
Bachelorarbeit

Micha Rosenbaum

Java CRDT Framework for Autonomous Robots

Fakultät Technik und Informatik
Department Informatik

Faculty of Computer Science and Engineering
Department Computer Science



Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung
im Studiengang Bachelor of Science Angewandte Informatik
am Department Informatik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Martin Becke
Zweitgutachter: Prof. Dr. Axel Schmolitzky

Eingereicht am: August 19, 2021

Micha Rosenbaum

Java CRDT Framework for Autonomous Robots



Micha Rosenbaum

Thema der Arbeit

Java CRDT Framework for Autonomous Robots

Stichworte

CRDT, Gossip, Framework

Kurzzusammenfassung
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Abstract

Distributed communication in a small group of autonomous robots faces consistency and
availability issues in the presence of network partitions (CAP theorem). Application developers
should not be required to deal with all aspects of this challenge. Conflict-free replicated data types
(CRDTs) reduce the effect of the CAP theorem. This thesis designs an object-oriented CRDT
framework architecture based on the Selective Hearing programming model. This framework
serves as a middleware layer that can be used by application developers transparently.
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1 Introduction

The field of autonomous robots is an important, evolving area that may shape the future. Because
they often need to communicate with other robots or systems to perform their behavior or task,
autonomous robots are often also distributed systems. The robot groups might not be known in
advance. Instead, each robot maintains an ad-hoc neighbor list. The robots form an unstructured
system for peer-to-peer communication within the group. In the last decade, many algorithms
and communication protocols have been introduced, which are very valuable in unstructured,
decentralized systems. Conflict-free Replicated Data Types (CRDTs) are promising technologies
for replicating data in unstructured systems which communicate using gossip protocols.

Some of the Communication and Distributed Systems (CaDS) group1 projects at the HAW
Hamburg involve a fleet of Segway Loomo Robots (Loomos) [46]. The Loomo, as shown in
Figure A.1, is an advanced robot that can be used as a smart personal vehicle. It includes many
practical functions powered by artificial intelligence. Additionally, an Android Software Devel-
opment Kit (SDK) is available, which can be used to implement custom Loomo applications [17].
Since Loomos are mobile by design, the CaDS group is using its small fleet as a case study to
implement and research aspects of unstructured distributed systems.

1.1 Problem Statement

In distributed systems, concurrent write requests to data can occur on different nodes. It needs
to be made certain that these concurrent updates do not produce conflicts in the data. This
can be ensured in structured systems by applying a centralized setup that brings the updates
into a global order. A central coordinator can permit an update to a single node at a time. In
a primary-based setup, the primary node can perform an update and write data, while other
nodes only have read-access to data. Unstructured, decentralized systems have to find other ways
to coordinate their updates. A common way is to create ad-hoc coordination using consensus
protocols with leader-election (such as Raft [42] or Paxos [22, 23]). Coordinated approaches have
consistency or availability limitations when network partitions occur (CAP theorem [15]). This is
an issue because a distributed application running on multiple nodes in an unstructured system
should stay available on each node, regardless of the other nodes’ statuses. Each node should be

1https://cads.informatik.haw-hamburg.de/, accessed May 2021
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1 Introduction

able to continue providing its service to the user (as ‘local-first’ software [21]). When two nodes
recover from a temporary network partition and communicate with each other again, both should
automatically and consistently reach the same state, even if they have received independent
updates. These demands have been formalized as strong eventual consistency [48].

The example that is motivating this thesis, is the CaDS Loomo fleet. In this context, an
application that measures the distance the entire fleet has traveled could be conceptualized.
Each user would expect an individual Loomo to contribute its distance, no matter the network
conditions. An active Loomo should not be affected if another Loomo from the network is
no longer reachable or is turned off. For example, it would be unacceptable for Alice to not
see the updated distance on her Loomo simply because Bob has turned his Loomo off. In the
same sense, the application on Alice’s Loomo should continue to function correctly, even if she
drives in an area without network access. When the connection with the fleet is reestablished,
the Loomos should calculate the same distance without losing any data. Currently, there is no
system performing coordination-free distributed computations with all the Loomos in the CaDS
group.

A CRDT allows a distributed system to achieve strong eventual consistency [48]. CRDTs provide
“consistency without consensus.”[4] Efficient and reliable data dissemination can be achieved by
hybrid gossip protocols [36]. Push-lazy push multicast tree (Plumtree) [27] is such a hybrid gossip
protocol. It combines fast, tree-based broadcasts with the more reliable gossip dissemination
pattern [28].

The Selective Hearing programming model, introduced in [35], combines a programming layer
based on CRDTs with a communication layer based on Plumtree. Selective Hearing has been
specified in the functional programming paradigm, and implemented as part of the Lasp language
in Erlang.2 As with Plumtree, Selective Hearing has been evaluated using thousands of nodes.
The named components are discussed in more detail in the next chapter.

This thesis describes the design and implementation of a proof-of-concept Java CRDT framework.
With this proof-of-concept, the reliability of Selective Hearing in a context with only a few nodes,
is investigated. The CaDS group’s Loomo fleet contains three Loomos, whereas a typical Segway
group tour through Hamburg usually includes 12–20 Segways. In order to use them on a Loomo,
the Selective Hearing algorithms, CRDT implementations, and the used gossip protocols need
to get ported to Java.

1.2 Goals and Requirements

According to [53, section 1.2, page 7], the goals of distributed systems can be defined as
“supporting resource sharing,” “making distribution transparent,” “being open,” and “being

2https://github.com/lasp-lang/lasp, accessed 23rd April 2021
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1 Introduction

scalable.” This framework implements a middleware layer [53], to serve a developer who is
building distributed applications. The middleware provides an interface to the developer, which
hides the complexities of distributed systems—thus making distribution transparent. This
framework’s interface is the supplied CRDT library.

The following list introduces the assumed requirements from a fictional application developer’s
viewpoint, that should be addressed in this thesis.

1. Creating CRDT instances.

2. Merging CRDT replicas.

3. Merging only replicas with the same origin CRDTs.

4. Installing applications locally and in a distributed system, without requiring code changes.

5. Transparent synchronization of the CRDT state.

These requirements allow the distribution transparencies, that the framework needs to provide,
to be derived. Requirements 1 and 2 call for the implementation of usable CRDTs. The first
two basic requirements together with requirement 4 suggest the need of access transparency.
An application using the CRDT interfaces should not need to differentiate between local or
distributed CRDTs. To achieve requirement 5, the replication and concurrency transparencies
need to be carried out. The combination of requirements 1, 4, and 5 suggest the implementation of
a creational design pattern. The options discussed in this thesis are the factory method, abstract
factory, and builder design patterns [13, 50]. Requirement 3 calls the framework to include
some identification mechanism for CRDTs. This mechanism should allow identifying cohesive
replicas for the same specific CRDT instance. As this requirement needs to be combined with
requirements 2, 4, and 5, the framework needs a reliable naming scheme for replicas created in
multiple nodes.

The four remaining distribution transparencies do not play a role in this thesis because of the
Selective Hearing specification [35]. It specifies that each node maintains a copy of the replicated
data types. The three transparencies location, migration and relocation, all deal with a hidden
location of objects. As Selective Hearing only updates local replicas, different locations and
object movements cannot be hidden. Additionally, Selective Hearing assumes that nodes fail by
crashing and recover as if they were new nodes. This thesis follows this assumption and does
not try to increase fault tolerance (for example, by introducing data persistence to prevent data
loss). This decision limits the failure transparency. However, many typical sources for failures
in distributed systems are avoided by using CRDTs and gossip protocols. In chapter 2, Selective
Hearing, CRDTs and gossip protocols are discussed in more detail.

This work only covers parts of distributed systems’ other goals [53]: resource sharing, openness,
and scalability. The only resources this framework supports sharing among nodes are states

3



1 Introduction

of CRDTs. With Computational CRDTs (C-CRDTs) (discussed in Section 2.2.2), these states
are the results of computations. So, in some sense, this framework shares computational
resources among the nodes. However, besides the replication of the CRDT states, no additional
resources are shared by this framework. The goal for being open includes the design of platform-
independent protocol specifications. As a result of not trying to be open, all messages used for
communicating in the gossip protocols presume the receiver has the same software installed.
Similarly, the CRDT states can only be synchronized between instances of this framework. The
work required to design and test platform-independent messages and state distribution is beyond
this project’s scope and has been left for future projects. Open distributed systems should be
extensible, which is an aspect that this framework should achieve by using object-oriented design
patterns [13, 50]. The scalability in node size has been limited to smaller groups. In this proof-of-
concept, there is no attempt to scale the group membership across different geographic locations.
Additionally, the implementation has not been optimized for runtime performance, which also
affects the scalability. Administrative scalability was also not considered. Each of these goals,
although important for usage in production, will not hinder the objective: to investigate the
potential for stable and reliable usage of Selective Hearing in the Loomo context.

1.3 Methods

A CRDT framework is designed based on the requirements mentioned in section 1.2. The
framework has to be implemented in the Java programming language version 8 – the version
supported by a Loomo running Android 5.1 (API Level 22).[17] Different parts of the project are
encapsulated to create an object-oriented design. In this process, design patterns by the Gang
of Four [13, 50] and principles such as SOLID [33, 34] are followed where applicable. Git3 is the
version control system used in this project. The GitLab4 instance provided by the Hochschule für
Angewandte Wissenschaften (HAW)5 has been used to keep track of issues and work in progress
through Merge Requests. A GitLab pipeline is set up to support continuous integration. The
CRDT framework’s source code is available under the MIT License [59] in the CaDS GitLab
group.6

To evaluate the CRDT framework, a simple application that uses the framework is developed.
This evaluation application is executed in a Mininet environment. During the evaluation
execution, incoming and outgoing messages from the gossip protocol are logged. This log output
is used to calculate multiple metrics for different parameters. There are no standard metrics to
evaluate distributed systems. The metrics reliability, Relative Message Redundancy (RMR), and
Last Delivery Hop (LDH) have been introduced in the Plumtree paper [27]. As every message

3https://git-scm.com/, accessed 19th May 2021
4https://about.gitlab.com/, accessed 19th May 2021
5Thanks to the team maintaining the instance!
6https://git.haw-hamburg.de/smart4cads/crdt4loomo/, accessed on the 21st April 2021
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Table 1.1: Evaluations with their metrics and adapted parameters
No. Metric Parameter

1 sent − received messages host number; packet loss rate
2 reliability host number
3 RMR packet loss rate
4 LDH host number

sent by Selective Hearing is broadcast by the Plumtree protocol, these metrics can be used to
evaluate this framework. The evaluations, their metrics and the parameters being evaluated are
depicted in Table 1.1. Evaluation 1 shows the difference between sent and received messages
in the log output. Due to the evaluation implementation, it is expected that every message
is logged as sent before being logged as received. This metric’s outcome is used to indicate
whether the results of the evaluations that follow are credible. The second evaluation is used to
show the reliability expected for different Loomo fleet sizes. Third, the RMR is investigated for
different packet loss rates in the network. Finally, the LDH metric is compared in different fleet
sizes. According to the Plumtree protocol specification, it should be possible to observe higher
LDH values for larger fleets. The results of this evaluation could indicate errors in the protocol
implementation.

1.4 Structure

Chapter 2 explains the foundational technologies used in this thesis. An overview of the Selective
Hearing programming model is provided. This includes CRDT concepts, the hybrid gossip
protocol Plumtree, and the gossip membership service HyParView. Additionally, this thesis
is compared with related work. Chapter 3 presents the framework architecture that has been
designed to address the requirements. An object-oriented design is constructed based on the
algorithms mentioned in the previous chapter. Deviations from the original algorithms, the
rationale behind their intentions, and implementation consequences are discussed in this chapter.
Highlights and pitfalls from the implementation are pointed out in Chapter 4. These include the
choices made for Netty in the HyParView implementation, generic CRDT implementations, and
Java serialization instead of a custom format. Solutions for some issues described in the previous
chapter are addressed. The built framework is evaluated in Chapter 5. Multiple tests are
performed, and their results are observed. The test results and their impact on our motivational
example involving a Loomo fleet are analyzed. The thesis concludes with Chapter 6. The research
findings are summarized, and potential future projects are mentioned.

5



2 Background and Related Work

This chapter explains the foundational technologies used in this thesis. The distributed systems’
context for the protocols is provided based on [53]. CRDTs [48], Plumtree [27], and the Hybrid
Partial View (HyParView) [26], are relevant topics. All of these are used to construct the Selective
Hearing programming model [35]. An overview of the model follows. Other CRDT frameworks
are briefly mentioned before the chapter concludes.

2.1 Consistency and Availability

According to [53], a “distributed system is a collection of autonomous computing elements that
appears to its users as a single coherent system.” These autonomous computing elements are
referred to as “nodes.” In Section 1.2, relevant distribution transparencies have been named. In
distributed systems, in which the failure transparency is not achieved, failures can prevent the
collection of nodes from appearing as a single coherent system.

One sort of failure which can occur in distributed systems is network partitions. A network is
partitioned if a non-empty group of nodes is disconnected from another non-empty group of nodes
in the network. Network partitions can be caused by various reasons, ranging from failing routers
to sharks destroying undersea cables [14]. Software developers constructing distributed systems
need to take network partitions into account and mitigate their effects on the application. In the
case of network partitions, the developer’s choice has been between consistency and availability.
This is called the CAP theorem [15]. If the developer needs to guarantee consistency, the
application cannot be available if a partition occurs. If the application were available, conflicting
or incompatible changes to the application could occur in both partitions.

To increase failure transparency, some systems favor availability and reduce their consistency
guarantees. Every node accepts changes to the system, but they might not be propagated
immediately to every node in the system. Instead, all updates are distributed to every other
node at some point in the future. This weaker form of consistency is called eventual consistency.
Eventually consistent distributed applications can be available even when partitions occur.
Updates to a partitioned application are propagated across the complete network if the partition
has been resolved.

6



2 Background and Related Work

Distributed systems that guarantee eventual consistency need to replicate the application data.
In contexts where conflicting updates can be prevented, there is no problem to achieving the
replication transparency. However, in applications which are prone to produce write-write
conflicts, additional mechanisms are required to make the replication transparent.

2.2 Conflict-free Replicated Data Types

A Conflict-free Replicated Data Type (CRDT) is a data type designed to be replicated and
updated without coordination among multiple nodes. CRDTs have been introduced by [49] as
an approach to achieve strong eventual consistency. Strong eventual consistency extends eventual
consistency with the requirement that all replicas receiving the same set of updates reach the
same state.[49] It has been argued that CRDTs have changed the “rules” of the CAP theorem
in [8]. A comprehensive guide about the uses of CRDTs has been provided in [47]. A detailed
CRDT overview is given by [44], which is aimed at developers using existing CRDT libraries,
building systems to support CRDTs, or designing new CRDTs.

According to [44], the main properties of CRDTs are that every replica of a CRDT can be updated
without coordination with other replicas. Two replicas deterministically reach the same result
if they have received the same set of updates. This is known as the synchronization model and
is discussed in Section 2.2.1. The concurrency semantics are discussed in Section 2.2.2 following
the synchronization model. They describe how two replicas can deterministically reach the same
result.

2.2.1 Synchronization Model

The synchronization model of CRDTs describes the data that is used to synchronize CRDTs
between replicas.[44] A CRDT that has been specified in one model can be emulated in every
model [47, 3]. Every model has its advantages and disadvantages.

State-based CRDTs

State-based CRDTs synchronize replicas by propagating their full state. Other replicas’ states get
joined into the local replica. The join operation of a state-based CRDT is associative, reflexive,
and idempotent. Because of these properties, state-based CRDTs have very minimal network
requirements. Updated states can arrive in any order. As long as every replica receives every
update at least once, they reach the same state.

An additional advantage of the join operation is that state-based CRDTs do not need to
be synchronized after every update. The state can instead be synchronized after multiple
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updates to a replica. This feature can reduce bandwidth usage because states typically grow
monotonically.

A disadvantage of state-based CRDTs is that they always require the entire state to be
propagated, even if an individual update only affects a small part of the state. They are also
used by Selective Hearing because of the low network requirements. All CRDTs implemented in
this thesis are state-based CRDTs.

Other Synchronization Models

Operation-based CRDTs synchronize replicas by propagating every update. In an
operation-based CRDT, every update consists of two functions, a stateless generator function
and an effector function with side effects. The replica receiving the update executes the generator
function. The generator function does not change the replicas state. Instead, it generates the
effector function based on the current state of this replica. This generated effector function is
then propagated to every replica, including the one generating it. Once it has been executed,
the effect of the update is present in the state.

Updates need to be designed in an idempotent manner, or the system must make sure that
each update is received by every replica exactly-once. Otherwise, if an update is received and
executed multiple times on some replicas, their state would no longer be deterministically the
same. Compared with state-based CRDTs, operation-based CRDTs have the advantage of not
requiring the entire state to be shipped if only one part has been changed. However, if most
updates affect the whole state, operation-based CRDTs synchronize each update individually.
In addition, operation-based CRDTs have high network requirements because the operations are
not self-contained. Selective Hearing does not meet these requirements; therefore, this thesis
does not use operation-based CRDTs.

Delta-state CRDTs synchronize replicas by only propagating changes to the state since
the last synchronization. It has been verified by [3], that detla-state CRDTs also achieve strong
eventual consistency. They were introduced by [1] and combine the advantages of state- and
operation-based CRDTs. Delta-state CRDTs only synchronize the effect an update had on the
state of a CRDT. So, as in operation-based CRDTs, they reduce bandwidth because they do not
require the full state to be synchronized. They include a join operation similar to state-based
CRDTs. The advantage here is that multiple updates can be piggybacked and do not need to
be synchronized individually. However, as the delta-states are no longer self-contained, they
require causal delivery. Selective Hearing uses a communication layer that does not guarantee
any delivery order; therefore, delta-state CRDTs are not used in this thesis.
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2.2.2 Concurrency Semantics

CRDTs can be designed with different concurrency semantics. A concurrency semantic describes
the CRDT conflict resolution if concurrent updates occur. The concurrency semantic depends
on the CRDT update operations. Thus, every data type has individual possible semantics. In
this section, some concurrency semantics implemented in this thesis are explored.

Logical Time and Clocks

CRDTs need to be able to determine the order of updates. Time is a method to create such
an order. However, physical time cannot be reliably used in distributed systems. A detailed
discussion of the issues is beyond the scope of this section. A good overview of this issue can be
found in [53]. Logical time is a standard approach to address the order of update operations.

Multiple logical clocks exist. These are algorithms used to determine logical time. Most of
the approaches “translate back to a simple causal history.”[2] To create a causal history, every
operation receives a logical timestamp. This timestamp can have the form (i, c), with i being
the unique identifier of the node initiating the operation, and c being a counter of the operations
on this node. This form ensures a unique timestamp per operation.

The causal history of an operation is a set containing timestamps of all previously observed
operations. This set is attached to the operation, which can now be ordered. A node n receiving
an operation o will only apply o if it has applied all operations that are contained in o’s causal
history. An excellent introduction into different versions of logical clocks and their relations to
causal histories has been provided by [2].

In this project, vector clocks have been used in the implementation. Vector clocks derive from
causal histories. They only keep the timestamp of the latest operation per node. This storage
optimization works because the later timestamp indicates that all earlier operations have been
available.

Additionally, as described in [11], hybrid logical clocks have been implemented in this project.
These clocks are not related to causal histories. They are called “hybrid logical” because
they combine a physical timestamp and a logical part to a timestamp. These hybrid logical
timestamps do not guarantee causal consistency—as causal histories do. Instead, they can be
used deterministically to decide which operation all nodes consider to be the latest operation.
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Figure 2.1: Set CRDT concurrently updated by two replicas with a conflict.

Last-Write-Wins

The Last-Write-Wins (LWW) semantic is a concurrency semantic commonly used in multiple
data types. As the name implies, two conflicting updates are resolved by using the latest
timestamp in their total order. The LWW semantic is often achieved by using hybrid logical
clocks, described in 2.2.2. In the register CRDT implemented by this thesis, the LWW semantic
is used. A register CRDT holds a single value that can be set and retrieved.

In a LWW register, the value to be retrieved is the value that was written with the highest
timestamp. The alternative register semantic is the multi-value register. This register returns a
collection of all concurrently written elements.

The LWW semantic has been used to implement a set data type in this framework. In a set,
elements can either be present or not; they do not have a specific order and cannot be added
multiple times. Figure 2.1 shows a conflict situation in a set. Two replicas concurrently update
a set using the same element. Replica A adds the element to the set, and Replica B removes the
element from the set. In a set with the LWW semantic, the conflict with this element is resolved
by the total order of the operations, based on their timestamp. Alternative set semantics give
priority to one of the operations, resulting in an add-wins or remove-wins set.

Computational CRDTs

The C-CRDT is described in [39] in the context of incremental stream processing. A C-CRDT
performs a computation over the elements added to a CRDT replica. It does not maintain all
individual elements added to the CRDT. Instead, only the result of the computation over the
values is of interest. In [39], the application programmer is always required to provide “gluing
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code” to connect multiple C-CRDTs. The authors expanded their study on C-CRDTs in [38] for
transparent usage in cloud databases. They described three state-based computational design
patterns that do not require any additional action from C-CRDTs’ users. In this thesis, the first
two design patterns have been used in implementations of the CRDT library. Generic algorithms
describing the C-CRDTs implemented in this project are specified in [38].

Incremental Computations Design In this design, each replica maintains its contribution
to the overall value. An updated replica propagates its full state to other replicas. The positive-
negative counter and the average C-CRDT are implemented based on this design in this
project.

In an average C-CRDT, each replica maintains two data points: first, the sum of all elements
added to this replica; second, a count of the individual elements that have been added. The
average value is calculated with the sum of all individual sums divided by the sum of all individual
counts.

Incremental Idempotent Computations Design In this design, replicas only maintain
the final result. Updates directly change the result, which is propagated to every other replica.
A C-CRDT based on this design is a top-K list, in which elements that do not belong in the
top-K at one point never belong to this list in the future. It might be used to implement a high
score with k ranks. The top-K list has been implemented in this framework.

Partially Incremental Computations Design An example C-CRDT based on this
design is a top-K list, where elements that are at first not part of the top-K, can become relevant
in the future. This could happen when a top-K element gets deleted, and a previously discarded
element takes its place in the top-K. A top-K replica only synchronizes elements that are part
of the top-K. However, the replica needs to maintain other elements so that they can later be
propagated to the other replicas. C-CRDTs following this design have not been implemented
in this proof-of-concept. As every replica could contain data that later becomes relevant, the
replica should stay available in the future. Selective Hearing expects nodes to fail by crashing.
Recovering nodes start from scratch as if they were new nodes. This condition could result in
data loss with partially incremental C-CRDTs.

2.3 Gossip protocols

To appear as a single coherent system, the nodes in the collection need to communicate with each
other. As described in Section 2.2, CRDTs require each replica to receive every update. Broadcast
mechanisms can deliver a message to each node in a group. Different data dissemination patterns
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Figure 2.2: Comparison of the data dissemination patterns one-to-all, spanning tree,
flooding, and gossip with eight nodes.

used in broadcast algorithms are discussed in section 2.3.1. Broadcast algorithms can also use
different strategies to distribute data. Section 2.3.2 discusses the push and lazy-push strategies.
Plumtree[27] combines two dissemination patterns with different push strategies, as is laid out
in section 2.3.3. To deliver a message to every node in a group, Plumtree and other broadcast
protocols need to know the member nodes of this group. HyParView has been used by [27, 35]
as a membership protocol for Plumtree. A brief introduction to the HyParView algorithms is
provided in Section 2.3.4.

2.3.1 Dissemination Patterns

Dissemination patterns describe the different ways data can be broadcast across a set of nodes.
Their role in the construction of Plumtree has been presented in [28]. Figure 2.2 shows four
patterns that will be laid out in this section.
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One-to-All The one-to-all pattern is straightforward. The node with new data sends it to
each node in the network. The nodes receive the message at most once, so message duplications
do not need to be addressed. Although this pattern is easy to implement, there are some major
drawbacks: It scales poorly, does not balance the load, and does not tolerate failures. Scaling
is an issue here because each node needs to know about all the other nodes in the network. If
there are many nodes, the membership management could have a massive impact on bandwidth,
performance, and memory. Performance is also a problem when a single node sends a message
to every other node in the network. The sending node has many messages to send, while every
other node is idle. Additionally, if the sending node fails after half of the nodes have received the
message, the remaining members never receive the broadcast. This can cause inconsistencies.

Spanning Tree The spanning tree pattern improves upon the scaling and performance issues
of the one-to-all pattern. Every node sends the broadcast message to its children. Similar to
the one-to-all pattern, the spanning tree pattern prevents message duplication. The load of
reaching each node in the network is distributed among the members of the system. However,
the load is not distributed equally among the members. Leaf nodes do not send messages to
other nodes unless they are the origin of the broadcast. Nodes near the top of the tree need
to send many more messages. In addition to load balancing, nodes only need to know about
parts of the network membership. This allows for more extensive networks without having each
node maintain membership data for every other node. However, the spanning tree pattern is less
straightforward to implement because it needs to be constructed covering all network members.
In addition, just like the one-to-all pattern, it is still prone to failures. If a single node fails before
sending the message to its child nodes, the broadcast does not reach every active node.

Flooding The flooding mechanism introduces redundancy in message delivery to achieve
higher resilience to failures. Each node has a specific number of neighbor nodes to which it
forwards received broadcast messages. Failing nodes no longer cause a broadcast message to be
lost. A drawback of this approach is that nodes receive single broadcasts multiple times and need
to deal with message duplicates. For example, it is important that nodes only forward messages
when they received them the first time, to prevent endless broadcasts. Another drawback is
higher bandwidth usage. On the plus-side is the load distribution; every node contributes an
equal number of messages per broadcast. Implementing this pattern is less complex than a
spanning tree construction.

Gossip The gossip pattern is an adaption of flooding. It builds on the strengths of the flooding
pattern while improving upon some of its drawbacks. Message redundancy is still used to mitigate
the effect of failures. However, the message redundancy is reduced. To cut down on message
duplication, a node in a gossip protocol sends its messages to a random subset of its neighbors.

13



2 Background and Related Work

This still covers every node with a high-reliability rate. However, the random approach makes
this pattern less predictable than the other patterns.

2.3.2 Gossip Push Strategies

Different strategies for broadcasting data with a gossip protocol exist. The differences lie in
the responsibilities of the sending and receiving nodes. Although more strategies exist, the two
relevant for Plumtree will be explored in this section.

Eager Push In this strategy, a node sends the entire message to its neighbors. As soon as a
recipient node knows a certain message exists, it also has the message’s payload and can deliver
it. Thus, the implementation of the receiving process on the recipient node is rather simple, as it
only needs to make sure that duplicate messages are detected. The eager push strategy reduces
the latency from sending a broadcast until all nodes have received the broadcast. The cost of this
low latency is higher bandwidth usage, as the full payload is transmitted with each message.

Lazy Push In this strategy, a node only sends a message announcement to its neighbors. The
neighbors can request the entire message if the full payload is needed. It takes three round-trip-
times, with this strategy, for until a node to receive the whole broadcast message. This higher
latency reduces the overall bandwidth usage, as the message announcements can be tiny. In
addition to higher latency, the nodes are slightly more complicated when compared with eager
push nodes. They need to keep track of received messages, message announcements, and the
announcements’ origin.

2.3.3 Plumtree

Plumtree is a hybrid gossip protocol introduced in [27]. A hybrid gossip protocol combines a
gossip protocol with another distributed algorithm. The goal is to achieve the good qualities of
both. “Plumtree” stands for “push-lazy-push multicast tree.” This name hints at the phases
used in the Plumtree protocol: Plumtree performs an eager push in the spanning tree pattern,
followed by a lazy push in the gossip pattern.

Plumtree Phases

Eager Push Phase In the first phase, an eager push is performed in the spanning tree
pattern. The low-latency push strategy with higher bandwidth usage is combined with the low-
overhead dissemination pattern. The spanning tree pattern mitigates the effect of the higher
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bandwidth potential of the eager push strategy. When no failures occur in the network, this
phase will propagate a broadcast to every node with low latency. If a node receives a payload
message twice, it will request that the duplicate eager push connection be pruned by sending a
prune message. The future message will be announced in the lazy push phase.

Lazy Push Phase In the second phase, a lazy push is performed in the gossip pattern. The
low bandwidth push strategy with higher latency is combined with the redundant dissemination
pattern. This serves two purposes: a) it allows the protocol to repair failures in the spanning
tree, and b) the effect of failures can be reduced. After a node has pushed the payload message
to its children in the spanning tree, it pushes an announcement of this message to each node
in its direct neighborhood. If a node receives a message announcement first, it will wait until a
timeout occurs and then request the payload from the announcement node by sending a graft
message. If a message is requested, this will also trigger a tree repair process. The requesting
node will receive the next message in the eager push phase.

Plumtree Improvements

The Plumtree protocol already improves upon the gossip and spanning tree dissemination
patterns. Its design still has limitations. Some improvements to these limitations have already
been addressed [27, 28] and are briefly listed below. None of these improvements have been
implemented in this proof-of-concept. However, the framework has been designed to allow
improvements in future work.

Shared and Sender-Based Plumtree A straightforward Plumtree implementation
shares a single tree for every broadcast. The authors thus call it “shared Plumtree” in [27]. As
described in the spanning tree pattern on page 13, this single tree does not balance the load
equally among all nodes. Additionally, a message sent by a leaf node is first sent up to the
spanning tree root before it reaches nodes in other subtrees.

The “sender-based Plumtree” is an approach to mitigate these effects. Instead of using a shared
spanning tree, the sender-based Plumtree constructs one spanning tree per sending node in the
network. This method creates an optimal broadcast path for every sending node in the eager
push phase. The drawback of a sender-based Plumtree is higher memory demands. This overhead
can be minimized by lazy construction.

Outstanding Set for Announcements In [28, slide 131]. an improvement that uses
an outstanding set for message announcements has been introduced. The tree repair process
in the lazy push phase requires the announcements to arrive. If a message announcement
is lost, the repair process might be hindered. To prevent announcement loss, a node adds
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outgoing announcements to an outstanding set. A recipient either acknowledges the receipt of
an announcement or requests the payload message. In both cases, the announcement sender
removes the announcement from the outstanding set. Otherwise, the sender knows that the
announcement has been lost and can resend it.

2.3.4 HyParView

HyParView is a hybrid gossip algorithm that provides a resilient membership protocol by using
partial views [26]. It aims to provide global system connectivity in a scalable way. The used
partial views ensure scalability. Each node only knows about part of the network. No node needs
to know about all other nodes.

In HyParView, each node maintains an active and a passive view. The active view is used
for data dissemination and failure detection. An active view relation is symmetrical. If node
A ∈ B.activeV iew is true, then B ∈ A.activeV iew also needs to be true.1 A node establishes
a Transmission Control Protocol (TCP) connection to each node in its active view. The TCP
connection allows for quick detection of disconnected nodes. The passive view is used to replace
disconnected or failed nodes from the active view. No TCP connection is established to the
nodes in the passive view. However, HyParView implementations may choose to establish TCP
connections between nodes in the passive view. This increases the recovery performance if failures
in the active view occur.

A new node sends a join request to a join node that is already part of the network to connect
to the existing HyParView group. This join node adds the new node to its active view. If the
maximum size of the active view has been reached, the join node drops an existing node from
its view. It then forwards the join request to a different node in its active view. The forwarded
message contains two time-to-live (TTL) values—one for the active view and another for the
passive view. If the active-TTL is 0, the receiving node adds the new node to its own active
view. If the active view of the recipient node is full, it drops an existing node from its set.
However, receiving nodes can establish a connection to the new node if their active view is not
filled. Receiving nodes perform similar steps with the passive view and the passive-TTL.

Periodically, nodes perform a shuffle mechanism. This mechanism’s intention is to ensure that
disconnected nodes get pruned from the passive views. A node initiates a shuffle, creating a list
of nodes including itself, some nodes from its active view, and some nodes from its passive view.
It sends this list to one of the nodes in its active view in a shuffle request. They forward the
request similar to a join request. Once the shuffle-TTL is 0, the receiving node sends a shuffle
reply to the initiator. This reply includes a nodes list constructed in the same way as the initial
nodes list. Both of the shuffle request parties add the received nodes to their passive view. If

1As latency is never zero [53, page 24], in the real-world this condition is temporally false, if a new
connection is established.
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the list already contains the maximum number of nodes, they drop existing nodes, opting for
the nodes they have sent in the shuffle message to the other node. Due to the construction of
the node list—which includes the sending and active view—, running nodes are preferred in the
shuffle process. Disconnected nodes get pruned from the system after some time elapsed.

2.4 Selective Hearing

Selective Hearing is a programming model for large-scale edge computing and is presented in [35].
This programming model consists of two layers: a programming layer and a communication
layer that uses Plumtree. The programming layer is based on the Lasp programming language,
which provides deterministic coordination-free computation based on CRDTs. The CRDTs
are maintained in a node state, which is explained in Section 2.4.1. The operations in the
programming layer are described in Section 2.4.2. They use the communication layer based
on Plumtree to broadcast message to all nodes in the group (including the sending node).

2.4.1 Node State

In Selective Hearing, nodes maintain a state consisting of (σ, δI , δv).2 σ is the known variables
set, containing all variable identifiers observed by the node. δv is the known values set, similar
to a map data structure. It contains (i, v) tuples, where i is an identifier and v is the latest
value received by the node. δI is the interest set for all pending read operations on the node. It
contains a set of (p, c) tuples for each variable identifier, added by the read operation. p and c

both are functions with a variable value as a single parameter. Both functions are provided to a
call of the read operation.

The Selective Hearing state is not persistent. The programming model expects nodes to fail
by crashing. Recovering nodes choose a new identifier and start with a clean state. This can
produce data loss in situations in which not everything has been propagated, see the C-CRDTs
discussion in 2.2.2

2.4.2 Operations

A node can declare a new variable to create an identifier, read the value of a variable, and
bind new values to identifiers. The specification for these operations has been made in a
functional programming paradigm. In Section 3.4.2, an object-oriented design is presented,
and differentiations from the original specifications are discussed.

2[35] uses δi instead of δI , but this might become confusing with the identifier notation i.
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declare(t) 7→ i declare creates a variable identifier i on the initiating node. This identifier is
broadcast to all the nodes through the gossip protocol. The identifier is connected to a type t.
Each node receiving this identifier adds it to the known variables set σ.

read(i, p, c) i is the identifier of the variable whose value v should be read. p is a predicate
that needs to be satisfied before a read operation is continued. In the case where p(v) 7→ true,
the continuation function c is executed. If p is not satisfied, the tuple (p, c) is added to the
interest set δI . read does not perform a broadcast.

bind(i, v) i is the identifier of the variable whose value should be updated with the new value
v. bind only broadcasts v using the communication layer on the initiating node. Each node
receiving this bind operation joins the received v with the current entry in the known values set
δv. The result of this join replaces the previous value of i in δv. If no entry exists for i in the
δv, a new tuple (i, v) is added. After δv has been updated, all pending read operations on i in
the interest set δI are rechecked. If their predicate is satisfied after the update, the matching
continuation is executed.

2.5 Other CRDT Frameworks

CRDTs are part of Atomix, “a reactive Java framework for building fault-tolerant distributed
systems.”[10] Atomix provides many algorithms for distributed systems, including the consensus
protocol Raft, a multi-primary protocol, cluster management and communication, a standalone
agent, as well as others. “Distributed Primitives” have been implemented using the various
protocols. One of these methods is a CRDT protocol that uses a gossip protocol for network
communication. Atomix is thus very similar to the design implemented in this thesis.

Additional CRDTs or CRDT frameworks have been implemented in different programming
languages.3 Two notable frameworks are Automerge [19] and Yjs [18, 41]. Both are implemented
in JavaScript. Automerge is a JavaScript Object Notation (JSON)-like CRDT based on [20].
Yjs is a high-performance CRDT implementation that scales well when there are many users.
It can be integrated into multiple existing text editors, which are frequently used on websites.
Both implementations do not provide network communication. Instead, they communicate using
existing peer-to-peer communication protocols. Compared with the proof-of-concept scope, other
CRDT frameworks are more feature-rich. Porting one of these to Java for use on a Loomo is
beyond this project’s scope.

3An updated list is maintained at https://crdt.tech/implementations, accessed 11th May 2021.
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2.6 Conclusion

To achieve higher availability in distributed systems, data objects are replicated among multiple
nodes in a group. Updates to these objects cannot be propagated immediately to every node.
Eventually, all nodes receive every update. This is known as eventual consistency. CRDTs have
an additional guarantee: once all updates are received by every node, each node reaches the
same result, with requiring coordination. This is called strong eventual consistency. Broadcast
protocols can be used to propagate all updates to every node in a group. Different data
dissemination patterns exist for broadcast protocols. The Plumtree protocol combines the fast
but error-prone spanning tree pattern with the reliable but redundant gossip pattern. Plumtree
uses HyParView to build the broadcast’s membership group. The Selective Hearing programming
model combines a programming layer based on CRDTs with a communication layer based on
Plumtree.

The following chapter presents the solution strategy that has been chosen to implement Selective
Hearing in this thesis. The object-oriented design is constructed based on the algorithms
mentioned in this chapter. Deviations from the original algorithms, the rationale behind their
intentions, and implementation consequences are also discussed.
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This chapter presents the framework architecture that has been designed to address the
requirements of this thesis. The object-oriented design is constructed based on the algorithms
mentioned in the previous chapter. An overview is provided, and the three main components are
laid out in more detail. Deviations from the original Selective Hearing algorithms, the rationale
behind their intentions, and their consequences are discussed.

3.1 Architecture Overview

The framework architecture can be categorized using the architecture styles described by [53].
Although an application developer only uses objects, the architecture differs from a Remote
Procedure Call (RPC) or Remote Method Invocation (RMI) architecture. The local object
is not a stub, but completely functional and independent of remote objects. Selective
Hearing resembles an event-based publish-subscribe architecture, which communicates using the
broadcast protocols. Each node subscribes to every publication. The framework consists of four
layers: an application, Selective Hearing, Plumtree and HyParView.

Figure 3.1 shows the high-level component diagram of the framework, which has been named
‘crdt4loomo’ in the Java package. For clarity purposes, this diagram does not include every
detail of the components. The CRDT library and Selective Hearing are top-level packages in
the framework. Another package hierarchy for the broadcast mechanisms is introduced. This
package currently only includes a Plumtree and a HyParView implementation. The six most
significant interfaces in this framework are depicted in this diagram. Their intentions are briefly
explained in this section and laid out in more detail in the following sections. In most cases, an
application developer accesses the interfaces defined by the CRDT library.

The motivation behind this design is to separate data types from communication. An application
developer does not need to know which CRDT implementation is used. Components are loosely
coupled and work with dependency injection [12]. The dependency inversion principle [30, 29] is
respected because all components depend on abstractions.

The CRDT library defines interfaces of all supported CRDTs. Each supported CRDT is
additionally implemented as a plain Java object using only the Java standard library. The
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Figure 3.1: High-level component diagram on the framework.

state-based CRDT and CRDT factory are important interfaces of the library. The state-based
CRDT defines the basic methods that every state-based CRDT in this library has to implement.
It is used as the base interface for the following typed CRDTs. The CRDT factory defines the
methods required to create instances of implemented CRDTs. This interface is implemented in
the library and in Selective Hearings wrapped CRDTs.

Selective Hearing manages CRDTs that are propagated among nodes using gossip protocols.
This component implements the state-based CRDT interfaces from the CRDT library. It also
makes direct use of the CRDT library implementations but wraps these instances, adding the
gossip propagation.

The broadcast package is the home for all components dealing with gossip protocols. No
broadcast component knows what data it sends or receives. The gossip protocols implemented
in this package belong in two categories: broadcast and membership protocols. The broadcast
protocol interface defines how this package accepts messages for broadcasts from components
using this protocol. Components using these broadcasts also need to receive broadcasts. This
need is supported by the broadcast observer interface. This is an abstraction that the protocol
implementation and caller can rely on. The gossip membership protocol interface defines the
application programming interface (API) for a membership protocol. Implementations can be
queried for all peers in the neighborhood. Users of a membership protocol can implement the
neighborhood observer interface and register themselves to allow the users to be notified about
updates.

The Plumtree component implements the Plumtree algorithms and satisfies the broadcast
protocol interface. It forwards received broadcasts to every broadcast observer, retrieves
the peers using a gossip membership protocol, and registers itself as neighborhood observer
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to get updates on changes to its connected neighbors. Additionally, the Plumtree component
implements the broadcast observer to be notified of broadcasts received by the gossip membership
protocol. For clarity purposes, this implementation detail has been left out of the overview
diagram.

The HyParView component implements the HyParView algorithms and satisfies the gossip
membership protocol interface. It maintains an active view and a passive view of peers. Changes
to the active peers are reported to all registered neighborhood observer instances. Additionally,
the HyParView component also implements the broadcast protocol to notify its uses in higher
layers of received broadcasts. For clarity purposes, this implementation detail has been left out
of the overview diagram.

3.2 CRDT Library

Figure 3.2 presents the structure in the CRDT library. It shows the central interfaces and
examples of how they are used inside the package. Two classes in the diagram have a lighter
color than the rest. These classes are not directly accessible to users from outside the package.
Application developers using this library only access the CRDT factory implementation of this
library. Apart from this class, an application developer can only interact with CRDT interfaces.
This ensures that an application using the CRDTs does not depend on a specific implementation.
Still, if a developer really tries to enforce the use of local CRDT implementations, the application
can depend on the local CRDT factory class.

Every CRDT in this library implements the state-based CRDT interface. It defines the two
required methods that are always expected. One is the method to merge another CRDT.
Additionally, the method defined by the comparable interface is required to allow the ordering
of CRDTs.

Additional interfaces define the specific CRDTs, such as the set CRDT or an average CRDT.
These interfaces extend the state-based CRDT interface and only have to add methods required
for their semantic. In cases where interfaces in the Java API [43] exist, they are extended by the
CRDT interface in this library.

3.2.1 Creational Pattern

Figure 3.2 also shows the CRDT factory. The factory interface is defined to always return
interfaces instead of concrete classes. The local CRDT factory is the only class, which is directly
accessible from other packages. It instantiates the local CRDT classes.
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Figure 3.2: Interfaces used in the CRDT library.
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In the decision on the creational design pattern used by the CRDT library, three options have
been evaluated based on [50]: the factory method, the abstract factory, and the builder pattern.
The abstract factory has been chosen to be used.

The factory method provides an interface defining how an object is created. Implemen-
tations of this factory method can decide which concrete object implementation is created. If
used in this framework, this approach would lead to many different factory method interfaces
and implementations: one for every CRDT interface. Many interfaces could become a source of
errors when dealing with Selective Hearing, which requires that every Selective Hearing CRDT
receives the same Selective Hearing instance. The use of multiple Selective Hearing instances
could work, but it has not been tested. At the very least, it would waste computational resources.
Additionally, the factory methods of different CRDT implementations could be mixed, leading to
unexpected behavior. On the plus side, applications only have to depend on the few CRDT they
are actually using. This would satisfy the interface segregation principle [31], which states that
‘clients should not be forced to implement methods they do not use.’ However, this could lead
to applications that violate the information hiding principle because their inner state becomes
part of their creation. In an implementation, all factory methods would probably be collected in
a single class, which basically represents the next option.

The abstract factory provides an interface defining how a family of related objects is
created without specifying what the concrete implementations are. An abstract factory creates
products from product families. This option is appealing in this framework. The products are the
concrete CRDTs. The product families are the packages that implement the CRDT interfaces.
In this framework these are the local CRDT library and Selective Hearing. The CRDT factory
interface becomes a part of the main CRDT library. This package also provides a local CRDT
factory implementation that produces all the local CRDTs. The Selective Hearing component
implements the factory interface as well. Every returned CRDT from an implemented abstract
factory matches the other CRDTs from the same factory. One thing to be aware of is that a
client of the framework might not require the usage of CRDTs from the same family. However,
this is a minor issue, as the client can make use of different factories. It could be argued that an
abstract factory violates the interface segregation principle [31]. Not every CRDT library might
implement each CRDT interface, but they are required to implement every creation method.
This was considered to be a minor issue in the scope of this project.

The builder pattern provides an interface that defines steps to create a single object with
lots of options and, when finished, return the configured instance. This pattern could be used
to create the different CRDTs as well. A CRDT builder interface could have methods to create
CRDTs that manage a single element, multiple ordered elements or multiple unordered elements.
Based on the method calls a register CRDT, list CRDT, or set CRDT could be returned. A
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CRDT director could be introduced to simplify and hide the creation of concrete interfaces.
An issue with a CRDT builder is that there is no CRDT implementation for every possible
combination of options. As an example, the current state of the framework lacks a simple list.
It would not make sense to use the builder instead of the director. The director would look very
similar to an abstract CRDT factory, which could be used instead.

3.2.2 Wrapped CRDTs

It is not a general rule that CRDTs from one factory can be combined with CRDTs from another
factory. The merge operation only allows the merging of CRDTs from the same classes. This
limitation is necessary because the merge operation needs to access the internal CRDT data
structure, which is not accessible using the interface. The underlying data structure might
become inconsistent with different CRDT implementations.

A CRDT package, such as Selective Hearing, does not have to implement the CRDTs on its
own. Instead, it can follow the do not repeat yourself (DRY [54, 58]) principle and rely on the
implementations in the local CRDT library for tested CRDT implementations. These imple-
mentations are wrapped with additional functionality. The wrapped CRDT interface provides a
way to access an underlying CRDT implementation. This access ensures the interoperability of
CRDTs from different CRDT factories, such as Selective Hearing, with the local CRDTs. Before
comparing the classes for compatibility, the merge operation unwraps a CRDT until the actual
implementation is returned.

An application use case for wrapped CRDTs is to utilize them to batch multiple consecutive
updates to a CRDT. The local CRDT can be updated in a loop multiple times in a row. After
all consecutive changes have been applied, the local CRDT can be merged into the Selective
Hearing CRDT, which then propagates all changes once instead of every change on its own. This
increases memory usage but can drastically reduce network traffic, especially with state-based
CRDTs, which always propagate their full state. This scenario might seem to contradict the
distribution transparency. This is not necessarily the case. An application could accept two
CRDT factory instances – one for immediate updates and another for occasional updates. The
application does not need to know which implementations are used or if different factories are
used at all.

Instead of using a separate wrapped CRDT interface, the unwrap method could have been added
to the default state-based CRDT interface. This option would have been more flexible. The
unwrap method of CRDTs that wrap another CRDT returns the result of the unwrap method
of the wrapped CRDT object. A CRDT that does not rely on another CRDT just has to return
the reference of itself (this in Java). This approach would remove checks if an object is an
instance of a wrapped CRDT interface. It would also ensure that the unwrap method always
returns an unwrapped CRDT.
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An alternative to using a wrapped CRDT interface could be a data transfer object that defines
the format used to exchange data between two operations. However, it might not be possible to
create a useful variant of such a data format that satisfies different CRDT semantics. Designing
such a format is beyound the scope of this project.

3.3 Broadcast Package

The broadcast package defines multiple interfaces, depicted in Figure 3.3. These interfaces are
used and implemented by different components in the broadcast package. The components and
their internal relationship are presented in Figure 3.4.

3.3.1 Broadcast Package Interfaces

The peer interface in Figure 3.3 represents one neighbor of the current node. All peer objects
should be uniquely identifiable and support sending messages to the node they represent. Note
that this interface is technology-agnostic. The same interface could be used for TCP and
Bluetooth connections without requiring the calling party to deal with the connection details.
The calling party can send a message, and the peer knows how to do it. The name parameter in
the message can be used by broadcast observers to only handle their messages.

The broadcast protocol interface allows low coupling between the broadcast component and its
users, such as the Selective Hearing component. This design satisfies the dependency inversion
principle [30, 29] because the high-level module Selective Hearing and the low-level module
Plumtree depend on the same abstraction.

In addition to sending messages through the broadcast protocol, components need to be able to
receive broadcasts. Users of this broadcast component can implement the broadcast observer.
An observer is required to be registered in advance in the broadcast protocol. Messages received
before an observer is registered are lost. This was considered an insignificant issue because the
construction of the protocols allow the registration of observers before the protocol algorithms
are executed. Using the observer pattern would also allow multiple receiving components to use
the same broadcast mechanism.

Two ideas have been cast off in the broadcast observer interface’s design process. Firstly, a simple
queue for received messages could have been used. The broadcast protocol could just append
messages to the queue and observing components could access the messages from there. The
advantage here is that messages received before an observer is registered are not lost. However,
it would have complicated concurrent usage of multiple receiving components. Additionally,
queue operations would have made the broadcast protocol interface more complicated, which
was undesired in this proof-of-concept. Secondly, an object implementing a step in the network
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Figure 3.3: Interfaces used in the broadcast component.
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communication framework’s receiving pipeline could have been used. This would have reduced
the required conversion steps between the components. However, it would have exposed the
broadcast mechanism’s internal dependencies. Moreover, it would have forced the user to add
the network framework as dependency as well.

Lower layers should not need to care what type of data they are propagating. So, in this
framework, a text representation of the propagated data has been used. In future work, more
sophisticated methods to exchange data might be used.

The interfaces are designed to support effortless testing. When using dependency injection [12],
the Plumtree protocol does not have to know whether it is dealing with real nodes in a network
or stub implementations used for testing.

Plumtree maintains two peer sets. To initialize the eager push peers set, the protocol needs
to receive its peers from the membership protocol. These sets need to be updated when the
neighborhood or membership status of a contained peer changes. In [27], two primitives indicating
a neighbor is down or up have been specified. The gossip membership service needs to trigger the
events “to notify the gossip protocol whenever a change happens on the partial view maintained
by the peer sampling service.” These primitives have been implemented with the observer
pattern again to achieve low coupling between the broadcast and the membership protocol.
The neighborhood change can be observed. It has a type (either up or down) and affects a peer.
The broadcast protocol implements the neighborhood observer interface and can be registered
in the gossip membership protocol. Note that although the membership protocol reports the
changes, the interfaces use ‘neighbor’ or ‘neighborhood’ in their names and not ‘membership.’
This is because the changes are only reported about peers in the current node’s neighborhood.
The neighbor may have connected to or disconnected from the current node. However, this might
not always affect the membership itself. Consider the following scenario: A new node connects
for the first time and is added as a peer to a random node. This process triggers a neighbor up
event on the random node. It also indicates a membership change because the node is new in
the group. The randomly selected existing node might have to drop a neighbor from its peer
set due to limits on the active view size. This triggers a neighbor down event on both nodes.
It does not indicate a change in the membership, even though the neighborhood for both nodes
changed.

3.3.2 Broadcast Implementations

Figure 3.4 shows how the concrete protocol implementations Plumtree and HyParView use the
broadcast package interfaces.

HyParView is a gossip membership protocol. It implements the peers that are maintained and
how the changes are represented. It notifies a neighborhood observer about changes to its peers.
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Figure 3.4: Broadcast component diagram.

It also performs and receives broadcasts and notifies broadcast observers about messages it
received from a peer.

Plumtree is a broadcast protocol. When receiving a broadcast, it notifies the broadcast observers
that have been registered. It relies on a gossip membership protocol to receive peers as neighbors.
It observes its neighborhood for changes on neighboring peers.

In addition to the interfaces, which are all defined directly in the broadcast package, only a single
facade for each of the components has to be accessed from outside the package.

3.4 Selective Hearing Component

The most important classes and interfaces of the Selective Hearing component are shown in
Figure 3.4. The Selective Hearing interface and its implementation are central in this package.
For clarity purposes, together they are referred to as Selective Hearing class in this section. The
Selective Hearing class implements the state and operations, as described later in this section.
It implements the state and operations, as described in Section 3.4.2. This class maintains all
CRDT states without knowing the concrete CRDTs being used. This is achieved using the
VariableValue interface. Each CRDT implemented by the Selective Hearing middleware also
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Figure 3.5: Interfaces and packages of the Selective Hearing component.

implements the VariableValue interface. This is the abstraction that the Selective Hearing class
and the CRDT depend upon. This design follows the dependency inversion principle [30, 29]. The
abstract class VariableValueCRDT implementing the VariableValue interface removes duplicate
code among the CRDTs. It does so by utilizing the WrappedCRDT interface to access the local
CRDT consistently.

The user of this package only has to access the Selective Hearing CRDT factory and the interfaces
defined by the CRDT library. The factory knows how to construct the Selective Hearing class and
all CRDTs in the package. Currently, a Selective Hearing CRDT instantiates the local CRDT it
wraps. This instantiation can be seen in pseudocode later in the section. This approach has been
a consequence of technical decisions made in the identifier implementation. The disadvantage is
that the local CRDT implementation is fixed. This design violates the open-closed principle [37,
32]. For example, consider a persistent CRDT library that wraps local CRDTs just as Selective
Hearing does. If this library were used in the Selective Hearing middleware, all the Selective
Hearing CRDTs would have to be changed. A more sophisticated approach would use dependency
injection [12]. The Selective Hearing CRDT factory could be optionally initialized with a CRDT
factory parameter that is used to construct the wrapped CRDTs. This factory could be passed
into the Selective Hearing CRDTs.
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As depicted in Figure 3.1, the Selective Hearing class acts as a broadcast observer and accesses
a broadcast protocol. These connections have been omitted from Figure 3.5 for clarity.
Additionally, the interfaces and implementations used from the core package, such as the
identifier interface or the vector clock implementation, have been removed.

3.4.1 An Example CRDT in Selective Hearing

In Selective Hearing, the CRDT library interfaces are implemented. The Selective Hearing imple-
mentations of these CRDT interfaces wrap the existing local implementations. The pseudocode of
a wrapped example CRDT is presented in Algorithm 1. This pseudocode implements a fictional
state-based CRDT, consisting of an update, a query, and a merge operation. The wrapping
CRDT also implements a join operation which is part of the variable value interface that the
Selective Hearing class manages.

In Algorithm 1, the bind operation can be observed in action whenever the state of the CRDT
has changed. This is the case after an update or merge operation. However, bind is not called
after a received example CRDT is joined. This would lead to an infinite loop of bind messages.
All operations in this wrapping CRDT simply forward the calls to the local CRDT and execute
very few other operations.

The declare operation is never used in Algorithm 1. Due to the signature of the declare operation
in Algorithm 4, declare is called from outside after the CRDT has been completely initialized.
The call is performed in the Selective Hearing CRDT factory as demonstrated in Algorithm 2.

3.4.2 Functional Logic to Object-Oriented Design

The Selective Hearing operations have a mathematical specification in [35]. The operations
are specified in the context of a functional programming environment. Variables are accessed
directly by name using the read operation in a recursive function (the example in [35, Figure 3]
is a filter).

One goal of this thesis is to provide a CRDT library to an application programmer. Another
goal is to make the distribution transparent. The programmer should not need to adapt the
code depending on whether the used CRDTs are from the local library or from the distributed
Selective Hearing library. The underlying mechanism should be transparent to the programmer.
So, using a read operation to access the current value of a CRDT managed by Selective Hearing
would not satisfy this goal. Instead, in object-oriented programming (OOP), it is more common
to access the variables by their object reference. The use of object references imposes other
complexities to the code. If, for example, the bind operation used a different object than the
object referenced by the programmer, two diverging versions of a CRDT would be used.
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Algorithm 1: Example CRDT in the Selective Hearing component
attribute: variable identifier vId
attribute: local state-based CRDT crdt
attribute: node-level monotonic counter clock
attribute: Selective Hearing instance sh
operation init is

input : unique name
input : identifier of this node nId
input : Selective Hearing instance sh
vId.init(ExampleCRDT type, name);
crdt.init(vId, nId);
clock.init(nId);
sh = sh;

end
operation merge is

input : updated instance other of crdt
crdt.merge(other);
clock.update();
sh.bind(vId, this);

end
operation query is

output : data managed by the crdt
return crdt.query();

end
operation update is

input : data to update the state of the crdt
crdt.update(data);
clock.update();
sh.bind(vId, this);

end
operation join is

input : received ExampleCRDT other
if clock does not contain other.clock then

clock.update(other.clock);
crdt.merge(other.crdt);

end
end
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Algorithm 2: Creation of an example CRDT in the Selective Hearing CRDT factory
attribute: node identifier nId
attribute: Selective Hearing instance sh
operation createExampleCRDT is

input : unique name name of the new CRDT
output : new Selective Hearing crdt wrapping an example CRDT
crdt.init(name, nId, sh);
return sh.declare(crdt.vId, crdt);

end

As more attention has to be paid to the object references, the original specification is not directly
transferable to this project.

The following sections contain converted specifications in OOP pseudocode. The pseudocode
algorithm blocks begin with a definition of the variables relevant outside this operation. The
lines beginning with ‘input’ define parameters that are passed into the operation when it is
called. The lines beginning with ‘output’ define the return values of the operation. No ‘output’
line indicates an operation without return value. For brevity, additional return statements are
omitted from the operation. The lines beginning with ‘attribute’ define used attributes of the
Selective Hearing object in which the operation has been called.

Declare Operation

The declare operation, as specified by [35], is not complicated. Algorithm 3 shows the local
part of the original declare operation. It sends the new identifier and does not change the node
state.

Algorithm 3: Declare operation (as specified by [35])
input : type information t
output: new variable identifier i
u = unique();
i = (u, t);
broadcast(declare, i);

The declare operation has been adapted in this framework. The following enumeration explains
the details of the deviations and their rationales.

1. The provision of an existing identifier, that has been created from the calling party, has
been allowed. This is a minor update but is required to allow the programmer to name
the used CRDTs.

33



3 Framework Architecture

2. Instead of returning the new identifier, the object reference for the declared variable used
inside the Selective Hearing object is returned. This is required to ensure the programmer
uses the same object updated by Selective Hearing in the background. The communication
layer does not guarantee any message order. So, a node might first receive a bind message
containing an identifier before the variable is declared locally. In this scenario, an existing
object would already be maintained in the known values set attribute of Selective Hearing.
This object needs to be referenced from outside Selective Hearing.

3. Because the CRDT objects are initialized in a factory, these initial objects need to be
provided to the operation. If a node has not yet received an object for this identifier, the
provided initial object will be used and saved in the known values set attribute of the
Selective Hearing object.

Algorithm 4: Declare operation (as implemented in this framework)
attribute: known values set δv
input : variable identifier i
input : variable value object reference v
output : v = δv.get(i)
if not δv.containsKey(i) then

δv.put(i, v);
end
broadcast(declare, i);

Algorithm 4 shows the declare operation as implemented in this framework.

The declare operation receiving a new identifier has been implemented as specified. The identifier
is added to the known variables set. In the current implementation, the known variables set might
not be required at all. So, broadcasting and receiving new identifiers could have been removed.

Read Operation

The read operation was not implemented in this project. It is not required in the current
implementation. CRDTs maintained by Selective Hearing are accessed using the references of
the concrete objects in the attributes of Selective Hearing. The programmer using the framework
does not have to deal with specific CRDT implementations. Instead, it is possible to use whatever
query and update operations are defined in the interface of the specified CRDT.

An operation similar to the read operation would be a good addition to the framework to prevent
anti-patterns such as active or busy waiting [7]. If, for example, a piece of code should be executed
once a CRDT reaches a specific value, it would be tempting to write a loop checking this CRDT
and sleeping for a second if the value is not as awaited before checking again. A better method
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is to register a function for later execution, combined with a predicate that is checked when the
CRDT is updated.

Algorithm 5: Read operation (as specified by [35])
attribute: known variables set σ
attribute: known values set δv
attribute: interest set δI
input : variable identifier i
input : predicate operation p: v 7→ boolean
input : continuation operation c: v 7→ void
if δv.containsKey(i) then

v = δv.get(i);
if p(v) then

c(v);
return;

end
end
if δI .containsKey(i) then

s = δI .get(i)
else s = ∅;
s.add(p, c);
δI .put(i, s);
σ.add(i);

Algorithm 5 shows the read operation as specified by [35]. The Selective Hearing attributes from
the class implemented in this framework have been added to demonstrate that this operation
could have been added without complications. However, to prevent requiring the programmer
to know the library from which a CRDT is created, such an operation should not be added to
Selective Hearing. Instead, a read operation would have to be added in the basic CRDT interface.
In this design, the interest set would become a part of the CRDT attributes.

Bind Operation

The two parts of the bind operation have both been adapted to fit the OOP world.

In [35], the local part of the operation is stateless. It just sends the broadcast message that
binds a new value to an identifier in the receiving nodes. In OOP, more attention has to be
paid to the object references. So, similarly to the declare operation, the local bind operation
has been augmented to store the provided CRDT if none is available for this identifier. The line
beginning the relevant block has been marked as added in Algorithm 6. This addition is not
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strictly necessary, if the identifier is always declared locally before binding a value. However, to
cope with programming errors, this addition has been left in the operation.

Algorithm 6: Bind operation (as implemented in this framework)
attribute: known values set δv
input : variable identifier i
input : new value v

added if not δv.containsKey(i) then
δv.put(i, v);

end
broadcast(bind, i, v);

The receiving part of the bind operation always affected the Selective Hearing state. In the
specification, this operation checked every pending predicate and continuation tuple in the
interest set. The check of the interest set was omitted in this framework. Algorithm 7 shows the
full bind operation, where the line beginning the omitted block has been marked as removed.
If an operation similar to read had been implemented in a CRDT, this block would have to be
called by the CRDT whenever it is updated.

Algorithm 7: Receiving bind message operation (as specified by [35], implementation
deviations have been highlighted)
attribute: known values set δv
attribute: known variables set σ
attribute: interest set δI
input : variable identifier i
input : new value v
if δv.containsKey(i) then

δv.get(i).join(v);
else δv.put(i,v);
σ.add(i);

removed if δI .containsKey(i) then
vn = δv.get(i);
s = δI .get(i);
ssat = s.filter(p 7→ p(vn));
s.removeAll(ssat);
δI .put(i, s);
foreach c ∈ ssat do

c(vn);
end

end
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3.5 Conclusion

In this chapter, the framework architecture has been presented. The framework is separated
into different packages. All components are loosely coupled. The architecture follows OOP
best practices. Design patterns, such as the observer or abstract factory pattern, have been
utilized throughout the architecture. Other design principles such as dependency injection [12],
the dependency inversion principle [30, 29], or the interface segregation principle [31] have been
respected. The CRDT library provides interfaces that application developers can consistently rely
on, no matter which implementation is used. A blueprint for a wrapped CRDT, as implemented
in the Selective Hearing component, has been provided. The Selective Hearing algorithms
required some adaption for the OOP world. These deviations from the functional paradigm
were presented. The following chapter highlights notable topics from the framework implemen-
tation.
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This chapter gives insights into the implementation of the framework architecture, which has
been described in the previous chapter. Important decisions are rationalized, and alternatives
along with their advantages and disadvantages, are provided.

4.1 Generic state-based CRDTs

Some CRDTs allow the application to maintain various types of data. In this project these are
the register CRDT, all sets, and the top-k list. The algorithms for each of these CRDTs may
be used with any data type. The exception is the top-k list, which was also limited to only
allow classes that can be put into order (through the comparable Java interface). These CRDTs
have been implemented using Java generics [5, 6] to achieve the algorithms’ property in the
framework.

CRDTs could be stored inside a CRDT as a consequence of the generic implementation. In [44],
such CRDTs are called ‘embedded CRDTs.’ Hovewer, embedded CRDTs have not been tested
in this framework. Generic CRDTs have only been tested using integers. Additionally, CRDTs,
with special semantics supporting embedded CRDTs, have not been considered in this project.

Type variables in Java do not exist at run-time [5, 6]. All generic type information is erased
during the compilation. This erasure process prevents the usage of generic types in casts. An
‘unchecked warning’ is given if generic types are used in casts. [5] states that “if your entire
application has been compiled without unchecked warnings [...], it is type safe.”

State-based CRDTs’ implementations need to cast a received CRDT into the same class before
a merge is possible. This cast is required because different CRDT implementations may hold
their state in incompatible ways. The merge operation requires compatible states. Additionally,
it accesses the private attributes maintaining the state. When two incompatible CRDTs are
merged, a specific exception is thrown.

The unchecked warnings have been accepted in this framework. They are a consequence of the
interface in the CRDT library. In the interface, the merge operation accepts any state-based
CRDT. Its design allows the interface to be used in the variable values of Selective Hearing and
with any wrapped CRDT.

38



4 Implementation

4.2 Serializable CRDTs

An essential part of a middleware is the marshaling and unmarshaling of the provided data
types [53]. The serializable interface has been used in this Selective Hearing implementation to
pass CRDTs between nodes. This choice reduced the required development overhead.

The disadvantage of serialization is that only CRDTs from compatible framework versions can be
exchanged. Different versions of the framework could cause errors. It is not possible to pair the
framework with a system based on a different environment. However, this limitation is not an
issue when evaluating a proof-of-concept. The requirements did not specify the need to exchange
CRDTs with different systems.

A substantial advantage of serialization is that generic CRDTs are supported out-of-the-box. So,
no special handling for generic CRDTs had to be developed. A bounded wildcard [5, 55] has
been used in the generic CRDTs. This bound limits the classes maintained in a generic CRDT
to any subclass of the serializable interface.

The fast-serialization (FST) package [45] has been used in this implementation. This dependency
provides a drop-in replacement for the built-in Java Development Kit (JDK) serialization. Apart
from the faster serialization, FST offers the ability to use JSON, which could be used for
interoperability with other systems in the future. However, this ability should not raise false
hopes for the required efforts for interoperability.

4.3 Identifiers

Identifiers were used throughout the project. Nodes, as well as Plumtree messages, and CRDTs
need to be identifiable in Selective Hearing. CRDTs were designed to know their identity.
Multiple implementations of the identifier interface exist. Some are general, like a universally
unique identifier (UUID) identifier or a string identifier similar to a variable name. Additionally,
custom identifier implementations have been developed for special needs. Specialized identifiers
in this framework are the Plumtree message identifier or a Selective Hearing variable identifier.

4.3.1 Node Identifiers

A node’s name can be supplied as an argument when executing the application. A string identifier
is created from the name if it is present. Otherwise, a new UUID is used. In both cases, the node’s
identifier is a global constant accessible through a static inner class of the identifier interface.

Nodes need to be identified consistently in the HyParView group. The node identifiers are
communicated in messages as strings. The received identifier string is treated in the same way
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as the local node identifier. So, all nodes in the group are currently required to use the same
identifier class. This approach is not optimal. Consistently using the name identifiers would
be preferable. Of course, a string representation of a UUID could be used to create a random
name.

The Plumtree implementation receives most of the node identifiers it needs from the peer gossip
membership service. The nodes it needs to access are HyParView implementations of the peer
interface. Plumtree also uses the global node identifier to identify itself.

The global node identifier is also used in some CRDTs. Affected CRDTs are named CRDT, where
all updates or elements contain the name of the replica to which they have been submitted. The
positive-negative counter CRDT is an example of a named CRDT. The CRDTs might not be
required to use the node identifiers. However, this usage has not caused any issues.

4.3.2 CRDT Identifiers

Requirement 3 of this project is to prevent merging CRDTs with different origins. The origin
has been interpreted as being an identifier. So, each CRDT is instantiated using an identifier as
a global name across all nodes. CRDTs from the CRDT library reject merging CRDTs created
with a different identifier by throwing an exception.

CRDT identifiers have an effect on the CRDT factory design. The factory methods need to
construct the CRDTs with an identifier. Two distinct ways to provide names are supported in
the factory interface: The first takes an identifier as input, and the second takes a name string.
A provided identifier is used verbatim in the local factory. If a string is provided to the factory
method, it is turned into a name identifier before using it in the CRDT.

The addition of names to the CRDT instances was an early decision in the project. CRDT
specifications do not require CRDT names. The solution tries to solve the naming issue in a
layer that should not be responsible for solving it. A list instance in Java is not required to know
the name the programmer has given it. Instead, the list’s name is only relevant outside of the list
data structure. Similarly, the Selective Hearing algorithms use identifiers to maintain CRDTs.

Using an identifier has a minimal benefit for casting the interface to the generic type. As described
previously, the generic type cannot be guaranteed at run-time. A CRDT identifier could serve
as a weak layer to reduce issues with conflicting types in generic CRDTs. However, as identifiers
can be used in incompatible CRDTs, this is no guarantee.

Providing identifiers in CRDTs can be considered as technical debt in the framework.
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4.3.3 Variable Identifiers in Selective Hearing

In Selective Hearing, variable identifiers consist of the type and a unique name for the variable.
An instance of the class has been utilized as type part for the variable identifiers. The variable
identifiers are used in two distinct ways. First, they are submitted to the local CRDT factory.
Second, they are used in the Selective Hearing state to match received bind messages with existing
CRDT instances.

The Selective Hearing CRDT factory uses the string representation of the supplied identifier to
create a variable identifier instance. A provided name is used verbatim.

4.3.4 Message Identifiers in Plumtree

Plumtree needs to identify messages to check what message a node has already received and which
needs to be requested in the lazy push manner. The message identifier is a hash created from
the original sender of a message, the message name, and the message content. The advantage
of this construction is that the message identifier can be consistently generated from a message
without requiring that the identifier is transferred.

4.4 HyParView using Netty

Netty is a network communication framework. Its network primitives were used to develop the
HyParView protocol. Netty follows an asynchronous event-based programming paradigm. This
paradigm matches the protocol specification in [26]. However, the asynchronous approach also
causes some difficulties, as many updates may happen anytime and parallel to others.

4.4.1 Message Passing

Lower communication layers should not need to care what type of data they are sending. So,
the communication layer interfaces do not support any special objects. Instead, strings are used
in all interfaces of this framework to pass message data through the layers.

Strings are directly supported by Netty using provided encoder and decoder classes. This existing
support reduces the development effort required to implement the communication layer. An
additional advantage is that using strings achieves consistency when combining the different
layers.

However, a string is not the most efficient way to transport all different kinds of data. While some
data structures, such as JSON, have natural string representations, other complex data structures
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used in the higher layers should not need to be encoded into a string. In this framework, the
FST package serializes objects into byte arrays. To be able to send these serialized objects, the
byte arrays first had to be encoded into strings. This increases the message size and reduces
performance. Ironically, Netty converts everything into byte arrays before sending it. Using byte
arrays directly to pass parameters between the different layers would reduce the amount of data
sent across the wires and remove duplicate encoding efforts between the layers.

Other alternative methods for passing parameters between the layers have been considered.
Data formats such as MessagePack1 or protocol buffers2 have not been used to increase the
implementation simplicity.

Another option would be to allow a HyParView user to supply a custom encoder for the Netty
channel pipeline that processes each incoming and outgoing message. Such an option would
allow more fine-grained handling of received messages. However, it would expose the HyParView
dependency on Netty in the technology-agnostic interface.

4.4.2 HyParView Peer

The gossip membership protocol HyParView is responsible for maintaining the peers known to
the group. The HyParView package implements the peer interface from the broadcast package.
This HyParView peer initiates the TCP connection to a node. In Netty, such a connection
creates a distinct channel between the nodes. This channel is used to send and receive data. The
HyParView peer manages the created channel. The channel is also tracked to detect changes by
the peer. If the connection is lost, it notifies the HyParView protocol, which then notifies the
registered neighborhood observers.

4.5 Conclusion

The implementation of this CRDT framework brought a variety of programming paradigms
together. This chapter explored far-reaching decisions made during development. The state-
based CRDTs have generic implementations. Generic CRDTs allow for flexible usage of data
types. However, it reduces the type-safety of the CRDT library. The CRDTs of this framework
are serializable. The FST package FST is used for fast serialization. Various components must
be uniquely identifiable. This identification requirement is achieved using an identifier interface
with reasonable different implementations. The gossip membership protocol HyParView has been

1MessagePack website, https://msgpack.org/, accessed 2021-07-10
2Protocol Buffers website, https://developers.google.com/protocol-buffers, accessed

2021-07-10
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implemented, relying on the Netty framework for network communication. The implemented
framework is evaluated in the following chapter.
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In this chapter, the implemented framework is evaluated. The setup of the evaluation
environment is explained in Section 5.1. The purpose and findings per metric are presented
in Section 5.2. The overall results of this evaluation and the framework are discussed in
Section 5.3.

5.1 Environment Setup

In the evaluation, a dummy application that uses the framework is executed in a Mininet
environment. The execution is performed with different group sizes and with different packet
loss rate configurations. During the execution, logs are created, which are used to compute
metrics.

Mininet [25] is a container-based emulation allowing the creation of virtual networks on a single
computer. It uses the virtualization mechanisms of the Linux kernel to simulate multiple nodes.
Nodes are called ‘hosts’ in Mininet; therefore, this chapter uses this terminology. Each host
has an individual network interface and can execute the applications that are available on the
computer. The virtual network can be constructed using a Python script. This script can also
be used to execute software on the virtual hosts. Using Mininet with a Python script enables
reproducible evaluation, which would not be as easily possible in a hardware setup.[16] The
downside of this approach is that every host is executed on the same hardware. This setup can
limit the computational resources available to each host.

The Mininet network topology that has been set up for the evaluation of this project contains a
single switch, which is connected to each host in the system. This topology simulates a broadcast
domain and is shown in Figure 5.1. The number of hosts connected to the switch has been scaled
from 3–23. Three has been chosen as the lower bound because this is the current number of
Loomos in the CaDS Loomo fleet. As Loomos are expensive, a Loomo fleet will probably not
be large. A typical tourist group size, using other Segway vehicles in Hamburg, is around 151.
The evaluation of the framework is executed with up to 23 hosts. This also covers a scenario
with 15 Loomos and some additional devices, such as smartphones. In addition to different

1Based on personal observation, and a short web search.
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Figure 5.1: Example topology of the Mininet network used in the evaluation. Five hosts
are connected to a single switch. Rendered using [51].

group sizes, different link packet loss rates have been configured in Mininet. Because the switch
is in the center of the topology, each message sent between two hosts passes two links. These
transmissions can cause the message’s packets to be lost twice. In addition to 0 % packet loss,
the losses have been scaled exponentially from 0.2 % to 25.6 %.

Each host executes an evaluation application that has been built using the framework. The
evaluation application is simple. It uses an injected CRDT factory to initialize a counter CRDT.
In the evaluation, the Selective Hearing CRDT factory instance is used. The application is
configured with a global maximum for the counter and a maximum of increments that may be
performed on the local host. In this dummy application, a host queries the counter for its current
known value. If the global maximum has been reached, the application is finished. However,
the host and the gossip protocols continue their execution on this host. If the global maximum
has not been reached and the local maximum number of increments for this host has not been
reached, the counter is incremented by 1. The application process then sleeps for a second before
performing the next iteration. This happens in both cases, whether the local increment count
has been reached or not. The local increment count has been set to 0 for all but one host in the
evaluation. A single host in the evaluation is configured to increment the counter CRDT once.

The framework’s Plumtree package has been expanded with detailed logging outputs. Each
message that is sent or received in the Plumtree package is logged. Messages sent by a host
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parameter value unit
active view size 4 hosts
passive view size 5 hosts
active forward join random walk length 3 hops
passive forward join random walk length 2 hops
active shuffle list size 3 hosts
passive shuffle list size 3 hosts
shuffle TTL 3 hops
interval for new shuffle requests 4 seconds

Table 5.1: Configuration of the HyParView protocol used during the evaluation.

are logged immediately before the method call, which sends a message to the specific neighbor.
Similarly, before a host processes a received message in Plumtree, a line is written to the logs. As
all broadcasts by Selective Hearing are sent through the Plumtree layer, the logs contain sent and
received information for all Selective Hearing and Plumtree messages. HyParView messages have
not been logged during this evaluation. Each line in the logging data includes the action (was
the message sent or received), the host writing the log, the message’s sending host, the message’s
receiving host, the message name2, the message identifier, the hop count, and a timestamp. All
log outputs are combined into a single CSV file per execution round. This file is parsed in a
Python script that extracts the required values to calculate the metrics.

The application is executed ten times for every group size and loss combination. An average
of these ten results is used in all metrics, except for the difference between sent and received
messages. The reason it is not used in this difference is elaborated upon in section 5.2.1. Using
the average to compute the metrics reduces the temporary effects of other processes on the
runtime environment.

Each of these evaluation rounds takes 20 seconds and is executed in two phases. In the beginning,
the membership protocol has 5 seconds to build a membership group. The subsequent 15 seconds
are used to run the example application.

Table 5.1 shows the configuration used for HyParView during the evaluation. Other parts of the
framework, such as Plumtree, have not been configured. However, the active view size of 4 is
also the number of hosts used as peers by Plumtree.

The evaluation was developed on a laptop. However, this device was too insufficiently powered
to run the dummy application on more than eight Mininet hosts. In order to support larger
group sizes, the experiments have been executed on a CaDS group’s server.

2The message name consists of the Plumtree and the Selective Hearing message type.
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Section Metric Parameter
5.2.1 sent − received messages host number; packet loss rate
5.2.2 reliability host number
5.2.3 RMR packet loss rate
5.2.4 LDH host number

Table 5.2: Evaluations overview with their metrics and adapted parameters.

5.2 Analyzed Metrics

This section explores the purpose, origin, calculation, results, and observations per analyzed
metric. An overview of the metrics can be found in Table 5.2. This table also contains the
corresponding sections in which each metric is discussed.

5.2.1 Difference Between Sent and Received Messages

This metric aims to detect errors in the evaluation setup and verify that the evaluation
environment produces reliable data. Reliable data, in this context, means data that can be used
in further investigations to compute the other metrics correctly.

The first expectation for this metric is that the minimum number of lost messages is never
negative. As elaborated upon in Section 5.1, each message is logged by the host when sent and
received. A message is lost when it is logged on the sending node but not on the receiving node.
No indication was found in the Mininet resources (e.g., linked from [24]) that Mininet duplicates
messages. Based on this setup, it can be concluded that the simulated hosts should never print
logs containing more received than sent messages. If this is verified, it is an indication that the
evaluation environment produces reliable data. However, it does not indicate that there are no
errors in the implementation. If more received than sent messages are observed in one execution,
the evaluation setup does not produce reliable data.

The second expectation is that some messages are lost in scenarios where the packet loss rate
exceeds 0 %.3 Additionally, the amount of message loss is expected to increase with increasing
loss rates. The number of nodes per group is not expected to affect the number of lost messages.

To calculate this metric, all lines in the logging output are counted grouped by their action value,
which can either be sent or received. These two values are subtracted to receive the number of
lost messages. The metric is calculated for each of the ten executions per combination. Each
execution per combination yields a different number of lost messages. The lost messages minimum
per combination of group size and packet loss rate has been used for this metric. Using an average

3Please note: lost messages do not necessarily affect the reliability value, as discussed in the next
section.
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Figure 5.2: Box plot diagram showing the minimum number of lost messages by the used
packet loss rates.

value of the ten executions could have hidden negative differences. The minimum value does not
guarantee that every negative value can be observed. However, if negative differences appear, at
least one negative difference is visible. Moreover, as the minimum value is used, a message loss
of zero does not indicate 100 % reliability in Section 5.2.2; it just means that no message was
lost in one of the ten executions.

Figure 5.2 shows box plots4 of the minimum number of lost messages. One box plot is pictured
for each packet loss rate used in this evaluation. The box plots are created from the values of
the 21 evaluated group sizes. A line chart showing the individual group sizes can be found in
the appendix in Figure A.2.

The lowest number shown in the box plots in Figure 5.2 is zero. This result meets the first
expectation. Thus, it can be presumed that the evaluation environment did not create apparent
mistakes in the evaluation data for the other metrics.

However, surprisingly contrary to the second expectation, the packet loss rates do not
considerably affect the minimum message loss. This effect should have been observable in
Figure 5.2 by higher boxes on higher loss rates. Instead, the boxes do not show a tendency for
higher message losses. Even in the box plot for the packet loss rate of 25.6 %, one outlier is zero.

4To describe the box plots, the notation from [57] is loosely followed.
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Figure 5.3: Box plot diagram showing the minimum number of lost messages by the used
group size.

This value indicates that one execution round with a 25.6 % loss rate did not lose any message
sent by the Plumtree protocol.

Figure 5.3 shows box plots of the minimum number of lost messages. One box plot is pictured
for each group size used in this evaluation. The box plots are created from the values of the nine
evaluated packet loss rates. A line chart showing the individual packet loss rates can be found
in the appendix in Figure A.3.

Again, contrary to the second expectation, the group size shows an effect on the minimum
number of lost messages. Figure 5.3 shows increasing numbers of lost messages with increased
group sizes. However, the sizes of the boxes and their whiskers are inconsistent. The group size
three is noticeable, as its minimum number of lost messages per packet loss rate is never above
zero. This outcome explains the outlier in Figure 5.2 for a packet loss rate of 25.6 %. The small
group sizes with up to five nodes show upper extremes of minimum lost messages below ten
messages. Beginning with a group size of nine, the minimum number of lost messages is never
zero. Starting with around 13 nodes in a group, the minimum number of lost messages seems to
have plateaued.

An explanation for the increasing minimum number of lost messages is that packet loss rates
affect every message. The Plumtree protocol sends fewer messages than the HyParView protocol.
So, it is more likely that HyParView messages are lost. Lost messages in the membership layer

49



5 Evaluation

can lead to disconnected nodes. A disconnected node does not send messages, thus further
decreasing the number of messages sent by the Plumtree protocol. This disconnection can be
observed by the fact that in multiple execution rounds, the bind message, which changes the
counter value, was never logged. This observation indicates that the host, which is configured to
change the counter, is not connected to any other host in the group and thus does not send the
message.

This metric helped fix mistakes in the early development of the evaluation environment. All
messages were logged when they were received at one point in the development, but only some
sent messages were logged. Another issue observed was the runtime environment. Running the
evaluation in a virtual machine on a decent but not high-end laptop resulted in a loss of a single
line at some points. This loss did not occur when running the experiments on a bare-metal
server.

5.2.2 Reliability

This metric investigates the question of whether this framework can work reliably in a small-sized
node group. All messages from the Selective Hearing component are sent through the Plumtree
communication layer. The reliability can thus be observed in the Plumtree layer. In [27], the
reliability of the Plumtree protocol has been evaluated. The same reliability definition is used in
this evaluation, stating that “reliability is defined as the percentage of active nodes that deliver
a gossip broadcast” by [27, p. 4]. In Section 5.3, the comparability between the results of [27]
and this thesis is discussed.

The reliability definition, quoted in the previous paragraph, can be used as a distinction from
the lost messages metric (5.2.1). The latter metric shows the reliability of the underlying virtual
network. As this virtual network has been intentionally configured with packet loss rates, message
loss is expected. The metric, as defined for the Plumtree protocol, shows the reliability of
the communication layer. Whether packets are lost is not relevant for the reliability metric.
Instead, the reliability metric investigates how well the algorithms mitigate packet loss to deliver
a broadcast to every active host.

The expectation is that the packet loss rates only minimally affect the reliability. After all, the
purpose of the Plumtree protocol’s lazy push phase is to achieve high reliability. It is suspected
that a minimal number of hosts is required in a group. So, the reliability is expected to begin at
lower rates and increase, starting with a certain group size.

To calculate the reliability, the number of hosts that received a broadcast message were counted
from the log file. The evaluation Python script calculated the reliability per gossip message in
each execution round. Control messages from the Plumtree protocol, such as the prune and graft
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Figure 5.4: Box plot diagram showing the reliability by the used packet loss rates.

messages, were ignored in this calculation because they are sent directly between two hosts and
not as a broadcast. The collection of percentages was aggregated into an average percentage.

Figure 5.4 shows box plots of the reliability. One box plot for each packet loss rate used in this
evaluation is pictured. The box plots are created from the values of the 21 evaluated group sizes.
A line chart showing the individual group sizes can be found in the appendix in Figure A.4.

The box plots in Figure 5.4 clearly show unexpectedly low reliability results. Only a few outliers
and no upper extreme of the box plots reach above 50 % reliability. Even the best scores in this
diagram are not nearly enough for productive use. In every box plot, the median is below 10 %
reliability.

The box plots in Figure 5.4 look similar for each of the packet loss rates. This outcome indicates
that the loss rates only had minimal impact on the reliability. As the box plots were rendered
from the results that different group sizes achieved for each loss rate, they meet the expectation
that a certain number of hosts is required for higher reliability. The worse than expected results
could hint that the number of required hosts is above the maximum group size used in this
evaluation. However, the line chart of this metric, as shown in Figure A.4, and the following
diagram tell a different story.

Figure 5.5 shows box plots of the reliability. One box plot for each group size used in this
evaluation is pictured. The box plots are created from the values of the nine evaluated packet
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Figure 5.5: Box plot diagram showing the reliability by the used group sizes.

loss rates. A line chart showing the individual packet loss rates can be found in the appendix in
Figure A.5.

The box plots in Figure 5.5 show that the reliability developed contrary to the expectation stated
above. Instead of increasing with the number of hosts per group, the reliability steeply decreases
between the group sizes 6–11. The reliability continues to decrease from 12–23 hosts per group,
though less steeply. The highest reliability results were reached with a group size of 4 and 5 hosts.
Apart from the groups with three, six and seven nodes, the upper and lower extremes of the box
plots were close together. As expected, the values achieved with different loss rates shown here
are another indication that the loss rates have only a minimal impact on the reliability.

5.2.3 Relative Message Redundancy

With the Relative Message Redundancy (RMR) metric, the expected gossip message overhead
is evaluated with different node numbers in the group and packet loss rates. The RMR metric
is defined by [27] as:

(
m

n− 1

)
− 1 (5.1)
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In this equation, m is the total number of gossip messages during a broadcast. n is the number
of nodes in the group that have received the broadcast.

An RMR value of zero indicates that exactly one message per host was sent. This is the optimal
value. Higher RMR values indicate that redundant messages have been sent to reach every node.
A negative value would indicate that more nodes have received the broadcast than messages have
been sent. [27] mentions that “this metric is only applicable when at least 2 nodes receive the
message.” Moreover, it states that a low RMR can be achieved with low reliability, which was
the case in this evaluation.

n includes the host sending a broadcast message in the first place. This is not explicitly defined
in [27], but it needs to be the case to make zero the optimal value. In a group of four nodes,
a, b, c, d, if a sends a broadcast message to b, c and b forwards it to d, then three messages are sent.
First, if n does not include the sending node, the equation 5.1 is computed with m = 3, n = 3:(

3
3−1

)
− 1 = −0.5. This can be compared with using m = 3, n = 4:

(
3

4−1

)
− 1 = 0.

The first expectation is that the RMR results increase for higher loss rates. When more messages
are lost due to the packet losses, these messages need to be sent again by the Plumtree algorithms.
Each resent message increments the m in Equation 5.1, while n is only incremented for received
messages.

The second expectation is that a higher RMR is achieved for bigger group sizes. This expectation
combines the observations from the previous metrics. In Figure 5.3, it is apparent that big groups
lost many messages, leading to a high m in Equation 5.1. Figure 5.5 provides evidence of low
reliability in groups with 11–23 hosts, leading to a low n in Equation 5.1.

It is also expected that only positive RMR values are reached. As explained above, a negative
RMR would indicate an error in the evaluation environment or the calculation, similar to a
negative number of lost messages.

To calculate the RMR, the messages sent by Selective Hearing have been observed. Control
messages by the Plumtree protocol were not considered. The m was built from the log, where
the action indicates the sending of a message. Each host that has either sent or received a message
was counted once in n of Equation 5.1. The computation of the RMR value only continued if
n ≥ 2. If a message was not received by at least two hosts, the message was ignored in this
metric.5

Figure 5.6 shows box plots of the RMR. One box plot for each packet loss rate used in this
evaluation is pictured. The box plots are created from the values of the 21 evaluated group sizes.
A line chart showing the individual group sizes can be found in the appendix in Figure A.6.

5A negative impact for a message that was not received by two hosts is reflected in the reliability metric.
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Figure 5.6: Box plot diagram showing the RMR by the used packet loss rates.

Just like the previous metrics, Figure 5.6 shows that the RMR results are only minimally affected
by the packet loss rates. This outcome is contrary to the first expectation. It could be explained
by the condition that only broadcasts where two or more hosts received a message (n ≥ 2) were
considered in the calculation. This condition could remove broadcasts where many messages
have been sent but were never received. As described previously, if many HyParView messages
are lost, the overlay can be disconnected. In such a scenario, many broadcast messages would
never be sent at all. According to the third expectation, the RMR is never negative.

Figure 5.7 shows box plots of the RMR. One box plot for each group size used in this evaluation
is pictured. The box plots are created from the values of the nine evaluated packet loss rates. A
line chart showing the individual packet loss rates can be found in the appendix in Figure A.7.

The results depicted in Figure 5.7 show a steep growth of the RMR in groups with 3–6 hosts.
The value flattens in an RMR range from 1.5–2.5. This is according to the second expectation
for the results of the RMR metric. However, the higher and less intended RMRs are still not that
big. Given that “in pure gossip approaches, RMR is closely related with the protocol fanout, as it
tends to fanout− 1”[27, p. 4], in this environment, the fanout is initialized from the active view
size, which is 4. Two restrictions of RMR can explain this result. First, it is only applicable when
at least two hosts have received the broadcast and thus n ≥ 2. Broadcasts where n < 2 have not
been considered. Second, as mentioned before, the RMR metric depends on the reliability results.
The RMR values are not very informative because the reliability achieved by the framework is
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Figure 5.7: Box plot diagram showing the RMR by the used group sizes.

low. Additionally, due to the difference in reliability, the RMR result cannot be compared to the
result of the original Plumtree protocol.

5.2.4 Last Delivery Hop

The Last Delivery Hop (LDH) metric allows the investigation of a Plumtree property.6 Plumtree
builds a spanning tree covering all hosts in the group. Each host has a limited number of other
hosts as children in the spanning tree because the children per host are limited by the number of
hosts in the membership service’s active view. In this evaluation, it is limited to 4, as explained
in section 5.1. These experiments scale the number of hosts in the group while the active view
size stays constant. Due to the constant active view size of 4, the spanning tree cannot grow
in breadth; instead, it needs to grow in depth. This property should be observable with higher
LDH values in this framework’s Plumtree implementation.

The logging output always contains the current hop value for the logged message. The maximum
of observed hop counts in multiple executions of 0 % message loss has been used.

6It is not attempted to mathematically formulate and proof this property. However, it might be linkable
to the height of a B-Tree as in [9].
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With an active view size of 4, the LDH might be the same for groups with 3–21 hosts. This
property should inevitably become observable, beginning with 22 hosts per group, even with a
balanced spanning tree, provided the communication protocols have high reliability. Reliability
is not high in this framework, as laid out in section 5.2.2. So, it is not surprising that the LDH
does not increase in the result of this thesis. This outcome is linked to the high message loss
(Section 5.2.1) and low reliability (Section 5.2.2).

The LDH showed a constant maximum value of 2 in every group size. This outcome indicates
that the Plumtree protocol prunes links, even in small groups. The Plumtree mechanisms reduce
message duplication, even when only a few hosts participate.

5.3 Discussion

The evaluation of this framework yielded less appreciable outcomes than desired. In this section,
potential causes for these outcomes are discussed, as well as their effect on the success of this
project.

The framework achieved such low reliability in the evaluation that it cannot be considered usable
in small groups. If implementation errors caused the low reliability, another implementation of
the framework, or parts of it, could achieve better results. If a scaled-down group requires
differently tweaked parameters, a different configuration could achieve higher reliability. The
design of the used protocols could require a certain higher number of nodes. The framework
might never be usable in small groups if such a requirement is the case. The framework consists
of multiple parts. It may be only a single component that causes the low reliability. Due to the
architecture design, the components are lowly coupled. A faulty component could be exchanged
with a fixed component. Hence, the whole framework need not to be considered unusable in
small groups.

The low reliability could be linked to discovered anomalies in the HyParView implementation.
In some log files of the executions, a bind message sending action was never tracked. No host
can receive a message that has never been sent. Plumtree does not send a message when it has
empty eager or lazy push peers sets. These sets are empty if HyParView does not have a peer
in its active view.

Such a scenario can occur if messages from the HyParView join process are lost. This process
offers a lot of opportunities for a message to be lost. The process does not start if the new
node’s initial join message is lost. The current HyParView implementation does not retry to
establish a connection if the first attempt fails. However, if the join node receives the initial
message, its direct answer message to the new node can be lost. Losing this neighbor request
is not necessarily a problem; however, it reduces the number of early group connections for the
new node. In addition to the neighbor message, the join node sends forward join messages to its
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existing active view nodes. Each of these forward join messages is passed on a few nodes before
the new node is added to a passive or active view. The forward message could get lost each time.
In some circumstances, this could lead to a situation in which a new host is never connected to
the group.

A new node could succeed in establishing a connection with the group, even if a few messages
from the join process are lost. This established connection could vanish. Firstly, if packets do not
arrive, a connection can become idle and may be closed. However, idle connections are unlikely
in the short time scope of this evaluation. Secondly, if a node from the active view disconnects,
the node tries to initiate a connection with a node from the passive view. This attempt could fail
and leave the node disconnected. A node might disconnect if it receives a new neighbor request
with high priority and already has a full active view. Thirdly, when a node from the active
view disconnects, the node can only establish a new connection if its passive view is not empty.
Unfortunately, a passive view could be empty if a node never receives messages the protocol uses
to fill a passive view. These are the forward join, disconnect, and shuffle messages.

The HyParView issues might result from potential errors in the HyParView implementation.
The HyParView is implemented in an asynchronous event-driven style, where most operations
are executed in parallel and at some time in the future. Due to time constraints in the project,
a dependable protocol testing strategy has not been implemented. In earlier experiments, the
expected basic operation of the protocol was observed. However, this does not eliminate the
potential for problems with increased group sizes.

Errors in the configuration of the protocols are more likely to cause the HyParView issues. The
protocol parameters in this evaluation have been chosen, influenced by the experiments in [27].
However, these experiments were conducted in a different network and group context. In this
framework evaluation, many fewer nodes have been used than in the experiments in [27, 35, 26].
It has been observed that protocol parameters might not be clear when scaling experiments
down.[16] In the evaluation, it is not easy to distinguish between configuration errors and
unfitness.

In [27], protocol parameters from previous simulation experiments with a similar setup were
chosen. Relying on previous experiences is not possible in this project because this thesis is the
first attempt at using these gossip protocols in the CaDS group. So, instead of experimenting
with different network properties (e.g., the link packet loss rate), it would have been wiser to
begin with an investigation to determine suitable protocol parameters for this evaluation’s group
sizes. As the Plumtree implementation was not configurable, a good starting place would be
the HyParView parameters: active and passive view size, active and passive forward join walk
length, shuffle TTL, number of active and passive peers in a shuffle message. As these parameters
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define the number of hosts for different purposes, they are most likely affected by the number of
hosts in the group.7

The selected protocols have been designed for large-scale networks, as described in Section 2.3 and
indicated by the number of hosts used in their experiments. This could also lead the algorithm
design to require a minimum number of hosts in a network to work as intended. Another
indication supporting this idea is that 30 hosts have been used for the HyParView passive view
in [26]. This passive view size would not have been possible with the group sizes of this thesis’
evaluation. In addition to the passive view size, the random walk performed by HyParView in
the forward join or shuffle operations may require larger groups. The random walk is less diverse
in small groups than required to achieve failure compensation.

As noted previously in this chapter, the LDH results indicate that the Plumtree algorithms
already performed their operations with small groups. Prune, and graft messages have been
observed in the log files. So, even with only a few hosts, Plumtree reduced redundancy and
initiated a lazy push set. This observation suggests that Plumtree can be utilized in the
communication layer of the framework, even if the groups are small.

The experiment construction, as described previously in this chapter, has some limitations.

The dummy application does not produce many broadcasts. In an execution round with n hosts,
up to n declare messages and a single bind message are sent through the Plumtree protocol. The
number of broadcasts required for Plumtree to construct a stable spanning tree could be higher
than this setup’s evaluation allowed it to become. However, as Plumtree operates as a plain
gossip protocol in the first message rounds, this should only affect the RMR results and not the
reliability.

Twenty seconds per execution round is a short amount of time. Loomos are typically used for
longer than a few seconds. So, the experiments are not fully representative of a typical Loomo
fleet’s potential uses. A potential cause for the HyParView issue could be the little time the
protocol has to build a stable membership. In [27, p. 11], the first 50 of 250 cycles in the
experiments were ‘used to ensure stabilization of the protocols.’ In this evaluation, only the first
five of twenty seconds were reserved for HyParView. Five seconds only allow for a single round
of shuffle requests. During the complete execution time, at most four passive peer exchanges can
be finished in total. A different interval for shuffle requests might build a stable membership in
less time.

The HyParView protocol cannot be examined in more detail because of the missing logs. So, the
evaluation does not show whether HyParView requires large groups or more time to stabilize.
Further experiments could provide insights into the minimal requirements of the communication
protocols and investigate the HyParView issue’s underlying cause.

7Maybe, the HyParView parameters as used in Riak [28] could be used as a starting point in future
experiments.
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Due to the setup, the results of this evaluation have limited comparability to the Plumtree
results in [27], where a cycle-based simulator has been used. Running this project’s evaluation
application in Mininet was less controlled than a cycle-based simulation.

The Plumtree component’s broadcasts were sent concurrently with the messages of the
HyParView protocol, instead of performing the separate tasks individually. Additionally,
multiple broadcast messages were sent concurrently in this evaluation. The Plumtree experiments
performed one broadcast per round, and the step was finished when every message belonging
to this broadcast was delivered. The advantage of a cycle-based simulation is more fine-grained
control and evaluation options. However, compared to cycles, the Mininet emulation resembles a
real network more closely, as the actual operating system code is executed instead of a simulated
environment that only mimics the behavior of a real setup.[16, 52]

In addition to the cycle-based approach to simulate network failures in [27], some hosts were
disconnected from the network. As explained in the environment setup, packet loss rates per
link have been used in this evaluation. This setup introduces a different semantic to network
issues. For example, packet loss rates can affect broadcasts and control messages of Plumtree
and HyParView alike. Instead of several hosts going offline and thus not sending or receiving
any messages, random messages by active hosts are lost. However, as the effect of the link packet
loss rates was insignificant compared to the number of hosts, the consequence of this different
semantic could not be examined well.

The framework design can be counted as a success. The strength is that components can be
changed easily. This flexibility could be useful for future projects. To remedy the shortcomings
of this thesis’ evaluation, a different membership protocol could be implemented and used instead
of HyParView. This only requires instantiating the other implementation and injecting it into
the Plumtree constructor. The rest of the application and framework code can be left unchanged.
This change could show the effect of the membership protocol in the framework’s results.

5.4 Conclusion

A dummy application has been used to evaluate the framework in a Mininet environment. The
dummy application was executed multiple times in different network setups. Log messages were
written by the Plumtree component during the execution. Four metrics were calculated from the
log messages’ results. The broadcast reliability is one of the metrics.

The framework implementation achieved low reliability. Reliability below 25 % in the majority
of the groups prevents the implementation from being considered usable in small groups. With
outcomes as depicted in Figure 5.5, it is apparent that the framework is not ready for production
usage.
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This result does not say that no CRDT framework based on Selective Hearing can be used stably
and reliably in small groups.

The Selective Hearing operations do not know any members in the group. Selective Hearing
simply relies on the communication layer and is thus independent of group size.

It can be assumed that the Plumtree algorithms already performed well beginning with small
groups. This assumption is based on observations with the LDH metric results. These results
indicate successful usage of Plumtree in small groups.

HyParView was designed for large groups. This protocol may require differently tuned
parameters for small groups. [16] notes that the correct configuration for scaled-down
experiments might not be clear. Different parameter values could stabilize the results of this
framework. Alternatively, another gossip membership protocol could be required. HyParView’s
design for large groups might mean that the protocol requires many members to operate. Lastly,
an error in the HyParView component could cause unreliable operation as well. Unfortunately,
the evaluation does not reveal which – if any – of these HyParView issues is the case.

The framework architecture can be used sucessfully in another implementation. It has strengths
such as a decoupled design. This design allows a component to be exchanged with a different im-
plementation; for example, if another membership protocol is tested with the framework instead
of HyParView. The architecture does have minor weaknesses, such as the usage of strings instead
of byte arrays in the parameter hand-off between the layers.

This thesis can only provide a partial answer to whether a CRDT framework based on Selective
Hearing can be used stably and reliably in small groups. Looking at the results altogether, it
can be said that the framework architecture, the slightly adapted Selective Hearing mechanisms,
Plumtree, and the implemented CRDTs can be successful components in a future CRDT
framework. However, the question remains whether HyParView is a suitable membership
protocol in groups with only a few members.

The following chapter concludes the thesis and suggests potential future work for this
framework.
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This thesis aimed to investigate the potential for stable and reliable usage of a CRDT framework
based on Selective Hearing [35] in the context of small groups of nodes. This framework
should support the basic workflow with CRDTs. It should make the distribution of its CRDTs
transparent, as it implements a middleware layer [53].

An object-oriented framework architecture, based on Selective Hearing [35], was designed in this
thesis. It consists of four major components: a CRDT library, a Selective Hearing package, the
Plumtree gossip protocol [27], and the HyParView membership protocol [26]. These components
are loosely coupled. They depend on abstractions instead of concrete implementations; therefore,
each component could be easily swapped. The designed framework architecture can be used in
future projects.

The framework has been implemented in the Java programming language. Due to the im-
plementation’s use of Java object serialization, the implemented framework does not support
interoperability between different systems. The implementation was evaluated with a dummy
application that uses the framework. The metrics from the Plumtree introduction [27], reliability,
RMR, and LDH have been used in this thesis’ evaluation. Additionally, a metric to examine the
data produced by the evaluation environment has been investigated.

The implemented framework does not achieve sufficient reliability in the evaluation. It can be
concluded that the implementation is not suitable for the usage in a small group of autonomous
robots. Some observations in the evaluation indicate issues with the HyParView package in the
context of this project. These issues are likely to be caused by a suboptimal protocol configuration
in the context of the tested groups’ small size. Other sources for the HyParView issues could be
an error in its implementation or that HyParView is not designed for small groups.

Future work could investigate this thesis’ issue in the gossip membership protocol. Experiments
with different HyParView configurations may be performed to answer whether HyParView
parameters have to change for different network settings. For example, it could turn out that
lower TTL values for random walks are required with higher packet loss rates. A similar
tendency for TTL parameters might be observable with smaller group sizes. These experiments
could provide interesting insights into the HyParView protocol performance and requirements.
Alternatively, HyParView might be compared to other gossip membership protocols, such as
Atomix [10]. This approach might show whether some protocols are more suitable in specific
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scenarios. However, as protocols are designed with different intentions in mind, it might not
be possible to come to a useful conclusion. Both approaches could require a new and reliable
HyParView implementation. A comprehensive protocol and contract testing strategy should be
applied during the package development in addition to other software engineering practices such
as test-driven development (TDD).

Another opportunity for future projects is an enhancement of the CRDT library. Future projects
may investigate the changes required to use delta-based CRDTs in this framework. Delta-based
CRDTs combine the strengths of state-based and operation-based CRDTs. Such a project would
be interesting because autonomous robots would benefit from the lower bandwidth usage of
delta-based CRDTs. Alternatively, future work might add more CRDTs and remove technical
debt from the library. Instead of relying on the library implemented in this thesis, a future
project could implement a framework based on an existing JSON CRDT such as Yjs [41] or
Automerge [20]. However, implementing a full-featured CRDT library would probably not
provide many insights, although required for projects that intend to use this framework in a
production environment. Of course, enhancing the CRDT framework is not fruitful if the issue
with the communication layer persists.

Future projects should be considered as the opportunities with CRDTs, and autonomous robots
have the potential to outweigh the risks of these technologies. CRDTs can become the foundation
of local-first software [21] – a user-friendly alternative to a cloud-first approach. However, CRDTs
might also be used to serve ads better (as in the showcase example of [35]) or collect personal data
about users. Autonomous robots can investigate catastrophe areas for dangers before humans
enter. However, they might also be developed as autonomous war drones. Autonomous robots
might also harm the environment because they consume energy, require rare earth elements and
might become waste. The possibility to use technology for bad things does not mean it should
not be developed at all. However, technologists cannot simply ignore the harmful effects of
technology. Instead, we should strive to “do as much good as we can while doing as little damage
as possible.”[56]
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A Imagery

Figure A.1: A Loomo, turned towards the reader, with its display “face” visible.[40]
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Figure A.2: Line chart showing the minimum lost messages by the used loss rates.
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Figure A.3: Line chart showing the minimum lost messages by the used group sizes.
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Figure A.4: Line chart showing the reliability by the used loss rates.
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Figure A.5: Line chart showing the reliability by the used group sizes.
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Figure A.6: Line chart showing the RMR by the used loss rates.
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Figure A.7: Line chart showing the RMR by the used group sizes.

72



Glossary

CaDS group A working group at the HAW Hamburg that focuses on distributed systems and
general networking. xi, 1

dependency injection [12] In this pattern, a class allows its users to specify (inject) the concrete
implementation of a dependency abstraction an object will use. 20, 28, 30, 37

dependency inversion principle [30, 29] This principle states: “High-level modules should not
depend on low-level modules. Both should depend on abstractions (e.g., interfaces).
Abstractions should not depend on details. Details (concrete implementations) should
depend on abstractions”. 20, 26, 30, 37

DRY principle The ‘do not repeat yourself’ programming principle intends to make code easier
to understand and maintain. It states that “every piece of knowledge must have a single,
unambiguous, authoritative representation within a system” [54, 58]. xi, 25

eventual consistency A weaker consistency guarantee, which allows temporary inconsistencies.
6, 7

HAW Hamburg The Hamburg University of Applied Sciences. xi, 1, 4

HyParView The Hybrid Partial View membership protocol [26]. xi, 6

interface segregation principle [31] The interface segregation principle produces small interfaces
because it states that “clients should not be forced to depend upon interfaces that they
do not use”. 24, 37

Lasp A programming language implemented in Erlang providing deterministic coordination-free
computation primitives based on CRDTs. 17

Loomo The Segway Loomo Robot is an advanced personal smart vehicle. xi, 1

Mininet “Mininet is a system for rapidly prototyping large networks on the constrained resources
of a single laptop”[25, 24]. 44–47, 59
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Glossary

open-closed principle [37, 32] The ‘open-closed principle’ states “software entities should be
open for extension, but closed for modification”. 30

Python A programming language that is used in system administration, scientific projects, and
many other areas. 44, 46, 50

SOLID A group of principles for object-oriented class design [33]. 4

strong eventual consistency A consistency model based on eventual consistency [48]. 2, 7, 8
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Symbols

interest set a set in Selective Hearing, containing all pending read requests to variables. 17, 18,
35, 36

known values set a set in Selective Hearing, containing variable identifiers with their latest
observed values. 17, 18, 34–36

known variables set a set in Selective Hearing, containing the identifiers for all observed
variables. 17, 18, 34–36
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