we classify anything above 0.9 as positive, anything below -0.9 as negative. The rest is
classified as neutral.

We do not have a dataset of sentences labeled with three sentiments neutral, positive,
and negative available in the domain of video games. Creating enough labeled data with
great quality for validation is a non-trivial task as labeling the sentences ourselves would
introduce a lot of error and bias. Using crowdsourcing platforms and labeling a big and
diverse enough amount of data is time-consuming and costly. In this study, using the
dashboard created, we randomly go through some sentences and check if the predicted
sentiments are correct. We can see that the model successfully detected the sentiments in
most of the sentences correctly. In cases where there is sarcasm, the model can sometimes
understand it. There are a few edge cases where the model fails to understand the true
meaning of a word because the context is missing from the sentences. An example would

51

5 Experiments and evaluation

be "Bugs are everywhere." talking about the game Hollow Knight where every character
is a sort of insect. The model would mistake bugs as errors, flaws in the game and
classify this sentence as negative. There are cases where the sentences are not correctly
preprocessed and appear with bad structure. In such cases, the model can still pick out
the parts that yield sentiment scores and classify the sentiment correctly.

5.4 Text summarization

Our system can theoretically deliver a personalized summary on the fly based on the
user’s preference when using the dashboard. Power BI does allow us to integrate Python
code into the visuals, but the problem is things such as importing libraries, loading
the clustering models, declaring environment variables, or converting the sentences from
JSON format to vectors, etc. cannot be precomputed and saved somewhere when loading
the dashboard. These quite computationally heavy tasks are repeated every time our data
changes which greatly harms the user’s experience. In this study, we are using Power BI
as a prototype tool for ease of use and speed of development. Other more robust tools
for the tasks such as Plotly Dash, Streamlit, etc. can easily solve this problem. As we
want to preserve a smooth user experience, we precompute and save the summarization,
which is the 5 most salient sentences, for each aspect of a game in the database and just
loads them when needed instead of computing them on the fly with personalized filters.
This works fine at first glance but may deliver no summary at all if the salient sentences
are not present in the filtered set of sentences.

For agglomerative clustering, we set the distance threshold to 0.5, instead of 0.6 during
aspect extraction as sentences contain more characters and thus more complexity than
short keywords. The distance threshold must therefore be stricter to correctly cluster
really similar sentences.

For text summarization, we usually use the ROUGE (Recall-Oriented Understudy for
Gisting Evaluation) [34] score to compare the summarized text generated by our model
with gold standard summaries. But the availability of such dataset is really rare. Trying
to construct one is not the best idea as there, are just so many ways to create a good
summary for a piece of text. The ROUGE metrics only captures how similar two pieces
of text to each other on a word basis. But sentences can be completely rewritten and
still convey the full meaning of the original text. Hence, the best way to compare dif-
ferent approaches is to create our own evaluation set or ask human annotators to rate

52

5 Experiments and evaluation

the summaries produced by different algorithms in terms of coherence, accuracy of the
summary, etc. For our summaries, we try to maximize coverage by selecting sentences
from different aspects and minimize redundancy by clustering similar sentences. The
summary for each aspect is good. But sometimes a sentence can contain two keywords,
each with different aspects. The unwanted aspect can be mixed in with the correct one
in a summary, e.g. "Arts and music are great.". Sometimes sentences that have not been
preprocessed correctly can appear multiple times and become summary sentences. Such
sentences often come from some sort of review form that has really complicated structure
and trying to preprocess them is a challenging task. Otherwise, the summaries are of
good quality.

53

6 Conclusion

6.1 Summary

The primary target of this work is to construct a machine learning system for aspect-based
sentiment analysis and text summarization of video game reviews found on Steam.

This project utilizes simple, yet effective unsupervised methods for performing aspect-
based sentiment analysis and text summarization of the video game reviews. The 4 main
components of the system are:

• Aspect extraction: We use a heuristic-based approach that utilizes the part-
of-speech (POS) tagging capability of a transformer-based model in SpaCy and
certain rules to extract noun chunks. We call these noun chunks keywords. We
then compute the sentence embeddings of each extracted keyword using SBERT
and apply agglomerative clustering to cluster similar ones together into groups,
which are called aspects. Even though lots of computational time can be saved
by using the POS tagging of a simpler model than a transformer-based one, the
extracted aspects suffer a lot in terms of accuracy. The majority of the extracted
aspects are meaningful as they contain groups of keywords that are coherent and
describe or represent the main features, interests, or concerns of the players. A
small number of keywords are actually stopwords that can be filtered out easily.
Sentences, in which the keywords are found, are also extracted.

• Sentiment analysis: An RNN-based pre-trained sentiment classification model is
used to classify the sentences extracted from the previous step as positive, negative,
or neutral. The model has no problem in terms of speed. In terms of accuracy, the
model manages to detect the sentiments of the majority of sentences correctly, even
ones where the sentiments are implicit or the reviewers use sarcasm. Misclassified
sentences are really rare.

54

6 Conclusion

• Text summarization: For text representation, we use SBERT to compute the
embedding of each sentence. HDBSCAN is used first to perform clustering on
these sentences. We then find the sentence lying closest to the center of each
cluster and call it an opinion. We rank the opinions by the size of their clusters.
We assume that the bigger the cluster, the more popular an opinion is. And thus
for each extracted aspect from the previous step, we have a list of n most important
opinions, which will act as a summary for that aspect. If HDBSCAN fails to find
enough n clusters, we will use agglomerative clustering with decreasing distance
threshold until we have enough n clusters. This approach works great as it avoids
redundancy by clustering similar sentences together and maximizes coverage by
picking out the most important opinions of each aspect. The performance also
improves as we perform clustering on smaller sets of sentences instead of the whole
dataset, which enables us to generate a summary on the fly as we click and filter
the sentences by different criteria when interacting with the visualization.

• Data visualization: We put together an interactive dashboard that helps us
visualize the results and perform further analysis. The dashboard is implemented
as a prototype in Power BI, which offers a variety of useful premade visuals. The
dashboard composes of 2 pages: an overview page for us to see the overall sentiment
of each aspect and generate a summary according to our preferences, a mentions
analysis page for us to dive deeper into the extracted keywords and their respective
sentences (or mentions) and reviews. The summary can theoretically be generated
on the fly as we interact with the dashboard and filter the set of sentences by
aspects, sentiments, time, etc. But due to the constraints of Power BI, this is not
possible and will damage the performance and user experience of the dashboard.
So we opt for another solution, which is precomputing a summary of the 5 most
important sentences for each aspect of each game. This helps us quickly find
the most important sentences as we interact with the dashboard, but we cannot
generate a summary of the filtered set of sentences anymore.

6.2 Future work

The results of this study point to a number of open problems to generate good opinion
summarization of user reviews. The tools and techniques proposed are just an initial
step towards building a complete system that allows customers and developers to quickly

55

6 Conclusion

analyze reviews using aspect-based sentiment analysis, text summarization, and data
visualization. Here are a number of research directions:

• Genres, users analysis: Other information about a game such as genres or
the user’s profile of the reviewers can also be extracted. The dynamics of different
genres and user groups between different games can be found by carefully analyzing
these data.

• Data streaming: The Steam platform generates an unfathomable amount of
reviews every minute of every day, and it continues to multiply at a staggering
rate. That is why there is a need for shifting from batch processing to stream
processing, which means the continuous flow of data generated in real-time can be
processed, stored, analyzed, and acted upon.

• Avoiding data drift: Data drift is a change in the distribution of a baseline data
set on which the model was trained and the current real-time production data. As
our system is unsupervised, this problem is greatly mitigated. But as the opinions
of players about a game change, so as the underlying distribution of the data. We
need to find a way to update the aspects, keywords, sentiments and summary over
time.

• Better data collection and preprocessing: The number of user reviews is
really small compared to useless ones. As the number of reviews can get really big,
it is advisable to gather only a subset of only the most important reviews based
on certain criteria such as readability, length, etc. for further analysis. As we go
through the extracted sentences, it is rare to find a badly structured sentence as
we have carefully preprocessed them. But errors cannot be avoided completely.
There are still cases where the extracted sentences are badly structured, too long,
or meaningless. By preprocessing these sentences better, the results of other steps
such as summary can be improved.

• Deployment and scalability with big data technologies: Deploying a com-
plex machine learning system in production is no trivial task as the production
environment differs a lot from the development environment. A lot of the proposed
methods can be performed in parallel such as aspect extraction, sentiment analysis,
text summarization, etc. The performance of the system can greatly be improved
by implementing big data technologies for distributed computing.

56

6 Conclusion

• Customized visualization: Even though Power BI offers us a quick and easy way
to build beautiful interactive dashboards, there are still lots of constraints with the
integration of Python and other more complicated technologies in the program.
That is why building the dashboard using a more robust visualization tool such
as Ploly Dash, Streamlit, etc. based on this prototype built in Power BI can be a
great next step in developing a complete and powerful machine learning system.

• Human-in-the-loop approach: Human-in-the-loop (HITL) machine learning
combines human and machine intelligence to create a continuous circle in which
the algorithm is trained, tested, and tuned. With every loop, the machine becomes
smarter as well as more confident and accurate. As our system is entirely unsu-
pervised, there are lots of things that could be improved in every component by
leveraging labeled data and supervised methods. An example would be our senti-
ment analysis model. Currently, the unsupervised model classifies the sentiment of
each sentence quite well, but there are still wrong sentences and the model cannot
get better over time. An idea would be letting the user relabel falsely classified
sentences interactively on the dashboard. A state-of-the-art supervised sentiment
classification model can then be trained on this dataset labeled both by the un-
supervised model and our users to deliver much higher accuracy and continuously
improve over time. Or during text summarization, we can rate the quality of the
extracted sentences and allowing the system to replace bad sentences with better
ones.

• Application in other domains: Although the unsupervised methods developed
in this study were applied only to video game reviews, they should be applicable
to other domains where online reviews and opinionated text are prevalent such as
product, app, restaurants, hotel reviews, tweets, etc. Further evaluation is needed
to confirm this claim.

57

Bibliography

[1] Opinion summarization methods: Comparing and extending extractive and abstrac-
tive approaches. In: Expert Systems with Applications 78 (2017), S. 124–134

[2] Amplayo, Reinald K. ; Lapata, Mirella: Informative and Controllable Opinion
Summarization. 2021

[3] Angelidis, Stefanos ; Lapata, Mirella: Summarizing Opinions: Aspect Extraction
Meets Sentiment Prediction and They Are Both Weakly Supervised. 2018

[4] Bowman, Samuel R. ; Angeli, Gabor ; Potts, Christopher ; Manning, Christo-
pher D.: A large annotated corpus for learning natural language inference. 2015

[5] Bražinskas, Arthur ; Lapata, Mirella ; Titov, Ivan: Unsupervised Opinion
Summarization as Copycat-Review Generation. 2020

[6] Campello, Ricardo J G B. ; Moulavi, Davoud ; Sander, Joerg: Density-Based
Clustering Based on Hierarchical Density Estimates. (2013), S. 160–172

[7] Chu, Eric ; Liu, Peter J.: MeanSum: A Neural Model for Unsupervised Multi-
document Abstractive Summarization. 2019

[8] Clement, J: Global video game market value from 2020 to 2025. – Statista

[9] Clement, J: Number of peak concurrent Steam users from January 2013 to May
2021. – Statista

[10] Clement, J: Number of games released on Steam worldwide from 2004 to 2021. –
Statista

[11] Clement, J: Hierarchical Clustering / Dendrogram: Simple Definition, Examples.
– Statistics How To

58

Bibliography

[12] Devlin, Jacob ; Chang, Ming W. ; Lee, Kenton ; Toutanova, Kristina: BERT:
Pre-training of deep bidirectional transformers for language understanding. In:
NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies - Proceedings
of the Conference 1 (2019), S. 4171–4186. ISBN 9781950737130

[13] Ester, Martin ; Kriegel, Hans-Peter ; Sander, Jörg ; Xu, Xiaowei: A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In: Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining, AAAI Press, 1996 (KDD’96), S. 226–231

[14] Explosion: spaCy - Linguistic Features

[15] Fan, Angela ; Grangier, David ; Auli, Michael: Controllable Abstractive Sum-
marization. 2018

[16] Gambhir, Mahak ; Gupta, Vishal: Recent automatic text summarization tech-
niques: a survey. (2017), S. 1–66

[17] Ganesan, Kavita ; Zhai, ChengXiang ; Han, Jiawei: Opinosis: A Graph-Based
Approach to Abstractive Summarization of Highly Redundant Opinions. In: Pro-
ceedings of the 23rd International Conference on Computational Linguistics. USA :
Association for Computational Linguistics, 2010 (COLING ’10), S. 340–348

[18] Hutto, C. ; Gilbert, Eric: VADER: A Parsimonious Rule-Based Model for Sen-
timent Analysis of Social Media Text. In: ICWSM, 2014

[19] Kim, H ; Ganesan, K: Comprehensive review of opinion summarization. (2011)

[20] Lin, Dayi ; Bezemer, Cor P. ; Zou, Ying ; Hassan, Ahmed E.: An empirical study
of game reviews on the Steam platform. (2019), S. 170–207. – ISBN 1066401896

[21] Liu, Bing ; Hu, Minqing ; Cheng, Junsheng: Opinion Observer: Analyzing and
Comparing Opinions on the Web. In: Proceedings of the 14th International Con-
ference on World Wide Web. New York, NY, USA : Association for Computing
Machinery, 2005 (WWW ’05), S. 342–351. – URL https://doi.org/10.1145/

1060745.1060797. – ISBN 1595930469

[22] Liu, Yinhan ; Ott, Myle ; Goyal, Naman ; Du, Jingfei ; Joshi, Mandar ; Chen,
Danqi ; Levy, Omer ; Lewis, Mike ; Zettlemoyer, Luke ; Stoyanov, Veselin:
RoBERTa: A Robustly Optimized BERT Pretraining Approach. 2019

59

Bibliography

[23] Mikolov, Tomas ; Chen, Kai ; Corrado, Greg ; Dean, Jeffrey: Efficient Esti-
mation of Word Representations in Vector Space. 2013

[24] Nallapati, Ramesh ; Zhai, Feifei ; Zhou, Bowen: SummaRuNNer: A Recurrent
Neural Network based Sequence Model for Extractive Summarization of Documents.
2016

[25] Panagiotopoulos, George ; Giannakopoulos, George: A Study on Video Game
Review Summarization. (2019), S. 36–43. ISBN 9789544520588

[26] Pennington, Jeffrey ; Socher, Richard ; Manning, Christopher: GloVe: Global
Vectors for Word Representation. In: Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP). Doha, Qatar : As-
sociation for Computational Linguistics, Oktober 2014, S. 1532–1543. – URL
https://aclanthology.org/D14-1162

[27] Pontiki, Maria ; Pavlopoulos, John: SemEval-2014 Task 4 : Aspect Based
Sentiment Analysis. (2014)

[28] Reimers, Nils ; Gurevych, Iryna: Sentence-BERT: Sentence embeddings using
siamese BERT-networks. In: EMNLP-IJCNLP 2019 - 2019 Conference on Empirical
Methods in Natural Language Processing and 9th International Joint Conference on
Natural Language Processing, Proceedings of the Conference (2020), S. 3982–3992.
ISBN 9781950737901

[29] Ruder, Sebastian ; Peters, Matthew E. ; Swayamdipta, Swabha ; Wolf,
Thomas: Transfer Learning in Natural Language Processing. In: Proceedings of
the 2019 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Tutorials, 2019, S. 15–18

[30] SAS: Data Visualization: What it is and why it matters

[31] Suhara, Yoshihiko ; Wang, Xiaolan ; Angelidis, Stefanos ; Tan, Wang-Chiew:
OpinionDigest: A Simple Framework for Opinion Summarization. In: CoRR
abs/2005.01901 (2020). – URL https://arxiv.org/abs/2005.01901

[32] Tian, Yufei ; Yu, Jianfei ; Jiang, Jing: Aspect and Opinion Aware Abstractive
Review Summarization with Reinforced Hard Typed Decoder. In: Proceedings of the
28th ACM International Conference on Information and Knowledge Management
(2019), Nov. – URL http://dx.doi.org/10.1145/3357384.3358142. ISBN
9781450369763

60

Bibliography

[33] Vajjala, S. ; Majumder, B. ; Gupta, A. ; Surana, H.: Practical Natural
Language Processing: A Comprehensive Guide to Building Real-World NLP Systems.
O’Reilly Media, 2020. – ISBN 9781492054054

[34] Wikipedia: ROUGE (metric)

[35] Williams, Adina ; Nangia, Nikita ; Bowman, Samuel R.: A Broad-Coverage
Challenge Corpus for Sentence Understanding through Inference. 2018

[36] Xu, Dongkuan ; Tian, Yingjie: A Comprehensive Survey of Clustering Algorithms.
(2015)

[37] Yauris, Kevin ; Khodra, Masayu L.: Aspect-based summarization for game
review using double propagation. In: Proceedings - 2017 International Conference
on Advanced Informatics: Concepts, Theory and Applications, ICAICTA 2017, URL
http://ieeexplore.ieee.org/document/8090997/, 2017, S. 1–6. – ISBN
9781538630013

[38] Zhao, Chao ; Chaturvedi, Snigdha: Weakly-Supervised Opinion Summarization
by Leveraging External Information. 2019

61

Erklärung zur selbstständigen Bearbeitung einer Abschlussarbeit

Gemäß der Allgemeinen Prüfungs- und Studienordnung ist zusammen mit der Abschlussarbeit eine

schriftliche Erklärung abzugeben, in der der Studierende bestätigt, dass die Abschlussarbeit „— bei einer

Gruppenarbeit die entsprechend gekennzeichneten Teile der Arbeit [(§ 18 Abs. 1 APSO-TI-BM bzw. § 21

Abs. 1 APSO-INGI)] — ohne fremde Hilfe selbständig verfasst und nur die angegebenen Quellen und

Hilfsmittel benutzt wurden. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen sind

unter Angabe der Quellen kenntlich zu machen.“

Quelle: § 16 Abs. 5 APSO-TI-BM bzw. § 15 Abs. 6 APSO-INGI

Erklärung zur selbstständigen Bearbeitung der Arbeit

Hiermit versichere ich,

Name:

Vorname:

dass ich die vorliegende Bachelorarbeit – bzw. bei einer Gruppenarbeit die entsprechend
gekennzeichneten Teile der Arbeit – mit dem Thema:

Entwicklung eines Machine-Learning-Systems zur aspektbasierten Sentiment-
Analyse und Textzusammenfassung von Videospiel-Rezensionen auf Steam

ohne fremde Hilfe selbständig verfasst und nur die angegebenen Quellen und Hilfsmittel
benutzt habe. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen
sind unter Angabe der Quellen kenntlich gemacht.

Ort Datum Unterschrift im Original

62

