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Kurzzusammenfassung

Deep Learning Modellen liegen Unsicherheiten zu Grunde, die häufig unbeachtet bleiben
oder fehlinterpretiert werden. Die Zusammenführung von Recurrent Neural Networks
(RNNs) und Bayesschen Methoden ist eine Möglichkeit, diese Unsicherheiten zu ermit-
teln. Am Beispiel der Textklassifikation evaluiert diese Arbeit einen neuartigen Ansatz,
um Unsicherheitswerte auf Basis von Tokens zu quantifizieren. Ziel ist es, eine transpar-
ente Auswertung der Eingabesequenzen zu ermöglichen.
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Abstract

Uncertainty is fundamentally connected to deep learning but is often disregarded or
misinterpreted. Combining Recurrent Neural Networks (RNNs) with Bayesian methods
is one way to detect these uncertainties. This work evaluates a novel approach to quantify
uncertainty on a token-basis for text classification. The goal is to enable a transparent
evaluation of input sequences.
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ŷ output sequence with T forward passes [0, 1]M ′×K×T
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1 Introduction

Machine learning achieves state-of-the-art performance in a great variety of Natural Lan-
guage Processing (NLP) tasks [1, 2], most prominently sentiment analysis. Neural net-
works can solve complex NLP problems, although they are considered black-box models.
Unfortunately, common approaches fail to quantify epistemic and aleatory uncertainty
in predictions. This is aggravated by the fact that uncertainty often has various causes.
They include noisy data, data that fits multiple labels, and mislabeled data at training
time. Therefore, knowing the underlying uncertainty is advantageous. Its quantification
should be part of the model.

Bayesian probability theory fills this gap. It provides methods to quantify uncertainty
in a formalized way. Neural networks may implement these Bayesian methods to learn
what they do not know. These types of networks are called Bayesian Neural Networks
(BNNs). One way to determine the uncertainty in BNNs is to calculate the sample
variance of multiple forward passes at inference time.

The following work focuses on quantifying epistemic uncertainty in text classification
with Bayesian Long Short-Term Memory (LSTM) neural networks [3] using a novel
sequence-to-sequence approach. It analyses the output sequence of a Bayesian LSTM to
define intermediate predictions and uncertainty estimations for each input token. This
approach supports binary and multiclass classification and is evaluated against Monte
Carlo (MC) Dropout [4] and Bayes by Backprop (BBB) [5]. It can identify sensitive
terms and uncertain parts in the output sequence while maintaining high accuracy.

1.1 Motivation

In classification, predictive probabilities obtained at the end of the pipeline
[...] are often erroneously interpreted as model confidence. [4, Yarin Gal and
Zoubin Ghahramani]

1



1 Introduction

In the above quote, Yarin Gal and Zoubin Ghahramani address the problem of falsely
interpreting the predictive probability as a measurement of uncertainty. To solve that
issue, they combine Bayesian methods with machine learning. In recent years, the com-
munity around Bayesian neural networks has been gaining traction with many new
publications [6]. Yarin Gal [4, 7], Charles Blundell [5, 8], and others are leading re-
searchers who aim to find practical ways to improve model transparency by introducing
uncertainty estimations.

(a) I love this movie but my friends dislike it .︸ ︷︷ ︸
(b) I love this movie but my friends dislike it.

Figure 1.1: Local (a) and global (b) uncertainty over a sequence. High uncertainty is visualized
with darker background colors. The first line estimates uncertainty per token. The
second line estimates uncertainty per sequence. This example was created manually
for demonstration purposes.

This Bayesian way of thinking applies to uncertainty estimations on a token-basis. Typ-
ically, classifications with Bayesian neural networks capture uncertainty by reducing the
sequence information to one estimation. Fig. 1.1 shows an uncertainty distribution (a)
over a sequence. It also shows a single uncertainty estimation (b) that applies to the
whole sequence. (b) does not reveal the source of uncertainty. On the other hand,
method (a) can locate uncertain sections because it knows the uncertainty of individual
tokens.

These uncertainty estimations over the input sequence can be the missing link to locate
uncertainty in text classification. Interpretability is an important aspect that builds
trust in a model. It is this work’s main motivation.

1.2 Goals

This work introduces a novel sequence-to-sequence approach to quantify uncertainty in
text classifications. The goals are threefold.

1. The first goal is to reliably detect confident and uncertain sections in text classifi-
cations. Compared to other approaches with no or limited uncertainty estimations,
predictions should be more transparent regarding the exact source of uncertainty.

2



1 Introduction

2. The sequence-to-sequence approach should work with common classification datasets
without the need for additional data labeling.

3. Finally, a visualization tool with an easy-to-use interface for fast evaluation should
be created. The application should visualize token-based uncertainties.

1.3 Structure

The following work is structured such that the first chapters provide the theoretical
background for all subsequent chapters.

Chapter 2: A theoretical look at language processing with text preprocessing and word
embeddings. Besides conventional word embeddings, it demonstrates how Bidirectional
Encoder Representations from Transformers (BERT) [9] can be used as a contextual word
embedding (section 2.2.2). Recurrent Neural Networks (RNNs) are introduced (section
2.3) with a focus on Long Short-Term Memory (LSTM) neural networks (section 2.3.2).
It is explained why LSTMs are superior to plain RNN implementations.

Chapter 3: Quantifying uncertainty in neural networks. First, section 3.1 distinguishes
between aleatory (data) and epistemic (model) uncertainty. Sections 3.2 and 3.3 intro-
duce Bayesian methods and variational Bayesian inference. Variational Bayesian infer-
ence is a practical approach to perform approximate probability computation. Sections
3.4 and 3.5 describe two ways to integrate variational Bayesian inference into neural
networks and RNNs. The last section 3.6 addresses the pitfalls of approximate Bayesian
methods.

Chapter 4: Similar approaches and related publications. This chapter mentions simi-
lar methods like Named Entity Recognition (NER) [10, 11] and transparency oriented
methods [12].

Chapter 5: The sequence-to-sequence concept. Section 5.1 outlines the data prepa-
ration process. Section 5.2 describes the required LSTM architecture for token-based
uncertainty quantification. Sections 5.3 and 5.4 provide a theoretical explanation for
transforming multiple samples from the Bayesian LSTM into token-based predictions
and uncertainty quantifications. This process is then illustrated with an exemplary
calculation in section 5.5.

3
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Chapter 6: Experiments. Section 6.1 lists essential frameworks and libraries. Section
6.2 introduces the Keras and BERT word embedding. Section 6.3 shows the imple-
mentation of Monte Carlo (MC) Dropout and Bayes by Backprop (BBB) for LSTMs in
Tensorflow. The experiments are divided into binary (section 6.5) and multiclass (sec-
tion 6.6) classification. The last section 6.7 shows the proof of concept application that
supports multiple models.

Chapter 7: Evaluation. The evaluation starts with a model comparison that focuses on
weighted uncertainty (eq. 5.11). Sections 7.2 and 7.3 evaluate the effect of stopwords and
sensitive terms on uncertainty. Whether this implementation complies with the goals
listed in section 1.2, is discussed in section 7.4. Section 7.5 lists known complications.

Chapter 8: Summary and outlook. Section 8.1 summarizes this work. The last section
8.2 lists ideas for future research, such as extending the Bayes by Backprop (BBB)
implementation.

4



2 Language Processing with RNNs

In Germanic and Romance languages such as English and German, words are the fun-
damental elements to express ideas. Words either have contextual meaning or they are
function words, such as a or the. Spoken languages are rapidly evolving. This makes
capturing the nuances of a language challenging for computer programs. Therefore, Nat-
ural Language Processing (NLP) is the focus of many sophisticated studies in machine
learning (e.g. [13]).

The required steps and methods to perform text classification with Recurrent Neural
Networks (RNNs) are outlined in this chapter. Section 2.1 describes the process of
preparing text documents for text classification. The goal is to identify and group sim-
ilar words, which will effectively result in a reduced vocabulary. Section 2.2 explains
how to transform a word into a word vector. This transformation step is crucial because
it enables the neural network to interpret words by providing an abstract representa-
tion. Subsequently, section 2.2.2 outlines the functionality of the recently developed lan-
guage representation method Bidirectional Encoder Representations from Transformers
(BERT) and its connection to word embeddings.

Section 2.3 introduces text processing with RNNs. Even though an RNN tries to memo-
rize the context of previous words in a sequence, in practice the naive implementation of
an RNN often fails to do so. This is known as the vanishing gradient problem, described
in section 2.3.1. The more intricate Long Short-Term Memory (LSTM) architecture tries
to solve this problem with additional states and control flow gates (section 2.3.2).

2.1 Text Preprocessing

Text is the primary data type in Natural Language Processing (NLP). Informal texts
like chat messages or forum entries are noisy and require text preprocessing to be inter-
pretable by subsequent tasks. After the text preprocessing step, neural networks with

5



2 Language Processing with RNNs

word embeddings (section 2.2) will work with simplified and normalized representations
of words. This reduces complexity. Apart from the removal of stopwords and punctu-
ation, this is achieved by applying various methods of which lemmatization, stemming,
and normalization are presented in this section. To work with individual words, the text
is separated by spaces and punctuation.

Stemming and lemmatization [14, 15] are language-dependent approaches to find root
forms of words. They aim to reduce inflectional word forms including grammatical
conjugations. The result may not reflect the true root form.

Stemming is a relatively simple yet effective process to replace common characters with
fixed character sequences including the empty sequence. For example, the Porter stem-
mer [16] specializes in word suffixes. Among other things, it replaces all ies suffixes
with the ss suffix and removes the s suffix. Therefore, apples is mapped to apple and
ponies to poni, demonstrating the creation of a non-existing root form.

On the other side, lemmatization requires language-dependent information to perform
root form reduction. Based on a dictionary, it could resolve more complex grammatical
conjugations. For example, the present indicative are points to the present infinitive
be.

To simplify texts further, the process of normalization can greatly reduce noise. Nor-
malization techniques may group numerical values under a single value, resolve phonetic
spelling in informal texts (good n8 to good night) or emphasized expressions like hiiii.
In contrast to lemmatization, normalization even works on unknown words. Sophisti-
cated techniques might also correct spelling [17].

2.2 Word Embeddings

Unfortunately, neural networks do not directly understand string representations of
words. As explained in section 2.2.1, a transformation step is necessary to create
machine-readable word representations.
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2 Language Processing with RNNs

Figure 2.1: Relations between countries and their capitals in vector space, reduced from 1000
dimensions to two dimensions with PCA. [18]

2.2.1 Word Vectors

A word vector is an N -dimensional representation of a word. Typically, a word vector
is located in a semantic vector space [19, 20] where the distance and/or angle between
word vectors indicate their relation. For example, the distance between the word vector
representations for daughter and mother should roughly be the same as for mother and
grandmother. Fig. 2.1 demonstrates the relation between countries and their capitals
in semantic vector space. Each vector may then be listed in a matrix with dimensions
M ×N where M is the size of the vocabulary.

Visualizing the high-dimensional vector space in a humanly readable two- or three-
dimensional space requires a data projection. Dimensionality reduction algorithms, such
as Principal Component Analysis (PCA), apply the data projection.

Word vectors do not strictly represent correlations. Although highly inefficient, it is pos-
sible to map each word to a scalar (a one-dimensional word vector). Doing so disregards
all semantic meaning. Another method is one-hot encoding in which each word is repre-
sented as an independent sparse vector [0, 0, ..., 1, ..., 0]. The dimension is proportional
to the size of the vocabulary, which causes high memory usage. More sophisticated
approaches include the following [21]:

7



2 Language Processing with RNNs

• Word2Vec [18] with Skip-Gram or Continuous Bag of Words (CBOW). Both are
shallow, two-layer neural network approaches. Word2Vec with CBOW uses context
words to predict the current word, given a window size. The Skip-Gram approach
does the exact opposite. After training, the CBOW embedding matrix is extracted
from the weights between the hidden layer and the output layer. The Skip-Gram
embedding matrix is extracted from the weights between the input layer and the
hidden layer. Similar words are grouped, measured by their cosine similarity.

• Global Vectors (GloVe) [20] is another unsupervised method. Given a corpus,
GloVe creates a word-to-word co-occurrence matrix. The training objective is
to minimize the ratios between co-occurrence probabilities and their word vector
counterparts. The authors have published multiple official pre-trained word vectors
based on Wikipedia, Twitter, and other resources. The dimensionality of word
vectors in the pre-trained models ranges from 50 to 300 dimensions.

Obtaining a more dynamic and context-sensitive word embedding is possible by using
BERT (section 2.2.2).

2.2.2 BERT

Figure 2.2: BERT input representation. [9]

Bidirectional Encoder Representations from Transformers (BERT) [9] is a new language
representation method developed at Google. It claims state-of-the-art performance in
various NLP tasks. Following Vaswani et al.’s [22] implementation for transformers, its
architecture is a multi-layered bidirectional transformer with self-attention mechanisms.
Its bidirectional nature enables BERT to learn contextual relations. For example, the
word bank has a different meaning in ”A woman sits on a bank” than in ”The bank

will open in two hours”.
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2 Language Processing with RNNs

BERT is trained without supervision, using masked language models and next sentence
prediction. In masked language models, masking random words of a known sequence
aids in predicting missing words. Next sentence prediction determines whether a given
sentence A is followed by another sentence B. Given a large enough corpus, one can
easily generate the data required by both training methods.

As shown in fig. 2.2, BERT transforms the textual input sequence into a token sequence.
Each token sequence starts with a special [CLS] token to mark its beginning. Further,
the [SEP] token indicates a separation between sentences. In the context of BERT, a
sentence does not strictly follow its language representation and can be multiple English
sentences.

As the name suggests, the architecture of BERT consists of multiple stacked encoder
layers, also called transformer blocks. These layers apply self-attention [22].1 BERT
does not use a decoder. Each encoder layer returns a vector for each element in the
sequence that is used as the input for the next encoder layer. In case of the last encoder
layer, it is used as the output. The model’s hidden size parameter determines the size
of the output vector (BERT base models by Google use 768 dimensions). In comparison
to other word embeddings, the hidden size corresponds to the embedding size.

Google released multiple regular- and large-sized pre-trained models for the English and
Chinese language. They also released multilingual versions. The pre-trained models can
be fine-tuned to improve the results in problem-specific tasks. [23, 24]

2.3 Recurrent Neural Networks

Contextual knowledge about past events can greatly improve future predictions. In
spoken languages, the beginning of a sentence will most likely influence all subsequent
words. This observation is the core idea behind Recurrent Neural Networks (RNNs)
[25].

Given an input sequence x of length T (eq. 2.1), an RNN calculates its output ŷ by
performing the same set of instructions for each time step t ∈ 1, . . . T and element xt ∈ x.

1BERT’s base model uses 12 encoder layers and its large model 16 encoder layers.
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Figure 2.3: Two representations of an RNN. The left side shows an RNN as a loop, the right
side shows its unfolded representation.

Alongside xt, the hidden state ht−1 is passed on to the current calculation step. The
output is the hidden state ht. It encapsulates the information about past time steps.

x = (x1, x2, ..., xT) (2.1)

The recurrent architecture of RNNs can be represented as a loop or unfolded (fig. 2.3).
Therefore, the actual outputs of an RNN are ŷ1, ..., ŷT. In classification problems, it is
common to focus on the last output ŷT.

At time step t the hidden state ht and output ŷt is formally [26, 27] defined as:

ht = σ(Winxt + Wrecht−1 + b) (2.2)

ŷt = Woutht (2.3)

where σ is the activation function, Win is the input weight matrix, Wrec is the recurrent
weight matrix of the hidden layers, Wout is the weight matrix of the output, and b is the
bias. More generally, given a dynamical system F (ht−1, xt, θ), θ describes all trainable
parameters of F , i.e., Win, Wrec, Wout, and b.2 The weight matrices are independent
of time step t, which greatly reduces the number of trainable parameters within the
network.

To train an RNN, a variation of backpropagation called Backpropagation Through Time
(BPTT), is used. The partial (eq. 2.4) and total cost (eq. 2.5) are determined by the

2The notation may vary in other papers, e.g., Wrec is often denoted as U.
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2 Language Processing with RNNs

loss function L:

Et = L(xt, ŷt) (2.4)

E =
T∑
t=1
Et (2.5)

After obtaining the costs for each time step in eq. 2.5, BPTT unfolds the RNN and
calculates the gradients with respect to (w.r.t.) θ as a sum.

∂E
∂θ

=
T∑
t=1

∂Et
∂θ

(2.6)

As the main goal of RNNs is to learn long-term relations between data points of the same
sequence, the vanishing gradient problem has to be addressed (section 2.3.1). With this
in mind, new RNN architectures, particularly Long Short-Term Memory (LSTM) [3] and
Gated Recurrent Unit (GRU) [28], were introduced. This work focuses on LSTMs.

2.3.1 Vanishing Gradient Problem

Sigmoid, tanh, and Rectified Linear Unit (ReLU) are common activation functions.
They introduce non-linearity in neural networks. Updating weights via backpropagation
requires each activation function’s derivative. More specifically, backpropagation uses
the chain rule to calculate the gradient of the loss function over the weights. Propagating
the gradient back through each layer may result in a decreasing gradient.

In RNNs, the recurrent weight matrix used for all time steps is the primary cause of
a vanishing gradient. The gradient component ∂Et

∂θ (eq. 2.6) is partially calculated by
the temporal component ∂xt

∂xk
with t and k being time steps, and t > k [27, eq. (4)].

Intuitively, ∂xt
∂xk

propagates the error from time step t back to the earlier time step k:

∂xt
∂xk

=
t∏

i=k+1

∂xi
∂xi−1

=
t∏

i=k+1
WT

recdiag(σ′(xi−1)) (2.7)

Here, the multiplicand Wrec leads to the vanishing gradient problem. The weight matrix
effectively becomes an exponential decay factor with t−k as the exponent if its eigenvalue
is less than 1.
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2 Language Processing with RNNs

2.3.2 Long Short-Term Memory

Figure 2.4: The repeating cell in an LSTM [29].

Long Short-Term Memory (LSTM) networks [3] solve the problem of vanishing gradients
and are designed to understand long-term dependencies in sequences. They are a good fit
for language modeling tasks because context-related words or sections may be separated
over short or long distances. The recurrent unit in LSTMs is often referred to as a cell.
In addition to the hidden state in plain RNNs, LSTMs cells have a second state: the cell
state ct. Its purpose is to store relevant information and forward said information to all
upcoming cells.

LSTMs are more complex than regular RNNs because they introduce the concept of
gates. These gates control the data flow in and from cells (fig. 2.4). This work utilizes
the common LSTM architecture with a forget gate (eq. 2.8) [30]:

• The input gate it adds new information xt to the cell state, regulated by c̃t.
Depending on c̃t and it, only a fraction of xt or nothing at all is added.

• The forget gate ft removes information from the cell state based on the last
hidden state and new information xt.

• The output gate ot determines what information of the cell state should be added
to the output at time step t. The output equals the hidden state ht.

A gate’s ouput depends on two weight matrices Wi,f,o,c and Ui,f,o,c, a bias bi,f,o,c, and
an activation function. The subscript i, f, o, c corresponds to the gate. Therefore, all
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gates are traniable:

it = σ(Wiht−1 + Uixt + bi) (2.8)

ft = σ(Wfht−1 + Ufxt + bf ) (2.9)

ot = σ(Woht−1 + Uox1 + bo) (2.10)

c̃t = tanh(Wcht−1 + Ucxt + bc) (2.11)

ct = ft ∗ ct−1 + it ∗ c̃t (2.12)

ht = ot ∗ tanh(ct) (2.13)

Here, ∗ is elementwise multiplication, t is the time step and σ is the sigmoid function.
The total number of trainable parameters is 4(nm+n2 +n) with m being the size of the
output vector and n being the size of the input vector x. Thus W ∈ Rn×m, U ∈ Rn×n,
and b ∈ Rn.

The forget gate alleviates the vanishing gradient problem by preserving the recursive
derivative of ct. Think of the forget gate as a control mechanism; it is a trainable
function after all. Only if it decides to forget, the gradient will vanish [31].
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3 Quantifying Uncertainty

Missing or incomplete data aggravates the formulation of decisions. Unfortunately, it
is the norm rather than the exception. Mathematically defining ways to quantify these
uncertainties is crucial to making reliable predictions, especially in machine learning.

In section 3.1 the concept of uncertainty is further divided into aleatory and epistemic
uncertainty. Sections 3.2 and 3.3 introduce the Bayesian world view, which is based
on prior beliefs and updating said beliefs when new data becomes available. Section
3.4 presents the Bayes by Backprop (BBB) method to model the weights in neural
networks as probability distributions. Utilizing dropout at inference time is another way
to estimate uncertainty in neural networks. It is illustrated in section 3.5.

3.1 Aleatory and Epistemic Uncertainty

Whether the data is noisy or the underlying architecture has an incomplete understand-
ing of the data, variance in the results is a direct consequence of those uncertainties.
Uncertainty itself can be divided into the following two categories [32, 33]:

• Aleatory uncertainty refers to data uncertainty and is a measure of noise in
observations or naturally occurring randomness. Detecting radio waves from a
distant radio tower is a good example of aleatory uncertainty. Background noise
eventually distorts data transmitted over any distance. Accumulating more data
does not reduce aleatory uncertainty for the receiver. Aleatory uncertainty can
be further subcategorized as homoscedastic and heteroscedastic uncertainty. The
former is independent of the input, whereas the latter depends on the input of the
model.

• Epistemic uncertainty refers to model uncertainty, usually within the model
parameters. High epistemic uncertainty implies that the model’s knowledge of
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3 Quantifying Uncertainty

the data is insufficient. A neural network needs a tremendous amount of data
to capture all important cases. Some patterns may still be unknown, causing
epistemic uncertainty in the neural network. Other examples are the use of a
suboptimal kernel in a Gaussian process and a neural network optimizer getting
stuck at a local minimum.

Both types of uncertainty can be quantified under the law of total variance Var(y) for
input x and output y [34]:

Var(y) = E[Var(y | x)] + Var(E[y | x]) = Ud(y | x) + Um(y | x) (3.1)

with Ud(y | x) = E[Var(y | x)] (3.2)

Um(y | x) = Var(E[y | x]) (3.3)

where Ud is data (aleatoric) uncertainty and Um is model (epistemic) uncertainty.

A more practical way to look at aleatoric and epistemic uncertainty is given by [6]:

Var(y) ≈ 1
T

T∑
t=1

diag(p̂t)− p̂⊗2
t︸ ︷︷ ︸

aleatoric

+ 1
T

T∑
t=1

(p̂t − p̄)⊗2

︸ ︷︷ ︸
epistemic

(3.4)

with v⊗2 = vvᵀ. p̂t is the tth randomly drawn sample from the neural network with the
softmax function as the output activation function. p̄ denotes the sample mean.

3.2 Bayesian Inference

Given some prior knowledge E of an event or a hypothesis H, the probability of H
occurring can be formalized as:

P (H | E) = P (E | H)P (H)
P (E) (3.5)

also known as Bayes’ theorem [35]. Its implications provide a broad range of tools in
probability theory and statistics. The list of symbols at the beginning of this work
outlines all symbols in eq. 3.5.

Bayesian inference is a continuous process to determine the parameters of a probability
distribution or population. It closely incorporates Bayes’ theorem. Whenever new data
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3 Quantifying Uncertainty

becomes available, the prior beliefs will be updated, and the posterior becomes the new
prior. Now the prior includes observations about recently obtained data. The prior
beliefs are expressed through the prior distribution. A uniform distribution may be used
if no prior knowledge exists.

The notation slightly changes in comparison to Bayes’ theorem (eq. 3.6). w denotes the
hypothesis H where w represents the set of all parameters. D denotes E. This notation
is used in Bayesian neural networks and in the following sections:

P (w | D) = P (D | w)P (w)
P (D) = P (D | w)P (w)∫

w P (D,w) dw (3.6)

P (w | D) ∝ P (D | w)P (w) (3.7)

The posterior is the probability distribution of the–currently unknown–parameters w,
given the observed data D in eq. 3.6. According to eq. 3.7, it is also proportional to the
likelihood times the prior. P (D) is a normalization constant that is hard to calculate. It
is not needed when the proportionality characteristic suffices to solve the problem, i.e.
in maximum likelihood estimations with uniform priors.

3.3 Variational Bayesian Inference

To overcome the computational overhead of Bayesian inference, approximate analytical
methods were introduced [36, 37]. A new variational distribution q, hereafter called
variational posterior, approximates the true posterior P (w | D). Simply calculating the
true posterior requires integrating the marginal likelihood over the possibly high dimen-
sional parameters w (eq. 3.6), which is intractable. Thus, a method to construct the
variational posterior q is needed. In variational Bayesian inference, the Kullback-Leibler
(KL) divergence between the true and variational posterior is the preferred measurement
of similarity (closeness) between two probability distributions to quantify the proximity
q(w | θ) ≈ P (w | D):

KL[q(w | θ) || P (w | D)] =
∫
q(w | θ) log q(w | θ)

P (w | D)dw (3.8)

The parameters θ are the result of variational learning to minimize the KL divergence.
Although this does not immediately solve the intractable marginal likelihood integration
problem, it does allow for further adjustments. Following the work presented in [5], the
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3 Quantifying Uncertainty

optimization of the KL divergence ultimately derives the cost function F(D, θ), also
known as the Expected Lower Bounds (ELBO):

θ∗ = arg min
θ

∫
q(w | θ) log q(w | θ)

P (w)P (D | w)dw (3.9)

= arg min
θ

KL[q(w | θ) || P (w)]− L(D, θ) (3.10)

F(D, θ) = KL[q(w | θ) || P (w)]− L(D, θ) (3.11)

where L(D, θ) = Eq(w | θ)[logP (D | w)] (3.12)

The transformation step from eq. 3.9 to eq. 3.10 extracts the likelihood cost L so that
the KL divergence does not depend on data D anymore. The first part in eq. 3.11 is
called the complexity cost. The authors of [5] describe it as a “[...] trade-off between
satisfying the complexity of the data D and satisfying the simplicity prior P (w)”. As
it is not the main focus of this work, a more in-depth explanation of deriving the cost
function can be found in [38].

3.4 Bayes By Backprop

This section introduces the Bayes By Backprop algorithm [5]. It uses the cost function
from eq. 3.11 as its optimization objective.

3.4.1 Method

In [5] the authors present Bayes by Backprop (BBB). It is a sophisticated Bayesian
method for neural networks in which weights are drawn from a shared probability distri-
bution to perform uncertainty estimations (fig. 3.1). Drawing single or multiple samples
from the weight distribution resembles using an ensemble of neural networks. Further,
this method implicitly regularizes the network while only doubling the number of train-
able parameters.

Assume D to be a training dataset (x, y) with features x and labels y. The weights w
of a Bayesian Neural Network (BNN) are drawn from a complex posterior distribution
P (w | D). It is non-trivial, and in most cases intractable, to exactly compute the pos-
terior distribution. The dimensionality of P (w | D) is proportional to the number of
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Figure 3.1: left: neural network with a weight matrix whose elements are fixed scalars, right:
all elements of the weight matrix are sampled from a probability distribution [5].

weights and requires integrating a complex function over all dimensions. Thus, intro-
ducing approximation methods is critical for practical usage. Using variational Bayesian
inference, as shown in section 3.3, lets us approximate P (w | D) by choosing a prior
P (w) and a variational posterior q(w | θ). It is recommended to either use Gaussian
distributions N or Gaussian mixture models:

P (w) =
∏
i

N (wi | µ, σ2) ∴ logP (w) =
∑
i

logN (wi | µ, σ2) (3.13)

q(w | θ) =
∏
i

N (wi | µθ, σ2
θ) ∴ log q(w | θ) =

∑
i

logN (wi | µθ, σ2
θ) (3.14)

where wi is the ith weight of the network, µ is the mean, and σ is the standard deviation.
In contrast to the prior, the mean and standard deviation of the variational posterior
are trainable parameters as they are defined by θ:

θ = (µ, p) (3.15)

σ = log(1 + ep) (3.16)

Building upon eq. 3.11, all samples are drawn from the weight probability distribution
w, where the ith Monte Carlo (MC) sample is denoted by w(i). q(w(i) | θ) and P (w(i))
are known distributions (eq. 3.13 and 3.14). The likelihood P (D | w(i)) is calculated via
a loss function, e.g. cross-entropy:

F(D, θ) ≈
n∑
i=1

log q(w(i) | θ)− logP (w(i))− logP (D | w(i)) (3.17)
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Using backpropagation, the variational posterior and the weights are updated by the
gradient w.r.t. w. Therefore, it must be differentiable in w. In practice, this is done
by calculating ∂F(w,θ)

∂w with n = 1 (one MC sample). The variational posterior is then
shifted and scaled by the gradient w.r.t. to the mean and standard deviation by updating
θ. Updating θ effectively adjusts the mean and standard deviation for each weight.1

Training the neural network with stochastic gradient descent causes another problem.
Luckily, it can easily be fixed. Suppose the data D to be partitioned intoM equally-sized
subsets D1,D2, ...,DM . Since the cost function F(D, θ) applies the KL divergence M
times for each minibatch, it has to be normalized by the factor M−1:

FM (D, θ) ≈
M∑
m=1
Fm(Dm, θ) (3.18)

where Fm(Dm, θ) ≈
1
M

n∑
i=1

log q(w(i) | θ)− logP (w(i))− logP (Dm | w(i)) (3.19)

where m denotes the index of the current minibatch. Without this normalization step,
the regularization of the network would be too high and training would not be as effec-
tive.

3.4.2 Bayes by Backprop in RNNs

Section 3.4.1 discussed Bayes by Backprop for feedforward neural networks but the same
idea applies to Recurrent Neural Networks (RNNs) [8]. All weights of an RNN are drawn
from a distribution, as shown in fig. 3.2.

The loss function L(θ) resembles eq. 3.11. The complexity cost, calculated by the KL
divergence, and likelihood cost are defined as:

L(θ) = KL[q(θ) || P (θ)]− Eq(θ)[logP (y1:T | θ, x1:T )] (3.20)

where T is the sequence length. Here, all parameters are represented by θ, thus w is not
directly referenced. xt is the input and yt the desired output at time step t ∈ {1, ..., T}.
This approach requires unrolling the RNN and is not directly suitable for minibatches.

1Section 3.2. Gaussian variational posterior [5] explains the process of updating the variational poste-
rior in more detail.
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Figure 3.2: Bayes by Backprop applied to an RNN. [8]

Applying this principle to minibatches results in the Truncated Bayes by Backprop
Through Time algorithm that is presented in the paper. It is similar to eq. 3.18 but adds
the time dimension and truncated sequences. Furthermore, the authors of [8] propose
the use of posterior sharpening to reduce the variance of the Bayesian RNN.

3.5 Monte Carlo Dropout

This section introduces Monte Carlo (MC) Dropout [4]. Its implementation differs from
Bayes by Backprop’s, but the objective is identical.

3.5.1 Method

Figure 3.3: Dropout in a dense neural network. Dropped units are marked with an x. [39]
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MC Dropout utilizes dropout at inference time. Performing multiple forward passes
approximates a deep Gaussian process. Dropout is applied to all layers of the neural
network. Its main advantage over Bayes by Backprop (section 3.4) is the straightforward
implementation for new and existing models because it does not introduce additional
complexity. Typically, dropout is used for regularization, which prevents the neural
network from overfitting, as some units are dropped randomly. The dropout probability
is sampled from a Bernoulli distribution B(pdrop). pdrop is a hyperparameter between
zero and one where pdrop = 0 means drop no units and pdrop = 1 means drop all units.
MC Dropout does not strictly require dropout while training.

The research paper A Theoretically Grounded Application of Dropout in Recurrent Neural
Networks [7] demonstrates the connection to Bayesian neural networks more clearly.
The connection is given by the special variational posterior q, defined as a Gaussian
mixture model with low variance and one Gaussian with a mean of 0.2 Given a dropout
probability p ∈ {0, 1}, small variance σ2, and a variational parameter mk for every
weight matrix row wk, the variational posterior q is defined as:

q(wk) = pN (wk; 0, σ2I) + (1− p)N (wk; mk, σ
2I) (3.21)

One can think of the variational parameter mk as a part of θ in section 3.4.1. A
major aspect of this distribution is the fact that it mimics dropout. ŵk ∼ q(wk) with
p = 1 roughly returns a zero-vector because the mean is 0 and the variance is negligible
by design, whereas a random sample with p = 0 returns the weight matrix row wk

parameterized by mk. Further, the authors explain that the complexity cost can be
approximated as L2 regularization, thus providing a framework to interpret MC Dropout
as Bayesian Inference in neural networks.

MC Dropout calculates the sample mean x̄ and sample variance s2 of a new data point
x with T stochastic forward passes. Assume f (r)

nn to be a deep neural network where
some units are randomly dropped based on the dropout mask rl,i ∼ B(pdrop) for layer
l ∈ {1, ..., L} and unit i [39]:

x̄ ≈ 1
T

T∑
t=1

f (r)
nn (x) (3.22)

s2 ≈ 1
T

T∑
t=1

(f (r)
nn (x)− µ)2 (3.23)

2This assumption comes with a few pitfalls mentioned in section 3.6.
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A new dropout mask r is used for each forward pass. Unsurprisingly, each sample adds
computational overhead, but small values for T (e.g. T = 10) already yield reasonable
results. The calculations can be performed in parallel [4].

3.5.2 MC Dropout in RNNs

Figure 3.4: Application of dropout in RNNs. Each square is an RNN unit. The horizontal
axis represents the time dimension and the vertical axis the input and output.
Identically colored arrows represent the same dropout masks. A dotted arrow
means that no dropout is applied. MC Dropout uses the right method (b) with
recurrent dropout masks. [7]

After acquiring MC Dropout’s theoretical background [4] (section 3.5.1), the next step is
to transfer the method to RNNs [7]. The core idea remains the same, namely, applying
dropout at inference time. To fully support this new interpretation of dropout in RNNs,
the general approach of using dropout in RNNs has to be adjusted.

Regularizing RNNs with dropout is frequently studied. Many researchers argue that
applying dropout to recurrent connections introduces model instability and should be
avoided [40, 41]. To counteract this problem, the new approach by [7] uses dropout
masks in all recurrent connections as well as in all input and output connections. This
is demonstrated in fig. 3.4b. The dropout masks remain unchanged over the whole
sequence. This is fundamentally different from earlier approaches (fig. 3.4a) where the
dropout mask is updated between time steps.

Equivalent to eq. 3.22 and 3.23, T stochastic forward passes with active dropout ap-
proximate the mean and variance for new sequences.
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3.6 Pitfalls of Approximate Bayesian Methods

To see the whole picture of approximate Bayesian methods, it is crucial to address their
shortcomings. Measuring the epistemic uncertainty in sections 3.4 and 3.5 relies on MC
sampling at inference time. This approach scales linearly but can be executed in parallel.
An evident disadvantage is the computational cost at inference time. It is possible to
achieve sampling-free uncertainty estimations [42] but is, admittedly, out of scope for
this work.

Besides the computational overhead that might not be feasible in all scenarios, various
scientific papers [43, 44, 45] criticize variational Bayesian dropout (MC Dropout) as an
incomplete Bayesian framework. They also propose new concepts, such as a variation
of the approximate inference objective (KL divergence). One point of criticism is that
improper priors generally lead to an improper posterior distribution and overfitting.
Nevertheless, the authors conclude that MC Dropout and the use of improper priors
“still provide good empirical results, albeit not because of the Bayesian [...] arguments.”
[43, section 6] They provide mathematical proofs to explain their empirical observations.
One of the authors is Zoubin Ghahramani, who supported Yarin Gal in his foundational
research paper Dropout as a Bayesian Approximation: Representing Model Uncertainty
in Deep Learning [4].
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4 Related Work

Text classification is a well-established task in machine learning with neural networks.
The sequence-to-sequence classification approach presented in this work (chapter 5) is
closely related to sequence tagging [46] and Named Entity Recognition (NER) [10, 11].
Table 4.1 compares the related approaches based on the method, whether it is Bayesian,
interpretability, and the objective.

Figure 4.1: Bidirectional LSTM for sequence tagging. [46]

In sequence tagging, tags are assigned to individual elements in a sequence. Convolu-
tional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) are commonly
used architectures [10, 11]. Zhiheng Huang et al. [46] use Bidirectional LSTMs to assign
tags like Organization (B-ORG) to words (fig 4.1).

Jonas Paul Winkler et al. [12] present a CNN-centered method. Their goal is to recognize
sensitive words in the classification. They use document influence matrices as a way to
create their interpretable text models. A document influence matrix states how strongly
any word affects a class. In binary sentiment analysis these classes are positive and
negative. To generate the document influence matrix, the neural network is reversed
so that the output of the CNN can be traced back to its input.

Another approach involves hidden Markov models that closely resemble simple dynamic
Bayesian networks. Filip Ginter et al. [47] use an unsupervised hidden Markov model
to identify text segments and labels. The training data is not labeled. The authors’
research area lies in the healthcare sector. They address the importance of detecting
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4 Related Work

health-related topics such as breathing and consciousness in a patient’s report. There
are also Hidden Markov models for labeled observations [48].

Cindy Wang [49] presents visualization techniques for hate speech detection with CNN-
GRU models. This includes the detection of keywords associated with hate speech.
One approach involves looking at the activation of distinct units in the CNN-GRU after
predicting a whole dataset.

Quantifying uncertainty in neural networks is an active field of research. Most notably–
and referenced in previous chapters–Charles Blundell et al. [5] and Yarin Gal et al. [4]
provide methods of approximate Bayesian inference in neural networks that are later
transferred to RNNs [8, 7].

Yijun Xiao et al. [34] propose a method to explore data and model uncertainty in Natural
Language Processing (NLP) tasks, such as named entity recognition. They define a
mathematical framework to quantify model and data uncertainty under the umbrella of
total variance. They show that difficult tasks yield higher uncertainty while generally
observing an improved model performance. Similar to [46], uncertainty estimations are
obtained with bidirectional Bayesian LSTMs and CNNs with MC Dropout.

Paper Method Bayesian Inter-
pretable Objective

Bidirectional LSTM-CRF Models
for Sequence Tagging [46] Bi-LSTM-CRF 7 7

POS tagging,
chunking, NER

Named Entity Recognition with
Bidirectional LSTM-CNNs [10] Bi-LSTM, CNN 7 7 NER

Neural Architectures for Named
Entity Recognition [11] LSTM-CRF 7 7 NER

What Does My Classifier Learn? A
Visual Approach to Understanding
Natural Language Text Classifiers
[12]

CNN, document
influence matrix 7 X

binary and
multiclass

classification

Hidden Markov models for labeled
sequences [48]

hidden Markov
model X 7 NER

Interpreting Neural Network Hate
Speech Classifiers [49] CNN-GRU 7 X

hate speech
detection,

visualization

Quantifying Uncertainties in Natu-
ral Language Processing Tasks [34] Bi-LSTM, CNN X X

sentiment analysis,
language

modeling, NER

Table 4.1: Comparison of various Bayesian and non-Bayesian text classification methods.
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5 Concept

This chapter introduces the sequence-to-sequence approach to text classification. Since
a text source can be represented as a sequence, it is possible to measure the intermedi-
ate predictions in binary and multiclass classification. This also includes intermediate
uncertainty estimations.

Previous chapters introduced language processing with LSTMs (chapter 2) in addition
to Bayesian methods (chapter 3) and ways to achieve Bayesian approximation in LSTMs
(sections 3.5.2 and 3.4.2). As mentioned in chapter 4, this approach is closely related to
Named Entity Recognition (NER) [10]. It uses NER as a basis to classify whole text doc-
uments. The hypothesis is that additional information about intermediate predictions
and their underlying uncertainties make an outcome analyzable if needed. Uncertain
segments are easily identifiable because the model learns what it does not know. This
also makes a model more trustable.

The following sections describe the sequence-to-sequence classification process, starting
with data preparation and hyperparameters in section 5.1. For reference, commonly used
symbols can be found in the list of symbols but are also explained throughout upcoming
sections.

5.1 Data Preparation

This sequence-to-sequence approach requires some data preparation so that the data
matches the input and output shape of the Bayesian Long Short-Term Memory (LSTM).
The data is defined as D = (x, y). It does not involve manual data labeling.

The maximum input sequence length M ∈ N+ needs to be set accordingly. A good
reference point is the average number of words per entry in the dataset. Doubling the
maximum sequence length would approximately double the training time. If M is too
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small, most inputs will be truncated, which leads to information loss. Further, to pad
or truncate all features x and labels y, M must be known.

The process of padding and truncating the labels is straight forward. All labels must
first be one-hot encoded. Then, to match the output shape of the neural network, the
label itself has to become a repeating sequence of one-hot encoded labels of length M .
For example, the one-hot encoded label [0, 0, 1]ᵀ becomes ([0, 0, 1]ᵀ, [0, 0, 1]ᵀ, [0, 0, 1]ᵀ),
given M = 3.

Features need to be tokenized first with the methods described in section 2.1. In section
6.2.1, a term frequency distribution is used to create a word index to encode word
tokens as numeric tokens. Alternatives are the pre-trained word embedding GloVe and
Word2Vec (section 2.2). To match the maximum sequence lengthM , all input sequences
must be trimmed or padded with zeros accordingly.

5.2 Bayesian LSTM Structure

TmovieT[START] Tlast Tsummer Tgood input tokens

output distribution samples

D D D D D dense layer(s)

LSTM layer

E embedding layerEEEE

...

...

...

...

Figure 5.1: All layers of the Bayesian LSTM for sequence-to-sequence classification.

The neural network starts with an embedding layer (fig. 5.1) that accepts a sequence
of numeric token representations. As shown in section 2.2, each token is embedded into
word vector space. The embedding layer is not required if the input is in vector space.

The sequence of word vectors is then forwarded into a Bayesian LSTM layer that either
uses MC Dropout (section 6.3.1) or Bayes by Backprop (section 6.3.2). Given a maximum
sequence length M , at each time step t ∈ {1, 2, ...,M} the hidden state ht (eq. 2.13) of
the LSTM is forwarded to one or more dense layers. Only forwarding the last hidden
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state is not sufficient. This sequence-to-sequence classification approach requires all time
steps to work.

The dense layers are a way to produce the correct output shape, given the number of
labels K = |{label1, · · · , labelK}| in the classification problem. The output shape of the
neural network, and therefore of the last dense layer, is (batch size,M , K). If K = 1, the
activation function of the last dense layer must be the sigmoid function. Otherwise the
softmax function is required. Likewise, the loss function should be binary cross-entropy
if K = 1 and categorical cross-entropy if K > 1.

5.3 Sequence to Sequence Classification

The Bayesian LSTM implementation allows for straightforward M to M sequence pro-
cessing where M is the input and output sequence length. As demonstrated in fig.
5.1, each token xt in the padded input sequence x = (x1, x2, ..., xM ) associates with
an element in the output sequence (the hidden state at the respective time step; eq.
2.13). During the evaluation, only the time steps up to the actual sequence length
M ′ = |x\[PAD]| with M ′ ≤M are relevant. x\[PAD] defines the actual input sequence
without the padding elements.

The output will be a sequence of K-dimensional sample distributions where K is the
number of labels. For binary sentiment analysis, K is 1. In other words, each input token
x is assigned a univariate or multivariate probability distribution to quantify which label
(or labels) is most probable, respecting the variance of the outcome. Since this approach
uses Monte Carlo approximation to evaluate variational inference (section 3.4.1), the
mean and variance are also approximations.

Given the number of samples T , the length of the input sequence M ′, and the number
of labels K, the output y is calculated by the neural network function fnn(x):

ŷ = fnn(x) = (ŷ(1), ..., ŷ(M ′)) (5.1)

⇔ ŷ =



ŷ

(1)
1,1 · · · ŷ

(1)
1,T

... . . . ...
ŷ

(1)
K,1 · · · ŷ

(1)
K,T

 , . . . ,

ŷ

(M ′)
1,1 · · · ŷ

(M ′)
1,T

... . . . ...
ŷ

(M ′)
K,1 · · · ŷ

(M ′)
K,T


 (5.2)
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The superscript of ŷ denotes the time step; the subscript states the label and sample
index. In eq. 5.2, each row in one of the inner matrices represents T samples of a specific
label. The number of rows equals the number of labels. In multiclass classification, each
column adds up to 1, which is a direct result of the softmax activation function in
the last dense layer. Following eq. 3.22, performing only one stochastic forward pass
(T = 1) results in a variance of 0. T should be sufficiently large with T > 1 to perform
uncertainty estimations that are based on the variance and the mean.

The sample means x̄ŷ = (x̄ŷ(1) , · · · , x̄ŷ(M′)) = (x̄1, · · · , x̄M ′) are calculated for each time
step t:

x̄t = 1
T

T∑
s′=1

ŷ
(t)
∗,s′ = 1

T


∑T
s′=1 ŷ

(t)
1,s′

...∑T
s′=1 ŷ

(t)
K,s′

 (5.3)

Similar to Named Entity Recognition (NER) (section 4), it is possible to assign a label
ŷ∗(t) to each time step by finding the maximum value of the sample mean vector x̄t. Let
ŷ∗(t) be such that x̄t,ŷ∗(t) = max(x̄t), where the second index of the subscript denotes
the label:

ŷ∗ = (ŷ∗(1), . . . , ŷ∗(M
′)) (5.4)

Since eq. 5.4 does not address variance in the estimations, the uncertainty of ŷ∗(t) can
not yet be determined. Rather, the prediction ŷ∗ is a sequence of labels that are the
most likely out of all possible permutations. This does not imply the predictions to be
correct or certain. This is further explained in section 5.4.

Independent of uncertainty estimations, a feasible method to determine the label of ŷ
is to assign weights to each time step. This requires a weight sequence g of length M ′.
Each mean vector x̄t is scaled by gt and normalized by g, also known as the weighted
arithmetic mean:

ŷg =
∑M ′
t=1 gt x̄t∑M ′
t=1 gt

(5.5)

ŷg is a K-sized vector. The highest value indicates the prediction.

Initially, the LSTM states are uniformly random. This causes some noise in earlier time
steps. Therefore, sequence weights that favor later time steps are preferable. Empirically,
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the following sequence weights delivered good results:

gfull = (1, · · · , 1) (5.6)

glinear = ( 0
M ′ − 1 ,

1
M ′ − 1 , · · · ,

M ′ − 2
M ′ − 1 ,

M ′ − 1
M ′ − 1) (5.7)

gend = (0, · · · , 0, 1) (5.8)

Choosing g = gend is the same as evaluating the last time step. These methods only use
the sample mean. The uncertainty is yet to be determined.

5.4 Uncertainty Evaluation

There are various types of independently measurable uncertainties (section 3.1). This
section introduces a method to evaluate epistemic uncertainty.

5.4.1 Uncertainty Quantification

Let fU (t) be a function to quantify epistemic uncertainty at each time step t in ŷ. Its
implementation follows the definition from eq. 3.4:

fU (t) = 1
T

T∑
s′=1

(ŷ(t)
∗,s′ − ȳt)(ŷ

(t)
∗,s′ − ȳt)

ᵀ (5.9)

The epistemic uncertainty at any time step is simply the covariance matrix of ŷ(t).
Therefore, the variance s2

t of ŷ(t) at time step t is the diagonal of fU (t), and st =
√
s2
t is

the standard deviation. The simplicity of the standard deviation makes it a practicable
candidate for uncertainty quantification. Let U(t, l) be a function that returns the
standard deviation (i.e., the epistemic uncertainty) for label l at time step t:

U(t, l) = st,l =
√
fU (t)l,l (5.10)

The subscript l, l accesses the lth variance on the diagonal of the covariance matrix
returned by fU (t).
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Similar to eq. 5.5, the uncertainty estimations should also be weighted by the weight
sequence g. Thus, the weighted arithmetic mean Ug is formally defined as:

Ug(l) =
∑M ′
t=1 gtU(t, l)∑M ′

t=1 gt
(5.11)

5.4.2 Segmentation

Subdividing a prediction ŷ into smaller segments supports the identification of uncertain
parts.

By using a threshold α > 0, a prediction at time step t, and label l is uncertain if
U(t, l) > α. Time steps t1 and t2 are connected and form a segment if they are neighbors
with t1 + 1 = t2 or t1 − 1 = t2 and have the same uncertainty label:

uncertain: U(t1, l) > α ∧ U(t2, l) > α (5.12)

confident: U(t1, l) ≤ α ∧ U(t2, l) ≤ α (5.13)

5.4.3 Multivariate Gaussian Distribution

The sample mean x̄t and covariance matrix Kt = fU (t) define an approximate version of
a possibly multivariate Gaussian distribution, assuming that the predictive distribution
can be modeled as a series of Gaussian distributions1:

(X(1) ∼ NK(x̄1,K1), ..., X(M′) ∼ NK(x̄M ′ ,KM ′)) (5.14)

5.5 Example

In this example, a prediction of a two-class classification problem is given by:

ŷ =
([

0.46 0.48 0.47
0.54 0.52 0.53

]
,

[
0.55 0.45 0.47
0.45 0.55 0.53

]
,

[
0.48 0.71 0.63
0.52 0.29 0.37

]
,

[
0.86 0.83 0.76
0.14 0.17 0.24

])
(5.15)

1Softmax and sigmoid limit the codomain to [0, 1]. Truncated Gaussian or Beta distributions are
reasonable alternatives.
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The sample means and standard deviations of ŷ can be calculated for each time step
and label:

x̄ŷ ≈
([

0.47
0.53

]
,

[
0.49
0.51

]
,

[
0.61
0.39

]
,

[
0.81
0.19

])
(5.16)

sŷ ≈
([

0.0098
0.0098

]
,

[
0.043
0.043

]
,

[
0.095
0.095

]
,

[
0.043
0.043

])
(5.17)

Analogous to eq. 5.4, each time step is assigned a label based on the sample means.
Using the weight sequence g = gend = (0, 0.3̄, 0.6̄, 1) to calculate the weighted arithmetic
mean, the first entry of ŷg, which corresponds to the first label, is the most likely:

ŷ∗ = (1, 1, 0, 0) (5.18)

ŷg ≈

0·0.47+0.3̄·0.49+0.6̄·0.61+1·0.81
0+0.3̄+0.6̄+1

0·0.53+0.3̄·0.51+0.6̄·0.39+1·0.19
0+0.3̄+0.6̄+1

 ≈ [0.69
0.31

]
(5.19)

To calculate Ug(0) and Ug(1), the standard deviations sŷ are reduced to a single dimen-
sion per label:

Ug(0) = Ug(1) ≈ 0 · 0.0098 + 0.3̄ · 0.043 + 0.6̄ · 0.095 + 1 · 0.043
0 + 0.3̄ + 0.6̄ + 1

(5.20)

≈ 0.06

With α = 0.04, the uncertain time steps are t = 0 and t = 2 for both labels.
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6 Experiments

In this chapter, two publicly available datasets are examined. The first sections 6.1 to 6.4
describe the setup and implementation of the Bayesian LSTM with Monte Carlo (MC)
Dropout and Bayes by Backprop (BBB) in Tensorflow 2. Sections 6.5 and 6.6 present the
model performance and uncertainty implications in binary and multiclass classification
with both datasets. Section 6.7 shows the real-time proof of concept application that
was created alongside this work. The application supports multiple Bayesian models.

6.1 Software

The code is written in Python 3.7. The following list outlines critical frameworks and
libraries used in the experiments:

• Tensorflow v2.1.0 [50] is an open-source machine learning framework developed
by Google. Internally, Tensorflow translates the user model into a flow graph
for fast execution on CPUs, GPUs, and Tensor Processing Units (TPUs). To
successfully transform the source code into a graph, Tensorflow provides many
APIs and data objects. These data objects are called tensors and give Tensorflow
its name. Tensorflow’s high-level neural network API is Keras [51]. It is used
throughout the experiments.

• Tensorflow Probability v0.9.0 [52] is a probability theory extension to the Ten-
sorflow framework. It adds probabilistic computation to Tensorflow. The neural
network layers implement the common Keras layer interface. Through this inter-
face, the layers can be used interchangeably with other Tensorflow layers. Tensor-
flow Probability also supports custom Bayesian layers by providing functions to
create trainable multivariate posterior distributions and multivariate priors.
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• Natural Language Toolkit (NLTK) v3.4.5 [53] is a library for computational
linguistics. It contains a collection of commonly used Natural Language Processing
(NLP) tools to analyze and process texts. It also provides interfaces to access
various corpora and other lexical resources.

• BERT as a service v1.10.0 [54] is a word and sentence encoder that is based
on Bidirectional Encoder Representations from Transformers (BERT). The service
runs on a server with a pre-trained BERT model. To encode texts, a Python or
HTTP client that connects to the service is needed. Thus, BERT as a service
provides a convenient architecture to execute independent text encoding jobs with
BERT.

6.2 Word Embeddings

The following sections present three approaches to implementing word embeddings. The
first one being a trainable Keras word embedding layer [51] in section 6.2.1. The two
subsequent approaches in sections 6.2.2 and 6.2.3 use a pre-trained BERT model. Table
6.3 compares the performance of all embeddings.

6.2.1 Keras Embedding Layer

Keras word embedding layer [51] turns positive integers into dense vector representations
of a fixed size. The embedding size is a hyperparameter of the model. In the experiments,
it is either set to 100 or 300. It is a trainable word embedding with a random initial
state.

Text Preprocessing

Since the data is noisy from the perspective of a neural network, it requires multiple
preprocessing steps. Moreover, the text needs to be tokenized so that it can be used as
an input for the neural network. Based on the methods presented in section 2.1, the
following steps are applied to all datasets (training, validation, and test) respectively.
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1. Text preparation and cleanup: As the first step, the UTF-8 encoded text
is lowercased. A character is removed when it does not fall into any of these
categories: alphabetic, numeric, period, question mark, and exclamation mark.

2. Tokenization: Text can be split into a sequence of tokens using the default to-
kenizer API of the NLTK package. Internally, it uses the Penn Treebank [55]
and the Punkt Sentence tokenizer [56] (section 6.1). Fundamentally, the NLTK
tokenizer splits the text by whitespace and punctuation.

3. Lemmatization: Each token is then lemmatized by NLTK’s WordNet lemmatizer
that operates based on the WordNet Corpus [57]. If the word exists in the corpus,
the algorithm will try to transform the input token by reducing it to its root form;
otherwise, the unchanged input token is returned. For example, the token dogs

becomes dog and the token abaci becomes abacus.

4. Normalization: In the last step, the tokens are further normalized to reduce
their complexity. Numeric tokens like 402 and 1 are replaced by the placeholder
[NUMERIC]. This step is justified by the limited size of the word index but causes
information loss. It also reduces repeated characters to a maximum number of
two. For example, hellllo becomes hello.

Word Index

100 101 102 103 104 105

word index
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35
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Figure 6.1: #Occurrences over the word index on a logarithmic scale. See also: table 6.1.

A word index efficiently transforms a token sequence into a numeric sequence by its
index. Following the text transformations in the previous section 6.2.1, each token of
the corpus is assigned a unique index, starting at zero. In this case, the corpus is
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determined by large samples from both datasets. The order is based on a frequency
distribution that records the number of times each token has occurred. This results in
a total size of around 130,000 entries. Out of the 130,000 entries only the first 35,000
are evaluated in the embedding layer of the neural network (fig. 6.1). The word index
is stored as a plain text file where each row contains the index in ascending order, the
token, and the number of occurrences (table 6.3).

index token occurrences

0 . 1559374
1 the 1294457
2 a 819188
3 and 689231
4 i 629623
...

4229 stopping 346
4230 household 346
4231 meaningful 345

...
56141 regualr 3
56142 gismo 3
56143 framerates 3

...

Table 6.1: Word index samples. Each row represents one line of the word index text file.

The start of a sequence, post-sequence padding, and any unknown words are substituted
with one of the three special tokens [START], [PAD], and [UNK] respectively. Padding
tokens are required because LSTMs need the input sequence to be of fixed length. If
the sequence is too short, the remaining entries are set to [PAD]. Unknown words occur
when the word index does not contain the word or when only a subset of the word index
is used, limiting the vocabulary. Is that the case, the word is substituted with the [UNK]
token. The [START], [PAD], and [UNK] tokens are prepended to the word index. This
requires the word index to shift its index by 3.

6.2.2 BERT Embedding

To use BERT as a context-aware word embedding layer, it is recommended to choose
one of multiple pre-trained BERT models [9]. Here, the uncased English base model
with 12 layers, 768 hidden units, and 12 heads–totaling 110 million parameters–is used
without further fine-tuning. Because of their size, a more flexible architecture to integrate
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BERT as a word embedding is desirable. BERT can be separated into an independent
service with BERT as a service [54] (section 6.1). The service manages the Tensorflow
implementation, loading the pre-trained model, and BERT-specific tokenization. It does
not require a text preprocessing step. Starting the service in a Docker container ensures
reusability and scalability. As shown in figure 6.2, the BERT as a service instance returns
a pair of word vectors and tokens for each input text. The word vectors are inputs to the
Bayesian LSTM, which therefore does not need an additional word embedding layer. In
practice, the first layer is a dense layer, directly followed by the Bayesian LSTM layer.

Bayesian LSTM 
(no embedding layer)BERT as a serviceClient

predict(word vectors)

word vectors, tokens

bc.encode(text)

Figure 6.2: BERT embedding with BERT as a service.

For performance reasons, all responses are cached. This eliminates the need to recalculate
the word embedding for the same dataset. The Python client which connects to the
service abstracts the communication in fig 6.2 in a few lines of code:

1 from bert_serving.client import BertClient
2
3 def bert_encode_text(text):
4 with BertClient(ip="bert -as -service", timeout =30 _000) as bc:
5 [word_vectors], [tokens] = bc.encode(
6 [text], show_tokens=True , is_tokenized=False)
7
8 return word_vectors , tokens

Listing 6.1: Text encoding with the Bert as a service client in Python.
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6.2.3 BERT Embedding with PCA

All word vectors returned by the pre-trained BERT model in section 6.2.2 are 768-
dimensional. This is drastically higher than the 100 and 300 dimensions used in the
experiments with the Keras embedding (section 6.2.1). The output dimensions of pre-
trained BERT models are not easily adjustable since it requires retraining over a huge
corpus.

As a performance test, an incremental Principal Component Analysis (PCA) reduces
the dimensions of each word vector to 128. The PCA kernel is trained using the training
dataset. The idea is that most dimensions hold little to no relevant information. Table
6.3 shows the results of using PCA. The embedding process is almost identical to section
6.2.2. Figure 6.3 shows the new PCA component that acts as an intermediate layer.

PCA
Bayesian LSTM 

(no embedding layer)BERT as a serviceClient

pca word vectors

transform(word vectors)

predict(pca word vectors)

word vectors, tokens

bc.encode(text)

Figure 6.3: BERT embedding with BERT as a service using PCA to reduce the output dimen-
sions before passing the word vectors into the Bayesian LSTM.

6.3 Bayesian LSTMs in Tensorflow 2

The implementation of variational Bayesian inference (section 3.2) in LSTMs differs
heavily between the two methods MC Dropout and Bayes by Backprop. While MC
Dropout uses a standard LSTM layer, Bayes by Backprop requires all weights of the
LSTM to be modeled with probability distributions. The Tensorflow extension Ten-
sorflow Probability [52] already provides a broad range of tools and variational layers
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but lacks a Bayesian LSTM layer implementation. Section 6.3.2 explains the custom
Bayesian LSTM layer implementation in detail.

6.3.1 Implementation of MC Dropout

As mentioned in previous chapters, the advantage of MC Dropout is its compatibility
with existing architectures. As shown in listing 6.2, the high-level Tensorflow API Keras
allows to set the training parameter to True in line 7 when the functional API is used.
This effectively enables dropout at inference time. Setting return_sequences to True

will result in the layer returning the hidden state (eq. 2.13) at each time step. This is
required for sequence-to-sequence classification.

1 lstm = LSTM(units=64,
2 return_sequences=True ,
3 stateful=False ,
4 dropout =0.5,
5 recurrent_dropout =0.5,
6 recurrent_initializer=tf.initializers.glorot_uniform ())
7 outputs = lstm(outputs , training=True)

Listing 6.2: MC Dropout layer with Keras’ functional API

In the experiments, MC Dropout is tested with various dropout probabilities pdrop ∈
{0.1, 0.25, 0.5, 0.75} (tables 6.3 and 6.6). The dropout mask does not change during a
sequence. This is required by MC Dropout [7].

6.3.2 Implementation of Bayes by Backprop

The implementation of Bayes by Backprop (BBB) for LSTMs is an adaptation of Ten-
sorflow’s default LSTM implementation. It is instantiated just like any other layer class
(listing 6.3) but requires a divergence function to calculate the divergence between the
variational posterior q(θ) and prior P (θ): divergence_fn(). It is equivalent to the first
part in eq. 3.20, stating that the KL divergence is defined by KL[q(θ) || P (θ)]. As noted
in eq. 3.18, all models trained with minibatches have to scale the KL divergence of the
loss function appropriately. Thus, the KL divergence is divided by batch_size.
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1 def divergence_fn(q, p):
2 return tfp.distributions.kl_divergence(q, p) / batch_size
3
4 lstm = BayesianLSTM(units=64,
5 divergence_fn=divergence_fn ,
6 return_sequences=True ,
7 unroll=True)

Listing 6.3: Initialization of a Bayesian LSTM layer

Listing 6.4 shows the Bayesian LSTM layer class. It has an _apply_divergence() func-
tion to add the KL divergence to the loss of the layer. After a sequence is processed by
the call() function, _apply_divergence() is called three times to add the divergence
w.r.t. the kernel Ui,f,o,c, recurrent kernel Wi,f,o,c, and bias bi,f,o,c (eq. 2.8). Not shown
is the build() function that instantiates the Bayesian LSTM cell in listing 6.5. It is a
Bayesian implementation of the LSTM cell mentioned in fig. 2.4.

1 class BayesianLSTM(tf.keras.layers.RNN):
2 # ...
3
4 def call(self , inputs):
5 cell_states = super(BayesianLSTM , self).call(inputs)
6 # ... ( _apply_divergence for kernel and bias)
7 self._apply_divergence(
8 self.divergence_fn ,
9 self.cell.recurrent_kernel_posterior ,
10 self.cell.recurrent_kernel_prior)
11
12 return cell_states
13
14 def _apply_divergence(self , divergence_fn , posterior , prior):
15 kl_loss = divergence_fn(posterior , prior)
16 self.add_loss(kl_loss , inputs=True)

Listing 6.4: Bayesian LSTM layer class (simplified)

The weights–namely the kernel, recurrent kernel, and bias–of the Bayesian LSTM are
stored in a Bayesian LSTM cell instance (listing 6.5). They are modeled as (independent)
multivariate Gaussians, representing the variational posterior in eq. 3.13. Training the
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neural network with Bayes by Backprop (BBB) approximates the variational posterior to
resemble the intractable and unknown true posterior. The variational posterior and its
prior are trainable distributions in Tensorflow Probability. Their parameters are tracked
in Tensorflow’s computational graph and are updated by backpropagation, i.e., BBB.

The function call() of the BayesianLSTMCell class is called with the new input and
the previous cell state at each time step t. The weights are estimated by MC sampling
with a sample size of 1. Apart from that, it strictly follows eq. 2.8.1

1 class BayesianLSTMCell(tf.keras.layers.Layer):
2 # ...
3
4 def build(self , input_shape):
5 # ... (kernel , bias)
6
7 # recurrent kernel
8 recurrent_kernel_shape = (self.units , self.units * 4)
9 self.recurrent_kernel_posterior = mean_field_normal(
10 dtype , recurrent_kernel_shape , ’recurrent_kernel_posterior ’,
11 self.trainable , self.add_weight)
12
13 self.recurrent_kernel_prior = multivariate_normal(
14 dtype , recurrent_kernel_shape , ’recurrent_kernel_prior ’,
15 self.trainable , self.add_weight)
16
17 def call(self , inputs , states , training=None):
18 # previous memory state , previous carry state
19 h_tm1 , c_tm1 = states
20
21 # MC sampling
22 kernel = self.kernel_posterior.sample ()
23 recurrent_kernel = self.recurrent_kernel_posterior.sample ()
24 bias = self.bias_posterior.sample ()
25
26 z = K.dot(inputs , kernel)
27 z += K.dot(h_tm1 , recurrent_kernel)
28 z = K.bias_add(z, bias)
29

1The implementation heavily uses numpy array notation. The variable z stores the inputs for all gates.
The gates are later extracted into z0, z1, z2, and z3 using numpy array slicing.
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30 z0 = z[:, :self.units]
31 z1 = z[:, self.units: 2 * self.units]
32 z2 = z[:, 2 * self.units: 3 * self.units]
33 z3 = z[:, 3 * self.units:]
34
35 i = self.tf.sigmoid(z0)
36 f = self.tf.sigmoid(z1)
37 c = f * c_tm1 + i * self.tf.tanh(z2)
38 o = self.tf.sigmoid(z3)
39 h = o * self.tf.tanh(c)
40
41 return h, [h, c]

Listing 6.5: Bayesian LSTM cell class (simplified)

6.4 Hyperparameter

The binary and multiclass models are trained on a set of hyperparameters over 30 epochs
with early stopping enabled:

• Bayesian method ∈ {MC Dropout, BBB}

• LSTM units u ∈ {16, 64, 128}

• Embedding dimension dims ∈ {100, 300}

• Dropout probability pdrop ∈ {0.1, 0.25, 0.5, 0.76}

• Learning rate =

0.001, if epoch< 5

0.001 exp(0.1(5− epoch)), otherwise.

• Optimizer = Adaptive Moment Estimation (Adam)

The dropout probability is only used by MC Dropout. If BERT replaces the word
embedding, the embedding dimension will be 768 (128 with BERT PCA).

In compliance with fig. 5.1, the last two dense layers have the output shape (batch
size, M, K× 2 + 8) and (batch size, M, K) respectively. Again, K denotes the number
of labels in the classification and M the maximum sequence length (section 5.2).
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6.5 Binary Classification

This section is about the sequence-to-sequence approach to sentiment analysis. It lists
the performance of different models and hyperparameters introduced in previous sec-
tions. The experiments focus on epistemic uncertainty in various scenarios.

6.5.1 Dataset

The Internet Movie Database (IMDB) [58] sentiment classification dataset–subsequently
referred to as IMDB dataset–holds 25,000 positive and 25,000 negative reviews. The
reviews’ average length is 234 words, or 251 tokens (table 6.2). Fig. 6.4 and appendix
A.2 list text samples from the IMDB test dataset.

Negative: This was painful. I made myself watch it until the end, even though I had absolutely
no interest in the plot, if there was one. My patience was not rewarded. The ending was even
worse than the rest of the film. [...]
Positive: It seems that no matter how many films are made on the subject, there is no shortage
of stories that emerge from the Second World War. [...] The hardcore war film buff may find its
exploration of relationships a bit off-putting, but it is on the whole an excellent film regardless of
the bellicose element or not.

Figure 6.4: Negative and positive IMDB reviews (shortened). The full reviews are available in
figs. A.1 and A.2.
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Figure 6.5: IMDB dataset: Number of tokens per text. The tokens are generated by a custom
tokenizer (section 6.2.1). Here, the histogram only includes values up to the 98th
percentile. The dotted line marks the maximum sequence length.
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training size 22,500
test size 25,000

# tokens
mean 251

25th percentile 139
50th percentile 189
75th percentile 304
98th percentile 836

labels 1 (sentiment)

Table 6.2: IMDB dataset statistics

6.5.2 Training

As mentioned in section 6.4, the models are trained over 30 epochs with early stopping
and a decreasing learning rate. MC Dropout stops training based on its validation loss
(figs. 6.6a, 6.6b, and 6.6c), whereas models with BBB use validation accuracy at the
end of the sequence (figs. 6.6d, 6.6e, and 6.6f)2.

Table 6.3 presents the performance scores. All scores are separated into a training score
with gfull, test score with gfull, and test score with gend. Higher scores at the end of the
sequence justify the distinction between gfull and gend.

Method u dims pdrop Accuracy % Precision % Recall %

MC Dropout

16 100 0.5 83.1/72.9/79.6 83.9/74.2/80.7 81.9/69.7/77.7
64 100 0.1 85.5/76.2/84.1 85.1/78.5/86.8 86.2/71.6/80.3
64 100 0.25 83.0/75.4/82.6 82.5/75.6/83.5 83.8/74.4/81.2
64 100 0.5 88.3/73.6/80.8 88.7/76.1/83.2 87.8/68.4/77.0
64 100 0.75 82.3/71.8/77.8 82.5/72.6/80.1 82.1/69.3/73.9
64 300 0.5 86.8/73.5/80.4 88.6/74.9/81.1 84.4/70.3/79.3
128 100 0.5 85.7/73.9/80.9 86.6/77.4/84.7 84.5/67.0/75.2

MC Dropout
BERT

64 768 0.5 90.7/88.3/89.8 90.6/88.1/89.3 90.8/88.6/90.5
64 128* 0.5 88.6/87.6/89.7 88.3/87.5/89.3 89.1/87.8/90.3

BBB

16 100 - 87.8/73.5/80.7 88.3/75.9/84.0 87.2/68.4/75.7
64 100 - 83.9/71.1/77.8 82.5/71.2/78.4 86.2/70.1/76.7
64 300 - 82.1/75.1/82.7 84.1/77.6/84.4 79.1/70.1/80.3
128 100 - 83.4/72.0/78.7 84.0/70.8/76.7 85.9/74.3/82.2

BBB BERT
64 768 - 86.9/86.2/87.8 86.9/86.0/87.2 87.0/86.4/88.5
64 128* - 85.0/84.7/87.6 83.3/84.4/87.4 84.5/85.2/87.7

Table 6.3: Performance of IMDB models with MC Dropout and Bayes by Backprop. u: number
of LSTM units in each cell; dims: word embedding dimension; pdrop: recurrent
dropout rate. The metrics are divided into training (gfull)/test (gfull)/test (gend)
from 3 samples. Bold scores mark the overall best and underlined scores the best
of each group. *The reduced embedding dimension dims = 128 is the result of a
PCA transformation.

2Validation and training loss decrease monotonously for more than 30 epochs without noticeably im-
proving the model’s accuracy, precision, or recall score.
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With BERT as a word embedding, MC Dropout and BBB achieve the best accuracy,
precision, and recall scores. The training results are close to the test results with less
than 2% difference. In the experiments, models with BERT are less likely to overfit.
Interestingly, BERT performed only slightly better than BERT with PCA. Thus, the
information needed in sentiment detection can be captured in much less than BERT’s
default 768 embedding dimensions for the base model. Nevertheless, there are disadvan-
tages of using BERT combined with this approach, as demonstrated in section 7.5.4.

Models with MC Dropout and a trainable Keras word embedding showed the best results
for lower dropout probabilities pdrop = 0.1 and pdrop = 0.25. To prevent the model with
lower dropout rates from overfitting, it relies on early stopping. With pdrop = 0.1, the
model trained over three epochs before early stopping kicked in. With pdrop = 0.5, it
trained over 16 epochs.

Models with BBB returned the highest test accuracy of 82.7% with 64 LSTM units and a
300-dimensional word embedding. Higher embedding dimensions and a greater number
of LSTM units slightly increased the model performance but also increased the number
of trainable model parameters.
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(a) MC Dropout, u = 128, dims = 100,
pdrop = 0.5
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(b) MC Dropout (BERT), u = 64, dims =
768, pdrop = 0.5
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(c) MC Dropout (BERT), u = 64, dims =
128, pdrop = 0.5
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(d) BBB, u = 64, dims = 300
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(e) BBB (BERT), u = 64, dims = 768

0 5 10 15 20
Epoch

200

400

600

800

1000

1200

1400

Lo
ss

50%

60%

70%

80%

90%

100%
Ac

cu
ra

cy
training loss
validation loss
training accuracy
validation accuracy

(f) BBB (BERT), u = 64, dims = 128

Figure 6.6: Training and validation loss, and accuracy with early stopping enabled. Epochs in
the gray area are ignored due to early stopping. (IMDB)
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6.5.3 Benchmark Comparison

In 2019, XLNet [1] achieved state-of-the-art model performance with an accuracy of
96.21% (table 6.4). MC Dropout with BERT scored an accuracy of 89.8%, ranking
last in comparison to XLNet and others. It performed best out of all the models that
are experimented with. This approach’s main goal is to detect uncertainty and not to
replace highly optimized models. Therefore, the performance is sufficient.

Model Accuracy %

XLNet (2019) [1] 96.21
BERT large + ITPT (2019) [23] 95.79

ULMFiT (2018) [59] 95.4
BCN + Char + CoVe (2017) [60] 91.8

MC Dropout BERT (own, 2020) 89.8
BBB 64 LSTM units, 300 dims (own, 2020) 82.7

Table 6.4: IMDB benchmarks

6.5.4 Input-Dependent Uncertainty

In this section, a Bayesian LSTM model is confronted with four different types of input
uncertainty. Section High Confidence starts with a text input, that is easy to classify.
If a review starts positively and ends negatively–or the other way around–it has mixed
sentiment. This is studied in section Mixed Sentiment. Not every word is listed in
the word index. Bad grammar and wrong spelling may cause unknown words. Section
Unknown Words addresses their effect. To show the model’s capabilities, a weather
prediction is used as an input in section Out-of-Distribution Example.

Unless otherwise stated, they are evaluated against Bayes by Backprop (BBB) with a
300-dimensional Keras word embedding and 64 LSTM units with 75 samples.3 The
graphs are separated into two sub graphs. The first one tracks the sample mean in blue
in addition to its standard deviation as a gray area around the sample mean. The second
graph plots the course of the standard deviation along with the uncertainty threshold
α = 0.2 as a horizontal dotted line. All texts are manually selected. The results are
representative of most inputs in the respective category.

3The evaluation chapter 7 includes a comparison between different models.

47



6 Experiments

High Confidence
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Figure 6.7: Negative sentiment with high confidence. The true label is negative. See also: fig.
A.1.

In an unambiguous case, the model should be confident about its prediction. In fig. 6.7,
the negative review fits this description with Uglinear

≈ 0.02 and ŷglinear
≈ 0.08. The

token painful at time step 3 sets the sentiment for upcoming tokens. Section 7.3 also
discusses the impact of sensitive terms. Fig. A.1 contains the full input text.

High Uncertainty
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Figure 6.8: Mostly positive sentiment with high uncertainty at the end. The true label is
negative. See also: fig. A.3.

Fig. 6.8 shows a sentiment analysis with high uncertainty in the second part of the
review. First, the reviewer shortly summarizes the plot and points out some good aspects
about the movie. The model classifies this part as mostly positive. In the second half,
the reviewer rates the movie negatively. The model returns a high uncertainty for this
transition phase with Ugfull

= 0.12, Uglinear
= 0.17, and Ugend

= 0.28. The weighted
predictions ŷgfull

= 0.7, ŷglinear
= 0.66, and ŷgend

= 0.41 also reveal that later time steps
tend towards a negative sentiment. It is similar to section Mixed Sentiment.

In addition to the standard deviation, every sample is plotted. If the model is uncertain,
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the reviews often have a more complex syntax that might not be fully covered by the
training dataset. Fig. A.3 contains the full input text.

Mixed Sentiment
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Figure 6.9: Mixed sentiment classification with high uncertainty in the second and third review.
The true label is unknown. The negative review (fig. A.3) is included before and
after the positive review. See also: fig. A.4.

Uncertainty estimations should reflect whenever the sentiment of a review changes dras-
tically at certain time steps. In fig. 6.9, a negative review encloses a positive review such
that it is inserted at the beginning and the end of the positive review. The respective
time steps are marked in the figure.

After the dotted vertical line, both models display a rise in uncertainty. For MC Dropout,
the prediction remains uncertain. BBB’s uncertainty fades out at the end of the second
review. BBB records Ugend

= 0.21 which is two times higher than Ugfull
= 0.1. On the

other hand, MC Dropout records Ugend
= 0.31 which is only 35% higher than Ugfull

=
0.23 but also 48% higher than BBB’s uncertainty estimation. Based on this experiment,
the uncertainty in BBB models tends to fade out more rapidly if the review is long
enough. MC Dropout seems to remember the first part of the review over a long period
of time. Fig. A.4 contains the full input text.

49



6 Experiments

Unknown Words

0.0

0.5

1.0

y

0 10 20 30 40 50 60
time step t

0.0

0.2

s ~50% unknown words
<5% unknown words

Figure 6.10: Sentiment analysis with a high rate of unknown words and high uncertainty. 50%
of all words are obscured such that they are not listed in the word index ([UNK]
token). The true label is negative. See also: fig. A.1.

Many user reviews contain spelling errors. In this experiment, 50% of the first 25 words
are randomly replaced with the [UNK] token. The review in fig. A.1 serves as a basis:

[START] [UNK] [UNK] [UNK] . [UNK] [UNK] myself watch [UNK] until [UNK] end [UNK] though
[UNK] [UNK] absolutely [UNK] [UNK] [UNK] [UNK] plot if [UNK] wa one . my patience wa not
rewarded . the ending wa even worse (...)

In comparison to fig. 6.7, the uncertainty increases at the start. Interestingly, the
prediction still tends towards a negative sentiment, which is the correct classification.
Whether the [UNK] token increases uncertainty or does not affect it at all highly depends
on the input and previous time steps. It is beneficial to know the unknown to known
words ratio to evaluate uncertainty estimations.

Out-of-Distribution Example
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Figure 6.11: Sentiment analysis of an out-of-distribution example (weather forecast). The true
label is unknown. See also: fig. A.5.

As a last experiment, the Bayesian LSTM is confronted with an out-of-distribution
example (fig. 6.11). It is selected from a random weather forecast [61].
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Ideally, the prediction should be uncertain with no preference towards positive or nega-
tive sentiment. The experiment shows that the uncertainty is relatively high with Ugfull

,
Uglinear

, and Ugend
> 0.18. The sample mean tends towards a negative sentiment, which

results in ŷglinear
= 0.25. The uncertainty never really decreases noticeably. Fig. A.5

contains the full input text.

6.6 Multiclass Classification

This section contains experiments with multiclass classification. Similar to section 6.5, it
lists the performance of different models and hyperparameters. Again, the experiments
focus on epistemic uncertainty. Multiclass classification demonstrates the application of
higher dimensional output distributions with K > 1.

6.6.1 Dataset

The Amazon customer review [62] multiclass dataset–subsequently referred to as Amazon
dataset–provides 30+ different categories of product reviews. Six of which were chosen
for the classification task. Unlike sentiment analysis, the objective is to classify the
product category based on the user review. The motivation to use this dataset is its size
of 130+ million reviews and the overall short reviews. For more details, refer to fig. 6.12
and table 6.5. Text samples from the Amazon test dataset are listed in fig. 6.13, as well
as in appendix A.2.
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Figure 6.12: Amazon dataset: Number of tokens per text. The tokens are generated by a
custom tokenizer (section 6.2.1). The histogram only includes values up to the
98th percentile. The dotted line marks the maximum sequence length.
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training size 90,000
test size 90,000

# tokens
mean 75

25th percentile 21
50th percentile 38
75th percentile 83
98th percentile 414

labels 6 (software, camera, home entertainment, outdoors, shoes, jewelry)

Table 6.5: Amazon dataset statistics. Only a subset of the 130+ million reviews is used in the
experiments.

Fits both of my vehicles (2008 Chrysler Pacifica and 1996 Cadillac Fleetwood). Just finished a
1100 mile trip across country carrying my cycle. [...] I will reevaluate again once I add a second
bike to the rack to see how it handles.

Figure 6.13: Amazon review in the outdoors category. The full review is available in fig. A.6.

6.6.2 Training

Table 6.6 shows that all MC Dropout models achieved similar test results with around
81.5% accuracy, 90.0% precision, and 77% recall for gend. The ratio between these scores
is about the same for BBB, although significantly lower in absolute terms. All models
have a higher rate of false negatives than false positives demonstrated by high precision
and relatively low recall scores:

true positives

true positives+ false positives︸ ︷︷ ︸
precision

>
true positives

true positives+ false negatives︸ ︷︷ ︸
recall

(6.1)

BBB performed worse than MC Dropout. In fig. 6.14b, BBB’s accuracy starts to
decrease after three epochs, and it stops training. This observation differs from the
binary classification training results in section 6.5.2 in which both methods performed
similarly. Section 7.5.3 discusses this problem in greater detail.

52



6 Experiments

Method u dims pdrop Accuracy Precision Recall

MC Dropout

16 100 0.5 86.2/82.7/81.7 94.3/90.7/89.5 82.1/78.7/77.4
64 100 0.1 86.7/82.6/81.7 94.9/90.9/90.0 82.7/78.5/77.1
64 100 0.25 87.0/82.3/81.6 95.1/90.7/89.7 83.0/78.0/76.9
64 100 0.5 85.8/82.1/81.1 94.1/90.6/89.6 81.6/77.9/76.3
64 100 0.75 86.4/82.6/81.8 94.4/90.6/89.6 82.4/78.7/77.4
64 300 0.5 85.5/82.6/81.7 94.2/90.8/89.9 81.1/78.6/77.1
128 100 0.5 85.1/82.2/81.2 93.4/91.2/90.3 80.9/77.7/76.0

BBB

16 300 - 74.8/73.1/69.5 84.2/82.3/78.3 68.3/67.4/62.7
64 100 - 73.3/71.2/67.8 83.4/81.7/78.3 66.6/64.6/60.1
64 300 - 74.7/73.3/70.3 85.6/83.9/80.7 67.7/67.0/62.7
128 300 - 74.5/73.6/71.3 84.0/82.8/80.0 68.3/68.5/65.6

Table 6.6: Performance of Amazon models with MC Dropout and Bayes by Backprop. u: num-
ber of LSTM units in each cell; dims: word embedding dimension; pdrop: recurrent
dropout rate. The metrics are divided into training (gfull)/test (gfull)/test (gend)
from 3 samples. Bold scores mark the overall best and underlined scores the best
of each group.
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(a) MC Dropout, u = 128, dims = 100, pdrop = 0.5
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(b) BBB, u = 128, dims = 300

Figure 6.14: Training and validation loss, and accuracy with early stopping enabled. Epochs
in the gray area are ignored due to early stopping. (Amazon)
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6.6.3 Correlation
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Figure 6.15: Correlation between two semantically similar labels. See also: fig. A.7.

One property of the softmax function is that all values must add up to one. Figs.
6.15 and A.7 show two negatively correlated labels. At any time step, the sum of both
predictions is approximately one; the predictions of other labels are close to zero. The
plot shows that the review is only associated with Software and Home Entertainment.
They also share a similar standard deviation. The negative correlation between both
labels causes the high uncertainty in the prediction:

Uglinear
(Software) ≈ Uglinear

(Home Entertainment) ≈ 0.32

In figs. 6.16 and A.8, the labels cannot be distinguished that easily. The setup is similar
to the mixed sentiment experiment in section 6.5.4.

The first 79 tokens are predominantly labeled as Shoes. The model is confident until the
Software review starts. Appending the Software review to the existing one demonstrates
a multiclass classification that abruptly changes mid-sequence. Now, the sample mean of
the label Shoes decreases and the uncertainty increases. The model favors all technology-
related labels Camera, Home Entertainment, and Software until the true label Software
is detected at time step 125. It is also this time step that sets the uncertainty of most
labels close to zero except for Home Entertainment. At the last time step, the label
Software has ŷgend

(Software) ≈ 0.97 with very low uncertainty.
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Figure 6.16: Uncorrelated labels. The first 79 tokens are from a review in the Shoes category.
The remaining tokens are from a review in the Software category. See also: fig.
A.8.
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6.7 Proof of Concept

This section outlines the proof of concept application. It is designed to visualize sequence-
to-sequence text classification in real-time. It utilizes a subset of the models presented
in previous sections and supports binary and multiclass classification.

6.7.1 Software

The proof of concept application consists of multiple components, each bundled into a
Docker [63] image and managed by Docker-Compose. Docker’s virtual network allows
for internal communication. External access is handled over HTTP with an NGINX [64]
reverse proxy configuration.

The backend (fig. 6.17) is written in Python. It depends on the same libraries as the
experiments (section 6.1). Additionally, the API uses the Flask framework [65] for its
HTTP server.

The UI is created with React [66] and is written in TypeScript. React is a library to
manage application state and component-based development. The application runs in a
browser.

6.7.2 Architecture Overview

API

UI 
Browser

Frontend Backend
Bert as a service

HTTP
Tokenization

Bert client

Trained
Models

Amazon

IMDBSequence 
Analysis

HTTP

Bert client

Model 
selection

Figure 6.17: Proof of concept architecture. The gray boxes indicate independent components.
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Fig. 6.17 shows the interaction between the user and the API. The user selects the
classification problem and other parameters listed in section 6.7.3 and sends an HTTP
request with the input text to the API. Based on the parameters of the HTTP request,
the API determines the matching model and whether to use the BERT or Keras embed-
ding layer. Then, the input text is tokenized and forwarded to the trained Tensorflow
model. The model predicts the label sequence ŷ (eq. 5.1) with the specified number of
forward passes.

The API determines the weighted sample mean ŷg (eq. 5.5) and uncertainty Ug (eq.
5.11) for each weighted sequence gfull, glinear, and gend after the prediction has been
finished. Now, the client receives the sequence analysis in JSON format. Appendix A.1
contains the full response schema.

6.7.3 User Interface

Figure 6.18: Proof of concept landing page with parameters and text area.

The user interface (fig. 6.18) is designed to provide an information-rich and visually
pleasing sequence analysis. It supports multiple models and hyperparameters. A section
at the top of the page allows the user to select the classification problem represented
by the dataset, the Bayesian inference method, the word embedding, and the number
of samples. Not all combinations are possible; for example, none of the Amazon models
support the contextual BERT word embedding.
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A text area is located below the parameter section. The dropdown menu above has a
handful of text samples from both test dataset that are sorted by label. After formulating
the input text, the user can click on the blue Analyze Text button to reveal the sequence
analysis (figs. 6.19, 6.20, and 6.21).

Figure 6.19: Binary prediction analysis.

The analysis section is divided into four subsections. Figs. 6.19 and 6.20 show screen-
shots of the first three subsections for binary and multiclass classification.

The first subsection highlights the predicted label with an icon, an uncertainty estimation
as a color, and, in case of multiclass classification, a radar chart with all labels. The
threshold α (section 5.4.2) determines the color (red to green) an uncertainty estimation
is reduced to. Red signifies high uncertainty; green high confidence. The prediction and
uncertainty estimation are calculated using the weight sequence gend.

The table contains additional information about all labels. It includes predictions and
uncertainty estimations for gend, glinear, and gfull. Clicking on a row selects the label for
the upcoming subsections. This is only relevant for multiclass classification (fig. 6.20).

As mentioned above, the next two subsections depend on the selected label. The first one
marks uncertain tokens with a shade of red. It shows confident and uncertain segments
in the sequence. Selecting the checkbox above the list of tokens displays the sample
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Figure 6.20: Multiclass prediction analysis.

mean next to each token. Furthermore, the three most sensitive terms with the highest
positive or negative impact are highlighted with a black border and an arrow to their
left, indicating the type of change. For more information on sensitive terms, refer to
section 7.3.

The last subsection (fig. 6.21) is an interactive graph over all time steps with multiple
display modes: mean ± standard deviation, standard deviation, and samples. Simply
displaying the samples can be hard to read. Therefore, the two other modes were
introduced. The sample means in blue are visible in all modes.

The view will update with each new request. The diverse data visualization tools help to
understand uncertainty in text classification by reducing the available information into
comprehensible representations.
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(a) Mean ± standard deviation

(b) Standard deviation

(c) Samples

Figure 6.21: Interactive sequence graph over all tokens with multiple display modes.
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This chapter evaluates the sequence-to-sequence classification approach to binary and
multiclass classification with Bayes by Backprop (BBB) and Monte Carlo (MC) Dropout.
It focuses on uncertainty estimations and the performance implications.

Section 7.1 starts with a model comparison. It compares the relation between confidence
and accuracy, based on uncertainty thresholds. Section 7.1.2 compares the binary clas-
sification models using the distribution of uncertainty over various weighted predictions
ŷg.

In the experiments, stopwords were not removed. Section 7.2 evaluates the implications
of this decision. Unlike stopwords, sensitive terms are expected to affect the outcome of
a prediction. Section 7.3 discusses the detection of sensitive terms and their influence
on uncertainty.

The last two sections 7.4 and 7.5 evaluate whether the goals were reached and what
known complications occurred during the training and experiments.

7.1 Model Comparison

The experiments have shown that Bayes by Backprop (BBB) and Monte Carlo (MC)
Dropout are capable of estimating epistemic uncertainty over a sequence while maintain-
ing acceptable performance scores (tables 6.3 and 6.6). BBB suffered in multiclass sce-
narios, performing approximately 15% worse than its MC Dropout counterpart. In com-
parison, using the Keras word embedding and g = gend, BBB (u = 64 and dims = 300)
achieved 82.7% accuracy in binary classification. This is only 1.7% worse than MC
Dropout (u = 64, dims = 100, and pdrop = 0.1) with 84.1% accuracy and similar to MC
Dropout models with higher dropout rates.
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7.1.1 Confidence and Accuracy
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(c) Amazon dataset (Keras embedding)

Figure 7.1: Model confidence with various thresholds. Each statistic consists of 1,500 data
points from 8 samples. Fig. 7.1c only evaluates the uncertainty of the predicted
label against the threshold; others are not shown.

Section 5.3 introduced weighted arithmetic means that enable quantifying uncertainty
over the whole sequence. Fig. 7.3 shows the number of confident correct predictions
(blue line), confident incorrect predictions (red line), and uncertain predictions (green
line) over different thresholds. BBB and MC Dropout are represented by a solid and a
dotted line respectively. Confident incorrect predictions include false positives as well
as false negatives. It is desirable to choose a threshold that has few confident incorrect
predictions but maintains a high number of confident correct predictions. A greater
threshold increases the number of correct and incorrect results with high confidence.

Overall, MC Dropout has fewer confident incorrect predictions than BBB. With BERT,
MC Dropout also has lower uncertainty in binary classification and multiclass classifica-
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tion (figs. 7.1b and 7.1c). Yet, it also has up to 75% uncertainty in binary classification
for small thresholds (fig. 7.1a). A high number of confident correct predictions with
relatively few confident incorrect predictions indicates that the model can successfully
identify known unknowns.

In figs. 7.1a and 7.1b, all identically colored lines converge to approximately the same
value for larger thresholds. Large thresholds take uncertainty out of the equation. This
shows that all binary classification models perform quite similarly but evaluate uncer-
tainty differently. This is not the case in fig. 7.1c, in which MC Dropout performed
significantly better.

7.1.2 Distribution of Uncertainty in Binary Classification
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Figure 7.2: Distribution of uncertainty over the weighted prediction in BBB and MC Dropout
with α = 0.2. It uses 1,500 data points from the IMDB test dataset with 8 samples.

Fig. 7.2 reveals that the weighted uncertainty Ug is not uniformly distributed over ŷg.
The figure represents the cross section at α = 0.2 in fig. 7.1a. Predictions close to zero
or one are very confident. Predictions close to 0.5 are mostly uncertain. This is further
explained in section 7.5.2. The high number of uncertain predictions with MC Dropout
is also apparent in fig. 7.2b.

All histograms show that the samples accumulate near zero and one if later time steps
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are prioritized by the weight sequence g. Despite BBB’s low uncertainty, MC Dropout
has fewer confident incorrect predictions close to zero and one. This coincides with the
observations in section 7.1.1.

7.2 Stopwords

It is a common approach to remove stopwords from input sequences since they are
believed to add little value to the classification. In the experiments, stopwords were not
removed during preprocessing. Therefore, their effect on predictions and uncertainty
can be evaluated. Fig. 7.3a shows the impact of various stopword-to-word ratios on the
uncertainty in predictions. Stopwords make up almost half of all words.
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Figure 7.3: Stopword-to-word distribution over 1,500 data points from 8 samples with α = 0.2
(BBB).

In fig. 7.3b, the distribution is more diverse, mostly due to very short input sequences
in the Amazon dataset, see fig. 6.12. In fig 7.3a, the mean value of stopword-to-words
in uncertain predictions is 0.46 . It is only slightly larger than in confident predictions
with 0.45 in the rightmost histogram (0.45 to 0.42 in fig. 7.3b). Therefore, stopwords
increase uncertainty to some extent but do not seem to be its primary cause. They were
negligible in sentiment analysis.
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On the other hand, the removal of stopwords from the test dataset had a noticeable effect
on model performance. In tables 6.3 and 6.6, the IMDB test scores varied by around 1%.
The Amazon test scores improved by 2 - 4%.1 Removing stopwords from the training
dataset might have yielded even better results but was not pursued further.

7.3 Sensitive Terms

Positive Term ∆x̄t
∆t

Count Percentage Negative Term ∆x̄t
∆t

Count Percentage

1 wonderfully 0.25 131 0.10% worst -0.28 1664 1.33%
2 outstanding 0.22 190 0.15% poorly -0.24 335 0.27%
3 favorite 0.22 732 0.59% awful -0.23 878 0.70%
4 brilliant 0.21 683 0.55% pointless -0.22 226 0.18%
5 amazing 0.21 653 0.52% seagal -0.21 132 0.11%
6 perfectly 0.21 308 0.25% disappointing -0.21 214 0.17%
7 awesome 0.21 293 0.23% terrible -0.21 828 0.66%
8 excellent 0.21 1083 0.87% horrible -0.21 673 0.54%
9 loved 0.21 866 0.69% poor -0.20 950 0.76%
10 funniest 0.20 222 0.18% terribly -0.20 130 0.10%
11 friendship 0.20 132 0.11% waste -0.20 629 0.50%
12 rare 0.20 191 0.15% suck -0.20 234 0.19%
13 unusual 0.20 146 0.12% badly -0.20 285 0.23%
14 subtitle 0.19 140 0.11% disappointment -0.20 235 0.19%
15 surprisingly 0.19 222 0.18% laughable -0.20 171 0.14%
16 terrific 0.19 184 0.15% hoping -0.19 223 0.18%
17 superb 0.18 271 0.22% rented -0.19 235 0.19%
18 gem 0.18 210 0.17% sorry -0.19 391 0.31%
19 simple 0.18 552 0.44% pathetic -0.19 206 0.16%
20 vhs 0.18 164 0.13% boring -0.19 861 0.69%
21 fun 0.18 1552 1.24% disappointed -0.18 558 0.45%
22 genuinely 0.18 128 0.10% ridiculous -0.18 402 0.32%
23 surprised 0.18 515 0.41% mediocre -0.18 157 0.13%
24 lucky 0.18 132 0.11% wasted -0.18 270 0.22%
25 delivers 0.17 182 0.15% dull -0.18 343 0.27%
26 ride 0.17 267 0.21% lame -0.18 257 0.21%
27 powerful 0.17 261 0.21% mess -0.17 204 0.16%
28 perfect 0.17 678 0.54% fails -0.17 247 0.20%
29 unique 0.17 264 0.21% annoying -0.17 382 0.31%
30 wonderful 0.16 684 0.55% bunch -0.17 336 0.27%

Table 7.1: Top 30 most sensitive terms in the IMDB test dataset. For each review the top
five most positive and negative sensitive terms are extracted. ∆x̄t

∆t denotes the mean
delta over all occurrences.

In text classification, a subset of terms has a greater influence on predictions than others.
In hate speech detection, these are typically called sensitive terms [49]. This description
also fits sentiment analysis and is therefore used throughout this section.

1Without stopwords, BBB with 64 LSTM units and a 300-dimensional word embedding achieved 81.6%
accuracy, 88.7% precision, and 72.4% recall in sentiment analysis. In the multiclass classification
problem, it achieved 72.1% accuracy, 84.5% precision, and 64.8% recall. All scores are based on gend.
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In this sequence-to-sequence approach, sensitive terms are detected by a significant
change in the prediction at time step t: ∆x̄t

∆t . The highest positive and lowest nega-
tive scores influence the prediction the most. This method does not capture all sensi-
tive words. Predictions close to zero will not change if another negative term appears.
Rather, this method detects terms that initiate a change in the prediction.

Based on the IMDB test dataset, table 7.1 lists the most relevant positive and negative
sensitive terms in sentiment analysis. The table is sorted by ∆x̄t

∆t . Terms like favorite

and awful have a high sentiment score, which was to be expected. The table also includes
unexpected terms, such as the positive term ride at position 26.

In fig. 6.7, the sensitive term painful at the beginning of the review defines the senti-
ment of upcoming time steps. Removing it in fig. 6.10 increases the uncertainty and the
model’s ability to predict the sentiment.2 Therefore, the proportion between positive
and negative sensitive terms and their influence ∆x̄t

∆t should reflect the sentiment of a
review and whether the model can make confident predictions.

Figure 7.4: Influence of the two most positive and negative sensitive terms on uncertainty
(IMDB test dataset, BBB). The value on the x-axis is calculated by dividing the
two highest by the absolute value of the two lowest deltas. The y-axis uses glinear.

Fig. 7.4 confirms that sensitive terms influence the model’s ability to make confident
predictions. When the two most positive and negative sensitive terms negate each other,
the uncertainty is high on average. After reaching a certain imbalance, the model is
predominantly confident. In fig. 7.4, this imbalance is reached at a ratio of about 2 : 1
or 1 : 2. The fact that the detection of this relation only requires two positive and
negative sensitive terms shows their importance on uncertainty in text classification.

2For more examples, refer to appendix A.2.
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7.4 Goals

This section evaluates the concept and implementation against the goals defined in
section 1.2.

1. The goal to find a transparent method that quantifies the source of uncertainty in
text classification was achieved by using Bayesian LSTMs with MC Dropout and
BBB. In section 5.4.1, this work introduced the function U(t, l) (eq. 5.10) to quan-
tify epistemic uncertainty. This function is based on the work of Yongchan Kwon
et al. [6] and makes use of the standard deviation, derived from multiple forward
passes through a Bayesian LSTM. Additional concepts such as weight sequences
supported the evaluation of different models and their uncertainty estimations.
However, this work did not fully provide a reliable way to determine a suitable
uncertainty threshold.

2. A dataset does not require manual labeling. The label of any text classification is
assumed to be true for all time steps.

3. The proof of concept application (section 6.7) was implemented as a web appli-
cation with user experience in mind. The evaluation provides multiple statistics
to inspect certain parts of the prediction. It uses the same concepts as section 5.
This includes weighted uncertainties and uncertainty estimations with thresholds.
Therefore, this goal has been successfully reached.

7.5 Known Complications

There are several known complications with this approach that have to be considered.
This section outlines these complications.

7.5.1 Assessment of Uncertainty

The assessment of uncertainty is not trivial, especially because uncertain parts are not
marked in the training data. Even though all models provide token-based uncertainty
estimations, the question of why parts are uncertain remains. In sentiment analysis,
sensitive words like painful (fig. 6.4) lowered uncertainty in most cases. Unfortunately,
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these types of observations depend on previous time steps since LSTMs are context-
sensitive. The problem shifts from determining what parts are uncertain to questioning
why those parts are uncertain. One way to counteract this problem is to measure the
ratio between confident correct, confident incorrect, and uncertain predictions (section
7.1.1). This essentially quantifies trust in a model.

7.5.2 Softmax and Sigmoid Activation Function

The softmax and sigmoid activation function reduce the range of the neural network’s
codomain to values between zero and one. This codomain causes low uncertainty on any
sample mean x̄t that is close to zero or one. As a consequence, the distance to those
boundaries often correlates with the uncertainty estimation. In most cases, predictions
close to 0.5 have high uncertainty. This is not directly an uncertainty quantification
problem but has to be addressed to correctly interpret output sequences.

7.5.3 Training of BBB Models

The suboptimal performance of BBB models in multiclass experiments might have been
caused by compatibility issues with Tensorflow Probability. Tensorflow might not have
tracked all weights w.r.t. the time step correctly, which led to inaccurate results after
a certain amount of epochs. In fig. 6.14b, the model accuracy decreased rapidly after
only three epochs but the training and validation loss did not increase. Similar but less
drastic behavior can be observed in fig. 6.6d. The effect on BERT models (figs. 6.6e
and 6.6f) was negligible.

As mentioned in section 7.2, removing stopwords from the input sequence seemed to
have improved model performance for BBB. It could counteract this problem to a certain
extent.

7.5.4 Contextual Word Embeddings and BiLSTMs

While BERT achieved the best performance scores (table 6.3), it also has its flaws. Since
the word embedding is contextual, each word vector depends on the whole sequence. In
other words, identical tokens are represented differently at distinct time steps. This is
caused by the multi-layered bidirectional transformers with self-attention mechanisms
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in BERT (section 2.2.2) [22]. On a high level, BERT inspects the whole input sequence
and then creates word vectors based on their context. Doing so shifts and blurs the
uncertainty estimations of individual tokens using the sequence-to-sequence approach.
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Figure 7.5: Bidirectional LSTM and mixed sentiment. The input sequence is listed in section
6.5.4.

A similar problem arises when using bidirectional LSTMs because they read the input
sequence once from beginning to end and from end to beginning. Fig. 7.5 shows the
evaluation of the same input sequence as in fig. 6.9 with a bidirectional LSTM. The
graph has smooth transitions between the negative and positive reviews. The bidirec-
tional LSTM uses the context before and after each time step. For performance reasons,
bidirectional LSTMs are the preferred architecture (section 4) to solve several Natural
Language Processing (NLP) problems. They still provide reasonable uncertainty estima-
tions at a greater scale but do not provide the same level of detail for individual tokens.
If this restriction is within reason, they are a viable extension to this approach.
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This chapter summarizes this work and provides an outlook for future research in section
8.2.

8.1 Summary

Most text classification approaches focus on model performance but cannot determine
the sources of uncertainty [1, 67]. By introducing transparent uncertainty estimations
for individual tokens in the input sequence, the source of uncertainty was disclosed and
made traceable.

This work showed a novel sequence-to-sequence approach to performing binary and mul-
ticlass text classification with per-token uncertainty estimations. Variational Bayesian
LSTMs were implemented with the MC Dropout and BBB techniques. Multiple models
were evaluated against various hyperparameters and word embeddings. Despite BBBs
suboptimal training in multiclass experiments, all models achieved sufficient performance
scores while providing insight into the uncertainties of individual tokens. Contextual
word embeddings like BERT alongside BiLSTMs attained higher test accuracy but
blurred results.

The impact of stopwords and detection of sensitive terms was studied by carrying out
multiple forward passes to get an output sequence with uncertainty estimations. The
experiments showed that this approach can detect uncertainties and sensitive terms
in input sequences. The concept of weighted uncertainties and uncertainty thresholds
simplified evaluating and comparing the models. Although this work did not fully provide
a method to choose a meaningful threshold, empirical-based methods sufficed to optimize
the ratio between confident incorrect and uncertain predictions.

The additional information in the predictions showed their importance in cases such
as mixed sentiment. In these cases, the course of uncertainty changed throughout the

70



8 Conclusion

sequence. This approach is particularly helpful whenever a prediction appears as uncer-
tain, and the system or end-user needs to locate the cause. Since the model learns what
it does not know, predictions are more trustworthy. This plays an important role when
it comes to more sensitive classification tasks like hate speech detection.

8.2 Future Work

Developing an uncertainty oriented text classification approach on a token-basis is a
continuous process. Various parts can be improved.

As a first step, one could experiment with other lemmatizers and tokenizers to improve
text preprocessing. Furthermore, training a Bayesian Long Short-Term Memory (LSTM)
without stopwords may also improve the model performance, as empirically shown in
section 7.2.

Gated Recurrent Units (GRUs) are a reasonable alternative to LSTMs [7]. It would be
interesting to see the performance differences between these architectures. The imple-
mentation of MC Dropout should be straight forward.

There are other methods to quantify uncertainties in Bayesian neural networks, such as
introducing two heads in the output layer for each label [33, 34, 68] as opposed to one.
With this technique, one of the heads would estimate the variance explicitly.

Posterior sharpening is an extension to Bayes by Backprop (BBB) in Recurrent Neural
Networks (RNNs) [8, chapter 4] that reduces variance in the variational posterior q(θ).
It involves more complex sampling techniques at training time but could improve overall
model performance. Therefore, it is an adequate candidate for future research concerning
the implementation of BBB in Tensorflow 2.

In eq. 3.2, the total variance distinguishes between aleatory and epistemic uncertainty
[6]. This work only focuses on epistemic uncertainty, leaving room for experiments with
aleatory uncertainty and the relation between both types.

Finally, conducting an empirical study in which the contestants have to mark uncertain
sections in unlabeled texts can create a reference point. This reference point can be used
to evaluate uncertainty estimations.
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A Appendix

A.1 Proof of Concept Response Schema

interface Token {
token: string
mean: number []
std: number []
samples: number [][]

}
interface GMetric {

end: number
full: number
linear: number

}
interface Prediction {

icon: string
label: number
name: string
uncertainty: GMetric
y: GMetric
positive_sensitive_words: number []
negative_sensitive_words: number []

}
interface ApiResponse {

label: number
prediction: Prediction []
tokens: Token[]
uncertainty_threshold: number

}

Listing A.1: Proof of concept response schema.
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A.2 Text Evaluations

Note: The following text samples include token uncertainties using the proof of con-
cept application. The sentiment analysis evaluation uses the Bayes by Backprop (BBB)
model with a 300-dimensional Keras word embedding and 64 LSTM units over 50 for-
ward passes. The proof of concept application included in the source code uses a BBB
model with a 100-dimensional Keras word embedding for binary and multiclass classifi-
cation.

This was painful. I made myself watch it until the end, even though I had absolutely no interest
in the plot, if there was one. My patience was not rewarded. The ending was even worse than the
rest of the film. Chucky walks into the hospital with a priest and his concubine says "I do". How
vile can one movie be?

(a) Original text source

(b) Weighted uncertainty with gend, glinear and gfull and uncertainty over tokens.

Figure A.1: Negative IMDB review (BBB, 50 forward passes).
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It seems that no matter how many films are made on the subject, there is no shortage of stories
that emerge from the Second World War. It stands to reason that a conflict on such a scale as
global warfare would capture the imagination of filmmakers everywhere and provide them with
ample material on which to base a story. Heading in a different direction than most mainstream
movies about the war is Dark Blue World, a film that does not deal with the traditional major
battles of the war, does not tell the story of many of its major figures, and does not even focus on
soldiers of any of the major allied or axis powers. Dark Blue World instead ventures into the world
of refugee soldiers fighting in exile for their occupied nations. The film does a marvelous job of
portraying the challenges faced by Czech pilots flying under the British Royal Air Force, expressing
the frustration that they felt both at the language barrier between them and the other fliers, but
also at being restrained from achieving vengeance against the Germans until being re-trained. Dark
Blue World also works quite well outside the arena of the war film as being a story about human
relationships. A love triangle develops between the two main characters and an English woman
that complicates the teacher-mentor relationship of the two exiled soldiers. This relationship is
extremely well acted throughout, developing into almost a father and son relationship at many
points. The aerial combat in the film is among some of the best and is also very interesting in
exploring the cultural challenges mentioned above as the men struggle to fly their machines, fight
the enemy, and relay commands and replies in an unfamiliar language. The tension and struggle
of these scenes continues the tension between the men on the ground, just as the tension on the
ground continues that felt in the air. This may not be a film for everyone. The hardcore war film
buff may find its exploration of relationships a bit off-putting, but it is on the whole an excellent
film regardless of the bellicose element or not.

(a) Original text source

(b) Weighted uncertainty with gend, glinear and gfull and uncertainty over tokens.

Figure A.2: Positive IMDB review (BBB, 50 forward passes).
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Written and directed by Paul Haggis, Third Person charts the comings and goings of several
seemingly unconnected characters – including Liam Neeson’s maladjusted writer, Adrian Brody’s
corporate thief, and Olivia Wilde’s troubled assistant. Filmmaker Haggis does an effective job of
initially luring the viewer into the deliberately-paced proceedings, as Third Person benefits from a
proliferation of relatively well-drawn characters and the solid performances behind them – although
it’s clear that, even in its early stages, the picture moves far too slowly to wholeheartedly capture
the viewer’s attention and interest. (And it doesn’t help, certainly, that the many of the movie’s
subplots are ultimately far too uneventful to make much of a positive impact.) Haggis’ decision
to withhold certain pivotal facts until the end contributes heavily to the progressively uninvolving
atmosphere (ie it’s difficult to wholeheartedly embrace these figures’ problems when we’re not
entirely sure what they are), while there’s little doubt that some of these storylines remain entirely
unable to achieve liftoff (eg the Brody stuff is just terminally silly). By the time the ludicrous
finale rolls around, Third Person has undoubtedly confirmed its place as a complete misfire that
makes Haggis’ Crash look flawless by comparison.

(a) Original text source

(b) Weighted uncertainty with gend, glinear and gfull and uncertainty over tokens.

Figure A.3: Negative IMDB review (BBB, 50 forward passes).
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(Negative) This was painful. I made myself watch it until the end, even though I had absolutely
no interest in the plot, if there was one. My patience was not rewarded. The ending was even
worse than the rest of the film. Chucky walks into the hospital with a priest and his concubine
says "I do". How vile can one movie be?
(Positive) This is a very good black comedy, with a great view on how different people have a
different perception of the same situations. The three main characters each met a girl named
Jewel, played by Liv Tyler, who is a different male fantasy for each of the three men. Each of
the three men go through the same situations, but when they tell of them to other people, their
perception of the situation is very different from what the other two say. That is a very good
concept, probably not entirely original but it works very well in the movie. The plot is very good,
very bizarre and extreme, which makes it a good black comedy. The acting is equally good, not
one of the actors seemed out of place or out of their league. The comedy is very black, pitch black
in some scenes, and a lot of people will definitely be offended by it, but fans of black comedy will
probably enjoy it. Overall, this movie is not for everyone’s taste, but most people who like black
comedy will probably love it, as it is definitely one of the better black comedies. 7/10
(Negative) This was painful. I made myself watch it until the end, even though I had absolutely
no interest in the plot, if there was one. My patience was not rewarded. The ending was even
worse than the rest of the film. Chucky walks into the hospital with a priest and his concubine
says "I do". How vile can one movie be?

(a) Original text source

(b) Weighted uncertainty with gend, glinear and gfull and uncertainty over tokens.

Figure A.4: Mixed IMDB review with unknown sentiment (BBB, 50 forward passes).

83



A Appendix

On Wednesday: Northeast 8-15 m/s and snowshowers in the north and east, but fair weather in
the south and west. Frost 1 to 8 deg. C.

On Thursday: East 10-15 m/s and snow in the south and southwest, elsewhere lighter
wind and some snowshowers. Frost 2 to 12 deg. C., coldest inland in the northeast.

On Friday: Easterly wind and intermittent snow, especially in the southeast and east.
Frost 1 to 8 deg. C., but temperature around freezing point by the south coast.

On Saturday: Notheasterly wind and sleet or snow, but mainly dry in the southwest part.
Frost 0 to 8 deg. C.

On Sunday and Monday: Variable wind and snow or snowshowers.

(a) Original text source

(b) Weighted uncertainty with gend, glinear and gfull and uncertainty over tokens.

Figure A.5: Out-of-distribution example [61] with unknown sentiment (BBB, 50 forward
passes).

84



A Appendix

Fits both of my vehicles (2008 Chrysler Pacifica and 1996 Cadillac Fleetwood). Just finished a
1100 mile trip across country carrying my cycle. The bike was stable and I was thankful for the
quick installation and removal of the carrier since my fuel door is behind the license plate. I will
reevaluate again once I add a second bike to the rack to see how it handles.

(a) Original text source

(b) Weighted uncertainty with gend, glinear and gfull and uncertainty over tokens for label Outdoors.

Figure A.6: Outdoors review (BBB, 50 forward passes).
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I had anticipating being able to play bluray discs, and this was not the product for that purpose,
My original version (which was PowerDVD 10 that came with my DVD/Bluray Burner) was able
to play bluray discs but had stopped working. I thought this version was the same thing but I was
disappointed to find out it was not. I contacted DiscountGiant USA via Amazon and to their credit
they refunded my full purchase price including shipping. The 3 stars was given for the product,
not the supplier.

(a) Original text source

(b) Weighted uncertainty with gend, glinear and gfull and uncertainty over tokens for label Home En-
tertainment.

Figure A.7: Home Entertainment review (BBB, 50 forward passes).
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(Shoes) Finally, shoes that fit my 18 month old’s feet! We have been to stride rite multiple times
and they do not have shoes to fit his high instep. He has extra wide and very chunky feet! These
are easy to put on and very cute. We also ordered a pair from the pipsqueaker website without a
squeaker. The shoes run a little big. We are very happy with this product!
(Software) I have thought well of every operating system since DOS 3.1. This is without a doubt
the worst system I have ever seen. Not only is it NOT graphicaly intuitive, it is incompatible with
most all of my 32 bit software. Trying to use Quicken will crash the computer. It is going to cost
a bundle to upgrade all of a person’s softwarein order to use Vista. The only thing you will get
out of running Vista is a lot of headaches.

(a) Original text source

(b) Weighted uncertainty with gend, glinear and gfull and uncertainty over tokens for label Software.

Figure A.8: Mixed review; Shoes and Software (BBB, 50 forward passes).
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Erklärung zur selbstständigen Bearbeitung einer Abschlussarbeit

Gemäß der Allgemeinen Prüfungs- und Studienordnung ist zusammen mit der Abschlussarbeit eine

schriftliche Erklärung abzugeben, in der der Studierende bestätigt, dass die Abschlussarbeit „– bei einer

Gruppenarbeit die entsprechend gekennzeichneten Teile der Arbeit [(§ 18 Abs. 1 APSO-TI-BM bzw. §

21 Abs. 1 APSO-INGI)] – ohne fremde Hilfe selbständig verfasst und nur die angegebenen Quellen und

Hilfsmittel benutzt wurden. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen sind

unter Angabe der Quellen kenntlich zu machen.“

Quelle: § 16 Abs. 5 APSO-TI-BM bzw. § 15 Abs. 6 APSO-INGI

Erklärung zur selbstständigen Bearbeitung der Arbeit

Hiermit versichere ich,

Name:

Vorname:

dass ich die vorliegende Masterarbeit – bzw. bei einer Gruppenarbeit die entsprechend
gekennzeichneten Teile der Arbeit – mit dem Thema:

Erkennung von Unsicherheit in Textklassifizierungen: Ein Sequence to Se-
quence Ansatz mit Bayesian RNNs

ohne fremde Hilfe selbständig verfasst und nur die angegebenen Quellen und Hilfsmittel
benutzt habe. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen
sind unter Angabe der Quellen kenntlich gemacht.

Ort Datum Unterschrift im Original
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