

 BACHELORTHESIS

Jacob Seal

I2C Bus communication for distributed
embedded applications running in a
network of ARM-based microcontrollers

FACULTY OF ENGINEERING AND COMPUTER SCIENCE

Department of Information and Electrical Engineering

Fakultät Technik und Informatik

Department Informations- und Elektrotechnik

Jacob Seal

I2C-bus communication for distributed embedded

applications running in a network of ARM-based

microcontrollers

Bachelor Thesis based on the examination and study regulations for the

Bachelor of Engineering degree programme

Information Engineering

at the Department of Information and Electrical Engineering

of the Faculty of Engineering and Computer Science

of the University of Applied Sciences Hamburg

Supervising examiner: Prof. Dr. Pawel Buczek

Second examiner: Prof. Dr. Lutz Leutelt

Day of delivery: 25. August 2020

i

ABSTRACT

Jacob Seal

Title of the paper

I2C-bus communication for distributed embedded applications running in a network of ARM-based

microcontrollers

Keywords

Microcontroller, ARM, I2C, bus communication, embedded systems

Abstract

I2C is a two-wire serial bus communications protocol. The purpose of the I2C bus is to allow

robust and efficient communication between I2C enabled devices on the same bus. Each device on

the bus has its own unique address and will be configured as either the master or the slave. A

practical example of an I2C bus would be a microcontroller as the master, and several sensors as

slaves with single a LED readout to display sensor data.

A driver is required to configure the operating parameters and access the memory registers

of an I2C enabled IC. A driver exists as an interface between the main program and the hardware. It

is not desirable for the main program to touch the memory registers on the microcontroller directly.

The driver is written in such a way that it provides a layer of abstraction between the user/program

and the registers. Development and testing of such a driver is the technical goal of this thesis.

Thema der Bachelorthesis

I2C-Bus-Kommunikation für dezentrale eingebettete Applikationen, die in einem Netzwerk von ARM-

basierten Mikrocontrollern laufen

Stichworte

Mikrocontroller, ARM, I2C, Buskommunikation, eingebettete Systeme

Kurzzusammenfassung

I2C ist ein serielles Zweidraht-Bus-Kommunikationsprotokoll. Der Zweck des I2C-Busses

besteht darin, eine robuste und effiziente Kommunikation zwischen I2C-fähigen Geräten am selben

Bus zu ermöglichen. Alle Geräte am Bus haben ihre eigene eindeutige Adresse und werden entweder

als Master oder als Slave konfiguriert. Ein praktisches Beispiel für einen I2C-Bus wäre ein

Mikrocontroller als Master und mehrere Sensoren als Slaves, mit einer einzigen LED-Anzeige zur

Anzeige von Sensordaten.

Ein Treiber ist erforderlich, um die Betriebsparameter zu konfigurieren und auf die

Speicherregister eines I2C-fähigen ICs zuzugreifen. Ein Treiber existiert als Schnittstelle zwischen

dem Hauptprogramm und der Hardware. Es wäre unvorteilhaft, dass das Hauptprogramm die

Speicherregister auf dem Mikrocontroller direkt berührt. Der Treiber ist so geschrieben, dass er eine

Abstraktionsschicht zwischen dem Benutzer/Programm und den Registern bietet. Die Entwicklung

und Erprobung eines solchen Treibers ist das technische Ziel dieser Arbeit. Für das Testen werden

die wichtigsten Anwendungsfälle mit Ausgaben dokumentiert, die belegen, dass der Treiber gemäß

den funktionalen Anforderungen arbeitet.

ii

Dedicated to my loving wife, Christy.

I absolutely could not have done this without you.

Here’s to the next adventure…..

iii

Table of Contents

ABSTRACT ___ i

List of Figures ___ vi

List of equations ___ vii

Acronyms and abbreviations __ viii

Glossary ___ ix

CHAPTER 1 __ 1

INTRODUCTION __ 1

1.1 Scope of thesis __ 2

1.2 Functional Requirements __ 2

1.3 Software Requirements ___ 3

1.4 required hardware ___ 3

1.5 software utilized ___ 4

CHAPTER 2 __ 5

I2C IN DETAIL __ 5

2.1 Introduction to I2C ___ 6

2.2 Hardware Design __ 6

2.3 Master Slave relationship ___ 7

2.4 Arbitration ___ 9

2.5 Start and Stop bit ___ 10

2.6 I2C Addresses (7-bit vs 8-bit) __ 10

2.7 Acknowledge or Not Acknowledged __ 11

2.8 Complete I2C Data Packet __ 12

2.9 Read and Write ___ 12
2.9.1 Write Operation __ 13
2.9.2 Read Operation __ 13

2.10 FIFO usage description __ 14

CHAPTER 3 ___ 15

I2C DRIVER DESIGN ___ 15

3.1 HAL (Hardware Abstraction Layer) ___ 16

3.2 Assumptions ___ 17

3.3 Driver Architecture __ 17
3.3.1 Organizational Structure ___ 17
3.3.2 I2cCores.h ___ 18
3.3.3 I2cPinouts.h ___ 18

file:///C:/Users/jacob/Documents/HAWSS20/Thesis/Thesis_draft.docx%23_Toc48724519
file:///C:/Users/jacob/Documents/HAWSS20/Thesis/Thesis_draft.docx%23_Toc48724520
file:///C:/Users/jacob/Documents/HAWSS20/Thesis/Thesis_draft.docx%23_Toc48724526
file:///C:/Users/jacob/Documents/HAWSS20/Thesis/Thesis_draft.docx%23_Toc48724527
file:///C:/Users/jacob/Documents/HAWSS20/Thesis/Thesis_draft.docx%23_Toc48724540
file:///C:/Users/jacob/Documents/HAWSS20/Thesis/Thesis_draft.docx%23_Toc48724541

iv

3.3.4 halI2c.h ___ 19
3.3.5 I2c.c __ 20

3.4 Circular Buffer Interface __ 20

3.5 NVIC integration __ 21

3.6 User Accessible Functions __ 22
3.6.1 hali2cDriverInit()__ 22
3.6.2 hali2cCoreInit() ___ 22
3.6.3 halI2cTx()__ 23
3.6.4 halI2cRx() ___ 24

3.7 Interrupts ___ 24
3.7.1 Triggering the ISR ___ 24
3.7.2 ISR functional description __ 25

CHAPTER 4 ___ 26

I2C DRIVER IMPLEMENTATION ___ 26

4.1 Configuration Registers __ 27
4.1.1 GPIO registers __ 27
4.1.2 I2C Master config registers ___ 28
4.1.3 I2C Slave config registers ___ 30
4.1.4 I2C FIFO config registers__ 30
4.1.5 Block Diagram for I2C module ___ 32

4.2 Configuration routine __ 32
4.2.1 Functional Description of configuration function _______________________________________ 32
4.2.2 Required data structures in the main program ___ 33
4.2.3 example code for master and slave configuration with descriptors_________________________ 34

4.3 Send and Receive data ___ 34
4.3.1 Functional description of TX and RX functions __ 34
4.3.2 Required data structures in the main program (for TX and RX only) ________________________ 35
4.3.2 Example code for master send and slave receive with descriptors __________________________ 35

4.4 Main program to configure and send data _______________________________________ 36
4.4.1 Steps to send a data transmission__ 36
4.4.2 Example of a complete main program code __ 37

CHAPTER 5 ___ 40

TESTING__ 40

5.1 Test Case 1: 32 byte message. ___ 42

5.2 Test Cast 2: 0 byte message. __ 43

5.3 Test Case 3: 1 byte message. __ 44

5.4 Test Case 4: 16 byte message. ___ 45

5.5 Test Case 5: 35 byte message. ___ 46

5.6 Test Case 6: Second Transmission __ 48

CHAPTER 6 ___ 50

CONCLUSION __ 50

file:///C:/Users/jacob/Documents/HAWSS20/Thesis/Thesis_draft.docx%23_Toc48724560
file:///C:/Users/jacob/Documents/HAWSS20/Thesis/Thesis_draft.docx%23_Toc48724561
file:///C:/Users/jacob/Documents/HAWSS20/Thesis/Thesis_draft.docx%23_Toc48724579
file:///C:/Users/jacob/Documents/HAWSS20/Thesis/Thesis_draft.docx%23_Toc48724580
file:///C:/Users/jacob/Documents/HAWSS20/Thesis/Thesis_draft.docx%23_Toc48724587
file:///C:/Users/jacob/Documents/HAWSS20/Thesis/Thesis_draft.docx%23_Toc48724588

v

6.1 Conclusion __ 51

6.2 Design goals met or unmet ___ 51

6.3 Recommendations for expanding the driver _____________________________________ 51

ADDENDUM __ 53

References ___ 54

Declaration ___ 55

vi

List of Figures
Figure 1: Example of an I2C bus 2 wire configuration with 1 master and 2 slaves _________ 6

Figure 2: Simplified steps for data transmission ____________________________________ 8

Figure 3: Arbitration procedure with 2 masters ____________________________________ 9

Figure 4: START and STOP conditions ___ 10

Figure 5: 7-bit slave address plus read/write bit __________________________________ 10

Figure 6: I2CMSA (master slave address) calculation process ________________________ 11

Figure 7: Example NACK waveform __ 12

Figure 8: Complete data transfer packet __ 12

Figure 9: Data write with 8-bit register address and data byte _______________________ 13

Figure 10: Example of a data read ___ 13

Figure 11: Example of a data read with register pointer ____________________________ 14

Figure 12: Application design diagram __ 16

Figure 13: Complete driver architecture diagram__________________________________ 17

Figure 14: Circular buffer logical implementation diagram __________________________ 21

Figure 15: I2C module block diagram ___ 32

Figure 16: Basic steps for data transmission in the main program ____________________ 36

Figure 17: Input data for test case 1 __ 42

Figure 18: Output for test case 1 __ 42

Figure 19: Input data for test case 2 __ 43

Figure 20: Output for test case 2 __ 43

Figure 21: Input data for test case 3 __ 44

Figure 22: Output for test case 3 __ 44

Figure 23: Input data for test case 4 __ 45

Figure 24: Output for test case 4 __ 45

Figure 25: Input data for test case 5 __ 46

Figure 26: Output data for test case 5 with 3 lost bytes _____________________________ 46

Figure 27: Output data for test case 5 with no data loss ____________________________ 47

Figure 28: Input data for test case 6 __ 48

Figure 29: Output for test case 6 with data overwrite ______________________________ 48

Figure 30: Output for test case 6 with all bytes stored ______________________________ 49

vii

List of equations
Equation 1: Rp,min __ 7

Equation 2: Rp,max __ 7

Equation 3: SCL period __ 28

viii

Acronyms and abbreviations

SDA - Serial Data Line

SCL - Serial Clock Line

IC - Integrated Circuit

LSB – Least Significant Bit

MSB – Most Significant Bit

ACK – Acknowledged

NACK – Not Acknowledged

TX – Transmit

RX – Receive

ISR - Interrupt Service Routine

FIFO - First In First Out hardware data buffer

ix

Glossary

Transmitter - the device that sends data to the bus

Receiver - the device that receives data from the bus

Master - the device that initiates/terminates a transfer

Slave - the device addressed by the master

Multi-Master - more than one master can attempt to control the bus at the same time

Arbitration - procedure to ensure that only one master device is controlling the bus at a

time

Synchronization - procedure to synchronize the clock signals of 2 devices

Bus Idle - the bus is idle when both the SDA and SCL lines are high

START Bit - defined as SDA driven low while SCL is high

STOP Bit - defined as SDA pulled high while SCL is high

Interrupt – hardware triggered software function

Circular Buffer - a data structure that uses a single, fixed-sized buffer “connected” end to

end

1

CHAPTER 1

INTRODUCTION

2

1.1 Scope of thesis

The purpose of this thesis is to learn about hardware driver design using the I2C bus

as the basis. To expand this knowledge, I have designed an I2C driver using embedded C

programming that can be used to send and receive messages over the I2C bus of the Texas

Instruments TM4C1294XL microcontroller. This is an ARM Cortex M4 microcontroller. For

the purposes of this thesis, I will send data from the I2C master to a single I2C slave. The I2C

master is an I2C module (I2C0) on the TM4C that has been configured for master operation.

The I2C slave is another I2C module (I2C3) on the TM4C microcontroller that has been

configured for slave operation. It is also possible to send messages from the slave to the

master using this driver, however, for testing purposes this functionality has been ignored.

This thesis contains 6 chapters plus an addendum. Chapter 1 is a basic overview of

the thesis. Chapter 2 is an in-depth discussion of the I2C bus and how it works. In Chapter 3,

I will provide a theoretical overview of the driver design. After the theoretical discussion,

chapter 4 will get into the nuts and bolts of the I2C configuration. I will discuss each

configuration register in detail. Chapter 4 also contains code for a full program that can be

used to demonstrate the basic functionality of the driver. Chapter 5 will cover several

testing scenarios with a brief discussion regarding the output for each test. Chapter 6 will

provide a concluding discussion and some ideas for expanding the driver. The addendum

will discuss a few additional functionalities included in the driver that may be of use for

future projects.

This thesis should serve as a “how-to” guide for any future students who need to use

this driver. I will fully discuss how to use the driver, and how to expand it with further

functionality in the future. There are also some hidden functionalities that may be of use in

certain scenarios, and those will be briefly covered as well.

1.2 Functional Requirements

-the driver shall facilitate every configuration requirement to configure the needed I2C

module:

-GPIO

-master or slave

-sender or receiver

-configure the hardware FIFO

-configure the ISR using the provided NVIC driver

-the internal FIFO’s of the TM4C shall be utilized as the data transfer medium.

-the Circular Buffer provided by the university will be utilized as the buffer between the user

data and the FIFO (i.e. the user will never directly access the hardware FIFO).

3

-an interrupt will Trigger when the receiving FIFO has received data. The appropriate ISR will

transfer this data into the circular buffer, making room for the next data transfer into the

FIFO.

-the driver shall contain functionality to send and receive data from a single byte, up to an

arbitrary size limited only by the size of the circular buffer. Caveat: the FIFO is limited to 8

bytes per transfer. This must be managed using the circular buffer and programming logic.

1.3 Software Requirements

-the driver shall be written in the C programming language.

-the code shall be re-usable and scalable (multiple identical hardware modules must be
serviced using the same code).

-fully commented, clear coding style shall be used. Comments must include a brief

description of the function as well as an explanation for each argument and return value.

-a layer of abstraction must exist between the user and the registers of the TM4C (i.e. the

user will not have any access directly to the data or configuration registers).

-the driver shall contain all required definitions and enumerations (ex: base address of I2C

module and offsets for individual registers, commands for the master controller, etc.).

-once received by the I2C slave, data should be accessible by the user so it can be processed

or sent to another peripheral device.

-the user shall only have access to a limited function block allowing full configuration and

data transmission without the ability to access dangerous functions which could break the

functionality of the device.

-an I2C module should be able to be configured with a single, re-usable function call.

-data transmission is accomplished with a single, re-usable function call.

-the driver should be designed with ease of use as a major design goal.

1.4 required hardware

-Texas Instruments TM4C1294XL Microcontroller

-RS232 USB serial communications cable

-Basic Breadboard

-4.7kOhm pull-up resistors

-Connector cables

4

1.5 software utilized

-Texas Instruments Code Composer Studio (Eclipse based IDE)

-Notepad++

-REALTerm

5

CHAPTER 2

I2C IN DETAIL

6

2.1 Introduction to I2C

The I2C bus is a bi-directional 2-wire communications bus that requires only an SDA

and SCL line for robust and efficient communication. In layman’s terms, the I2C bus requires

very few parts and facilitates easy communication between I2C compatible IC’s. Phillips

Semiconductors developed the I2C bus with the purpose of efficient inter-IC control. The I2C

bus is now a standard feature in thousands of IC’s produced by dozens of companies.

The purpose of the I2C bus is to maximize hardware efficiency and circuit simplicity

for system designers and manufacturing companies. All IC’S that include an on chip I2C

interface can easily communicate with each other using the I2C bus. A standardized protocol

for addressing, data transmission, and line arbitration makes this somewhat of a plug and

play solution. The need to design bus interfaces is essentially eliminated, speeding up

development time and saving on engineering costs (NXP Semiconductors, 1982, p. 5).

2.2 Hardware Design

The I2C bus consists of 2 wires, the SDA line and the SCL line. Each line must be

pulled up with a resistor to a true “high” level. This is accomplished by using a pullup

resistor connected to a Vcc of 3.3V or 5V. Each device on the I2C bus can be directly

connected to the bus by its own SDA and SCL device pins.

Figure 1: Example of an I2C bus 2 wire configuration with 1 master and 2 slaves (based on NXP Semiconductors, 1982, pg. 8)

The bus is IDLE when the SDA and SCL lines are high. The pullup resistors (Rpu) are

what allows the lines to be driven high. I2C is an open drain system, so it can only pull down.

This means that a transistor pulls the lines low when a device is ACTIVE, and when the

device is off the line will be high and IDLE. In this case, the line would be pulled high by the

pullup resistors connected to the Vcc. The value of the pullup resistors is an important

choice and can be determined by the following equations:

7

Equation 1: Rp,min

 𝑅𝑝, min
=

𝑉𝑐𝑐−𝑉𝑜𝑙(max)

𝐼𝑜𝑙 (Arora, 2015, p. 2)

Vol is the voltage that will be read as a Valid Logic Low and Iol is its corresponding current

draw.

Equation 2: Rp,max

𝑅𝑝, max =
𝑡𝑟

0.8473×𝐶𝑝
 (Arora, 2015, p. 2)

tr is the standard I2C rise time and the Cp is the line capacitance. These values can be found

on the datasheet for each IC or by taking measurements on a scope.

In this project, to calculate the Rp, min I looked at the data sheet to find the values for Vcc,

Vol, and Iol.

𝑅𝑝, min =
3.3𝑉 − .4𝑉

2𝑚𝐴
= 𝟏. 𝟒𝟓𝐤𝐎𝐡𝐦𝐬

To calculate the Rp, max I had to get values from the datasheet for capacitance and from

the Phillips/NXP spec sheet for SDA and SCL rise time. The calculation is as follows:

𝑅𝑝, max
=

300𝑛𝑠

0.8473 𝑥 50𝑝𝐹
= 𝟕. 𝟎𝟖𝐤𝐎𝐡𝐦𝐬

For the pullup resistors I have selected 4.7kOhms. This falls within the min/max

range and the functionality is verified by the output results. Unfortunately, due to the

COVID-19 lockdown, I was unable to travel to Hamburg to use the oscilloscope in the lab for

proper verification of these values.

2.3 Master Slave relationship

The master-slave relationship is what establishes the hierarchy on the bus. Every

device on the bus has a unique address. Any device addressed by the master is considered a

8

slave. The master initiates all data transfers on the bus and provides the clock signal that the

slave device must synchronize with (NXP Semiconductors, 1982, p. 6). The ONLY device on

the bus that will receive the data is the one with the unique slave address referenced by the

master. It is not possible to send a message to all slaves at the same time. This also does not

mean that the master can ONLY send data. On the contrary, the master can also receive

data from the slave device.

A data transfer sequence looks like this:

Figure 2: Simplified steps for data transmission (based on Valdez, 2015, pg. 3)

The key point is that the master ALWAYS initiates the transfer whether it is sending

or receiving. The master must also provide a clock signal for every transmission. This is an

integral part of any I2C driver and there are dedicated registers that must be written to

enable the required clock speed.

The I2C protocol also allows for multiple masters to exist on the same bus.

Therefore, it is possible that 2 masters could try and send data at the same time. For

example, imagine the digital LCD display on a car. It can display information from multiple

systems in the car: perhaps the outside temperature, the speed, and the current mileage on

the car are all displayed. These 3 systems are controlled by separate Microcontrollers which

are all Masters in their smaller, buffered section of the I2C bus. However, they must all 3

report data to the LCD screen, which is only a slave device. There is an arbitration process

that will allow them to co-exist peacefully.

9

2.4 Arbitration

Arbitration is required if there is more than one master in the system. The I2C

protocol only allows a master to initiate a transfer if the bus is clear. When a master initiates

a transfer with a START condition there is a small delay before the I2C line is “busy” for this

transfer. This time is referred to as the minimum hold time (thd;STA). During this short time

period, it is possible for another master to initiate a START (Texas Instruments, 2013, p.

1282). The arbitration process is designed to maintain data integrity and successfully

complete both transfers when this happens.

The arbitration process proceeds bit by bit (NXP Semiconductors, 1982, p. 11).

During each high phase of the SCL, each master checks the current value of the SDA line

against the current bit in the data byte that it transmitted. The first master to send a high

but find the SDA line to be low has lost the arbitration and turns off its SDA driver. The

winning master can complete its transfer. No information will be lost. The master that lost

the arbitration will restart its transfer when the bus is free.

The following figure shows an arbitration process by 2 masters. When DATA1 has a

different value from the SDA, then master 1 shuts down its SDA line and waits for the bus to

be free. This allows master 2 to complete its transmission.

Figure 3: Arbitration procedure with 2 masters (NXP Semiconductors, 1982, pg. 12)

10

2.5 Start and Stop bit

Every I2C transaction is begun by the master sending a START bit and ended by the

master sending a STOP bit (Valdez, 2015, p. 4). A START condition is when the SDA

transitions from high to low while the SCL remains high. A STOP condition is when the SDA

transitions from low to high while the SCL remains high. After a START condition the bus is

considered busy. If another master tries to transmit while the bus is busy, then the

arbitration process outlined in section 2.4 must take place.

Figure 4: START and STOP conditions (NXP Semiconductors, 1982, pg. 9)

2.6 I2C Addresses (7-bit vs 8-bit)

Each device on the I2C bus has a unique address. When the master wants to transmit

to or receive from the slave, it must address the specific slave that it wants to communicate

with. These addresses are 8 bits in total. However, it is not as simple as just picking a

random 8-bit value. The actual slave address is only 7 bits. The extra bit, or the LSB, serves

as the read or write bit. A ‘0’ in the LSB means that the master will write to the slave, and a

‘1’ in the LSB means that the master will read from the slave.

Figure 5: 7-bit slave address plus read/write bit

For testing the driver, I have assigned the slave device with the hex address 0x76.

This address is saved by the slave as its own address. However, when the master stores the

slave address it will store the address appended with the read/write bit. The following code

snippet from the I2C driver will explain further:

I2CMaster_MSA = (SLAVE_ADDRESS << 1) | RW;

11

The MSA, or Master Slave Address register, is where the slave address that the

master will place on the I2C bus is stored. To get this result, the 8-bit slave address is bit

shifted left by a single bit, then the read/write bit is appended to the LSB with a bitwise OR

operator. The first 7 bits will be re-interpreted as the slave address while the LSB will

determine if the master performs a read or a write.

Figure 6: I2CMSA (master slave address) calculation process

For a write operation, the I2C_MSA register will store the hex value 0xEC. For a read

operation, the method is the same except the RW bit is 1. The result is I2C_MSA = 0xED. The

7-bit slave address of 0x76 will remain the same in either case. The only change is the read

or write bit.

2.7 Acknowledge or Not Acknowledged

After each byte transferred, there is an ACK or NACK bit to indicate that the byte was

successfully received (ACK) or not (NACK). This includes the slave address byte as well. The

transmitter has control of the SDA line. During the 9th clock cycle, the transmitter will

release the SDA line so the addressed receiver can control it for this clock cycle (Valdez,

2015, p. 5). If the SDA is pulled low by the receiver this is considered an ACK by the

transmitter. If the SDA remains high, then this is a NACK indication. In the event of a NACK

the transmitter can issue a STOP bit to cancel the transmission, or a repeated START to try it

again. An interrupt can be triggered when a NACK is received so that the user can configure

a response that is appropriate for their project.

There are several conditions that can result in a NACK:

1) There is no device on the bus with this slave address.

2) The receiver is busy with another function and cannot accept the transmission currently.

3) The receiver does not understand the data or commands.

12

4) The receiver cannot accept any more bytes.

Figure 7: Example NACK waveform (Valdez, 2015, pg. 6)

In the above figure, during clock cycle 9 of the SCL the SDA remains high, which indicates a

NACK condition. A stop condition is immediately sent by the master to stop the transfer.

2.8 Complete I2C Data Packet

Now that all the relevant parts have been defined, I will briefly discuss the data

packet format for I2C transmission. Firstly, each byte transmitted must be exactly 8 bits long

and it will always be followed by an ACK or NACK bit. An unlimited number of bytes can be

transmitted per transfer, but the slave must ACK each byte. The transfer is ended by a stop

bit. The slave can hold the SCL line low between bytes if it is not ready to receive more

information. In this manner, the slave can force the master into a “wait” status. Once the

slave has released the SCL then the transfer will continue.

Figure 8: Complete data transfer packet (NXP Semiconductors, 1892, pg. 10)

2.9 Read and Write

Whether the master is writing to the slave or the slave is writing to the master, there

is a similar process that facilitates the transfer. This is based upon the configuration of the

master, which must be set with read or write bit (discussed in section 2.6). When there is

data available to transmit or receive, a command is written to the master device’s control

register. This command tells the master to initiate a transfer to or to read data from the

slave. First, the master will write a START bit to the bus to make the bus busy for the

13

transfer. Then the 7-bit slave address is placed on the bus along with the read/write bit for a

total of 8 bits. When the transfer is over, the master places a STOP bit on the bus and the

bus is then released.

2.9.1 Write Operation

After the START bit, the master transmits the 7-bit slave address and the read/write

bit, which is ‘0’ for a write operation. In the 9th clock cycle, the slave will acknowledge. With

a successful acknowledge, the master can send 8 more bits, and the slave must again

acknowledge. This 2nd byte could be raw data or a register address. If the slave device is, for

instance, an IC that controls charging of a battery, then the 2nd byte could be a register

address and the 3rd byte could contain configuration data. This process continues until the

master issues a STOP on the bus.

Figure 9: Data write with 8-bit register address and data byte (based on Valdez, 2015, pg. 7)

2.9.2 Read Operation

To initiate a read operation there is a similar process. After the START bit, the master

transmits the 7-bit slave address and the read/write bit, which is ‘1’ for a read operation. In

the 9th clock cycle, the slave will acknowledge. Once the slave has acknowledged, the slave

then transfers 8 bits of data to the master. At this point, roles are reversed so the master

must then acknowledge to the slave that the transfer was successful.

Figure 10: Example of a data read (based on Valdez, 2015, pg. 7)

There is a second type of read operation that is possible when there is a specific

register in memory that the data should be stored in. For this case, the master initiates a

START as if it’s going to write data (i.e. read/write bit set to 0). It writes the register address

14

to the bus, then instead of a STOP condition the master sends a repeated START with the

read/write bit set to 1 for a read operation.

Figure 11: Example of a data read with register pointer (based on Valdez, 2015, pg. 7)

2.10 FIFO usage description

The hardware FIFO is a memory buffer that is dedicated to I2C communication. On

the TM4C, the FIFO can hold 8 bytes of data at any given time. TX interrupts can be

triggered when the buffer is full or empty, but not at any point in between. There is a

“trigger value” that can be set, but this functionality is not available on the TM4C when

filling the TX FIFO. That is not normal, but it is a limitation of the TM4C. The RX FIFO can

react to the trigger value with no problems. So, it is possible to run the ISR after any number

of bytes has filled the RX FIFO, from 1 to 8.

FIFO simply means data that is put into the buffer first, is also the data that is read

from the buffer first. The FIFOs can be assigned to the master or the slave. The boundary

conditions that have been used in testing the driver are that the TX (transfer) FIFO is

assigned to the master, and the RX (receive) FIFO is assigned to the slave. These can be re-

assigned and re-configured for different operating modes including the slave sending data

to the master. In many cases, both FIFO’s would be assigned to a single I2C device since the

device being communicated with is not on the same Microcontroller. For driver

development, the only device available for testing was the TM4C. Therefore, the FIFO had to

be shared amongst two I2C modules on the same device.

15

CHAPTER 3

I2C DRIVER DESIGN

16

3.1 HAL (Hardware Abstraction Layer)

This driver was designed with a layer of abstraction in mind. This is formally known

as a HAL, or Hardware Abstraction Layer, driver. This means that the calling program can

interact with the hardware device in a very general, abstract way. The driver acts as an

interface between the program and the hardware that the program needs to interact with.

The application layer is where the programs run, and logically sits above the driver.

Therefore, hardware drivers are referred to as “HAL low-level drivers.” The HAL is the bridge

that allows the applications to send and receive from the hardware.

Figure 12: Application design diagram

There are several reasons for this abstraction. First, it protects against misuse. The

data registers that are being accessed by the driver are hidden from the calling program.

Only very specific functions can be called by the program. Interacting directly with the

hardware is only possible for the driver. This allows for full functionality with zero direct

register access, protecting against unwanted values in configuration or memory registers.

The second reason is for ease of use. To interact with something like an I2C or UART

device is complicated. There are a lot of registers to configure for reliable data transfer.

Without this kind of abstraction, a programmer would have to understand how each

hardware device communicates with the rest of the system. To spend hours with a data

sheet figuring out which registers need to be written for a certain configuration takes a lot

of time. Abstraction allows this process to be simplified. In fact, the programmer can use the

driver as an interface without really having any knowledge of how it works.

A third reason for HAL drivers is compatibility. The code for a specific program

functionality is re-usable. For instance, imagine 2 different ARM M4 Microcontrollers that

want to communicate over an I2C bus. The same application and driver code can be used on

both controllers. In this way, the same few function calls can travel across multiple

17

Microcontrollers. It is also scalable, meaning that multiple I2C modules can be configured

with the same re-usable function call.

3.2 Assumptions

For development purposes the following assumptions were made:

1. Only 2 I2C devices will be used, I2C0 and I2C3.

2. I2C0 will be configured as the master and I2C3 will be configured as the slave.

3. Data will only travel in a single direction, from master to slave.

3.3 Driver Architecture

The driver is organized with a total of 4 files:

1. I2cCores.h

2. I2cPinouts.h

3. halI2c.h

4. I2c.c

3.3.1 Organizational Structure

Figure 13: Complete driver architecture diagram

18

3.3.2 I2cCores.h

This header file provides an enumeration to make it easier to address a specific I2C

device onboard the TM4C. There are 9 I2C devices on the Microcontroller. Here, 8 have

been enumerated and are accessible to the driver:

enum i2cCores {

 i2c0Core = 0,

 i2c1Core = 1,

 i2c2Core = 2,

 i2c3Core = 3,

 i2c4Core = 4,

 i2c5Core = 5,

 i2c6Core = 6,

 i2c7Core = 7

};

enum i2cCoreCount {

 i2cCoreCount = 8

};

3.3.3 I2cPinouts.h

This header file establishes a struct for each I2C module on the TM4C to describe

their pinouts. This struct will be used by the driver in I2C.c to configure each I2C module.

The SCL and SDA pins are explicitly defined. One “entry” is needed for each desired core. As

per the assumptions mentioned earlier, only 2 cores are currently defined.

enum i2cPinoutCount_ {

 i2cPinoutCount_ = 2 //the number of I2C cores currently defined

};

static const struct i2cPinoutSetup_ i2cPinoutSetups_[i2cPinoutCount_] =

{

 //hali2c0sclPB2scaPB3 [0]

 {

 .i2cCore_ = i2c0Core,

 .txPresent_ = true,

 .sclPin_ = halGpioI2c0SCLPB2,

 .rxPresent_ = false,

 .sdaPin_ = halGpioI2c0SDAPB3

 },

 //hali2c3sclPK4scaPK5 [1]

 {

 .i2cCore_ = i2c3Core,

 .txPresent_ = false,

 .sclPin_ = halGpioI2c3SCLPK4,

 .rxPresent_ = true,

 .sdaPin_ = halGpioI2c4SDAPK5

 }

};

19

3.3.4 halI2c.h

This is the header file that interfaces the application with the driver. All functions

that are available in the driver are prototyped here including the ISR’s. Most functions are

hidden from the main program/application by declaring them as static. There are only 4

functions required by the main program to provide fully functional I2C communication. The

functions are organized and grouped in a logical way with user facing functions listed first,

then configuration functions, the communication functions, then the ISR’s.

Also included in the header file are important definitions and enumerations that are

used throughout the driver. These definitions are used in the driver for more efficient

programming. For instance, a command of 0x07 must be written to the Master Control

Register to command the master to send a single byte to the slave. To make this more

logical to the programmer, the Master Control commands are defined in the header file as

follows:

#define I2C_MASTER_CMD_SINGLE_SEND 0x00000007

//master will send a single byte

These definitions save time because the programmer will only have to read the

definitions and choose the command that he or she needs instead of pouring over a data

sheet to figure out the correct command sequence. That work has already been done and

included here. Similarly, many other helpful enumerations and definitions are contained in

this header file. Other examples include enumerations to state whether an I2C core is the

slave or the master, and whether that I2c Core will read or write. It is recommended for

anyone using this driver in the future to read the header file completely.

/**

 * 1 for Master. 0 for Slave. to be used in function calls.

 */

enum i2cMasterSlave_ {

 master = 1,

 slave = 0

};

/**

 * 1 for read 0 for write. to be used in function calls.

 */

enum i2cReadWrite_ {

 read = 1,

 write = 0

};

20

The other important need that this header fills is to provide a “handle” back to the

calling program. This is accomplished with a constant pointer to a struct, which is defined as

follows in the header:

typedef struct HalI2cCoreState * const HalI2cCoreStateHandle;

The typedef struct creates a new name for an already existing element. It does not

create a new “type” of HalI2cCoreStateHandle. The HalI2cCoreStateHandle is what will be

used by the main program to interact with the I2C module. When the I2C configuration

function has completed it returns the HalI2cCoreStateHandle to the calling program. This

handle points to a struct of type HalI2cCoreState, which holds configuration data about the

I2C module. The struct is defined in the main driver I2c.c. This handle will be needed to

write or read data using the provided user facing functions.

3.3.5 I2c.c

The file I2c.c is the actual driver. This file contains all functions that are required for

configuration and data transmission over I2C. This is where all communication with the

hardware takes place. The driver will often reference the pinouts, i2cCore enumerations,

and definitions from the header files. Therefore, each of these files is incorporated in the

“#include” section of the driver. The driver also assigns the ISR to the NVIC and initiates the

circular buffer for each I2C Core. The ISR is fully contained inside this file as well. The struct

mentioned in section 3.3.4, HalI2cCoreState, is also instantiated here:

// struct definition to hold dynamic core properties used to configure each

utilized I2C core

struct HalI2cCoreState {

 enum i2cCores i2cCore_;

 bool i2cCoreInitilized_;

 struct UtilsCircularBufferState * circularBufferRxHandle_;

 struct UtilsCircularBufferState * circularBufferTxHandle_;

 bool forceTx_;

 bool forceRx_;

};

3.4 Circular Buffer Interface

A circular buffer is a single, fixed sized buffer that is connected end to end. The code

for the circular buffer was provided by the university so that it could be incorporated into

the I2C driver. It is simply a buffer that exists between the main program and the FIFO of the

I2C core. The program will not place data directly in the I2C FIFO’s, but instead data will go

into the circular buffer first before transferring into the FIFO.

21

Figure 14: Circular buffer logical implementation diagram

To initialize the buffer, in the main program there must exist several char arrays that

are sent to the configuration routine. These arrays will be used to allocate the memory

space for the buffer. The circular buffer will be initialized and attached to the given I2C core

during the I2C configuration routine with the following code:

/*

 * Initialization of Rx and Tx Circular Buffer for this I2ccore

 * i2cMemoryAreaRx and i2cMemoryAreaTx are char arrays

 *passed from main

 */

 struct UtilsCircularBufferState * circularBufferRxHandle =

utilsCircularBufferInit(i2cMemoryAreaRx, i2cMemoryAreaRxSize);

 struct UtilsCircularBufferState * circularBufferTxHandle =

utilsCircularBufferInit(i2cMemoryAreaTx, i2cMemoryAreaTxSize);

 i2cCoreStates_[i2cCore].circularBufferRxHandle_ =

circularBufferRxHandle;

 i2cCoreStates_[i2cCore].circularBufferTxHandle_ =

circularBufferTxHandle;

3.5 NVIC integration

The NVIC, or Nested Vector Interrupt Control, is a method of prioritizing and dealing

with interrupts. The NVIC allows a certain ISR to be assigned to a given peripheral device or

pin on the microcontroller. To assign interrupts in the driver, the university provided an

NVIC interface that needed to be expanded to include I2C. To accomplish this, I had to

extend the enumerations in the NVIC to include the I2C exceptions found in the data sheet:

enum HalNvicException {

 //UART Interrupts

 halNvicUart0Exception = 21, // UART0 interrupt INT_UART0

 halNvicUart1Exception = 22, // UART1 interrupt INT_UART1

 halNvicUart2Exception = 49, // UART2 interrupt INT_UART2

 halNvicUart3Exception = 72, // UART3 interrupt INT_UART3

 halNvicUart4Exception = 73, // UART4 interrupt INT_UART4

 halNvicUart5Exception = 74, // UART5 interrupt INT_UART5

 halNvicUart6Exception = 75, // UART6 interrupt INT_UART6

 halNvicUart7Exception = 76, // UART7 interrupt INT_UART7

 //I2C Interrupts

 halNvicI2C0Exception = 24, // I2C0 interrupt INT_I2C0

 halNvicI2C1Exception = 53, // I2C1 interrupt INT_I2C1

 halNvicI2C2Exception = 77, // I2C2 interrupt INT_I2C2

 halNvicI2C3Exception = 78, // I2C3 interrupt INT_I2C3

22

 halNvicI2C4Exception = 86, // I2C4 interrupt INT_I2C4

 halNvicI2C5Exception = 87, // I2C5 interrupt INT_I2C5

 halNvicI2C6Exception = 118, // I2C6 interrupt INT_I2C6

 halNvicI2C7Exception = 119 // I2C7 interrupt INT_I2C7

};

To point the NVIC interrupt response to the correct ISR requires only a few lines of

code. First, a struct must be created to assign the exception for the I2C module with the

correct ISR function. The following code snippet defines the ISR for I2C0:

static const struct i2cCoreSetup_ i2cCoreSetup_[i2cCoreCount] =

{

 // I2C0

 {

 .interruptId_ = halNvicI2C0Exception, / Exception number

 .isr_ = i2c0ISR_ // pointer to corresponding ISR method

 },

During the I2C configuration routine, the following function calls will register and activate

the ISR using the NVIC driver:

halNvicInstallISR(i2cCoreSetup_[i2cCore].isr_,

i2cCoreSetup_[i2cCore].interruptId_);

halNvicEnableInterrupt(i2cCoreSetup_[i2cCore].interruptId_);

From now on, any condition from I2C0 that triggers an interrupt will call the function
i2c0ISR_. Which events can trigger an interrupt is fully configurable.

3.6 User Accessible Functions

There are only 4 functions that are accessible to the programmer. This was by design

to make the driver extremely user friendly.

3.6.1 hali2cDriverInit()

This function must be run first by the main program. It has no arguments or return

values. It accomplishes several important functions. First, it sets the i2cCoreInitialized flag to

false for each available core. This essentially turns off all I2C modules. The programmer can

be sure that only I2C cores which are meant to be initialized will be active since they all

begin with this flag set to false. This function also initializes the NVIC driver and the Circular

Buffer with specific function calls. After calling this function the foundation is laid so that I2C

modules can be initialized.

3.6.2 hali2cCoreInit()

This is the function that will initialize and configure an I2C module on the TM4C. It

returns a handle, or a pointer to a struct, that can be used to interact with the I2C driver

during data transmission. Master or slave? Sender or receiver? The same function is used to

23

configure the I2C module no matter what parameters are chosen. The arguments will

determine the behavior of the I2C module:

enum Hali2cPinout i2cPinout - this is the pinout for this I2cCore. enumerated in halI2c.h

header file.

enum i2cMasterSlave_ MS - 1 for master 0 for slave. Enumerated in halI2c.h header file.

enum i2cReadWrite_ RW - 1 for read, 0 for write. Enumerated in halI2c.h header file.

uint8_t SLAVE_ADDRESS - the 8-bit address for the slave device on the I2C bus. Defined in

the main program.

uint32_t SysClock - the system clock speed. It is required to configure the master I2cCore.

Calculated in the main program.

char * const i2cMemoryAreaTx - a pointer to the transmit memory area of the circular

buffer this core will use. Declared in the main program.

unsigned int const i2cMemoryAreaTxSize - size in Bytes of the circular buffer transmit

memory area. Enumerated in the main program.

char * const i2cMemoryAreaRx - a pointer to the receive memory area of the circular buffer

this core will use. Declared in the main program.

unsigned int const i2cMemoryAreaRxSize - size in Bytes of the circular buffer receive

memory area. Enumerated in the main program.

Inside this function the GPIO, I2C module, FIFO, NVIC/Interrupts, and Circular Buffer

will all be initialized for the chosen I2C module.

3.6.3 halI2cTx()

This function transmits data over the I2C bus. First, the data is placed in the TX

circular buffer. From there, the data is sent to the TX FIFO. When the FIFO is full or when

there is no more data to send, a command is sent to the master control register to send the

contents of the FIFO to the receiver over the I2C bus. The return value is the number of

bytes that were sent. After this function is complete the RX circular buffer will contain the

bytes that were sent.

The arguments are:

char const * const txBuffer - array containing the bytes to be transmitted

unsigned int const txBufferLength - the length of TxBuffer

HalI2cCoreStateHandle I2cCoreStateHandle - (pointer) handle provided by the main

program to interact with the I2cCore

24

3.6.4 halI2cRx()

This function moves the data bytes from the RX circular buffer into a char array that

is accessible by the main program. From this array, what happens next depends on the

application. The data could be used for calculations, or sorted, or just sent to another

peripheral device. The return value is the number of Bytes that were read from the Circular

Buffer.

The arguments are:

char const * const txBuffer - pointer to a character array containing the bytes to be

transmitted

unsigned int const txBufferLength - the length of TxBuffer

HalI2cCoreStateHandle I2cCoreStateHandle - (pointer) handle provided by the main

program to interact with the I2cCore

3.7 Interrupts

The ISR’s are configured by using the NVIC driver. This process is detailed in section

3.5. The specific register configurations for the required behavior will be covered in Chapter

4.

3.7.1 Triggering the ISR

The main ISR is the function:

i2cISR_ (i2cCore);

It accepts a single I2C core as its argument. However, this function is not called

directly from the NVIC. There is an intermediate step. Each I2C core has its own ISR, which in

turn calls the main ISR function. I2C0, for example, has the following function call assigned

in the NVIC when an interrupt is triggered:

static void i2c0ISR_(void) {

 i2cISR_(i2c0Core);

}

Each I2C core has a similar function. When called, the ISR for each I2C core only calls

the main ISR function with its own core value as an argument. This multi-step process is

required because the main ISR needs the I2C core as an argument for internal function calls.

25

There is no way to include this argument directly from the NVIC. This functionality allows re-

use of the same ISR function by all I2C modules.

3.7.2 ISR functional description

The ISR has a few key tasks. First, it must determine if this is a master or slave

module that has received an interrupt. Therefore, it calls the function

Master_Slave(i2cCore);

This function returns a 1 if the I2C core is a master, and a 0 if it is a slave.

From there the ISR needs to read the Masked Interrupt Status and service what interrupts

are found there. Generally, if the I2C core is a slave, then the RX FIFO needs to be read, and

the bytes found there placed in the circular buffer. This is accomplished with the function

call:

readI2cRxHardwareFifo_(i2cCore);

If the I2c Core is a master, then the master can receive data by using the same

function call. The functionality is also there for the master to send data when the TX FIFO

reaches a certain fill level for triggering. This would work with the following function call:

writeI2cRxHardwareFifo_(i2cCore);

The ISR is already coded with this functionality. However, as covered in section 2.10

the TM4C does not currently have a working TX trigger, so this code remains untested.

 The last task for the ISR is to clear the interrupts by writing into the master or slave

Interrupt Clear register. Because of timing requirements, it is important that this is done

after servicing the interrupts. If the interrupts are cleared too early in the function, then the

interrupt may trigger again while the original ISR is still processing. The consequences could

be data loss or data corruption.

26

CHAPTER 4

I2C DRIVER

IMPLEMENTATION

27

4.1 Configuration Registers

This section will cover the specific registers than need to be configured to use the I2C bus.

4.1.1 GPIO registers

The following registers must be configured for the GPIO to function as an I2C bus:

Register 95: Inter-Integrated Circuit Run Mode Clock Gating Control
(RCGCI2C)

 This register activates an I2C module by providing it with a clock signal. If an I2C

module is made active, then a clock signal is provided. Otherwise, there is no clock signal

and the I2C module cannot be used.

Register 89: General-Purpose Input/Output Run Mode Clock Gating Control
(RCGCGPIO)

 This register activates a GPIO port by providing it with a clock signal. If an GPIO port

is made active, then a clock signal is provided. Otherwise, there is no clock signal and the

GPIO port cannot be used.

Register 10: GPIO Alternate Function Select (GPIOAFSEL)

 This register is essentially a control selection register. If the corresponding bit is left

at 0, then the pin is used as a standard GPIO pin. If the bit is 1 then the pin will be controlled

by a peripheral device.

Register 18: GPIO Digital Enable (GPIODEN)

 This register determines whether a pin will be used as an analog input pin or a digital

signal is expected. If the bit is left at 0 it behaves as a standard analog I/O pin. If the bit is set

at 1 then it will function as a digital I/O pin.

Register 14: GPIO Open Drain Select (GPIOODR)

 This register is the open drain control register. Setting the bit to 1 enables the open

drain functionality of the pin, which is needed for some peripheral devices like I2C. Only the

SDA must be configured as an open drain for I2C.

Register 22: GPIO Port Control (GPIOPCTL)

 When using the AFSEL register to set a pin to work with an alternate function, the

PCTL register is where the specific peripheral which will be used is set. The value that needs

to be written into the PCTL for each pin is different depending on which peripheral device is

used. These values can be found in a table in the data sheet. This table for the TM4C is on

page 1808. It shows that a value of 0x2 must be written for I2C operation with pins PB2 and

PB3 being used for I2C0.

28

The following code example shows a manual configuration of the GPIO for the I2C0

module. However, it should be noted that this type of manual operation is not used in the

I2C driver. I have integrated a GPIO driver that was provided by the university that allows

the same functionality without writing directly to the registers.

case I2C0_BASE:

 SYSCTL_RCGCI2C_R |= 0x0001; //activate I2C0

 SYSCTL_RCGCGPIO_R |= 0x0002; //activate GPIO port B

 while((SYSCTL_PRGPIO_R&0x0002) == 0){};// ready?

 GPIO_PORTB_AHB_AFSEL_R |= 0x0C; // 3) enable alt funct on PB2,3

 GPIO_PORTB_AHB_ODR_R |= 0x08; // 4) enable open drain on PB3

 GPIO_PORTB_AHB_DEN_R |= 0x0C; // 5) enable digital I/O on PB2,3

 GPIO_PORTB_AHB_PCTL_R |= 0x00002200; // 6) configure PB2,3 as I2C

4.1.2 I2C Master config registers

Register 9: I2C Master Configuration (I2CMCR)

This register configures whether the I2C module runs in master or slave mode. If bit

4 is set, then the module runs as master. If bit 5 is set, the module runs as a slave.

Register 4: I2C Master Timer Period (I2CMTPR)

This register is programmed to set the period for the SCL clock. This value will

determine the timing of the entire I2C network, since the master always sets the clock value

for any transmission. The value of the MTPR needs to be calculated using the following

formula found in the datasheet:

Equation 3: SCL period

 𝑆𝐶𝐿𝑃𝑅𝐷 = 2 𝑥 (1 + 𝑇𝑃𝑅) 𝑥

 (𝑆𝐶𝐿𝐿𝑃 + 𝑆𝐶𝐿𝐻𝑃) 𝑥 𝐶𝐿𝐾𝑃𝑅𝐷 (Texas Instruments, 2014, pg. 1285)

SCL_PRD is the SCL line period (I2C clock).

TPR is the Timer Period Register Value (range of 1 to 127).

SCL_LP is the SCL Low period (fixed at 6).

SCL_HP is the SCL High Period (fixed at 4).

CLK_PRD is the system clock period in ns.

After doing a bit of algebra, this calculation can be written into the driver with the following

code:

29

TPR = ((SysClock + (2 * 10 * SCLFreqLow) - 1) /

 (2 * 10 * SCLFreqLow)) - 1;

 I2C_MTPR = TPR;

SysClock is the return value of the function SysCtlClockFreqSet(), which configures

the clock frequency for the entire microcontroller. This function must be run in the main

program before configuring of I2C modules is possible. The SysClock value is then passed

into the function from the main program. The SCLFreq can be either 100kbps or 400 kbps.

This is a choice made by the programmer. For testing, I have chosen 100kbps (SCLFreqLow)

since this is the standard transmission speed of the I2C bus. These values are enumerated in

the driver as follows:

//define baud rate to be used when configuring the I2C modules

enum baud_rate {

 SCLFreqLow = 100000, //SCL baud rate at 100kbps(standard speed)

 SCLFreqHigh = 400000 //SCL baud rate at 400kbps

};

Register 1: I2C Master Slave Address (I2CMSA)

This register holds the slave address that the master will send on the I2C bus. Recall

that the full address is 8 bits, with 7 of those being the slave address and the LSB holding the

read/write bit.

Register 12: I2C Master Burst Length (I2CMBLEN)

This register determines how many Bytes are sent per data transmission when using

the internal FIFO. Each FIFO can hold 8 Bytes, so I have chosen the burst length as 8 bytes.

The values that can be used as MBLEN are defined in the halI2c.h header file.

Register 5: I2C Master Interrupt Mask (I2CMIMR)

This register controls whether or not a raw master interrupt will trigger an ISR in the

NVIC. Each possible interrupt source always sets the corresponding bit in the Master Raw

Interrupt Status Register(I2CMRIS). It is always possible to read these bits, but an interrupt

will only trigger when the corresponding bit in the MIMR is set.

Each possible source of interrupts is defined in the halI2c.h header file as follows:

#define I2C_MASTER_INT_TX_FIFO_REQ

\ 0x00000100 // TX FIFO Request Interrupt

Master interrupts are currently disabled since I am only sending data from the master to the

slave. To enable a master interrupt, the following function call can be used:

Master_Interrupt_Enable(i2cCore, I2C_MASTER_INT_TX_FIFO_REQ);

Any combination of interrupts can be enabled by ORing the defined I2C master interrupts

together in the function call.

30

4.1.3 I2C Slave config registers

Register 9: I2C Master Configuration (I2CMCR)

This register must also be configured for the slave I2C module. If bit 4 is set, then the

module runs as master. If bit 5 is set, the module runs as a slave.

Register 15: I2C Slave Control/Status (I2CSCSR)

When read, this is a status register that can give pertinent information about that

status of a transfer. However, when written to it is a control register that is required to put

an I2C module into slave mode. It is also used to turn on or off the slave FIFO.

Register 21: I2C Slave Own Address (I2CSOAR)

This register stores the slave module’s own address. The slave address is

configurable and can be chosen by the programmer. For the testing of I2C3 as a slave

module I have chosen 0x76 as the slave address. This address is defined in the main

program as follows:

#define SLAVE_ADDRESS 0x76

If there is more than a single slave, it may be beneficial to enumerate multiple slave

addresses.

Register 17: I2C Slave Interrupt Mask (I2CSIMR)

This register controls whether a raw slave interrupt will trigger an ISR in the NVIC.

Each possible interrupt source always sets the corresponding bit in the Slave Raw Interrupt

Status Register(I2CSRIS). Each possible source of interrupts is defined in the halI2c.h header

file. Configuring the Interrupt Masks works in the same way as the explanation in section

4.1.2 with the exception that the proper function call is

Slave_Interrupt_Enable(i2cCore, I2C_SLAVE_INT_RX_FIFO_REQ);

For testing purposes, the only bits set in the SIMR are bit 8 and bit 6. Bit 8 triggers

the ISR when the RX FIFO is full. Bit 6 triggers the ISR when the fill level reaches its trigger,

which is set to 1 byte. This way, even if only a single byte is transferred the ISR will run and

the byte is properly handled.

4.1.4 I2C FIFO config registers

The send (TX) FIFO and the receive (RX) FIFO must be configured respectively. In

most cases a device (microcontroller, sensor, LED…e.tc) will be only a master or a slave, not

both. Therefore, the RX and TX FIFO are normally assigned to the same I2C module. In this

case, I only had access to a single device. So, I had to configure one I2C module to be the

31

master and another I2C module on the same device to be the slave. These devices then

share the FIFO. The master gets the TX FIFO and the slave gets the RX FIFO.

To configure the FIFO, the following registers are required:

Register 24: I2C FIFO Control (I2CFIFOCTL)

This is the main control register for the FIFOs. RX and TX are assigned, the FIFO can

be flushed, and the FIFO fill trigger level can be set. As mentioned before, the TX FIFO

trigger fill level does not function on this version of the TM4C, so I was unable to test this

functionality. However, it does work on the RX side. I have set it to react to a single byte to

ensure that no data is lost even with single byte transmissions. Bit 31 controls whether the

RX FIFO is assigned to the master or slave, and bit 15 controls the TX FIFO in the same way.

Setting bit 14 flushes (empties) the FIFO.

Register 15: I2C Slave Control/Status (I2CSCSR)

For the slave only, bit 2 needs to be set to assign the RX FIFO to the slave.

32

4.1.5 Block Diagram for I2C module

Figure 15: I2C module block diagram (Texas Instruments, 2014, pg. 1276)

4.2 Configuration routine

4.2.1 Functional Description of configuration function

The configuration function performs the following necessary actions:

1. Configure the GPIO pins for the I2C module using the GPIO driver.

2. Enable the I2C module in the SYSCTL register.

3.

 3a. If the module is to be a master:

1.Enable the master.

33

2. Set the master timer period.

 3. Set the slave address and the read/write bit.

 4. Set the master burst length

 3b. If the module is a slave:

1. Enable the slave.

2. Set the slave address.

4. Enable and configure the FIFOs.

5. Configure the interrupt masks.

6. Clear all interrupts.

7. Register the ISR using the NVIC driver.

8. Initialize the circular buffer for this I2C module.

9. Setup the handle for the I2C module.

10. Return the handle to the main program.

4.2.2 Required data structures in the main program

The following data structures, enums, and defines are needed in the main program for the

configuration of the I2C module and circular buffer:

#define SLAVE_ADDRESS 0x76 //Assigned slave address for the I2C Slave

//these are for the circular buffer

enum i2cAreaMemorySize_ {

 i2cMasterTxAreaMemorySize_ = 9,

 i2cMasterRxAreaMemorySize_ = 33,

 i2cSlaveTxAreaMemorySize_ = 9,

 i2cSlaveRxAreaMemorySize_ = 33

};

//Initialization parameters for the circular buffer

//the master and slave each need their own TX and RX buffer

static char i2cMasterMemoryAreaTx_[i2cMasterTxAreaMemorySize_];

static char i2cMasterMemoryAreaRx_[i2cMasterRxAreaMemorySize_];

static char i2cSlaveMemoryAreaTx_[i2cSlaveTxAreaMemorySize_];

static char i2cSlaveMemoryAreaRx_[i2cSlaveRxAreaMemorySize_];

34

4.2.3 example code for master and slave configuration with descriptors

To configure the master or the slave I2C module, only a single function call is required for

each:

//configure i2c0 Master to write

 HalI2cCoreStateHandle i2cMasterHandle =

hali2cCoreInit(hali2c0sclPB2sdaPB3,

 master,

 write,

 SLAVE_ADDRESS,

 SysClock,

 &i2cMasterMemoryAreaTx_[0],

 i2cMasterTxAreaMemorySize_,

 &i2cMasterMemoryAreaRx_[0],

 i2cMasterRxAreaMemorySize_);

//configure i2c3 slave to receive

 HalI2cCoreStateHandle i2cSlaveHandle =

hali2cCoreInit(hali2c3sclPK4sdaPK5,

 slave,

 read,

 SLAVE_ADDRESS,

 SysClock,

 &i2cSlaveMemoryAreaTx_[0],

 i2cSlaveTxAreaMemorySize_,

 &i2cSlaveMemoryAreaRx_[0],

 i2cSlaveRxAreaMemorySize_);

The specifics of the function arguments are covered in section 3.6.2. The same function call

is used to configure a master or a slave. It is only the arguments that change.

4.3 Send and Receive data

4.3.1 Functional description of TX and RX functions

To send data over the I2C bus, the function that must be called from the main is:

halI2cTx();

This function will accept a pointer to a char array that contains the bytes to be sent

as an argument. These bytes are first placed inside the TX circular buffer, 8 bytes at a time.

From the circular buffer, the bytes are put into the TX FIFO. When the TX FIFO is full, the

command to transmit the bytes to the slave is sent to the master control register. The 8

bytes from the TX FIFO are then transmitted over the I2C bus and received in the slave RX

FIFO. The function returns the number of bytes that were sent, which is used by the main

program to update a counter that is needed to transfer larger messages.

35

To retrieve this data from the FIFO, an ISR is called which places the transferred

bytes into the RX circular buffer. In order to maintain a level of abstraction, there exists a

function that only serves to pull the data from the circular buffer into a data array in the

main program:

halI2cRx();

This function accepts a pointer to a char array as an argument and simply uses the circular

buffer driver’s internal read function to place the available bytes into the given array.

4.3.2 Required data structures in the main program (for TX and RX only)

The following are required in the main program for sending and receiving data:

/**

 * Constant specifying the length of the message, i.e.

 * number of bytes to be received (Rx) or send (Tx).

 */

enum i2cMessageLength_ {

 i2cMessageLength_ = 32

};

//Length of the read buffer

enum I2cReadBufferSize_ {

 I2cReadBufferSize_ = 32

};

//Array to store returned values from the RX circular buffer

char i2cCircularBufferMessageRead_[I2cReadBufferSize];

//Message to be transmitted

static char const i2cMessage_[i2cMessageLength_ + 1] = "message";

4.3.2 Example code for master send and slave receive with descriptors

To send a message that is stored in the i2cMessage_[] array:

//TRANSMIT THE CONTENTS OF "i2cMessage_" OVER THE I2C BUS

 //the message will end up in the RX circular buffer of the I2C

slave(I2c3)

 sentBytesCount = 0;

 while (sentBytesCount < i2cMessageLength_) {

 sentBytesCount += halI2cTx(

 &i2cMessage_[sentBytesCount],

 i2cMessageLength_ - sentBytesCount,

 i2cMasterHandle

);

 }

Since the FIFOs can only hold 8 bytes it is necessary to use some programming logic
to send larger messages. The total message length is arbitrary, but we want to send only 8
bytes at a time. In this case the i2cMessageLenth is 32 bytes. The variable sentBytesCount is

36

updated during each iteration with the total number of bytes sent thus far. The value of
sentBytesCount is used to determine the current position in the i2cMessage array. A pointer
to this memory location is sent as a function argument so the function knows where to
begin reading from in the following iteration. This occurs until the number of bytes sent is
equal to or greater than the i2cMessageLength.

To read the contents of the circular buffer after transmission is complete:

 //READ THE MESSAGE BACK FROM THE I2C3 RX Circular Buffer into the
array "i2cCircularBufferMessageRead_"

 //receivedBytesCount should be equal to sentBytesCount after

reading the message

 unsigned int receivedBytesCount = 0;

 receivedBytesCount =

halI2cRx(&i2cCircularBufferMessageRead_[receivedBytesCount],

 i2cMessageLength_,

 i2cSlaveHandle);

The data should already exist in the RX circular buffer for the slave. Depending on

the needs of the program, it may be valuable to transfer the data into a standard char array

so it can be processed in some way or sent to another peripheral. A pointer to a data array

is sent as a function argument and the function places the entire contents of the circular

buffer into that data array. Take care that the array is large enough to receive the entire

circular buffer or some data may be lost.

4.4 Main program to configure and send data

4.4.1 Steps to send a data transmission

Figure 16: Basic steps for data transmission in the main program

37

4.4.2 Example of a complete main program code

/*

 * main.c

 *

 * The main program simply instantiates 2 I2C handles. One for the master

and one for the slave.

 * Then a message of Bytes is placed in the circular buffer, and then

transmitted

 * from the master to the slave over the I2C bus.

 * This data is then read from the RX I2C FIFO and placed into the RX

circular buffer, then stored in a buffer array

 * visible to the main program

 * Created on: June 28, 2020

 * Author: Jacob Seal

 */

#include <stdint.h>

#include <stdbool.h>

// HAL libraries

#include "hal/uart/halUart.h"

#include "hal/i2c/halI2c.h"

#include "C:/ti/TivaWare_C_Series-2.1.4.178/driverlib/sysctl.h"

#include "utils/circularBuffer/utilsCircularBuffer.h"

#define SLAVE_ADDRESS 0x76 //Assigned slave address for the I2CSlave

/**

 * Constant specifying the length of the message, i.e.

 * number of bytes to be received (Rx) or send (Tx).

 */

enum i2cMessageLength_ {

 i2cMessageLength_ = 32

};

//these are for the circular buffer

//memory size needs to be 1 bigger than transmission size. ex: 8 bytes

transmitted needs memory size of 9

enum i2cAreaMemorySize_ {

 i2cMasterTxAreaMemorySize_ = 9,

 i2cMasterRxAreaMemorySize_ = 33,

 i2cSlaveTxAreaMemorySize_ = 9,

 i2cSlaveRxAreaMemorySize_ = 33

};

enum I2cReadBufferSize_ {

 I2cReadBufferSize_ = 32

};

/**

 * Static variables will not be seen outside

 * of their compilation unit.

 */

//Message to be transmitted

static char const i2cMessage_[i2cMessageLength_ + 1] =

"TEST1I2CTEST2I2CTEST3I2CTEST4I2C";

38

//Initialization parameters for the circular buffer

static char i2cMasterMemoryAreaTx_[i2cMasterTxAreaMemorySize_];

static char i2cMasterMemoryAreaRx_[i2cMasterRxAreaMemorySize_];

static char i2cSlaveMemoryAreaTx_[i2cSlaveTxAreaMemorySize_];

static char i2cSlaveMemoryAreaRx_[i2cSlaveRxAreaMemorySize_];

int main(void) {

 char i2cCircularBufferMessageRead_[I2cReadBufferSize_];

 //set system clock for I2C - required to initialize the I2C master

module

 uint32_t SysClock = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |

SYSCTL_OSC_MAIN |

 SYSCTL_USE_PLL |

SYSCTL_CFG_VCO_480), 120000000);

//***

 //Initialize and configure I2C0(writer) as master and I2C3(reader) as

slave

//***

 hali2cDriverInit();

 //configure i2c0 Master to write

 HalI2cCoreStateHandle i2cMasterHandle =

hali2cCoreInit(hali2c0sclPB2sdaPB3,

 master,

 write,

 SLAVE_ADDRESS,

 SysClock,

 &i2cMasterMemoryAreaTx_[0],

 i2cMasterTxAreaMemorySize_,

 &i2cMasterMemoryAreaRx_[0],

 i2cMasterRxAreaMemorySize_);

 //configure i2c3 slave to receive

 HalI2cCoreStateHandle i2cSlaveHandle =

hali2cCoreInit(hali2c3sclPK4sdaPK5,

 slave,

 read,

 SLAVE_ADDRESS,

 SysClock,

 &i2cSlaveMemoryAreaTx_[0],

 i2cSlaveTxAreaMemorySize_,

 &i2cSlaveMemoryAreaRx_[0],

 i2cSlaveRxAreaMemorySize_);

//***

 //Configuration complete

//***

 unsigned int sentBytesCount;

 //TRANSMIT THE CONTENTS OF "i2cMessage_" OVER THE I2C BUS

39

 //the message will end up in the RX circular buffer of the I2C

slave(I2c3)

 sentBytesCount = 0;

 while (sentBytesCount < i2cMessageLength_) {

 sentBytesCount += halI2cTx(

 &i2cMessage_[sentBytesCount],

 i2cMessageLength_ - sentBytesCount,

 i2cMasterHandle

);

 }

 //READ THE MESSAGE BACK FROM THE I2C3 RX Circular Buffer into the

array "i2cCircularBufferMessageRead_"

 //receivedBytesCount should be equal to sentBytesCount after

reading the message

 unsigned int receivedBytesCount = 0;

 receivedBytesCount =

halI2cRx(&i2cCircularBufferMessageRead_[receivedBytesCount],

 i2cMessageLength_,

 i2cSlaveHandle);

 return 0;

}

40

CHAPTER 5

TESTING

41

In order to properly test the driver, I determined the most important test cases. The

size of the RX circular buffer is 32 bytes. This is an arbitrary size that is configurable in the

main program. This means the maximum single message size is also only 32 bytes. The

example code from section 4.4.2 was used as the base code for all testing.

The test cases are as follows:

Test Case 1: 32 byte message

Test Case 2: 0 byte message

Test Case 3: 1 byte message

Test Case 4: 15 byte message

Test Case 5: 35 byte message

Test Case 6: second transmission

42

5.1 Test Case 1: 32 byte message.

A “full” message buffer:

Figure 17: Input data for test case 1

Figure 18: Output for test case 1

As expected, all 32 bytes which were sent over the bus ended up in the

i2cCircularBufferMessageRead buffer.

43

5.2 Test Cast 2: 0 byte message.

An “empty” 32 byte message buffer:

Figure 19: Input data for test case 2

Figure 20: Output for test case 2

The process completed without error and the i2cCircularBufferMessageRead buffer is

empty. Since no bytes were in the message buffer this is the expected output.

44

5.3 Test Case 3: 1 byte message.

A single byte in a 32 byte message buffer:

Figure 21: Input data for test case 3

Figure 22: Output for test case 3

A single byte ,‘T’, was sent over the I2C bus, and the single byte exists in the

i2cCircularBufferMessageRead buffer after transmission. This is the expected behavior.

45

5.4 Test Case 4: 16 byte message.

A “half full” 32 byte message buffer:

Figure 23: Input data for test case 4

Figure 24: Output for test case 4

16 bytes were sent over the I2C bus, and the 16 bytes exists in the

i2cCircularBufferMessageRead buffer after transmission. This is the expected behavior.

46

5.5 Test Case 5: 35 byte message.

Extended message buffer with a 35 byte message. The RX circular buffer is still 32 bytes.

Figure 25: Input data for test case 5

Figure 26: Output data for test case 5 with 3 lost bytes

In this case, the circular buffer is only 32 bytes long. So, the maximum transmission

size is 32 bytes. The i2cCircularBufferMessageRead buffer array contains the first 32 bytes,

but the last 3 bytes are lost.

47

To get an output that includes all 35 bytes from the transmitted message, the user

must simply change the size of the circular buffer to be at least 35 bytes:

enum i2cAreaMemorySize_ {
 i2cMasterTxAreaMemorySize_ = 9,
 i2cMasterRxAreaMemorySize_ = 36,
 i2cSlaveTxAreaMemorySize_ = 9,
 i2cSlaveRxAreaMemorySize_ = 36
};

After making this change, there is room for all 35 bytes and the transmission will complete

successfully.

Figure 27: Output data for test case 5 with no data loss

48

5.6 Test Case 6: Second Transmission

Send a second message directly after the first message using the same code, but with a

different message buffer containing a new message “ANOTHER1”.

Figure 28: Input data for test case 6

Figure 29: Output for test case 6 with data overwrite

A second message can be sent over the I2C bus as soon as the current transmission is

complete. The problem comes when retrieving that message from the RX circular buffer. As

49

shown above in figure 29: if the halI2cRx() function is called after the second transmission,

the new values will over-write the current values in the i2cCircularBufferMessageRead

array. This may or may not be OK, depending on the use case. There is not a problem with

the I2C bus communication. It is only a problem of retrieving the data after it is successfully

sent over the bus.

If it is necessary to store all the transmitted values from multiple transmissions a

small change in programming logic is required in the main program. The programmer simply

needs to allow the variable receivedBytesCount to accumulate with each call of halI2cRx()

instead of resetting it to 0 for each read operation. Then make sure the

i2cCircularBufferMessageRead array is large enough to hold both transmissions. Then the

full output from both transmissions can be stored.

Figure 30: Output for test case 6 with all bytes stored

50

CHAPTER 6

CONCLUSION

51

6.1 Conclusion

I2C communication is currently working in a predictable and reliable way. The input

data is consistently seen intact at the output. The test results show exactly the desired

behavior. The successful testing indicates that the configuration of the I2C modules by the

driver are correct and working up to the desired specification. Future students who need to

use I2C communications for their projects should not need to do a “deep dive” into the data

sheet or a textbook. Everything they need to send and receive data is here with just a few

simple function calls. This thesis serves as a manual for this driver that can quickly teach a

person all that they would need to know about I2C communications.

6.2 Design goals met or unmet

The driver currently fulfills every functional requirement listed in Section 1.2. An

arbitrary number of bytes can be transmitted by the master and received by the slave. This

number is configurable by the user based on the maximum size of the chosen data array in

the main program. The FIFO is being used as the transfer medium, the interrupts are

configured by the NVIC, and the circular buffer is integrated into the system.

Each software requirement listed in section 1.3 has also been fulfilled. First and

foremost, the driver is easy to use. Full functionality can be demonstrated with just 4

function calls. All the mentioned protections are also included to prevent the user from

making a dangerous mistake and corrupting data or memory. The user is provided with only

a “handle (a pointer to a struct),” which is what allows interactions with the I2C module.

This handle prevents the user from gaining direct access to any registers. The user can only

interact with the driver in a very abstract way. Finally, when the data is received by the I2C

slave, there is functionality to transfer that data to a buffer so that it can be processed or

used in some other way by the main program.

6.3 Recommendations for expanding the driver

1. Extend the driver to work with more I2C modules.

The TM4C includes 9 I2C modules. I have only included configuration options for 2 of

those 9. The driver is, however, easily scalable to include all 9.

2. Sending data from the Slave to the master

 When calling the halI2cCoreinit() function from the main, the read or write bit allows

each module to read or write whether they are the master or slave. For this project, data

has only been sent from the master to the slave. Some small extension of the ISR and

master control command may be necessary but sending from the slave to the master should

also be possible with this driver.

52

3. uDMA functionality

The DMA is very fast and may be desired in the future project. The configuration

function could include an argument to select FIFO or DMA and perform a different config

routine for each situation.

4. de-configuration

Currently, there is no mechanism to de-configure an I2C module that is no longer in use.

53

ADDENDUM

Many functions exist in the driver that are not needed for Master to Slave communication

via the FIFO. Some of these functions may prove to be useful, depending on project needs.

These functions are prototyped in the halI2c.h header file as static, which needs to be

changed if they are to be accessed by a program or application.

It is also possible to send single byte transmissions without using the FIFO. The

required steps are outlined in the datasheet starting on page 1297, and the required

functions already exist in the driver. These functions are a good place to start learning about

I2C communications.

Manual configuration is also be possible if there is a specific need that falls outside of

what I have provided here. The modular design of the driver would allow a programmer to

configure in any way they see fit without having to add any new functions to the driver. At

the least, there is a function to configure most registers dealing with the I2C module and the

FIFO.

54

References

[1] Valvano, J. W. (2017). Embedded Systems: Introduction to ARM Cortex-M

microcontrollers. USA: Jonathan W. Valvano. http://users.ece.utexas.edu/~valvano/

[2] Texas Instruments, Tiva™ TM4C1294NCPDT Microcontroller, TM4C1294NCPDT

datasheet, Oct 2013 [revised June 2014]. https://www.ti.com/lit/gpn/tm4c1294ncpdt

[3] NXP Semiconductors, I2C-bus specification and user manual, 1982 [revised April 2014].

https://www.nxp.com/docs/en/user-guide/UM10204.pdf

[4] Valdez, J., & J. B. (2015). Understanding the I2C Bus (pp. 1-8, Tech. No. SLVA704).

Dallas, TX: Texas Instruments. https://www.ti.com/lit/pdf/slva704

[5] Arora, R. (2015). I2C Bus Pullup Resistor Calculation (pp. 1-5, Tech. No. SLVA689).

Dallas, TX: Texas Instruments. https://www.ti.com/lit/pdf/slva689

[6] Ashara, A. (2015). Using Feature Set of I2C Master on TM4C129x Microcontrollers (pp.

1-21, Tech. No. SPMA073). Dallas, TX: Texas Instruments.

http://www.ti.com/lit/zip/spma073

[7] Techopedia.com. What is Hardware Abstraction Layer (HAL)? – Definition from

Techopedia. [online]. Available at:

https://www.techopedia.com/definition/4288/hardware-abstraction-layer-hal

http://users.ece.utexas.edu/~valvano/
https://www.ti.com/lit/gpn/tm4c1294ncpdt
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://www.ti.com/lit/pdf/slva704
https://www.ti.com/lit/pdf/slva689
http://www.ti.com/lit/zip/spma073
https://www.techopedia.com/definition/4288/hardware-abstraction-layer-hal

55

Declaration

I hereby declare that I have written this work independently without outside help and that I

have only used the specified aids.

City, Date Signature

