

Bachelor Thesis
Lorant Vrinceanu

Random-Based Model Generation for the
Evaluation of Logic Synthesis Performance

Fakultät Technik und Informatik
Department Informations- und
Elektrotechnik

Faculty of Engineering and Computer Science
Department of Information and
Electrical Engineering

Lorant Vrinceanu

Random-Based Model Generation for the
Evaluation of Logic Synthesis Performance

Bachelor Thesis based on the examination and study
regulations for the Bachelor of Engineering degree programme
Information Engineering
at the Department of Information and Electrical Engineering
of the Faculty of Engineering and Computer Science
of the University of Applied Sciences Hamburg

Supervising examiner: Prof. Dr.-Ing. Lutz Leutelt
Second examiner: Prof. Dr. Heike Neumann

Day of delivery: 2. November 2020

Lorant Vrinceanu

Title of the Bachelor Thesis
Random-Based Model Generation for the Evaluation of Logic Synthesis Performance

Keywords
HDL, VHDL, Model, FPGA, Synthesis

Abstract
This thesis proposes a method and implements a proof of concept that allows the ge-
neration of models of digital systems which can be used to evaluate the performance
of FPGA synthesis algorithms. The models are based on a network of interconnected
finite state machines with a data path (FSMDs) that are randomly generated. In order
to allow the exploration of the space of possible systems in a structured manner, the
generation process is controlled by a set of parameters which specify the specific sub-
set to be explored. The generated models are then converted into a VHDL description
and synthesized.

Lorant Vrinceanu

Thema der Bachelorarbeit
Zufallsbasierte Modellgenerierung für die Bewertung der Logiksyntheseleistung

Stichworte
Hardwarebeschreibungssprache, VHDL, Modell, FPGA, Synthese

Kurzzusammenfassung
Diese Arbeit schlägt eine Methode vor und implementiert einen Proof of Concept, der
die Bewertung der Leistungsfähigkeit von Algorithmen zur FPGA-Synthese anhand
automatisch generierter Modelle von digitalen Systemen ermöglicht. Die Modelle ba-
sieren auf einem Netzwerk von miteinander verbundenen endlichen Zustandsmaschi-
nen mit Datenpfad (FSMDs), die nach einem Zufallsmodell generiert werden. Um die
Untersuchung des Parameterraums möglicher Systeme auf strukturierte Weise zu er-
möglichen, wird der Generierungsprozess durch eine Reihe von Parametern gesteu-
ert, die eine Untersuchung einer spezifischen Teilmenge ermöglichen. Die generier-
ten Modelle werden dann in eine VHDL-Beschreibung umgewandelt und synthetisiert.

Contents

List of Tables . 6

List of Figures . 7

1. Introduction . 8
1.1. Outline . 9

2. Fundamentals . 10
2.1. Theoretical background . 10

2.1.1. FPGAs . 10
2.1.2. FPGA development flow . 10
2.1.3. Design entry . 11
2.1.4. FPGA synthesis . 19

2.2. Related work . 20

3. Requirements . 21

4. Concept . 23
4.1. Model generation . 24

4.1.1. System model . 24
4.1.2. ASMD model . 27
4.1.3. State model . 29

5. Implementation . 33
5.1. Architecture and run flow . 33
5.2. Parameters . 34
5.3. Model generation . 34
5.4. VHDL generation . 36
5.5. Synthesis . 37
5.6. Data storage . 38

6. Conclusion . 39
6.1. Discussion . 39

Contents 5

References . 41

Appendix A. Setup guide . 43

Appendix B. Class diagrams . 44

Appendix C. DVD contents . 55

Nomenclature . 57

List of Tables

2.1. Levels of abstraction considered in digital system development [6]. 12

4.1. System generation parameters. 27
4.2. ASMD generation parameters. 29
4.3. State generation parameters. 32

List of Figures

1.1. The synthesis process is analyzed as a black box by varying the input in a
structured manner and comparing the results of the synthesis. 9

2.1. Typical FPGA development flow [6]. The dashed lines represent the process
in case a verification step fails. 11

2.2. Block diagram of an FSM [6]. 14
2.3. Block diagram of an FSMD [6]. 15
2.4. ASMD block diagram with its elements indicated [6]. 18
2.5. ASMD block diagram with the formal definitions of an FSMD marked. 19

4.1. Overall concept of the environment to be developed as a flowchart. 23
4.2. Example of a system with its elements marked: 1 - inputs, 2 - outputs, 3 -

ASMDs, 4 - interconnections, 5 - I/O bundles. 25
4.3. Block diagram of an ASMD model. 28
4.4. Structure of an ASMD state. 30
4.5. Binary expression tree of the expression (r1 � r2) � 3 + 2. 31

B.1. Class diagram of the concept model. 45
B.2. Class diagram of the operations model. 46
B.3. Class diagram of the generators. 47
B.4. Class diagram of the I/O model. 48
B.5. Class diagram of the parameter types. 49
B.6. Class diagram of the run parameters. 50
B.7. Class diagram of the system parameters. 51
B.8. Class diagram of the single run system. 52
B.9. Class diagram of the synthesis runner. 52
B.10.Class diagram of the VHDL generator. 53
B.11.Class diagram of helper classes. 54

1. Introduction

Digital hardware has revolutionized the world in the past decades. Over time, its capabilities
have grown exponentially and it is today part of nearly every electronics, communications or
control system we use—from a cell phone to a power plant.

Field programmable gate arrays (FPGAs) now contain the equivalent of millions of logic gates
and tens of thousands of flip-flops [1]. At this scale, using traditional methods of logic de-
sign like drawing schematics becomes non-feasible. Nowadays, complex digital systems are
designed by describing their structure and desired behavior using a hardware description lan-
guage (HDL), like VHDL or Verilog. Computer-aided design software is used to simulate the
design in order to verify the intended function of the system, and synthesize the design—a
process that maps the high-level description onto actual hardware. Due to a high complexity,
the synthesis process is split into several steps, where each step creates a description of
the design at a lower level of abstraction by using various transformations and optimization
algorithms along the way.

The purpose of this thesis is to create an environment that would allow to evaluate the per-
formance of optimization techniques employed by synthesis tools. This is achieved by gen-
erating random models of digital systems. The models are structurally based on a network
of interconnected finite state machines with a data path (FSMD). This structure was chosen
due to the fact that the FSMD is a universal model that can describe any hardware design.

After the models of multiple systems are generated, they are converted into a VHDL de-
scription that can be synthesized. By varying parameters that impact specific areas of the
model generation and comparing the results and performance metrics of the synthesis pro-
cess across the generated systems, conclusions can be drawn regarding the operation of
synthesis tools.

1. Introduction 9

Synthesis

Results 3

Results 2

Results 1

Results 3

Results 2

Results 1

System 3

System 2

System 1

System 3

System 2

System 1

Figure 1.1.: The synthesis process is analyzed as a black box by varying the input in a struc-
tured manner and comparing the results of the synthesis.

1.1. Outline

The thesis structure in terms of chapters is described below:

Chapter 2 Fundamentals starts with an introduction of the theoretical background and
ends with a review of related work.

Chapter 3 Requirements presents an overview of the requirements for the development of
the model generation.

Chapter 4 Concept describes the proposed architecture of the model generation environ-
ment.

Chapter 5 Implementation transforms the conceptual description of the project into an im-
plementation and describes the implementation details.

Chapter 6 Conclusion discusses the results of the thesis.

2. Fundamentals

2.1. Theoretical background

2.1.1. FPGAs

FPGAs are reconfigurable hardware chips that are used to implement digital logic functions.
The first FPGAs were introduced by Xilinx in 1984 and have since increased in capacity by
a factor of more than 10000 and in speed by a factor of 100 [2]. They are most efficient at
tasks requiring parallelism and high throughput, but can be tailored to almost any application
[3].

The basic structure of an FPGA is composed of the following elements:

• Logic blocks, called Configurable Logic Blocks (CLB) in case of Xilinx devices. These
blocks implement the user logic using lookup tables, flip-flops and multiplexers [4]

• Programmable interconnects, which route signals and connect elements to one an-
other

• Input/Output (I/O) pads

• Hard blocks, like embedded memories, digital signal processing (DSP) blocks and
multipliers [1], [5].

2.1.2. FPGA development flow

Computer-aided design software is used to aid the designer in all the steps of FPGA-based
hardware design. A typical development flow of a design targeting an FPGA is presented in
Figure 2.1 and the steps are described below.

2. Fundamentals 12

These HDLs allow the specification of the design at different abstraction levels and from
various views, which are presented in Table 2.1.

Table 2.1.: Levels of abstraction considered in digital system development [6].

Abstraction level Behavioral view Structural view Physical view

Transistor Differential equations
Transistor, resistor,
capacitor

Transistor layout

Gate Boolean equations Gate, flip-flop Cell layout

Register transfer (RT) RT operation
Adder, register,
multiplexer

Module floor plan

Processor Algorithm
Processor, memory,
I/O interface

IP floor plan

Views

The same system can be examined from different views, depending on the task at hand.
There are three views used in digital design [6]:

• The behavioral view treats the system as a black box and focuses on describing the
input-output characteristics of the circuit.

• The structural view describes the implementation of the circuit by specifying the com-
ponents used and the connections between them.

• The physical view is the most detailed perspective which extends the structural view
with physical details like the sizes and location of the components.

The synthesis task becomes easier when the amount of structural and physical details in-
crease, but digital designers prefer describing the system from a behavioral view—this pro-
cess being simpler and less time-consuming [7].

Levels of abstraction

As digital systems become more complicated, being able to describe a system in different
levels of abstraction helps to manage complexity. An abstraction is a simplified representa-
tion of the system that focuses on critical information and removes unnecessary details.

In digital system development, there are four levels of abstraction considered [6]:

2. Fundamentals 13

• At the transistor level, the circuit is treated as an analog system, with analog compo-
nents like transistors and resistors being used for the structural description and their
respective input-output characteristics are used in the behavioral view.

• At the gate level, the circuit is composed of digital building blocks like logic gates and
can thus be described by boolean equations.

• At the register transfer (RT) level, modules constructed from gates are used in the
structural description. These modules can be functional units, storage components
and data routing units. Designers use extended finite state machines (FSMs) for the
behavioral description of systems designed at this level.

• The processor-level abstraction uses intellectual properties (IPs) like processors and
memory modules as structural building blocks and the behavior is typically described
by an algorithm in a programming language.

The focus of this thesis is on generating circuits which are designed at and above the RT
level, thus an overview of the models of computation used for the behavioral description at
this level is presented below.

Finite State Machines

In the field of digital design, finite state machines (FSMs) are used to describe sequential
circuits with a complex behaviour. The FSM is a model used to describe a system that
transits through a finite number of states based on the state of its inputs and the state it is
currently in. An FSM can be in a single state at a time. An FSM can have two types of
outputs: Mealy and Moore. If the output is function of the state only, the output is known as
a Moore output. However, if the output is a function of the state and the input signals, the
output is known as a Mealy output [6].

The block diagram of an FSM is presented in Figure 2.2. The FSM in the diagram is a
synchronous FSM, where the state transition is synchronized to a clock signal. The FSM has
a state register which acts as a memory element and stores the state of the FSM. The next-
state logic and the output logic implement the next-state function and the output function,
respectively.

The behavior of an FSM can be described by state diagrams or an algorithmic state machine
(ASM), which are out of the scope of this thesis, however an extended type of ASM, called
an ASM with a data path (ASMD) will be described in the following section.

2. Fundamentals 14

Next-state
logic

Mealy
output
logic

Moore
output
logic

Input
clk

Mealy
output

Moore
output

State
register

d q

State
register

d q

Figure 2.2.: Block diagram of an FSM [6].

Formally, an FSM is defined as a quintuple [7]

< S; I; O; f : S � I 7! S; h : S � I 7! O >

where

• S is a set of states,

• I is a set of input values,

• O is a set of output values,

• f is the next-state function, and

• h is the output function.

The FSM model can be applied for systems that have up to a few hundred states. Beyond this
threshold, FSMs become too complex for human designers. This is due to the fact that FSMs
do not allow the usage of variables, as a 16-bit integer variable would already represent 216

or 65536 states [7].

FSMs with a data path and the RT methodology

To tailor the FSM model to more complicated systems, a set of variables and operations
on them are introduced, leading to the concept of an FSM with a data path (FSMD). An
FSMD is a universal model that can be used to represent all hardware designs [7] and is the
cornerstone of the register transfer (RT) methodology.

2. Fundamentals 15

The RT methodology allows the realization of an algorithm in hardware by providing hardware
constructs that resemble the sequential execution method. The algorithm is transformed into
a succession of register transfer operations that describe how the data is transformed and
transferred between registers.

The characteristics of the RT methodology are [6]:

• The imitation of variables used in an algorithm by using registers which store interme-
diate data.

• The usage of a data path that realizes all the required register operations by using
registers (source and destination) and combinational logic which is responsible for
manipulating the data.

• The usage of a control path which specifies the order of the register operations and is
realized by an FSM.

The structure of a FSMD is depicted in the block diagram in Figure 2.2.

Next-state
logic

Output
logicCommand

External
statusState

register

d q

State
register

d q

Control path

Data
registers

d q

Data
registers

d q

Routing
network

Functional
units

Routing
network

Data input

Data
output

Internal status Control signal

Data path

Figure 2.3.: Block diagram of an FSMD [6].

2. Fundamentals 16

The operation at the base of the RT methodology is the register transfer operation that has
the following notation [6]:

rdest f (rsrc1; rsrc2; :::; rsrcn)

The RT operation is comprised of the followings steps:

1. At the rising edge of the clock and after the clock-to-q delay of the source registers,
the source registers contain new valid data.

2. The output of the f (�) function is computed by a combinational circuit and provided as
an input for the destination register rdest in time before the next rising clock edge.

3. At the next rising edge of the clock, the result is stored into the destination register
rdest .

Formal definition of FSMDs

The FSMD model and its formal definition that follows was introduced by Gajski and Ra-
machandran [7] as a universal model that can represent all digital systems.

Given the definitions below:

• A set of storage variables V AR,

• A set of expressions EXP = ff (x; y ; z; :::)jx; y ; z 2 V ARg,

• A set of storage assignments A = fX (ejX 2 V AR; e 2 EXPg,

• A set of status signals as the logical relation between two expressions from the set
EXP as STAT = fRel(a; b)ja; b 2 EXPg,

an FSMD is formally defined as the quintuple:

< S; I � STAT;O � A; f ; h >

where

• S is a set of states,

• I � STAT is a set of input values extended to include status expressions,

• O � A is a set of output values extended to include storage assignments,

• f : S � (I � STAT) 7! S is the next-state function, and

2. Fundamentals 17

• h : S � (I � STAT) 7! O � A is the output function.

ASMD

In practice, the behavior of an FSMD is described with an algorithmic state machine with
a data path (ASMD). An ASMD chart representation is a descriptive and readable way of
completely describing the behavior of an FSMD that can be easily transformed to VHDL
code. This representation will thus be extensively used for the description of models in this
thesis.

An ASMD chart is comprised of a network of ASMD blocks. An ASM block has one state box
and an optional network of decision boxes and conditional output boxes. Figure 2.4 presents
the structure of a single ASMD block:

• The state box gives a symbolic name to the state and lists the Moore outputs as RT
operations.

• The decision box tests an input condition and determines the exist path of the ASMD
block.

• The conditional output box lists the Mealy outputs and can be only placed on the exit
path of an ASMD chart.

2. Fundamentals 18

Moore output
(RT operation)

State
name

Mealy output
(RT operation)

FConditionT

State entry

State box

Decision box

Conditional output box

Exit to other ASM block

Figure 2.4.: ASMD block diagram with its elements indicated [6].

The relationship between the elements of the ASMD block and the formal definitions of an
FSMD are depicted in Figure 2.5 and described as follows:

• RT operations are storage assignments.

• The right side of an RT operation is an expression.

• The left side of an RT operation is a storage variable or an output of the FSMD.

• The condition in a decision box is a status signal.

2. Fundamentals 19

r1 ← r1 + 3

S0

r4 ← r2 – r1

Fa <= bT

Expression

Status signals

Storage assignment

Storage variable /
output

Figure 2.5.: ASMD block diagram with the formal definitions of an FSMD marked.

2.1.4. FPGA synthesis

Synthesis is a process that transforms the behavioral or structural view at a high level of ab-
straction of the designed system into a gate-level structural representation using the primitive
cells available in the chosen device technology. To manage the complexity, the synthesis pro-
cess is typically split into several steps, each performing a transformation which adds more
detail to the design, thus generating a description in a lower level of abstraction.

• High-level synthesis transforms an algorithm into an RT-level description with an ar-
chitecture consisting of a data path and a control path.

• RT-level synthesis transforms a behavioral RT-level representation into a structural
implementation using components from a RT-level library. These components can be
functional units which implement the operators encountered in the HDL code, routing
units like multiplexers which implement the routing structure of the design, and storage
units. At this level, optimization techniques like common code elimination and operator
sharing can be applied to enhance the performance of the circuit.

• Gate-level synthesis or logic synthesis is the process of generating a structural im-
plementation of the design using gate-level components, such as nor and nand gates.

2. Fundamentals 20

The circuit can be optimized with respect to area (gate count), speed (propagation
delay) or by obtaining an optimal area-delay trade-off.

• Technology mapping is the process by which the gate-level netlist is mapped onto the
cells of the chosen device technology. This is the only step which is device technology
dependent [6].

2.2. Related work

A number of research efforts have explored artificial benchmark generation due to a lack
of publicly available benchmark circuits for testing synthesis tools. Benchmark concepts
presented in [8]–[10] are targeted at testing logic synthesis processes.

Iwama and Hino [8] propose an approach to generate benchmark circuits that are functionally
equivalent to real circuits by applying network transformation rules to an initial circuit. A
concept for generating clones of a real circuit is proposed in [9], where the characteristics of
a real circuit is extracted and clones generated from this circuit. A graph-based generation
method is proposed in [10].

The FSMD formalization efforts by Gajski and Ramachandran [7] have been a starting point
for the development of the concept presented in this thesis.

3. Requirements

The objective of this work is to propose and implement a method for generating benchmark
circuits for testing the performance of synthesis tools. The concept shall be based on the
generation of digital systems of random-based interconnected FSMDs that statistically reflect
the properties of real-world digital designs. In order to be able to explore the space of all
possible FSMDs in a structured way, every step or decision in the generation process shall
include parameters, parameter ranges and probabilities of the parameter values.

The following subsections detail the sets of requirements that shall be fulfilled by the devel-
oped environment.

Model generation

• The environment shall be able to generate random-based interconnected FSMDs with
respect to the chosen parameter space.

• An abstract model shall be provided for the representation of the generated circuit.

• A set of parameters that control the model generation shall be defined.

• The model shall be defined independently of the VHDL representation.

• The environment shall be able to generate RT operations.

Conversion to VHDL model

• The environment shall be able to parse the abstract model and generate VHDL code.

• The generated VHDL code shall be synthesizable.

• The generated VHDL code shall be human-readable.

• The generated VHDL code shall be designed according to common coding practices.

• The generated VHDL code shall structure the system hierarchically.

3. Requirements 22

Synthesis of VHDL models

• The environment shall be able to control the software suite that synthesizes the circuit
using console-based commands.

• The environment shall be able to run the synthesis process on the generated VHDL
code and store the results.

• It shall be possible to run the synthesis process for multiple devices.

Software environment

• Matlab shall be used as the development platform. The reasons is its widespread us-
age in the academia, including at HAW Hamburg. This enables the sharing of knowl-
edge and collaboration on the topic.

• The Vivado Design Suite by Xilinx shall be used for synthesizing the circuits.

• The implementation shall be modular and extensible.

• The generated systems and related data shall be stored in a structured way.

• The configuration of the environment shall be separated from the model generation.

4. Concept

Based on the requirements, a flowchart that represents the general concept of the environ-
ment to be developed is presented in Figure 4.1. There are three major sequential processes
involved as part of a single run of the environment:

1. The model generation, which is the focus of this chapter, is the process which creates
a model of a system based on a set of parameters that describe its various character-
istics.

2. The VHDL generation process converts the model into its VHDL representation and
can accept parameters that control the code generation.

3. The synthesis step of the flow is the interface to the software suite and controls the
synthesis process via the available API. It is implementation specific and will thus be
described in the next chapter.

This split of responsibilities allows to separate the creation of a model from its VHDL repre-
sentation, the synthesis process and their respective parameters.

Model
generation

Model

Model
parameters

VHDL
generation

VHDL
representation

VHDL
parameters

Synthesis
Results

Synthesis
parameters

Single run

Run
parameters

Figure 4.1.: Overall concept of the environment to be developed as a flowchart.

4. Concept 24

4.1. Model generation

This thesis proposes a model generation concept based on combining multiple ASMDs into
a system. The concept is developed in a way that allows the parameterization of every step
in the generation process, where randomness is added to the model by assigning random
values to the control parameters.

The next sections present the model concept in a top-down approach.

4.1.1. System model

The top-level entity of the model generation concept is the system. An example of a system
is presented in Figure 4.2. Every system is uniquely defined by

1. A set of inputs

2. A set of outputs

3. A set of ASMDs that implement the logic of the system

4. A set of interconnections (signals) between the I/O interfaces of the system and the
separate ASMDs

The model generation process follows the order defined above for the generation of a sys-
tem. First, the I/O interface is defined, second, the ASMDs are generated, and finally, the
interconnections are created.

4. Concept 25

System

ASMD1

ASMD2

i1

i2

i3

i4

i5

i6

o1

o2

o3
o4

o5

ib1

ib2

ib3

ob1

ob2

1 2

3

4

5

Figure 4.2.: Example of a system with its elements marked: 1 - inputs, 2 - outputs, 3 - AS-
MDs, 4 - interconnections, 5 - I/O bundles.

I/O interface of modules

During the generation of a system, the number of inputs and outputs a system can have is
controlled by parameters which define ranges of possible sizes.

In order to emulate the structure of a bus, both the inputs and the outputs of the modules de-
fined in the concept (system and ASMDs) can be grouped into bundles (Figure 4.2). The size
of every bundle is randomly generated from a parameter that defines the range of possible
sizes.

The rules for the creation of bundles are that each pin can be part of only one bundle and
that a bundle can contain pins of a single type (input or output). The following two strategies
for generating bundles are proposed:

Random For a bundle of a defined size, add to it a random pin that is not part of any other
bundle, until the bundle is full.

Consecutive For a bundle of a defined size, add to it consecutive pins that are not part of
any other bundle, until the bundle is full.

4. Concept 26

Interconnection generation

After the I/O structure of the system has been defined and the ASMDs generated, a strategy
for connecting the I/O interfaces of the different modules has to be applied.

An interconnection in a system can be uniquely defined by the following elements:

• The module, the bundle of the module and the pins of bundle that drive the intercon-
nection

• The module, the bundle of the module and the pins of the bundle that are on the
receiving side of the interconnection

The following strategies can be used for the generation of interconnections:

Completely random The receivers and drivers of all modules can be connected at random.
This can have the following four effects: drivers can remain unconnected, receivers
can remain unconnected, a single driver can be connected to multiple receivers and
multiple drivers can be connected to the same receivers. All these four effects are
plausible for a real-world design, but this approach is not used.

Greedy random routing For every receiver in the system, a driver is randomly picked and
connected to the receiver until all receivers are connected. This the strategy used in
the proof of concept.

Bus A standardized bus interface like the Advanced eXtensible Interface (AXI) [11] can be
applied

System generation parameters

The concept uses the four following types of parameters:

• The value parameter stores a specific value.

• The range parameter stores a range defined by a minimum and maximum value.

• The probability parameter stores the probability of a certain generation event happen-
ing.

• The enumeration parameter stores a set of named values.

4. Concept 27

Table 4.1 presents an overview of parameters used in the generation of a system.

Table 4.1.: System generation parameters.

Parameter name Parameter type Description

Input count Range Amount of inputs of a system
Input bundle size Range Amount of elements in an input bundle
Input bundle generation
strategy

Enumeration
Strategy used for the generation of
input bundles

Output count Range Amount of outputs of a system
Output bundle size Range Amount of elements in an output bundle
Output bundle generation
strategy

Enumeration
Strategy used for the generation of
output bundles

ASMD count Range Amount of ASMDs contained in a system
ASMD interconnection
strategy

Enumeration
Strategy used for the generation of
interconnection within a system

4.1.2. ASMD model

ASMDs are building blocks used in the system model. An ASMD is uniquely defined by the
following elements, which can be identified in Figure 4.3:

• A set of inputs

• A set of outputs

• A set of storage variables, representing RT-level registers

• A state adjacency matrix, which stores the transitions between the states

• A set of states, modeled as ASMD blocks

The model generation process follows the order defined above for the generation of an
ASMD. First, the I/O interface is defined, second, the storage variables are defined according
to parameters that control their count and size, third, the state adjacency matrix is generated
as described below, and finally the ASMD blocks of the states are generated.

4. Concept 28

ASMD1 2
Storage variable
Storage variable
Storage variable

3

State

State

State

5

4Reset

Figure 4.3.: Block diagram of an ASMD model.

Adjacency matrix generation strategy

An adjacency matrix is a square matrix, the elements of which indicate whether pairs of
vertices are adjacent or not in a graph. A state adjacency matrix is thus created to indicate
the transitions between states in a FSMD. The concept assumes that the first state in the
adjacency matrix is the reset state.

A rule for creating ASMDs is that the exit path of an ASMD block must always lead to a
state box, which means that there must be at least one transition from every state. Thus, the
following strategies can be used for the generation of an adjacency matrix:

Complete interconnection strategy Every state has a transition to every other state, in-
cluding itself. In this case, all elements of the adjacency matrix are 1.

Transition to itself and to next state Every state has a transition to itself and to the next
state.

ASMD generation parameters

Table 4.2 presents an overview of parameters used in the generation of an ASMD.

4. Concept 29

Table 4.2.: ASMD generation parameters.

Parameter name Parameter type Description

Input count Range Amount of inputs of an ASMD
Input bundle size Range Amount of elements in an input bundle
Input bundle generation
strategy

Enumeration
Strategy used for the generation of
input bundles

Output count Range Amount of outputs of an ASMD
Output bundle size Range Amount of elements in an output bundle
Output bundle generation
strategy

Enumeration
Strategy used for the generation of
output bundles

Storage variable count Range Amount of storage variables of an ASMD
Storage variable size Range Size in bits of a storage variable
State count Range Amount of states of an ASMD
Adjacency matrix generation
strategy

Enumeration
Strategy used for the creation of the
adjacency matrix

4.1.3. State model

The model of an ASMD state is based on the ASMD block and is shown in Figure 4.4. Its
elements are

• The state box, which stores the state name and the Moore assignments (RT opera-
tions) of the state

• The so-called decision tree, which models the next-state function of the underlying
FSMD and stores the Mealy assignments of the state

The state model generation starts with the state box and ends with the generation of the
decision tree. Part of this process is the generation of assignments, which is discussed
next.

4. Concept 30

State

State box

Decision tree

Condition

(Mealy)
Assignment

(Moore) Assignment

(Moore) Assignment

(Moore) Assignment

From previous state

To next state

Figure 4.4.: Structure of an ASMD state.

Assignment generation

This section discusses the generation of Moore and Mealy assignments, and conditions (here
called relations) as part of the decision tree generation.

As part of an ASMD block, an assignment has the form of a register transfer operation:

target expression

A few examples of register transfer operations are shown below [6]:

• r 2: The constant 2 is stored in the register r .

• r r : The content of the register r is stored back into itself.

• r1 r2: The content of the register r2 is stored into the register r1.

• r r + 3: The content of the register r is increased by 3 an stored back into itself.

A given expression can be built out of the following two elements:

4. Concept 31

• Operators, which are symbols indicating a mathematical operation.

• Operands, which are input values for the operators. In the case of an ASMD, there are
two types of operands: storage variables (registers) and ASMD outputs.

Thus, the target of an assignment can be a single operand, and an expression can contain a
combination of operators and operands. Relations, which are used as conditions in the deci-
sion tree, are generated the same way as expressions, but have a different set of operators
available.

Two approaches for generating expressions and relations were analyzed:

• The first approach is to store an expression (and assignment) as text. This is the
simplest solution for simple expressions (at most one operator), but becomes complex
to generate and parse for expressions with more than one operator.

• The second approach is to store and generate expressions using binary expression
trees. A binary expression tree is a kind of a binary tree that can be used to represent
expressions and relations by storing operands as leaves of the binary tree, whereas
the other nodes contain operators. An example of an expression tree for the expression
(r1 � r2) � 3 + 2 is presented in Figure 4.5.

r1 r2

-
3

* 2

+

Figure 4.5.: Binary expression tree of the expression (r1 � r2) � 3 + 2.

The second approach was selected and implemented in the proof of concept due to its flex-
ibility and scalability. There are two parameters defined that control the generation of the
binary expression tree—the depth of the tree and the operators used. This way, the differ-
ence between an expression tree and a relation tree is only the operators used.

A list of operators that can be used in expressions and relations are listed below:

4. Concept 32

• Arithmetic operators: + (addition), � (subtraction), � (multiplication), abs(�) (absolute
value)

• Logical operators: and , or , nand , nor , xor , xnor , not

• Shift operators: >> (right shift), << (left shift)

• Relational operators, which are only used in conditions (relations): = (equals), = =

(not equals), < (less than), > (greater than)

Decision tree generation

The same binary tree approach is used to represent the decision tree, where nodes of the
tree can be relations, mealy outputs and transitions. The type of node can then be parsed by
the VHDL generator and relevant code is generated.

State generation parameters

Table 4.3 presents an overview of parameters used in the generation of a state and the
generation of expressions and relations. These parameters allow for a flexible adaptation of
the expression and relation binary trees.

Table 4.3.: State generation parameters.

Category Parameter name Parameter type Description

Decision stage
parameter

Mealy output
probability

Probability
Probability of a decision stage
to contain a mealy output

Expression
parameter

Self assignment
probability

Probability
Probability of generating a
self-assignment expression

Expression and
relation parameter

Expression or relation
tree depth

Range
Depth of the binary expression
trees

Expression and
relation parameter

Constant operand
probability

Probability
Probability of a constant to be
used as operand

Expression and
relation parameter

Constant operand
range

Range
The allowed range of values
for constant operands

Expression and
relation parameter

Allowed operators List List of allowed operators

5. Implementation

The implementation stage of the thesis consist of the development of a proof of concept
(POC) that takes the conceptual view and translates it into an implementation. The aim of
the POC is to verify that the concept proposed is feasible and can have practical potential.

An environment is implemented that allows to run the entire flow proposed as a concept
(Figure 4.1). A single run of the environment is defined by the sets of parameters used
for the model generation, the VHDL generation and the synthesis process. During a run of
the environment, multiple systems can be generated and a set of results for the specified
parameters is obtained. Due to the intrinsic randomness of the model generation, no two
runs with the same set of parameters will generate the same system, except if the same
seed is used to initialize the pseudorandom number generator used.

In line with the requirements, Matlab is used for the development process. The way the
concept was defined, an object-oriented (OO) implementation is the most suitable approach.
The reason for this is that the concept is split into entities that contain data (which define
their state) and have methods associated for the transformation of this data. Additionally,
the OO approach adds a level of flexibility to the implementation, where different generation
strategies or structures can be used simply by changing the class to be used.

5.1. Architecture and run flow

The starting point for the development of the architecture of the application is the con-
cept proposed. The entities defined in the concept were mapped onto classes and then
implementation-specific helper classes were created to implement the logic of the applica-
tion. While the class diagram of the entire application can be found in Appendix B, separate
implementation details are discussed in the following sections.

The top-level class of the application is the SingleRun, which is responsible for running
the application flow and storing the generated data. Algorithm 1 is used for running the flow
once.

5. Implementation 34

Algorithm 1 Single run algorithm
Create and define the run parameters
Instantiate a SingleRun container
Generate all systems
Generate the VHDL code for every system
Run synthesis on every system model
Print run report
Save run to permanent storage

5.2. Parameters

An extensive system of parameters was defined in the Chapter 4. These parameters were
mapped onto classes, as presented in Figures B.5 and B.7.

Additionally, implementation-specific parameter classes were introduced for the VHDL gen-
eration process and the synthesis run. These parameters are predominantly constant strings
that define the names that should be used in the VHDL generation process and an overview
is available in Figure B.6.

5.3. Model generation

The model class diagram was created based on the objects introduced in the concept and is
presented in Figures B.1 and B.2.

In order to be able to generate the entities of the model in a flexible way, a system of genera-
tors was implemented as shown in Figure B.3. This system is based on an idea similar to the
builder pattern [12], where a generator class is instantiated with the parameters it requires
to be able to generate complex objects of a specific type without using constructors with a
large amount of parameters.

Algorithm 2 shows the flow used for generating the system model.

5. Implementation 35

Algorithm 2 System generation algorithm
Instantiate a SystemGenerator with a set of system parameters
for all systems to be generated do

Generate system:

Randomly generate the properties of the system using the given parameters
Generate the system input pins
Generate the system input bundles using an IOBundleGenerator
Generate the system output pins
Generate the system output bundles using an IOBundleGenerator
Instantiate an AsmdGenerator with a set of ASMD parameters
for all ASMDs to be generated do

Generate ASMD
Generate the system interconnections using an

InterconnectionGenerator

Algorithm 3 describes in detail the flow used for the generation of an ASMD model.

Algorithm 3 ASMD generation algorithm
Generate ASMD:

Randomly generate the properties of the ASMD using the given parameters
Generate the ASMD input pins
Generate the ASMD input bundles using an IOBundleGenerator
Generate the ASMD output pins
Generate the ASMD output bundles using an IOBundleGenerator
Create ASMD storage variables
Generate the state adjacency matrix using an AdjacencyMatrixGenerator
Instantiate an StateGenerator with a set of State parameters
for all states to be generated do

Generate state

Algorithm 4 shows the flow used for the generation of a state model.

5. Implementation 36

Algorithm 4 State generation algorithm
Generate state:

Create a StateBox
for all targets of assignments do

Generate an (Moore) assignment using an AssignmentGenerator
Store the assignment in the StateBox

Generate a state decision stage:

for all transitions from the state do
Recursively generate a binary decision tree
that contains conditions, (Mealy) assignments and transitions

Expression tree generation

Algorithm 4 mentions the generation of Moore assignments, Mealy assignments and condi-
tions (relations). The generation process is conceptually similar between the three entities,
where for a defined depth of the binary expression tree, internal nodes of the binary tree are
recursively created by randomly picking an operator and leaf nodes are created by randomly
picking an available operand.

5.4. VHDL generation

The purpose of the VHDL generation step is to transform the model of the system into syn-
thesizable VHDL code. For the POC, the two-segment VHDL description model with Mealy
output support as defined in [6] is used for the transformation of the ASMD models. The
two-segment model combines all combinational logic of the data and control path into one
process and all the registers of both paths are merged into another process.

This task is completed by the VhdlGenerator class (Figure B.10) by parsing the system
model in a top-down manner. Algorithm 5 describes this process.

The parameters used for the VHDL generation are stored in the VhdlParameters
class. These parameters define the variable names and data types to be used by the
VhdlGenerator class.

In order to create a VHDL representation of the binary expression and relation trees, the
VhdlGenerator uses an inorder traversal of the trees.

5. Implementation 37

Algorithm 5 VHDL generation algorithm
Parse ASMDs:

Generate ASMD library declarations
Generate ASMD entity declaration:

for all asmd ports do
Generate port declaration

Generate ASMD architecture:
Generate state types
Declare state registers
Declare storage variables
Generate process for the state and data registers
Generate process for the combinational circuit:

for all states do
Parse moore box
Parse decision stages

Parse system:

Generate system library declarations
Generate system entity declaration:

for all system ports do
Generate port declaration

Generate system architecture:

Declare all components (ASMDs)
Declare interconnection signals
Instantiante all ASMDs
Parse all interconnections and generate signal assignments

5.5. Synthesis

After a VHDL file of a system is available, the synthesis process can be started. This thesis
uses the Vivado Design Suite from Xilinx, which is a computer-aided design software used
for the synthesis and analysis of HDL designs. The XC7A100TCSG324-3 Artix-7 FPGA is
used as the target device. This device is used as an example and can be easily changed in
the synthesis parameters.

The task of running the synthesis is completed by the SynthesisRunner class (Figure
B.9) and the respective parameters are stored in the SynthesisParameters class (Fig-

5. Implementation 38

ure B.6). These parameters are constant strings that are used for the generation of synthesis
scripts.

In order to control the Vivado Design Suite from a shell environment using Matlab, Vivado
must be run in non-project mode [13]. In non-project mode, tcl commands can be run using
the Vivado Design Suite Tcl shell. Therefore, the SynthesisRunner first generates a tcl
script that contains commands for the design software and then runs the script via a batch
file, that also has to be generated. The order of execution of the synthesis step is presented
in Algorithm 6.

Algorithm 6 Synthesis algorithm
Create a directory for the system to be synthesized
Save the VHDL file to the directory
Create a directory for the Vivado project
Generate tcl script, which control the Vivado Suite:

Define the project output directory
Setup the design sources and constraints
Run synthesis and generate default utilization report
Run implementation

Generate batch script, which runs the tcl script
Run batch script

5.6. Data storage

At the end of the run, the generated data is stored in the Runs directory in the project. For
every run, a directory is created. In the run directory, for every system that is part of the run,
a separate directory is created, where the following data is stored:

• The generated VHDL file

• The Vivado project and the generated scripts

• The run object as a run.mat file. This file contains all the data related to the run and
can be explored using the Matlab Variable window.

6. Conclusion

Based on the initial idea and the developed requirements, this thesis proposes a concept
for the generation of random-based models aimed at evaluating the performance of logic
synthesis algorithms.

The concept describes how to generate ASMDs and connect them as part of a larger system.
Different questions were raised during the concept development phase and the answers have
become rules and generation strategies for various parts of the model. For example, binary
trees are used as tools to describe elements of an ASMD.

An extensive set of parameters was introduced, which allows to randomize and control the
generation process, thus analyzing a specific subset of the space of possible digital sys-
tems.

The proof of concept was successfully implemented and now allows the user to specify a
set of parameters and run the entire generation and synthesis process, thus managing to
achieve the goals set by the requirements.

6.1. Discussion

The next step for this project would be to use the developed environment to evaluate the
performance of synthesis algorithms. The POC is already in a state where it can answer
questions regarding the performance of synthesis algorithms, like

• What is the used area per state with a growing model size?

• What is the synthesis time per state?

• How does the size of the design depend on the depth of expression trees?

A necessary next step would be to extend the functionality of the synthesis runner with an
automated collection of performance indicators, e.g., synthesis time, number of RT elements
used, cell usage to be able to automate the evaluation process.

6. Conclusion 40

Further possible improvements would be

• to augment the concept with the usage of IP modules

• to include a formal description of the model in terms of structure, the space of param-
eters, their range and probabilities

• to implement additional strategies for the generation of interconnections in the system

• to implement a graphical user interface (GUI) for modifying the parameters used

• to implement additional VHDL generators which use different description models

• to include parameters for the VHDL generator that would allow it to use different con-
ditional statements, like case and if-then-else statements.

References

[1] Xilinx 7 Series FPGAs Data Sheet: Overview (DS180). [Online]. Available: https://
www.xilinx.com/support/documentation/data_sheets/ds180_
7Series_Overview.pdf (visited on 2020-09-10).

[2] S. M. Trimberger, „Three Ages of FPGAs: A Retrospective on the First Thirty Years
of FPGA Technology“, Proceedings of the IEEE, vol. 103, no. 3, pp. 318–331, 2015-
03, Conference Name: Proceedings of the IEEE, ISSN: 1558-2256. DOI: 10.1109/
JPROC.2015.2392104.

[3] R. Mueller, J. Teubner, and G. Alonso, „Data processing on FPGAs“, Proceedings of
the VLDB Endowment, vol. 2, no. 1, pp. 910–921, 2009-08-01, ISSN: 2150-8097. DOI:
10.14778/1687627.1687730. [Online]. Available: https://doi.org/10.
14778/1687627.1687730.

[4] 7 Series FPGAs Configurable Logic Block User Guide (UG474). [Online]. Available:
https : / / www . xilinx . com / support / documentation / user _
guides/ug474_7Series_CLB.pdf (visited on 2020-09-10).

[5] SDAccel Environment Profiling and Optimization Guide (UG1207). [Online]. Available:
https://www.xilinx.com/support/documentation/sw_manuals/
xilinx2017_4/ug1207-sdaccel-optimization-guide.pdf (visited
on 2020-08-19).

[6] P. Chu, RTL hardware design using VHDL : coding for efficiency, portability, and scal-
ability. Hoboken, N.J: Wiley-Interscience, 2006, ISBN: 9780471786412.

[7] D. D. Gajski and L. Ramachandran, „Introduction to high-level synthesis“, IEEE Design
Test of Computers, vol. 11, no. 4, pp. 44–54, 1994, ISSN: 0740-7475. DOI: 10.1109/
54.329454.

[8] K. Iwama and K. Hino, „Random Generation of Test Instances for Logic Optimizers“, in
31st Design Automation Conference, ISSN: 0738-100X, 1994-06, pp. 430–434. DOI:
10.1145/196244.196452.

References 42

[9] M. D. Hutton, J. Rose, J. P. Grossman, and D. G. Corneil, „Characterization and pa-
rameterized generation of synthetic combinational benchmark circuits“, IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, vol. 17, no. 10,
pp. 985–996, 1998-10, Conference Name: IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, ISSN: 1937-4151. DOI: 10.1109/43.
728919.

[10] D. Stroobandt, P. Verplaetse, and J. v. Campenhout, „Generating synthetic benchmark
circuits for evaluating CAD tools“, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 19, no. 9, pp. 1011–1022, 2000-09, Conference
Name: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, ISSN: 1937-4151. DOI: 10.1109/43.863641.

[11] AXI Reference Guide. [Online]. Available: https : / / www . xilinx . com /
support/documentation/ip_documentation/axi_ref_guide/
v13_4/ug761_axi_reference_guide.pdf (visited on 2020-09-20).

[12] Design Patterns: Builder. [Online]. Available: https://refactoring.guru/
design-patterns/builder (visited on 2020-10-12).

[13] Vivado Design Suite User Guide: Design Flows Overview. [Online]. Available: https:
/ / www . xilinx . com / support / documentation / sw _ manuals /
xilinx2014_1/ug892-vivado-design-flows-overview.pdf (vis-
ited on 2020-10-15).

[14] Vivado Design Suite User Guide: Synthesis. [Online]. Available: https://www.
xilinx.com/support/documentation/sw_manuals/xilinx2019_
2/ug901-vivado-synthesis.pdf (visited on 2020-09-10).

Appendix A.

Setup guide

The project requires the following software to be installed on the machine:

• Matlab R2018a (or above) with the Statistics and Machine Learning Toolbox

• Vivado 2019.1 (or above)

To start the project,

1. Copy the project directory to a local disk.

2. Open the directory in Matlab.

3. Run startup.m to initialize the project.

4. Modify the runParameters.synthesisParameters.vivadoSettingsFilePath to the Vivado
installation location

5. Adjust the run parameters in main.m and start the script to run the complete flow.

Appendix B.

Class diagrams

This section of the appendices contains all the class diagrams of the implementation. The
class diagrams are split as follows:

Model: General The class structure of the model introduced in the concept (Figure B.1)

Model: Operations The class diagram of the operations model (Figure B.2)

Model: Generators The class diagram of the generators (Figure B.3)

Model: IO The class diagram of the I/O model of the modules (Figure B.4)

Parameters: Types The class diagram of the types of parameters defined: range, value,
probability and enumerations (Figure B.5)

Parameters: Run view The class diagram of the parameters used in a single run (Figure
B.6)

Parameters: System view The class diagram of the parameters used in the generation of
a system (Figure B.7)

Other: Run The class diagram of the single run system (Figure B.8)

Other: Synthesis The class diagram of the synthesis runner (Figure B.9)

Other: VHDL The class diagram of the VHDL generator (Figure B.10)

Other: Helpers The class diagram of helper classes (Figure B.11). These classes include
a binary tree data structure, a string builder for building the VHDL code and a progress
bar class to display the progress of the run.

Appendix C.

DVD contents

This bachelor thesis comes packaged with additional files that are stored on a DVD. The
directory tree below describes the delivery package.

Appendix C. DVD contents 56

DVD root
Bachelor Thesis Lorant Vrinceanu.pdf.............This document
SBE

main.m................................The starting point of the application
startup.m
updatePath.m
Runs..........Output of the application: generated code and Vivado projects

example_run..........An example run containing 3 generated systems
Sources.......................................Source code of the project

2_Parameters
...

3_Model
...
Generators

...
Helpers

...
IO

...
Operations

...
4_HDL

...
5_Synthesis

...
6_Run

...
9_Helpers

DataStructures
...

ProgressBar
...

StringOperations
...

Nomenclature

ASM Algorithmic State Machine

ASMD Algorithmic State Machine with a Data path

CLB Configurable Logic Blocks

DSP Digital Signal Processing

FPGA Field Programmable Gate Arrays

FSM Finite State Machine

FSMD Finite State Machine with Data path

GUI Graphical User Interface

HDL Hardware Description Language

I/O Input/Output

IP Intellectual Property

OO Object-oriented

POC Proof of Concept

RT Register Transfer

Declaration

I declare within the meaning of part 16(5) of the General Examination and Study Regula-
tions for Bachelor and Master Study Degree Programmes at the Faculty of Engineering and
Computer Science and the Examination and Study Regulations of the International Degree
Course Information Engineering that: this Bachelor Thesis has been completed by myself
independently without outside help and only the defined sources and study aids were used.
Sections that reflect the thoughts or works of others are made known through the definition
of sources.

Hamburg, November 2, 2020
City, Date Signature

