

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Bachelorarbeit

Torben Schulz

Entwicklung und Konstruktion eines Greifers für ein automatisiertes Messsystem

Fakultät Technik und Informatik Department Maschinenbau und Produktion Faculty of Engineering and Computer Science Department of Mechanical Engineering and Production Management

Torben Schulz

Entwicklung und Konstruktion eines Greifers für ein automatisiertes Messsystem

Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung

im Studiengang Maschinenbau - Entwicklung und Konstruktion am Department Maschinenbau und Produktion der Fakultät Technik und Informatik der Hochschule für Angewandte Wissenschaften Hamburg

in Zusammenarbeit mit: ECM Datensysteme GmbH Abteilung Entwicklung und Konstruktion Am Siedenkamp 24 21640 Bliedersdorf

Erstprüfer: Prof. Dr. Stefan Wiesemann Zweitprüfer: Dipl.-Ing. Niels Eiben

Abgabedatum: 26.10.2020

Zusammenfassung

Torben Schulz

Thema der Bachelorthesis

Entwicklung und Konstruktion eines Greifers für ein automatisiertes Messsystem

Stichworte

Greifer, Roboter, Schneckengetriebe, Auslegung, Konstruktion

Kurzzusammenfassung

Diese Arbeit befasst sich mit der Entwicklung und Konstruktion eines Greifers. Dieser wird in ein Robotersystem implementiert, weshalb die mechanische und elektrische Schnittstelle gegeben sein muss. Anhand von Anforderungen an das Messsystem und Berechnungen werden Antrieb, Kinematik und Kraftübertragung entwickelt und ausgewählt. Durch Sicherheitsberechnungen wird ein Ausfall des Greifers vorgebeugt. Mit einem CAD-Modell und den daraus resultierenden Zeichnungsableitungen wird ein Prototyp eines Greifers bereitgestellt.

Torben Schulz

Title of the paper

Development and Construction of a gripper for an automated measuring system

Keywords

Gripper, robot, worm gear, design, construction

Abstract

This thesis deals with the development and construction of a gripper. This is implemented in a robot system, therefore the mechanical and electrical interface must be given. Based on requirements for the measuring system and calculations, drive, kinematics and power transmission are developed and selected. Safety calculations prevent the gripper from failing. With a CAD model and the resulting drawing derivations, a prototype of a gripper is provided.

Inhaltsverzeichnis

Fo	rmelz	zeichen, Symbole und Indizes	IX
	Late	einische Formelzeichen und Symbole	IX
	Grie	chische Formelzeichen und Symbole	XI
	Indi	zes	XII
Та	belle	nverzeichnis	XIII
At	obildu	Ingsverzeichnis	xv
1.	Einle	eitung	1
	1.1.	Einführung	1
	1.2.	Vorstellung des Unternehmens	2
	1.3.	Aufgabenstellung und Ziel der Arbeit	3
2.	Gru	ndlagen	5
	2.1.	Aufbau und Grundbegriffe eines Greifers	5
	2.2.	Antriebsarten in der Greifertechnik	7
		2.2.1. Schwerkraft-mechanisch	8
		2.2.2. Pneumatik	9
		2.2.3. Hydraulik	10
		2.2.4. Magnetischer Antrieb	11
		2.2.5. Elektrischer Antrieb	12
	2.3.	Greiferbauarten	14
3.	Auto	omatisierte Stichprobenmesssystem	17
	3.1.	Beschreibung des Stichprobenmesssystems	17
	3.2.	Aufgaben des Greifers	20

4.	Entv	vicklung des Greifers	21
	4.1.	Anforderungen	21
	4.2.	Auswahl der Greiferbauart	23
	4.3.	Mechanik des Greifers	23
		4.3.1. Definition der Greiferfinger	23
		4.3.2. Kinematik des Greifers	24
		4.3.3. Wirkende Kräfte am Greifer	31
	4.4.	Komponenten und Auslegung	40
		4.4.1. Antriebsauswahl	40
		4.4.2. Steuerung und elektrische Schnittstelle	42
		4.4.3. Übertragung am Antrieb	43
		4.4.4. Welle-Nabe-Verbindung	48
		4.4.5. Zusammensetzung des Greifer-Konzepts	52
	4.5.	Festigkeitsberechnung des Getriebes	54
		4.5.1. Geometrien des Schneckenradsatzes	55
		4.5.2. Grübchenfestigkeit	57
		4.5.3. Zahnfußtragfähigkeit	60
5.	Aus	konstruktion des Greifer-Prototyps	65
	5.1.	Trägersystem	65
	5.2.	Greiferfinger	66
	5.3.	Halterung des Greifers	67
	5.4.	Mechanische Schnittstelle zum Roboter	68
	5.5.	Gesamtmodell	69
	5.6.	Überschlägige Kostenanalyse	71
6.	Schl	ussbetrachtung	73
Lit	eratı	ırverzeichnis	74
Α.	Date	enblätter und Zeichnungen	i
	A.1.	Datenblätter	i
		A.1.1. UR3 Datenblatt	i

	A.1.2.	Motordatenblatt
	A.1.3.	Steuerungsmodul
	A.1.4.	Schneckenradsatz
	A.1.5.	Schmierfett
	A.1.6.	Welle-Nabe-Kleber
	A.1.7.	Lagerung
	A.1.8.	Achsen
A.2.	Zeichn	ngen
	A.2.1.	Gesamtbauzeichnungen
	A.2.2.	Mechanische Schnittstelle
	A.2.3.	Greiferhalterung
	A.2.4.	Trägersystem
	A.2.5.	Motorhalterung
	A.2.6.	Greifbackenfinger
	A.2.7.	Hebelfinger
	A.2.8.	Antriebsfinger
	A.2.9.	Schneckenrad
	A.2.10	Schrittmotor

Selbstständigkeitserklärung

xxv

Formelverzeichnis, Symbole und Indizes

Lateinische Formelzeichen und Symbole

Symbol	Beschreibung	Einheit
a_R	Beschleunigung am Endeffektor	${ m ms^{-2}}$
a	Achsabstand	mm
A, B	Auflager	Ν
B,b,c,h,L,l	Länge	mm
b_K	Klebespalt	mm
C, D	Gelenk	Ν
C_y, D_y	Gelenkkraft in y-Richtung	Ν
C_x, D_x	Gelenkkraft in x-Richtung	Ν
d_B	Bohrungsdurchmesser	mm
d_f	Fußkreisdurchmesser	mm
d_m	Mittenkreisdurchmesser	mm
E_{red}	reduziertes Elastizitätsmodul	${ m Nmm^{-2}}$
F	Kraft	Ν
F_G	Greifkraft	Ν
F_{GHe}	Resultierende Greifkraft beim Anheben	Ν
F_{He}	Greifkraft beim Anheben	Ν
F_R	Reibungskraft beim Greifen	Ν
F_{Se}	Greifkraft beim Senken	Ν
F_{tm2}	Umfangskraft am Schneckenrad	Ν
g	Gravitationskonstante $(g\approx9,81{\rm ms^{-2}})$	${ m ms^{-2}}$
Н	Greifhub	mm

Symbol	Beschreibung	$\mathbf{Einheit}$
i	Übersetzung	_
L_H	Lebensdauerstunden	h
M, T	Drehmoment	$\mathrm{N}\mathrm{m}$
m	Masse	kg
m	Modul	mm
n	Drehzahl	\min^{-1}
n_{anz}	Anzahl der Schneckenumdrehungen	\min^{-1}
p_m^*	Hertzsche Pressung	_
q	Formzahl der Schnecke	_
S	Sicherheitsbeiwert	_
S_F	Zahnbruchsicherheit	_
S_H	Grübchensicherheit	_
s_k	Kranzdicke des Schneckenrades	mm
t	Zeit	S
v_{gm}	Gleitgeschwindigkeit der Schnecke	${\rm ms^{-1}}$
x	Profilverschiebung des Schneckengetriebes	mm
Y_ϵ	Überdeckungsfaktor	_
Y_F	Formfaktor	_
Y_K	Kranzdickenfaktor	_
Y_{NL}	Lebensdauerfaktor	_
Y_{γ}	Steigungsfaktor	_
z	Gangzahl, Zähnezahl	_
Z_h	Lebensdauerfaktor	_
Z_{oil}	Schmierstofffaktor	_
Z_s	Baugrößenfaktor	_
Z_u	Übersetzungsfaktor	_
Z_v	Geschwindigkeitsfaktor	_

Griechische Formelzeichen und Symbole

Symbol	Beschreibung	Einheit
$lpha_0$	Eingriffswinkel des Schneckengetriebes	0
β	Winkel des Greifbackenfingers	0
γ_m	Mittenkreissteigungswinkel	0
Δs	Verschleiß im Laufe der Lebensdauer	mm
Δt	Zeitdifferenz der Greifbackenöffnung und	s
	-schließung	
$\Delta x, \Delta y$	Greifbackenverschiebung	mm
Δx_H	Greifhubverschiebung	mm
η	Wirkungsgrad	_
μ	Reibungskoeffizient	_
σ_{HG}	Grenzwert der Flankenpressung	${ m Nmm^{-2}}$
σ_{HlimT}	Grübchenfestigkeit	${ m Nmm^{-2}}$
σ_{Hm}	Mittlere Flankenpressung	${ m Nmm^{-2}}$
$ au_F$	Auftretende Zahnfußspannung	${ m Nmm^{-2}}$
$ au_{FG}$	Grenzwert der Schub-Nennspannung	${ m Nmm^{-2}}$
$ au_{FlimT}$	Schub-Dauerfestigkeit	${ m Nmm^{-2}}$
$ au_K$	Schubbeanspruchung	${ m Nmm^{-2}}$
$ au_{KB}$	Zugscherfestigkeit	${ m Nmm^{-2}}$
$ au_{KW}$	Dynamische Bindefestigkeit	${ m Nmm^{-2}}$
arphi	Winkel	0
ω_R	Winkelgeschwindigkeit des Roboters	0

Indizes

Index	Beschreibung	
A	Antrieb	
anz	Anzahl	
В	Backe, Bindefestigkeit	
Bo	Bohrung	
erf	Erforderlich	
F	Finger	
G	Greifbacke	
Н	Greifhub	
K	Klebeverbindung	
KW	$Kle beverbind ung \hbox{-} We cheel be an spruchung$	
L	Lager	
m	Mittenkreis	
max	Maximal	
min	Minimal	
R	Roboter	
Ra	Schneckenrad	
Re	Rechteckprofil	
RL	Schneckenrad links	
RR	Schneckenrad rechts	
S	Schnecke	
Sc	Schraube	
vorh	Vorhanden	
x,y	Koordinate	

Tabellenverzeichnis

2.1.	Kenngrößen eines Greifers zur technischen Charakterisierung nach $[8, S.71]$	7
2.2.	Eigenschaften verschiedener Antriebsarten nach $[9, S.42]$	8
4.1.	Anforderungsliste	22
4.2.	Definition der Greiferfinger	24
4.3.	Reibungskoeffizienten bei unterschiedlichen Materialkombinationen nach $[8, S.54]$	33
4.4.	Technische Daten des Motors [A.1.2] $\ldots \ldots \ldots$	41
4.5.	Farben und Funktion des Industriekabels nach $[15, S. I-43] \ldots \ldots \ldots \ldots$	42
4.6.	Technische Daten des Schneckenradsatzes [A.1.4] $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	44
4.7.	Festigkeitswerte für Schneckenradwerkstoffe (angelehnt an [23, S.331]) \ldots	58
4.8.	Schub-Dauerfestigkeitswerte τ_{FlimT} für Radwerkstoffe (angelehnt an $[3,S.48])$	63
4.9.	Lebensdauerfaktor Y_{NL} in Abhängigkeit von der Lastspielzahl N_L , dem Werkstoff	
	und der zulässigen Qualität des Schneckenrades (Auszug angelehnt an $[3,\mathrm{S.48}])$.	63
5.1.	Kosten der Komponenten des Greifers	71
6.1.	Kenngrößen des Greifers	74

Abbildungsverzeichnis

Grundaufbau und Teilsysteme eines Greifers nach [8, S.3]	5		
Zangengreifer mit Selbsthalteeffekt bei Gewichtskraftbelastung $[12,S.109]$	9		
Standardlösung eines pneumatisch angetriebenen Zangengreifer $[8, {\rm S.327}]$ 9			
Hydraulische Grundschaltung mit Überlastsicherung, 1 Druckbegrenzungsventil,			
2 Drosselventil für Geschwindigkeitse instellung, 3 $5/3\mbox{-Wegeventil},$ 4 Förderpumpe,			
5 Ölfilter, 6 Ölbehehälter [9, S.47] \ldots	10		
Permanentmagnetantrieb mit Schaltmechanismus. a) Objekt gegriffen, b) durch			
Schaltmechanismus wird das Objekt freigegeben [8, S.244] \ldots	11		
Elektromagnetgreifer, 1 Gehäuse, 2 Spulenkörper, 3 Spulenwicklung, 4 Kern, 5			
Abdrückbolzen [9, S.107]	12		
Funktionsschema elektromotorischer Greiferantriebe. a) Kreisschiebung der Ba-			
cken, b) Schraubstockprinzip, c) Winkelgreifer, d) Antrieb mit feststehender Ge-			
windespindel $[9, S.43]$	13		
Mechanische Greifer nach $[10, S. 303]$	14		
Pneumatische Greifer nach [10, S. 303] \ldots \ldots \ldots \ldots \ldots \ldots \ldots	15		
. Magnet greifer nach [10, S. 303] \ldots	15		
. Formschlüssige Greifer durch Eindringen nach [8, S. 192]	16		
Stichprobenkasten auf der Zuführung	18		
Schwingtisch mit Verbindungselementen	18		
Abgeheförderband mit Stiehprobenkegten	10		
	19		
Offnung des Rotationsmessautomaten	19		
Stichprobenkasten für nicht i.O.	20		
Greiferfinger des Greifers	23		
Grundstellung der Greiferfinger	25		
	Grundaufbau und Teilsysteme eines Greifers nach [8, S.3]		

4.3.	Grundstellung der Greiferfinger mit Maße und Winkel $\ \ldots\ \ldots\ \ldots\ \ldots\ \ldots$	25
4.4.	Greifvorgang bei Bewegung	26
4.5.	Hub des Greifers	27
4.6.	Kinematik des Greifers mit Parametern	28
4.7.	Greifhub H in Abhängigkeit des Winkels φ	30
4.8.	Unsymmetrische Greifbackenbelastung $[8, S. 60] \dots \dots \dots \dots \dots \dots \dots \dots$	31
4.9.	Erforderliche Greifkraft während eines Handhabungszyklus. A außerhalb des Mas-	
	seschwerpunktes, B im Masseschwerpunkt $[8,S.61]$	32
4.10.	Wirkende Kräfte beim Greifen im Normalfall	32
4.11.	Nomogramm zur Ermittlung der Greifkraft in Abhänigkeit von der Werkstückmasse	
	$m,$ dem Schwenkradius r des Roboters und der Winkelgeschwindigkeit ω (mit Bei-	
	spiel) [8, S. 57]	35
4.12.	Greiferseite mit angreifenden Kräften	36
4.13.	Freischnitt des Antriebsfingers	37
4.14.	Freischnitt des Hebelfingers	37
4.15.	Freischnitt des Greifbackenfingers	37
4.16.	Antriebsmoment M_A in Abhängigkeit des Winkels φ	39
4.17.	Bauart des gewählten Schrittmotor [16]	40
4.18.	Drehmoment-Drehzahl-Kennlinie des Schrittmotors [16]	41
4.19.	Elektrische Schnittstelle des UR3-Roboters an der Werkzeugseite $\left[15,S.I\text{-}42\right]$	42
4.20.	Steuerungsmodul des Schrittmotors $[17, S. 1]$	43
4.21.	Kinematik des Schneckengetriebes	44
4.22.	Greifhub H in Abhängigkeit der Schneckenumdrehung anz	47
4.23.	Greifhub H in Abhängigkeit der Zeit t	48
4.24.	Variation der Zugscherfestigkeit bei unterschiedlichen Klebespalten $[A.1.6]$	49
4.25.	Schubbeanspruchte Rundklebung unter Torsionsmoment $[24, S.114] \ldots \ldots$	50
4.26.	Motorwelle des Schrittmotors nach [16]	50
4.27.	Technische Zeichnung der Schnecke [18]	51
4.28.	Greiferkonzept	52
4.29.	Bohrungen an der Vorderseite des Schrittmotors nach [A.1.2]	52
4.30.	Geometrien des Getriebs nach $[2, S.8]$	55
4.31.	Grübchenbildung mit Zahnkopfbruch infolge von Flankenermüdung $\left[13,S.241\right]$.	57

4.32.	Brüche von Zahnrädern [13, S.239ff] \ldots	60
4.33.	Darstellung der Kräfte an der Schnecke [24, S.866]	61
4.34.	Kranzdickenfaktor Y_K [3, S.47]	62
5.1.	Trägersystem	65
5.2.	Motorhalterung	66
5.3.	Greiferfinger	66
5.4.	Greiferhalterung	67
5.5.	Mechanische Schnittstelle am UR3 Roboter nach [15, S.I-26]	68
5.6.	Schnittstelle des Greifers	68
5.7.	Gesamtmodell	69
5.8.	Kinematik des Greifers im Gesamtmodell	69
5.9.	Auszug aus der Gesamtbauzeichnung des Greifers aus Anhang $[{\rm A.2.1}]$ $~$	70
5.10.	UR3-Roboter mit Greifer	71

1. Einleitung

1.1. Einführung

In der Handhabungstechnik und Robotik ist der Greifer das Wirkorgan. Er bildet die Schnittstelle zwischen dem zu handhabenden Gegenstand und dem Industrieroboter, oder der Handhabungseinrichtung [1]. Er ist das letzte Glied einer kinematischen Kette und ist für den eigentlichen Effekt zuständig, weshalb er auch *Erfolgsorgan* oder *Effektor* bezeichnet wird. Der Begriff Greifer wird auch dann verwendet, wenn dieser nicht zugreift, sondern Gegenstände hält. Die allgemeinen Anforderungen an Zuverlässigkeit und Sicherheit sind hoch, da durch die serielle Struktur im Bewegungssystem ein Ausfall des Greifers zum kompletten Stillstand einer Anlage führen kann [10].

Greifer sind einer menschlichen Hand überlegen, wenn der zu handhabende Gegenstand scharfe Kanten, korrosive Überzüge hat, hohen Temperaturen ausgesetzt ist oder sich gesundheitsschädliche Stoffe auf dem Handhabeobjekt befinden [1]. Auf diese Weise ersetzen die Greifer in automatisierten Prozessen die Hand des Menschen und bilden dabei die Schnittstelle zwischen Roboter und Werkstück [9]. Es gibt unterschiedliche Ausführungen, Greiftechniken bzw. Wirkprinzipien und zusätzlich arbeiten in manchen Fällen Sensoren und Kameras mit dem Greifer zusammen. Sie sind nicht Bestandteil einer Roboterserienausführung und nicht so anpassungsfähig wie eine menschliche Hand, weshalb sie, je nach Anwendungsfall und den zu greifenden Gegenständen, gezielt ausgesucht, oder konstruiert werden [11].

1.2. Vorstellung des Unternehmens

Die Firma ECM Datensysteme GmbH wurde 1990 von dem Diplom-Informatiker Claus Ehlen gegründet. Er begann damit, ein Verfahren zur optischen Vermessung von Stahlrippen zu entwickeln. Daraus entstand später die Idee, selbstständig Automaten zu produzieren und sie Stahlrippenherstellern und -abnehmern in ganz Deutschland anzubieten. Seitdem sind Präzisionsmessautomaten für die Vermessung von Schrauben-ähnlichen Maschinenteilen, optische Extensometer als Anbauten für Zugprüfmaschinen und Softwarelösungen für verschiedene Anwendungen zum Angebot der Firma hinzugekommen. Die Firma hat ihren Sitz in Bliedersdorf in der Nähe von Hamburg. Dort findet auch die Fertigung der Messautomaten statt, die fast komplett aus eigener Hand geschieht. Der Maschinenpark umfasst CNC-Maschinen und herkömmliche Werkzeugmaschinen, Umformwerkzeuge und Schweißtechnik für die Verarbeitung von Aluminium, sowie eine Elektronikwerkstatt. Kernkompetenzen der ECM Datensysteme ist die optische berührungslose Vermessung äußerer Geometrien durch digitale Bildverarbeitung. Die Software zur Bedienung der Messautomaten, die Auswertung und die Darstellung der Ergebnisse wird seit über 30 Jahren stetig weiterentwickelt und an Kundenwünsche angepasst. Im Zuge der Automatisierung der Industrie wird der Bedarf an automatisierten Messsystemen immer größer. Darum entwickelt ECM Datensystemen GmbH inzwischen Messsysteme mit zusätzlicher Probenförderung, -erkennung und Handhabung durch Roboter.

1.3. Aufgabenstellung und Ziel der Arbeit

Für die Entwicklung eines automatisierten Stichprobenmesssystems mit einem Robotersystem wird ein Endeffektor in Form eines Greifers benötigt. Die Aufgabe des Greifers ist das Greifen von Verbindungselementen und/oder von Stichprobenkästen mit Inhalt. Das Entwicklungsziel ist ein Prototyp, der die geforderten Aufgaben ausführt und die definierten Anforderungen erfüllt. Dabei werden folgende Schwerpunkte berücksichtigt:

- Recherche zu Greifern in Robotersystemen
- Beschreibung des aktuellen Stichprobenmesssystems
- Entwicklung eines Greifer-Konzeptes
- Auskonstruktion des Greifer-Prototyps
- Kostenanalyse

2. Grundlagen

Im folgenden Kapitel werden zunächst die Grundlagen der Greifertechnik erläutert. Zuerst wird der Grundaufbau von Greifern dargestellt und erklärt. Danach werden die Antriebsarten von Greifern vorgestellt. Zum Schluss werden die Variationen der Greiferbauarten gezeigt.

2.1. Aufbau und Grundbegriffe eines Greifers

Der Greifer besitzt verschiedene Teilsysteme mit unterschiedlichen Aufgaben. Im Folgenden wird anhand eines mechanischen Greifers, auch Endeffektor genannt, die Teilsysteme des Greifers erläutert. Gegebenfalls werden Informationen zu anderen Greiferarten hinzugefügt [8, S.3 ff.].

Abbildung 2.1.: Grundaufbau und Teilsysteme eines Greifers nach [8, S.3]

In Abbildung 2.1 wird ein mechanischer Greifer mit seinen Teilsystemen gezeigt. Jeder Greifer benötigt zur Ausführung des Greifens ein Antriebssystem, welches zugeführte Energie, z.B. elektrische, fluidische, etc. (siehe Abschnitt 2.2), in eine Bewegungsenergie oder in eine Kraft wandelt. Das Greiforgan besteht aus zwei oder mehreren Greifbacken, welche je nach Anwendung ausgewechselt werden können, z.B. zur Vergrößerung der Haftreibung an der Greiffläche oder zur Formanpassung zum greifenden Objekt. Sie stellen den Greifkontakt zum Greifobjekt her und bilden den TCP (Tool Center Point, siehe Abbildung 2.1). Nicht-mechanische Greifer besitzen keine Greifbacken, sondern eine Greiffläche an dem die zu greifenden Objekte haften. Der TCP ist der Arbeitspunkt und dient als programmierender Wirkpunkt für den Greifer. Über Koordinatentransformationen kann die direkte Kinematik vom Roboterbasiskoordinatensystem bis zum TCP Koordinatensystem umgerechnet werden um beispielsweise die Lage und Orientierung des TCP im Basiskoordinatensystem in Abhängigkeit von den Gelenkwinkeln zu erhalten.

Die Greiferfinger, an dem die Greifbacken angebracht werden, die durch ein System aus starren, elastischen oder mehrgliedrigen Greiferfingern bestehen, bilden die Kinematik eines Greifers. Sie werden durch das Antriebssystem anhand von Energie in Bewegung gesetzt und bestimmen den Greifhub und die Greifkraft. Nicht-mechanische Greifer können ohne Kinematik verwendet werden und besitzen häufig nur eine Greiffläche, die über den Roboter zum greifenden Objekt ausgerichtet wird.

Das Steuersystem in einem Greifer gehört nicht zur Antriebsgruppe. Es reguliert mittels Sensorinformationen die Greifkräfte oder den Greifhub und beinhaltet die Software sowie die Programmierung des Greifers.

Das Trägersystem nimmt alle Bestandteile des Greifers auf und sorgt für die Verbindung dieser. Es bildet dabei das Gehäuse und stellt die mechanische, energetische und informationelle Verbindung untereinander zur Verfügung.

Das Wechselsystem ist die Baugruppe für den Anschluss des Greifers an eine mechanische Schnittstelle wie z.B. an einen Roboter. Ebenfalls sind dort Bohrungen für Versorgungs- und Informationsleitungen vorgesehen. Außerdem schützt es das Innere des Greifers vor äußeren Einflüssen. In Tabelle 2.2 werden Kenngrößen der Teilsysteme für Greifer gezeigt. Diese dienen zur Orientierung bei der Entwicklung und Konstruktion des Greifers

Primäre Kenngrößen	Sekundäre Kenngrößen
Wirkprinzip (mechanisch, fluidisch, etc.)	Umweltverhalten
Greifkraft in N	Ausführungen der Lager
Greifkrafterlauf als Diagramm	Betriebstemperatur in $^\circ C$
Greifhub in mm	Wirkungsweise
Traglast in N , oder kg	Einbaulage
Schließ-/Öffnungszeit in s	Energieart (mechanisch, fluidisch, etc.)
Belastungsgrenzwerte z.B. Kräfte, Drehmomente	Materialangaben
Greiforgane als Anzahl und Geometrie in $\boldsymbol{m}\boldsymbol{m}$	Nutzungsdauer in h
Hauptab messungen in mm	Schnittstellenangaben
Eigenmasse in kg	Wartungszyklen

Tabelle 2.1.: Kenngrößen eines Greifers zur technischen Charakterisierung nach [8, S.71]

2.2. Antriebsarten in der Greifertechnik

Bei allen Greifern, bei denen eine Greifkraft erzeugt werden soll, werden Antriebe benötigt. Damit eine Kinematik angesteuert und die Greifbacken in Bewegung gesetzt werden können, wird ein Antriebssystem benötigt, welches eine rotatorische oder translatorische Bewegung wandelt. Außerdem werden Antriebe zur Erzeugung einer Greifkraft benötigt, wenn keine Kinematik vorhanden ist. In einigen Fällen sind die Antriebsarten auch das Wirkprinzip eines Greifers. Die Vakuumpumpe zur Erzeugung eines Unterdrucks für Sauger bzw. ein Kompressor zur Erzeugung von Luftdruck und eine Hydraulikpumpe, die durch die Förderung eines nahezu kontinuierlichen Volumenstroms einen Druck erzeugt, gehören nicht zur Antriebsgruppe [14]. Die Haltekraft spielt bei Greifern eine große Rolle. Deswegen wird auch dann Energie benötigt, wenn die Kontaktfläche sich nicht bewegt [7].

In der Greifertechnik kommen folgende Antriebe sowie Kombinationen dieser Antriebe vor [9]:

- Schwerkraft-mechanisch
- Pneumatisch

- Hydraulisch
- Magnetisch
- Elektrisch

Die aufgelisteten Antriebsarten besitzen unterschiedliche Eigenschaften, die je nach Anwendungsfall beachtet werden müssen. in Tabelle 2.2 wird eine grobe Bewertung der Antriebsarten gezeigt. In der Tabelle bedeutet + = vorteilhaft und - = ungünstig, o ist das Mittelmaß.

Bewertungskriterien	mechanisch	pneumatisch	hydraulisch	magnetisch	elektromotorisch
Hohe Greifkraft	о	_	+	о	_
Regelbarkeit	_	_	о	+	+
Energieübertragung	+	0	_	+	+
Schmutzunempfindlichkeit	+	0	+	_	0
Wartung	+	0	0	_	0
Not-Aus-Verhalten	+	0	0	_	_
Baugröße	_	_	+	о	0
Umweltbelastung	+	0	_	+	+
Kosten	+	+	0	0	_

Tabelle 2.2.: Eigenschaften verschiedener Antriebsarten nach [9, S.42]

2.2.1. Schwerkraft-mechanisch

Bei dem Schwerkraft-mechanischen Prinzip wird die Schließbewegung der Greifbacken eines Greifers durch das Eigengewicht erzeugt. Sie haben eine Vorrichtung mit einem rein mechanischen Spannprinzip, die nach einer Entlastung mit der Feder für das Öffnen der Backen sorgt. In Abbildung 2.2 wird ein solcher Antrieb gezeigt. Es werden keine weiteren Baugruppen oder eine externe Energieversorgung benötigt. Nachteile wären z.B. keine Regelbarkeit der Greifkraft sowie Sicherungen in Form von NOT-AUS. Die Baugröße ist abhängig von der Greifkraft.

Abbildung 2.2.: Zangengreifer mit Selbsthalteeffekt bei Gewichtskraftbelastung [12, S.109]

2.2.2. Pneumatik

Der pneumatische Antrieb ist eine Antriebsart, bei dem die Schließbewegung der Greifbacken durch komprimierte Luft erzeugt wird. Überwiegend werden einfach- oder doppelwirkende Zylinder zur Krafterzeugung genutzt. Außerdem kann mit dem Pneumatikantrieb eine Kraft durch Unterdruck bzw. Vakuum erzeugt werden. Pneumatische Antriebe haben eine robuste und einfache Bauweise. Sie sind wenig störanfällig und haben eine große Betriebssicherheit [14]. Nachteile sind hohe Betriebskosten, geringe Greifkräfte und schlechte Regelbarkeit.

Abbildung 2.3.: Standardlösung eines pneumatisch angetriebenen Zangengreifer [8, S.327]

In Abbildung 2.3 wird eine Schaltung eines pneumatischen Antriebs mit doppeltwirkendem Zylinder gezeigt. Die Bezeichnungen am Ventil sind Anschlüsse nach DIN 5590. In dieser Schaltung wird im Falle eines Ausschaltens eine begonnene Greiferbewegung beim Wiedereinschalten beendet. Die Schaltung kann durch zusätzliche Bauteile wie z.B. NOT-AUS Ventile, bei dem das gegriffene Werkstück eingespannt bleibt oder Drosselrückschlagventile und Rückschlagventile zur Geschwindigkeitsregulierung, erweitert werden.

2.2.3. Hydraulik

Der hydraulische Antrieb ist eine Antriebsart, bei dem analog zu pneumatischen Antrieben zur Krafterzeugung einfach- und doppelwirkende Arbeitszylinder eingesetzt werden. Anders als bei der Pneumatik wird hier Hydraulikflüssigkeit auf Basis von Mineralölen eingesetzt. Vorteile sind hohe Kräfte bei kleinster Bauweise, sofortige Maximalkraft und Bewegungserzeugung durch die geringe Kompressibilität des Öles [14]. Nachteile sind z.B. Umweltbelastung durch Flüssigkeitsverluste, Temperaturabhänigkeiten und mögliche Bewegungsschwingungen durch Kompression sowie Extraleitungen für den Rückfluss des Öles [1].

Abbildung 2.4.: Hydraulische Grundschaltung mit Überlastsicherung, 1 Druckbegrenzungsventil, 2 Drosselventil für Geschwindigkeitseinstellung, 3 5/3-Wegeventil, 4 Förderpumpe, 5 Ölfilter, 6 Ölbehehälter [9, S.47]

In Abbildung 2.4 wird eine hydraulische Grundschaltung mit Überlastsicherung gezeigt. Über das Druckbegrenzungsventil (Pos. 1) wird die Greifkraft F_G eingestellt.

2.2.4. Magnetischer Antrieb

Bei den magnetischen Antrieben wird die Festhaltekraft durch den Magnetismus hervorgerufen. Sie werden in drei Varianten kategorisiert [8]:

- Permanentmagnetisch
- Elektromagnetisch
- Permanent-elektromagnetisch

Bei den **Permanentmagnetantrieben** werden Permanentmagnete eingebaut, die eine Haltekraft dauerhaft erzeugen. Die vorhandene Kraft kann nicht unterbrochen werden. Sie werden mit einem zusätzlichen Mechanismus versehen, der die angehefteten Werkstücke von der Magnetfläche trennt. In Abbildung 2.5 wird ein Beispiel gezeigt.

Abbildung 2.5.: Permanentmagnetantrieb mit Schaltmechanismus. a) Objekt gegriffen, b) durch Schaltmechanismus wird das Objekt freigegeben [8, S.244]

Bei **elektromagnetischen Antrieben** wird durch Einschalten eines Stromes die Haltekraft erzeugt. Ein Abtrennen des Werkstückes ist durch Abschalten des Stromes möglich. Um eine Stoßabschaltung von angehefteten Werkstücken zu vermeiden, werden z.B. gefederte Abdrückbolzen verwendet. In Abbildung 2.6 wird ein Beispiel gezeigt.

Abbildung 2.6.: Elektromagnetgreifer, 1 Gehäuse, 2 Spulenkörper, 3 Spulenwicklung, 4 Kern, 5 Abdrückbolzen [9, S.107]

Bei den **Permanent-elektromagnetischen Antrieben** ist es eine Kombination zweier Antriebe. Bei ihm werden Permanentmagnete eingebaut, die mit einer Erregerwicklung versehen sind. Im eingeschalteten Zustand wird das Permanentmagnetfeld neutralisiert, dadurch verliert der Permanentmagnet seine Festhaltekraft und das Werkstück wird freigegeben [9].

2.2.5. Elektrischer Antrieb

Der elektrische Antrieb bezieht sich hierbei auf elektromotorische Antriebe, um sie von den elektromagnetischen Antrieben zu unterscheiden. Für diese Art von Antrieb wird ein elektrisch betriebener Motor eingesetzt. Verwendet werden dabei häufig: Schrittmotoren, Servomotoren (Synchron-DC-Motoren) und Linearmotoren. Im Regelfall wird ein Getriebe zwischen der Kinematik und des Motors eingesetzt [9]. Der elektromotorische Antrieb hat den Vorteil eine gute Regelbarkeit der Bewegungsvorgänge und der Krafterzeugung zu haben. Außerdem sind sie kostengünstig bei einem hohen Wirkungsgrad und Geräuscharm. Sie erzeugen im Gegenzug mittelmäßige Greifkräfte [14].

In Abbildung 2.7 werden Beispiele mit einem Elektromotor gezeigt.

1 Werkstück 2 Encoder 3 Elektromotor 4 Getriebe 5 Greiferflansch 6 rotierende Mutter 7 Gewindespindel 8 Schneckenrad 9 Kupplung

Abbildung 2.7.: Funktionsschema elektromotorischer Greiferantriebe. a) Kreisschiebung der Backen, b) Schraubstockprinzip, c) Winkelgreifer, d) Antrieb mit feststehender Gewindespindel [9, S.43]

Der in Abbildung 2.7 gezeigte Encoder (Pos.2) ist ein Bauteil zur Winkelmessung. Seine Aufgabe ist es, für die Regelung durch den Motorcontroller die Position des Motors aufzunehmen.

2.3. Greiferbauarten

Greiferbauarten werden auf verschiedenartige Weise eingeteilt. Eine Möglichkeit zur Klassifizierung von Greifern ist [10]:

- Greifen durch Formpaarung
- Greifen durch Kraftpaarung
- Greifen durch Stoffpaarung

Wie schon in Abschnitt 2.2 erwähnt, ist der Antrieb in einigen Fällen das Wirkprinzip des Greifers wie z.B. mechanisch, pneumatisch, elektromagnetisch, oder formschlüssig. Zu jedem Wirkprinzip lassen sich Ausführungen zuordnen.

Zu den mechanischen Greifern gehören die Winkelgreifer und Parallelgreifer.

Abbildung 2.8.: Mechanische Greifer nach [10, S. 303]

In Abbildung 2.8 werden Ausführungen von mechanischen Greifern mit ihrem Arbeitsprinzip gezeigt. Die Anzahl und die Form der Greifbacken können variieren. Die Pfeile zeigen den Bewegungsverlauf der Greifbacken und die dadurch auftretenden Richtungen der Kräfte. Zusätzlich kann eine Kinematik die Führung der Greifbacken verändern. Die pneumatischen Greifer sind Greifer, die durch einen Unterdruck (Vakuum) eine Greifkraft erzeugen. Sie werden unterschieden in der Größe der Saugfläche.

Abbildung 2.9.: Pneumatische Greifer nach [10, S. 303]

In Abbildung 2.9 werden Ausführungen von pneumatischen Greifern gezeigt. Die Auflagefläche ist bei der Saugpipette (Abb.2.9a) wesentlich kleiner als bei dem Flächensauggreifer (Abb.2.9b). Bei den Ausführungen der Magnetgreifer ist das Wirkprinzip gleich dem Antrieb. Sie besitzen keine Kinematik. Sie greifen Objekte durch Anheften. Wie in Abschnitt 2.2 bereits erwähnt, unterscheiden sich diese in Permanentgreifer und Elektromagnetgreifer sowie Kombinationen aus beiden.

Abbildung 2.10.: Magnetgreifer nach [10, S. 303]

Auf Abbildung 2.10 wird die Ausführung eines Magnetgreifers gezeigt. Die Auflagefläche hat eine Kreisform oder Rechteckform und variiert in unterschiedlichen Größen. Eine weitere Ausführung von Greifern sind die Nadelgreifer und Kratzengreifer. Sie bringen ihre Greifkraft durch Eindringen auf.

Abbildung 2.11.: Formschlüssige Greifer durch Eindringen nach [8, S. 192]

In Abbildung 2.11 werden Greifer gezeigt, die durch das Eindringen eine Haltekraft erzeugen. In Abbildung 2.11a wird ein Nadelgreifer gezeigt, der durch das Ausfahren der Nadeln in das zu greifende Objekt eindringt. Bei dem Kratzengreifer (Abb. 2.11b) werden die Objekte mit einem Klett-Effekt angehaftet.

In der Greifertechnik gibt es eine Vielzahl an weiteren Greifern, die hier nicht aufgeführt werden. Die soeben genannten Greifer sind die meist verwendeten.

3. Automatisierte Stichprobenmesssystem

In diesem Kapitel wird das automatisierte Stichprobenmesssystem vorgestellt und beschrieben. Danach werden die Aufgaben des Greifers im Bereich des Messsystems erläutert.

3.1. Beschreibung des Stichprobenmesssystems

Im Folgenden wird der Ablauf und die Funktion des automatisierten Stichprobenmesssystems dargestellt. Zusätzlich werden alle beinhalteten Komponenten sowie ihre Aufgaben erwähnt. Die gesamte Anlage befindet sich aus sicherheitstechnischer Gründe in einer Einhausung. Aufgabe und Zweck des automatischen Stichprobenmesssystems ist die hoch genaue automatische Messung der äußeren Geometrien von rotationssymmetrischen Maschinenteilen wie beispielsweise Verbindungselemente. Die Messobjekte werden dem System als Stichproben (bis zu 160 Teile) in Stichprobenkästen zugeführt und anschließend nacheinander anhand von selbst bestimmbaren Prüfkriterien mit optischen Messverfahren automatisch vermessen und ausgewertet. Der Einsatz eines Roboters und eines Teilerkennungssystem ermöglichen die automatische Messung eines großes Spektrums an unterschiedlichen Prüfteilen ohne Umrüstzeiten. Die Maschine wird bei der Produktion und Endkontrolle zur Qualitätsüberwachung/-sicherung eingesetzt.

Abbildung 3.1.: Stichprobenkasten auf der Zuführung

Zunächst wird der Greifer mithilfe eines Roboters einen Stichprobenkasten mit Verbindungselementen (siehe Abbildung 3.1) von einem Förderband greifen. Dabei werden die Greifbacken in das von hinten angebrachte Profil hineingeführt und durch Vergrößern des Greifhubes wird der Greifer von innen zugreifen.

Abbildung 3.2.: Schwingtisch mit Verbindungselementen

Nachdem der Greifer den Stichprobenkasten gegriffen hat, werden die Verbindungselemente auf den in Abbildung 3.2 gezeigten Schwingtisch entladen. Der Schwingtisch ist in der Lage mittels unterschiedlich starker Ansteuerung der am äußeren Rand befindlichen Schwingmagnete die Verbindungselemente zu verteilen oder in eine gezielte Richtung zu befördern.

Abbildung 3.3.: Abgabeförderband mit Stichprobenkasten

Der Stichprobenkasten wird daraufhin auf das Abgabeförderband (siehe Abbildung 3.3) abgestellt. Eine von oben auf dem Schwingtisch (Abb.3.2) ausgerichtete Kamera an der Einhausung hat die Aufgabe, Objekte zu erfassen und frei liegende Verbindungselemente zu erkennen. Daraufhin wird der Greifer die Verbindungselemente von dem Schwingtisch greifen, ohne dabei eine Kollision auszulösen.

Abbildung 3.4.: Öffnung des Rotationsmessautomaten

Anschließend wird das gegriffene Verbindungselement den Messraum des Rotationsmessautomaten (siehe Abbildung 3.4) hineingeführt. Nachdem die Messung beendet wurde und das gemessene Verbindungselement in den Toleranzen liegt, wird es aus dem Rotationsmessautomaten gestoßen und über eine Rampe auf dem Abgabeförderband (Abb.3.3) in den Stichprobenkasten hineingeführt. Sollte ein Verbindungselement nicht in der Toleranz liegen, so wird dieses vom Greifer in einen externen Stichprobenkasten befördert (siehe Abb. 3.5).

Abbildung 3.5.: Stichprobenkasten für nicht i.O.

3.2. Aufgaben des Greifers

Aus der Beschreibung des aktuellen Stichprobenmesssystems in Abschnitt 3.1 werden die Aufgaben des Greifers abgeleitet.

Der Greifer hat folgende Aufgaben:

- Stichprobenkasten durch ein hinten am Kasten angebrachtes Profil mit Aussparungen für die Greiferbackengeometrie greifen
- Verbindungselemente von einer Plattform greifen
- Verbindungselemente in den Messautomaten befördern und wieder herausnehmen

Die Maße der zu greifenden Objekte haben einen Einfluss auf die Entwicklung und Konstruktion des Greifers. Das in Abbildung 3.3 und 3.1 gezeigte angebrachte Profil besitzt folgende innere Maße:

$$h_{Re} = 44 \text{ mm},$$

$$b_{Re} = 14 \text{ mm}.$$
(3.1)

Die zu greifenden Verbindungselemente haben Durchmesser von $d_{Sc} = 3 \text{ mm}$ bis 8 mm und Längen von $l_{Sc} = 6 \text{ mm}$ bis 16 mm. Die Breite des Messraums des Rotationsmessautomaten ist 180 mm breit.

4. Entwicklung des Greifers

Wie im Abschnitt 1.3 bereits erwähnt, ist das Ziel der Bachelorarbeit, die Entwicklung und Konstruktion eines Greifers für ein automatisiertes Messsystem. Zuerst werden die Anforderungen des Greifers in Form einer Anforderungsliste aufgestellt. Danach wird die Mechanik des Greifers entwickelt und erläutert. Anschließend werden die Komponenten mithilfe der Anforderungsliste sowie Berechnungen ausgewählt und aufeinander abgestimmt. Mit Informationen aus den Datenblättern des Roboters werden die elektrischen Schnittstellen des Roboters auf die des Greifers angepasst. Zum Schluss wird anhand von Festigkeitsberechnungen gewährleistet, dass ein Ausfall des Greifers mit höherer Wahrscheinlichkeit vermieden wird.

4.1. Anforderungen

Damit die Ziele und Bedingungen des Greifers festgehalten werden können, wird eine Anforderungsliste erstellt. Die in der Liste befindlichen Anforderungen werden auf zwei Arten unterschieden:

- Forderungen
- Wünsche

Dabei werden die Forderungen (F) und Wünsche (W) jeweils in der Anforderungsliste gekennzeichnet. Die Forderungen werden unter allen Umständen erfüllt. Zusätzlich haben die Wünsche eine unterschiedliche Bedeutung, sie werden mit W1(gering) bis W4(sehr wichtig) gewichtet. Außerdem sind alle Forderungen und Wünsche mit Angaben zu versehen, die eine Auskunft über z.B. Kräfte, Geometrie, Sicherheiten, Fertigung, Nachweise usw. geben [6]. In Tabelle 4.1 werden die Anforderungen in Zusammenarbeit mit ECM Datensysteme GmbH gezeigt. Diese haben sich aus bisherigen Erfahrungen mit gekauften Greifern und eigenen ersten Versuchen abgeleitet.

Anforderungsliste				
Projekt:		Bachelorarbeit	Erstellt von:	T. Schulz
Auftraggeber:		ECM Datensysteme GmbH	Erstellt am:	18.08.2020
Lfd.	\mathbf{F}/\mathbf{W}	Beschreibung		Änderungsdatum
1	F	Der Greifer soll parallel zugreifen können.		18.08.2020
2	F	Alle selbstgefertigten Teile aus Aluminium		18.08.2020
3	F	Minimale Traglast des Greifers soll 1 kg betragen.		18.08.2020
4	W3	Austauschbare Backen, um unterschiedliche Teile greifen zu können.		19.08.2020
5	W4	Einfaches Auswechseln der Backen		19.08.2020
6	W1	Der Greifer soll wartungsarm konstruiert werden.		18.08.2020
7	W3	Nachweis der Festigkeit am Übergang vom Motor zu den Greiferarmen nach Norm		19.08.2020
8	F	Mechanische und elektrische Schnittstelle vom UR3-Roboter verwenden		19.08.2020
9	F	Der Greifer soll in der Lage sein, innen und außen zu greifen.		19.08.2020
10	W1	Es soll ein Schrittmotor eingesetzt werden.		19.08.2020
11	F	Greifer soll im Unternehmen fertigbar sein.		20.08.2020
12	F	Schrauben müssen gegriffen werden können.		20.08.2020
13	F	Greifhub soll min. 60mm betragen.		20.08.2020
14	W3	Gesamtgewicht von 1,5 kg nicht überschreiten		20.08.2020
15	F	Breite und Höhe nicht größer als 190 mm		21.08.2020
16	F	Möglichst viele Kauf- oder Normteile verwenden		21.08.2020
17	F	Benötigter Platz beim Zugreifen gering halten, um Kollisionen zu vermeiden		21.08.2020

Tabelle 4.1.: Anforderungsliste

4.2. Auswahl der Greiferbauart

Anhand der Anforderungsliste (Tab. 4.1) wird die Greiferbauart bestimmt. Laut dieser soll der Greifer parallel zugreifen können. Somit wird der zu entwickelnde Greifer ein Parallelgreifer. Der Greifer wird Verbindungselemente und ein Rechteckprofil von innen greifen. Dafür eignen sich zwei Greifbacken. Da der benötigte Platz beim Zugreifen gering gehalten werden soll und die Größe des zu greifenden Objekts variiert, wird eine Kinematik benötigt, bei dem der Greifhub einstellbar ist und dieser beim Greifen andere Objekte nicht behindert. Auf diese Weise wird der Greifer ein mechanischer Greifer.

4.3. Mechanik des Greifers

Die Mechanik des Greifers ist ein wesentlicher Bestandteil bei der Auslegung eines Greifers. Sie entscheidet über Größe, Gewicht, Arbeitsraum, auftretenden Kräfte und Momente sowie über die Kinematik des Greifers. Aus der Anforderungsliste (Tab. 4.1) werden die Vorgaben für die Mechanik entnommen. Wie in Abschnitt 4.2 bereits erwähnt, wird die Greiferbauart ein Parallelgreifer. Anhand der Greiferbauart und den Anforderungen wird die Mechanik des Greifers erläutert. Da der benötigte Platz beim Zugreifen gering gehalten werden soll, wird eine Kinematik nach Abbildung 2.7a aus Abschnitt 2.2.5 gewählt.

4.3.1. Definition der Greiferfinger

Die ausgewählte Greiferbauart besitzt mehrere Greiferfinger. Um einer Verwechslung vorzubeugen, wird den Greiferfingern jeweils eine Bezeichnung zugeordnet.

Abbildung 4.1.: Greiferfinger des Greifers

In Abbildung 4.2 wird eine Greiferseite mit den Greiferfingern gezeigt. In der Abbildung sind vier Positionsnummern. In Tabelle 4.2 werden die Bezeichnungen der Greiferfinger mit der jeweiligen Positionsnummer gezeigt.

Position	Bezeichnung
1	Antriebsfinger
2	Greifbackenfinger
3	Greifbackenfinger
4	Hebelfinger

Tabelle 4.2.: Definition der Greiferfinger

Da die Greiferfinger Pos. 2 und Pos. 3 miteinander verbunden sind, haben sie die selbe Bezeichnung und werden in den folgenden Abschnitten nicht voneinander unterschieden.

4.3.2. Kinematik des Greifers

Um ein Verständnis über die Kinematik des Greifers zu bekommen, wird im Folgenden anhand eines mechanischen Modells die Bewegungen der Greiferbacken erläutert. Üblicherweise besitzt ein Körper sechs Freiheitsgrade im Raum, jeweils eine Translation und Rotation in x-, y- und z-Richtung. Die Translation ist eine Bewegung, bei der die Richtung einer Verbindungsstrecke zwischen zwei Punkten nicht verändert wird. Die Rotation ist eine Bewegung aller Punkte eines Körpers um einen anderen Punkt oder Drehachse [5]. Da sich die Kinematik in diesem Abschnitt nur auf den Hub des Greifers bezieht, werden die Translation und Rotation in z-Richtung nicht beachtet. Zusätzlich fällt die Rotation in x- und y-Richtung weg, da der Greifhub nur eine Translation erfährt, wie im Folgenden erklärt wird. Damit bleiben für den Hub des Greifers zwei Freiheitsgrade: Die Translation in x- und y-Richtung.

Abbildung 4.2.: Grundstellung der Greiferfinger

In Abbildung 4.2 wird die Grundstellung einer Greiferseite gezeigt. Zur Vereinfachung wurden beide Lager (Position A und B) auf eine Ebene gebracht und eine zu den Lagern senkrechte Greiferbacke (C) hinzugefügt.

Für eine Berechnung der Kinematik wird dem Antriebsfinger und dem Hebelfinger eine Höhe L gegeben. Zusätzlich wird dem Greifbackenfinger die Länge b zugewiesen. Außerdem wird ein Koordinatensystem eingeführt sowie die Winkel der Greiferfinger zur x-Achse eingezeichnet.

Abbildung 4.3.: Grundstellung der Greiferfinger mit Maße und Winkel

In der Abbildung 4.3 wird die Grundstellung der Greiferfinger mit allen benötigten Maßen und Winkeln gezeigt. Die Greiferfinger sind in der Grundstellung als Rechteck angeordnet. Wird nun im Lager B der Winkel φ verkleinert, so bleibt die Greiferbacke C stets senkrecht zur x-Achse. Das liegt daran, dass der Greiferfinger mit Länge b mit dem Greiferfinger, an dem die Greiferbacke C befestigt ist, verbunden ist. Dadurch ist der Winkel β konstant. Das zeigt den Effekt eines viergliedrigen Koppelgetriebes als Parallelogramm [8]. Wird nun der Winkel φ verkleinert, bewegt sich die Greiferbacke C nach rechts (siehe Abb.4.4).

Abbildung 4.4.: Greifvorgang bei Bewegung

Die Verschiebung durch Drehen der Greiferfinger ist in rot und die vorherige Greiferstellung in schwarz dargestellt. Die resultierende Verschiebung in x- und y-Richtung sind durch blaue Linien gekennzeichnet. Das Greifverhalten lässt sich nun anhand der Geometrie bestimmen. Dabei wird das Koordinatensystem im Auflager B betrachtet.

Die Verschiebung in x-Richtung wird wie folgt berechnet:

$$\Delta x = |L \cdot [\cos(\varphi_1) - \cos(\varphi_1 + \varphi_2)]|. \tag{4.1}$$

Dabei ist hier der erste Teil in der eckigen Klammer die erste Stellung und der zweite Teil für die zweite Stellung der Greiferfinger. Mathematisch betrachtet werden hier die Ankatheten berechnet und voneinander abgezogen. Da es sich um eine Differenz handelt, werden Betragsstriche gesetzt. Analog die Verschiebung in y-Richtung:

$$\Delta y = |L \cdot [\sin(\varphi_1) - \sin(\varphi_1 + \varphi_2)]|. \tag{4.2}$$

Bei der Verschiebung in y-Richtung handelt es sich um die Gegenkatheten. Für eine Verschiebung beider Greiferseiten, also des Greifhubes, wird das Ergebnis mit 2 multipliziert:

$$\Delta x_H = 2 \cdot \Delta x. \tag{4.3}$$

Dabei wird festgestellt, dass der Greifbackenfinger mit der Länge b keinen Einfluss auf die Verschiebung hat. Die Länge b wird dann relevant, wenn ein Gegenstand nicht gegriffen werden kann, weil der minimale Greifhub nicht ausreicht. Aus diesem Grund ist die Länge b und die Dicke der Greiferfinger so zu bestimmen, dass bei minimalem Greiferhub keine Kollision mit den anderen Greiferfingern auftritt.

Abbildung 4.5.: Hub des Greifers

In Abbildung 4.5 wird der Greifhub im kinematischen Gesamtmodell gezeigt. Der Winkel φ aus Abbildung 4.3 ist eingezeichnet. Der Verlauf der Greifbacken wird auch Kreisschiebung genannt [9]. Bei der Ausführung und Konstruktion der Kinematik ist außerdem zu beachten, dass die Dicke der Greifbacken und die Anordnung der jeweiligen Lager ebenso einen Einfluss auf den Greifhub haben.

Mit den Erkenntnissen werden die Längen und Dicken der Greiferfinger definiert. Außerdem

werden die Grundbackenmaße definiert sowie die Anordnung der Lager festgelegt. In Abbildung 4.6 wird die Kinematik des Greifers mit Bemaßungen dargestellt.

Abbildung 4.6.: Kinematik des Greifers mit Parametern

Die Lageranordnung wird festgesetzt durch:

$$\varphi_L = 30^\circ.$$

Der Abstand der Lager wird festgelegt durch:

$$L = 34 \,\mathrm{mm}, \qquad \qquad L_L = 15 \,\mathrm{mm}$$

Die Geometrie der Greiferfinger wird definiert mit:

$$b_F = 34 \text{ mm}, \qquad \qquad L_G = 7,5 \text{ mm},$$

$$L_B = 30 \text{ mm}, \qquad \qquad L = 34 \text{ mm},$$

$$b = 19 \text{ mm}.$$

Die Werte wurden iterativ und experimentell mit CAD untersucht.

Im nächsten Schritt wird der Greifhub H berechnet. Die Parameter wurden so gewählt, dass der Winkel φ zwischen 0 und 90° variiert. Der maximale Greifhub stellt sich bei einem Winkel von $\varphi = 0^{\circ}$ ein. Anhand der Geometrien und der Abbildung 4.6 wird dieser berechnet durch:

$$\frac{H_{max}}{2} = \frac{L}{2} + L \cdot \cos(\varphi) - b \cdot \sin(\varphi_L) - L_G.$$
(4.4)

Mit der Länge und des Achsabstandes der Antriebsfinger L = 34 mm, der Länge des Fingers b = 19 mm, der Backendicke relativ zur Greiferfingerachse $L_G = 7,5 \text{ mm}$, dem Winkel 0° und der Winkel der Lageranordnung $\varphi_L = 30^\circ$ ergibt sich die Berechnung des allgemeinen Hubes einer Greiferseite mit der Gleichung (4.4):

$$\frac{H_{max}}{2} = 17 \,\mathrm{mm} + 34 \,\mathrm{mm} - 19 \,\mathrm{mm} \cdot \sin(30^\circ) - 7,5 \,\mathrm{mm} = 34 \,\mathrm{mm}. \tag{4.5}$$

Wird eine Greifbacke montiert so variiert L_G . Im Folgenden wird Gleichung mit Gl. abgekürzt. Daraus resultierend ergibt sich für den maximalen Greifhub mit Gl. (4.4):

$$H_{max} = 68 \,\mathrm{mm}.$$

Die Geometrie der Greiferfinger und der Lageranordnung wurden so gewählt, dass keine Kollisionen auftreten. Damit ist der minimale Hub des Greifers bei $\varphi = 90^{\circ}$ mit der Gl. (4.4):

$$H_{min}=0.$$

Wird die Berechnung in Gl. (4.5) genauer betrachtet, liefert der halbe Lagerabstand mit $\frac{L}{2}$ = 17 mm dasselbe Ergebnis wie die Lageranordnung $\varphi_L = 30^{\circ}$ mulitpliziert mit der Länge b = 19 mm des Greifbackenfingers und subtrahiert mit der relativen Greifbackendicke $a_G = 7,5$ mm. Dadurch lautet die Gleichung für den Greifhub des Parallelgreifers in diesem Fall:

$$H = 2 \cdot L \cdot \cos(\varphi) \tag{4.6}$$

und somit der Winkel eines bestimmten Greifhubes:

$$\varphi = \arccos\left(\frac{H}{2 \cdot L}\right). \tag{4.7}$$

Damit lässt sich der Greifhub in Abhängigkeit des Winkels als Diagramm darstellen. In Abbildung 4.7 wird das Diagramm gezeigt.

Abbildung 4.7.: Greifhub H in Abhängigkeit des Winkels φ

Anhand des Diagramms (Abb.4.7) lassen sich Bewegungen in Abhängigkeit des Winkels ablesen. Mit dem Diagramm wird die Theorie der Greiferverschiebung überprüft. Ist zum Beispiel die momentane Greiferstellung bei einem Winkel von $\varphi = 60^{\circ}$ eingestellt, ist der Greifhub laut Diagramm bei H = 34 mm. Wird nun der Winkel um 30° verändert, vergrößert sich der Greifhub nach Gl. (4.3) um:

$$\Delta x_H = |2 \cdot 34 \,\mathrm{mm} \cdot [\cos(60^\circ) - \cos(60^\circ - 30^\circ)]| = 24,89 \,\mathrm{mm}.$$

Laut Diagramm ist bei einem Winkel von 30° der Greifhub $H \approx 59 \text{ mm}$. Wird der im Beispiel vorherige Greifhub H = 34 mm mit der Verschiebung des Greifhubes $\Delta x_H = 24,89 \text{ mm}$ addiert, entspricht es dem in Diagramm dargestellten Greifhub von $H \approx 59 \text{ mm}$.

4.3.3. Wirkende Kräfte am Greifer

Damit ein Greifen überhaupt möglich ist, wird eine Greifkraft benötigt. Sie hängt von vielen Größen und Faktoren ab. Die Greifkraft ist je nach Belastung und Anwendungsfall unterschiedlich. Befindet sich die Greifermitte nicht im Massenschwerpunkt, so treten Kippmomente auf, (siehe Abbildung 4.8).

Abbildung 4.8.: Unsymmetrische Greifbackenbelastung [8, S. 60]

Nach Abbildung 4.8 sind F_1 und F_2 wie folgt definiert:

$$F_1 = \frac{m \cdot g \cdot (L+c)}{L},\tag{4.8}$$

$$F_2 = \frac{-m \cdot g \cdot c}{L}.\tag{4.9}$$

Angesichts der zu hebenden Massen von maximal m = 1 kg wird das Kippmoment nicht berücksichtigt.

Der Einfluss des Kippmoments bei höheren Massen wird in Abbildung 4.9 anhand eines Kraftverlaufs gezeigt.

Abbildung 4.9.: Erforderliche Greifkraft während eines Handhabungszyklus. A außerhalb des Masseschwerpunktes, B im Masseschwerpunkt [8, S. 61]

Der allgemeine Anwendungsfall ist ein Greifen von oben auf ein Bauteil. Aus der Anforderungsliste (Tab. 4.1) wird eine Masse von m = 1 kg entnommen.

Abbildung 4.10.: Wirkende Kräfte beim Greifen im Normalfall

In Abbildung 4.10 werden die Kräfte am Greifobjekt im Ruhestand oder bei langsamer Bewegung des Greifers bei Beschleunigung $a_R \approx 0 \,\mathrm{m \, s^{-2}}$ mit flachen Greifbacken gezeigt. Die Greifkraft

wirkt ebenso nach außen, um ein Greifen innerhalb des Rechteckprofils zu ermöglichen. Dabei ist G die Gewichtskraft durch die Masse, F_R die Reibungskräfte entstehend durch den Reibungskoeffizient μ und F_G die zu aufbringende Greifkraft. Mit der Theorie der technischen Mechanik lässt sich die Greifkraft ermitteln.

So lautet die Gleichung der benötigten Greifkraft mit einem Gewicht von m = 1 kg mit zwei Greifbacken [8]:

$$F_G = \frac{m \cdot g}{\mu \cdot n} \cdot S = \frac{1 \,\mathrm{kg} \cdot 9.81 \,\mathrm{m\,s}^{-2}}{0.35 \cdot 2} \cdot 2 = 28,03 \,\mathrm{N}.$$
(4.10)

n ist dabei die Anzahl der Greifbacken. Der Reibungskoeffizient μ (Tab.4.3) ist hier mit Aluminium auf Stahl mit 0,35 gewählt, da hier die Grundbacke aus Aluminium angenommen wird. Im Normalfall befindet sich eine Kunststoffoberfläche auf den Greifbacken zur Erhöhung der Reibungskräfte. *S* ist der Sicherheitsfaktor bei normaler Anwendung [1]:

- 2 bei normaler Anwendung
- 3 bei Bewegungen mit geringen Beschleunigungen und Bremsverzögerungen
- 4 bei großer Beschleunigung und großer Bremsverzögerung sowie Stößen

Tabelle 4.3.: Reibungskoeffizienten bei unterschiedlichen Materialkombinationen nach [8, S.54]

		Oberfläche Werkstück				
		Stabl	Stahl	Alumini-	Aluminium	Gummi,
		Stam	geschmiert	um	geschmiert	Kunststoff
	Stahl	0,25	0,15	$0,\!35$	0,2	0,5
	Stahl, geschmiert	$0,\!15$	0,09	0,21	$0,\!12$	0,3
Obernache	Aluminium	$0,\!35$	0,21	0,49	0,28	0,7
Greneringer	Alu, geschmiert	0,2	0,12	0,28	0,16	0,4
	Gummi, Kunststoff	0,5	0,3	0,7	0,4	1

Zusätzlich gilt im Allgemeinen auch als Näherung [9]:

- Glatte Oberfläche der Greiforgane, Werkstück glatt und leicht gefettet $\mu = 0, 10$
- Greiferfinger mit spitzen Zähnen an den Greifbacken $\mu = 0,35$
- Greifbacken mit Kunststoff-Haftkissen belegt $\mu = 0, 50$

Wird der Greifer während sich ein Objekt zwischen den Greiferbacken befindet beschleunigt, wirkt zusätzlich neben der aufzubringenden Gewichtskraft eine Kraft zum Heben bzw. Senken [9]. Die Hebekraft ist definiert mit:

$$F_{He} = m \cdot (g + a_R) = 1 \,\mathrm{kg} \cdot (9.81 \,\mathrm{m\,s}^{-2} + 5 \,\mathrm{m\,s}^{-2}) = 14.81 \,\mathrm{N}. \tag{4.11}$$

Analog dazu die Senkkraft:

$$F_{Se} = m \cdot (g - a_R) = 1 \,\mathrm{kg} \cdot (9.81 \,\mathrm{m\,s}^{-2} - 5 \,\mathrm{m\,s}^{-2}) = 4.81 \,\mathrm{N}, \tag{4.12}$$

dabei ist a_R die experimentell ermittelte Beschleunigung des Roboters am Effektor [15], g die Erdbeschleunigung und m die zu hebende Masse.

Da die Hebekraft größer ist als die Senkkraft, wird die Hebekraft verwendet. Dadurch ergibt sich für die benötigte Greifkraft beim Anheben nach Gl. (4.10):

$$F_{GHe} = \frac{F_{He}}{\mu \cdot n} \cdot S = \frac{14,81 \,\mathrm{N}}{0,35 \cdot 2} \cdot 2 = 42,31 \,\mathrm{N}.$$
(4.13)

Wird der Greifer um das Hauptgelenk des Roboters geschwenkt, so treten Fliehkräfte und Trägheitskräfte auf. Diese werden in der Greifkraft berücksichtigt.

Anhand eines Nomogramms (Abb. 4.11) wird die Greifkraft überschlagen.

Abbildung 4.11.: Nomogramm zur Ermittlung der Greifkraft in Abhänigkeit von der Werkstückmasse m, dem Schwenkradius r des Roboters und der Winkelgeschwindigkeit ω (mit Beispiel) [8, S. 57]

Aus dem Benutzerhandbuch des Roboters [15] wird für das Gelenk eine maximale Winkelgeschwindigkeit von $\omega_R = 360 \circ s^{-1}$ entnommen. Somit ergibt sich für die Winkelgeschwindigkeit in rad:

$$\omega_R = \frac{360^{\circ} \,\mathrm{s}^{-1} \cdot \pi}{180} = 6,28 \,\mathrm{rad} \,\mathrm{s}^{-1}.$$
(4.14)

Mit der berechneten Winkelgeschwindigkeit, dem Schwenkradius $r = 0.5 \,\mathrm{m}$ des Roboters, der Masse $m = 1 \,\mathrm{kg}$ und dem Reibungskoeffizienten $\mu = 0.35$ ergibt sich eine Greifkraft gemäß des Nomogramms (siehe Abb. 4.11) von:

$$F_G \approx 40 \,\mathrm{N}.$$

Der UR3 Roboter hat 6 Drehgelenke. Die tatsächlichen Geschwindigkeiten und Beschleunigungen sowie die daraus resultierenden Kräfte werden im Rahmen dieser Bachelorarbeit nicht berechnet. Aus den Erkenntnissen der zuvor berechneten Kräfte wird eine Greifkraft angenommen. Mit der Greifkraft aus Gl. (4.13) als Richtwert mit eingerechneten Sicherheitsfaktor, der Annahme, dass die Greifkraft bei Bewegungen nicht konstant ist und möglichen Trägheitskräften bei Bewegungen wird eine Greifkraft von:

$$F_G = 45 \,\mathrm{N}$$

angenommen.

Diese Greifkraft wird als Ausgangskraft für die Berechnung der Antriebskraft bzw. des Antriebsmoments eingesetzt. Damit die Antriebskraft bzw. das Antriebsmoment berechnet werden kann, werden die kinematischen Beziehungen aus Abschnitt 4.3.2 verwendet. Dabei wird für die Berechnung nur eine Seite des Funktionsschema benötigt. Siehe Abbildung 4.12.

Abbildung 4.12.: Greiferseite mit angreifenden Kräften

Wie bereits erläutert, ist der Winkel des Greifbackenfingers $\beta = 30^{\circ}$ konstant. Im Folgenden wird anhand eines Beispiels gezeigt wie das Antriebsmoment berechnet wird. Im Beispiel beträgt der Winkel $\varphi = 60^{\circ}$.

Abbildung 4.13.: Freischnitt des Antriebsfingers

Abbildung 4.14.: Freischnitt des Hebelfingers

Abbildung 4.15.: Freischnitt des Greifbackenfingers

$$\sum F_x = 0 : A_x - C_x = 0 \tag{4.15}$$

$$\sum F_y = 0 : -A_y + C_y = 0 \tag{4.16}$$

$$\sum M_A = 0: M_A + C_y \cdot \cos(\varphi) \cdot L + C_x \cdot \sin(\varphi) \cdot L = 0$$
(4.17)

$$\sum F_x = 0: B_x - D_x = 0 \tag{4.18}$$

$$\sum F_y = 0 : -B_y + D_y = 0 \tag{4.19}$$

$$\sum M_B = 0 : D_y \cdot \cos(\varphi) \cdot L$$

+ $D_x \cdot \sin(\varphi) \cdot L = 0$ (4.20)

$$\sum F_x = 0: C_x + D_x + F_G = 0 \tag{4.21}$$

$$\sum F_y = 0 : -D_y - C_y = 0 \tag{4.22}$$

$$\sum M_D = 0 : C_x \cdot \cos(30^\circ) \cdot b$$

$$-C_y \cdot \sin(30^\circ) \cdot b + F_G \cdot \frac{L_B}{2} = 0$$
 (4.23)

Zuerst wird in Gl. (4.23) die Gl. (4.20) mit der Bedingung aus Gl. (4.22), eingesetzt:

$$D_x \cdot \frac{\sin(\varphi)}{\cos(\varphi)} = \frac{C_x \cdot \cos(30^\circ) \cdot b - F_G \cdot \frac{L_B}{2}}{\sin(30^\circ) \cdot b}.$$
(4.24)

Danach wird Gl. (4.21) in Gl. (4.24) eingesetzt und nach C_x umgestellt:

$$C_x = \frac{F_G \cdot \left(\frac{\sin(\varphi)}{\cos(\varphi)} + \frac{\frac{L_B}{2b}}{\sin(30^\circ)}\right)}{-\frac{\sin(\varphi)}{\cos(\varphi)} - \frac{\cos(30^\circ)}{\sin(30^\circ)}} = -43,01 \,\mathrm{N},\tag{4.25}$$

mit der aufzubringenden Greifkraft von $F_G = 45 \text{ N}$, der Länge der Greifbacke $L_B = 30 \text{ mm}$, der Länge des Greiferfingers b = 19 mm und des eingestellten Winkels von $\varphi = 60^{\circ}$. Anschließend wird mit Gl. (4.21) die Gelenkkraft D_x berechnet:

$$D_x = -C_x - F_G = -1,99 \,\mathrm{N},\tag{4.26}$$

mit der Gelenkkraft $C_x = -43,01$ N aus Gl. (4.25) und der Greifkraft $F_G = 45$ N. Danach wird $D_x = -1,99$ N aus Gl. (4.26) zusammen mit $\varphi = 60^{\circ}$ in Gl. (4.20) eingesetzt:

$$D_y = -D_x \cdot \frac{\sin(\varphi)}{\cos(\varphi)} = 3,45 \,\mathrm{N}. \tag{4.27}$$

Mit der Beziehung aus Gl. (4.22) und Gl. (4.17) wird das benötigte Antriebsmoment berechnet:

$$M_A = D_y \cdot \cos(\varphi) \cdot L - C_x \sin(\varphi) \cdot L = 1,33 \,\mathrm{N\,m},\tag{4.28}$$

mit den Gelenkkräften $D_y = 3,45$ N aus Gl. (4.17) und $C_x = -43,01$ N aus Gl. (4.25), den eingestellten Winkel $\varphi = 60^{\circ}$ und der Länge des Antriebsfingers L = 34 mm.

Mit der aufzubringenden Greifkraft von $F_G = 45$ N wird die Abhängigkeit des zu benötigten Antriebsmoment M_A bei variablem Winkel φ in einem Diagramm gezeigt (siehe Abb. 4.16). Dabei ist zu beachten, dass die gezeigte Rechnung für eine Greiferseite ist. Für beide Greiferseiten wird das doppelte Antriebsmoment benötigt. Es handelt sich hierbei um eine überschlägige Berechnung, auf Lagerkräfte, Momente, Trägheiten, Reibung, Elastizität, etc. wird verzichtet.

Abbildung 4.16.: Antriebsmoment M_A in Abhängigkeit des Winkels φ

Aus dem Diagramm in Abb. 4.16 wird für $F_G = 45$ N das maximal benötigte Antriebsmoment bei Vernachlässigung von Reibung in den Gelenken $M_A = 3,06$ N m entnommen. Gemäß des Diagramms (Abb. 4.16) ist das benötigte Antriebsmoment bei kleinstem Greifhub am größten. Dreht das Antriebsmoment in die umgekehrte Richtung, wirkt die Greifkraft nach außen. Dadurch ist ein Greifen innerhalb des Rechteckprofils möglich.

Mit den Kenntnissen und Berechnungen werden in Abschnitt 4.4 die Komponenten ausgewählt und ausgelegt.

4.4. Komponenten und Auslegung

4.4.1. Antriebsauswahl

Damit die Kinematik bewegt und die benötigte Greifkraft erzeugt werden kann, wird eine Antriebseinheit benötigt. Es wird laut Anforderungsliste (Tab.4.1) ein elektromotorischer Antrieb gewählt, der in Abschnitt 2.2 erläutert wurde. Es handelt sich hierbei um einen Schrittmotor, da ECM Datensysteme GmbH diese Technologie in der Vergangenheit mehrfach eingesetzt hat. Bei Schrittmotoren sind Encoder nicht mehr zwingend notwendig, da die Schrittverluste von Controllern erkannt werden. Sie besitzen eine gute Regelbarkeit, hohe Positioniergenauigkeit, sind kostengünstig, sind weit verbreitet, können ohne zusätzliche Sensorik geregelt werden und können sehr hohe Drehmomente bei geringen Geschwindigkeiten aufbringen. Der ausgewählte Motor wird nicht die in Abschnitt 4.3.3 errechnete Greifkraft und das benötigte Drehmoment erzeugen. Die in Abschnitt 4.4.3 gewählte Kraftübertragung wird das Drehmoment mittels Übersetzung vergrößern. Wird das benötigte Drehmoment nicht erreicht, wird ein anderer Motor verwendet.

Abbildung 4.17.: Bauart des gewählten Schrittmotor [16]

In Abbildung 4.17 wird der gewählte Schrittmotor gezeigt. Das Datenblatt des Motors befindet sich im Anhang [A.1.2].

Ein Auszug der technischen Daten des Schrittmotors ist in der Tabelle 4.4 einzusehen.

Tabelle 4.4.: Technische Daten des Motors [A.1.2]

Technische Daten			
Bezeichnung	Wert		
Schrittwinkel	$1,8^{\circ}$		
Welle $(ØxL)$	$6\mathrm{x}20\mathrm{mm}$		
Maße (BxHxT)	$42, 3x42, 3x60\mathrm{mm}$		
Bohrungen (BxH)	$31 \mathrm{x} 31 \mathrm{mm}$		
Gewicht	$0,\!49\mathrm{kg}$		
Haltemoment	$0,7\mathrm{Nm}$		

In Abbildung 4.18 wird die Drehmoment-Drehzahl-Kennlinie des Schrittmotors gezeigt.

Abbildung 4.18.: Drehmoment-Drehzahl-Kennlinie des Schrittmotors [16]

Aus der Drehmoment-Drehzahl-Kennlinie des Schrittmotors in Abbildung 4.18 wird ein Drehmoment von T = 0,48 N m bei $n = 100 \text{ min}^{-1}$ abgelesen. Das Haltemoment aus der Tabelle 4.4 von T = 0,7 N m ist ein Drehmoment bei keiner Drehbewegung. Da der Greifer eine permanente Kraft aufweisen soll, werden für die Auslegung die abgelesenen Werte aus der Kennlinie (Abb. 4.18) verwendet.

4.4.2. Steuerung und elektrische Schnittstelle

Der UR3-Roboter besitzt eine elektrische Schnittstelle für Werkzeuge. Sie befindet sich am Ende des Roboters seitlich an der mechanischen Schnittstelle. Siehe Abbildung 4.19.

Abbildung 4.19.: Elektrische Schnittstelle des UR3-Roboters an der Werkzeugseite [15, S. I-42]

Die elektrische Schnittstelle ist ein Stecker mit acht Kontakten. Dieser liefert Leistungs- und Steuerungssignale für Greifer und Sensoren. Für die Verbindung des UR3-Roboters und der Werkzeuge wird laut Benutzerhandbuch [15] ein Industriekabel verwendet:

• Lumberg RKMV 8-354.

Das Kabel besitzt acht Adern mit unterschiedlichen Farben. Jede Farbe steht für eine gewisse Funktion. In Tabelle 4.5 werden die Funktionen gezeigt.

Farbe	Signale
Rot	0 V (GND)
Grau	0 V / +12 V / +24 V (LEISTUNG)
Blau	Digitalausgang 8 (DO8)
Pink	Digitalausgaung 9 (DO9)
Gelb	Digitaleingang 8 (DI8)
Grün	Digitaleingang 9 (DI9)
Weiß	Analogeingang 2 (AI2)
Braun	Analogeingang 3 (AI3)

Tabelle 4.5.: Farben und Funktion des Industriekabels nach [15, S. I-43]

Damit der Schrittmotor angesteuert werden kann, wird ein Steuerungsmodul benötigt. Das Datenblatt befindet sich im Anhang [A.1.3]. In Abbildung 4.20 wird das Steuerungsmodul gezeigt.

Abbildung 4.20.: Steuerungsmodul des Schrittmotors [17, S. 1]

Der Hersteller Trinamic (mit Sitz in Hamburg) ist eines der führenden Unternehmen weltweit im Bereich der Erforschung und Umsetzung von Technologien zur Regelung und Steuerung von Schrittmotoren und Synchronmotoren. Die von Trinamic produzierten Motor-Controller werden seit vielen Jahren von ECM Datensysteme GmbH eingesetzt.

4.4.3. Übertragung am Antrieb

Für eine Übertragung des Drehmoments und zur Erzeugung der Greifkraft wird eine Verbindung zwischen dem Motor und der Kinematik benötigt. Dabei ist zu beachten, dass bei einer Drehung des Motors beide Greifbacken geschlossen oder geöffnet werden sollen. Die eine Greiferseite muss deswegen in die entgegensetzte Richtung gedreht werden wie die andere. Für diese Ausführung des Greifers wird ein Schneckengetriebe gewählt mit jeweils einem Schneckenrad pro Greiferseite. Es wird ein Schneckenradsatz mit dem festgelegtem Achsabstand aus Abschnitt 4.3.2 von $\frac{L}{2} =$ a = 17 mm ausgewählt. Das Datenblatt befindet sich im Anhang [A.1.4].

Technische Daten			
Werkstoff Schneckenrad	GZ-CuSn12Ni		
Werkstoff Schnecke	Stahl		
Achsabstand a	$17\mathrm{mm}$		
Modul m	$0,\!75\mathrm{mm}$		
Gangzahl z_1	3		
Schneckenradzähnezahl \boldsymbol{z}_2	30		
Wirkungsgrad η	0,8		
Max. Drehmoment T_{max}	$2,8\mathrm{Nm}$		

Tabelle 4.6.: Technische Daten des Schneckenradsatzes [A.1.4]

In der Tabelle 4.6 sind die technischen Daten des ausgewählten Schneckenradsatzes gezeigt, die im Folgenden verwendet werden.

Abbildung 4.21.: Kinematik des Schneckengetriebes

In Abbildung 4.21 wird die Kinematik des Schneckengetriebes gezeigt. Wird die rechtssteigende Schnecke links herum gedreht, dreht das Schneckenrad n_{RL} ebenfalls von oben gesehen nach links. Das Schneckenrad n_{RR} dreht in die entgegensetzte Richtung nach rechts. Das bedeutet für die Drehzahl:

$$-n_S = -n_{RL} \cdot i = n_{RR} \cdot i, \tag{4.29}$$

dabei ist i die Übersetzung des Schneckengetriebes.

Die Übersetzung des Schneckengetriebes wird berechnet durch:

$$i = \frac{z_2}{z_1} = \frac{30}{3} = 10, \tag{4.30}$$

mit der Gangzahl der Schnecke $z_1 = 3$ und der Zähnezahl des Schneckenrades $z_2 = 30$.

Aus der Drehmoment-Drehzahl-Kennlinie des Schrittmotors in Abschnitt 4.4.1 wird das maximale Drehmoment $T_1 = 0,48$ N m entnommen. Damit folgt für das maximale Drehmoment an den Schneckenrädern:

$$T_2 = \frac{T_1 \cdot i \cdot \eta}{2} = 1,92 \,\mathrm{N}\,\mathrm{m},\tag{4.31}$$

mit der Übersetzung i = 10 aus Gl. (4.30) und dem Wirkungsgrad des Schneckensatzes $\eta = 0, 8$. Durch den Einsatz von 2 Schneckenrädern wird das Drehmoment durch 2 geteilt.

Zudem ist das benötigte Antriebsmoment für eine Greiferseite kleiner als übertragbare Drehmoment am Schneckenrad:

$$M_A = 1,53 \,\mathrm{N\,m} \le 1,92 \,\mathrm{N\,m},$$

mit dem für eine Greiferseite durch 2 geteilten Drehmoment $M_A = 3,06$ N m aus dem Diagramm (Abb. 4.16).

Der ausgewählte Schneckenradsatz kann laut Tabelle 4.6 ein maximales Drehmoment von T = 2,8 N m je Greiferseite übertragen. Der Schrittmotor erzeugt mit dem Schneckengetriebe ein maximales Drehmoment von T = 1,92 N m. Mit dem zurückgerechneten Berechnungsablauf aus Abschnitt 4.3.3 mit Gl. 4.28 wird bei einem Drehmoment von T = 1,92 N m folgende Greifkraft erzeugt:

$$F_{Gmax} = 57,34 \,\mathrm{N},$$
 (4.32)

mit T = 1,92 N m für das maximal übertragbare Drehmoment des Schneckengetriebes, bei einem Gewicht von m = 1 kg und einem Freiraum fürs Greifen von $H \approx 10$ mm mit dem Winkel $\varphi \approx 80^{\circ}$.

Damit wird die Greifsicherheit S berechnet [8]:

$$S = \frac{F_{Gvorh}}{F_{Gerf}} = \frac{F_{Gmax}}{F_G} = \frac{57,34 \,\mathrm{N}}{45 \,\mathrm{N}} = 1,27, \tag{4.33}$$

mit F_{Gvorh} und $F_{Gmax} = 57,34$ N der maximal vorhandenen Greifkraft aus Gl. (4.32) und $F_{Gerf} = F_G = 45$ N, der erforderlichen angenommenen Greifkraft aus Abschnitt 4.3.3. Durch den kompakten Bau des Greifers und des komplizierten Abdichtens, ist eine Tauchschmierung oder Spritzschmierung nicht möglich. Daher wird ein Schmierfett auf Basis von Polyalphaolefin gewählt, welches auf den Schneckenradsatz aufgetragen wird [19]. Das Datenblatt befindet

sich im Anhang [A.1.5].

Aus dem Datenblatt des Schrittmotors im Anhang [A.1.2] wird eine maximale Drehzahl von $n = n_s = 1000 \,\mathrm{min^{-1}}$ entnommen. Somit ergibt sich eine Drehzahl für die Schneckenräder gemäß Gl. (4.29) von:

$$n_{RL} = n_{RR} = \frac{n_S}{i} = \frac{1000 \,\mathrm{min}^{-1}}{10} = 100 \,\mathrm{min}^{-1}.$$
 (4.34)

Das bedeutet bei einer 360° Drehung der Schnecke dreht das Schneckenrad um 36°. Dadurch ist die Drehbeziehung der Schnecke zum Schneckenrad analog zur Drehzahl:

$$\varphi = \varphi_{Ra} = \frac{\varphi_S}{i}.\tag{4.35}$$

Dabei ist φ_{Ra} der Drehwinkel des Schneckenrades und φ_S der Drehwinkel der Schnecke. Ist der Greifer in seiner Nullposition bei $\varphi = 0^{\circ}$ und soll einen Greifhub von H = 10 mmerreichen, wird nach Gl. (4.7) folgender Winkel benötigt:

$$\varphi = \arccos\left(\frac{H}{2 \cdot L}\right) = \arccos\left(\frac{10\,\mathrm{mm}}{2 \cdot 34\,\mathrm{mm}}\right) = 81,54^{\circ}.$$
 (4.36)

Analog kann im Greifhub-Winkel-Diagramm in Abbildung 4.7 ebenfalls der Winkel abgelesen werden. Das Diagramm und die Formel wird für die Steuerung des Motors verwendet.

Demnach wird die Schnecke, bei Vernachlässigung von Spiel im Getriebe, wie folgt gedreht:

$$\varphi_S = \varphi_{Ra} \cdot i = 81,54^\circ \cdot 10 = 815,4^\circ, \tag{4.37}$$

mit der Übersetzung *i* aus Gl. (4.30) und des benötigten Winkel des Schneckenrades von $\varphi = 81,54^{\circ}$ aus Gl. (4.36) bei einem Greifhub von H = 10mm.

Die Anzahl der Umdrehungen der Schnecke lautet in diesem Fall:

$$n_{anz} = \frac{815.4^{\circ}}{360^{\circ}} = 2.265, \tag{4.38}$$

mit dem Drehwinkel der Schnecke $\varphi = 815,4^{\circ}$ aus Gl. (4.37) bei einem Greifhub von H = 10 mm. Die Anzahl der Umdrehungen der Schnecke in Abhängigkeit des Greifhubes können analog im Diagramm in Abbildung 4.22 abgelesen werden.

Abbildung 4.22.: Greifhub H in Abhängigkeit der Schneckenumdrehung anz

In Abbildung 4.22 wird die Beziehung zwischen Greifhub und der Schneckenumdrehung, bei der Startposition von $\varphi = 0^{\circ}$ mit dem Greifhub von H = 68 mm, gezeigt.

Die Schnecke benötigt

$$t_S = \frac{2,265 \cdot 60}{1000 \,\mathrm{min}^{-1}} = 0,136 \,\mathrm{s} \tag{4.39}$$

für die Anzahl der Umdrehungen aus Gl. (4.38) mit einer Drehzahl von $n_S = 1000 \text{ min}^{-1}$ bei Vernachlässigung von Trägheit und Reibung. Dabei ist zu beachten, dass der Greifhub bis zu einer bestimmten Position öffnet und schließt. Bei einer Umdrehung von $n_S = 1000 \text{ min}^{-1}$ wird ein geringes Drehmoment erzeugt, welches in den meisten Fällen nicht ausreicht. Sobald die Greifbacken das Werkstück greifen, wird eine niedrige Drehzahl eingestellt, damit ein hohes Drehmoment erzeugt werden kann (siehe Abbildung 4.18 in Abschnitt 4.4.1).

Abbildung 4.23.: Greifhub H in Abhängigkeit der Zeit t

In Abbildung 4.23 wird bei der Startposition von $\varphi = 0^{\circ}$ mit dem Greifhub von H = 68 mm das Greifhub-Zeit-Diagramm des Getriebes gezeigt. Anhand des Diagramms lassen sich Zeiten der Schließung und Öffnung der Greifbacken ableiten und gemäß folgender Gleichung berechnen:

$$\Delta t = |t_2(H_2) - t_1(H_1)|. \tag{4.40}$$

Nach Gl. (4.40) und Abbildung 4.23 ist $t_{Smax} = 0,15$ s bei Vernachlässigung von Trägheit und Reibung die maximale Schließ- bzw. Öffnungszeit.

4.4.4. Welle-Nabe-Verbindung

Damit der Motor das Drehmoment auf die Schnecke übertragen kann und die Kinematik in Bewegung gesetzt wird, wird eine Welle-Nabe-Verbindung benötigt. Es wird zwischen formschlüssigen, reibschlüssigen, vorgespannt formschlüssigen und stoffschlüssigen Verbindungen unterschieden. Aufgrund der Bauform der Schnecke und der kurzen Motorwelle wird eine stoffschlüssige Verbindung gewählt. Es gibt drei Arten dieser Verbindung:

• Kleben

- Löten
- Schweißen

Ein Lösen der Verbindung ist nur durch Zerstörung oder spezielle Mittel realisierbar [24]. Angesichts des verfügbaren Platzes wird eine Klebeverbindung gewählt. Es wird ein Welle-Nabe-Kleber gewählt. Das Datenblatt befindet sich im Anhang [A.1.6]. Der Kleber besitzt eine Zugscherfestigkeit bei Raumtemperatur von $\tau_{KB} = 30 \,\mathrm{N}\,\mathrm{mm}^{-2}$ [20].

Abbildung 4.24.: Variation der Zugscherfestigkeit bei unterschiedlichen Klebespalten [A.1.6]

Aufgrund der Toleranzen kann der Klebespalt variieren und die Zugscherfestigkeit steigen oder fallen (siehe Abb. 4.24). Gemäß des Datenblatts im Anhang [A.1.4] besitzt die Bohrung der Schnecke eine Toleranzklasse H6 und laut Datenblatt im Anhang [A.1.2] weist die Motorwelle eine Toleranz von 6 $^{+0}_{-0,012}$ mm auf. Somit ergibt sich für den ungünstigsten Fall ein Klebespalt von:

$$b_K = 0.012 \,\mathrm{mm} + 0.008 \,\mathrm{mm} = 0.02 \,\mathrm{mm}.$$
 (4.41)

Mit der Bohrung von d = 6 mm weist H6 eine Toleranz von $6 \stackrel{+0,008}{_{-0}} \text{ mm}$ auf [4].

Laut Abbildung 4.24 wird bei einem Klebespalt von $b_K = 0.02 \,\mathrm{mm}$ keine Verschlechterung der Klebeleistung hervorgerufen.

Durch die wechselnde Beanspruchung aufgrund von Öffnen und Schließen des Greifers entsteht eine dynamische Bindefestigkeit [24] von:

$$\tau_{KW} = 0, 4 \cdot \tau_{KB} = 0, 4 \cdot 30 \,\mathrm{N}\,\mathrm{mm}^{-2} = 12 \,\mathrm{N}\,\mathrm{mm}^{-2}.$$
 (4.42)

Es handelt sich bei der benötigten Klebeverbindung um eine rotationssymmetrische Überlappung gemäß Abbildung 4.25.

Abbildung 4.25.: Schubbeanspruchte Rundklebung unter Torsionsmoment [24, S.114]

Dabei gilt für eine in Umfangsrichtung schubbeanspruchte Rundklebung [24]:

$$\tau_K = \frac{2 \cdot T_1}{\pi \cdot d^2 \cdot b} \le \frac{\tau_{KW}}{S}.$$
(4.43)

Da die Motorwelle (Abb. 4.26) abgeflacht ist, wird bei der Berechnung der Klebeverbindung eine erhöhte Sicherheit gewählt.

Abbildung 4.26.: Motorwelle des Schrittmotors nach [16]

Dadurch folgt eine Schubbeanspruchung mit Gl. (4.43) von:

$$\tau_K = 0.42 \,\mathrm{N}\,\mathrm{mm}^{-2} \le 4 \,\mathrm{N}\,\mathrm{mm}^{-2}.$$

Dabei ist $T_1 = 0,48$ N m das maximale Torsionsmoment an der Schnecke, d = 6 mm der Durchmesser der Motorwelle, b = 20 mm die Länge der Schnecke und S = 3 die Sicherheit aufgrund der Variation des Klebespalts (Abb. 4.25) sowie der abgeflachten Welle (Abb. 4.26). Die vorhandene Schubbeanspruchung liegt unter der zulässigen dynamischen Bindefestigkeit aus Gl. (4.42). Somit entspricht die Klebeverbindung den Anforderungen. Dabei ist zu beachten, dass es sich hierbei um eine vereinfachte Berechnung handelt und viele Einflussfaktoren vom verwendeten Klebstoff abhängig sind, die nur schwer erfasst werden können [24]. Es sollte darauf geachtet werden, dass vor der ersten Inbetriebnahme der Kleber mindestens 3 Tage trocknen muss. Außerdem muss in diesem Zeitraum idealerweise die Schnecke zentriert werden, damit sie nicht schief auf die Motorwelle geklebt wird. Die ausgewählte Schnecke aus Abschnitt 4.4.3 besitzt eine Querbohrung.

Abbildung 4.27.: Technische Zeichnung der Schnecke [18]

In Abbildung 4.27 wird die Zeichnung der Schnecke gezeigt. Die Querbohrung hat einen Durchmesser von $d_{Bo} = 2 \text{ mm}$ und eine Länge von $L_{Bo} = 10 \text{ mm}$. Um die Sicherheit zu erhöhen, wird redundant eine Stiftverbindung in Form eines Querstiftes in die Bohrung eingesetzt, die nicht berechnet wird. Dafür wird eine 2 mm Bohrung in die Motorwelle gefräst.

4.4.5. Zusammensetzung des Greifer-Konzepts

In diesem Abschnitt werden die gewählten Komponenten des Greifers aus den vorherigen Abschnitten im Zusammenbau als Konzept gezeigt.

Abbildung 4.28.: Greiferkonzept

In Abbildung 4.28 wird das Konzept dargestellt. Die Schnecke wird, wie in Abschnitt 4.4.4 bereits erläutert, auf der Motorwelle befestigt.

Abbildung 4.29.: Bohrungen an der Vorderseite des Schrittmotors nach [A.1.2]

In Abbildung 4.29 werden die vier Anschlussbohrungen des gewählten Schrittmotors aus 4.4.1 dargestellt. Der Motor wird damit über eine am Trägersystem befestigte Motorhalterung montiert. Das Steuerungsmodul wird an der Hinterseite des Schrittmotors befestigt. Die Kinematik aus Abschnitt 4.3.2 wird mit dem Achsabstand des gewählten Schneckengetriebes aus Abschnitt 4.4.3 in das Gehäuse eingesetzt. Die Schneckenräder werden jeweils in eine Aussparung in den Antriebsfingern eingesetzt. Auf diese Weise wird der Motor über die Kraftübertragung von Schnecke zu den Schneckenrädern die Kinematik des Greifers in Bewegung setzen. Damit die Antriebsfinger frei drehen können, werden Kugellager in das Trägersystem eingesetzt. Für die Hebelfinger werden Gleitlagerbuchsen mit Bund eingesetzt. Die Bohrung der Schneckenräder und Antriebsfinger nemöglichen. Dieselbe Bauweise wird mit den Hebelfingern und Gleitlagerbuchsen realisiert. Die Verbindung der Greiferfinger erfolgt über Bohrungen, durch die Achsen durchgesteckt und an die Greifbackenfinger festgesetzt werden. Zusätzlich werden Gleitlager eingesetzt, die das Drehen der Verbindung ermöglichen [21].

4.5. Festigkeitsberechnung des Getriebes

Um einem Ausfall des Greifers vorzubeugen, wird die Sicherheit des Schneckengetriebes anhand von Festigkeitsberechnungen nach [3] berechnet. Zusätzlich wird [24] zugezogen mit Tabellen aus [23]. Es gibt verschiedene Berechnungsarten:

- Verschleißtragfähigkeit
- Grübchentragfähigkeit
- Durchbiegung
- Zahnfußtragfähigkeit
- Temperatursicherheit
- Radmassentemperatur

Aufgrund der kurzen Motorwelle wird die Durchbiegung nicht betrachtet. Durch die niedrigen Drehzahlen und die dadurch resultierenden geringen Temperaturen sind die Verschleißtragfähigkeit, Temperatursicherheit und die Radmassentemperatur nicht Teil dieser Bachelorarbeit.
4.5.1. Geometrien des Schneckenradsatzes

Für die Festigkeitsberechnung werden die Geometrien des rechtwinklig zueinander angeordneten Getriebes benötigt. In diesem Abschnitt werden die fehlenden Geometrien berechnet. Die Indizes 1 für die Schnecke und 2 für das Schneckenrad sind gekennzeichnet. Dem Datenblatt des Schneckenradsatzes (Anhang A.1.4) werden die Werte entnommen.

In Abbildung 4.30 werden die benötigten Geometrien gezeigt.

Abbildung 4.30.: Geometrien des Getriebs nach [2, S.8]

Die folgenden aufgelisteten Geometrien sind bekannt. Das Modul bzw. das Axialmodul beträgt:

$$m = m_x = 0.75 \,\mathrm{mm},$$

die Gangzahl der Schnecke und die Zähnezahl des Schneckenrades:

$$z_1 = 3,$$
 $z_2 = 30,$

die Mittenkreisdurchmesser der Getriebestufe:

$$d_{m1} = 11 \,\mathrm{mm}, \qquad \qquad d_{m2} = 23 \,\mathrm{mm},$$

der Mittenkreissteigungswinkel und der Eingriffswinkel der Schnecke:

$$\gamma_m = 11.8^\circ, \qquad \qquad \alpha_0 = 15^\circ,$$

die Länge der Schnecke:

$$l_1 = 20 \,\mathrm{mm},$$

die Breite des Schneckenrades:

$$b_2 = 7 \,\mathrm{mm},$$

die Bohrung des Schneckenrades ist:

$$B_2 = 6 \,\mathrm{mm}$$

und der Achsabstand des Getriebes:

$$a = 17 \, {\rm mm}.$$

Mit den Werten werden die fehlenden Geometrien berechnet.

Der Fußkreisdurchmesser des Schneckenrades ist wie folgt definiert:

$$d_{f2} = d_{m2} - 2,5 \cdot m = 23 \,\mathrm{mm} - 2,5 \cdot 0,75 \,\mathrm{mm} = 21,13 \,\mathrm{mm}. \tag{4.44}$$

Die Kranzdicke des Schneckenrades beträgt:

$$s_k = \frac{d_{f2} - B_2}{2} = \frac{21,13 \,\mathrm{mm} - 6 \,\mathrm{mm}}{2} = 7,57 \,\mathrm{mm}.$$
 (4.45)

Die genannten und berechneten Geometrien werden in den folgenden Festigkeitsberechnungen verwendet.

4.5.2. Grübchenfestigkeit

Grübchen sind bei den Flanken mit geringerer Härte anzutreffen. In den meisten Fallen sind es die Schneckenradflanken. Grübchen bilden sich durch hohe Lastspiele und werden die Zahnflanken schädigen sowie im Laufe der Zeit zerstören. Die Geometrie wird aus Abschnitt 4.5.1 entnommen. In Abbildung 4.31 werden Grübchen und denen aus Grübchen resultierenden Ermüdungsbrüchen gezeigt.

Abbildung 4.31.: Grübchenbildung mit Zahnkopfbruch infolge von Flankenermüdung [13, S.241]

Die Grübchensicherheit ist wie folgt definiert:

$$S_H = \frac{\sigma_{HG}}{\sigma_{Hm}} \ge S_{Hmin}. \tag{4.46}$$

Dabei ist σ_{Hm} die mittlere Flankenpressung Gl. (4.52) und σ_{HG} der Grenzwert der Flankenpressung Gl. (4.47). Die Mindestgrübchensicherheit beträgt $S_{Hmin} = 1$. Zuerst wird der Grenzwert der Flankenpressung ermittelt. Dieser ist wie folgt definiert:

what der Grenzwert der Frankenpressung ernneten. Dieser ist wie longt denniert.

$$\sigma_{HG} = \sigma_{HlimT} \cdot Z_h \cdot Z_v \cdot Z_s \cdot Z_u \cdot Z_{oil}, \qquad (4.47)$$

mit der Grübchenfestigkeit $\sigma_{HlimT} = 520 \,\mathrm{N}\,\mathrm{mm}^{-2}$ aus Tabelle 4.7 mit dem Werkstoff CuSn12Ni-C-GZ des gewählten Schneckenrades.

Schneckenradwerkstoff	Norm	$\sigma_{\rm HlimT} \rm Nmm^{-2}$	Ered-Modul Nmm ⁻²
CuSn12-C-GZ		425	140144
CuSn12Ni-C-GZ	DIN EN	520	150622
CuSn12Ni-2-C-GC	1982,	520	150622
CuAl10Fe5Ni5-C-GC	1563,	660	174053
EN-GJS-400-15	1561	490	209790
EN-GJL-250		350	146955

Tabelle 4.7.: Festigkeitswerte für Schneckenradwerkstoffe (angelehnt an [23, S.331])

Die folgenden Faktoren werden mit einbezogen:

Der Lebensdauerfaktor Z_h :

$$Z_h = \left(\frac{25000}{L_h}\right)^{1,6} = \left(\frac{25000}{22000}\right)^{1,6} = 1,22 \tag{4.48}$$

mit Lebensdauerstunden L_h , welches ca. 2,5 Jahre entspricht.

Der Geschwindigkeitsfaktor Z_v :

$$Z_v = \sqrt{\frac{5}{4 + v_{gm}}} = \sqrt{\frac{5}{4 + 0.59 \,\mathrm{m\,s}^{-1}}} = 1,04 \tag{4.49}$$

mit der Gleitgeschwindigkeit der Schnecke am Mittenkreis:

$$v_{gm} = \frac{dm_1 \cdot n_S}{19098 \cdot \cos(\gamma_m)} = \frac{11 \,\mathrm{mm} \cdot 1000 \,\mathrm{min}^{-1}}{19098 \cdot \cos(11, 8^\circ)} = 0.59 \,\mathrm{m\,s}^{-1}.$$
 (4.50)

Dabei ist n_S die Drehzahl der Schnecke bei Greifertraglast von m = 1 kg (Abb. 4.18), d_{m1} der mittlere Schneckenraddurchmesser und γ_m der Mittenkreissteigungswinkel der Schnecke. Der Baugrößenfaktor Z_s :

$$Z_s = \sqrt{\frac{3000}{2900 + a}} = \sqrt{\frac{3000}{2900 + 17\,\mathrm{mm}}} = 1,01 \tag{4.51}$$

mit dem Achsabstand a.

Der Schmierstofffaktor Z_{oil} :

$$Z_{oil} = 0,94$$

für die gewählte Schmierung mit Polyalphaolefine in Abschnitt 4.4.4 aus TB23-6 [23]. Der Übersetzungsfaktor Z_u :

$$Z_u = 1.$$

Für i > 20, 5 ist $Z_u = 1$.

Damit ergibt sich für den Grenzwert der Flankenpressung nach Gl. (4.47):

$$\sigma_{HG} = 626,39 \,\mathrm{N \, mm^{-2}}$$

Die mittlere Flankenpressung ist wie folgt definiert:

$$\sigma_{Hm} = \frac{4}{\pi} \cdot \sqrt{\frac{p_m^* \cdot T_2 \cdot E_{red}}{a^3}}.$$
(4.52)

Mit dem geforderten Abtriebsmoment am Schneckenrad $T_2 = 1,51$ N m bei einer Traglast von m = 1 kg und Öffnungswinkel von $\varphi = 80^{\circ}$, dem reduzierten E-Modul $E_{red} = 150\,622$ N mm⁻² für CuSn12-C-GZ aus Tabelle 4.7, dem Achsabstand a = 17 mm und dem Kennwert der mittleren Hertzschen Pressung:

$$p_m^* = 0,1794 + 0,2389 \cdot \frac{a}{dm_1} + 0,0761 \cdot x_2 \cdot |x_2|^{3,18} + 0,0536 \cdot q$$

$$0,00369 \cdot z_2 - 0,01136 \cdot \alpha_0 + 44,9814 \cdot \frac{x_2 + 0,005657}{z_2} \cdot \left(\frac{z_1}{q}\right)^{2,6872} = 1,05$$

$$(4.53)$$

bei keiner Profilverschiebung $x_2 = 0$, dem Erzeugungswinkel $\alpha_0 = 15^{\circ}$, dem Modul m = 0.75 mm, der Gangzahl der Schnecke $z_2 = 3$, der Zähnezahl des Schneckenrades $z_1 = 17$, dem mittleren Schneckendurchmesser $dm_1 = 11$ mm und der Formzahl der Schnecke:

$$q = \frac{dm_1}{m} = \frac{11\,\mathrm{mm}}{0.75\,\mathrm{mm}} = 14,67\tag{4.54}$$

ergibt sich für die mittlere Flankenpressung nach Gl. (4.52):

$$\sigma_{Hm} = 281,25 \,\mathrm{N}\,\mathrm{mm}^{-2}$$

und daraus resultierend für die Sicherheit der Grübchenfestigkeit nach Gl. (4.46):

$$S_H = \frac{626,39 \,\mathrm{N \, mm^{-2}}}{281.25 \,\mathrm{N \, mm^{-2}}} = 2,23 \ge 1.$$

Die Grübchensicherheit entspricht den Anforderungen.

4.5.3. Zahnfußtragfähigkeit

Zahnbrüche entstehen durch geringe Festigkeit der Zahnräder. Es wird nach Gewaltbruch und Schwingbruch unterschieden. Der Gewaltbruch wird durch kurzzeitige starke Überbelastung hervorgerufen. Durch wechselnde Belastung und Überschreiten der Biegespannung entstehen Schwingbrüche. In Abbildung 4.32 werden die beiden Zahnbrüche gezeigt.

(a) Spröder Gewaltbruch an einem Zahnrad

(b) Schwingbruch an einem Zahnrad

Abbildung 4.32.: Brüche von Zahnrädern [13, S.239ff]

Die Zahnbruchsicherheit ist wie folgt definiert:

$$S_F = \frac{\tau_{FG}}{\tau_F} \ge S_{Fmin}.\tag{4.55}$$

Dabei ist τ_{FG} der Grenzwert der Schub-Nennspannung Gl. (4.56) und τ_F die Schub-Nennspannung Gl. (4.60). Die Mindestzahnbruchsicherheit beträgt $S_{Fmin} = 1,1$.

Zuerst wird die auftretende Zahnfußspannung ermittelt. Sie ist wie folgt definiert:

$$\tau_F = \frac{F_{tm2}}{b_2 \cdot m_x} \cdot Y_\epsilon \cdot Y_F \cdot Y_\gamma \cdot Y_K. \tag{4.56}$$

Dabei ist $b_2 = 7 \,\mathrm{mm}$ die Breite des Schneckenrades und $m_x = 0.75 \,\mathrm{mm}$ das Axialmodul des Schneckengetriebes.

Die Umfangskraft wirkt an der Schneckenradwelle gemäß nach Abbildung 4.33.

Abbildung 4.33.: Darstellung der Kräfte an der Schnecke [24, S.866]

$$F_{t2} = F_{tm2} = \frac{2 \cdot T_2}{d_{m2}} = \frac{2 \cdot 1,51 \,\mathrm{N\,m}}{23 \,\mathrm{mm}} = 131,3 \,\mathrm{N},\tag{4.57}$$

mit Abtriebsdrehmoment T_2 bei einer Traglast von m = 1 kg und Öffnungswinkel von $\varphi = 80^{\circ}$ sowie dem Schneckenraddurchmesser d_{m2} .

Die folgenden Faktoren werden mit einbezogen:

Der Überdeckungsfaktor Y_{ϵ} für übliche Ausführung:

$$Y_{\epsilon} = 0, 5.$$

Der Formfaktor Y_F berücksichtigt die Kraftverteilung über die Zahnbreite. Es wird angenommen, dass der Verschleiß im Laufe der geforderten Lebensdauer $\Delta s = 0$ beträgt. Somit ergibt er mit dem Axialmodul $m_x = 0.75$ mm, dem mittleren Schneckenraddurchmesser $dm_2 = 11$ mm, dem Fußkreisdurchmesser des Schneckenrades $d_{f2} = 21.13$ mm aus Gl. 4.44, dem Erzeugungswinkel in rad $\alpha_0 = 0.262$ rad und dem Mittenkreissteigungswinkel der Schneckenzähne $\gamma_m = 11.8^{\circ}$ einen Wert von:

$$Y_F = \frac{2, 9 \cdot m_x}{1,06 \cdot (m_x \cdot \frac{\pi}{2} + (d_{m2} - d_{f2}) \cdot \tan(\frac{\alpha_0}{\cos(\gamma_m)}))} = 1,09.$$
(4.58)

Der Steigungsfaktor:

$$Y_{\gamma} = \frac{1}{\cos(\gamma_m)} = \frac{1}{\cos(11, 8^\circ)} = 1,02 \tag{4.59}$$

mit dem Mittenkreissteigungswinkel in $\operatorname{rad}\gamma_m = 0,206 \operatorname{rad}$.

Der Kranzdickenfaktor Y_K ergibt mit dem Axialmodul $m_x = 0,75 \,\mathrm{mm}$ und der Kranzdicke des Schneckenrades $s_k = 7,57 \,\mathrm{mm}$ aus Gl. 4.45 mithilfe des Diagramms aus Abbildung 4.34 einen Wert von:

$$Y_K = 1.$$

Abbildung 4.34.: Kranzdickenfaktor Y_K [3, S.47]

Damit ergibt sich für auftretende Zahnfußspannung nach Gl. 4.56:

$$\tau_F = 13,98 \,\mathrm{N \, mm^{-2}}$$

Der Grenzwert der Schub-Nennspannung am Zahnfuß ist wie folgt definiert:

$$\tau_{FG} = \tau_{FlimT} \cdot Y_{NL}. \tag{4.60}$$

Die Schub-Dauerfestigkeit $\tau_{FlimT} = 90 \,\mathrm{N}\,\mathrm{mm}^{-2}$ wird aus der Tabelle 4.8 für CuSn12Ni-C-GZ entnommen. Eine Qualitätsverschlechterung wird nicht akzeptiert. Daher wird der reduzierte Wert entnommen.

Schneckenradwerkstoff	Nach Schubdauerfestigkeit $ au_{ m HlimT} \ m Nmm^{-2}$		reduzierte Schub- Dauerfestigkeit $ au_{ m HlimT}~ m Nmm^{-2}$
CuSn12-C-GZ	DIN EN	92	82
CuSn12Ni-C-GZ	1982,	100	90
CuSn12Ni-2-C-GC	1563,	100	90
CuAl10Fe5Ni5-C-GC	1561	128	120
EN-GJS-400-15	DIN EN 1563	115	115
EN-GJL-250	DIN EN 1561	70	70

Tabelle 4.8.: Schub-Dauerfestigkeitswerte τ_{FlimT} für Radwerkstoffe (angelehnt an [3, S.48])

Der Lebensdauerfaktor Y_{NL} ist abhängig vom Schneckenradwerkstoff, der Lastspiele und der Qualität des Zahnrades. Er wird der Tabelle 4.9 entnommen.

Tabelle 4.9.: Lebensdauerfaktor Y_{NL} in Abhängigkeit von der Lastspielzahl N_L , dem Werkstoff und der zulässigen Qualität des Schneckenrades (Auszug angelehnt an [3, S.48])

Werkstoff	Lastspiel N_L	Lebensdauerfaktor $\mathbf{Y}_{\mathbf{NL}}$
CuSn12-C und	unter $8, 3 \cdot 10^5$	1,25
CuSn12Ni2-C bei	von 8, $3 \cdot 10^5$ bis 3, $0 \cdot 10^6$	$(3 \cdot 10^6/N_L)^{0,16}$
Verschlechterung auf Qualität 8	über $3, 0 \cdot 10^6$	1
CuSn12-C und	unter $2, 3 \cdot 10^5$	1,5
CuSn12Ni2-C bei	von $2, 3 \cdot 10^5$ bis $3, 0 \cdot 10^6$	$(3 \cdot 10^6 / N_L)^{0.16}$
Verschlechterung auf Qualität 9	über $3, 0 \cdot 10^6$	1

Die Zahnradqualität ist irrelevant bei Lastspielen über $3, 0 \cdot 10^6$. Es wird der Lebensdauerfaktor beim Maximum der Lastspiele gewählt:

$$Y_{NL} = 1.$$

Somit ergibt sich für die Schub-Nennspannung am Zahnfuß nach Gl. 4.60:

$$\tau_{FG} = 90 \,\mathrm{N}\,\mathrm{mm}^{-2}$$

und die daraus resultierende Sicherheit nach Gl. 4.55:

$$S_F = \frac{90 \,\mathrm{N \, mm^{-2}}}{13,98 \,\mathrm{N \, mm^{-2}}} = 6,43 \ge 1,1.$$

Die Zahnbruchsicherheit entspricht den Anforderungen.

5. Auskonstruktion des Greifer-Prototyps

In diesem Kapitel wird der Greifer mithilfe von CAD konstruiert und dargestellt. Die Stückliste, die Datenblätter und die Zeichnungen befinden sich im Anhang [A].

5.1. Trägersystem

Wie in Abschnitt 2.1 bereits erwähnt, nimmt das Trägersystem alle Bestandteile des Greifers auf und sorgt für die Verbindung dieser. Außerdem stellt es dabei die mechanische, energetische und informationelle Verbindung der Komponenten untereinander zur Verfügung.

Abbildung 5.1.: Trägersystem

In Abbildung 5.1 wird das Trägersystem [A.2.4] des Greifers gezeigt. Die vorderen zwei Bohrungen werden für Bundbuchsen mit den Maßen $d_1 = 4mm$, $d_2 = 8mm$, $d_3 = 12mm$, $b_1 = 4mm$ und $b_2 = 2$ verwendet. In den beiden großen Bohrungen werden beidseitig abgedichtete Kugellager mit den Maßen d = 6mm, D = 19mm und B = 6mm benutzt. Die Datenblätter der Lager befinden sich im Anhang [A.1.7].

Zur Stabilität werden Achsen in die restlichen Bohrungen eingesetzt. Für die Bohrungen vorne in der Mitte sowie den äußeren Bohrungen werden Achsen mit Durchmesser d = 3mm und Länge l = 16mm gewählt. Die hinteren Achsen haben die Maße von d = 4mm und l = 16mm.

Abbildung 5.2.: Motorhalterung

In Abbildung 5.2 wird die Motorhalterung [A.2.5] gezeigt. Die Motorhalterung hat vier Anschlussbohrungen des Schrittmotors (siehe Kapitel 4.4.5 Abb. 4.29). Die äußeren Bohrungen sind für die Befestigung am Trägersystem.

5.2. Greiferfinger

Für die Greiferfinger werden die Geometrien aus Abschnitt 4.3.2 realisiert.

Abbildung 5.3.: Greiferfinger

In Abbildung 5.3 werden die Greiferfinger des Greifers im Zusammenbau ohne Verbindungsteile gezeigt. Die Gewinde an den Greifbackenfingern [A.2.6] vorne werden für den Anbau und Wechsel von Greifbacken verwendet. Die Bohrungen oben an den Antriebsfingern [A.2.8] werden für die Sicherung des Schneckenrades benutzt. Die seitlich an den Greifenbackenfingern und Hebelfingern [A.2.7] befindlichen Gewinde werden für die Sicherung der Verbindungsachsen (d = 4mm, l = 19mm) verwendet. Die Antriebsachsen haben einen Durchmesser von d = 6mm und eine Länge von l = 35mmm. Die Hebelfingerachsen haben die Maße von d = 4mm und l = 27mm.

5.3. Halterung des Greifers

Die Halterung des Greifers wird zusammen mit der Motorhalterung an dem Trägersystem befestigt.

Abbildung 5.4.: Greiferhalterung

In Abbildung 5.4 wird die Halterung des Greifers [A.2.3] gezeigt. Da der Schrittmotor ein eigenes Gehäuse besitzt und das Gewicht reduziert werden soll, wird die Greiferhalterung offen konstruiert. Die Bohrungen am hinterem Teil der Halterung dienen zur Befestigung der mechanischen Schnittstelle des Greifers. Die Bohrungen vorne werden zusammen mit der Motorhalterung an dem Trägersystem befestigt. Die Greiferhalterung bietet außerdem Platz für das Steuerungsmodul an der Rückseite des Schrittmotors.

5.4. Mechanische Schnittstelle zum Roboter

Der UR3-Roboter besitzt eine mechanische Schnittstelle, an die die Schnittstelle des Greifers angepasst werden muss.

Abbildung 5.5.: Mechanische Schnittstelle am UR3 Roboter nach [15, S.I-26]

In Abbildung 5.5 wird die mechanische Schnittstelle des Roboters für den Endeffektor gezeigt. Die Schnittstelle des Greifers [A.2.2], wie bereits in Abschnitt 5.3 erwähnt, wird mithilfe der Bohrungen am hinterem Teil der Halterung befestigt (siehe Abb. 5.6).

Abbildung 5.6.: Schnittstelle des Greifers

5.5. Gesamtmodell

In dem Gesamtmodell [A.2.1] werden alle Komponenten im Zusammenbau gezeigt.

Abbildung 5.7.: Gesamtmodell

In Abbildung 5.7 wird der mit CAD konstruierte Parallelgreifer gezeigt. Schrauben zur Befestigung und Sicherung sind nicht dargestellt.

Abbildung 5.8.: Kinematik des Greifers im Gesamtmodell

In Abbildung 5.8 wird der Greifer ohne zweites Trägersystem gezeigt. Hierbei wird auf den Zusammenbau der Kinematik hingewiesen.

Abbildung 5.9.: Auszug aus der Gesamtbauzeichnung des Greifers aus Anhang [A.2.1]

In Abbildung 5.9 wird ein Auszug aus der Gesamtbauzeichnung des Greifers gezeigt. Die Abbildung zeigt die Gesamtmaße des Greifers sowie die minimale und maximale Greiferfingerstellung. Der aus Abschnitt 4.3.2 errechnete maximale Greifhub von H = 68 mm wird miteinbezogen. Die Höhe des Greifers, ohne die mechanische Schnittstelle zum Roboter, beträgt h = 40 mm. Mit der Schnittstelle ist die Gesamthöhe h = 63mm. Die Höhe des Greifbackenfingers beträgt h = 11 mm. Die Höhe des angebrachten Rechteckprofils an den Stichprobenkästen hat eine Höhe von $b_{Re} = 14 \text{ mm}$ (siehe Abschn. 3.2). Somit können die Greifbackenfinger in das Profil hineingeführt werden und von innen zugreifen. Für die gefertigten Teile aus Aluminium sowie für die Komponenten aus dem Anhang [A] wird aus dem CAD-Modell ein Gesamtgewicht des Greifers von $m_{Greifer} = 906,87 \text{ g}$ ermittelt. In Abbildung 5.10 wird der abgeschlossene Greifer am UR3-Roboterarm gezeigt. Verbindungsschrauben und Kabel werden nicht dargestellt.

Abbildung 5.10.: UR3-Roboter mit Greifer

5.6. Überschlägige Kostenanalyse

In diesem Abschnitt werden die Kosten des Greifers überschlagen. Inbegriffen sind die Kosten für die Komponenten und für das Material. Die Herstellungs- sowie Montagekosten werden nicht aufgelistet.

Komponente	Preis in €
Aluminium	1,50
Schrittmotor	16,38
Kugellager	5,16
Bundbuchsen	5,64
Gleitlagerbuchsen	7,36
Achsen	$12,\!95$
Schneckenradsatz	51,46
Kleber	6,20
Motorcontroller	83,78

Tabelle 5.1.:	Kosten	$\det F$	Componenten	des	Greifers
---------------	--------	----------	-------------	----------------------	----------

In der Tabelle 5.1 werden die Kosten der Komponenten und des Zubehörs aufgelistet. Die gezeigten Kosten der Komponenten und Materialien sind für die Herstellung eines Greifers. Der Aluminiumpreis pro Kilogramm beträgt $1,51 \in [22]$. Der Gesamtpreis aller Komponenten mit Zubehör beträgt 190,43 \in . Die Tabelle 5.1 soll nur einen ersten Eindruck über die Kosten vermitteln. Hinzu kommt, dass erfahrungsgemäß die Herstellkosten mindestens 3 mal so hoch sind wie die Materialkosten. Dabei sind Entwicklungskosten, Vertriebskosten, Marketingkosten, Verwaltungskosten und diverse Gemein- und Sonderkosten nicht mit einberechnet.

6. Schlussbetrachtung

Das Ziel der Bachelorarbeit war es, einen Greifer für ein automatisiertes Messsystem zu entwickeln. Der Greifer hat die Aufgabe Schrauben und die da zugehörigen Stichprobenkästen zu greifen, damit diese mithilfe eines Roboters transportiert werden können. Bei der Entwicklung des Greifers wurde dabei auf eine kompakte Bauweise geachtet, die dem geringen Platzbedarf in der automatisierten Anlage gerecht wird.

Am Anfang der Arbeit wurde aus den Kenntnissen durch die Recherche über Greifer und den Anforderungen, für das Messsystem, eine Anforderungsliste erstellt. Auf der Basis der Anforderungsliste und der Aufgaben des Greifers wurde eine Greiferbauart ausgewählt. Damit ein Greifen möglich ist, wurde eine Kinematik entwickelt, welche das Greifen mit geringen Platzbedarf ermöglicht.

Parallel zu der Entwicklung der Kinematik wurde die benötigte Greifkraft anhand der Einflüsse auf den Greifer berechnet. Zur Erzeugung der Greifkraft wurde in Zusammenarbeit mit der Kinematik eine elektromotorische Antriebsart in Form eines Schrittmotors gewählt, welcher einfach zu steuern ist. Die Übertragung der Kräfte vom Schrittmotor auf die Kinematik wurde mit einem Schneckenradsatz realisiert.

Eine kritische Stelle beim Greifer befindet sich an der Schnittstelle der Kräfteübertragung. Um einem Ausfall an dieser Stelle und des gesamten Greifers vorzubeugen, wurden genormte Sicherheitsberechnungen an der Welle-Nabe-Verbindung wie auch am Schneckenradsatz durchgeführt. Hierbei ist noch einmal zu erwähnen, dass die Berechnungen überschlägig sind.

Nach der Entwicklung wurde eine Konstruktion des Greifers mit CAD angefertigt, aus der schließlich die Zeichnungsableitungen erstellt wurden. Dabei wurde darauf geachtet, dass der Greifer an einen UR3-Roboter angeschlossen werden kann.

Zum Schluss wurde eine überschlägige Kostenanalyse des Greifers erstellt.

In Tabelle 6.1 werden die entwickelten Kenngrößen des Greifers aufgelistet.

Kenngröße	Parameter
Antrieb	elektrisch-motorisch
Wirkprinzip	mechanisch, parallel
Greifkraft	57 N bei $\varphi=80^\circ$
Greifhub	$0-68\mathrm{mm}$
Traglast	$1,5\mathrm{kg}$
$Schlie \beta \text{-}/ \ddot{O} \mathrm{ffnungszeit}$	$0,\!15\mathrm{s}$
Greiforgane	Greiferfinger
Hauptabmessungen	$178x114x40\mathrm{mm}$
Eigenmasse	$0,97\mathrm{kg}$
Material	Aluminium (selbstgefertigte Teile)

Tabelle 6.1.: Kenngrößen des Greifers

Es wurden alle Punkte aus der Anforderungsliste berücksichtigt und eingehalten. Das Ziel der Bachelorarbeit wurde erreicht. Aufbauend auf dieser Arbeit könnte für den Greifer ein Fertigungsprozess entwickelt werden. Außerdem ist es möglich einen Prototypen herzustellen, zu testen, weiterzuentwickeln und zu optimieren. Zusätzlich kann eine Steuerung für den Greifer programmiert werden.

Literaturverzeichnis

- Engelberger, J. F. Industrieroboter in der praktischen Anwendung. Hanser, München Wien, 1981.
- [3] DIN Deutsches Institut f
 ür Normung e. V. DIN 3996: Tragf
 ähigkeitsberechnung von Zylinder-Schneckengetrieben mit sich rechtwickling kreuzenden Achsen. Beuth Verlag GmbH, 2019-09.
- [4] Gomeringer, R. Tabellenbuch Metall : mit Formelsammlung. Verl. Europa-Lehrmittel, 47. Auflage.
- [5] Gross, D., Hauger, W., Schröder, J., Wall, W. A. *Technische Mechanik 3*. Springer Vieweg, 10. Auflage, Berlin, 2008.
- [6] Grote, K.-H., Feldhusen, J. Dubbel: Taschenbuch f
 ür den Maschinenbau. Springer Vieweg, 24. Auflage, Berlin, 2014.
- Haun, M. Handbuch Robotik: Programmieren und Einsatz intelligenter Roboter. Springer Vieweg, 2. Auflage, Berlin, 2013.
- [8] Hesse, S. Robotergreifer : Funktion, Gestaltung und Anwendung industrieller Greiftechnik. Hanser, München, 2004.
- [9] Hesse, S. Greifertechnik : Effektoren für Roboter und Automaten. Hanser, München, 2011.
- [10] Hesse, S. Grundlagen der Handhabungstechnik : mit 25 Tabellen, 5 Tafeln sowie 26 Übungsaufgaben und 115 Kontrollfragen. Hanser, München, 2013.

- [11] Hesse, S., Malisa, V. Taschenbuch Robotik Montage Handhabung. Fachbuchverl. Leipzig im Carl-Hanser-Verl., München, 2010.
- [12] Hesse, S., Schmidt, H., Schmidt, U. Manipulatorpraxis : manuell geführte Handhabungssysteme. Vieweg, 2001.
- [13] Lechner, G., Naunheimer, H. Auslegung von Zahnradgetrieben f
 ür Fahrzeuge. Springer, Berlin, Heidelberg, 1994.
- [14] Seegräber, L. Greifsysteme für Montage : Handhabung und Industrieroboter ; Grundlagen - Erfahrungen - Einsatzbeispiele. Kontakt und Studium. Expert-Verl., Ehningen bei Böblingen, 1993.
- [15] Universal Robots. UR3/CB3 Benutzerhandbuch. Version 3.3.0, 2020.
- [16] O. Verf. https://www.pollin.de/p/schrittmotor-act-17hs6416d6122p5-5-12-1-80 2-phasen-3-52-v-310781, Abruf am 10.09.2020.
- [17] O. Verf. https://www.trinamic.com/products/modules/details/tmcm-1070, Abruf am 12.09.2020.
- [18] O. Verf. https://de.framo-morat.com/produkte/schneckenradsaetze/ schneckenradsaetze-a17, Abruf am 15.09.2020.
- [19] O. Verf. https://rocol-shop.de/foodlube-universal-2, Abruf am 16.09.2020.
- [20] O. Verf. https://www.henkel-adhesives.com/de/de/produkt/retaining-compounds/ loctite_648, Abruf am 20.09.2020.
- [21] O. Verf. https://www.maedler.de/product/, Abruf am 22.09.2020.
- [22] O. Verf. https://www.finanzen.net/rohstoffe/aluminiumpreis, Abruf am 30.09.2020.
- [23] Wittel, H., Jannasch, D., Voßiek, J. Roloff/Matek Maschinenelemente : Tabellenbuch. Springer Vieweg, 24. Auflage, Wiesbaden, 2019.
- [24] Wittel, H., Muhs, D., Jannasch, D. Roloff/Matek Maschinenelemente : Normung, Berechnung, Gestaltung. Springer Vieweg, 23. Auflage, Wiesbaden, 2015.

A. Datenblätter und Zeichnungen

A.1. Datenblätter

A.1.1. UR3 Datenblatt

UNIVERSAL ROBOTS

UR3 Technische Spezifikationen

Artikel Nr. 110103

6-achsiger Roboterarm mit einem Arbeitsradius von 500 mm

Gewicht:	11 kg
Traglast:	3 kg
Reichweite:	500 mm
Rotation der Gelenke:	+/- 360° endlose Rotation am Gelenk an der Werkzeugschnittstelle
Geschwindigkeit:	Alle Drehgelenke: 360°/Sek. Andere Gelenke: 180°/Sek. Werkzeug: in der Regel 1m/s
Wiederholgenauigkeit:	+/- 0,1 mm
Grundfläche:	Ø118 mm
Anzahl Gelenke:	6 Drehgelenke
Schaltschrankgröße (B x H x T):	475 mm x 423 mm x 268 mm
E/A-Anschlüsse:	Schaltschrank Werkzeugschnittstelle Digitaleingänge 16 2 Analogeingänge 16 2 Analogeingänge 2 2
E/A-Stromversorgung:	24 V 2A im Schaltschrank und 12 V/24 V 600 mA an der Werkzeugschnittstelle
Kommunikation:	TCP/IP 100 Mbit: IEEE 802.3u, 100BASE-TX Ethernet-Buchse & Modbus TCP
Programmierung:	PolyScope grafische Benutzeroberfläche auf einem 12" Touchscreen mit Montagevorrichtung
Lautstärke:	Vergleichsweise geräuschlos
Schutzklasse:	IP64
Stromverbrauch:	Ca. 100 Watt
Kollaborierender Betrieb:	15 fortgeschrittene Sicherheitsfunktionen
Material:	Aluminium, PP plastic
Temperatur:	Der Roboter kann bei einer Umgebungstemperatur von 0-50°C arbeiten*
Stromversorgung:	100-240 VAC, 50-60 Hz
Verkabelung:	Kabel zwischen Roboter und Schaltschrank (6 m) Kabel zwischen Touchscreen und Schaltschrank (4,5 m)
	*) Während konstant hoher Geschwindigkeit ist die Umgebungstemperatur reduziert.
Universal Robots A/S Energivej 25 DK-5260 Odense S Dänemark +45 89 93 89 89 www.universal-robots.com sales@universal-robots.com	

A.1.2. Motordatenblatt

(

A.1.3. Steuerungsmodul

Module for Stepper Motors

TMCM-1070 Hardware Manual

Hardware Version V1.00 | Document Revision V1.10 • 2017-Oct-27

TMCM-1070 is an easy to use stepper motor driver module. The module is controlled via a step and direction interface. One configuration pin selects the current control mode between stealthChop™ for absolute silent motor control and spreadCycle™ for high speed. A TTL UART interface allows for more advanced configuration and permanent parameter storage via TMCL[™]-IDE.

Features

- Supply Voltage +9 to +24V DC
- · Step and direction interface
- microPlyer[™] to 256 µ-steps
- stealthChop[™] silent PWM mode
 spreadCycle[™] smart mixed decay
- stallGuard2[™] load detection
- coolStep[™] autom. current scaling
- UART configuration interface

Applications

- Lab-Automation
- Manufacturing
- Robotics Factory Automation
- CNC
- · Laboratory Automation

Simplified Block Diagram

©2017 TRINAMIC Motion Control GmbH & Co. KG, Hamburg, Germany Terms of delivery and rights to technical change reserved. Download newest version at: www.trinamic.com

Read entire documentation.

69

A.1.4. Schneckenradsatz

² Schneckenradsätze

Cu Sn 12 DIN 1705

Relativ weicher Werkstoff mit gutem Verschleißwiderstand, geeignet für hohe Gleitgeschwindigkeiten.

	G-CuSn12	GZ-CuSn12	GC-CuSn12
Zugfestigkeit R:	260 N/mm ²	280 N/mm ²	280 N/mm ²
Dehngrenze R _{ma} :	140 N/mm ²	150 N/mm ²	140 N/mm ²
Bruchdehnung A _s :	12 %	5%	8 %
Brinellhärte HB10:	80	95	90

Cu Sn 12 Ni DIN 1705

Relativ weicher Werkstoff mit sehr hohem Verschleißwiderstand, geeignet für sehr hohe Gleitgeschwindigkeiten.

	G-CuSn12Ni	GZ-CuSn12Ni	GC-CuSn12Ni
Zugfestigkeit R:	280 N/mm ²	300 N/mm ²	300 N/mm ²
Dehngrenze R _{ma} :	160 N/mm ²	180 N/mm ²	170 N/mm ²
Bruchdehnung As:	14 %	8 %	10 %
Brinellhärte HB10:	90	100	90

G = Formguß GZ = Schleuderguß

GC = Strangguß

CuAl10Fe3 Mn2 DIN 17665 / 17672

Relativ harte Gleitwerkstoffe für hohe Belastung und relativ niedrige Drehzahl.

	CuAl10Fe3 Mn2	CuAl10Ni5F4
Zugfestigkeit R _m :	590 N/mm ²	700 N/mm ²
Dehngrenze R _{m2} :	250 N/mm ²	300 N/mm ²
Bruchdehnung A _s :	12 %	13%
Brinellhärte HB 2,5 / 62,5:	150	160

Drehmomentangaben

Die Drehmomentangaben beziehen sich auf eine Schneckendrehzahl von 2800 min¹. Bei Verringerung der Schneckendrehzahl erhöhen sich die Drehmomente um folgende Faktoren:

n,	2800 min ¹	1400 min ¹	950 min ¹	700 min ¹	500 min ¹	250 min ¹	125 min ¹	
Faktor n ₁	1	1,12	1,2	1,26	1,33	1,49	1,67	

Es ist eine Lebensdauer von ca. 3000 h zugrundegelegt. Bei Verkürzung oder Verlängerung der Lebensdauer werden folgende Faktoren eingesetzt:

Lebensdauer	ca. 3000 h	ca. 1500 h	ca. 6000 h	
Faktor L	1	1,4	0,71	

1. Berechnungsbeispiel (ohne Berücksichtigung der Einsatzbedingungen)

Radsatzgröße A40 Ü35, Schmierung Mineralöl, Schneckendrehzahl 700 min¹, Lebensdauer 1500 h

Frage: Welches Abtriebsmoment errechnet sich?

Abtriebsmoment

=T₂ (Mineralöl) x n₁ (Faktor) x L_n (Faktor) <= Bruchgrenze

= 37,2 Nm x 1,26 x 1,4

= 65,6 Nm

Technische Änderungen vorbehalten

Framo Morat GmbH & Co. KG Franz-Morat-Straße 6 • D-79871 Eisenbach Tel.: +49 (0) 7657 / 88-0 Fax: +49 (0) 7657 / 88-333 www.framo-morat.com info@framo-morat.com

T₂ siehe Tabelle ab Seite 14

Contemporate Conte

Schneckenradsätze

©FramoMorat

A17 (Achsabstand)

i = Übersetzung γ_m= Steigungswinkel

z1 = Gangzahl der Schnecke

d_{m1} = Mittenkreis an der Schnecke

m = Modul

- d_{a1} = Kopfkreis an der Schnecke
 - z₂ = Zähnezahl am Schneckenrad d_{m2} = Mittenkreis am Schneckenrad
- T₂ = Abtriebsmoment MF = Mineralfett
 - MÖ = Mineralöl / synth. Fließfett

SÖ = Synthetiköl

d_A = Außendurchmesser am Schneckenrad

Bezeich.			So	chneck	e	Sc	hnecke	nrad	1	т	₂[Nm	1]	
										E	Bronz	е	HGW
	i	γm	m	Z 1	d _{m1}	d _{a1}	Z ₂	d _{m2}	d۸	MF	MÖ	SÖ	
A17Ü2*	2,25	48°15'	0,9	8	10,15	11,95	18	23,85	25,63	1,1	1,3	1,6	0,4
A17Ü4	4,5	21°50'	0,75	6	12,1	13,6	27	21,9	24,6	1,7	2,0	2,6	0,7
A17Ü5	5	21°37'	0,7	6	11,4	12,8	30	22,6	24,6	1,8	2,2	2,7	0,7
A17Ü7	7	14°4'	1	3	12,34	14,34	21	21,66	24,6	1,6	1,9	2,4	0,6
A17Ü9	9	9°40'	0,75	3	13,4	14,9	27	20,6	22,7	1,5	1,8	2,2	0,6
A17Ü10	10	11°48'	0,75	3	11,0	12,5	30	23,0	24,6	1,9	2,3	2,8	0,8
A17Ü15	15	7°38'	0,75	2	11,3	12,8	30	22,7	24,6	1,9	2,3	2,8	0,8
A17Ü25	25	4°32'	0,9	1	11,4	13,2	25	22,6	24,6	1,8	2,2	2,7	0,7
A17Ü30	30	3°45'	0,75	1	11,45	12,95	30	22,55	24,6	1,9	2,3	2,8	0,8
A17Ü40	40	2°3'	0,5	1	13,98	14,98	40	20,02	21,6	1,4	1,7	2,1	0,6
A17Ü50	50	3°12'	0,5	1	8,95	9,95	50	25,05	27,2	1,0	1,2	1,5	0,4
A17Ü60	60	2°18'	0,4	1	9,95	10,75	60	24,05	26,0	1,6	1,9	2,4	0,6
A17Ü75	75	1°28'	0,3	1	11,74	12,34	75	22,26	24,0	1,5	1,8	2,2	0,5
A17Ü80	80	1°43'	0,3	1	10,0	10,84	80	24,0	25,1	1,5	1,8	2,2	0,5

* Schneckenradsatz A17Ü2 ist nur mit poliertem (geglättetem) Schneckenprofil und Rad mit Schraubenradverzahnung lieferbar.

** Die Schnecke vom Schneckenradsatz A17Ü50 hat einen Nabendurchmesser von 9 mm.

Schnecke rechtssteigend aus Stahl, einsatzgehärtet HV 620 - 700.

Schneckenrad aus CuZn37Mn3Al2PbSi-S40 bzw. auf Anfrage Kunststoff oder Hgw 2083. Bei Hgw-Rädern entfällt die angebohrte Querbohrung, und der Nabendurchmesser beträgt 18 mm.

Framo Morat GmbH & Co. KG Franz-Morat-Straße 6 + D-79871 Eisenbach Tel.: +49 (0) 7657 / 88-0 Fax: +49 (0) 7657 / 88-333

www.framo-morat.com info@framo-morat.com

Technische Änderungen vorbehalten

A.1.5. Schmierfett

ROCOL Lubricants

ROCOL House, Swillington, Leeds LS26 8BS, England. Tel.: +44 (0)113 232 2600 Fax: +44 (0)113 232 2760 WWW.rocol.com

ROCOL ist ein nach BS EN ISO 9001 registriertes Unternehmen. ROCOL ist ein Warenzeichen von ITW Inc. Die Informationen in disser Haltladon basieren auf visreer Erfahung und Berichten von Kunden. gibt viele Faktoren außenfab unserer Kontrolie bzer, unseres Witsens, die sich auf die Verwendung und Leistung unserer Produkta zuwährten, und aus diesem Grund werten ist ehner Gewiht zur Verglaung gestellt.

A.1.6. Welle-Nabe-Kleber

Technisches Datenblatt

LOCTITE[®] 648™

(TDS for the new formulation of LOCTITE[®] 648™) August 2016

PRODUKTBESCHREIBUNG

LOCTITE[®] 648[™] besitzt die folgenden Produkteigenschaften:

Technologie	Acrylat
Chemische Basis	Urethanmethacrylat
Aussehen	Grün, flüssig 🕬
(unausgehärtet)	
Fluoreszenz	Ja, unter UV-Licht™
Komponenten	Einkomponentig -
	kein Mischen erforderlich
Viskosität	Niedrig
Aushärtung	anaerob
Sekundärhärtung	Aktivator
Anwendung	Fügen von Welle-Nabe-
	Verbindungen
Festigkeit	Hoch

Dieses Technische Datenblatt ist gültig für LOCTITE[®] 648™, das ab den im Abschnitt "Hinweis zum Herstellungsdatum" aufgeführten Daten hergestellt wurde.

LOCTITE[®] 648[™] wird zum Kleben von zylindrischen Fügeteilen eingesetzt. Das Produkt härtet unter Luftabschluss zwischen enganliegenden Metallflächen aus und verhindert selbständiges Losdrehen und Undichtheiten durch Stöße und Vibrationen. Typische Anwendungen sind u.a das Befestigen von Zahn- und Kettenrädern auf Getriebewellen und Rotoren auf Wellen von Elektromotoren. LOCTITE[®] 648[™] erzielt robuste Aushärteleistungen. Das Produkt kann nicht nur auf aktiven Metallen (z.B. Baustahl) eingesetzt werden, sondern auch auf passiven Werkstoffen wie Edelstahl und plattierten Oberflächen. Das Produkt erzielt hohe Temperatur- und Ölbeständigkeit. Es toleriert geringe Verunreinigungen von Oberflächen durch verschiedene Öle wie Schneid-, Schmier-, Antikorrosions- und Schutzöle.

MATERIALEIGENSCHAFTEN

Spez. Dichte bei 25 °C 1,1

Viskosität, Brookfield - RVT, 25 °C, mPa·s (cP): Spindel 2, bei 20 U/min 400 bis 600LMs

Viskosität, Kegel-Platte-System, 25 °C, mPa·s (cP): Schergeschwindigkeit 129 s⁻¹ 400 bis 600

Flammpunkt - siehe Sicherheitsdatenblatt

TYPISCHE AUSHÄRTEEIGENSCHAFTEN

Aushärtegeschwindigkeit in Abhängigkeit vom Material Die Aushärtegeschwindigkeit ist abhängig von der verwendeten Materialoberfläche. Das folgende Diagramm zeigt die zeitliche Entwicklung der Scherfestigkeit bei Wellen und Naben aus Stahl verglichen mit anderen Materialien. Geprüft gemäß ISO 10123.

Aushärtegeschwindigkeit in Abhängigkeit vom Spalt Die Aushärtegeschwindigkeit ist abhängig vom Klebespalt. Das folgende Diagramm zeigt die zeitliche Entwicklung der Scherfestigkeit auf Wellen und Naben aus Stahl bei unterschiedlichen Spalten. Geprüft gemäß ISO 10123.

Aushärtegeschwindigkeit in Abhängigkeit von der Temperatur

Temperatur Die Aushärtegeschwindigkeit ist abhängig von der Temperatur. Das folgende Diagramm zeigt die zeitliche Entwicklung der Scherfestigkeit bei Wellen und Naben aus Stahl bei unterschiedlichen Temperaturen. Geprüft gemäß ISO 10123.

Aushärtegeschwindigkeit in Abhängigkeit vom Aktivator Das folgende Diagramm zeigt die zeitliche Entwicklung der Scherfestigkeit bei Wellen und Naben aus Edelstahl unter Verwendung von Aktivator 7471 und 7649. Geprüft gemäß ISO 10123.

TYPISCHE EIGENSCHAFTEN IM AUSGEHÄRTETEN ZUSTAND

Physikalische Eigenschaften: Glasübergangstemperatur, ASTM E 831, °C Wärmeausdehnungskoeffizient. , ASTM E 831 K⁻¹:

anneausuennungskoemzient, , ASTMIE 05TK .	
Unterhalb Tg	93×10 ⁻⁰⁶
Oberhalb Tg	184×10-06

FUNKTIONSEIGENSCHAFTEN IM AUSGEHÄRTETEN ZUSTAND Eigenschaften

Aushärtezeit 15 Minuten bei 22 °C Druckscherfestigkeit, ISO 10123: Wellen und Naben aus Stahl N/mm² ≥13,5^{LM8} (psi) (1.960) Aushärtezeit 24 Stunden bei 22 °C Druckscherfestigkeit, ISO 10123: Wellen und Naben aus Stahl N/mm² ≥25^{LM8} (≥3.625)

TDB LOCTITE[®] 648™, August 2016

Druckscherfestigkeit, ISO 10123:		
Wellen und Naben aus Stahl	N/mm² (psi)	31 (4.480)
Wellen und Naben aus Edelstahl	N/mm² (psi)	30 (4.350)
Wellen und Naben aus Aluminium	N/mm² (psi)	18 (2.610)
Aushärtezeit 24 Stunden bei 22 °C		
Losbrechmoment, ISO 10964:		
vergutungsschwarze Stablschraubon und Stablmuttorn M10	N·m (lb, in)	58
Stahlmuttern (Klasse 2) und	N·m	32
-schrauben (Klasse 5) 3/8 x 16	(lb.in.)	(285)
Weiterdrehmoment, ISO 10964:		
vergütungsschwarze	N·m	40
Stahlschrauben und Stahlmuttern M10	(lb.in.)	(355)
Stahlmuttern (Klasse 2) und	Nm	16
-schrauben (Klasse 5) 3/8 x 16	(lb.in.)	(140)
Losbrechmoment , ISO 10964, Anzugsmoment 5 N·m:		
Stahlmuttern (Klasse 2) und	N·m	29
-schrauben (Klasse 5) 3/8 x 16	(lb.in.)	(255)
Weiterdrehmoment, ISO 10964,		
Anzuysmomeni 3 mml. Stahlmuttern (Klasse 2) und	N-m	29
-schrauben (Klasse 5) 3/8 x 16	(lb.in.)	(255)

BESTÄNDIGKEIT GEGEN UMGEBUNGSEINFLÜSSE

Aushärtezeit 1 Woche bei 22 °C. Druckscherfestigkeit, ISO 10123: Wellen und Naben aus Stahl

Temperaturfestigkeit

geprüft bei der jeweiligen Temperatur

Kältefestigkeit

Dieses Produkt wurde bis -75°C (-100 F) getestet. Das Produkt funktioniert möglicherweise auch bei tieferen Temperaturen, wurde aber hierfür nicht getestet.

Ausgehärtet für 7 Tage bei 22 °C

Henkel Americas +860.571.5100

Henkel Europe +49.89.9268.0

100

(psi)

Henkel Asia Pacific +81.45.758.1810

Den direktesten Zugang zu Informationen und Unterstützung in kaufmännischen und technischen Fragen finden Sie im Internet unter: www.henkel.com/industrial

A.1.7. Lagerung

Rillenkugellager SKF[®], einreihig, Innendurchmesser 3 bis 17 mm

SKF

Werkstoff: Wälzlagerstahl.

- Standard-Kugellager in Premium-Qualität.
 Gebräuchlichste Bauart.
 Für hohe Drehzahlen geeignet.
 Unempfindlich in Betrieb und Wartung.
 Wahlweise offen, mit berührungslosen Deckscheiben 2Z (= ZZ) aus Metall oder mit berührenden NBR-Dichtscheiben 2RS1 / 2RSH.
- Temperaturbereich: -30°C bis +90°C (kurzzeitig bis +110°C).
- Lagerluft CN: Normales Spiel. Lagerluft C3: Vergrößertes Spiel. Andere Ausführungen und Wälzlager-Arten auf Anfrage.

Bestellangaben: Artikel-Nr., Stückzahl

418

Artike-Hr. Artike-Hr. Gewicht Artike-Hr. Artike-Hr. B Aurlikung dyn. C stat. C P.* Drehzahl Gewicht G23-22 StR G32-22 StR			Haupt	tabmess	ungen		Trag	zahlen ra	dial	Referenz-	Grenz-	
Lagendard CNLagendard C3mmmmmmmmmmmmmmmmmmmmmmgG23-22-SSFG3-22-C3-KF310mit beids. Deckschelben0.940.290.012130.00063.0003.1G25-22-SSFG6-22-C3-SKF5165ortfn (incht abgedichte)1,140.380.01692.0006.0005G25-22-SSFG6-22-C3-SKF6196ortfn (incht abgedichte)1,2440.950.048.0008.0008.4G25-22-SSFG6-22-C3-SKF6196ortfn (incht abgedichte)2,3440.950.048.0008.0008.4G27-22-SSFG6-22-C3-SKF7196beidstabgedichte)2,3440.950.048.0007.56.0007.5G27-22-SKFG6-22-C3-SKF7196beidstabgedichte)2,3440.950.048.0007.56.0001.3G27-22-SKFG67-22-C3-SKF7196beidstabgedichte)2,3440.950.048.0007.56.0001.3G27-22-SKFG66-22-C3-SKF8227mt beids. Deckschelben3,461.370.0577.0003.6001.2G68-25C-SCFG68-25C-C3-SKF8227mt beids. Deckschelben3,451.370.0577.0003.6001.2G68-25C-SKFG68-25C-C3-SKF8227mt beids. Deckschelben <td< td=""><td>Artikel-Nr.</td><td>Artikel-Nr.</td><td>ď</td><td>D</td><td>B</td><td>Ausführung</td><td>dyn.C</td><td>stat.Co</td><td>Pu*</td><td>Drehzahl</td><td>Drehzahl</td><td>Gewicht</td></td<>	Artikel-Nr.	Artikel-Nr.	ď	D	B	Ausführung	dyn.C	stat.Co	Pu*	Drehzahl	Drehzahl	Gewicht
G23-22-SFF G32-22-SFF G3 10 4 mit belds. Deckschelsen 0.94 0.18 0.007 13.000 60.000 1.5 G25-SFF G52-22-C3-SFF 5 16 5 ontit belds. Deckschelsen 0.94 0.29 0.012 11.0000 60.000 5 G25-SFF G52-22-C3-SFF 5 16 5 ontit belds. Deckschelsen 1.14 0.38 0.016 95.000 46.000 5 G26-SFF G62-22-SFF 6 19 6 Intit belds. Deckschelsen 2.34 0.95 0.04 82.000 8.4 G67-22-SFF G67-22-SFF 7 19 6 betickting abgedichtet 2.34 0.95 0.04 8.2000 12 G47-22-SFF G7 22 7 mit belds. Deckschelsen 3.45 1.37 0.007 7.000 3.00 7.5 G47-22-SFF G67-22-SFF 9 24 7 mit belds. Deckschelsen 3.45 1.37 0.007 7.000 <th< td=""><td>Lagerluft CN</td><td>Lagerluft C3</td><td>mm</td><td>mm</td><td>mm</td><td>-</td><td>kN</td><td>kN</td><td>kŇ</td><td>min⁻¹</td><td>min⁻¹</td><td>g</td></th<>	Lagerluft CN	Lagerluft C3	mm	mm	mm	-	kN	kN	kŇ	min ⁻¹	min ⁻¹	g
G24 - 22: SFF G42 - 22: SFF G4 - 22: G-3KF G4 - 22	623-2Z-SKF	623-2Z-C3-SKF	3	10	4	mit beids. Deckscheiben	0,54	0,18	0,007	130.000	60.000	1,5
G25-SKF	624-2Z-SKF	624-2Z-C3-SKF	4	13	5	mit beids. Deckscheiben	0,94	0,29	0,012	110.000	53.000	3,1
GE5-322-SKF GE2-323-SKF S 16 5 mit belid: Deckscheiben 1,14 0,38 0,016 95.000 48.000 5 GE5-325-SKF GE2-22-SKF GE3-25 GE3-22 GE3-22<	625-SKF	-	5	16	5	offen (nicht abgedichtet)	1,14	0,38	0,016	95.000	60.000	5
G25-281*1-SKF c	625-2Z-SKF	625-2Z-C3-SKF	5	16	5	mit beids. Deckscheiben	1,14	0,38	0,016	95.000	48.000	5
G66 - SKF G26 - C3 - SKF G26 - C3 - SKF G19 G order of the incit abgedicitiet 2,34 0,95 0,04 80.000 9,04 G67 - ZSKF G72 - ZSKF G72 - ZSKF G19 G mit beids ing abgedicitiet 2,34 0,95 0,04 80.000 8,4 G67 - ZSKF G72 - ZSKF <td>625-2RS1-SKF</td> <td>-</td> <td>5</td> <td>16</td> <td>5</td> <td>beidseitig abgedichtet</td> <td>1,14</td> <td>0,38</td> <td>0,016</td> <td>95.000</td> <td>48.000</td> <td>5</td>	625-2RS1-SKF	-	5	16	5	beidseitig abgedichtet	1,14	0,38	0,016	95.000	48.000	5
G66 22 Stiff G62 22 Stiff G6 22 Stiff	626-SKF	626-C3-SKF	6	19	6	offen (nicht abgedichtet)	2,34	0,95	0,04	80.000	50.000	8,4
G66 - 281-SKF G67 - 281-SKF G7 - 281-SK	626-2Z-SKF	626-2Z-C3-SKF	6	19	6	mit beids. Deckscheiben	2,34	0,95	0,04	80.000	40.000	8,4
607.22.StF 607.22.C3.StF 7 19 6 mit belds. Deckscheiben 2,34 0,99 0,04 8.000 7,5 627.22.StF 607.280H-StF 7 9 66 mit belds. Deckscheiben 3,45 1,37 0,057 7.000 36.000 12 608-328H-StF 627.22.StF 627.22.StF 7 bisdeting åpgedintet 3,45 1,37 0,057 7.000 48.000 12 608-288H-StF 689.228H-StF 689.228H-StF 689.228H-StF 8.22 7 mitsleiding åpgedintet 3,45 1,37 0,057 7.000 48.000 12 609-228H-StF 689.228H-StF 689.228H-StF 9 2.4 7 mitbelds. Deckscheiben 3,9 1,66 0,071 0.000 14 629-28H-StF 629.28H-StF 9 2.6 8 boticketing åpgedintet 3,9 1,66 0,071 0.000 30.000 2.00 5.5 6180-22.StF 629.28H-StF 629.28H-StF 629.28H-StF 629.28H-StF	626-2RSH-SKF	626-2RSH-C3-SKF	6	19	6	beidseitig abgedichtet	2,34	0,95	0,04	-	24.000	8,4
607-285H-SKF 607-22-C3-SKF 7 19 6 beidening abgedichtet 2,24 0,99 0,04 - 24,000 7,5 6272-22-SKF 627-22-C3-SKF 7 22 7 mit beids. Deckscheiben 3,45 1,37 0,057 7.000 86.000 12 688-3KF - 8 22 - 7 offer (nicht abgedichtet) 3,45 1,37 0,057 7.000 48.000 12 688-3KF - 8 688-3KH-1C3-SKF 8 22 7 mit beids. Deckscheiben 3,45 1,37 0,057 7.500 48.000 12 689-22-SKF 688-2KH-1C3-SKF 8 22 7 beidscheide abgedichtet 3,45 1,37 0,057 7.500 48.000 12 689-22-SKF 688-2KH-1C3-SKF 8 22 7 beidscheide abgedichtet 3,45 1,37 0,057 7.500 48.000 12 689-22-SKF 688-2KH-1C3-SKF 9 2.6 8 mit beids. Deckscheiben 3,39 1,66 0,001 70,000 38.000 12 629-2KH-SKF 699-2C-15KF 9 2.6 8 mit beids. Deckscheiben 4,75 1,96 0,083 - 19000 30 61800-2KF - 10 19 5 mit beids. Deckscheiben 4,75 1,96 0,083 - 19000 30 61800-2XF - 10 19 5 mit beids. Deckscheiben 4,75 1,96 0,083 - 19000 35 61800-2XF - 10 19 5 mit beids. Deckscheiben 4,75 1,96 0,083 - 19000 35 61800-2XF - 10 19 5 mit beids. Deckscheiben 4,75 1,96 0,083 67,000 48.000 55 6000-22-SKF 6000-22-SKF 10 26 8 mit beids. Deckscheiben 4,75 1,96 0,083 67,000 40.000 19 5000-22-SKF 6000-22-SKF 10 26 8 mit beids. Deckscheiben 4,75 1,96 0,083 67,000 40.000 19 5000-22-SKF 6000-22-SKF 10 26 8 mit beids. Deckscheiben 4,75 1,96 0,083 67,000 30.00 32 6200-22-SKF 6000-22-SKF 10 30 9 mit heids. Deckscheiben 4,75 1,96 0,083 67,000 40.000 19 5000-22-SKF 6000-22-C3-SKF 10 30 9 mit heids. Deckscheiben 4,72 1,96 0,083 67,000 30.00 32 6200-22-SKF 6200-22-SKF 10 30 9 mit heids. Deckscheiben 4,72 1,96 0,083 67,000 30.00 32 6200-22-SKF 6600-22-SKF 10 30 9 mit heids. Deckscheiben 4,72 1,96 0,083 67,000 43.000 53 51801-22-SKF 6300-22-C3-SKF 10 35 11 mit heids. Deckscheiben 4,72 1,96 0,083 67,000 43.000 53 61801-22-SKF 6300-22-C3-SKF 10 30 9 mit heids. Deckscheiben 4,72 1,96 0,083 - 11 50,000 32 6000-22-SKF 6300-22-C3-SKF 12 21 5 mit heids. Deckscheiben 1,43 0,67 0,028 70.000 43.000 6,3 51801-22-SKF 6300-22-C3-SKF 12 21 5 mit heids. Deckscheiben 1,43 0,67 0,028 70.000 30.000 37 61801-22-SKF 6301-22-SKF 53 21 9 beidsetig abgedichtet 1,43 0,67 0	607-2Z-SKF	607-2Z-C3-SKF	7	19	6	mit beids. Deckscheiben	2,34	0,95	0,04	85.000	43.000	7,5
627/22/SNF 627/22/SNF 627/22/SNF 7 22 7 mit belds: Deckscheiben 3,45 1,37 0,057 7.0000 36.000 13 608-327/SNF 627/28NF-SNF 8 22 7 mit belds: Deckscheiben 3,45 1,37 0,057 7.5000 48.000 12 608-327/SNF 608-22/SNF 608-22/SNF 608-22/SNF 608-22/SNF 608-22/SNF 609-22/SNF 609-22/SNF 609-22/SNF 609-22/SNF 609-22/SNF 609-22/SNF 609-22/SNF 609-22/SNF 600-000 140 609-22/SNF 609-22/SNF 609-22/SNF 92.46 7 mit belds: Deckscheiben 3,9 1,66 0,071 -0.000 34.000 20 629-22/SNF 609-22/SNF 6000-25NF 92.66 8 mit helds: Deckscheiben 4,75 1,96 0,083 60.000 30.000 20 6180-507 - 10 19 5 mit inchta abgedichtet 1,78 1,96 0,083 6.000 30.000 30.000	607-2RSH-SKF	607-2RSH-C3-SKF	7	19	6	beidseitig abgedichtet	2,34	0,95	0,04	-	24.000	7,5
627-2881-SkF 627-2881-GS-SkF 7 22 7 bediceling abgedichtet 3,45 1,37 0.057 7.500 48.000 12 668-252 SkF 668-22G3-SkF 8 22 7 mit belds. Deskschehben 3,45 1,37 0.057 7.5000 48.000 12 668-22G3-SkF 668-22G3-SkF 9 24 7 mit belds. Deskschehben 3,9 1,66 0.017 0.000 38.000 12 669-22C SkF 669-22C SkF 9 26 8 beldschigt begedichtet 3,17 1,66 0.003 6.000 30.000 35.00 10 629-22C SkF - 10 19 5 mit belds. Deckschehben 1,38 0.59 0.025 80.000 45.00 35.00 35.5 61800-22F SkF - 10 19 5 mit helds. Deckschehben 1,38 0.59 0.025 80.000 45.00 34.00 19 5 6600-22-25 SkF 6000-22-25 SkF 6000-22-25 SkF	627-2Z-SKF	627-2Z-C3-SKF	7	22	7	mit beids. Deckscheiben	3,45	1,37	0,057	70.000	36.000	13
600 Str. 600 2/2 7 offen (nicht abgedichtet) 3,43 1,37 0,057 7 0,000 12 600 225 SKF 600 2/2 SKF 600 2/2 SKF 600 1,37 0,057 - 2,2000 12 600 200 2/2 SKF 600 2/2 SKF	627-2RSH-SKF	627-2RSH-C3-SKF	/	22		beidseitig abgedichtet	3,45	1,37	0,057	-	22.000	12
Bits Description 3,42 1,37 0,07 7,20,00 36,000 12 669-2KSH-KF 669-2KSH-SK 669-2KSH-SK 669-2KSH-SK 600-2KSH-SK 2000 12 669-2KSH-SK 669-2KSH-SK 9 24 7 mit beids: Deckscheiben 3,9 1,66 0,071 -0.003 34,000 14 669-2KSH-SK 699-2KSH-SK 9 22 7 beidseting abgedichtet 4,77 196 0.033 60.000 30,000 20 629-2KSH-SK 609-2KSH-SK 9 0.025 80.000 48.000 5,5 6180-2Z-SKF - 10 19 5 offer (nicht abgedichtet 1,38 0.99 0.025 80.000 48.000 5,5 6180-2Z-SKF 0.002 60.002 48.000 19 5 bediceting abgedichtet 1,38 0.99 0.025 80.000 48.000 19 5.5 6000-2KSF-SKF 0.003 67.000 34.000 19 bediceting abgedichtet 4,75 196 0.003	608-SKF	-	8	22	4	offen (nicht abgedichtet)	3,45	1,37	0,057	/5.000	48.000	12
000 - 2.5K + 600 - 2.23.5K + 9 2.4 7 beldseng upgedinitet 3,43 1,37 0,07 - 2.2000 14 609 - 22SK + 609 - 22SK + 609 - 22SK + 609 - 22SK + 9 2.6 8 beldsetig upgedinhet 3,9 1,66 0,071 7.0000 34.0000 14 629 - 22SK + 629 - 22SK + 629 - 22SK + 629 - 22SK + 6000 30.000 20 61800 - 22SK + - 10 19 - 5 beldsetig upgedinhet 1,38 0.99 0,025 80.000 38.0000 5.5 61800 - 22SK + - 10 19 - 5 beldsetig upgedinhet 1,38 0.99 0,025 80.000 38.0000 5.5 61800 - 22SK + 6000 - 22SK + 10 2.6 8 offen (nicht upgedinhet 4,73 1.96 0.033 6.7000 34.0000 19 6000 - 22SK + 6000 - 22SK + 600 - 22SK + 600 - 22SK + 600 - 22SK + 6000.032 6.1 5.7000<	608-22-5KF	608-22-C3-5KF	8	22		mit belds. Deckscheiden	3,40	1,37	0,057	75.000	38.000	12
B09-22-C3-SNF B09-22-C3-SNF 9 2.4 7 Init Delics. DecisChelon 3.9 1.66 0.017 7.00.000 34.000 14 G29-2X5-SNF G09-2X5-SNF 9 2.6 8 mit bidis. Deckscheloen 4.75 1.96 0.003 0.000 30.000 20 G1800-2X-SNF G29-2X5-SNF C29-2X5-SNF C29-2X5-SNF 0.025 0.0000 48.000 5.5 G1800-2X-SNF - 10 19 5 offen (incit abgedichtet 1.38 0.99 0.022 0.0000 48.000 1.5 G1800-2X-SNF - 10 19 5 bediatelig abgedichtet 1.38 0.99 0.025 0.0000 34.000 19 G000-2XSI-SNF - 10 2.6 8 mit bedia: Deckscheben 4.7 1.96 0.083 67.000 40.000 19 G000-2XSI-SNF G200-2X-SNF 10 30 9 mit bedia: Deckscheben 4.7 1.96 0.083 67.000 30.000<	608-2KSH-SKF	608-2K5H-C3-5KF	8	22	4	beidseitig abgedichtet	3,45	1,37	0,057	70.000	22.000	12
Object 2: SHF Object 2	609-22-5KF	609-22-C3-SKF	9	24	/	mit beids. Deckscheiden	3,9	1,66	0,071	70.000	34.000	14
DEP 22:2:SAF DEP 22:2:SAF Description 4,72 1,95 0,063 0.0000 30.0000 20 61800-22:SKF - 10 19 5 offen (init) abgedichtet 1,38 0,99 0,025 80.000 5.5 61800-2X:SF-KF - 10 19 5 offen (init) abgedichtet 1,38 0,39 0,025 80.000 5.5 61800-2X:SF-KF - 10 19 5 beidsetig abgedichtet 1,38 0,39 0,025 - 22.000 5.5 6000-2RSH-SKF 6000-2SKF 10 26 66/fen (init) abgedichtet 4,75 1,96 0,083 - 19.000 19 6200-2SKF 6200-22-SKF 10 30 9 mit beids. Deckchelben 4,75 1,96 0,083 - 19.000 32 6200-22-SKF 6300-22-SKF 10 30 9 mit beids. Deckchelben 4,236 0,1 50.000 34.000 32 50.000 32.000 32.00	609-2K3R-3KF	609-2K5H-C3-5KF	9	24	0	pelosetug abgedichtet	3,9	1,00	0,071	60.000	30,000	14
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	629-22-3NF	623-22-C3-3KF	9	20	0	heideoitig abgedichtet	4,75	1,90	0,003	00.000	10,000	20
Biblor SAF - 10 15 3 Offen (inclt algebrahed) 1,38 0,35 0,025 80,000 48,000 5,5 61800 - 2X SKF - 10 15 5 beidselig abgedichtet 1,38 0,55 0,025 60,000 40,000 35,00 6000 - 2X SKF 6000-2X - C3-SKF 10 26 8 mit beids. Deckscheiben 4,75 1,96 0,038 67,000 34,000 19 6000 - 2XF SKF 6000-2XF SKF 10 26 8 beidselig abgedichtet 4,75 1,96 0,038 67,000 34,000 32 6200 - 2X SKF 6000-2XF - C3-SKF 10 30 9 offen (inclt abgedichtet 5,4 2,36 0,1 56,000 34,000 32 6200 - 2X SKF 6000-2XF - C3-SKF 10 35 11 mit beids. Deckscheiben 5,4 2,36 0,1 50,000 36,000 6,30 61801 - SKF 6000-2X SKF + C3-SKF 12 15 mit beids. Deckscheiben	629-2K3FI-3KF	029-2K5H-C3-5KF	10	20	6	offen (night abgedichtet)	4,75	0.50	0,005	80.000	48,000	20
Of Bool 22 SNR Control D D Dimbal Deckshold 1, 25 O(22) O(22) O(22) D(22) D(22) <thd(22)< th=""> D(22) D(22)<td>61800-3KF</td><td></td><td>10</td><td>19</td><td>5</td><td>mit heids. Deckscheiben</td><td>1,30</td><td>0,59</td><td>0,025</td><td>80.000</td><td>48.000</td><td>5,5</td></thd(22)<>	61800-3KF		10	19	5	mit heids. Deckscheiben	1,30	0,59	0,025	80.000	48.000	5,5
Origon 224 Fisht Fig. 2 Deschartig appendicite 1,25 Deschartig appendicite 1,2 2,36 0,1 5,000 28,000 32 6200-22.SFK 6200-22.SFK 6300-22.SFK	61800-22-3KT		10	10	5	heidseitig abgedichtet	1 30	0.59	0.025	00.000	22,000	5.5
6000 22:SKF 6000 22:C3:SKF 10 26 0 mit belds: Descscheiben 4,75 1,96 0,083	6000-SKF	6000-C3-SKE	10	26	8	offen (nicht abgedichtet)	4 75	1.96	0,023	67.000	40.000	19
G000-2RSH-SKF G000-2RSH-C3-SKF 10 26 8 beidseitig abgedichtet 1,75 1,96 0,083 0.000 19 G000-2RSH-SKF G000-2SSHF G000-2SSHF G000-2SSHF G000-2SSHF 30 9 offen (nicht abgedichtet) 5,4 2,36 0,1 56.000 34.000 32 G200-2ZSKF G200-2ZSKF G00-2SSH-C3-SKF 10 30 9 beidsetig abgedichtet 5,4 2,36 0,1 50.000 26.000 32 G300-2ZSKF G30-2ZSKF G30-2ZSKF G30-2ZSKF G30-2ZSKF G00-0 35.11 beidsetig abgedichtet 8,52 3,4 0,143 50.000 43.000 63. G100-2ZSKF G00-2SKF G30-2RSH-SKF 12 21 5 offen (nicht abgedichtet) 1,43 0,67 0,028 70.000 43.000 63. G101-2SKF G001-2CS-SKF 12 28 offen (nicht abgedichtet) 1,43 0,67 0,028 70.000 30.000 22 6001-2RSH-SKF	6000-27-SKE	6000-27-C3-SKE	10	26	8	mit heids Deckscheihen	4 75	1.96	0.083	67,000	34,000	19
Good Carl Bill Good Carl Skik Good Ca	6000-2RSH-SKE	6000-2RSH-C3-SKE	10	26	8	heidseitig abgedichtet	4,75	1.96	0.083		19,000	19
G200-22:SKF G200-22:G3-SKF 10 30 9 mit beids: Deckscheiben 5,4 2,36 0,1 56000 28.000 32 G200-22:SKF G300-22:G3-SKF 10 35 11 beidseitig abgedichtet 5,4 2,36 0,1 5 10 35 G300-22:SKF G300-2X:SKF 10 35 11 beidseitig abgedichtet 1,43 0,67 0,028 70.000 36.000 6,3 G1801-SKF - 12 21 5 offen (nicht abgedichtet 1,43 0,67 0,028 70.000 36.000 6,3 G101-SKF 6 G011-C3-SKF 12 28 offen (nicht abgedichtet 5,4 2,36 0,1 60.000 38.000 22 G011-2KSH-SKF C011-2SKF G011-2SKF G012-2C-3-SKF 12 28 mit beids. Deckscheiben 5,4 2,36 0,1 60.000 30.000 32 000 32 000 32 000 32 000 32	6200-SKE	6200-C3-SKE	10	30	9	offen (nicht abgedichtet)	5.4	2 36	0.1	56 000	34 000	32
G200-2RSH-SKF G200-2RSH-C3-SKF 10 30 9 beldseitig abgedichtet 5,4 2,36 0,11 50.00 26,000 25 G300-2Z-SKF G300-2Z-C3-SKF 10 35 11 mit beids. Deckscheiben 8,52 3,4 0,143 50.000 26,000 53 G100-ZSKF G300-2Z-SKF 10 35 11 beidseitig abgedichtet 8,52 3,4 0,143 50.000 26,000 53 G1801-2Z-SKF - 12 21 5 mit beids. Deckscheiben 1,43 0,67 0,028 70.000 43.000 6,33 G001-SKF 6001-C3-SKF 12 28 8 offen (nicht abgedichtet 5,4 2,36 0,1 60.000 30.000 22 G001-2RSH-SKF 6001-2RS-SKF 12 28 8 beidseitig abgedichtet 5,4 2,36 0,1 60.000 30.000 22 G001-2RSH-SKF 6001-2RS-SKF 12 32 10 offen (nicht abgedichtet <t< td=""><td>6200-27-SKE</td><td>6200-27-C3-SKE</td><td>10</td><td>30</td><td>9</td><td>mit heids. Deckscheihen</td><td>5.4</td><td>2 36</td><td>0.1</td><td>56,000</td><td>28,000</td><td>32</td></t<>	6200-27-SKE	6200-27-C3-SKE	10	30	9	mit heids. Deckscheihen	5.4	2 36	0.1	56,000	28,000	32
G300-22:SKF G300-22:GSKF 10 35 11 mit beids. Deckscheiben 8,52 3,4 0,143 50.000 26.000 53 G300-2RSH-SKF G300-2RSH-C3-SKF 10 35 11 beidselig abgedichtet 8,52 3,4 0,143 50.000 26.000 53 G1801-SKF - 12 21 5 offen (nicht abgedichtet) 1,43 0,67 0,028 70.000 36.000 6,33 G1801-SKF - 12 21 5 beidselig abgedichtet 1,43 0,67 0,028 70.000 36.000 6,33 G001-SXFK 6001-C3-SKF 12 28 8 offen (nicht abgedichtet) 5,4 2,36 0,1 60.000 38.000 22 G001-2X-SKF 6001-2RSH-C3-SKF 12 28 8 beidselig abgedichtet 5,4 2,36 0,1 60.000 38.000 22 G201-2X-SKF 6001-2RSH-C3-SKF 12 32 10 0132 50.000 <td< td=""><td>6200-2RSH-SKF</td><td>6200-2RSH-C3-SKF</td><td>10</td><td>30</td><td>9</td><td>beidseitig abgedichtet</td><td>5.4</td><td>2.36</td><td>0.1</td><td>-</td><td>17.000</td><td>32</td></td<>	6200-2RSH-SKF	6200-2RSH-C3-SKF	10	30	9	beidseitig abgedichtet	5.4	2.36	0.1	-	17.000	32
G300-2RSH-SKF G300-2RSH-C3-SKF 10 35 11 beidseitig abgedichtet 8,52 3,4 0,143 0 15,000 53 G1801-2X-SKF - 12 21 5 offen (nicht abgedichtet) 1,43 0,67 0,028 70,000 43,000 6,3 G1801-2X-SKF - 12 21 5 beidseitig abgedichtet 1,43 0,67 0,028 70,000 43,000 6,3 G101-SKF 6001-C3-SKF 12 28 offen (nicht abgedichtet) 5,4 2,36 0,1 60,000 30,000 22 G001-2X-SKF 6001-C3-SKF 12 28 8 beidseitig abgedichtet 7,48 3,1 0,132 50,000 32,000 37 G201-2X-SKF 6001-2X-C3-SKF 12 32 10 offen (nicht abgedichtet) 7,28 3,1 0,132 50,000 32,000 37 G201-2X-SKF 6201-2X-C3-SKF 12 37 12 mit beidi. Deckscheiben 10,1 <t< td=""><td>6300-27-SKF</td><td>6300-27-C3-SKF</td><td>10</td><td>35</td><td>11</td><td>mit beids. Deckscheiben</td><td>8.52</td><td>3.4</td><td>0.143</td><td>50.000</td><td>26,000</td><td>53</td></t<>	6300-27-SKF	6300-27-C3-SKF	10	35	11	mit beids. Deckscheiben	8.52	3.4	0.143	50.000	26,000	53
61801-SKF - 12 21 5 offen (nicht abgedichtet) 1,43 0,67 0,028 70.000 43.000 6,3 61801-SKF - 12 21 5 mit beids. Deckscheiben 1,43 0,67 0,028 70.000 36.000 6,3 6001-SKF 6001-C3-SKF 12 21 5 beidseitig abgedichtet 1,43 0,67 0,028 - 20.000 6,3 6001-SKF 6001-Z2-SKF 12 28 mit beids. Deckscheiben 5,4 2,36 0,1 60.00 30.000 22 6001-Z2-SKF 6001-Z2-SKF 12 28 mit beids. Deckscheiben 5,4 2,36 0,1 - 17.000 22 6201-SKF 6201-Z2-C3-SKF 12 32 10 offen (nicht abgedichtet) 7,28 3,1 0,132 50.000 32.000 37 6201-Z2-SKF 6201-Z2-C3-SKF 12 37 12 beidseitig abgedichtet 7,28 3,1 0,132 50.000 22.000 60 6301-Z2-SKF 6301-Z2-SKF 12	6300-2RSH-SKF	6300-2RSH-C3-SKF	10	35	11	beidseitig abgedichtet	8.52	3.4	0.143	-	15.000	53
61801-32-SKF - 12 21 5 mit beids. Deckscheiben 1,43 0,67 0,028 70.000 36.000 6,3 61801-3R51-SKF 6001-C3-SKF 12 21 5 beidseitig abgedichtet 1,43 0,67 0,028 - 20.000 6,3 6001-3R51-SKF 6001-2C3-SKF 12 28 offen (nicht abgedichtet) 5,4 2,36 0,1 60.000 38.000 22 6001-2R51-KF 6001-2C3-SKF 12 28 beidseitig abgedichtet) 5,4 2,36 0,1 60.000 38.000 22 6201-2R51-KF 6201-2C3-SKF 12 32 10 offen (nicht abgedichtet) 7,28 3,1 0,132 50.000 32.000 37 6301-2R51-SKF 6301-2R51-C3-SKF 12 37 12 beidsetig abgedichtet 7,28 3,1 0,132 - 15.000 32.000 37 6301-2R51-SKF 6301-2R51-C3-SKF 12 37 12 beidsetig abgedichtet 1,415 0,176 - 14.000 60 6302-2R51-SKF 6002-	61801-SKF	-	12	21	5	offen (nicht abgedichtet)	1,43	0.67	0.028	70.000	43.000	6.3
61801-2R51-SKF - 12 21 5 beidsetig abgedichtet 1,43 0,67 0,028 - 20,000 6,3 6001-2R51-SKF 6001-22-C3-SKF 12 28 8 orifen (nicht abgedichtet) 5,4 2,36 0,1 60,000 38,000 22 6001-2R5H-SKF 6001-22-C3-SKF 12 28 8 beidsetig abgedichtet 5,4 2,36 0,1 - 17,000 32,000 37 6201-22-G3-SKF 6201-22-C3-SKF 12 32 10 orifen (nicht abgedichtet) 7,28 3,1 0,132 50,000 26,000 37 6201-22-SKF 6201-22-C3-SKF 12 32 10 mit beids. Deckscheiben 10,1 4,15 0,176 - 15,000 37 6201-22-KF 6301-2RSH-SKF 6301-2RSH-SKF 12 37 12 beidsetig abgedichtet 1,16 0,18 0,034 0,000 7,4 6301-22SKF 6301-2RSH-SKF 12 37 12 beidsetig abgedichtet 1,56 0,8 0,034 - 17,000 7,4	61801-2Z-SKF	-	12	21	5	mit beids. Deckscheiben	1,43	0,67	0,028	70.000	36.000	6,3
6001-SKF 6001-C3-SKF 12 28 8 offen (nicht abgedichtet) 5,4 2,36 0,1 60,000 38,000 22 6001-2XSH-SKF 6001-2XSH-SKF 12 28 8 mit beids. Deckscheiben 5,4 2,36 0,1 60,000 38,000 22 6201-SKF 6201-2XSKF 12 28 8 beidseitig abgedichtet 5,4 2,36 0,1 - 77.000 22 6201-SKF 6201-2CSKF 12 32 10 mit beids. Deckscheiben 7,28 3,1 0,132 50.000 32.000 37 6201-2RSH-SKF 6201-2RSH-SKF 12 37 12 beidseitig abgedichtet 7,28 3,1 0,132 - 15.000 37 630 32.4 5.0000 30.000 7.4 630 14.15 0,176 45.000 22.000 60 6102.2 2.55 0,12 5.000 30.000 7.4 61002-2RSF 6302-2C3-SKF 15 32 9 <td>61801-2RS1-SKF</td> <td>-</td> <td>12</td> <td>21</td> <td>5</td> <td>beidseitig abgedichtet</td> <td>1,43</td> <td>0,67</td> <td>0,028</td> <td>-</td> <td>20.000</td> <td>6.3</td>	61801-2RS1-SKF	-	12	21	5	beidseitig abgedichtet	1,43	0,67	0,028	-	20.000	6.3
6001-22-SKF 6001-22-G3-SKF 12 28 8 mit beids. DeckScheiben 5,4 2,36 0,1 60.00 30.000 22 6001-2RSH-SKF 6001-2RSH-G3-SKF 12 28 8 beidseitig abgedichtet 5,4 2,36 0,1 - 17.000 22 6201-SKF 6201-22-G3-SKF 12 32 10 offen (nicht abgedichtet) 7,28 3,1 0,132 50.000 32.000 37 6201-22-SKF 6201-22-G3-SKF 12 37 12 mit beids. Deckscheiben 10,1 4,15 0,176 45.000 22.000 60 6301-22-SKF 6 6301-22-C3-SKF 12 37 12 beidseitig abgedichtet 10,1 4,15 0,176 45.000 20.000 30.000 7,4 6302-22-SKF - 15 24 5 beidseitig abgedichtet 1,56 0,8 0,034 - 17.000 7,4 6002-22-SKF 15 32 9 offen (nicht abgedichtet) <td>6001-SKF</td> <td>6001-C3-SKF</td> <td>12</td> <td>28</td> <td>8</td> <td>offen (nicht abgedichtet)</td> <td>5,4</td> <td>2,36</td> <td>0,1</td> <td>60.000</td> <td>38.000</td> <td>22</td>	6001-SKF	6001-C3-SKF	12	28	8	offen (nicht abgedichtet)	5,4	2,36	0,1	60.000	38.000	22
6001-2RSH-SKF 6001-2RSH-C3-SKF 12 28 beidseitig abgedichtet 5,4 2,36 0,1 - 17,000 22 6201-SKF 6201-22-G3-SKF 12 32 10 offen (nicht abgedichtet) 7,28 3,1 0,132 50.000 32.000 37 6201-22-SKF 6201-22-G3-SKF 12 32 10 mit beids. Deckscheiben 7,28 3,1 0,132 50.000 32.000 37 6201-22-SKF 6201-22-G3-SKF 12 37 12 beidseitig abgedichtet 7,28 3,1 0,132 - 15.000 22.000 60 6301-22-SKF 6301-22-SKF 12 37 12 beidseitig abgedichtet 10,1 4,15 0,176 - 14.000 60 61802-227-SKF - 15 24 5 beidseitig abgedichtet 1,56 0,8 0,034 - 0,700 7,4 6002-22-SKF 6002-22-C3-SKF 15 32 9 offen (nicht abgedichtet) 5,8	6001-2Z-SKF	6001-2Z-C3-SKF	12	28	8	mit beids. Deckscheiben	5,4	2,36	0,1	60.000	30.000	22
6201-SKF 6201-C3-SKF 12 32 10 offen (nicht abgedichte) 7.28 3,1 0,132 50.000 32.000 37 6201-22SKF 6201-2RSH-SKF 6201-2RSH-C3-SKF 12 32 10 mit beids. Deckscheiben 7.28 3,1 0,132 50.000 26.000 37 6301-22F-SKF 6301-22C-3-SKF 12 37 12 mit beids. Deckscheiben 10,1 4,15 0,176 45.000 22.000 60 6301-22F-SKF 6301-22C-3-SKF 12 37 12 mit beids. Deckscheiben 10,1 4,15 0,176 45.000 22.000 60 6301-22F-SKF - 15 24 5 beidseitig abgedichtet 1,56 0,8 0,034 - 17.000 7,4 6302-2RSF 6002-22F-SKF 15 32 9 offen (nicht abgedichtet 5,85 2,85 0,12 50.000 32.000 30 6202-22F-SKF 6202-2C3-SKF 15 35 11 mit	6001-2RSH-SKF	6001-2RSH-C3-SKF	12	28	8	beidseitig abgedichtet	5,4	2,36	0,1	-	17.000	22
6201-22-SKF 6201-22-G3-SKF 12 32 10 mit beids. Deckscheiben 7,28 3,1 0,132 50.000 26.000 37 G301-22-SKF G301-22-G3-SKF 12 37 12 mit beids. Deckscheiben 10,1 4,15 0,176 - 15.000 37 G301-22-SKF G301-22-G3-SKF 12 37 12 mit beids. Deckscheiben 10,1 4,15 0,176 - 14.000 60 G301-22-SKF - 15 24 5 beidseitig abgedichtet 1,56 0,8 0,034 60.000 32.000 7,4 G002-22-SKF - 15 24 5 beidseitig abgedichtet 1,56 0,8 0,034 - 17.000 7,4 G002-22-SKF 6002-22-C3-SKF 15 32 9 orifen (nicht abgedichtet) 5,85 2,85 0,12 50.000 26.000 30 G202-22-SKF 6202-22-C3-SKF 15 35 11 mit beids. Deckscheiben 8,06	6201-SKF	6201-C3-SKF	12	32	10	offen (nicht abgedichtet)	7,28	3,1	0,132	50.000	32.000	37
6201-228H-SKF 6201-228H-G30-22C-35KF 12 37 12 mit beids. Deckscheiben 10,1 4,15 0,176 45.000 22.000 60 6301-22SH 6301-22C-SKF 6301-2CSH 12 mit beids. Deckscheiben 10,1 4,15 0,176 45.000 22.000 60 6301-22S-SKF 6301-2RSH-SKF 12 37 12 beidseitig abgedichtet 10,1 4,15 0,176 45.000 30.000 7,4 61802-2RSI-SKF - 15 24 5 beidseitig abgedichtet 5,85 2,85 0,12 50.000 32.000 30 6002-2SKF 6002-2C3-SKF 15 32 9 offen (nicht abgedichtet 5,85 2,85 0,12 50.000 26.000 30 6002-2KF 6002-2C3-SKF 15 32 9 beidseitig abgedichtet 5,85 2,85 0,12 50.000 26.000 30 6202-2KF 6202-2C3-SKF 15 35 11 mit beids. Deckscheiben 8,06 3,75 0,16 43.000 22.000 45 6302-22-	6201-2Z-SKF	6201-2Z-C3-SKF	12	32	10	mit beids. Deckscheiben	7,28	3,1	0,132	50.000	26.000	37
6301-22-SKF 6301-22-G3-SKF 12 37 12 mit beids. Deckscheiben 10,1 4,15 0,176 45.000 22.000 60 6301-28SH-SKF 6301-2RSH-G301-2RSH-C3-SKF 12 37 12 beidseitig abgedichtet 10,1 4,15 0,176 - 14.000 60 6301-28SH-SKF - 15 24 5 mit beids. Deckscheiben 1,56 0,8 0,034 60.00 30.000 7,4 61802-28SH-SKF - 15 24 5 beidseitig abgedichtet 1,56 0,8 0,034 - 17.000 7,4 6002-22-C3-SKF 15 32 9 mit beids. Deckscheiben 5,85 2,85 0,12 50.000 26.000 30 6002-22-SKF 6002-22-C3-SKF 15 35 11 mit beids. Deckscheiben 8,06 3,75 0,16 43.000 22.000 45 6202-22-SKF 6202-22-G3-SKF 15 42 13 offfen (nicht abgedichtet) 1,9	6201-2RSH-SKF	6201-2RSH-C3-SKF	12	32	10	beidseitig abgedichtet	7,28	3,1	0,132	-	15.000	37
6301-2RSH-SKF 6301-2RSH-C3-SKF 12 37 12 beidseitig abgedichtet 10,1 4,15 0,176 - 14,000 60 61802-22:SKF - 15 24 5 beidseitig abgedichtet 1,56 0,8 0,034 60.000 30.000 7,4 61802-22:SKF - 15 24 5 beidseitig abgedichtet 1,56 0,8 0,034 60.000 32.000 30 6002-22:SKF 6002-22:SKF 15 32 9 offen (nicht abgedichtet) 5,85 2,85 0,12 50.000 32.000 30 6002-22:SKF 6002-22:SKF 15 32 9 beidseitig abgedichtet 5,85 2,85 0,12 50.000 22.000 45 6202-22:SKF 6202-22:C3-SKF 15 35 11 offen (nicht abgedichtet) 8,06 3,75 0,16 43.000 22.000 45 6302-22:SKF 6302-22:C3-SKF 15 42 13 offen (nicht abgedichtet) 11,9 5,4 0,228 38.000 19.000 82 6302-22:S	6301-2Z-SKF	6301-2Z-C3-SKF	12	37	12	mit beids. Deckscheiben	10,1	4,15	0,176	45.000	22.000	60
61802-22.SKF - 15 24 5 mit beids. Deckscheiben 1,56 0,8 0,034 60.000 30.000 7,4 61802-28.SKF - 15 24 5 beidseitig abgedichtet 1,56 0,8 0,034 - 17.000 7,4 6002-28.SKF 6002-22.SKF 6002-22.SKF 15 32 9 offen (nicht abgedichtet 5,85 2,85 0,12 50.000 32.000 30 6002-28.SKF 6002-22.SKF 6002-22.SKF 15 32 9 beidseitig abgedichtet 5,85 2,85 0,12 50.000 26.000 30 6202-2.SKF 6202-2.C3-SKF 15 35 11 mit beids. Deckscheiben 8,06 3,75 0,16 43.000 22.000 45 6202-2.RSH-SKF 6302-2.2.C3-SKF 15 42 13 offen (nicht abgedichtet 8,06 3,75 0,16 43.000 22.000 45 6302-2.2.SKF 6302-2.2.C3-SKF 15 42 13 mit beids. Deckscheiben 11,9 5,4 0,228 38.000 19.000	6301-2RSH-SKF	6301-2RSH-C3-SKF	12	37	12	beidseitig abgedichtet	10,1	4,15	0,176	-	14.000	60
61802-2RS1-SKF - 15 24 5 beidsettig abgedichtet 1,56 0,8 0,034 - 17,000 7,4 6002-SKF 6002-C2-C3-SKF 15 32 9 mit beids. Deckscheiben 5,85 2,85 0,12 50.000 32.000 30 6002-SKF 6002-SKF 6002-SKF 53 2 9 beidseitig abgedichtet 5,85 2,85 0,12 50.000 32.000 30 6002-SKF 620-SKF 630-SKF	61802-2Z-SKF	-	15	24	5	mit beids. Deckscheiben	1,56	0,8	0,034	60.000	30.000	7,4
6002-23-SKF 6002-22-SKF 532 9 often (nicht abgedichtet) 5,85 2,85 0,12 50.000 32.000 30 6002-22-SKF 6002-22-SKF 6002-22-SKF 6002-22-SKF 532 9 beidseitig abgedichtet 5,85 2,85 0,12 50.000 32.000 30 6202-22-SKF 6202-22-SKF 6202-22-SKF 6202-22-SKF 535 1 offen (nicht abgedichtet) 8,06 3,75 0,16 43.000 22.000 45 6202-22-SKF 6202-22-C3-SKF 15 35 11 beidseitig abgedichtet) 8,06 3,75 0,16 43.000 22.000 45 6302-22-SKF 6302-22-C3-SKF 15 42 13 offen (nicht abgedichtet) 11,9 5,4 0,228 38.000 19.000 82 6302-22-SKF 6302-22-C3-SKF 15 42 13 mit beids. Deckscheiben 11,9 5,4 0,228 38.000 19.000 82 6302-22-SKF - 17 26	61802-2RS1-SKF	-	15	24	5	beidseitig abgedichtet	1,56	0,8	0,034	-	17.000	7,4
6002-22:SKF 6002-22:G3-SKF 15 32 9 mit beids. Deckscheiben 5,85 2,85 0,12 50.000 26.000 30 6202-2KF 6602-2KSH-602-2KSH-615 32 9 beidseitig abgedichtet 5,85 2,85 0,12 50.000 26.000 45 6202-2KF 6202-2C3-SKF 15 35 11 offen (nicht abgedichtet 8,06 3,75 0,16 43.000 22.000 45 6202-2SKF 6202-2C3-SKF 15 35 11 beidseitig abgedichtet 8,06 3,75 0,16 43.000 22.000 45 6302-2C3-SKF 6302-22-SKF 15 42 13 offen (nicht abgedichtet 11,9 5,4 0,228 38.000 19.000 82 6302-22-SKF 6302-22-SKF 15 42 13 beidseitig abgedichtet 11,9 5,4 0,228 38.000 19.000 82 6302-22-SKF 6302-22-SKF 15 42 13 beidseitig abgedichtet 1,68 <td>6002-SKF</td> <td>6002-C3-SKF</td> <td>15</td> <td>32</td> <td>9</td> <td>offen (nicht abgedichtet)</td> <td>5,85</td> <td>2,85</td> <td>0,12</td> <td>50.000</td> <td>32.000</td> <td>30</td>	6002-SKF	6002-C3-SKF	15	32	9	offen (nicht abgedichtet)	5,85	2,85	0,12	50.000	32.000	30
6002-2KSH-SKF 6002-2KSH-G3-SKF 15 32 9 beidseing abgedicintet 9,85 0,12 - 14,000 30 6202-SKF 6202-SKF 6202-SKF 55 11 offen (nicht abgedicintet) 8,06 3,75 0,16 43.000 22.000 45 6202-SKF 6202-ZKSH-SKF 6202-ZKSH-SKF 535 11 mit beids. Deckscheiben 8,06 3,75 0,16 43.000 22.000 45 6202-SZF 6302-SKF 6302-ZSK-G 55 15 42 13 mit beids. Deckscheiben 11,9 5,4 0,228 38.000 24.000 82 6302-SKF 6302-ZSKF 6302-ZSKF 502 35 11 beidseitig abgedicintet 11,9 5,4 0,228 38.000 24.000 82 6302-ZSKF 6302-ZSKF 6302-ZSKF 502 35 10 mit beids. Deckscheiben 1,68 0,93 0,39 56.000 28.000 82 6303-ZSKF 6003-C3-SKF 17 35 10 offen (nicht abgedicintet) 6,37 3,25 0,137 45.	6002-2Z-SKF	6002-2Z-C3-SKF	15	32	9	mit beids. Deckscheiben	5,85	2,85	0,12	50.000	26.000	30
D2/02-23-SNF D2/02-22-SNF D2/02-22-23-SNF D2/02-22-23-SNF D2/02-23-22-23-SNF D2/02-22-23-SNF D2/02-22-23-SNF D2/02-22-23-SNF D2/02-23-22-23-SNF D2/02-23-22-23-SNF D2/02-23-22-23-SNF D2/02-23-22-23-SNF D2/02-23-22-23-SNF D2/02-23-22-23-SNF D2/02-23-22-23-22-23-23-23-23-23-23-23-23-23	0002-2KSH-SKF	0002-2KSH-C3-SKF	10	32	9	beidseitig abgedichtet	2,85	2,85	0,12	42.000	14.000	30
b202-22C-SKF b202-22C-200 b202-22C-200 b202-22C-200<	6202-SKF	6202-C3-SKF	15	30	11	offen (nicht abgedichtet)	8,06	3,/0	0,16	43.000	28.000	40
0202-2XB/T-SRF 0202-2XB/T-SP-SF 15 32 11 0eldaeling algedicitiet 0,06 5,75 0,16 - 15,000 42 6302-SKF 6302-22C-3-SKF 15 42 13 offen (nicht algedicitiet) 11,9 5,4 0,228 38.000 12.000 82 6302-SKF 6302-22C-3-SKF 15 42 13 beidseitig algedicitiet 11,9 5,4 0,228 38.000 12.000 82 6302-2SKF 6302-2RSH-SKF 6302-2RSH-SKF 15 42 13 beidseitig algedicitiet 11,9 5,4 0,228 38.000 24.000 82 6303-2RSH-SKF - 17 26 5 mit beids. Deckscheiben 1,68 0,93 0,039 56.000 28.000 8,2 6003-2C3-SKF 603-2-SKF 17 35 10 offen (nicht algedicitiet) 6,37 3,25 0,137 45.000 22.000 39 6003-22-SKF 6003-22-C3-SKF 17 35 10 <	6202-22-5KF	6202-22-C3-SKF	15	30	11	mit beids. Deckscheiden	8,06	3,/0	0,16	43.000	22.000	40
0502-27-SNF 0502-22-SNF 15 42 15 01eff (finicit) abgedicitie) 11,9 5,4 0,228 56.000 24.000 62 6302-22-SNF 6302-22-C3-SKF 15 42 13 beidseitig abgedicitie 11,9 5,4 0,228 58.000 24.000 62 6302-22-SNF 6302-22-C3-SKF 15 42 13 beidseitig abgedicitie 11,9 5,4 0,228 38.000 19.000 82 6302-22-SNF - 17 26 5 mitbeids. Deckscheiben 1,68 0,93 0,039 56.000 28.000 8,2 61803-2RS1-SKF - 17 26 5 beidseitig abgedichtet 1,68 0,93 0,039 - 16.000 8,2 6003-22-SKF - 17 26 5 beidseitig abgedichtet 6,37 3,25 0,137 45.000 22.000 39 6003-22-SKF 603-22-C3-SKF 17 35 10 beidseitig abgedichtet 6,37 3,25 0,137 - 13.000 39 6003-22-SKF 603-22-C3-SKF	6202-2K5H-5KF	6202-2K3FF-C3-3KF	45	40	42	offen (night ab gedichtet)	44.0	5,75	0,10	20.000	13.000	40
D302-22:-SKF G302-22:-SKF G303-22:-SKF G303-22:-SKF<	6302-3KF	6302-C3-5KF	15	42	13	mit heide Deckscheihen	11,9	5.4	0,228	38.000	24.000	82
0502-2X51-SKF - 17 26 5 belidzeitig abgedichtet 11,9 9,4 0,228 - 12,000 62,2 61803-22KSF - 17 26 5 mit beids. Deckscheiben 1,68 0,93 0,039 56.000 28,000 8,2 6003-2RS1-SKF - 17 26 5 beidseitig abgedichtet 1,68 0,93 0,039 - 16,000 8,2 6003-2RS1-SKF - 17 35 10 offen (nicht abgedichtet) 6,37 3,25 0,137 45.000 22.000 39 6003-2RS1-SKF 6003-2C-G3-SKF 17 35 10 mit beids. Deckscheiben 6,37 3,25 0,137 45.000 22.000 39 6003-2C-G3-SKF 6003-2C-G3-SKF 17 35 10 mit beids. Deckscheiben 6,37 3,25 0,137 45.000 22.000 39 6003-2Z-SKF 6003-22-G3-SKF 17 40 12 mit beids. Deckscheiben 9,95 4,75 0,2 38.000 19.000 65 6203-2Z-SKF	6302-22-3NF	6302-22-C3-3NF	15	42	13	heidesitig abgedichtet	44.0	5.4	0,228	38.000	13.000	02
61803-2R51-5KF - 17 26 5 beidseitig abgedichtet 1,68 0,93 0,039 - 16.000 8,2 6003-22-5KF 6003-22-5KF 17 35 10 offen (nicht abgedichtet) 6,37 3,25 0,137 45.000 28.000 39 6003-22-5KF 6003-22-5KF 17 35 10 mit beids. Deckscheiben 6,37 3,25 0,137 45.000 28.000 39 6003-22-5KF 6003-22-5KF 6003-22-5KF 17 40 12 offen (nicht abgedichtet) 9,95 4,75 0,2 38.000 24.000 65 6203-22-5KF 6203-22-3-5KF 17 40 12 offen (nicht abgedichtet) 9,95 4,75 0,2 38.000 24.000 65 6203-22-5KF 6203-22-3-5KF 17 40 12 beidseitig abgedichtet) 9,95 4,75 0,2 38.000 19.000 65 6203-22-5KF 6203-22-C3-5KF 17 40 12 beidseitig abgedichtet) 9,95 4,75 0,2 34.000 22.000 12.000 <td>61803-27-SKF</td> <td>0302-2K3H-C3-5KF</td> <td>17</td> <td>42</td> <td>5</td> <td>mit heids. Deckscheihen</td> <td>1.68</td> <td>0.93</td> <td>0,228</td> <td>56 000</td> <td>28,000</td> <td>82</td>	61803-27-SKF	0302-2K3H-C3-5KF	17	42	5	mit heids. Deckscheihen	1.68	0.93	0,228	56 000	28,000	82
6003-SK 6 6003-C3-SKF 17 20 50 00750 <t< td=""><td>61803-22-3KT</td><td></td><td>17</td><td>26</td><td>5</td><td>heidseitig abgedichtet</td><td>1,00</td><td>0.93</td><td>0,039</td><td>50.000</td><td>16,000</td><td>8.2</td></t<>	61803-22-3KT		17	26	5	heidseitig abgedichtet	1,00	0.93	0,039	50.000	16,000	8.2
6003-22-SKF 6003-22-C3-SKF 17 35 10 offict funct abgedicities 6,37 3,25 0,137 45.000 22.000 39 6003-22-SKF 6003-22-C3-SKF 17 35 10 mit beids. Deckscheiben 6,37 3,25 0,137 45.000 22.000 39 6003-22-SKF 6003-22-C3-SKF 17 35 10 mit beids. Deckscheiben 6,37 3,25 0,137 - 13.000 39 6003-22-SKF 6203-SKF 6203-SKF 17 40 12 mit beids. Deckscheiben 9,95 4,75 0,2 38.000 19.000 65 6203-S2K-SKF 6203-S2K-G3-SKF 17 40 12 mit beids. Deckscheiben 9,95 4,75 0,2 38.000 19.000 65 6203-S2K-SKF 6203-S2K-G3-SKF 17 40 12 beidseitig abgedichtet 9,95 4,75 0,2 38.000 19.000 65 6303-SKF 6303-SKF 6303-SKF 17 47 14 mit beids. Deckscheiben 14,3 6,55 0,275 34.000 12.	6003-SKF	6003-C3-SKE	17	35	10	offen (nicht abgedichtet)	6.37	3 25	0,033	45.000	28,000	30
G03 2 RSH-SKF G03 2 RSH-C3-SKF 17 40 12 offen (nicht abgedichtet) 9,12 0,137 40,000 22,000 33 6203 - RSH-SKF 603 - RSH-C3-SKF 17 40 12 offen (nicht abgedichtet) 9,95 4,75 0,2 38,000 24,000 65 6203 - SXF 6203 - Z2-SKF 17 40 12 mit beids. Deckscheiben 9,95 4,75 0,2 38,000 24,000 65 6203 - SZ-SKF 6203 - Z2-SKF 17 40 12 mit beids. Deckscheiben 9,95 4,75 0,2 38,000 24,000 65 6203 - SZ-SKF 6303 - Z2-SKF 17 40 12 beidseitig abgedichtet 9,95 4,75 0,2 38,000 22,000 65 6303 - SZ-SKF 6303 - ZS-SKF 17 47 14 offen (nicht abgedichtet) 14,3 6,55 0,275 34,000 22,000 120 6303 - ZZ-SKF 6303 - ZS-SKF 17 47 14 mit beids. Decksche	6003-27-SKF	6003-27-C3-SKF	17	35	10	mit beids Deckscheiben	637	3 25	0.137	45.000	22,000	39
G203-SKF G203-C3-SKF 17 40 12 offen (nicht abgedichtet) 9,95 4,75 0,2 38.000 24.000 65 G203-SKF G203-SKF G203-SKF 6203-SKF 17 40 12 offen (nicht abgedichtet) 9,95 4,75 0,2 38.000 24.000 65 G203-SKF 6203-SKF 6203-SKF 6203-SKF 17 40 12 beidsettig abgedichtet) 9,95 4,75 0,2 38.000 24.000 65 G203-SKF 6203-SKF 6203-SKF 6203-SKF 17 40 12 beidsettig abgedichtet) 9,95 4,75 0,2 38.000 24.000 65 G303-SKF 6303-SZF 6303-SZF 17 47 14 offen (nicht abgedichtet) 14,3 6,55 0,275 34.000 12.000 120 G303-SZF 6303-SZF 17 47 14 mit beids. Deckscheiben 14,3 6,55 0,275 34.000 12.000 120	6003-2RSH-SKF	6003-2RSH-C3-SKF	17	35	10	beidseitig abgedichtet	6.37	3 25	0 137	40.000	13 000	39
6203-22-SKF 6203-22-3-SKF 17 40 12 Init beids. Deckscheiben 9,95 4,75 0,2 38.000 19.000 65 6203-22-SKF 6203-2KSH-SKF 6203-2KSH-SKF 17 40 12 beidseitig abgedichtet 9,95 4,75 0,2 38.000 19.000 65 6203-2KSH-SKF 6203-2KSH 17 40 12 beidseitig abgedichtet 9,95 4,75 0,2 34.000 19.000 65 6303-SKF 6303-2C-SI-SKF 17 47 14 offen (nicht abgedichtet) 14,3 6,55 0,275 34.000 12.000 120 6303-2Z-SKF 6303-2Z-G3-SKF 17 47 14 mit beids. Deckscheiben 14,3 6,55 0,275 34.000 17.000 120 6303-2Z-SKF 6303-2KSH-C3-SKF 17 47 14 beidseitig abgedichtet 14,3 6,55 0,275 34.000 17.000 120 6303-2Z-SKH-SKF 17 47 14 beidseitig a	6203-SKF	6203-C3-SKF	17	40	12	offen (nicht abgedichtet)	9.95	4 75	0.2	38 000	24 000	65
G203-2RSH-SKF G203-2RS	6203-27-SKF	6203-27-C3-SKF	17	40	12	mit beids Deckscheiben	9.95	4 75	0.2	38,000	19 000	65
6303-SKF 6303-C3-SKF 17 47 14 offen (nicht abgedichtet) 14,3 6,55 0,275 34.000 22.000 120 6303-S2F-SKF 6303-22-SKF 17 47 14 mit beids. Deckscheiben 14,3 6,55 0,275 34.000 12.000 120 6303-S2F-SKF 6303-22-SKF 17 47 14 mit beids. Deckscheiben 14,3 6,55 0,275 34.000 12.000 120 6303-S2RSH-SKF 6303-2RSH-C3-SKF 17 47 14 beidseitig abgedichtet 14,3 6,55 0,275 34.000 12.000 120 6303-2RSH-SKF 6303-2RSH-SKF 17 47 14 beidseitig abgedichtet 14,3 6,55 0,275 - 11.000 120 Ermidunesserenzbelasture. 3 6,55 0,275 - 11.000 120	6203-2RSH-SKF	6203-2RSH-C3-SKF	17	40	12	beidseitig abgedichtet	9,95	4.75	0.2	-	12.000	65
6303-22-SKF 6303-22-SKF 17 47 14 mit beids. Deckscheiben 14,3 6,55 0,275 34.000 17.000 120 6303-22-SKF 6303-2KSH-SKF 6303-2KSH-SKF 6303-2KSH-SKF 14 beidseitig abgedichtet 14,3 6,55 0,275 - 11.000 120 * Ermüdungsrenzbelastung. * * * * * * * * * 14,3 6,55 0,275 - 11.000 120	6303-SKF	6303-C3-SKF	17	47	14	offen (nicht abgedichtet)	14.3	6.55	0.275	34.000	22.000	120
6303-2RSH-SKF 6303-2RSH-C3-SKF 17 47 14 beidseitig abgedichtet 14,3 6,55 0,275 - 11.000 120	6303-2Z-SKF	6303-2Z-C3-SKF	17	47	14	mit beids. Deckscheiben	14.3	6,55	0.275	34.000	17.000	120
* Ermüdungsgrenzbelastung.	6303-2RSH-SKF	6303-2RSH-C3-SKF	17	47	14	beidseitig abgedichtet	14.3	6.55	0.275	-	11.000	120
	 Ermüdungsgrenzb 	elastung.				5 5						

Buchsen Form J ähnlich DIN 1850 aus Sinterbronze für Gleitlager

Werkstoff: Sinterbronze ähnlich SINT A50.

Selbstschmierend, ölgetränkt, einbaufertig gepresst und kalibriert⁹. Nach dem Einpressen in ein starres Lagergehäuse mit Aufnahmebohrung H7 weisen diese Lager eine Bohrung H7 auf. Kanten unter 45^o abgeschrägt, nach Wahl des Herstellers. Die Koaxialitätstoleranz ist auf d₂ bezogen. ¹) Bei Buchsen aus Sintermetall kann wegen des porösen Gefüges keine Rauhtiefenangabe nach DIN 3141 (Vornorm) gemacht werden.

Bestellangaben: z.B.: Art.-Nr. 623 302 00, Buchse, 3 mm Bohrung

Artikel-Nr.	d1 ^{F7/G7}	d2 ^{\$7}	b1 ^{±0,1}	Gewicht	Artikel-Nr.	d1 ^{F7/G7}	d2 ^{s7*}	b1 ^{±0,1}	Gewicht
(22.202.00	2	6		5	632 240 00	10	25	40	29.50
623 302 00	3	6	4	0,56	623 351 00	20	24	32	20,39
623 303 00	3	7	4	0,80	623 352 00	20	25	16	18.92
623 304 00	4	0	4	1.01	623 352 05	20	25	20	23 65
623 306 00	4	0	4	1,01	623 353 00	20	25	25	29,59
623 308 00	5	0	10	2.05	623 353 05	20	25	30	35.48
623 309 00	5	8	16	3.28	623 354 00	20	26	20	29.22
623 309 05	6	9	6	1.42	623 354 05	20	26	25	36 53
623 311 00	6	9	10	2.37	623 354 10	20	26	30	43.83
623 311 05	6	9	12	2,57	623 354 15	20	26	32	46 75
623 311 10	6	9	16	3 79	623 355 00	20	28	25	50 49
623 312 00	6	10	6	1.96	623 356 00	22	28	22	34.85
623 313 00	6	10	10	3 27	623 358 00	25	30	20	28.94
623 313 05	6	10	12	3.92	623 359 00	25	30	25	36.20
623 313 10	6	10	16	5 23	623 359 05	25	30	30	43.44
623 313 15	6	12	6	3 41	623 359 10	25	30	40	57.92
623 316 00	8	11	8	2 40	623 359 15	25	32	20	41.94
623 316 05	8	11	12	3 60	623 360 00	25	32	25	52,43
623 317 00	8	12	8	3.37	623 360 05	25	32	30	62.92
623 318 00	8	12	12	5.05	623 360 10	25	32	32	67,11
623 318 05	8	12	20	8 42	623 360 15	25	32	40	83.89
623 321 00	10	13	10	3.63	623 362 00	28	36	28	73,07
623 322 00	10	14	16	8.08	623 363 00	30	38	20	57,21
623 323 00	10	16	10	8.20	623 364 00	30	38	24	68,65
623 325 00	12	15	12	5,11	623 365 00	30	38	30	85,80
623 326 00	12	15	20	8,52	623 365 05	30	38	40	114,40
623 327 00	12	16	12	7,06	623 366 00	30	40	30	90,82
623 328 00	12	18	12	10,70	623 367 00	32	40	32	96,87
623 328 05	12	18	16	14,27	623 369 00	35	44	28	103,60
623 328 10	12	18	20	17,83	623 370 00	35	44	35	129,90
623 331 00	14	18	22	14,78	623 371 00	35	45	35	147,26
623 331 05	14	20	12	12,85	623 372 00	36	45	36	139,20
623 332 00	14	20	14	14,99	623 374 00	40	46	32	86,82
623 335 00	15	19	20	14,30	623 374 05	40	46	40	108,53
623 336 00	15	21	16	18,16	623 375 00	40	50	25	118,30
623 339 00	16	20	16	12,15	623 376 00	40	50	40	189,31
623 340 00	16	20	20	15,28	623 377 00	45	55	45	236,67
623 341 00	16	20	25	18,95	623 378 00	45	56	45	263,11
623 341 05	16	20	32	24,26	623 379 00	50	56	32	107,04
623 342 00	16	22	16	19,18	623 379 05	50	56	50	167,25
623 343 00	16	22	20	23,95	623 380 00	50	60	32	185,13
623 343 05	16	22	30	35,93	623 380 05	50	60	40	231,42
623 346 00	18	22	18	15,14	623 381 00	50	60	50	289,27
623 347 00	18	24	18	23,83					
623 348 00	18	24	28	37,09	* Beid ₂ > 50 n	nm: Toleranz s	8.		

* Bei d₂ > 50 mm: Toleranz s8.

0 Ø1T9 111111 .45°

45° /////// b₁

Ød2

βø

Technische Daten:

Flächenpressung: max. 35 N/mm², abhängig von Gleitgeschwindigkeit und Durchmesser. Zulässige Belastung: P*V = 2,5 MPA*m/s Dichte: ca. 6,4 - 6,8 g/cm³. Radiale Bruchfestigkeit: min. 120 N/mm². Härte: min. 25 HB. Porösität ca. 25%, mit Öl imprägniert. Ölsorte: Parafiniertes Mineralöl ISO VG 68. Temperaturbereich: -20°C bis + 120°C

Bundbuchsen Form V ähnlich DIN 1850 aus Sinterbronze für Gleitlager

Selbstschmierend, ölgetränkt, einbaufertig gepresst und ⁹ kalibriert. Nach dem Einpressen in ein starres Lagergehäuse mit Aufnahmebohrung H7 weisen diese Lager eine Bohrung H7 auf.

Bestellangaben: z	.B.: ArtNr.	623 501 00), Bundbuc	hse, 3 mm	Bohrung
	E0/C0	-0	612	- 0.4	1.14

Artikel-Nr.	d118/08	d258	d31513	b1 ^{±0,1}	b21514	Gewicht
	mm	mm	mm	mm	mm	g
623 501 00	3	6	9	4	15	0.92
623 502 00	3	6	9	10	1.5	1 77
623 504 00	4	8	12	4	2	1 79
623 504 05	4	8	12	12	2	3.87
623 508 00	6	10	14	6	2	3.03
623 509 00	6	10	14	10	2	4 38
623 510 00	6	10	14	16	2	6.40
623 512 00	8	12	16	8	2	4.53
623 513 00	8	12	16	12	2	6.22
623 514 00	8	12	16	16	2	7 91
623 517 00	10	13	16	10	1.5	9.08
623 518 00	10	13	16	16	1.5	6 50
623 518 05	10	15	20	10	3	9 34
623 518 10	10	16	22	10	3	11.80
623 518 15	10	16	22	16	3	16 72
623 520 00	12	15	18	12	15	5.89
623 521 00	12	15	18	16	1.5	7 60
623 521 05	12	17	22	20	2.5	18 33
623 522 00	12	17	22	12	3	11 71
623 523 00	12	18	24	20	3	22.91
623 524 00	14	18	22	14	2	11 10
623 527 00	16	20	24	16	2	13.96
623 528 00	16	20	24	20	2	17 17
623 528 05	16	22	28	25	3	34 71
623 529 00	16	22	28	16	3	23.95
623 530 00	16	22	28	20	3	28.63
623 532 00	18	22	26	18	2	17 10
623 533 00	18	24	30	18	3	28.97
623 534 00	20	24	28	16	2	17 03
623 535 00	20	24	28	20	2	20.70
623 535 05	20	26	32	15	3	21.77
623 536 00	20	26	32	16	3	28.94
623 537 00	20	26	32	20	3	34.45
623 538 00	20	26	32	25	3	41.69
623 538 05	20	26	32	32	3	51,94
623 539 00	20	28	35	20	4	49,67
623 540 00	25	30	35	20	2,5	33,20
623 541 00	25	30	35	25	2,5	40,38
623 541 05	25	32	39	25	3,5	64,58
623 542 00	28	33	38	22	2,5	39,96
623 542 05	28	33	38	36	2,5	62,42
623 543 00	28	36	44	22	4	72,72
623 544 00	30	38	46	20	4	71,36
623 544 05	30	38	46	25	4	85,67
623 544 10	30	38	46	30	4	99,97
623 547 00	36	45	54	28	4,5	128,44
623 547 05	36	45	54	36	4,5	159,12
623 551 00	36	45	54	22	4,5	105,42
623 550 00	40	46	52	40	3	117,83
623 552 00	40	50	60	25	5	147,26
623 552 05	40	50	60	40	5	218,27
623 555 00	50	60	70	32	5	219,32
623 555 05	50	60	70	50	5	323,46

Kanten unter 45° abgeschrägt, nach Wahl des Herstellers. ¹⁾ Bei Buchsen aus Sintermetall kann wegen des porösen Gefüges keine Rauhtiefenangabe nach DIN 3141 (Vornorm) gemacht werden. Maß r: Bei Bohrungen 3 - 8 mm = 0,3 mm, Bohrungen 9 - 22 mm = 0,6 mm, Bohrungen 25 - 40 mm = 0,8 mm.

Rohmaterial aus Sinterbronze mit Bohrung für Gleitlagerherstellung

Rohr aus Sinterbronze zur weiteren Bearbeitung zu Gleitlagern. Nach der mechanischen Bearbeitung sollte das Werkstück mit Schmierstoff getränkt werden.

Bestellangaben: z.B.: Art.-Nr. 623 390 20, Rohmaterial, 38/66 x 65 mm

Rohr Artikel-Nr.	d ₁ mm	D mm	L mm	Gewicht kg
623 390 20	38±0,8	66±1,5	65±2	0,99
623 390 25	38±0,8	66±1,5	120 ^{±2}	1,84
623 390 30	45±0,8	105±1,5	120±2	5,68
623 390 35	53±1	85±1,5	65±2	1,51
623 390 37	53±1	85±1,5	120±2	2,79
623 390 38	68±1,5	104±1,5	65±2	2,12
623 390 40	68±1,5	104±1,5	120±2	3,91
623 390 45	83±1,5	123±2	65±2	2,82
623 390 47	83±1,5	123±2	120±2	5,21
623 390 48	98±1,5	142±2	65±2	3,61
623 390 50	98±1,5	142±2	120±2	6,66

Rohmaterial aus Sinterbronze ohne Bohrung für Gleitlagerherstellung

Vollmaterial aus Sinterbronze zur weiteren Bearbeitung zu Gleitlagern. Nach der mechanischen Bearbeitung sollte das Werkstück mit Schmierstoff getränkt werden.

Bestellangaben: z.B.: Art.-Nr. 623 395 20, Rohmaterial 15 x 30 mm

Vollmaterial Artikel-Nr.	D mm	L mm	Gewicht kg
623 395 20	15 ^{±0,8}	30±1,5	0,04
623 395 23	20 ^{±0,8}	25±1,5	0,06
623 395 25	20±0,8	50±1,5	0,11
623 395 27	25±0,8	25±1,5	0,08
623 395 30	25±0,8	50±1,5	0,16
623 395 33	32±0,8	40±1,5	0,22
623 395 35	32±0,8	80±2	0,43
623 395 40	42 ^{±0,8}	50±1,5	0,46
623 395 43	42±0,8	100±2	0,92
623 395 45	45±1	90±2	0,96
623 395 47	52±1	60±1,5	0,82
623 395 48	52±1	120 ^{±2}	1,64
623 395 50	62±1,5	120±2	2,43
623 395 55	70±1,5	120 ^{±2}	3,09

Technische Daten:

Flächenpressung: max. 35 N/mm², abhängig von Gleitgeschwindigkeit und Durchmesser. Temperaturbereich: -20°C bis + 120°C.

A. Datenblätter und Zeichnungen

A.1.8. Achsen

Silberstahl Werkstoff Nr. 1.2210 (115CrV3) nach DIN 175 (h9) geschliffen und poliert

Ungehärtet, Festigkeit 700 - 800 N/mm². Kurze Werkstücke aus Silberstahl können nachträglich gut gehärtet werden bis ca. 64 HRC. Lieferung in Fixlången auf Anfrage.

Bestellangaben z.B.: Art.-Nr. 647 002 00, Silberstahl 2 mm, 500 mm lang

Artikel-Nr. 0,5 m	Artikel-Nr. 1 m	Artikel-Nr. 2 m	Durchmesser mm	Gewicht pro m kg
647 002 00	647 102 00	647 202 00	2	0,02
647 003 00	647 103 00	647 203 00	3	0,06
647 004 00	647 104 00	647 204 00	4	0,11
647 005 00	647 105 00	647 205 00	5	0,15
647 006 00	647 106 00	647 206 00	6	0,22
647 008 00	647 108 00	647 208 00	8	0,39
	647 110 00	647 210 00	10	0,62
-	647 112 00	647 212 00	12	0,89
	647 114 00	647 214 00	14	1,21
-	647 115 00	647 215 00	15	1,38
-	647 116 00	647 216 00	16	1,57
-	647 117 00	647 217 00	17	1,78
-	647 118 00	647 218 00	18	2,00
-	647 119 00	647 219 00	19	2,22
-	647 120 00	647 220 00	20	2,45
-	647 125 00	647 225 00	25	3,83

A.2. Zeichnungen

A.2.1. Gesamtbauzeichnungen

A. Datenblätter und Zeichnungen

				Teileliste			1
Element	Anz.	Bauteilnumm	ier	Beschre	eibung		Material
1	1	Antriebsfinger L					Aluminium
2	1	Antriebsfinger R					Aluminium
3	1	Hebelfinger L					Aluminium
4	1	Hebelfinger R					Aluminium
5	1	Greifbackenfinger L					Aluminium
6	1	Greifbackenfinger R					Aluminium
7	1	Deckel					Aluminium
8	1	Schnecke		T=2.8, z=3, m=0.75, a=17			Stahl
9	2	Schneckenrad		T=2.8, z=30, m=0.75, a=1	7		CuSn12Ni-C-G
10	1	Schrittmotor_Nema17		1.8° Bipolar, Haltemoment=0.7Nm, 3.52V, 1.6A/Phase, 2.2Ohm/Phase		52V,	-
11	4	Kugellager		D=19, d=6, B=6, beidseitig	g abgedicht	et	Stahl
12	8	Gleitlagerbuchse		DIN 1850 d1=4, d2=7, b1=	=4		Sinterbronze
13	4	Gleitlagerbuchse mi	t Bund	DIN 1850 d1=4, d2=8, d3=	=12, b1=4, ł	02=2	Sinterbronze
14	2	Achse d4x27					Stahl 1.1213
15	2	Achse d6x35					Stahl 1.1213
16	4	Achse d4x19					Stahl 1.1213
17	3	Achse d3x16					Stahl 1.1213
18	2	Achse d4x16					Stahl 1.1213
19	1	Motorhalterung					Aluminium
20	1	Greiferhalterung					Aluminium
21	1	MechanischeSchnitt	stelle				Aluminium
22	1	TMCM-1070					-
			Created by Torben Schulz Document type Gesamtbauzeichnung Titte				
Dept. Kon	Ter -	Chnical reference C C C T	Created by Torben Document type Gesam	Schulz tbauzeichnung	Approved - Documen freig DWG No	t by egeben	

A.2.2. Mechanische Schnittstelle

A.2.3. Greiferhalterung

A.2.4. Trägersystem

A.2.5. Motorhalterung

A.2.6. Greifbackenfinger

A.2.7. Hebelfinger

A.2.8. Antriebsfinger

A.2.9. Schneckenrad

A.2.10. Schrittmotor

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Erklärung zur selbstständigen Bearbeitung einer Abschlussarbeit

Gemäß der Allgemeinen Prüfungs- und Studienordnung ist zusammen mit der Abschlussarbeit eine schriftliche Erklärung abzugeben, in der der Studierende bestätigt, dass die Abschlussarbeit "– bei einer Gruppenarbeit die entsprechend gekennzeichneten Teile der Arbeit [(§ 18 Abs. 1 APSO-TI-BM bzw. § 21 Abs. 1 APSO-INGI)] – ohne fremde Hilfe selbständig verfasst und nur die angegebenen Quellen und Hilfsmittel benutzt wurden. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich zu machen."

Quelle: § 16 Abs. 5 APSO-TI-BM bzw. § 15 Abs. 6 APSO-INGI

Dieses Blatt, mit der folgenden Erklärung, ist nach Fertigstellung der Abschlussarbeit durch den Studierenden auszufüllen und jeweils mit Originalunterschrift als <u>letztes Blatt</u> in das Prüfungsexemplar der Abschlussarbeit einzubinden.

Eine unrichtig abgegebene Erklärung kann -auch nachträglich- zur Ungültigkeit des Studienabschlusses führen.

Erklärung zur selbstständigen Bearbeitung der Arbeit				
Hiermit versichere ich,				
Name:	Schulz			
Vorname:	Torben			
dass ich die vorliegende Bachelorarbeit bzw. bei einer Gruppenarbeit die entsprechend gekennzeichneten Teile der Arbeit – mit dem Thema:				
Entwicklung und Konstruktion eines Greifers für ein automatisiertes Messsystem				
ohne fremde Hilfe selbständig verfasst und nur die angegebenen Quellen und Hilfsmittel benutzt habe. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich gemacht. - die folgende Aussage ist bei Gruppenarbeiten auszufüllen und entfällt bei Einzelarbeiten -				
Die Kennzeichnung der von mir erstellten und verantworteten Teile der Bachelorarbeit ist erfolgt durch:				
	Hamburg	26.10.2020		
	Ort	Datum	Unterschrift im Öriginal	