
Bachelorthesis

Duy Anh Pham

Implementation of a
Speech-command-interface on

Microcontroller with TinyML

Fakultät Technik und Informatik
Department Fahrzeugtechnik und Flugzeugbau

Faculty of Engineering and Computer Science
Department of Automotive and

Aeronautical Engineering

Duy Anh Pham

Implementation of a Speech-command-interface
on Microcontroller with TinyML

Bachelorthesis eingereicht im Rahmen der Bachelorprüfung

im Studiengang Bachelor of Science Mechatronik
am Department Department Fahrzeugtechnik und Flugzeugbau
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Andreas Meisel
Zweitgutachter: Prof. Dr. Jörg Dahlkemper

Eingereicht am: June 21, 2021

Kurzreferat

Name desstudierenden
Duy Anh Pham

Thema der Bachelorthesis
Implementierung von Sprachkommandointerface auf der Basis eines Mikrocon-
trollers mit TinyML

Stichworte
Maschinelles Learnen, Deep Learning, Eingebettetes System, Spracherken-
nung, Eingebettetes KI

Kurzreferat
TinyML ist die neue Technologie, die die Implementierung und Bereitstellung
von Maschinelles Learnen auf eingebetteten Systemen, insbesondere Mi-
krocontrollersystemen, ermöglicht. Das Kernstück einer TinyML-Anwendung
ist die Inferenz-API, die auf dem TensorFlow Lite/Mikrokernel basiert. Diese
Arbeit ist eine experimentelle Implementierung einer Sprachbefehlsschnittstel-
le auf einem Mikrocontroller. Das implementierte ML-Modell verwendet das
MFCC als Sprachmerkmal, weil es häufig verwendet wird und sich in vielen
Anwendungen als effektiv erwiesen hat. Anstelle eines Standard-CNN-Modells
mit 2D-Faltungsfiltern wird der 1D-Faltungsoperator zum Extrahieren von In-
formationen aus Eingaben verwendet, da diese Methode dazu beiträgt, die
Modellgröße noch weiter zu reduzieren, ohne viel Leistung zu verlieren. Am
Ende wird ein winziges 1D-Conv-Modell geschaffen, das einen minimalen
RAM-Verbrauch von 13, 8kB hat. Das SCI ist als individuelles Sprachverar-
beitungsmodul konzipiert, sodass es über eine serielle Kommunikation oder
UART mit dem AT-Befehl als Anwendungsnachrichtenprotokoll mit dem exter-
nen Hostsystem verbunden ist.

Abstract

Name of the Student
Duy Anh Pham

Title of the paper
Implementation of a Speech-command-interface on Microcontroller with TinyML

Keywords
Machine learning, Deep Learning, Embedded System, Voice Recognition,
Embedded ML

Abstract
TinyML is the new technology that enables the implementation and deployment
of ML on embedded systems, particularly microcontroller systems. The core
part of a TinyML application is the inference API built upon the TensorFlow
Lite/micro-kernel. This document is an experimental implementation of a
speech-command interface on a microcontroller. The implemented ML model
uses the MFCC as speech features as it is commonly used and proven to
be effective in many applications. Instead of a standard CNN model using
2D convolutional filters, the 1D convolution operator is applied for extracting
information from inputs since this method helps to reduce the model size
even more without losing much performance. In the end, we have achieved
a tiny 1D-Conv model consuming minimal RAM usage of 13, 8kB. The SCI
is designed as an individual speech processing module, interfacing with the
external host system through a serial communication or UART with the AT
command as the application message protocol.

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Pros and Cons of edge computing. 2
1.2 Objectives . 5
1.3 Structure . 6

2 Theory 8
2.1 Speech recognition with machine learning 8

2.1.1 Phonetics fundamentals . 8
2.1.2 Audio signal processing fundamental - extract speech features . 10

2.1.2.1 Audio signal . 10
2.1.2.2 FFT and spectrogram 12
2.1.2.3 MFCC . 15

2.1.3 Speech recognition ML model 20
2.1.3.1 Deep learning with CNN [Goodfellow u. a., 2015] 20
2.1.3.2 Dataset . 21

2.2 Embedded Machine Learning . 23
2.2.1 TinyML preview . 23
2.2.2 TensorFlow lite . 23

2.2.2.1 tflite converter and interpreter 24

3 Requirement and Design 28
3.1 Design conception . 28

3.1.1 Usecase preview and general design 28
3.1.2 State of the art - keyword spotting on microcontroller systems . . 29
3.1.3 Conception . 30

3.1.3.1 Choosing a feature extraction method 30
3.1.3.2 Choosing a NN model 33
3.1.3.3 Hardware and software selection 35
3.1.3.4 Communication interface bus and application command

interface . 38
3.2 Requirement . 41

4 Implementation 43
4.1 Modern Embedded ML development . 43

v

Contents

4.2 Training a speech recognition model . 45
4.2.1 Preparing the dataset . 45
4.2.2 Configuring feature’s parameters and tuning model’s parameters 45

4.3 Running inference . 48
4.3.1 Running single prediction . 51
4.3.2 Running inference continuously 51

5 Experiment and Result 53
5.0.1 Final ML model . 53
5.0.2 Inferencing - SCI in action . 56

6 Conclusion 59
6.1 Summary . 59
6.2 Discussion . 60

Glossar 64

vi

List of Tables

1.1 Raw and application data . 2
1.2 Power usage over view of some embedded system component 4

2.1 How many recordings of each word arepresent in the dataset? [Warden,
2018] . 22

3.1 Summary of best neural networks from the hyperparameter search. The
memory required for storing the 8-bit weights and activations is shown in
the table [Zhang u. a., 2018] . 30

3.2 Typical ARM-Cortex™-M based microcontroller development platform
[Zhang u. a., 2018] . 30

3.3 Benchmarking: Spectrogram vs MFCC 32
3.4 Hardware development kit specifications 37
3.5 Common embedded system bus . 39

4.1 Resources comsumption based on nfft 46
4.2 Feature extraction’s parameter overview 47

5.1 ML models comparison . 53

vii

List of Figures

1.1 Cloud- and Edge-computing . 3

2.1 The vocal tract [Andrade-Miranda, 2017] 8
2.2 The APRAbet . 9
2.3 A waveform of the sentence “She just had a baby” with APRAbet tran-

scription [Jurafsky und Martin, 2000] . 10
2.4 PDM signal [STMicroelectronics, 2019] 11
2.5 PCM signal [STMicroelectronics, 2019] 11
2.6 Spectrogram - "forward" and "backward" 15
2.7 Spectrogram - below is in the Mel power spectrum 16
2.8 Mel linear spaced filterbanks . 17
2.9 Converted Mel filterbank with 40 filters and frequency range upto 4000Hz

[Fayek, 2016] . 18
2.10 MFCC calculation steps [Shawn Hymel, 2020] 19
2.11 speech signal processing pipe . 20
2.12 LeNET5 - handwriting classification [LeCun u. a., 1998] 21
2.13 A sine model prediction: normal vs quantized [Warden und Situnayake,

2019] . 24
2.14 TensorFlow Lite Converter [official TensorFlow documentation, 2021] . . 25

3.1 SCI sample design . 29
3.2 Spectrogram speech feature with the resolution of [128 x 50] 32
3.3 MFCC speech feature with the resolution of [13 x 50] 33
3.4 Embedded programming components - modern vs bare metal 36
3.5 Hardware development kit . 38
3.6 Synchronous AT command communication as a pair of request-response 40
3.7 Asynchronous AT command communication - e.g. periodic message . . 40

4.1 EON compiler benchmarking [Jan, 2020] 44
4.2 MFCCs by different nfft with "go" as an example 46
4.3 1D vs 2D convolution . 48
4.4 Compiled C++ SDK library folder structure 49
4.5 Main program’s flow chart . 50
4.6 Flow chart: Run single prediction . 51
4.7 Flow chart: Run continuous inference 52

5.1 SCI model accuracy . 54

viii

List of Figures

5.2 SCI model summary . 55
5.3 SCI model architecture made with TensorFlow 55
5.4 SCI classification result as confusion matrix 56

6.1 An overview of the new ARM-Cortex™-M55 [Frumusanu, 2020] 61

ix

Listings

listings/fft.txt . 13
listings/ifft.txt . 14
listings/Mel_filferbank.py . 18

listings/micro_ops.h . 33

listings/SCT_AT.log . 57

x

1 Introduction

1.1 Motivation

Introduction to Edge Computing

We are living in the time of the Fourth Industrial Revolution, where everything is
connected through the internet and becoming more intelligent. In the internet era, the
amount of information transported at a time is incredibly huge. One of the reasons for
this is how the internet infrastructure is designed. As the need for selective information
is increasing time after time, we have to transform it and make it more meaningful before
using it. This demand leads to the dominance of the cloud computing paradigm. At the
time of this thesis, most engineers are tempted to build their system after this design
concept. The information is operated on remote cloud services for data processing
before being consumed later. With the rise of the internet of things, both humans and
all kinds of devices will become a crucial part of the whole internet ecosystem. Many
statistics reports show that the number of IoT devices is now surpassing non-connected
ones. As a result, the need for even bigger data centers and faster communication
technology will increase. That means there is a higher risk that these systems will break
down as they are harder and costlier to maintain. One solution for this problem is the
edge computing paradigm. This new design pattern helps bring the processing of data
closer to the data source [Shi u. a., 2016]. The devices closer to the data source are
considered edge devices, such as smartphones, wearables, or tiny sensor nodes. Their
mission in the old-style IoT system is to gather the raw data, send it to the cloud server
for processing and consume the processed information sent back to them. But, in an
edge computing ecosystem, their role is changed. They act as data consumers and
as data producers or data processors. That means they must produce more readable
and meaningful information. The users may use and interact with this information
later through an user interface at the application level. The table below shows some
examples of raw data and application data for comparison. For instance, in a speech
recognition system, raw data is digitalized electrical signals illustrating acoustic sound

1

1 Introduction

waves. The user, in this case, is interested in the meaning of the sound indicating
an event or a spoken word. To do this, we will need robust information processing
algorithms and techniques like machine learning. Their performance is outstanding and
comparable to or even surpasses humans’ scores. But these methods are invented for
computers with sufficient resources. They may not meet the requirement of real-life use
cases when running on edge devices.

Table 1.1: Raw and application data
raw data (may not useful for user) application data (meaningful and

readable)
sensor data (acceleration, magnet field) movement (running, walking, standing ...)
images counting detected object class
converted electrical sound signal voice or speech detection

1.1.1 Pros and Cons of edge computing.

Compared to the older paradigm, edge computing has some great benefits that need to
be mentioned. First of all, the system will be more secure and reliable. We don’t need
to send any sensitive information anywhere, as these are produced locally. Therefore,
it improves privacy, which is a critical prerequisite of any application involving the
internet and connection. Less transported data also means a reduction of data loss
and bandwidth saving. Not waiting for responses from servers helps cut down latency.
This makes it more usable for real-time applications. Finally, the scalability grows as
the cost of server and communication is lowered, and the edge devices’ deployment is
much easier than the rest of the system.

Many efforts have been made to make use of those benefits, but we are still facing
many difficulties implementing machine learning algorithms at the edge until recently.
Although many hardware manufacturers are still developing specialized devices to run AI
models without using a sufficiently furnished PC, the prices of this kind of equipment are
still too high to use in large-scale applications. Some problems could indeed be solved
with a simple design, but deploying these models on a too capable computing system
also means wasting too many resources. As a result, they will soon be dominated
by smaller devices like embedded systems on the microcontroller. This leads to the
beginning of a new research area referred to as "Embedded Maschine Learning" or
"TinyML."

2

1 Introduction

Figure 1.1: Cloud- and Edge-computing

3

1 Introduction

Speech recognition on Microcontroller systems

Speech or voice recognition is one of the most famous problems possibly solved
with machine learning, among many other use cases. Some well-known examples
are digital assistants (e.g., Siri, Alexa) and speech-to-text systems. These models
are already deployed on devices like smartphones, PCs, and wearables. With the
birth of embedded machine learning, we can now run these models on tiny devices
based on a microcontroller. A Microcontroller has minimal resources compared to
other edge devices. Nevertheless, it perfectly fits an IoT system and tends to play a
more critical role in the future of edge computing and machine learning as a targeted
platform for deployment. Microcontrollers have some noticeable advantages making
them more and more popular nowadays. They have low prices and power consumption,
making them more portable and easier to scale. On average, it cost just under a
dollar for a microcontroller with up to 100kHz clock frequency. In operation, they could
consume a few hundreds of mW at peak. When on sleep mode, they could still run at
tens of µW. Therefore, they are capable of running on batteries for months or years.
Apparently, an embedded system consists of many more components than just only
a microcontroller. Here are some overviews of the embedded system’s typical usage
[Warden und Situnayake,2019]:

Table 1.2: Power usage over view of some embedded system component
component approximately power usage
display 400 mW
active cell radio 800 mW
Bluetooth 100 mW
Bluetooth Low Energy 40 mW
MEMS microphone sensor 1 mW
320x320 image sensor (Himax HM01B0) 1 mW at 30 FPS
accelerometer 1 mW

One of the limitations is that microcontrollers have some tough resource constraints.
They often have just a few hundred kilobytes of RAM and a little more for the Flash
memory. Moreover, the development of embedded systems is sometimes difficult to
access because of the lack of standards. A big step forward in modern days is intro-
ducing many user-friendly integrated development frameworks for embedded systems
like Arduino and MbedOS, along with more standardized hardwares. Consequently,
the newcomer to the embedded world like mathematicians and AI expertises can now

4

1 Introduction

keep up with the other engineers because the development is more straightforward and
accessible. The new ICT and ML progresses expand the embedded system application
further. Microcontrollers can now be used to control, gather data and do more complex
tasks like motion detection, environment monitoring, abnormalities defection detection,
or image and voice classification. They can provide end-to-end solutions to these
problems using embedded ML methods. Among those problems which we can solve
with ML, speech recognition is one of the most popular. Many AI models are designed
and already implemented. These types of applications help to improve human-machine
interaction in many cases. Here are some examples of how a speech recognition
system may work:

• intelligent control in a smart home or automobile (e.g., voice-controlled lock/switch
or light system)

• controlling multiple units with voice (e.g., a swarm of robots or drones)

• adding a voiced shortcut for some commands in a system with a complex moni-
toring user interface

In conclusion, applying voice recognition on microcontrollers is an excellent demon-
stration of extending ML’s application and enhancing embedded system performance,
making it more interactive and more intelligent.

1.2 Objectives

The thesis aims to use the new approach of "TinyML" to implement a speech-command-
interface, which improves interactivity and cooperation between humans and machines.
The targeted developing platforms for this task are microcontroller systems. We will first
go through some fundamentals theory on signal processing methods to analyze and
reconstruct human voice into data used in a deep learning model. We also examine how
a trained model can be transformed and deployed on a microcontroller. An experimental
implementation of a speech-command-interface is built to evaluate this new technique’s
possibility and its concrete performance in an interactive real-time application. A speech-
command-interface is not a complete voice recognition system. So it shouldn’t perceive
all the words defined inside a dictionary. Instead, only a small set of words are chosen
for a specific application. Besides, any AI model, in general, is a probabilistic system.
That means it couldn’t work most of the time but not as consistently as the physical

5

1 Introduction

interfaces, which is, in contrast, deterministic. A physical emergency stop switch is
preferable to a voice command for a more secure mechanism. As a matter of fact, a
speech-command interface should not replace the whole human-machine interface for
most applications but be integrated as an enhanced feature. Therefore, this work aims
not to improve the model or the algorithm but to apply the state-of-the-art method of
speech recognition to create an interface that is usable and easy to integrate as a part
of an HMI.

1.3 Structure

Chapter 2 describes the methodology and theory on the topics of speech recognition,
machine learning, and AI development for embedded systems. Before getting started
with signal processing methods, we learn about some phonetics fundamentals to
understand the structure of speech created by humans. We continue examining two
of the most well-known speech features with this knowledge: the spectrogram and the
MFCC. The central algorithm used by both methods is the FFT and the Mel filterbank
in audio processing. Later we need a complement AI algorithm to build a full speech
recognition model. For this, we choose the CNN model with the Google Command Set
as our base approach. Finally, we discuss the newly emerging technology of TinyML or
embedded ML. In this section, we made a preview of the use of TensorFlow Lite as well
as the optimization methods it applies.

Chapter 3 is our proposed design for the speech-command interface. Unfortunately,
only a few available development hardware kits can run ML applications at the time
of this work. For this reason, we keep researching the state-of-the-art to examine
the constraints we may encounter when developing an embedded ML application.
Furthermore, we also analyze the specifications of the available development kits on
which we want to deploy our experimental speech-command interface’s design. Finally,
at the end of this chapter is a brief overview of the requirements applying to the SCI.

Chapter 4 describes the implementation of SCI. First, we explain the use of software
frameworks and tools in developing modern embedded ML applications to further
optimize the resource usage on microcontrollers. Next, we document the steps we
made to train and deploy ML models on the targeted platform. In this section, we explain
all the parameters we used in detail base on experiments and researches. Finally, in
the end, we also illustrate the basic functionality of the SCI briefly.

6

1 Introduction

Chapter 5 is the evaluation of our test application with SCI. For this, we estimate our
AI model and make a comparison with the state-of-the-art models. We also include
a demonstration of SCI in action at the end, along with its concrete performance in
real-time application.

7

2 Theory

2.1 Speech recognition with machine learning

2.1.1 Phonetics fundamentals

Before getting started with signal processing methods, it is necessary to understand the
human’s speech structure. Sound is constructed by the vibration of an acoustic wave
transmitted through a medium such as gas, liquid, or solid. Humans create sounds with
a particular vocal organ, the vocal tract, which acts as a resonator. It consists of two
parts known as the nasal tract and the oral tract, which indicate where the sounds are
created.

Figure 2.1: The vocal tract [Andrade-Miranda, 2017]

As the air goes through these tracts, it vibrates and creates the spoken speech.
Speech sounds or phones are elemental sounds, which can be voiced or voiceless. For

8

2 Theory

example, in the English language, the voiced sounds or phones are [b], [g], [d], as well
as all the English vowels. Unvoiced sounds include [p], [t], [k], and others. People also
classify these sounds into two main classes: vowels and consonants. They are possibly
represented with symbols adapted from the Roman alphabet used in dictionaries as
pronunciation instructions. The International Phonetic Alphabet (IPA), first developed
in 1988, is the standard representation for transcribing the world’s language. The
APRAbet, a subset of IPA, is widely used for the American-English languages. [Jurafsky
und Martin, 2000, chap. 25]

Figure 2.2: The APRAbet

Unlike wild animals, humans can produce a large number of sounds forming a spoken
language or, in general, human speech. A word is a smallest meaningful unit of a
speech. Therefore, one of the essential missions of a speech processing system is

9

2 Theory

recognizing spoken words. A word can be a single syllable or a combination of multiple
syllables. On the other hand, a syllable consists of consonants and vowels, the smaller
parts of the speech. So basically, a word is just a list of phones spoken in order of time
— in figure 2.3 showing how we can separate sounds when analyzing the sound waves.
Each word is transcribed using the APRAbet.

Figure 2.3: A waveform of the sentence “She just had a baby” with APRAbet transcrip-
tion [Jurafsky und Martin, 2000]

2.1.2 Audio signal processing fundamental - extract speech features

2.1.2.1 Audio signal

In signal processing, we often record sounds and illustrate them as waveforms in
time series. Then, we translate air vibration into electrical signals using sensors like
microphones. The most common way of audio signal acquisition and encoding is using
PDM and PCM. PDM is a form of modulation converting analog signals into a high-
frequency stream of 1-bit digital samples. The relative density of the pulses represents
the input signal’s amplitude. Figure 2.4 illustrates a converted sine wave in PDM format.
A large cluster of 1s corresponds to a high or positive amplitude value when a large
cluster of 0s would correspond to a low or negative amplitude value, and alternating 1s
and 0s would correspond to a zero amplitude value.

10

2 Theory

Figure 2.4: PDM signal [STMicroelectronics, 2019]

PDM signals are later encoded into PCM format representing digitalized signal as
a stream of floating-point values, also known as data samples. A PCM stream has
two basic properties: the sampling rate fs and the bit depth. These properties help
to reconstruct the original analog signal. In conclusion, a chain of a PDM and PCM
acts as an ADC used for converting and streaming audio. PCM values are also a
part of well-known audio file formats, for example, the WAVE file format, used in many
computer applications.

Figure 2.5: PCM signal [STMicroelectronics, 2019]

11

2 Theory

2.1.2.2 FFT and spectrogram

Figure 2.3 is an example signal of a spoken sentence. We can easily recognize the
vowels and consonants pronounced. However, this signal is not always the same for
every person because different people have different accents when saying the same
sentence. There are two characteristics, which characterize human accents: pitch and
loudness, and the speech recognition process should ignore them. The pitch indicates
how humans perceive the sound vibration frequency if it is spoken in a higher or lower
tone. On the other hand, the loudness is equivalent to the sound’s energy. The human
ears are more sensitive to lower pitch sounds, so we often need a pre-emphasis filter at
the foremost to amplify higher pitched sound.

We later use the Fourier Transformation to analyze the sound wave’s power spectrum
to extract more information in the frequency domain. One way to apply Fourier Transfor-
mation on audio signals is the FFT, which is widely used for digital spectral analysis.
In Speech processing, it is the most crucial algorithm for extracting information. FFT
is a recursive, iterative and less complex process with a lower computation time than
the straightforward DFT method, respectively O(n log n) and O(n2). The formel and the
pseudo-code algorithm of FFT are as follows [Cormen u. a., 2009]:

• FFT formel

yk =

n−1∑
j=0

ajω
kj
n (2.1)

• with
ωkj
n = e2Πi/n (2.2)

• FFT matrix formel

y0

y1

y2

y3

...
yn−1

=

1 1 1 1 1

1 ωn ω2
n ω3

n ω
(n−1)
n

1 ω2
n ω4

n ω6
n ω

2(n−1)
n

1 ω3
n ω6

n ω9
n ω

3(n−1)
n

...
...

...
. . .

...
1 ωn−1

n ω
2(n−1)
n ω

3(n−1)
n ω

(n−1)(n−1)
n

a0

a1

a2

a3

...
an−1

(2.3)

12

2 Theory

• pseudo-code RECURSIVE-FFT(a)

1 n = a.length // n is a power of 2
2 if n == 1

3 return a

4 ωn = e2Πi/n

5 ω = 1

6 a[0] = (a0, a2, ..., an−2)

7 a[1] = (a1, a3, ..., an−1)

8 y[0] = RECURSIV E − FFT (a[0]))

9 y[1] = RECURSIV E − FFT (a[1]))

10 for k = 0 to n/2− 1

11 yk = y
[0]
k + ωy

[1]
k

12 yk+(n/2) = y
[0]
k + ωy

[1]
k

13 ω = ωωn

14 return y // y is assumed to be a column vector

Another advantage of FFT is that the inverse FFT can be done with almost the same
algorithm. The inverse matrix, for instance, is extracted by replacing every ωkj

n with
ω−kj
n /n . In both cases, n or nFFT is called FFT length.

• inverse FFT formel

ak =
1

n

n−1∑
j=0

yjω
−kj
n (2.4)

• with
ω−kj
n = e−2Πi/n (2.5)

• inverse FFT matrix formel

a0

a1

a2

a3

...
an−1

=

1 1 1 1 1

1 ω−1
n ω−2

n ω−3
n ω

−(n−1)
n

1 ω−2
n ω−4

n ω−6
n ω

−2(n−1)
n

1 ω−3
n ω−6

n ω−9
n ω

−3(n−1)
n

...
...

...
. . .

...
1 ω

−(n−1)
n ω

2−(n−1)
n ω

−3(n−1)
n ω

−(n−1)(n−1)
n

y0

y1

y2

y3

...
yn−1

(2.6)

13

2 Theory

• pseudo-code RECURSIVE-iFFT(y)

1 n = y.length // n is a power of 2
2 if n == 1

3 return y

4 ωn =
1

n
e−2Πi/n

5 ω = 1

6 y[0] = (y0, y2, ..., yn−2)

7 y[1] = (y1, y3, ..., yn−1)

8 a[0] = RECURSIV E − iFFT (y[0]))

9 a[1] = RECURSIV E − iFFT (y[1]))

10 for k = 0 to n/2− 1

11 ak = a
[0]
k + ωa

[1]
k

12 ak+(n/2) = a
[0]
k + ωa

[1]
k

13 ω = ωωn

14 return a // a is assumed to be a column vector

The FFT is very popular for its great computation benefits and is implemented and
optimized on most hardware platforms and programming languages as a DSP module
[Liu u. a., 2019]. Firstly, we divide the sound waves into short-time frames or windows,
often from 20ms to 40ms long. Then we calculate each frame’s power spectrum using
FFT. Finally, we save all results in a particular diagram called a spectrogram, which
contains all power spectrums lying next to each other in chronicle order. The frequency
range and the signal length are constant. Therefore, a spectrogram can be represented
as an image. The magnitude of a frequency range fi at the nj window is, therefore,
represented as a pixel pij . We can determine the dominating frequencies with a higher
energy level based on the highlighted lines or figures. These are called formants
[Jurafsky und Martin, 2000]. Following is the spectrogram of the word "forward" and
"backward." The formants are highlighted in red color, corresponding to spectral peaks.
The lowest formant F0 is related to the pitch of the sound. If the spoken pitch is raised,
these formants will grow upwards. We can see some similarities between the twos
spoken terms from the image because the second part of the word "backward" is
pronounced the same as the word "forward," particularly the last voiceless phone [d].
The formants in this section are more distinctive than the rest. We can extract these

14

2 Theory

repeated patterns from the resulted figure by applying image processing methods. For
example, TensorFlow’s standard audio recognition method uses these spectrograms as
speech features (see [Sainath und Parada, 2015]). In practice, these spectrograms can
be further transformed into MFCC, which is a more practical speech feature.

Figure 2.6: Spectrogram - "forward" and "backward"

2.1.2.3 MFCC

The MFCC is the method of extracting voice features based on how humans hear
things. The main idea is to use a Mel filterbank to map the measured frequency into
what humans perceive with hearing organ abilities. Our ears have about 15000 hairs
inside the basilar membrane, and these hairs act as a band-pass filter receiving a
particular narrow frequency range. The human’s hearing range is between 300Hz and
3000Hz. A Mel filterbank consists of triangular band-pass filters, typically between 20 -
40 filters, simulating the basilar membrane functionality. The filter bands grow wider as
the frequency range rises, so the lower frequencies become more discriminative than

15

2 Theory

the higher frequencies, which is more transparent. This is comparable to how we, the
human, hearing things as we are more sensitive to sound in lower tone. The result is
another power spectrum called the Mel spectrum. The formants on the Mel scale are
contrast and easier to identify. This process is identical to cropping and zooming on the
region of interest when processing images.

Figure 2.7: Spectrogram - below is in the Mel power spectrum

We construct the Mel filterbank as follows. First, we need equations to convert from
frequency to Mel scale and vice versa.

m = Mel(f) = 1125 ln(1 +
f

700
)[Mel] (2.7)

f = f(m) = 700(em/1125 − 1)[Hz] (2.8)

We initially evaluate the maximal frequency in the Mel scale using equation 2.7. Then
we have to calculate a sequence of linear spaced values in the Mel scale based on how
many filters we want to have. So, if we have n filters, we have to calculate n+ 2 values,
as each triangular filter is defined with a set of three values. Next, we convert this

16

2 Theory

sequence to regular frequencies using equation 2.8. The result is another sequence
with logarithmically spaced values.

In the following example, we calculate a Mel filterbank of 40 for a range up to 4000Hz.
Firstly, we determine the maximal Mel frequency equivalent to the band limit of 4000Hz,
which is 2142.26Mel. The full linear spaced Mel frequencies are as follows:

1 [0 . 52.25041791 104.50083582 156.75125372 209.00167163
2 261.25208954 313.50250745 365.75292536 418.00334327 470.25376117
3 522.50417908 574.75459699 627.0050149 679.25543281 731.50585071
4 783.75626862 836.00668653 888.25710444 940.50752235 992.75794026
5 1045.00835816 1097.25877607 1149.50919398 1201.75961189 1254.0100298
6 1306.26044771 1358.51086561 1410.76128352 1463.01170143 1515.26211934
7 1567.51253725 1619.76295515 1672.01337306 1724.26379097 1776.51420888
8 1828.76462679 1881.0150447 1933.2654626 1985.51588051 2037.76629842
9 2090.01671633 2142.26713424]

Figure 2.8: Mel linear spaced filterbanks

After converting, the new converted frequencies in Mel scale are as follows:
1 [0 . 33.27818895 68.13843198 104.65594038 142.90950098
2 182.98164618 224.95883198 268.93162452 314.99489549 363.2480268
3 413.79512499 466.74524587 522.2126298 580.31694812 641.18356143
4 704.94378996 771.73519696 841.70188548 914.99480927 991.77209843
5 1072.19940064 1156.45023851 1244.70638395 1337.15825037 1434.00530347
6 1535.45649162 1641.73069664 1753.05720605 1869.67620777 1991.83930831
7 2119.81007563 2253.86460776 2394.29212854 2541.39561156 2695.49243387
8 2856.91506071 3026.01176279 3203.14736774 3388.70404717 3583.08214122
9 3786.70102232 4000.]

When plotting on the frequency domain, the result is as in the following figure.

17

2 Theory

Figure 2.9: Converted Mel filterbank with 40 filters and frequency range upto 4000Hz

[Fayek, 2016]

Calculating and ploting mel_filterbanks in Python
1 import numpy as np
2 import m a t p l o t l i b . pyp lo t as p l t
3
4 def Mel (f) :
5 return 1125*np . log (1+ f /700)
6
7 def F(m) :
8 return 700*(np . exp (m/1125) −1)
9

10 def p l o t _ f i l t e r b a n k (frequency_values , x l a b e l = ’ Frequency [Hz] ’ , y l a b e l = ’ Ampli tude ’ , l i n e _ s t y l e = ’ r ’) :
11 ampl i tude = np . zeros (len (f requency_values [1 :]))
12 for i , a in enumerate (ampl i tude) :
13 ampl i tude [i] = i%2
14 p l t . p l o t (f requency_values [1 :] , ampl i tude , l i n e _ s t y l e)
15
16 ampl i tude = np . zeros (len (f requency_values [: − 1]))
17 for i , a in enumerate (ampl i tude) :
18 ampl i tude [i] = i%2
19
20 p l t . p l o t (f requency_values [: − 1] , ampl i tude , l i n e _ s t y l e)
21 p l t . x l a b e l (x l a b e l)
22 p l t . y l a b e l (y l a b e l)
23 p l t . g r i d (True , l i n e s t y l e = ’−− ’)
24 p l t . show ()
25
26 n = 40
27 f_max = 4000
28 m_max = Mel (f_max)
29 n_frequency_val = n+2
30
31 m = np . l i nspace (0 , m_max, n_frequency_val)
32
33 f = F(m)
34
35 p l o t _ f i l t e r b a n k (f)
36 p l o t _ f i l t e r b a n k (m, x l a b e l = " Mel frequency [Mel] " , l i n e _ s t y l e = ’ b ’)

18

2 Theory

The next step is to calculate the cepstrum. Cepstrum is the reverse of the first four
letters in the word "spectrum." We achieve this by applying inverse DFT to the logarithm
of the estimated signal spectrum, also known as the power spectrum. We can use
either inverse FFT or, more often, DCT as an alternative method. Sometimes DCT is
more desirable as DCT outputs can contain more information on amounts of energy
which may help to increase the classification performance [Gupta u. a., 2013]. As a
result, we will have a compressed list of coefficients as the final representation of the
MFCC. Typically, we select the coefficients from 2 up to 13 for the end outcome. The
first one is related to the formant F0 or speaking pitch and shall be ignored. The other
coefficients correspond to the higher frequency range outside the scope of regular
speech and are also considered redundant.

Figure 2.10: MFCC calculation steps [Shawn Hymel, 2020]

In conclusion, most signal processing chains for speech feature extraction are similar
as in the following figure. However, this model could be slightly different for a variety of
applications. With the MFCC, we are able to generalize the large structure of sound
into highly uncorrelated and representable coefficient numbers. These features are
suitable for applications processing speech and music models, which are sounds with

19

2 Theory

fixed patterns. The resulted features are saved in a 3D tensor or picture. The next step
is to feed these features into our deep learning model for classification.

Figure 2.11: speech signal processing pipe

2.1.3 Speech recognition ML model

2.1.3.1 Deep learning with CNN [Goodfellow u. a., 2015]

The modern method we will use to determine and classify speech in this work is deep
learning with neural networks. As mentioned in previous sections, the extracted features
are represented as pictures, so the learning process is as similar as in image processing
in computer vision. The most popular way to classify images is using convolutional
neural networks. For example, a CNN-based model consists of layers classified as
input/output layers, convolutional layers, subsample layers, and fully connected layers.
A convolutional layer consists of 2D filters with the same kernel size, acting as the
pattern finder or feature learner. The number of filters is called layer depth. Together
with the striding step sizes, it defines the number of total overlapped windows. A
subsampling layer, often a pooling layer, is a particular layer that helps to downsample
the data to prevent overfitting and reduce model complexity. Finally, a fully connected
layer contains only weights and biases and is often located at the end before activating
the final classification at the output. CNN models are considered as a black box, which
learns automatically from complex datasets. The more complex the model is, the more
effective it learns. An ML engineer or researcher has to configure the attributes to find

20

2 Theory

out a model complicated enough to determine all the desired features and, at the same
time, optimize enough to deploy on the target platform. The CNN model’s complexity is
defined by the layer number, the number of filters in each layer, and the attributes of
each layer.
In figure 2.12 is the architecture of the classic LeNET5 model, one of the classic CNN.
This model contains all of the mentioned basic components of the CNN.

Figure 2.12: LeNET5 - handwriting classification [LeCun u. a., 1998]

2.1.3.2 Dataset

The dataset used in this thesis is the Google Speech Command Set Version 2. This
dataset contains audio records of 35 common English words used as commands for
robotics or automation applications. The recorded words are listed in Table 2.1. Each
audio file is a 1-second-long WAVE-formated file with the sample data encoded in 16-bit
mono-channel PCM values. The resolution is 16-bit, which means a floating-point of
-1.0 is equivalent to -32768, and 1.0 equals +32767 in linear scale with type signed
integer. The sample rate is 16kHz. This is equivalent to a maximum frequency range
of 8kHz, according to Nyquist-Shannon-Sampling-Theorem. These properties must
coincide when implementing on the targeted device to retain data consistency when
recording raw input. This dataset is widely tested in various research and is proven to
be efficient.

21

2 Theory

Table 2.1: How many recordings of each word arepresent in the dataset? [Warden,
2018]

22

2 Theory

2.2 Embedded Machine Learning

2.2.1 TinyML preview

Embedded ML, a subset of Edge AI, is the new technology that enables the imple-
mentation and deployment of ML on embedded systems, particularly microcontroller
systems. TinyML is the name of the foundation supporting development progress on
embedded ML, sometimes is also referred to as the technology itself. It is a fast-growing
engineering field involving developing hardware, algorithms, and software capable of
on-device data analytics at low power. The emerging of this technology associates
deeply with the development of TensorFlow, a popular framework for developing ML
applications. As a result, embedded systems are now a promising targeted platform for
deploying ML.

2.2.2 TensorFlow lite

TensorFlow plays a crucial role in developing embedded ML, as mentioned in the book
"TinyML." The core part of a TinyML application is the inference API built upon the
TensorFlow Lite/micro-kernel. TensorFlow Lite kernel is used for deploying ML models
on mobile and edge devices, namely on smartphones or on single-board computers like
the Raspberry Pi or the Jetson Nano. Its subset is the micro-kernel, which is recently
ported for the microcontrollers. In addition, the core functions and operators of the
standard API are reimplemented upon the CMSIS-NN software library provided by ARM.
Many optimizations have been done to shrink the algorithms, networks, and models’
complexity and resource down to merely 100kB. One of the applied techniques is
quantization. The weights and biases by default are represented as 32-bit floating-point
numbers. As the FPU on microcontrollers is very slow in inefficient compared to modern
computers, it is a best practice to rescale these values in new types, particularly in 8-bit
integer. This is equivalent to a 75% reduction in memory size. Moreover, the CPU also
performs math operators on integers much faster. There is a minimal accuracy loss, but
this performance exchange is still worthwhile. Without it, it is impossible to run ML on
those MCUs. Figure 2.13 illustrates the actual prediction values between the quantized
and unquantized models. The patterns are almost identical, showing that the quantized
model can be used in real applications.

23

2 Theory

Figure 2.13: A sine model prediction: normal vs quantized [Warden und Situnayake,
2019]

2.2.2.1 tflite converter and interpreter

In this section, we will take a look at how TensorFlow Lite works on microcontrollers.
First is the converter or TOCO. This program lets the trained model reconstruct into a
particular space-efficient format, a FlatBuffer, for memory-constrained devices. The
converted model is also optimized with quantization and saved in a file with an extension
"tflite." This file is a C source code but is encoded as a raw byte array. To test this, we
can use some software tools like the famous "xxd" on Unix/Linux PC to dump the file’s
content into a readable format like Unicode (see more in [Warden und Situnayake, 2019,
chap. 4]). For this reason, we can compile this file and load it directly into memory as
every C/C++ program does.

24

2 Theory

Figure 2.14: TensorFlow Lite Converter [official TensorFlow documentation, 2021]

However, we still need an interpreter to run inference. The reason is, inside this
special model-C-file, there are some excessively long serializable arrays of bytes (up
to tens of kBs), which are the model data arrays containing the tensors, weights, and
operators that need to be parsed or mapped into C++ class or struct at runtime. This
makes the model memory efficient. So, whenever we want to update our model, we
need to replace this file with a newly converted one and recompile the code. The

25

2 Theory

inference then occurs after we create an interpreter and call a function through it. The
steps to use TensorFlow Lite on microcontrollers is as follows. Only necessary steps
are listed. Steps with helper functions are not included.

After training

• export the model to lite-model using TOCO (file with .tflite)

• convert this model into a C/Cpp file

Deploying on MCU

• mapping models by creating a Model pointer pointing to the model data array
1 / / Map the model i n t o a usable data s t r u c t u r e .
2 / / This doesn ’ t i nvo l ve any copying or parsing ,
3 / / i t ’ s a very l i g h t w e i g h t opera t ion .
4 const t f l i t e : : Model * model = : : t f l i t e : : GetModel (g_sine_model_data) ;

• Creating an AllOfResolver - a particular class - resolving mathematics operators
for transforming inputs and outputs.

1 / / This p u l l s i n a l l the opera t ion implementat ions we need
2 t f l i t e : : ops : : micro : : Al lOpsResolver reso l ve r ;

• Define a tensor area - this is a memory area used by the NN operations, including
the memory for loading the model and operators. We may need to do many trials
to find a minimum or optimized memory usage.

1 / / Create an area of memory to use f o r input , output , and in te rmed ia te ar rays .
2 / / F ind ing the minimum value f o r your model may requ i re some t r i a l and e r r o r .
3 const i n t tensor_arena_size = 2 * 1024;
4 u i n t 8 _ t tensor_arena [tensor_arena_size]

• Create an interpreter instance
1 / / Bu i l d an i n t e r p r e t e r to run the model w i th
2 t f l i t e : : M i c r o I n t e r p r e t e r i n t e r p r e t e r (model , reso lve r , tensor_arena , tensor_arena_size , e r r o r _ r e p o r t e r) ;

• Now we can call the methods of the interpreter to invoke the inference process,
including:

– allocating Tensor memory area
1 / / A l l oca te memory from the tensor_arena f o r the model ’ s tensors
2 i n t e r p r e t e r . A l locateTensors ()

– assigning input/output buffer

26

2 Theory

1 / / Obtain a p o i n t e r to the model ’ s i n pu t / output tensor
2 TfL i teTensor * i npu t = i n t e r p r e t e r . i npu t (0) ;
3 T fL i teTensor * output = i n t e r p r e t e r . ou tput (0) ;
4
5 / / Provide an inpu t values
6 / / e . g : a 2D−mat r i x [[1 2 3] [4 5 6]]
7 input −>data . f [0] = 1 . ;
8 input −>data . f [1] = 2 . ;
9 input −>data . f [2] = 3 . ;

10 input −>data . f [3] = 4 . ;
11 input −>data . f [4] = 5 . ;
12 input −>data . f [5] = 6 . ;

– invoke - running inference
1 / / Run the model on t h i s i npu t and check t h a t i t succeeds
2 T f L i t e S t a t u s invoke_sta tus = i n t e r p r e t e r . Invoke () ;

– getting output values after several inference invokes
1 f l o a t value ;
2
3 / / Run in fe rence on severa l more values and conf i rm the expected outputs
4 input −>data . f [0] = 1 . ;
5 i n t e r p r e t e r . Invoke () ;
6 value = output −>data . f [0] ;
7
8 input −>data . f [0] = 3 . ;
9 i n t e r p r e t e r . Invoke () ;

10 value = output −>data . f [0] ;
11
12
13 input −>data . f [0] = 5 . ;
14 i n t e r p r e t e r . Invoke () ;
15 value = output −>data . f [0] ;

27

3 Requirement and Design

3.1 Design conception

3.1.1 Usecase preview and general design

Besides diving into ML training processes, we also design a system used by the human-
machine-interaction. As mentioned in section 1.2, the objective of a speech-command
interface is to enhance the overall HMI. The device or gadget equipped with an SCI must
be able to recognize human voice commands and do some action reactively. Because
any voice recognition system is probabilistic, we should construct the SCI as a separated
embedded module. Therefore, it should run on its isolated hardware and software, also
known as driver or firmware, in an as compact or minimal format as possible. The most
successful ML applications always have a microprocessor specializing in executing ML
algorithms, such as the TPU or tensor-processing unit developed by Google. This kind
of microprocessor is referred to as NPU or neural processing unit and is an excellent
example of how we can design and build such a system. This design concept is suitable
for classification problems as the outcome is as simple as only the predicted class.
Besides, the main application running on external devices is not interfered with by heavy
ML processes. Accordingly, an SCI module must compose of at least three elements: a
microphone for signal recording, a microcontroller for signal processing and inferencing,
and finally, a communication interface and protocol for outputting results to external
devices. The microphone and the microcontroller can be seen as a single speech-
processing unit as the microphone drivers are usually provided inside the targeting
MCU’s software packages. This approach helps reducing development time, and the
developer can focus on ML algorithms. A message-based communication protocol
ensures that the main application is more secure and interactive as it can safely ignore
or miss any prediction event. Physical or deterministic commands are always preferred
to voice commands.

28

3 Requirement and Design

Figure 3.1: SCI sample design

3.1.2 State of the art - keyword spotting on microcontroller systems

This section will have a short review of some speech ML models aiming at resource-
limited devices. At the time of this work, many researchers and engineers have made
efforts to build speech recognition models targeting microcontroller systems. As a
critical requirement, the primary criteria for evaluating these models are the calculation
complexity measured in MOps (mega operations) and the consuming memory size in
kB (kilobytes). Some of the best-performance NN-based models are listed in Table 3.1.
These models are built with MFCC as extracted features, except the spectrogram-based
DNN model. The number of to be predicted class is ten, those including the following
classes: "Yes", "No", "Up", "Down", "Left", "Right", "On","Off", "Stop", and "Go". There
are also two special classes like "__Unknown__" and "__background_noise__" (or also
referred to as "Silence"). "__Unknown__" categorized words are randomly selected
from the unselected labeled words.
The most light-weighted model would consume about 40kB of memory when operat-
ing inference only (ignoring memory consumption by feature extraction). Moreover,

29

3 Requirement and Design

most models except the DNN one would take at least 3MOps, that is to say, for a
minimal ARM® Cortex™-M4 CPU running at about 60 MHz, it would take at least 0, 05s
(3MOps/60Mhz) for each inferencing session.
Some popular development boards with computation specifications are listed in Table
3.2. Linking to the requirements in Table 3.1, we can conclude that a deep-learning-
based speech recognition application can run on a microcontroller with a core architec-
ture not weaker than an ARM® Cortex™-M4.

Table 3.1: Summary of best neural networks from the hyperparameter search. The
memory required for storing the 8-bit weights and activations is shown in the
table [Zhang u. a., 2018]

Table 3.2: Typical ARM-Cortex™-M based microcontroller development platform [Zhang
u. a., 2018]

3.1.3 Conception

3.1.3.1 Choosing a feature extraction method

For feature extraction, these are two implementation methods according to section
2.1.2. We can use either spectrogram or MFCC as speech features illustrated in form

30

3 Requirement and Design

of an image. The image’s resolution is equivalent to the number of input’s parameters
passed into the NN and is calculated as follow:

r = h · w (3.1)

with:

• w: image’s width - number of frames

• h: image’s height

We calculate w and h as in the following equations.

w = nframe = (twindow − tframe)/tstride + 1) (3.2)

twindow, tframe and tstride are the timing window lengths. For Spectrogram, h is the
number of FFT length:

h = nfft = 2n (3.3)

For MFCC, h is the number of MFCCs we want to keep. h = 13 is feasible for most
application with MFCC.
Using the spectrogram method will result in a bigger image with a denser resolution. As
a result, our model’s size would grow faster as we add more complexity to improve its
performance. On the other hand, MFCC would take much longer to extract features as
it is a further step in a signal processing chain. However, the output will be simplified
with about a few hundred parameters. An example of extracting features of a single
word "go" is demonstrated as follows in Table 3.3 and figure 3.2 as well as 3.3. The
processing time and RAM usage are slightly affected by the total number of words of
classes. Eventually, MFCC is more favorable and proven to be the more successful in
automatic speech recognition in many works and practices.

31

3 Requirement and Design

Table 3.3: Benchmarking: Spectrogram vs MFCC

speech processing time [ms] peak RAM usage [kB] Number of classes
feature
spectrogram 77 27 4
spectrogram 81 28 16
spectrogram 81 28 19
MFCC 320 23 4
MFCC 368 26 16
MFCC 384 28 19

Figure 3.2: Spectrogram speech feature with the resolution of [128 x 50]

32

3 Requirement and Design

Figure 3.3: MFCC speech feature with the resolution of [13 x 50]

3.1.3.2 Choosing a NN model

There are many good developed models as mentioned in 3.1.2. The problem is that
the TensorFlow-Lite kernel for microcontroller only supports some limited operations or
architected layers, these are defined in this kernel header file "micro_ops.h". It means
that some more advanced models like LTSM-NN would not be able to be applied yet.
For this reason, this thesis will focus on developing a simple CNN consisting of the most
used layers (Dense-, Dropout-, Conv-, Reshape-, Flaten-,...) in order to minimize the
model’s complexity. As the MCUs have very constrain resources, the more complex the
model is, the less reactive our application is. The requirement on overall performance
is set as low as the standard from Google-DNN-Model with an accuracy of about 84%.
This accuracy is efficient for most applications.

1 / * Copyr ight 2019 The TensorFlow Authors . A l l Rights Reserved .
2
3 Licensed under the Apache License , Version 2.0 (the " License ") ;
4 you may not use t h i s f i l e except i n compliance wi th the License .
5 You may obta in a copy of the License at
6
7 h t t p : / / www. apache . org / l i censes / LICENSE−2.0
8
9 Unless requ i red by app l i cab le law or agreed to i n w r i t i n g , sof tware

10 d i s t r i b u t e d under the License i s d i s t r i b u t e d on an "AS IS " BASIS ,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , e i t h e r express or imp l ied .
12 See the License f o r the s p e c i f i c language governing permiss ions and
13 l i m i t a t i o n s under the License .
14 == * /
15 # i fndef TENSORFLOW_LITE_MICRO_KERNELS_MICRO_OPS_H_
16 #define TENSORFLOW_LITE_MICRO_KERNELS_MICRO_OPS_H_
17
18 #include " edge−impulse −sdk / tenso r f l ow / l i t e / c /common. h "
19
20 namespace t f l i t e {
21 namespace ops {

33

3 Requirement and Design

22 namespace micro {
23
24 / / Forward d e c l a r a t i o n o f a l l micro op kerne l r e g i s t r a t i o n methods . These
25 / / r e g i s t r a t i o n s are inc luded wi th the standard ‘ Bu i l t inOpResolver ‘ .
26 / /
27 / / This header i s p a r t i c u l a r l y use fu l i n cases where only a subset o f ops are
28 / / needed . In such cases , the c l i e n t can s e l e c t i v e l y add only the r e g i s t r a t i o n s
29 / / t h e i r model requ i res , using a custom ‘ (Micro) MutableOpResolver ‘ . Se lec t i ve
30 / / r e g i s t r a t i o n i n tu rn a l lows the l i n k e r to s t r i p unused kerne ls .
31
32 T f L i t e R e g i s t r a t i o n * Register_ABS () ;
33 T f L i t e R e g i s t r a t i o n * Register_ADD () ;
34 T f L i t e R e g i s t r a t i o n * Register_ARG_MAX () ;
35 T f L i t e R e g i s t r a t i o n * Register_ARG_MIN () ;
36 T f L i t e R e g i s t r a t i o n * Register_AVERAGE_POOL_2D () ;
37 T f L i t e R e g i s t r a t i o n * Register_CEIL () ;
38 T f L i t e R e g i s t r a t i o n * Register_CIRCULAR_BUFFER () ;
39 T f L i t e R e g i s t r a t i o n * Register_CONV_2D () ;
40 T f L i t e R e g i s t r a t i o n * Register_CONCATENATION () ;
41 T f L i t e R e g i s t r a t i o n * Register_COS () ;
42 T f L i t e R e g i s t r a t i o n * Register_DEPTHWISE_CONV_2D () ;
43 T f L i t e R e g i s t r a t i o n * Register_DEQUANTIZE () ;
44 T f L i t e R e g i s t r a t i o n * Register_EQUAL () ;
45 T f L i t e R e g i s t r a t i o n * Register_FLOOR () ;
46 T f L i t e R e g i s t r a t i o n * Register_FULLY_CONNECTED () ;
47 T f L i t e R e g i s t r a t i o n * Register_GREATER () ;
48 T f L i t e R e g i s t r a t i o n * Register_GREATER_EQUAL () ;
49 T f L i t e R e g i s t r a t i o n * Register_LESS () ;
50 T f L i t e R e g i s t r a t i o n * Register_LESS_EQUAL () ;
51 T f L i t e R e g i s t r a t i o n * Register_LOG () ;
52 T f L i t e R e g i s t r a t i o n * Register_LOGICAL_AND () ;
53 T f L i t e R e g i s t r a t i o n * Register_LOGICAL_NOT () ;
54 T f L i t e R e g i s t r a t i o n * Register_LOGICAL_OR () ;
55 T f L i t e R e g i s t r a t i o n * Register_LOGISTIC () ;
56 T f L i t e R e g i s t r a t i o n * Register_MAXIMUM () ;
57 T f L i t e R e g i s t r a t i o n * Register_MAX_POOL_2D () ;
58 T f L i t e R e g i s t r a t i o n * Register_MEAN () ;
59 T f L i t e R e g i s t r a t i o n * Register_MINIMUM () ;
60 T f L i t e R e g i s t r a t i o n * Register_MUL () ;
61 T f L i t e R e g i s t r a t i o n * Register_NEG () ;
62 T f L i t e R e g i s t r a t i o n * Register_NOT_EQUAL () ;
63 T f L i t e R e g i s t r a t i o n * Register_PACK () ;
64 T f L i t e R e g i s t r a t i o n * Register_PAD () ;
65 T f L i t e R e g i s t r a t i o n * Register_PADV2 () ;
66 T f L i t e R e g i s t r a t i o n * Register_PRELU () ;
67 T f L i t e R e g i s t r a t i o n * Register_QUANTIZE () ;
68 T f L i t e R e g i s t r a t i o n * Register_RELU () ;
69 T f L i t e R e g i s t r a t i o n * Register_RELU6 () ;
70 T f L i t e R e g i s t r a t i o n * Register_RESHAPE () ;
71 T f L i t e R e g i s t r a t i o n * Register_RESIZE_NEAREST_NEIGHBOR () ;
72 T f L i t e R e g i s t r a t i o n * Register_ROUND () ;
73 T f L i t e R e g i s t r a t i o n * Register_RSQRT () ;
74 T f L i t e R e g i s t r a t i o n * Register_SIN () ;
75 T f L i t e R e g i s t r a t i o n * Register_SOFTMAX () ;
76 T f L i t e R e g i s t r a t i o n * Register_SPLIT () ;
77 T f L i t e R e g i s t r a t i o n * Register_SQRT () ;
78 T f L i t e R e g i s t r a t i o n * Register_SQUARE () ;
79 T f L i t e R e g i s t r a t i o n * Register_STRIDED_SLICE () ;
80 T f L i t e R e g i s t r a t i o n * Register_SUB () ;
81 T f L i t e R e g i s t r a t i o n * Register_SVDF () ;
82 T f L i t e R e g i s t r a t i o n * Register_UNPACK () ;
83 T f L i t e R e g i s t r a t i o n * Register_L2_NORMALIZATION () ;
84 T f L i t e R e g i s t r a t i o n * Register_TANH () ;
85
86 } / / namespace micro
87 } / / namespace ops
88 } / / namespace t f l i t e
89

34

3 Requirement and Design

90 #endif / / TENSORFLOW_LITE_MICRO_KERNELS_MICRO_OPS_H_

3.1.3.3 Hardware and software selection

Programming and developing on microcontrollers is often very tricky. Before writing the
codes, we have to consider the requirement of the targeted hardware and how we should
build our software. When it comes to choosing a hardware kit or microcontroller, the
CPU frequency and memory specifications are critical for every application. Applications
processing a large amount of data, measured in kilos of Bytes, require at least a CPU
of a few tens of kHz and a RAM with a minimum of 100kB of RAM. Read-only storage
is not so critical as modern MCU often have at least a few MB of flash ROM. On the
subject of software, should we write a bare-metal code or not? Writing bare-metal code,
primarily written in C, is a low-level method of programming, which means our program
will only run on the chosen OEM’s hardware. The code is, therefore, more compact but
is not reusable when we change the hardware. Modern embedded software nowadays
is no more considered bare-metal. They are often built on top of SDKs, abstract libraries,
or a complete framework. Many of these are written in C++ instead of C. The most
well-known frameworks in recent years are Arduino and MbedOS, and both are C++-
based. For this reason, TensorFlow Lite is also developed in C++ and aims for these
two frameworks.

35

3 Requirement and Design

Figure 3.4: Embedded programming components - modern vs bare metal

At present, there are only a few development boards capable of realizing a speech
recognition application. Among those boards, one of the most popular is the Arduino
Nano 33 BLE Sense. This board is built with an integrated nRF52840-microcontroller
based on ARM Cortex-M4 architecture. Another comparable choice is the B-L475E-
IOT01A Discovery kit from the semiconductor manufacturer STM, which also has
an ARM Cortex-M4-based MCU. The main differences between those two are CPU
frequency, memory specifications, and the supported software packages. The Arduino
board has more significant memory and is developed with the help of the Arduino
SDK, which provides a more abstract and easy-to-use coding library. Therefore, this
board is theoretically easier to use and may run a more complex model because of the
bigger RAM. The most significant disadvantage is that it is harder to optimize code and
hardware usage because the code almost always runs consecutively in a super loop.
On the other hand, the board from STM has a better CPU frequency and is capable of

36

3 Requirement and Design

programming with MbedOS. MbedOS is the official SDK from ARM, providing a more
mature programming interface and libraries. It is packed with more features, for example,
the internal built real-time operating system, memory management, or abstract various
peripherals drivers. These libraries, for example, the audio and microphone driver,
are more challenging to set up and use but are very popular among professionals. In
addition, it provides many options for optimization as well as the ability to write programs,
which are event-driven or can run subtasks or threads simultaneously. An overview
comparison between the two is in table 3.4.

Table 3.4: Hardware development kit specifications

Specification Arduino Nano 33 BLE Sense B-L475E-IOT01A
Processor nRF52840 STM32L475
ARM Architecture Cortex M4 Cortex M4
CPU Frequency 64kHz 80kHz
ROM 1MB 1MB
RAM 256kB 128kB
software SDK Arduino MbedOS
Microphone MEMS Microphome MEMS Microphome
Audio driver Arduino’s PDM OEM Hardware kit’s

audio BSP
Application program type single-process with super-loop Realtime OS program
Onboard debugger No Yes
Optimization No intern DMA (faster DSP

and audio acquisition)

37

3 Requirement and Design

Figure 3.5: Hardware development kit

Both development kits from Arduino and STM are very similar in terms of hardware
specifications. However, the STM board is more suitable and more efficient as the
main focus of this work is to implement a speech-command interface that is reactive
enough to use in real life. In addition, STM boards have more hardware acceleration
methods, for example, the DMA, which provides more optimization for the program.
Professionals also recommend boards with MbedOS support as the NN processing
kernel on microcontrollers runs better on these boards.

3.1.3.4 Communication interface bus and application command interface

At the end of the inference process, we need to have a communication interface in order
to output our prediction to a later process or system. As transport service, the following
are the most common among embedded bus systems:

38

3 Requirement and Design

Table 3.5: Common embedded system bus

I2c SPI CAN UART
connection bus, serial bus, star serial
topology master-slave master-slave serial, ... serial
transfering 100 kbit/s limited by up to 1MBit/s standard 9600
rate up to 400 kbit/s master clock 115200,..

The speech-command interface should run continuously and be able to output mul-
tiple predictions. For this reason, the demand for possessing communication lines is
considerably high. Using a serial interface is, therefore, more appropriate. On the other
hand, the prediction is sent out in message format, so the CAN bus and UART are
better choices. UART is more favorable for ease of development between the twos as it
is more straightforward and flexible.

Eventually, we need an abstraction interface for formatting messages sent from the
SCI module. In networking, AT commands or Hayes command set is very popular. It
is used as a common message-based or command-based communication between
networking devices or modem with host devices like separated CPU or MCU. The
message syntax is easy to understand as a simple request-response process and fully
customizable. Standard commands are synchronous and always have a confirmation
response, either with "OK" or "ERROR." Unsolicited or asynchronous message/com-
mand is also supported. Unsolicited commands do not require a request from host.
Figure 3.6 and 3.7 illustrate the interaction between an AT module and the external host
systems basing on the Hayes-command-set behaviors.

39

3 Requirement and Design

Figure 3.6: Synchronous AT command communication as a pair of request-response

Figure 3.7: Asynchronous AT command communication - e.g. periodic message

40

3 Requirement and Design

3.2 Requirement

Combining all fundamental knowledge of speech processing, ML as well as the design
proposal in previous sections, we summarize the requirements for the speech-command
interface in this thesis as follows:

• Signal sample rate: at least 8kHz

We set the maximal signal frequency band limit B as 4000Hz according to the
human’s hearing range (300Hz up to 3000Hz). According to Nyquist–Shannon
sampling theorem, the band limit must be at least half of the sampling frequency fs

so that the signal can be reconstructed back to the original, preventing information
losses. In computer science, we often work with audio signal sample rates of
8kHz, 16kHz, and 32kHz.

• Number of words: at least 10
We build a speech-command interface upon a multiple-keywords-spotting system.
The number of classified words must be at least ten to be comparable to the
state-of-the-art similar ML models. The choice of words is spontaneous, as we
will not define a specific application of SCI in this thesis.

• Response time: less than 1s

We set the maximal response time for each prediction as 1s. Longer than this
may be too slow and unusable for real-life applications. This duration includes
digital signal processing time and the ML model inferencing time.

• Model accuracy: at least 80%
Our model must be comparable to the standard DNN-model, whose performance
is 84.6%.

• Memory consumption: maximal 64kB of RAM
We chose the STM board for development, which has a limited RAM of 128kB.
As the main focus of the application is speech processing, we want to dedicate
half of the memory resources to this task. Still, this is not precisely the feasible
restriction, as many MbedOS libraries also have a large memory footprint that
causes memory overflow. Our goal is to have a model as small as possible and
at the same time perform comparably to the standard model. We calculate the
memory consumption by getting the total sum of the DSP and inference peak
RAM usage.

41

3 Requirement and Design

• Functionality
Our SCI must be able to send out predictions by requests through a standard
AT command. Furthermore, continuous asynchronous predictions as unsolicited
messages are also supported. On the other hand, the host system using the
SCI must be able to tune the predicting performance by, for example, setting the
classification probability threshold, in which it decides if the class is qualified as
the "GOOD" result or not.

42

4 Implementation

4.1 Modern Embedded ML development

As pointed out previously, developing an embedded application is very hard because of
the poor portability based on the targeted platform. In addition, training and inferencing
are two distinguished development processes needing many efforts to implement. We
already have many software platforms and frameworks for training AI. In the case of
inferencing, the TensorFlow lite still in early growing as its first release of the TensorFlow
Lite micro-kernel in May 2019. As a result, it lacks productivity tools that connect
training pipelines to deployment platforms and tools. Furthermore, deployed models on
microcontrollers still consume much memory. For instance, a simple keyword spotting
model may use up to tens of kB. This is considered quite intense for a microcontroller,
not to mention the fact that, for an actual application, the model is much larger.

Measuring memory consumption on runtime is also tricky, requiring the skills of an
experienced engineer or a specific development tool. Therefore, we will use another
framework build on top of TensorFlow Lite to optimize further memory usage and
performance on the chosen target in this work. Founded in 2019,- Edge impulse is
a modern framework supporting developers, engineers, and domain experts solving
embedded ML’s problems. At the time of this thesis, it provides a set of development
tools focusing on building and deploying ML models related to images and speech
processing, and motion detection. What makes Edge Impulse the leading on the market
is the EON compiler, which won the TinyML foundation’s best innovation of the year
in 2021. Instead of using the interpreter and the converted model, it is the extra step
of compiling the model into more C++ codes and minimizing the interpreter’s use. As
a result, many model’s metadata are hardcoded, many unused operators are also
removed. The EON compiler does this automatically. For this, NN operators and buffers
now use up to 55% less RAM and 35% less ROM, according to Edge Impulse. Figure
4.1 showing the benchmarking comparison of running NN using the EON compiler

43

4 Implementation

versus the ones with the standard TensorFlow Lite. While there is a clear difference in
memory usage, the computing latency remains the same between the twos.

Figure 4.1: EON compiler benchmarking [Jan, 2020]

The framework generates C++ code from trained models, including the SDK for
inferencing and feature extraction corresponding to the training session. For this reason,

44

4 Implementation

the implementation will focus on choosing appropriate parameters for feature extraction,
model architecture, and building an application running inference and outputting results
through the communication interface to the host device.

4.2 Training a speech recognition model

4.2.1 Preparing the dataset

Before diving into the ML training process, we have to prepare the dataset first. We use
the same method used by researchers as mention in the section 3.1.2, with an extra
step. As recommended in this paper [McMahan und Rao, 2017], we mix all the labeled
words with the background noises to improve the noise tolerance of the model. The
whole dataset is separated into three subsets of training, validation, and testing set with
a ratio of 6:2:2 respectively. Moreover, our model is a bit more complex as it contains
13 words comparing to the standard of 10.

4.2.2 Configuring feature’s parameters and tuning model’s parameters

The first step is to configure the feature extraction layer, which generates MFCC features
as images. Based on the speech-command dataset from Google, our task is to predict
only a single word as a command. Therefore, a window of 1s is reasonable for input
audio signals. The sliding frame should be between 20ms and 40ms, as mentioned
in Chapter 2. The striding length can be set lower or equal to window length. Lower
striding length means that we will have overlapped windows preventing information loss,
but on the other hand, it also makes the model bigger. For instance, the image resolution
calculated with equation 3.1 is more significant because the number of overlapped
windows is more than non-overlapped.

The FFT length nfft must be a power of 2, so the possible value is 128, 256, 512, etc.
The bigger the nfft is, the better contrast the output images is, as more information is
extracted. A summary on model’s performance by different nfft values is listed on table
4.1. Except when nfft is as low as 128, MFCCs features are identical for nfft bigger
than or equal to 256. The model’s accuracy with an FFT length of 512 has an overall
improvement of circa 3% compared to when nfft equals 256.

45

4 Implementation

Table 4.1: Resources comsumption based on nfft

nfft processing time [ms] RAM usage [kB]
128 225 16
256 278 19
512 384 27
1024 600 42

Figure 4.2: MFCCs by different nfft with "go" as an example

The sample rate is 16000Hz, so the band limit is set as 8000Hz. We will keep 13
MFCCs from a Mel filterbank of 40, as this is suitable for most applications, including in
this paper [Zhang u. a., 2018]. To summarize, the parameter applied in this thesis is
as follows in Table 4.2. Using equation 3.1, we will have a feature with a resolution of
13x50 with a total number of 650 features.

46

4 Implementation

Table 4.2: Feature extraction’s parameter overview

parameter value
window size 1s

framesize 0.02s

striding length 0.02s

nfft 512

Mel filterbank length 40

MFCC length 13

The second step is to tune the model hyperparameter, including the learning rate,
batch size, and epoch number. These parameters affect the training session’s perfor-
mance. We set the learning rate as low as 0.005 and the epoch number as high as
200 for a finer training curve. A small batch size of 512 is, after trials, feasible for a fast
learning speed without deteriorating the dataset.

The final step is to train the model after defining the input figure. As mentioned in
chapter 3.1.3.2, we will focus on an uncomplicated CNN model based on the most
basic layers. For learning the features, we have the convolutional layers. The most used
kernel size for the CNN filters is 3x3, 5x5, or sometimes 7x7. Any larger kernel size
may diminish the model’s performance. Still, a smaller kernel size also means more
calculations to perform. Another possible approach is to use 1D-CNN instead. This
method is proven to be effective for processing time-series data or time-varying signals
[Srinivasamurthy, 2018]. The most significant advantage of a 1D network, according
to [Kiranyaz u. a., 2019], is the simple and compact configuration, as the kernel size
and striding size are both defined with just a number instead of 2. The kernel strides
only in one direction, which means no nested loop is required for iterating through the
inputs. As a result, the 1D convolution operator executes only scalar multiplications
and additions, making the algorithm faster and lighter. For this reason, 1D CNN is
recommended for real-time application and works well on low-cost hardware. In this
thesis, we will use 1D CNN as the primary learning layer. In between, we will have
some pooling layer to downsample the outputs further. Dropout layers are also used to
avoid overfitting [Srivastava u. a., 2014].

47

4 Implementation

Figure 4.3: 1D vs 2D convolution

4.3 Running inference

After training and generating C++ code, The final step is to build an SCI application and
deploy the model on targeted hardware platform. The compiled model contains the C++
inference and DSP SDK as well as the AI model structure in C++ code.

48

4 Implementation

Figure 4.4: Compiled C++ SDK library folder structure

We import these codes into our source and compile them all together with the main
program. Our main program is as simple as the following flow chart. After defining the
needed commands, the program will listen to the host system’s requests and handle
them internally.

49

4 Implementation

Figure 4.5: Main program’s flow chart

Each command corresponds to a function of the SCI. We describe the most important
functionalities as follows:

• AT+CLASSLIST: sending out a list of prediction classes/words

• AT+PTHRES=<float>: get/set prediction probability threshold. If a class is more
than the set value, it is considered "GOOD" and sent out to the host system.

• AT+PFILTER=<0:false or 1:true>: choose if the output contains all classes or just
the best or the only "GOOD" class.

• AT+RUNSINGLE: get a single prediction

• AT+RUNCONT: run prediction continuously. Results are sent out as unsolicited
messages.

• +UPCLA: classification output from SCI (normal or unsolicited)

50

4 Implementation

4.3.1 Running single prediction

When the host system request only a single prediction, the SCI applies the signal
processing pipe from end to end sequentially. Firstly, it records the audio samples into
a data buffer. This buffer contains the PCM data or discrete audio signal. Then all the
data are passed through the inference pipes to extract the MFCC features and, finally,
the classification results. By default, we will filter out all class outputs, except the class
with the highest rating and is considered as "GOOD."

Figure 4.6: Flow chart: Run single prediction

4.3.2 Running inference continuously

In the case of continuous inferencing, things get a little bit more complicated. We
have to keep recording audios while running inference at the same time. On most

51

4 Implementation

STM32 boards, with the help of the DMA, audio buffers are accessed directly without
interrupting CPU operations. We divide the standard 1s window into n smaller blocks,
for example, by four blocks. By doing this, we hardly missed any event. We get the
input audio by concatenating the newest n blocks. However, doing this means it may
consume more memory because, at a time, several inferences are running.

Figure 4.7: Flow chart: Run continuous inference

52

5 Experiment and Result

5.0.1 Final ML model

After carrying out the development steps in chapter 4, we have accomplished a model
with an accuracy of 85%, which is comparable to the standard Google model CNN-2.
Table 5.1 also lists other well-known models on the same dataset for comparison. Our
SCI’s rankings are among all at number 4 of accuracy and rank 1st on the memory
benchmark.

Table 5.1: ML models comparison

NN Architecture Accuracy [%] - rank Memory [kB] - rank
DNN [Chen u. a., 2014] 84.3 - 6 288 - 4
CNN-1 [Sainath und Parada, 2015] 90.7 - 1 556 - 6
CNN-2 [Sainath und Parada, 2015] 84.6 - 5 149 - 3
LSTM [Sun u. a., 2016] 88.8 - 2 26.0 - 2
CRNN [Arik u. a., 2017] 87.8 - 3 298 - 5
SCI 85.0 - 4 13.8 - 1

We have built our model as simple as in the figure 5.2 illustrated. With this architecture,
we have optimized the complexity and, at the same time, achieved a decent prediction
accuracy. The model is also not overfitting by validation.

53

5 Experiment and Result

Figure 5.1: SCI model accuracy

54

5 Experiment and Result

Figure 5.2: SCI model summary

Figure 5.3: SCI model architecture made with TensorFlow

55

5 Experiment and Result

Figure 5.4 is the final confusion matrix showing classification results. The class
labeled as "__Unknown__" is the worse performing class because it contains randomly
sampled words and not correctly labeled. Furthermore, this AI model often misclassifies
the word "Off" with the two words "Up" and "On ." This shows that our model resembles
how a person senses these words as they sound pretty identical to our ears. False
predictions also occur when classifying the other group of the identical words, namely
the "Go"-"Down"-"No" group as well as the word pair "Yes"-"Left."

Figure 5.4: SCI classification result as confusion matrix

5.0.2 Inferencing - SCI in action

Following is the logged output from the SCI in action. We build a simple test by
connecting the development board to a PC acting as a host system for SCI. For this,
we use some utility software for accessing the UART communication through the USB.
Host system’s messages or requests begin with a specific character ">." It is essential
to notice the actual inferencing performance. By the case of single inference, the total
response time is circa 650ms. After triggering a request, SCI will open a 1s window for
recording and then return a prediction. In the following example, starting from line 46,
SCI sends the output in a class name pair with its probability in continuous running
mode. In this case, we receive the prediction almost immediately. The more blocks we
divide the audio input window, the more sensitive SCI is and more RAM when operating.
If the SCI is too sensitive, it may send out multiple identical predictions right after each

56

5 Experiment and Result

other. This can be prevented on the side of the host system or internally by SCI by
changing the threshold value or reduce the number of inferencing blocks.

The total RAM usage is 41kB, respectively 27kB for feature extraction (see table 4.1)
and circa 14kB for inferencing ML model (see table 5.1).

1
2 > AT+HELP
3 AT+HELP − L i s t s a l l commands
4 AT+RESET − Reset the system
5 AT+RUNSINGLE − Run a s i n g l e p r e d i c t i o n
6 AT+RUNCONT − Run the impulse con t inuous ly
7 AT+CONFPOUTPUT= − set p r e d i c t i o n output format (1 parameter)
8 AT+CONFPOUTPUT? − get p r e d i c t i o n output format
9 AT+PTHRES= − set p r e d i c t i o n p r o b a b i l i t y th resho ld (1 parameter)

10 AT+PTHRES? − get p r e d i c t i o n p r o b a b i l i t y th resho ld
11 AT+PFILTER= − con f i g get on ly good p r e d i c t i o n (a f f e c t on ly SCI FORMAT) (1 parameter)
12 AT+DOUTPUTEN= − enable debug output (1 parameter)
13 AT+CLASSLIST − enable debug output
14 OK
15
16 > AT+RUNSINGLE
17 [DEBUG] Recording
18 [DEBUG] Recording OK
19 [DEBUG] S t a r t i n g i n f e r e n c i n g
20 [DEBUG] P red i c t i ons (DSP: 447 ms. , C l a s s i f i c a t i o n : 102 ms. , Anomaly : 0 ms .) :
21 _noise : 0.00000
22 _unknown : 0.00391
23 backward : 0.00000
24 down : 0.00000
25 forward : 0.99609
26 go : 0.00000
27 l e f t : 0.00000
28 no : 0.00000
29 o f f : 0.00000
30 on : 0.00000
31 r i g h t : 0.00000
32 stop : 0.00000
33 up : 0.00000
34 v i s u a l : 0.00000
35 yes : 0.00000
36 OK
37
38 > AT+RUNSINGLE
39 +UPCLA=stop ,0.99609 ,GOOD
40 OK
41
42 > AT+PFILTER=1
43 OK
44
45 > AT+RUNCONT
46 +UPCLA=backward ,0.99609
47 +UPCLA=backward ,0.99609
48 +UPCLA=backward ,0.90234
49 +UPCLA= o f f ,0.90234
50 +UPCLA=forward ,0.81250
51 +UPCLA=forward ,0.83984
52 +UPCLA= l e f t ,0.87891
53 +UPCLA=stop ,0.82422
54 +UPCLA=up ,0.93750
55 +UPCLA=down,0.91016
56 +UPCLA=backward ,0.99609
57 +UPCLA=backward ,0.99609
58 +UPCLA=backward ,0.99609
59 +UPCLA= l e f t ,0.81641
60 +UPCLA=v isua l ,0.99609

57

5 Experiment and Result

61 +UPCLA=v isua l ,0.99609
62 +UPCLA=v isua l ,0.99219
63 +UPCLA=up ,0.82031

58

6 Conclusion

6.1 Summary

In this thesis, we have successfully built an experimental speech-command interface
on a microcontroller. The implementation includes defining and training a speech
recognition ML model and deploying this model on the targeted platform built upon
a microcontroller. Our model uses the MFCC as speech features as it is commonly
used and proven to be effective in many applications. MFCC feature is represented
as a 3D tensor or picture, so the model we choose is similar to image processing
using a CNN-based model. Instead of a standard 2D convolutional kernel, we apply
the 1D convolution operator for extracting information from input since this method
helps to reduce the model size even more without losing much performance. Parallel
to the training process, we have also created an embedded software running on our
development kit, the B-L475E-IOT01A from STM. We use another framework built upon
the standard TensorFlow Lite for microcontrollers to optimize memory usage further.
The model after training is compiled into C++ codes in the form of a native library easily
imported to any C++ project. In the end, we have achieved a tiny 1D-Conv model
consuming minimal RAM usage of 13, 8kB and perform just as well as the standard
DNN model. Our model has an accuracy of 85%, and the total memory usage in RAM is
41kB, including the RAM needed for DSP. With this small footprint, we expect our model
to be deployable on most microcontrollers systems with architecture not lower than the
ARM-Cortex™-M4. Considering the compactness in model design with 1D CNN and
the light-weighted memory usage, the model of SCI fulfills the requirements well and
is feasible in many use cases. By design, we built the SCI as an individual speech
processing module with its own hardware and software specifications, interfacing with
the external host system through a serial communication or UART. We use the AT
command as the application message protocol for outputting the speech command
prediction. The host system may consume these messages for its application.

59

6 Conclusion

6.2 Discussion

Building a speech recognition application requires deep knowledge of phonetics and
signal processing. The nature of human speech is also sophisticated; therefore, the
amount of computation is costly. For most applications, accuracy is not always the most
crucial requirement as speech may not be used as the only method to help humans
interact with devices. However, in real life, the prediction precision is expected as high
as at least 80% to be usable. This thesis is just an experimental implementation of
a speech-command interface on microcontrollers, and one of our aims is to evaluate
the possibility of the new technology, TinyML. The era of embedded ML is becoming
more and more exciting after the first publication of the "TinyML" book in 2019. Since
then, many efforts and achievements have been made, providing more tools and more
optimization, making AI applications on microcontrollers more secure, more robust, and
easier to get started. On the software side, we have used in this work the EON compiler,
which won the TinyML foundation’s best innovation of the year in 2021. making the AI
model more compact, and consume less memory on MCUs. On the hardware side, the
new ARM-Cortex™-M55 architecture is very promising. It is designed particularly for
embedded AI, accelerating NN operator and inference speed for up to 15 times better
than the most powerful embedded kernel ARM-Cortex™-F7, along with the benefits of
energy efficiency.

In conclusion, after evaluating the use of TinyML in our trial design for SCI, our
opinion is that embedded ML is still not a fully mature technology. However, it will be
more active in both academic and practical trials in the future. We expect to see more
presence of TinyML applications in everyday life very soon, considering its fast-growing
pace in development.

60

6 Conclusion

Figure 6.1: An overview of the new ARM-Cortex™-M55 [Frumusanu, 2020]

61

Bibliography

[Andrade-Miranda 2017] ANDRADE-MIRANDA, Gustavo: Analyzing of the vocal fold
dynamics using laryngeal videos, Dissertation, 06 2017

[Arik u. a. 2017] ARIK, Sercan O. ; KLIEGL, Markus ; CHILD, Rewon ; HESTNESS,
Joel ; GIBIANSKY, Andrew ; FOUGNER, Chris ; PRENGER, Ryan ; COATES, Adam:
Convolutional Recurrent Neural Networks for Small-Footprint Keyword Spotting. 2017

[Chen u. a. 2014] CHEN, Guoguo ; PARADA, Carolina ; HEIGOLD, G.: Small-footprint
keyword spotting using deep neural networks. In: 2014 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP) (2014), S. 4087–4091

[Cormen u. a. 2009] CORMEN, Thomas H. ; LEISERSON, Charles E. ; RIVEST,
Ronald L. ; STEIN, Clifford: Introduction to Algorithms, Third Edition. 3rd. The
MIT Press, 2009. – ISBN 0262033844

[Fayek 2016] FAYEK, Haytham M.: Speech Processing for Machine Learn-
ing: Filter banks, Mel-Frequency Cepstral Coefficients (MFCCs) and What’s
In-Between. 2016. – URL https://haythamfayek.com/2016/04/21/
speech-processing-for-machine-learning.html

[Frumusanu 2020] FRUMUSANU, Andrei: Arm announces Cortex-M55 Core and
Ethos-U55 microNPU. 2020. – URL https://www.anandtech.com/show/
15494/arm-announces-cortexm55-core-and-ethosu55-micronpu

[Goodfellow u. a. 2015] GOODFELLOW, I. ; BENGIO, Yoshua ; COURVILLE, Aaron C.:
Deep Learning. In: Nature 521 (2015), S. 436–444

[Gupta u. a. 2013] GUPTA, Shikha ; JAAFAR, J. ; FATIMAH, W. ; BANSAL, A.: FEATURE
EXTRACTION USING MFCC. In: Signal & Image Processing : An International
Journal 4 (2013), S. 101–108

62

Bibliography

[Jan 2020] JAN, Jongboom: Introducing EON: Neural Networks in Up to 55% Less
RAM and 35% Less ROM. 2020. – URL https://www.edgeimpulse.com/
blog/introducing-eon

[Jurafsky und Martin 2000] JURAFSKY, Dan ; MARTIN, James H.: Speech and
language processing - an introduction to natural language processing, computational
linguistics, and speech recognition. In: Prentice Hall series in artificial intelligence,
2000

[Kiranyaz u. a. 2019] KIRANYAZ, S. ; AVCI, Onur ; ABDELJABER, Osama ; INCE, T. ;
GABBOUJ, M. ; INMAN, D.: 1D Convolutional Neural Networks and Applications: A
Survey. In: ArXiv abs/1905.03554 (2019)

[LeCun u. a. 1998] LECUN, Y. ; BOTTOU, L. ; BENGIO, Yoshua ; HAFFNER, P.: Gradient-
based learning applied to document recognition, 1998

[Liu u. a. 2019] LIU, Weiqiang ; LIAO, Qicong ; QIAO, F. ; XIA, W. ; WANG, Chenghua ;
LOMBARDI, F.: Approximate Designs for Fast Fourier Transform (FFT) With Application
to Speech Recognition. In: IEEE Transactions on Circuits and Systems I: Regular
Papers 66 (2019), S. 4727–4739

[McMahan und Rao 2017] MCMAHAN, Brian ; RAO, Delip: Listening to the World
Improves Speech Command Recognition. 2017

[Sainath und Parada 2015] SAINATH, T. ; PARADA, Carolina: Convolutional neural
networks for small-footprint keyword spotting. In: INTERSPEECH, 2015

[Shawn Hymel 2020] SHAWN HYMEL, Alexander Fred-Ojala: Introduction to Embed-
ded Machine Learning. 2020. – URL https://www.coursera.org/learn/
introduction-to-embedded-machine-learning?

[Shi u. a. 2016] SHI, Weisong ; CAO, Jie ; ZHANG, Quan ; LI, Youhuizi ; XU, Lanyu:
Edge Computing: Vision and Challenges. In: IEEE Internet of Things Journal 3
(2016), Nr. 5, S. 637–646

[Srinivasamurthy 2018] SRINIVASAMURTHY, Ravisutha S.: Understanding 1D Convo-
lutional Neural Networks Using Multiclass Time-Varying Signals, 2018

[Srivastava u. a. 2014] SRIVASTAVA, Nitish ; HINTON, Geoffrey E. ; KRIZHEVSKY, A. ;
SUTSKEVER, Ilya ; SALAKHUTDINOV, R.: Dropout: a simple way to prevent neural
networks from overfitting. In: J. Mach. Learn. Res. 15 (2014), S. 1929–1958

63

Bibliography

[STMicroelectronics 2019] STMICROELECTRONICS: Application Note: Interfacing
PDM digital microphones using STM32 MCUs and MPUs. 2019

[Sun u. a. 2016] SUN, Ming ; RAJU, Anirudh ; TUCKER, George ; PANCHAPAGESAN,
Sankaran ; FU, Gengshen ; MANDAL, Arindam ; MATSOUKAS, Spyros ; STROM, Nikko ;
VITALADEVUNI, Shiv: Max-pooling loss training of long short-term memory networks
for small-footprint keyword spotting. In: 2016 IEEE Spoken Language Technology
Workshop (SLT) (2016), Dec. – URL http://dx.doi.org/10.1109/SLT.
2016.7846306. ISBN 9781509049035

[Warden 2018] WARDEN, Pete: Speech Commands: A Dataset for Limited-Vocabulary
Speech Recognition. 2018

[Warden und Situnayake 2019] WARDEN, Pete ; SITUNAYAKE, Daniel: TinyML: Ma-
chine Learning with TensorFlow Lite on Arduino and Ultra-Low-Power Microcontrollers,
2019

[Zhang u. a. 2018] ZHANG, Yundong ; SUDA, Naveen ; LAI, Liangzhen ; CHANDRA,
Vikas: Hello Edge: Keyword Spotting on Microcontrollers. 2018

64

Glossar

BSP Board support package

CNN Convolutional neural network

DCT Discrete Cosinus Transform

DFT Discrete Fourier Transformation

DL Deep learning

DMA Direct memory access

DNN Deep Neural network

DSP Digital signal processing

FFT Fast Fourier Transformation

FPU floating-point processing unit

HMI Human-Machine-Interface

ICT Information and communications technology

IoT Internet of things

LSTM-NN Long short-term-memory neural network

MCU Microcontroller

MFCC Mel Frequency Cepstral Coefficients

MFE Mel-Filterbank Energie

ML Maschine learning

NN Neural network

65

Glossar

OEM Original equipment manufacturer

PCM Pulse Code Modulator

PDM Pulse Sensity Modulator

RAM Random access memory

SCI Speech-Command-Interface

SDK Software development kit

66

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig
verfasst und nur die angegebenen Hilfsmittel benutzt habe.

