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Kurzzusammenfassung 
Textzusammenfassung ist ein etabliertes Problem im NLP-Bereich. Der rasch anwachsende 
Erfolg von deep learning Algorithmen führte zur Entwicklung des attention Mechanismus, 
welcher wiederum die Grundlage für die Transformer Architektur bildet. Die Transformer 
Architektur ist ein transfer learning Ansatz NLP Probleme zu lösen. BERT, ein pre-trained 
Transformer Modell, hat herausragende Ergebnis beim Lösen verschiedener NLP-Probleme 
erzielt. In dieser Abschlussarbeit wird BertSum, eine Erweiterung BERTs spezialisiert auf 
extrahierende Textzusammenfassung, auf neuronale Textzusammenfassung von 
lateinischen und deutschen Texten angewandt. Dies stellt eine besondere Herausforderung 
dar, denn die Texte wurden zu einer Zeit verfasst, in der noch keine festgeschriebene 
Orthographie, Morphologie und Semantik existierte. 
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Abstract 
Text summarization is an established problem in the field of NLP. The rapidly growing success 
of deep learning algorithms in solving NLP problems has led to the attention mechanism, 
which is the foundation for the Transformer architecture, a transfer learning approach for 
NLP tasks. BERT, a pre-trained Transformer model, has performed exceptionally well on 
various NLP tasks. This thesis applies BertSum, an enhancement of BERT specialized for 
extractive text summarization, to the neural text summarization of Latin and German texts. 
The distinctiveness of the chosen corpus is that it consists of medieval documents. This poses 
a challenge because the documents were written in a time where orthography, morphology, 
and semantics were not well defined.   
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1 Introduction 

For current historical research on the middle ages, formulae are important sources. 
Researchers have very few documents from the early middle ages and the formulae 
collections include texts which normally have not been preserved in archives. Formulae often 
give invaluable information on everyday life of the early middle ages. Since they are written 
in Latin, in a time where orthography, morphology, and semantics were not well defined, 
they are not easy to interpret or to be used for research. Regests were introduced to orient 
the reader by providing a summarization of the document. They are published together with 
their corresponding text in a collection of letters or in a collection of records. They are not 
written in the language of their corresponding text but of the collection or edition they are 
published in. In the case of this thesis the regests are written in German and their 
corresponding text is written in Latin. Writing a regest requires an expenditure of time as 
well as financial resources. Additionally, these regests are sometimes copyright protected so 
they cannot be freely used in open science.  The goal of this thesis is to apply recent 
developments from the field of Natural Language Processing (NLP) to this problem to save 
resources and contribute to open science in humanities by generating open regests.  
 

1.1 An estimation of the topic 
The subject of this thesis is the result of a very fruitful collaboration of the two fields: 
computer science and history. To give a more complete introduction to the issue, a historian 
was asked to add his perspective: 

Writing regests of medieval documents is a time consuming and difficult 
enterprise. Ideally a regest summarizes the content of a document 

(charter or diploma) in a brief form, thus helping the reader to get a 
grasp of the underlying legal act (usually a donation to an institution, an 
act of sale or an exchange of property, often accompanied by individual 
clauses like the establishment of prayer services or restrictions in the use 
of the property). The importance of regests becomes even more evident 

when it comes to documents of the high and late middle ages when their 
numbers rise sharply into the 10thousands per year. According to 
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current practice, these documents are not edited anymore, but merely 
represented by a regest. 

There are different approaches when it comes to composing a regest: 
One tradition emphasizes the legal character of the act, using 

standardized terminology when summarizing it, while another approach 
aims at staying as close to the terminology used by the individual 

document. Furthermore, according to German tradition, regests have to 
be composed in one single sentence. Composing a regest hence requires 

first to translate the document to make sure its legal content (and 
language) are fully understood. Being able to automatically create 

regests from the original latin text hence would mean a considerable 
and time-saving aid. 

- Dr. Horst Lößlein, research associate1 

1.2 Structure of this thesis 
This thesis is divided into five chapters. The first chapter describes the current developments 
in neural language models. The second chapter talks about BERT, a transfer learning 
approach built on the ideas described in the first chapter. The third chapter presents 
BertSum, a summarization-specialized enhancement of the previously introduced BERT. 
BertSum is then applied to the task of writing these regests in a few experiments in the fourth 
chapter. The fifth chapter discusses the quality of the results of those experiments and shows 
the strengths and weaknesses of the chosen approach. It also focuses on how future work 
can learn from and overcome these weaknesses.  

2 Neural Language Models 

The problem described in chapter 1 can also be defined as making a prediction (in this case 
a summary) based on a set of data. One promising way to solve such problems are Neural 
Language Models. These models make use of neural networks and a key feature of them is 
that they are capable of recognizing that two words are similar without losing the ability to 

 
1https://www.geschichte.uni-hamburg.de/arbeitsbereiche/mittelalter/personen/horst-
loesslein.html (10/20/2020) 
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encode each word as distinct from the other. This is accomplished by using a distributed 
representation of words (Bengio et al. 2000)  (Goodfellow et al. 2016, p. 464) 

2.1 Word embeddings 
The basis for a neural language model is distributed representations. The model learns a 
distributed representation for each word. These distributed representations are feature 
vectors. Each feature gets a number. Figure 1 visualizes the two-dimensional representations 
of words. The x-axis is one semantical feature and y-axis is another. For example, French and 
English are very close. This means that they represent similar semantics or share information. 
This information could, for example, be that they are both a language. Distributed 
representations allow the model to share statistical strength between one word (and its 
context) and other similar words (and their contexts).  (Goodfellow et al. 2016, p. 464)  

 
Figure 1: Example Word Embedding with data from (Bahdanau et al. 2016) and visualized by (Goodfellow et 

al. 2016, p. 465) 

2.2 Recurrent Neural Network 
A family of neural networks or neural language models, which is specialized on processing 
sequential data, such as continuous texts, are Recurrent Neural Networks RNNs (Rumelhart 
et al. 1986). Most RNNs can process sequences of values of variable length. One main idea of 
RNNs is sharing parameters across different parts of a model. This permits models to be 
extended and applied to sequences of different sizes and to generalize across them. 
Parameter sharing is especially important when a piece of information can be found at 
different positions in the sequence. For example, “I went shopping yesterday” and 
“Yesterday I went shopping”. If the task were to extract time information, the model should 
recognize “yesterday” whether it appears at the beginning or at the end of the sequence. 
(Goodfellow et al. 2016, p. 373) RNNs could be thought of as a chain of multiple copies of the 
same network, each one passing or sharing the parameters to its successor.  
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Figure 2: An unrolled RNN by (Olah 2015) 

 
RNNs make it possible to map an input sequence to an output value or to an output sequence 
of the same length as the input sequence. (Goodfellow et al. 2016, p. 396). RNNs could be 
applied to problems like stock price prediction. The input is a sequence of the historical stock 

prices (each is one number) and the output is the future stock price for a specific point in 
time. Another use case could be predicting the next word. The input is a sequence of the 
previously written words and the output is the predicted next word. The most used 
representative of this family is the Long Short-term Memory (LSTM) introduced by 
(Hochreiter and Schmidhuber 1997). LSTMs use so-called gates as paths through time that 
have derivatives that neither vanish nor explode (Goodfellow et al. 2016, 408f.). This makes 
LSTMs applicable to problems involving long-term dependencies. The fact that the input 
length determines the output length is the major limitation of this model family. 

2.3 Encoder-Decoder Framework 
Many tasks in Natural Language Processing, for example machine translation, deal with 
producing a variable length output from variable length input. The previously introduced 
RNNs are limited to producing output of the same length as the input. (Cho et al. 2014) and 
(Sutskever et al. 2014) were the first to overcome this limitation by introducing the so-called 
encoder-decoder framework. They applied this approach to the field of machine translation. 
Most applications of this framework to the task of summarization are built on the findings of 
(Li et al. 2015), (Rush et al. 2015) and (Nallapati et al. 2016). All three describe the application 
of the framework to the task as very promising.  
The basic idea behind the frameworks could be explained by imagining it as three different 
sub processes (Goodfellow et al. 2016, p. 476): 

1. Reading raw data (such as source words) and converting them into distributed 
representations, with one feature vector associated with each word position. This 
process can also be considered as feature extraction. 

2. Memorizing / Storing the reader’s output as a list of feature vectors. These elements 
can be retrieved later, without the necessity of visiting all of them or retrieving them 
in the order of the input. 

3. Exploiting the content of the memory to sequentially perform a task. At each time 
step this process has the ability to look at the content of one memory element (or a 
few with different weights). This process generates the output for the task. For 
instance, it translates a text. 
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Figure 3: An illustration of the first encoder-decoder based model proposed for machine translation by  (Asadi 
and Safabakhsh 2020) 

 
Figure 3 shows the three sub processes very well. The first process, reading, could be an RNN 
(Cho et al. 2014)(Sutskever et al. 2014)(Jean et al. 2014) or a convolutional network (Nal 
Kalchbrenner and Phil Blunsom 2013). It is called an encoder. The encoder produces a 
summary of the input data by means of the memorizing sub process. This summary is the 
context  𝑐 of the input data.  𝑐 gives global level information on all the inputs and helps to 
discern the most important information (Thiruvengadam 2019) (Vaswani et al. 2017). 𝑐 could 
be a list of vectors, a tensor or a vector. (Goodfellow et al. 2016, p. 474). The decoder exploits 
or processes the input represented by 𝑐  to generate an output. (Asadi and Safabakhsh 2020) 

2.4 Attention 
The encoder-decoder framework, when dealing with larger inputs, leads to complex models 
and sometimes reaches its understanding limitations. This is caused by the fact that the 
model must compress all the necessary information of the input into the fixed-length context 
vector. The same thing applies to humans when they are reading and understanding a text 
(taking the text as an input). One approach to reduce the complexity of the models and 
improve their results is the attention mechanism. It has the human eye as its biological role 
model. Except for a tiny patch, the human eye is mostly very low resolution. This patch is 
called the fovea and only sees a thumbnail-sized area. By making several eye movements, 
called saccades, the human brain is able to capture the most visually salient or task-relevant 
information (Goodfellow et al. 2016, p. 366). Humans apply this for instance on texts or 
images. Instead of focusing on single words or pixels, they pay attention to the salient parts 
of the text or image. The “highlighting” of this more relevant or salient information is shown 
in Figure 4. The lighter areas in the right pictures are more relevant to determine a 
description of the picture, so more attention was paid to them. 
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Figure 4: Example of Visual Attention by (Xu et al. 2016) 

 
Attention in deep learning works similarly to its biological role model. It is needed when the 
text is longer than a few words, since the encoder state at the end would forget the 
information processed at the beginning. This “forgetting” problem is called the vanishing 
gradient problem. Attention helps the decoder attend to important tokens throughout 
longer text sequences. Attention was firstly applied in neural machine translation by 
(Bahdanau et al. 2016) and (Li et al. 2015). Neural machine translation attempts to create a 
neural network that reads and translates whole sentences instead of phrases, as it was done 
traditionally.  In short the model of (Bahdanau et al. 2016) encodes the input sentence into 
a sequence of vectors and chooses a subset of these vectors adaptively while decoding the 
translation so that this subset receives more attention from the translation . This is shown in 
Figure 5. 
 

 
Figure 5: Example of attention in translation by  (Bahdanau et al. 2016) and enriched by (Weng 2018) 
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This attention model differs from the basic encoder-decoder model in two main ways: First, 
instead of passing only the last hidden state of the encoding stage, the encoder passes all the 
hidden states to the decoder. Second, an attention decoder performs an extra step before 
producing its output. To focus on the parts of the input that are relevant to this decoding 
time step, the decoder does the following at each time step (Bahdanau et al. 2016) (Alammar 
2018a): 
 

1. The attention decoder RNN takes in the embedding of the <END> token, and an initial 
decoder hidden state ℎ𝑗 

2. This RNN produces an output and the hidden state vector ℎ𝑖. (The output is 
irrelevant) 

3. Attention Step: The encoder hidden states (annotations) ℎ𝑖 are used to calculate the 
context vector 𝑐𝑖: 

𝑐𝑖 =∑𝛼𝑖𝑗ℎ𝑗

𝑇𝑥

𝑗=1

 

Equation 1: context vector  (Bahdanau et al. 2016) 

 
 The weight  𝛼𝑖𝑗  of each annotation  ℎ𝑗 is computed by 

𝛼𝑖𝑗 =
𝑒𝑥𝑝 (𝑒𝑖𝑗)

∑ 𝑒𝑥𝑝 (𝑒𝑖𝑘)
𝑇𝑥
𝑘=1

 

Equation 2: annotation weight (Bahdanau et al. 2016) 

 where  

𝑒𝑖𝑗 = 𝑎(𝑠𝑖−1, ℎ𝑗) 
Equation 3: The associated energy of 𝜶𝒊𝒋 (Bahdanau, Cho, and Bengio 2016) 

 
4. ℎ𝑖 and 𝑐𝑖 are concatenated into the vector 𝑠𝑖  
5. 𝑠𝑖  is passed through a feedforward neural network 
6. The output is the target word 𝑦𝑖  

 
The problems and previous limitations described in this chapter are the same for generating 
summaries. For instance, the words in Figure 6 that receive the most attention during 
translation would also be important for summarizing the texts. So, applying the attention-
mechanism to text summarization can lead to state-of-the-art results on performing text 
summarization as shown in (Liu 2019) and (Liu and Lapata 2019).  
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Figure 6: The x-axis and y-axis of each plot correspond to the words in the source sentence (English) and the 

generated translation (French), respectively. Each pixel shows the weight αij of the annotation of the j-th 
source word for the i-th target word (Bahdanau et al. 2016) 

2.5 Transformer 
(Vaswani et al. 2017) further developed attention into self-attention in their newly 
introduced transformer architecture. A complete overview of the transformer architecture is 
illustrated in Figure 10. The concept of self-attention could be explained by the following 
example: 
We want to translate the following input sentence: 

“The animal didn't cross the street because it was too tired” 

The model for translation tries to understand the sentence word by word. One possible pitfall 
is the correct understanding of pronouns. In this particular case the word “it”. Self-attention 
makes it possible to associate “it” correctly with “the animal” instead of wrongly with “the 
street”. This is possible because self-attention permits the model to look back to a previously 
processed word when encoding the current one. So, the main addition to the previously 
introduced attention is that self-attention allows the inputs to interact with each other 
(“self”) and determine which other input they should pay more attention to (“attention”). 
Figure 7 depicts an example of self-attention. The input “it” interacts with many previous 
inputs. Mainly with “The” and “animal” which indicates a link between them. The 
transformer architecture is based on the encoder-decoder framework, so it uses the 
information incorporated in RNNs hidden state.  
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Figure 7: Example of Self-Attention by (Alammar 2018b) 

2.5.1 Scaled Dot-Product Attention 
One part of self-attention is a new attention function: Scaled Dot-Product Attention. By 
introducing this new function (Vaswani et al. 2017) attempted to outperform the most 
commonly used functions: additive attention (Bahdanau et al. 2016) and dot-product 
attention. Scaled Dot-Product Attention is computed as follows: 
 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 

Equation 4: Scaled Dot-Product Attention Function (Vaswani et al. 2017) 

 
where 𝑄 is the matrix of the queries simultaneously; 𝑑𝑘 are the keys the dimension of and 
𝑑𝑣 are the values of the dimension. Figure 8 visualizes this attention function. 

 
Figure 8: Scaled Dot-Product Attention Function (Vaswani et al. 2017) 
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2.5.2 Multi-head Attention 
(Vaswani et al. 2017) linearly project the queries, keys, and values ℎ times, instead of 
performing a single attention function. Then the attention function is performed on each of 
these projected versions thereby yielding 𝑑𝑣-dimensional output values. These values are 
concatenated and projected to produce the final values as illustrated in Figure 9  
 

 
Figure 9: multi-head attention by (Vaswani et al. 2017) 

 
𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊

𝑂 
𝑤ℎ𝑒𝑟𝑒ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛) 

Equation 5: multi-head attention by (Vaswani et al. 2017) 

 
Multi-head attention is applied in three different ways each opening up a new possibility 
(Vaswani et al. 2017): 

1. It allows the decoder at every position to attend to all positions in the input sequence 
2. It allows the encoder to attend to all positions in the previous layer of the encoder 
3. It allows the decoder to attend to all positions in the previous layer of the decoder. 

A possible risk in allowing this is to lose the ability to predict based on previous values 
(auto-regressive property). To preserve this ability leftward information is 
prevented.  

2.5.3 Why Self-Attention 
There are a few widely used alternatives to self-attention-based models. Table 1 shows the 
findings of (Vaswani et al. 2017) comparing Self-Attention in three areas to similar 
approaches: 

1. Total complexity per layer 
2. Amount of parallelizable computations (minimum number of sequential operations) 
3. Maximum path length between long-range dependencies 

 
Layer Type Complexity per Layer Sequential 

Operations 
Maximum Path 
Length 

Self-Attention 𝑂(𝑛2 ⋅ 𝑑) 𝑂(1) 𝑂(1) 
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Recurrent 𝑂(𝑛 ⋅ 𝑑2) 𝑂(𝑛) 𝑂(𝑛) 
Convolutional 𝑂(𝑘 ⋅ 𝑛 ⋅ 𝑑2) 𝑂(1) 𝑂(𝑙𝑜𝑔𝑘(𝑛)) 

Self-Attention 
(restricted) 

𝑂(𝑟 ⋅ 𝑛 ⋅ 𝑑) 𝑂(1) 𝑂(𝑛 𝑟⁄ ) 

Table 1: Self-Attention in Comparison (Vaswani et al. 2017) 

 
Although the first and the second area are very important for building scalable machine-
learning models, the decision to choose an attention-based approach for this thesis is mainly 
based on the fact that Self-Attention has the shortest Maximum Path Length. The shorter the 
paths the easier it is for the model to learn long-term dependencies. And learning long-term 
dependencies is a key task when summarizing texts. Learning long-term dependencies is 
important because the relevant information is spread across the text. A long-term 
dependency could for instance be that a piece of information in the first paragraph is relevant 
for understanding the penultimate paragraph. And both paragraphs could be important for 
understanding and summarizing the whole text.  
 

 
Figure 10: The Transformer Architecture by (Vaswani et al. 2017) 
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3 Bert 

Contextualized representations and attention-based language models are very for solving 
difficult NLP tasks such as text summarization. (Devlin et al. 2019b) introduced Bidirectional 
Encoder Representations from Transformers (BERT) which includes both. BERT additionally 
offers the possibility of using pre-trained models which makes it very successful solving NLP 
tasks where very little training data is available. Unlike similar models BERT leverages 
bidirectionality to create more precise models. 

3.1 Pre-trained Models 
The recent progress of hardware and methodology for collecting and analysis has resulted in 
more detailed and precise NLP models. These models are very time and energy consuming. 
(Strubell et al. 2019) compared the CO2 emission of training NLP models to some other 
familiar values. 
 

Consumption CO2e (lbs) 

Air travel, 1 passenger, NY↔SF 1984 
Human life, avg, 1 year 11,023 
American life, avg, 1 year 36,156 
Car, avg incl. fuel, 1 lifetime 126,000 
Training one model (GPU)  

NLP pipeline (parsing, SRL) 39 
  w/ tuning & experimentation 78,468 
Transformer (big) 192 
  w/ neural architecture search 626,155 

Table 2: Estimated CO2 emissions from training common NLP models, compared to familiar consumption by 
(Strubell et al. 2019) 

 
Table 2 indicates that the re-using parts of models or even whole models could save a large 
amount CO2 emission. Additionally, the lack of large, task-specific data sets is one of the 
biggest challenges in NLP. Both issues are tackled by transfer learning. The basic idea could 
be boiled down to separating the model’s creation by training a generalized model (pre-
trained model) on general text data sets like Wikipedia articles to gain a general 
understanding of the target language. Afterwards the model gets specialized to the task. The 
pre-trained model could be re-used for different tasks and even smaller task-specific data 
sets can lead to precise models. So, pre-trained models could help save time, energy and 
solve tasks without having a large, task-specific data set. Because the data set of this thesis 
is rather small, using a pre-trained model could be promising.  
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3.2 Strategies for using pre-trained Models 
The previous chapter explained the motivation behind pre-trained models. These pre-trained 
models have a rather broad or general language understanding. They are trained on a large 
dataset. The second step is to fit the model to solve the task with a smaller but more specific 
data set. There are two strategies for applying them to specific down-stream tasks: 

1. feature based: task specific architectures that include the pre-trained approach as 
additional features. Such as ELMo (Peters et al. 2018) illustrated in Figure 11 

2. fine-tuning: uses minimal task-specific parameters and is trained on the downstream 
tasks by simply fine-tuning all pre-trained parameters. Such as BERT (Devlin et al. 
2019b) illustrated in Figure 12.   

 

 
Figure 11: ELMo illustrated by (Devlin et al. 2019b) 
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Figure 12: Tokenization in BERT by (Devlin et al. 2019b) 

 
Fine-tuning can also be described as taking the weights of a (pre-)trained model and using 
them as initialization for a new model. In this thesis, a model is trained on a large data set 
from the same domain, in this case in the same language as the fine-tuning data set, to gain 
a general language understanding and is later fine-tuned with a more specific data set. It uses 
the approach described in (Devlin et al. 2019b). (Devlin et al. 2019b) argue that one major 
advantage of this approach is that it overcomes previous pre-trained-representation-based 
models’ limitation by introducing a bidirectional approach: BERT (Bidirectional Encoder 
Representations from Transformers).  

3.3 Bidirectionality 
Bidirectionality means that the contextual representation of a word is based on the previous 
and the next input, thereby gaining a better representation of the word. Take for example 
the sentence: “I accessed the bank account”. A unidirectional model would base its 
representation of “bank” only on “I accessed the” and leaving out “account” because its 
representation is only based on previous information. In contrast BERT bases its 
representation on “I accessed the … account” because its representation is based on previous 
and subsequent information. This leads to a more detailed and thereby possibly more precise 
understanding of the word “bank”. This bidirectionality is produced by using a “masked 
language model” (MLM) pretraining objective, which is inspired by the Cloze task (Taylor 
1953). The MLM randomly masks some of the tokens from the input and aims to predict the 
original vocabulary id of the masked word based only on its context, thereby enabling the 
representation to combine the left and the right context. This makes it possible to pretrain a 
deep bidirectional Transformer. The masking procedure can be illustrated like this: 
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  input output 

80% of the time Replace word with [MASK] token my dog is hairy my dog is [MASK] 

10% of the time Replace word with random word my dog is hairy my dog is apple 

10% of the time Keep word unchanged my dog is hairy my dog is hairy 
Table 3: masking example by (Devlin et al. 2019b) 

 
Table 3 shows that the Transformer encoder can and does not know which words it will be 
asked to predict or which have been replaced by random words.  Thereby it is forced to have 
a distributional contextual representation of every token. (Devlin et al. 2019b) even 
conclude, after testing different masking strategies, that random replacement does not harm 
the model’s language understanding capability.  

3.4 Next Sentence Prediction 
While bidirectionality enables a better word-level understanding, “next sentence prediction” 
(NSP) helps to better understand the relationship between two sentences. NSP jointly 
pretrains text-pair representations. It is an important feature of BERT because many 
important downstream tasks such as Question Answering (QA) and Natural Language 
Inference (NLI) are based on understanding these relationships. In order to train a model 
which understands these relationships  (Devlin et al. 2019b) used a binarized NSP task 
generated from a monolingual corpus. When choosing a sentence A and a sentence B, in 50% 
of the cases B is the actual sentence that followed A (labeled: IsNext) and in 50% it is a 
random sentence from the corpus (labeled: NotNext). An example is shown in Table 4. 
 

  A B Label 

50% of 
the time 

B is the actual 
sentence 

[CLS] the man went to 
[MASK] store [SEP] 

he bought a gallon 
[MASK] milk [SEP] 

IsNext 

50% of 
the time 

B is a random 
sentence from 
the corpus 

[CLS] the man went to 
[MASK] store [SEP] 

penguin [MASK] are 
flight ##less birds 
[SEP] 

NotNext 

Table 4: next sentence prediction example by (Devlin et al. 2019b) 

 

3.5 Input/Output Representations 
To enable BERT to handle a variety of down-stream tasks, (Devlin et al. 2019b) assigned a 
sentence input representation which can be a sentence or a pair of sentences in one token. 
So a “sentence” in (Devlin et al. 2019b) is more like a text span than a linguistic sentence. 
BERT consists of three different embedding layers: Token Embeddings, Segment 
Embeddings, and the Position Embeddings. As Figure 13 illustrates the input representation 
is the sum of these three embeddings.  
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Figure 13: BERT input representation by (Devlin et al. 2019b) 

 
Token Embeddings: This layer uses WordPiece tokenization to transform words into vector 
representations of a fixed dimension (Wu et al. 2016). WordPiece tokenization is a data-
driven method which is designed to achieve a balance between vocabulary size and out-of-
vocab words. Therefore “playing” in Figure 13 was split into “play” and “ing”. Additionally, 
each tokenized sequence starts with a [CLS] token and between Sentence A and B in a 
sequence is a [SEP] token. 
 
Segment Embeddings: The [SEP] token allows segment embeddings to differentiate between 
the two sentences packed into the same token.  
 
Position Embeddings: BERT is based on the transformer architecture, which does not encode 
the sequential nature of its inputs. For understanding whole sentences such as, “I stood up 
from the bank to withdraw money from the bank.” it is crucial to differentiate between 
“bank” at the sixth and the “bank” at the twelfth position. Although they are both the same 
sequence of letters their representation and thereby their “meaning” in a transformer-based 
architecture is different. 

3.6 Fine-tuning BERT 
The self-attention mechanism in BERT allows it to model many down-stream tasks. For each 
task, the task-specific inputs and outputs are plugged into BERT and all the parameters get 
fine-tuned end-to-end. Compared to pre-training, fine-tuning is relatively inexpensive (Devlin 
et al. 2019b). 
 

3.7 Overview of Bert Models 
(Devlin 2019a)’s goal is “to enable research in institutions with fewer computational resources 
and encourage the community to seek directions of innovation alternative to increasing 
model capacity.” Therefore, the team is eager to publish new and more specialized models. 
The three most relevant for this thesis are:  

• BERTbase Comparable in size to the OpenAI Transformer  

• BERTlarge Huge Model which achieves state-of-the-art results 

• BERTmultilinugal is trained on the Wikipedia dumps of the 100 languages with the largest 
Wikipediaes, which includes Latin.  
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4 BertSum 

The previously introduced BERT model is tested and has excelled on multiple NLP tasks such 
as question-answering (QA) and general language understanding. However (Devlin et al. 
2019b) left the field of text summarization uncovered in their experiments. (Liu 2019)’s 
experiments with BERT on text summarization led to a new variant or extension of BERT: 
BertSum. BertSum is specialized on text summarization and comes in two versions:  

1. BertSum fine-tuned for extractive summarization (Liu 2019) 
2. BertSum fine-tuned for summarization (extractive and abstractive) (Liu and Lapata 

2019) 
The second version can be understood as an extension of the first. It offers the additional 
possibility of generating abstractive summaries. But at the same time, it offers fewer 
possibilities to change parameters on the extractive part. Because the use case of this thesis 
is generating extractive summaries, BertSum fine-tuned for extractive summarization (Liu 
2019) was chosen as the foundation of the experiments. 

4.1 Extractive Summarization 
Extractive Summaries are a concatenation of the most import spans of the text. Abstractive 
Summaries, on the other hand,  also contain phrases and words not used in the original text 
(Liu 2019). More technically: Extractive Summarization can be defined as the task of assigning 
a label 𝑌𝑖𝜖{0,1} to each sentence 𝑠𝑒𝑛𝑡𝑖 of a document 𝑑. 𝑌𝑖 indicates whether the sentence 
should be included in the summarization (Liu and Lapata 2019). 

4.2 Extractive Summarization with BERT 
Because BERT is trained as a masked-language model (please see chapter 3.3) the output 
vectors are token-based. In order to apply it to summarization tasks it needs to be sentence-
based, because the content of a text is not only based on words but on their interaction in 
the form of sentences. Another issue is that BERT differentiates sentences based only on two 
labels (sentence A or sentence B) for segmentation embeddings (please see chapter 3.4). 
Therefore (Liu 2019) modifies the input sequence and embeddings of BERT to make its 
application to text summarization problems possible.  
 
Encoding Multiple Sentences: As illustrated in Figure 14 and Figure 15 (Liu 2019) inserts a 
[CLS] token before each sentence and a [SEP] token after each sentence . As explained in 
chapter 0 (Devlin et al. 2019b) uses the [CLS] at the start of each tokenized sequence (a 
sentence or a pair sentences). By inserting a [CLS] token at the start of each sentence instead 
of each tokenized sequence the [CLS] represents individual sentences, allowing it to collect 
features from its preceding sentence. 
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Interval Segment Embeddings: For distinguishing different sentences within a document (Liu 
2019) uses interval segment embeddings. A segment embedding 𝐸𝐴or 𝐸𝐵 is assigned to each 
sentence 𝑠𝑒𝑛𝑡𝑖 depending if on 𝑖 is odd or even. See Table 5 for an example. 
 

𝑠𝑒𝑛𝑡1 𝑠𝑒𝑛𝑡2 𝑠𝑒𝑛𝑡3 𝑠𝑒𝑛𝑡4 𝑠𝑒𝑛𝑡5 
𝐸𝐴 𝐸𝐵 𝐸𝐴 𝐸𝐵 𝐸𝐴 

Table 5: Example of interval segment embeddings 

 
This allows document representations to be learned hierarchically where lower transformer 
layers represent adjacent sentences or in other words neighboring sentences. While higher 
transformer layers, in combination with self-attention, represent multi-sentence discourse 
(Liu and Lapata 2019). So, higher transformer layers have a more complex or higher 
understanding of the text   
 

 
Figure 14: Bert for Summarization by (Liu and Lapata 2019) 

 

4.3 Fine-tuning with Summarization Layers 
The BERT layer produces a sentence vector 𝑇𝑖 of the 𝑖-th [CLS] symbol from the top BERT. 𝑇𝑖 
will be used as the representation for 𝑠𝑒𝑛𝑡𝑖. (Liu 2019) built several summarization-specific 
layers stacked on top of these outputs. These are jointly fine-tuned with BERT and used to 

capture document-level features for extracting summaries. The final predicted score 𝑌𝑖 will 
be calculated for each sentence 𝑠𝑒𝑛𝑡𝑖. The whole model’s loss is the Binary Classification 

Entropy of 𝑌𝑖 against gold label 𝑌𝑖. Entropy can be described as the informativeness of a 
feature.  



26 
 

4.3.1 Simple Classifier 
The Simple Classifier of (Liu 2019) only adds one linear layer on the BERT outputs and, as with 
the original BERT (Devlin et al. 2019b), uses a sigmoid function 𝜎 to get the predicted score: 
 

𝑌𝑖 = 𝜎(𝑊𝑜𝑇𝑖 + 𝑏𝑜) 
Equation 6 

 
 

4.3.2 Inter-sentence Transformer 
Instead of a simple sigmoid classifier, the inter-sentence transformer applies more 
transformer layers only on sentence representations to make it more efficient. These layers 
help to better understand the important points of the text by extracting document-level 
features: 
 

ℎ̃𝑙 = 𝑙𝑛 (ℎ𝑙−1 +𝑀𝐻𝐴𝑡𝑡(ℎ𝑙−1)) 

Equation 7: (Liu 2019) 

 

ℎ𝑙 = 𝑙𝑛 (ℎ̃𝑙 + 𝐹𝐹𝑁(ℎ̃𝑙)) 

Equation 8: (Liu 2019) 

 
where ℎ0 = 𝑃𝑜𝑠𝐸𝑚𝑏(𝑇) and 𝑇 are the sentence vectors output by BERT and 𝑃𝑜𝑠𝐸𝑚𝑏 is the 
function of adding positional embeddings (indicating the position of each sentence) to 𝑇. (Liu 
2019) 𝑙𝑛 is the layer normalization operation, which is a modification of batch normalization. 
To overcome batch normalization’s dependency on the mini-batch, (Ba et al. 2016) 
introduced layer normalization. Layer normalization is directly applicable to RNNs. It 
substantially reduces the training time and is very effective at stabilizing the hidden state 
dynamics. 𝑀𝐻𝐴𝑡𝑡 is the multi-head attention operation. It is part of the Transformer 
architecture by (Vaswani et al. 2017). For more information see chapter 2.5.2. 
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Figure 15: BERTSum Architecture 

4.3.3 Recurrent Neural Network 
(Chen et al. 2018) showed that recurrent neural networks (RNN) still have their benefits, 
especially in combination with a transformer, and LSTMs are the most common kind of RNN. 
So, an LSTM layer applied to the Bert outputs could improve the capabilities of learning 
summarization-specific features. Pergate layer normalization (Ba et al. 2016) is used within 
each LSTM cell to stabilize the training. At time step 𝑖, the input to the LSTM layer is the BERT 
output 𝑇𝑖, and the output is calculated as: 
 

(

𝐹𝑖
𝐼𝑖
𝑂𝑖
𝐺𝑖

) = 𝐿𝑁ℎ(𝑊ℎℎ𝑖−1) + 𝐿𝑁𝑥(𝑊𝑥𝑇𝑖) 

Equation 9 

 
𝐶𝑖 = 𝜎(𝐹𝑖) ⊙ 𝐶𝑖−1 + 𝜎(𝐼𝑖) ⊙ 𝑡𝑎𝑛ℎ(𝐺𝑖−1) 

Equation 10 

 

ℎ𝑖 = 𝜎(𝑂𝑡) ⊙ 𝑡𝑎𝑛ℎ(𝐿𝑁𝑐(𝐶𝑡)) 
Equation 11 

 
where 𝐹𝑖, 𝐼𝑖, 𝑂𝑖 are forget gates, input gates and output gates respectively; 𝐺𝑖  is the hidden 
vector and 𝐶𝑖 is the memory vector; ℎ𝑖 is the output vector; 𝐿𝑁ℎ, 𝐿𝑁𝑥, 𝐿𝑁𝑐 are the different 
layer-normalization operations; Bias terms are not shown. The final output layer is also a 
sigmoid classifier: 
 

𝑌𝑖 = 𝜎(𝑊𝑜ℎ𝑖 + 𝑏𝑜) 
Equation 12 
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5 Experiments 

The previous chapters presented a neural machine summarization approach: BertSum. In this 
section four experiments are conducted to find out how well BertSum can be applied to 
summarizing medieval Latin texts. The first experiment shows the possible difference 
between using a language specific BERT model or the mulitilingual variant of BERT as the pre-
trained model. The second experiment applies BertSum on summarizing German texts, which 
have been machine-translated from Latin texts. The third experiment summarizes the 
original Latin texts to avoid possible errors regarding the content which could be caused by 
the translation. The fourth experiment is like the second one but enhanced by applying 
regularization. In the experiments a few (hyper-)parameters in the architecture and for 
training the model will be changed to find out which changes could have a positive effect on 
the output. To make the experiments comparable, every one of them will have 3 tables. The 
first describes the parameter set up. The second lists the Rouge Score results for the three 
different flavors: classifier, transformer, and LSTM (RNN). Followed by an example text and 
another table. This table consists of the gold standard (the original man-made summary) and 
a candidate (a machine created summary) for each of the three flavors. There will also be a 
brief written overview about the changes made to the specific parameter. For further 
information please see the corresponding passages: 
 

• Translation: Which approaches were chosen for the experiment. Please see Chapter 
5.2.2 

• NLP Library: Which NLP library and language model was used for processing the text. 
Please see Chapter 5.2.3 

• Pretrained Model: Which pretrained model was used. Please see Chapter 3.7 

5.1 The dataset: Formulae corpus 
The dataset is part of the Formulae - Litterae - Chartae project2 of the Academy of Sciences 
and Humanities in Hamburg and the University of Hamburg. The goals of the project are to 
research and to critically edit early medieval Formulae. Researchers have very few 
documents from the early middle ages and the formulae collections include texts which 
normally have not been handed down in the archives. It is a dynamically developing dataset. 
The experiments were run on the version from 8/17/20203 . At that time, the dataset 
contained 10462 Latin texts, of which 6474 have a German regest (a summary). A selection 

 
2https://www.formulae.uni-hamburg.de/das-projekt.html (10/20/2020) 
3https://github.com/Formulae-Litterae-Chartae/formulae-
corpora/tree/5795f416dcacde9d3a0c99b2921283fe62472cf3 (10/20/2020) 
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of these texts is openly published4 but most of the texts are not openly available due to 
copyright restrictions. The experiments will be conducted on all texts that have a German 
regest. It will be referred as FORMULAEGR.  

5.2 Implementation details 
The foundational parameters of this setup are unchanged to (Liu 2019)’s original setup: 
PyTorch, OpenNMT (Klein et al. 2017) and a Pretrained Model are used to implement the 
model. BERT and summarization layers are jointly fine-tuned. Adam with β1 = 0.9, β2 = 0.999 
is used for fine-tuning.  

5.2.1 Creating .story Files from the raw Data 
(Liu 2019)’s BertSum used .story files as input for the training. The corpus is stored in .xml 
files and needed to be converted to .story files. Each text has its own .xml file containing 
various kinds of information. For the experiments only two parts of the .xml file are 
important: the textpart and the regest. The textpart contains a tokenized form of the original 
text. Each token of the textpart will be joined, with a blank space in between, to one string. 
The regest is already one text. The textpart string will now be written to a .story file with the 
same name as the original .xml file, followed by two line breaks, the “@highlight” marker, 
then two more line breaks and finally the regest. For further implementation details see 
xml_story_converter.py. 
An example of a .story file with an automatically translated Germen text might look like this: 
urn.cts.formulae.echternach.wampach0065.story: 
„ 
Der Herr, dem ehrwürdigen Vater in Christus, Adebertus, dem Abt des Klosters 
Epternaco von Baba, der Tochter des Herina-Gebers, aus Angst vor Gott und 
zur Errettung ihrer Seele, gibt jeder hier an dem oben genannten Ort seiner 
Güter an einem Ort im Dorf Serinse an dem Ort, der Doffeningen genannt wird, 
das heißt die beiden Länder, die Felder, die Wiesen, die Wiesen , Lavendel, 
Bauernhöfe dort, aquarumve fließendes Wasser und was auch immer ich dort 
gesehen habe. Wenn einer der Erben - wie oben. 2 Jahre Regierungszeit hat 
der König freundschaftlich. 
 
@highlight  
 
baba schenkt kloster echternacht ihre güter zu doffeningen im serinsergau ( 
saargau ? ) 

„ 

5.2.2 Adding a Translation layer 
Regests are usually written in the language of the edition in which they are published. In our 
corpus the corresponding texts are written in Latin and their regests are in German. To apply 
BertSum to this scenario a translation layer is needed.  
One could research the following approaches: 

 
4https://werkstatt.formulae.uni-hamburg.de/(10/20/2020) 
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• Input-To-Target-Translation: Translating the text to the language of the targeted 
summarization language before it gets tokenized. 

• Target-To-Input-Translation: Translating the targets (i.e., the regests) to the 
language of the source text. Train the model on this data.  

For all experiments I used the Google Translator Python package5. The chosen translator was 
occasionally unable to produce any translation and ran into a “translation error” (similar 
problem described in: 6). These errors indicate that the translator had problems translating 
the text as one semantic unit. The texts were written in a time without any fixed orthographic 
rules. To help the translator translate as much of the text as possible a translation using a 
batches mechanism was introduced. It first tries to separate the text into batches with “.” as 
separator. These batches are like sentences. Many of the translation errors could already be 
solved with this separator. Secondly the same procedure is repeated with “,” as separator. 
There are a few texts with enumerations or sentences which are not separated by “.” which 
could be translated by this approach. Thirdly the approach is repeated with “ “ (blank space) 
as separator. There were only very few texts left untranslated after the first two attempts 
and these were then translated word-by-word. 

5.2.3 Changing the NLP Library 
The original BertSum used the Stanford Core NLP Library7 8 which only supports English, 
Arabic, Chinese, French, German, and Spanish. Additionally, it is not trivial to use it in Python 
applications or to change the language. So, the author decided to use another NLP Library 
from Stanford: Stanza9. This library has an installable Python package and can create results 
in the same format as Stanford Core NLP does. It also has the additional benefit that it is very 
easy to switch between languages and their specific models. It supports over 80 different 
languages including Latin. For Latin tokenization, the Latin model with the ittb10 package is 
used. It is the largest Latin package, and it is trained on medieval Latin texts. For German 
tokenization, the German model with the gsd11 package is used. It is the largest German 
package. 

5.2.4 Hyperparameters  
The goal of the experiments is to apply BertSum to a new dataset. Therefore, it was 
attempted to have the same relation of the overall number of documents to the other 
hyperparameters to better compare the results. The only major deviation from the rule is the 
batch size. It is set to 960 because otherwise the resulting number would seem to be too 

 
5 https://pypi.org/project/googletrans (10/20/2020) 
6 https://support.google.com/translate/thread/24431170?hl=en  (10/20/2020) 
7 https://stanfordnlp.github.io/CoreNLP/ (10/20/2020) 
8 https://github.com/nlpyang/BertSum/issues/13#issuecomment-484087833  (10/20/2020) 
9 https://stanfordnlp.github.io/stanza/ (10/20/2020) 
10https://universaldependencies.org/treebanks/la ittb/index.html  (10/20/2020) 
11https://universaldependencies.org/treebanks/de gsd/index.html  (10/20/2020) 
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small 12 13. Table 6 and Table 8 show the setup of (Liu 2019).  Table 7 and Table 8 show the 
setup for this thesis. 
 

 Total Training Validation Testing 

CNN  90,266 1,220 1,093 

DM  196,961 12,148 10,397 

CNNDM 312,085 287,227 
(~92%) 

13,368 
(~4%) 

11,490 
(~4%) 

Table 6: Data splitting of (Liu 2019) 

 
 

 Total Training Validation Testing 

FORMULAEGER 4777 4395 
(~92%) 

191 (~4%) 191 
(~4%) 

Table 7: Data splitting of the FORMULAEGER corpus 

 
 

 CNNDM FORMULAEGER 

 absolute 
number 

factor to number of 
training documents 

absolute 
number 

factor to number of 
training documents 

Training 
Documents 

287,277  4395  

batch size 3000 0,01 960 0,22 

train steps 5000 0,16 700 0,16 

warm up 10000 0,03 135 0,03 
Table 8: Hyperparamters in comparison 

5.2.5 Discussion 
(Popel and Bojar 2018) investigated the effect of hyperparameters like learning rate and 
batch size on neural machine translation with transformers. Since neural machine translation 
is a sequence-to-sequence problem quite like summarization, and since BertSum is also 
based on the transformer architecture their findings could be useful to determine the 
hyperparameters for the following experiments. (Popel and Bojar 2018, p. 59) recommend 
setting the batch size as high as possible and establishing the largest possible batch size 
before starting the main training. Their work indicates that larger batch sizes result in better 
BLEU (bilingual evaluation understudy) scores of the results. So, it might be interesting to 
further improve the batch size. 

5.2.6 Learning rate 
(Goodfellow et al. 2016, pp. 82–86) write that most deep learning algorithms use 
optimization to improve their results. Optimization is the task of trying to maximize or 

 
12 https://github.com/nlpyang/BertSum/issues/44#issuecomment-501161474 (10/20/2020) 
13 https://github.com/nlpyang/BertSum/issues/33#issuecomment-494850040 (10/20/2020) 
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minimize a function f(x). In most cases the application tries to minimize it. The corresponding 
function is then called loss, error, or cost function. To come closer to minimum, f(x) gets 
iteratively decreased. This technique is called gradient descent. The value by which f(x) is 
decreased is determined by the learning rate. There are different ways to determine the 
learning rate. (Liu 2019) uses the learning rate proposed by (Vaswani et al. 2017) with 
warming-up on first 10,000 steps: 
 

𝑙𝑟 = 2𝑒−3 ⋅ 𝑚𝑖𝑛 (𝑠𝑡𝑒𝑝−0.5, 𝑠𝑡𝑒𝑝 ⋅ 𝑤𝑎𝑟𝑚𝑢𝑝−1.5) 
Equation 13: Learning Rate 

 
The learning rate is usually a small number. If the learning rate is too big, minima could be 
overstepped and if it is too small the training time will increase drastically. This scheme or 
decay method is firstly applied in (Vaswani et al. 2017) and is often called noam decay after 
its author. It is basically a linear warmup followed by an exponential decay. 14 
 

 
Figure 16: Learning rate picture by (Goodfellow et al. 2016, p. 85) 

5.2.7 Regularization 
The experiments are based on a rather small corpus and the results of the classifier, 
transformer and RNN look in many cases the same. This indicates that overfitting could be a 
problem. Overfitting occurs when the gap between the training error and test error is too 
large. In comparison: underfitting occurs when the model is not able to obtain a sufficiently 
low error value on the training set. Whether a model is more likely to over- or to underfit can 
be regulated by adjusting its capacity. Models with low capacity may have problems to fit the 
training set. Models with a high capacity can overfit by memorizing parts of the training data, 

 
14 https://github.com/tensorflow/tensor2tensor/issues/280#issuecomment-359477755 
(10/20/2020) 
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which can negatively influence the result on the test set  (Goodfellow et al. 2016, p. 111).  
Figure 17 depicts examples of different capacity characteristics. Any modification applied to 
a learning algorithm that is intended to reduce its generalization error but not its training 
error is called regularization (Goodfellow et al. 2016, p. 120). (Peng et al. 2015) showed that 
L2 regularization (Goodfellow et al. 2016, pp. 231–234) could help to generalize the model 
especially when smaller data sets are used. So, L2 regularization could help improve the 
model’s results. It modifies the training criterion for linear regression to include weight 
decay. It is implemented as described in the documentation15. 
 

 
Figure 17: Three models with different capacity characteristics by (Goodfellow et al. 2016, p. 113) 

5.2.8 Trigram Blocking 
(Liu 2019) used Trigram blocking to reduce redundancy. If a summary and a candidate have 
an overlapping trigram, the candidate will be skipped. 

5.3 Evaluation Method: ROUGE 
For evaluating the experimental results, the ROUGE metric will be used. ROUGE or Recall-
Oriented Understudy for Gisting Evaluation was introduced by (Lin 2004). It measures the 
overlap of n-grams between a candidate and a set of reference summaries. ROUGE-1 refers 
to the overlap of unigrams (each word) and ROUGE-2 to the overlap of bigrams. ROUGE-N, 
the generalization of ROUGE-1 and ROUGE-2, is calculated as follows: 
 

ROUGE-N

= ∑

𝑆∈{𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑆𝑢𝑚𝑚𝑎𝑟𝑖𝑒𝑠}

∑ 𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ(𝑔𝑟𝑎𝑚𝑛)𝑔𝑟𝑎𝑚𝑛∈𝑆

∑𝑆∈{𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑆𝑢𝑚𝑚𝑎𝑟𝑖𝑒𝑠} ∑ 𝐶𝑜𝑢𝑛𝑡(𝑔𝑟𝑎𝑚𝑛)𝑔𝑟𝑎𝑚𝑛∈𝑆
 

Equation 14 

 

 
15 https://pytorch.org/docs/stable/optim.html#torch.optim.Adam (10/20/2020) 
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Where 𝑛 stands for the length of the n-gram, 𝑔𝑟𝑎𝑚𝑛, and 𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ(𝑔𝑟𝑎𝑚𝑛) is the 
maximum number of n-grams co-occurring in a candidate summary and a set of reference 
summaries. ROUGE-L refers to the Longest Common Subsequence (LCS). It includes sentence 
level structure similarity and detects the longest co-occurring sequence of n-grams. To see 
how ROUGE-L can work reliably at the sentence level consider the following example: 
 

reference sentence (S1) police killed the gunman 

candidate sentence (S2) police kill the gunman 

candidate sentence (S3) the gunman kill police 
Table 9: ROUGE-2 and ROUGE-L Example from (Lin 2004) 

 
The ROUGE-2 score for S2 and S3 would be the same because they have one bigram “the 
gunman”, although S2 and S3 have very contrasting meanings. But in the case of ROUGE-L, 
S2 has a score of 0.75 (3/4) because the complete sequence is four words long and three 
words of the four word are equal to S1 (“police the gunman”). In contrast only “the gunman” 
(2/4) in S3 is equal to S1 which results in 0.5 as score for S3. Therefore ROUGE-L would classify 
S2 to be better than S3, just as a human reader would. 

5.4 Presenting the Evaluation 
Each experiment has a table similar to (Liu 2019)s Table 1. The information of this table is 
included in Table 10. This form of representation allows the results to be compared to the 
original paper. Unlike (Liu 2019), the scores are not the average of the best three steps but 
one specific selected step. This makes it possible to compare the result at the specific step. 
The difference between the average and one specific step is marginal. For instance the 
difference of BERTSum + Transformer is 8 in Table 17 and 8.03 Table 18  so the difference is 
only 0.03 or 0.4%.  Table 17 and Table 18 in chapter 5.7 show the scores for both ways of 
calculating it. 
 

5.5 Training BERTSum with pretrained bert-multilingual on 
the original BERTSum Data 

This experiment should illustrate the differences between a model with a fitting monolingual 
pretrained model and a model with a multilingual model and to show the advantage of 
monolingual models over multilingual ones. The original BertSum used a monolingual model 
and My BertSum used a multilingual model. 
 

Model Rouge-1 Rouge-2 Rouge-
L 

Original BERTSum + Classifier (Liu 2019) 43.23 20.22 39.60 
My BERTSum + Classifier (Step 4900) 42.5 19.61 38.94 
Original BERTSum + Transformer (Liu 2019) 43.25 20.24 39.63 
My BERTSum + Transformer (Step 4900) 40.80 18.32 37.22 
Original BERTSum + LSTM (Liu 2019) 43.22 20.17 39.59 
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My BERTSum + LSTM (Step 4900) 42.47 19.59 38.91 
Table 10: Test set results on the CNN/DailyMail dataset using ROUGE F1 

5.6 Training BERTSum with pretrained bert-multilingual on 
FORMULAEGR with Input-To-Target-Translation 

The goal of this experiment is to produce German summaries from Latin texts. It is done by 
first translating the Latin text to German. Afterwards the text is tokenized and trained with 
multilingual pre-trained model. 
 
 

Translation NLP Library Pretrained Model 

Input-To-Target-Translation Stanza: German, GSD bert-base-multilingual-cased 
Table 11: Experiment parameters 

 
training testing validation batch Steps Warmup checkpoint RNN 

size 

4395 191 191 960 700 135 100 768 
Table 12: Experiment hyperparameters 

 
 

Model Rouge-1 Rouge-2 Rouge-
L 

BERTSum + Classifier 9.11 0.71 7.07 
BERTSum + Transformer 9.41 0.77 7.32 
BERTSum + LSTM 9.39 0.76 7.29 

Table 13: Test set results of the first experiment at step 700 using ROUGE F1 

 
The source Text (urn.cts.formulae.echternach.wampach006516) (translated using the 
translationlayer): 
„Der Herr, dem ehrwürdigen Vater in Christus, Adebertus, dem Abt des Klosters Epternaco 
von Baba, der Tochter des Herina-Gebers, aus Angst vor Gott und zur Errettung ihrer Seele, 
gibt jeder hier an dem oben genannten Ort seiner Güter an einem Ort im Dorf Serinse an dem 
Ort, der Doffeningen genannt wird, das heißt die beiden Länder, die Felder, die Wiesen, die 
Wiesen , Lavendel, Bauernhöfe dort, aquarumve fließendes Wasser und was auch immer ich 
dort gesehen habe. Wenn einer der Erben - wie oben. 2 Jahre Regierungszeit hat der König 
freundschaftlich.“  
 
Its corresponding Latin Original: 
Domino venerabili in Christo patri Adeberto abbati de monasterio Epternaco Baba filia Herini 
donatrix, pro Dei timore et pro remedio anime sue donat ad prefatum locum res suas in pago 
Serinse in loco qui dicitur Doffeningen, id est tam terris, campis, pratis, pascuis, silvis, casis, 

 
16 Geschichte der Grundherrschaft Echternach im Frühmittelalter Nr. 65, in: Camille Wampach, 
Geschichte der Grundherrschaft Echternach im Frühmittelalter, Luxemburg 1929, [URI: http://d–
nb.info/368617769], S. 128–129.) 
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mansis, aquis aquarumve decursibus et quicquid ibi visa sum habere. Si quis vero de 
heredibus meis – ut supra. Actum anno II regnante Karlomanno rege. 

 

gold baba schenkt kloster echternacht ihre güter zu doffeningen im serinsergau 
( saargau ? ) 

classifier der herr , dem ehrwürdigen vater in christus , adebertus , dem abt des 
klosters epternaco von baba , der tochter des herina - gebers , aus angst vor 
gott und zur errettung ihrer seele , gibt jeder hier an dem oben genannten 
ort seiner güter an einem ort im dorf serinse an dem ort , der doffeningen 
genannt wird , das heißt die beiden länder , die felder , die wiesen , die 
wiesen , lavendel , bauernhöfe dort , aquarumve fließendes wasser und was 
auch immer ich dort gesehen habe .<q>2 jahre regierungszeit hat der könig 
freundschaftlich .<q>wenn einer der erben - wie oben . 

transformer der herr , dem ehrwürdigen vater in christus , adebertus , dem abt des 
klosters epternaco von baba , der tochter des herina - gebers , aus angst vor 
gott und zur errettung ihrer seele , gibt jeder hier an dem oben genannten 
ort seiner güter an einem ort im dorf serinse an dem ort , der doffeningen 
genannt wird , das heißt die beiden länder , die felder , die wiesen , die 
wiesen , lavendel , bauernhöfe dort , aquarumve fließendes wasser und was 
auch immer ich dort gesehen habe .<q>wenn einer der erben - wie oben 
.<q>2 jahre regierungszeit hat der könig freundschaftlich . 

RNN der herr , dem ehrwürdigen vater in christus , adebertus , dem abt des 
klosters epternaco von baba , der tochter des herina - gebers , aus angst vor 
gott und zur errettung ihrer seele , gibt jeder hier an dem oben genannten 
ort seiner güter an einem ort im dorf serinse an dem ort , der doffeningen 
genannt wird , das heißt die beiden länder , die felder , die wiesen , die 
wiesen , lavendel , bauernhöfe dort , aquarumve fließendes wasser und was 
auch immer ich dort gesehen habe .<q>2 jahre regierungszeit hat der könig 
freundschaftlich .<q>wenn einer der erben - wie oben . 

Table 14: Gold vs Candidate Step 700 no 33 

5.7 Training BERTSum with pretrained bert-multilingual on 
FORMULAEGR with Input-To-Target-Translation 

The goal of this experiment is to see if the setup performs better when the summaries, on 
which the model should learn, are translated to Latin. Thereby the results of the model are 
also in Latin. 
 
 

Translation NLP Library Pretrained Model 

Input-To-Target-Translation Stanza: German, GSD bert-base-multilingual-cased 
Table 15: Experiment parameters 

 
 

training testing validation batch Steps Warmup checkpoint rnn size 
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4395 191 191 960 700 135 100 768 
Table 16: Experiment hyperparameters 

 
 

Model Rouge-1 Rouge-2 Rouge-
L 

BERTSum + Classifier 7.44 0.31 6.03 
BERTSum + Transformer 8.03 0.34 6.52 
BERTSum + LSTM 7.86 0.33 6.42 

Table 17: Test set results of the second experiment using the average of the three best results ROUGE F1 

 
Model Rouge-1 Rouge-2 Rouge-

L 

BERTSum + Classifier 7.61 0.33 6.14 
BERTSum + Transformer 8 0.34 6.51 
BERTSum + LSTM 7.89 0.34 6.45 

Table 18: Test set results of the second experiment at step 400 using ROUGE F1 

 
The source Text (urn.cts.formulae.fulda_stengel.stengel004217): 
„Venerabili in Christo patri Sturmione abbati. Ego Eggiolt cogitans pro remedium anime 
fratris mei Hiltwini vel pro aeterna retributione, propterea dono ac trado traditumque in 
perpetuum esse volo a die presente ad monasterium sancti salvatoris, quod dicitur Fulda, ubi 
tu presenti tempore abbas preesse videris, hoc est quod dono in villa Buchsolare a in pago 
Wormacinse duas curtiles cum casis, cum terris ibidem adiacentibus et vineis seu pratis vel 
silvis in loco, qui dicitur Ascae, atque in Wibileschiricha ad ipsas curtiles aspicientibus, id est 
pratis, pascuis, aquis aquarumque decursibus, sicut superius dixi, pro anime Liutwini 
donatum esse volo. Propterea donationem rogavi scribere, ut tu, abba Sturmi, supra scriptam 
rem et successores tui habeant, teneant, possideant vel quicquid exinde facere voluerint, 
liberam ac firmissimam in omnibus habeant potestatem. Si quis vero, quod futurum esse non 
credo, si ego ipse aut aliquis de heredibus meis vel proheredibus meis aut ulla opposita 
persona extranea, qui contra hanc kartolam donationis meae, quam propter nomen domini 
fieri rogavi vel pro reverentia ipsius loci, venire aut eam infrangere conatus fuerit, iram trine 
maiestatis incurrat et cum supra scripto sancto illo ante tribunal Christi deducat rationes, 
insuper autem inferat partibus ipsius monasterii dupla pecunia, quantum ista res in se 
conteneat, et quod repetit evindicare non valeat, sed presens epistola hec omni tempore 
firma et inviolata permaneat, stipulatione subnexa. Actum Wangiona civitate publice sub die 
V. idus mai. Anno XIIII. regnante domno nostro Pippino gloriosissimo rege. † Signum Aggioldi, 
qui hanc donationem fieri rogavit. † Altoni. † Odalfridi. † Hruotfridi. † Gummundi. † 
Reginfridi. † Adalmanni. † Nordmanni †. Ego Hiaebo presbiter et amanuensis hanc kartolam 
donationis rogante Aggioldo scripsi.“ 

 
17 Urkundenbuch des Klosters Fulda; Teil: Bd. 1., Nr. 42, in: Edmund E. Stengel, Urkundenbuch des 
Klosters Fulda; Teil: Bd. 1., (Die Zeit der Äbte Sturmi und Baugulf), Marburg 1958, [URI: http://d-
nb.info/454869509], S. 72-73 
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gold eggiolt ( aggioldus ) ponit duas villas monasterii bossweiler ( bockenheim ) 
wiebelskirchen saluti et sociis ejus proprietates ascae hiltwin ( liutwin ) 
sturmi penes abbatem . 

classifier venerabili in christo patri sturmione abbati .<q>ego eggiolt cogitans pro 
remedium anime fratris mei hiltwini vel pro aeterna retributione , 
propterea dono ac trado traditumque in perpetuum esse volo a die 
presente ad monasterium sancti salvatoris , quod dicitur fulda , ubi tu 
presenti tempore abbas preesse videris , hoc est quod dono in villa 
buchsolare a in pago wormacinse duas curtiles cum casis , cum terris ibidem 
adiacentibus et vineis seu pratis vel silvis in loco , qui dicitur ascae , atque 
in wibileschiricha ad ipsas curtiles aspicientibus , id est pratis , pascuis , 
aquis aquarumque decursibus , sicut superius dixi , pro anime liutwini 
donatum esse volo .<q>propterea donationem rogavi scribere , ut tu , abba 
sturmi , supra scriptam rem et successores tui habeant , teneant , 
possideant vel quicquid exinde facere voluerint , liberam ac firmissimam in 
omnibus habeant potestatem . 

transformer venerabili in christo patri sturmione abbati .<q>ego eggiolt cogitans pro 
remedium anime fratris mei hiltwini vel pro aeterna retributione , 
propterea dono ac trado traditumque in perpetuum esse volo a die 
presente ad monasterium sancti salvatoris , quod dicitur fulda , ubi tu 
presenti tempore abbas preesse videris , hoc est quod dono in villa 
buchsolare a in pago wormacinse duas curtiles cum casis , cum terris ibidem 
adiacentibus et vineis seu pratis vel silvis in loco , qui dicitur ascae , atque 
in wibileschiricha ad ipsas curtiles aspicientibus , id est pratis , pascuis , 
aquis aquarumque decursibus , sicut superius dixi , pro anime liutwini 
donatum esse volo .<q>propterea donationem rogavi scribere , ut tu , abba 
sturmi , supra scriptam rem et successores tui habeant , teneant , 
possideant vel quicquid exinde facere voluerint , liberam ac firmissimam in 
omnibus habeant potestatem . 

RNN ego eggiolt cogitans pro remedium anime fratris mei hiltwini vel pro 
aeterna retributione , propterea dono ac trado traditumque in perpetuum 
esse volo a die presente ad monasterium sancti salvatoris , quod dicitur 
fulda , ubi tu presenti tempore abbas preesse videris , hoc est quod dono in 
villa buchsolare a in pago wormacinse duas curtiles cum casis , cum terris 
ibidem adiacentibus et vineis seu pratis vel silvis in loco , qui dicitur ascae , 
atque in wibileschiricha ad ipsas curtiles aspicientibus , id est pratis , pascuis 
, aquis aquarumque decursibus , sicut superius dixi , pro anime liutwini 
donatum esse volo .<q>venerabili in christo patri sturmione abbati .<q>si 
quis vero , quod futurum esse non credo , si ego ipse aut aliquis de 
heredibus meis vel proheredibus meis aut ulla opposita persona extranea , 
qui contra hanc kartolam donationis meae , quam propter nomen domini 
fieri rogavi vel pro reverentia ipsius loci , venire aut eam infrangere conatus 
fuerit , iram trine maiestatis incurrat et cum supra scripto sancto illo ante 
tribunal christi deducat rationes , insuper autem inferat partibus ipsius 
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monasterii dupla pecunia , quantum ista res in se conteneat , et quod 
repetit evindicare non valeat , sed presens epistola hec omni tempore firma 
et inviolata permaneat , stipulatione subnexa . 

Table 19: Gold vs Candidate Step 400 no 33 

5.8 Training BERTSum with pretrained bert-multilingual on 
FORMULAEGR with Input-To-Target-Translation with 
L2 regularization 

This experiment follows the same approach as the one in chapter 5.6. The results in Table 14 
and the fact the model is trained on a rather small data set indicate that overfitting could be 
a problem. To solve the overfitting-issue L2 regularization with a weight decay of 0.00001 is 
applied in this experiment. The Rouge score improvements of Table 22 in comparison to 
Table 13 showed that applying regularization has indeed a positive effect on the results. 
 

Translation NLP Library Pretrained Model 

Input-To-Target-Translation Stanza: German, GSD bert-base-multilingual-cased 
Table 20: Experiment Parameters 

 
training testing validation batch Steps Warmup checkpoint rnn 

size 
weight 
decay 

4395 191 191 960 700 135 100 768  
Table 21: Experiment Hyperparameters 

 
Model Rouge-1 Rouge-2 Rouge-

L 

BERTSum + Classifier 9.42 0.80 7.53 
BERTSum + Transformer 9.76 0.92 7.62 
BERTSum + LSTM 9.70 0.92 7.56 

Table 22: Test set results of the first experiment at step 700 using ROUGE F1 

 
The source Text (urn.cts.formulae.freising.bitterauf042718): 
„Sei es allen bekannt und bleibe in den Baiouuaria tamingenuis als denen, die gedient haben, 
aber kann dies daher einer seiner eigenen Äbte sein, der Name des schweren 
Alodeoratoriums Salomonconstruxit ihres Vaters an dem Ort, den er für oder am Fluss des 
Edikts des Sindpaldeshusir Filusa vorbereitet hat. Wegen eines frommen und 
mansuetumHittonem quamperficere kam ein Bischof zum Gebetshaus, Salomo erwähnte 
demütig inplorando bereits, soweit er an derselben Stelle sepollicere aignaretur kommen 
sollte, dass er auf diese Weise der Bischof den gleichen Reeve machte. Deindeveniens Bischof 
und viele andere Adlige und Adsisterunt.Tunc Ort namens Bischof widmen diese 
Versammlung sowie die Verteidigung Altareminsuper hinzugefügt. Als also all diese Dinge 
erfüllt sind, ist es geschehen, in die Gegenwart des rechtmäßigen, ob es sich um einen 

 
18 Die Traditionen des Hochstifts Freising, Nr. 427, in: Theodor Bitterauf, Die Traditionen des Hochstifts 
Freising, Band 1: 744 – 926, München, ND Aalen 1905 1967, S. 366-367 
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vernünftigen Potestatemissus handelt, den Salomo direkten Kontakt mit dem Namen des 
Einhart, und dort hatte er ihre Catervaqui dazu beleidigt, die Widmung des siebten und die 
Kirche aufzugeben, sowie den Etsoror desselben Salomos, mit ihren Teilen oder der gleichen 
Art und Weise Das Schloss der Website Frigisinense ubipreciosum, aus dem der Leichnam 
des heiligen korbinischen Beichtvaters Christi besteht, regiert dort den Hitto, den Bischof 
dieser Familie, der seine Kontrolle mit dem dazugehörigen Omnibusad ausübt, oder an 
irgendetwas an dem vorgenannten Ort Sindpaldeshusirhereditatis, der für sie gemacht 
wurde ohne Veränderung, durch den Profit aus dem gleichen Grund, er und ihre Schwester: 
und der Name der Engilsuind utille, bis zu welchem Punkt in ihrem Leben darauf gerichtet ist, 
dies zu nutzen, und viele blieben in der Macht, die Fähigkeit zu genießen, zu fallen, 
ettransitoria; illorumvero nach der Abreise außer nulla Opposition gegen den genannten 
domoobtinetur. Dies geschah unter dem Konsul, der 7 ist. dh. menne nov.anno Hloduuuico 
zugunsten des Reiches Christi ersetzt 6. die Abgabe XIII. In den Augen dieser anderen, Johan 
Archipresbiter. Marcho Priester. Emihho, Nidperht, Diakone. Ring. Erchanpert. Uuolfperht. 
Podalunc.Strodo. Die Ohren sind von Zeugen angezogen, Ilprant. Sigipald. Eparheri. 
Rihpald.Cozolt. Petro. Ampricho. Engilhart. Reginhoh. Adalperht. Juto. Arnolt.Drudmunt. 
Reidker. Frese. Reginperht. Helier. Arpeo. Uuelacrim. Hartrat.Hrodolt und viele andere. Also 
bestellte ich Pirtilo Hitton episcopiscripsi und unterschrieb. 

 

gold abt salomon und seine schwester engilsuind übergeben einekirche zu „ 
sindpaldeshusun“ . 

classifier sei es allen bekannt und bleibe in den baiouuaria tamingenuis als denen , 
die gedient haben , aber kann dies daher einer seiner eigenen äbte sein , 
der name des schweren alodeoratoriums salomonconstruxit ihres vaters an 
dem ort , den er für oder am fluss des edikts des sindpaldeshusir filusa 
vorbereitet hat .<q>deindeveniens bischof und viele andere adlige und 
adsisterunt.tunc ort namens bischof widmen diese versammlung sowie die 
verteidigung altareminsuper hinzugefügt .<q>wegen eines frommen und 
mansuetumhittonem quamperficere kam ein bischof zum gebetshaus , 
salomo erwähnte demütig inplorando bereits , soweit er an derselben stelle 
sepollicere aignaretur kommen sollte , dass er auf diese weise der bischof 
den gleichen reeve machte . 

transformer die regierungszeit unseres herrn jesus christus , ein jahr xxviiii.regni 
tassilone führer , begann ich über ultimumdeductus uuaninc krankheit in 
meinem leben oder dem leben der zukunft nachzudenken , damit ich mich 
mit dem liebenden meister erkundigen kann .<q>dies ist genau das richtige 
, wenn man bedenkt , dass ein apudmemet erfunden wurde , als sie das 
alodem - erbe mir oder meinem bruder überließ , dem mein vater ein utto 
an dem ort gegeben hatte , der rechpach genannt wird , anstelle von oder 
an irgendetwas dem montenuncupante an den feldern der weiden der pras 
angesichts der tatsache , dass alle instrumente der angelegenheiten , die 
die nosiura betreffen , das laufen , die ich dem beichtvater christi in der 
kirche st. corbinian und dem grab der burg und der makellosen jungfrau 
mariae frigisingasite übergeben würde .<q>auf die gleiche weise , wie wir 
all diese dinge getan haben , die der stil der dinge sind , werden sie 
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inpraesentia für ihren vater oder bruder verstanden , und auch , um einen 
körper von velconiugis und der priester , das heißt den uuicpót , erlapald , 
hunolt , zu propinquieren , so dass , wenn quiscontra innerhalb dieser 
tradition ist und versuchen sollte , sich zu bewegen , in dem , in dem sich 
die namen befinden und eine übertragungsfunktion des rechts von diesen 
, dennoch könnte ein unternehmen weiterhin bestimmungen abschließen . 

RNN sei es allen bekannt und bleibe in den baiouuaria tamingenuis als denen , 
die gedient haben , aber kann dies daher einer seiner eigenen äbte sein , 
der name des schweren alodeoratoriums salomonconstruxit ihres vaters an 
dem ort , den er für oder am fluss des edikts des sindpaldeshusir filusa 
vorbereitet hat .<q>wegen eines frommen und mansuetumhittonem 
quamperficere kam ein bischof zum gebetshaus , salomo erwähnte demütig 
inplorando bereits , soweit er an derselben stelle sepollicere aignaretur 
kommen sollte , dass er auf diese weise der bischof den gleichen reeve 
machte .<q>deindeveniens bischof und viele andere adlige und 
adsisterunt.tunc ort namens bischof widmen diese versammlung sowie die 
verteidigung altareminsuper hinzugefügt . 

Table 23: Gold vs Candidate Step 200 no 33 

 

6 Conclusion 

The best achieved Rouge L1 score in this thesis is 9.76 which in comparison to (Liu 2019)’s 
best L1 score of 43.25 a 430% decrease. This relation shows the general quality decline of this 
thesis in comparison to (Liu 2019). The two factors, which are probably the most influencing 
on the results are the similarity of the pre-trained model to the task-specific training data set 
and the small size of the task-specific training data set. The pre-trained (Multilingual BERT) 
model was trained on 104 languages among others Latin and German. Although (Pires et al. 
2019) showed that Multilingual BERT is robust and very well capable of  generalizing cross 
lingually, it would still have a great impact if the pre-trained model was explicitly trained on 
German or Latin. The experiment in chapter 5.5 showed what possible difference on the 
results a language-specific per-trained model could have. Additionally the size of the training 
data set contained 4777 texts in this thesis and 312,085 in (Liu 2019). This 6500% difference 
indicates that increasing the amount of training data is probably the greatest leverage to 
reach the result quality of (Liu 2019). When manually comparing the result of the 
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experiments to its corresponding text the reader is prompted by the fact, that a great part of 
the summary consists of the first spans of the text. And that important information such as 
the name of the main character of the document is left out. This shows that the generated 
summaries are of a rather bad quality. The fact that the generated summaries are almost as 
long as the original text indicates that much noise or irrelevant information is still included in 
the summary. Another issue that can be seen in chapter 5.6 and chapter 5.7 is that some 
candidates of the three different flavors where exact equals. An indicator that the model is 
likely to be overfitted. The experiment in chapter 5.8 used L2 regularization as 
countermeasure for this issue. The results in this chapter had a higher result compared to 
chapter 5.6 which indicates that further investigating regularization methods, especially with 
transformer-specialized regularization methods such as the DropHead method (Zhou et al. 
2020), seem to be very promising. Furthermore the discussion in chapter 5.2.5 suggests that 
experimenting with the batch size could also increase the quality of the results. To put it all 
in a nutshell, the results of this thesis could not be used as a replacement for man-made 
regests nor as support for human summarizers. But the findings of this thesis can serve as 
the groundwork for further investigations on the neural machine summarization of medieval 
latin texts and the neural machine writing of regests.  
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