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ABSTRACT 
 

Jacob Seal 

Title of the paper 

I2C-bus communication for distributed embedded applications running in a network of ARM-based 

microcontrollers 

Keywords 

Microcontroller, ARM, I2C, bus communication, embedded systems 

Abstract 

I2C is a two-wire serial bus communications protocol. The purpose of the I2C bus is to allow 

robust and efficient communication between I2C enabled devices on the same bus. Each device on 

the bus has its own unique address and will be configured as either the master or the slave. A 

practical example of an I2C bus would be a microcontroller as the master, and several sensors as 

slaves with single a LED readout to display sensor data.  

A driver is required to configure the operating parameters and access the memory registers 

of an I2C enabled IC. A driver exists as an interface between the main program and the hardware. It 

is not desirable for the main program to touch the memory registers on the microcontroller directly. 

The driver is written in such a way that it provides a layer of abstraction between the user/program 

and the registers. Development and testing of such a driver is the technical goal of this thesis.  

Thema der Bachelorthesis  

I2C-Bus-Kommunikation für dezentrale eingebettete Applikationen, die in einem Netzwerk von ARM-

basierten Mikrocontrollern laufen 

Stichworte 

Mikrocontroller, ARM, I2C, Buskommunikation, eingebettete Systeme 

Kurzzusammenfassung 

I2C ist ein serielles Zweidraht-Bus-Kommunikationsprotokoll. Der Zweck des I2C-Busses 

besteht darin, eine robuste und effiziente Kommunikation zwischen I2C-fähigen Geräten am selben 

Bus zu ermöglichen. Alle Geräte am Bus haben ihre eigene eindeutige Adresse und werden entweder 

als Master oder als Slave konfiguriert. Ein praktisches Beispiel für einen I2C-Bus wäre ein 

Mikrocontroller als Master und mehrere Sensoren als Slaves, mit einer einzigen LED-Anzeige zur 

Anzeige von Sensordaten.  

Ein Treiber ist erforderlich, um die Betriebsparameter zu konfigurieren und auf die 

Speicherregister eines I2C-fähigen ICs zuzugreifen. Ein Treiber existiert als Schnittstelle zwischen 

dem Hauptprogramm und der Hardware. Es wäre unvorteilhaft, dass das Hauptprogramm die 

Speicherregister auf dem Mikrocontroller direkt berührt. Der Treiber ist so geschrieben, dass er eine 

Abstraktionsschicht zwischen dem Benutzer/Programm und den Registern bietet. Die Entwicklung 

und Erprobung eines solchen Treibers ist das technische Ziel dieser Arbeit. Für das Testen werden 

die wichtigsten Anwendungsfälle mit Ausgaben dokumentiert, die belegen, dass der Treiber gemäß 

den funktionalen Anforderungen arbeitet.  
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Arbitration - procedure to ensure that only one master device is controlling the bus at a 

time 

Synchronization - procedure to synchronize the clock signals of 2 devices 
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INTRODUCTION 
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1.1 Scope of thesis 
 

The purpose of this thesis is to learn about hardware driver design using the I2C bus 

as the basis. To expand this knowledge, I have designed an I2C driver using embedded C 

programming that can be used to send and receive messages over the I2C bus of the Texas 

Instruments TM4C1294XL microcontroller. This is an ARM Cortex M4 microcontroller. For 

the purposes of this thesis, I will send data from the I2C master to a single I2C slave. The I2C 

master is an I2C module (I2C0) on the TM4C that has been configured for master operation. 

The I2C slave is another I2C module (I2C3) on the TM4C microcontroller that has been 

configured for slave operation. It is also possible to send messages from the slave to the 

master using this driver, however, for testing purposes this functionality has been ignored. 

This thesis contains 6 chapters plus an addendum. Chapter 1 is a basic overview of 

the thesis. Chapter 2 is an in-depth discussion of the I2C bus and how it works.  In Chapter 3, 

I will provide a theoretical overview of the driver design. After the theoretical discussion, 

chapter 4 will get into the nuts and bolts of the I2C configuration. I will discuss each 

configuration register in detail. Chapter 4 also contains code for a full program that can be 

used to demonstrate the basic functionality of the driver. Chapter 5 will cover several 

testing scenarios with a brief discussion regarding the output for each test. Chapter 6 will 

provide a concluding discussion and some ideas for expanding the driver. The addendum 

will discuss a few additional functionalities included in the driver that may be of use for 

future projects. 

This thesis should serve as a “how-to” guide for any future students who need to use 

this driver. I will fully discuss how to use the driver, and how to expand it with further 

functionality in the future. There are also some hidden functionalities that may be of use in 

certain scenarios, and those will be briefly covered as well.  

1.2 Functional Requirements 
 

-the driver shall facilitate every configuration requirement to configure the needed I2C 

module: 

-GPIO 

-master or slave 

-sender or receiver 

-configure the hardware FIFO 

-configure the ISR using the provided NVIC driver 

-the internal FIFO’s of the TM4C shall be utilized as the data transfer medium. 

-the Circular Buffer provided by the university will be utilized as the buffer between the user 

data and the FIFO (i.e. the user will never directly access the hardware FIFO). 
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-an interrupt will Trigger when the receiving FIFO has received data. The appropriate ISR will 

transfer this data into the circular buffer, making room for the next data transfer into the 

FIFO. 

-the driver shall contain functionality to send and receive data from a single byte, up to an 

arbitrary size limited only by the size of the circular buffer. Caveat: the FIFO is limited to 8 

bytes per transfer. This must be managed using the circular buffer and programming logic. 

1.3 Software Requirements 
 

-the driver shall be written in the C programming language. 

-the code shall be re-usable and scalable (multiple identical hardware modules must be 
serviced using the same code). 
 
-fully commented, clear coding style shall be used. Comments must include a brief 

description of the function as well as an explanation for each argument and return value. 

-a layer of abstraction must exist between the user and the registers of the TM4C (i.e. the 

user will not have any access directly to the data or configuration registers). 

-the driver shall contain all required definitions and enumerations (ex: base address of I2C 

module and offsets for individual registers, commands for the master controller, etc.). 

-once received by the I2C slave, data should be accessible by the user so it can be processed 

or sent to another peripheral device. 

-the user shall only have access to a limited function block allowing full configuration and 

data transmission without the ability to access dangerous functions which could break the 

functionality of the device. 

-an I2C module should be able to be configured with a single, re-usable function call. 

-data transmission is accomplished with a single, re-usable function call. 

-the driver should be designed with ease of use as a major design goal. 

1.4 required hardware 
 

-Texas Instruments TM4C1294XL Microcontroller 

-RS232 USB serial communications cable 

-Basic Breadboard 

-4.7kOhm pull-up resistors 

-Connector cables 
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1.5 software utilized 
 

-Texas Instruments Code Composer Studio (Eclipse based IDE) 

-Notepad++ 

-REALTerm 
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I2C IN DETAIL 
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2.1 Introduction to I2C  
 

The I2C bus is a bi-directional 2-wire communications bus that requires only an SDA 

and SCL line for robust and efficient communication. In layman’s terms, the I2C bus requires 

very few parts and facilitates easy communication between I2C compatible IC’s. Phillips 

Semiconductors developed the I2C bus with the purpose of efficient inter-IC control. The I2C 

bus is now a standard feature in thousands of IC’s produced by dozens of companies.  

The purpose of the I2C bus is to maximize hardware efficiency and circuit simplicity 

for system designers and manufacturing companies. All IC’S that include an on chip I2C 

interface can easily communicate with each other using the I2C bus. A standardized protocol 

for addressing, data transmission, and line arbitration makes this somewhat of a plug and 

play solution. The need to design bus interfaces is essentially eliminated, speeding up 

development time and saving on engineering costs (NXP Semiconductors, 1982, p. 5).  

2.2 Hardware Design 
 

The I2C bus consists of 2 wires, the SDA line and the SCL line. Each line must be 

pulled up with a resistor to a true “high” level. This is accomplished by using a pullup 

resistor connected to a Vcc of 3.3V or 5V. Each device on the I2C bus can be directly 

connected to the bus by its own SDA and SCL device pins.  

 

Figure 1: Example of an I2C bus 2 wire configuration with 1 master and 2 slaves (based on NXP Semiconductors, 1982, pg. 8) 

 

The bus is IDLE when the SDA and SCL lines are high. The pullup resistors (Rpu) are 

what allows the lines to be driven high. I2C is an open drain system, so it can only pull down. 

This means that a transistor pulls the lines low when a device is ACTIVE, and when the 

device is off the line will be high and IDLE. In this case, the line would be pulled high by the 

pullup resistors connected to the Vcc. The value of the pullup resistors is an important 

choice and can be determined by the following equations: 



7 
 

 

Equation 1: Rp,min 

 

 𝑅𝑝, min
=

𝑉𝑐𝑐−𝑉𝑜𝑙(max )

𝐼𝑜𝑙  (Arora, 2015, p. 2) 

 

Vol is the voltage that will be read as a Valid Logic Low and Iol is its corresponding current 

draw. 

Equation 2: Rp,max 

 

𝑅𝑝, max =
𝑡𝑟

0.8473×𝐶𝑝
 (Arora, 2015, p. 2) 

 

tr is the standard I2C rise time and the Cp is the line capacitance. These values can be found 

on the datasheet for each IC or by taking measurements on a scope.  

 

In this project, to calculate the Rp, min I looked at the data sheet to find the values for Vcc, 

Vol, and Iol.  

𝑅𝑝, min =
3.3𝑉 − .4𝑉

2𝑚𝐴
= 𝟏. 𝟒𝟓𝐤𝐎𝐡𝐦𝐬 

To calculate the Rp, max I had to get values from the datasheet for capacitance and from 

the Phillips/NXP spec sheet for SDA and SCL rise time. The calculation is as follows: 

𝑅𝑝, max
=

300𝑛𝑠

0.8473 𝑥 50𝑝𝐹
= 𝟕. 𝟎𝟖𝐤𝐎𝐡𝐦𝐬

 

For the pullup resistors I have selected 4.7kOhms. This falls within the min/max 

range and the functionality is verified by the output results. Unfortunately, due to the 

COVID-19 lockdown, I was unable to travel to Hamburg to use the oscilloscope in the lab for 

proper verification of these values.  

2.3 Master Slave relationship 
 

The master-slave relationship is what establishes the hierarchy on the bus. Every 

device on the bus has a unique address. Any device addressed by the master is considered a 
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slave. The master initiates all data transfers on the bus and provides the clock signal that the 

slave device must synchronize with (NXP Semiconductors, 1982, p. 6). The ONLY device on 

the bus that will receive the data is the one with the unique slave address referenced by the 

master. It is not possible to send a message to all slaves at the same time. This also does not 

mean that the master can ONLY send data. On the contrary, the master can also receive 

data from the slave device.  

A data transfer sequence looks like this: 

 

Figure 2: Simplified steps for data transmission (based on Valdez, 2015, pg. 3) 

The key point is that the master ALWAYS initiates the transfer whether it is sending 

or receiving. The master must also provide a clock signal for every transmission. This is an 

integral part of any I2C driver and there are dedicated registers that must be written to 

enable the required clock speed.  

The I2C protocol also allows for multiple masters to exist on the same bus. 

Therefore, it is possible that 2 masters could try and send data at the same time. For 

example, imagine the digital LCD display on a car. It can display information from multiple 

systems in the car: perhaps the outside temperature, the speed, and the current mileage on 

the car are all displayed. These 3 systems are controlled by separate Microcontrollers which 

are all Masters in their smaller, buffered section of the I2C bus. However, they must all 3 

report data to the LCD screen, which is only a slave device. There is an arbitration process 

that will allow them to co-exist peacefully.  
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2.4 Arbitration 
 

Arbitration is required if there is more than one master in the system. The I2C 

protocol only allows a master to initiate a transfer if the bus is clear. When a master initiates 

a transfer with a START condition there is a small delay before the I2C line is “busy” for this 

transfer. This time is referred to as the minimum hold time (thd;STA). During this short time 

period, it is possible for another master to initiate a START (Texas Instruments, 2013, p. 

1282). The arbitration process is designed to maintain data integrity and successfully 

complete both transfers when this happens.  

The arbitration process proceeds bit by bit (NXP Semiconductors, 1982, p. 11). 

During each high phase of the SCL, each master checks the current value of the SDA line 

against the current bit in the data byte that it transmitted. The first master to send a high 

but find the SDA line to be low has lost the arbitration and turns off its SDA driver. The 

winning master can complete its transfer. No information will be lost. The master that lost 

the arbitration will restart its transfer when the bus is free.  

The following figure shows an arbitration process by 2 masters. When DATA1 has a 

different value from the SDA, then master 1 shuts down its SDA line and waits for the bus to 

be free. This allows master 2 to complete its transmission. 

 

Figure 3: Arbitration procedure with 2 masters (NXP Semiconductors, 1982, pg. 12) 
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2.5 Start and Stop bit 
 

Every I2C transaction is begun by the master sending a START bit and ended by the 

master sending a STOP bit (Valdez, 2015, p. 4). A START condition is when the SDA 

transitions from high to low while the SCL remains high. A STOP condition is when the SDA 

transitions from low to high while the SCL remains high. After a START condition the bus is 

considered busy. If another master tries to transmit while the bus is busy, then the 

arbitration process outlined in section 2.4 must take place.  

 

Figure 4: START and STOP conditions (NXP Semiconductors, 1982, pg. 9) 

 

2.6 I2C Addresses (7-bit vs 8-bit) 
 

Each device on the I2C bus has a unique address. When the master wants to transmit 

to or receive from the slave, it must address the specific slave that it wants to communicate 

with. These addresses are 8 bits in total. However, it is not as simple as just picking a 

random 8-bit value. The actual slave address is only 7 bits. The extra bit, or the LSB, serves 

as the read or write bit. A ‘0’ in the LSB means that the master will write to the slave, and a 

‘1’ in the LSB means that the master will read from the slave.  

 

Figure 5: 7-bit slave address plus read/write bit 

For testing the driver, I have assigned the slave device with the hex address 0x76. 

This address is saved by the slave as its own address. However, when the master stores the 

slave address it will store the address appended with the read/write bit. The following code 

snippet from the I2C driver will explain further: 

I2CMaster_MSA = (SLAVE_ADDRESS << 1) | RW; 
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The MSA, or Master Slave Address register, is where the slave address that the 

master will place on the I2C bus is stored. To get this result, the 8-bit slave address is bit 

shifted left by a single bit, then the read/write bit is appended to the LSB with a bitwise OR 

operator. The first 7 bits will be re-interpreted as the slave address while the LSB will 

determine if the master performs a read or a write.  

 

Figure 6: I2CMSA (master slave address) calculation process 

For a write operation, the I2C_MSA register will store the hex value 0xEC. For a read 

operation, the method is the same except the RW bit is 1. The result is I2C_MSA = 0xED. The 

7-bit slave address of 0x76 will remain the same in either case. The only change is the read 

or write bit.  

2.7 Acknowledge or Not Acknowledged 
 

After each byte transferred, there is an ACK or NACK bit to indicate that the byte was 

successfully received (ACK) or not (NACK). This includes the slave address byte as well. The 

transmitter has control of the SDA line. During the 9th clock cycle, the transmitter will 

release the SDA line so the addressed receiver can control it for this clock cycle (Valdez, 

2015, p. 5). If the SDA is pulled low by the receiver this is considered an ACK by the 

transmitter. If the SDA remains high, then this is a NACK indication. In the event of a NACK 

the transmitter can issue a STOP bit to cancel the transmission, or a repeated START to try it 

again. An interrupt can be triggered when a NACK is received so that the user can configure 

a response that is appropriate for their project. 

There are several conditions that can result in a NACK: 

1) There is no device on the bus with this slave address. 

2) The receiver is busy with another function and cannot accept the transmission currently. 

3) The receiver does not understand the data or commands. 
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4) The receiver cannot accept any more bytes. 

 

Figure 7: Example NACK waveform (Valdez, 2015, pg. 6) 

In the above figure, during clock cycle 9 of the SCL the SDA remains high, which indicates a 

NACK condition. A stop condition is immediately sent by the master to stop the transfer. 

2.8 Complete I2C Data Packet 
 

Now that all the relevant parts have been defined, I will briefly discuss the data 

packet format for I2C transmission. Firstly, each byte transmitted must be exactly 8 bits long 

and it will always be followed by an ACK or NACK bit. An unlimited number of bytes can be 

transmitted per transfer, but the slave must ACK each byte. The transfer is ended by a stop 

bit. The slave can hold the SCL line low between bytes if it is not ready to receive more 

information. In this manner, the slave can force the master into a “wait” status. Once the 

slave has released the SCL then the transfer will continue.  

 

Figure 8: Complete data transfer packet (NXP Semiconductors, 1892, pg. 10) 

 

2.9 Read and Write 
 

Whether the master is writing to the slave or the slave is writing to the master, there 

is a similar process that facilitates the transfer. This is based upon the configuration of the 

master, which must be set with read or write bit (discussed in section 2.6). When there is 

data available to transmit or receive, a command is written to the master device’s control 

register. This command tells the master to initiate a transfer to or to read data from the 

slave. First, the master will write a START bit to the bus to make the bus busy for the 
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transfer. Then the 7-bit slave address is placed on the bus along with the read/write bit for a 

total of 8 bits. When the transfer is over, the master places a STOP bit on the bus and the 

bus is then released.  

2.9.1 Write Operation 
 

After the START bit, the master transmits the 7-bit slave address and the read/write 

bit, which is ‘0’ for a write operation. In the 9th clock cycle, the slave will acknowledge. With 

a successful acknowledge, the master can send 8 more bits, and the slave must again 

acknowledge. This 2nd byte could be raw data or a register address. If the slave device is, for 

instance, an IC that controls charging of a battery, then the 2nd byte could be a register 

address and the 3rd byte could contain configuration data. This process continues until the 

master issues a STOP on the bus.  

 

Figure 9: Data write with 8-bit register address and data byte (based on Valdez, 2015, pg. 7) 

2.9.2 Read Operation 
 

To initiate a read operation there is a similar process. After the START bit, the master 

transmits the 7-bit slave address and the read/write bit, which is ‘1’ for a read operation. In 

the 9th clock cycle, the slave will acknowledge. Once the slave has acknowledged, the slave 

then transfers 8 bits of data to the master. At this point, roles are reversed so the master 

must then acknowledge to the slave that the transfer was successful.  

 

Figure 10: Example of a data read (based on Valdez, 2015, pg. 7) 

There is a second type of read operation that is possible when there is a specific 

register in memory that the data should be stored in. For this case, the master initiates a 

START as if it’s going to write data (i.e. read/write bit set to 0). It writes the register address 
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to the bus, then instead of a STOP condition the master sends a repeated START with the 

read/write bit set to 1 for a read operation.  

 

Figure 11: Example of a data read with register pointer (based on Valdez, 2015, pg. 7) 

 

2.10 FIFO usage description 
 

The hardware FIFO is a memory buffer that is dedicated to I2C communication. On 

the TM4C, the FIFO can hold 8 bytes of data at any given time. TX interrupts can be 

triggered when the buffer is full or empty, but not at any point in between. There is a 

“trigger value” that can be set, but this functionality is not available on the TM4C when 

filling the TX FIFO. That is not normal, but it is a limitation of the TM4C. The RX FIFO can 

react to the trigger value with no problems. So, it is possible to run the ISR after any number 

of bytes has filled the RX FIFO, from 1 to 8.  

FIFO simply means data that is put into the buffer first, is also the data that is read 

from the buffer first. The FIFOs can be assigned to the master or the slave. The boundary 

conditions that have been used in testing the driver are that the TX (transfer) FIFO is 

assigned to the master, and the RX (receive) FIFO is assigned to the slave. These can be re-

assigned and re-configured for different operating modes including the slave sending data 

to the master. In many cases, both FIFO’s would be assigned to a single I2C device since the 

device being communicated with is not on the same Microcontroller. For driver 

development, the only device available for testing was the TM4C. Therefore, the FIFO had to 

be shared amongst two I2C modules on the same device.   
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I2C DRIVER DESIGN 
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3.1 HAL (Hardware Abstraction Layer) 
 

This driver was designed with a layer of abstraction in mind. This is formally known 

as a HAL, or Hardware Abstraction Layer, driver. This means that the calling program can 

interact with the hardware device in a very general, abstract way. The driver acts as an 

interface between the program and the hardware that the program needs to interact with. 

The application layer is where the programs run, and logically sits above the driver. 

Therefore, hardware drivers are referred to as “HAL low-level drivers.” The HAL is the bridge 

that allows the applications to send and receive from the hardware. 

 

Figure 12: Application design diagram 

There are several reasons for this abstraction. First, it protects against misuse. The 

data registers that are being accessed by the driver are hidden from the calling program. 

Only very specific functions can be called by the program. Interacting directly with the 

hardware is only possible for the driver. This allows for full functionality with zero direct 

register access, protecting against unwanted values in configuration or memory registers.  

The second reason is for ease of use. To interact with something like an I2C or UART 

device is complicated. There are a lot of registers to configure for reliable data transfer. 

Without this kind of abstraction, a programmer would have to understand how each 

hardware device communicates with the rest of the system. To spend hours with a data 

sheet figuring out which registers need to be written for a certain configuration takes a lot 

of time. Abstraction allows this process to be simplified. In fact, the programmer can use the 

driver as an interface without really having any knowledge of how it works.  

A third reason for HAL drivers is compatibility. The code for a specific program 

functionality is re-usable. For instance, imagine 2 different ARM M4 Microcontrollers that 

want to communicate over an I2C bus. The same application and driver code can be used on 

both controllers. In this way, the same few function calls can travel across multiple 



17 
 

Microcontrollers. It is also scalable, meaning that multiple I2C modules can be configured 

with the same re-usable function call.  

 

3.2 Assumptions 
 

For development purposes the following assumptions were made: 

1. Only 2 I2C devices will be used, I2C0 and I2C3.  

2. I2C0 will be configured as the master and I2C3 will be configured as the slave.  

3. Data will only travel in a single direction, from master to slave. 

 

3.3 Driver Architecture 
 

The driver is organized with a total of 4 files: 

1. I2cCores.h  

2. I2cPinouts.h  

3. halI2c.h 

4. I2c.c 

 

3.3.1 Organizational Structure 

 

Figure 13: Complete driver architecture diagram 
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3.3.2 I2cCores.h 
 

This header file provides an enumeration to make it easier to address a specific I2C 

device onboard the TM4C. There are 9 I2C devices on the Microcontroller. Here, 8 have 

been enumerated and are accessible to the driver: 

 

enum i2cCores { 

    i2c0Core = 0, 

    i2c1Core = 1, 

    i2c2Core = 2, 

    i2c3Core = 3, 

    i2c4Core = 4, 

    i2c5Core = 5, 

    i2c6Core = 6, 

    i2c7Core = 7 

}; 

 

enum i2cCoreCount { 

    i2cCoreCount = 8 

}; 

 

3.3.3 I2cPinouts.h 
 

This header file establishes a struct for each I2C module on the TM4C to describe 

their pinouts. This struct will be used by the driver in I2C.c to configure each I2C module. 

The SCL and SDA pins are explicitly defined. One “entry” is needed for each desired core. As 

per the assumptions mentioned earlier, only 2 cores are currently defined.  

enum i2cPinoutCount_ {  

    i2cPinoutCount_ = 2 //the number of I2C cores currently defined 

}; 

 

static const struct i2cPinoutSetup_ i2cPinoutSetups_[i2cPinoutCount_] = 

{ 

 //hali2c0sclPB2scaPB3 [0] 

 { 

      .i2cCore_ = i2c0Core, 

      .txPresent_ = true, 

      .sclPin_ = halGpioI2c0SCLPB2, 

      .rxPresent_ = false, 

      .sdaPin_ = halGpioI2c0SDAPB3 

 }, 

 //hali2c3sclPK4scaPK5 [1] 

 { 

     .i2cCore_ = i2c3Core, 

     .txPresent_ = false, 

     .sclPin_ = halGpioI2c3SCLPK4, 

     .rxPresent_ = true, 

     .sdaPin_ = halGpioI2c4SDAPK5 

 } 

}; 
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3.3.4 halI2c.h 
 

This is the header file that interfaces the application with the driver. All functions 

that are available in the driver are prototyped here including the ISR’s. Most functions are 

hidden from the main program/application by declaring them as static. There are only 4 

functions required by the main program to provide fully functional I2C communication. The 

functions are organized and grouped in a logical way with user facing functions listed first, 

then configuration functions, the communication functions, then the ISR’s.  

Also included in the header file are important definitions and enumerations that are 

used throughout the driver. These definitions are used in the driver for more efficient 

programming. For instance, a command of 0x07 must be written to the Master Control 

Register to command the master to send a single byte to the slave. To make this more 

logical to the programmer, the Master Control commands are defined in the header file as 

follows: 

 

#define I2C_MASTER_CMD_SINGLE_SEND 0x00000007                       

//master will send a single byte 

 

These definitions save time because the programmer will only have to read the 

definitions and choose the command that he or she needs instead of pouring over a data 

sheet to figure out the correct command sequence. That work has already been done and 

included here. Similarly, many other helpful enumerations and definitions are contained in 

this header file. Other examples include enumerations to state whether an I2C core is the 

slave or the master, and whether that I2c Core will read or write. It is recommended for 

anyone using this driver in the future to read the header file completely.  

 

/** 

 * 1 for Master. 0 for Slave. to be used in function calls. 

 */ 

 

enum i2cMasterSlave_ { 

    master = 1, 

    slave = 0 

}; 

/** 

 * 1 for read 0 for write. to be used in function calls. 

 */ 

enum i2cReadWrite_ { 

    read = 1, 

    write = 0 

}; 
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The other important need that this header fills is to provide a “handle” back to the 

calling program. This is accomplished with a constant pointer to a struct, which is defined as 

follows in the header: 

typedef struct HalI2cCoreState * const HalI2cCoreStateHandle; 

The typedef struct creates a new name for an already existing element. It does not 

create a new “type” of HalI2cCoreStateHandle. The HalI2cCoreStateHandle is what will be 

used by the main program to interact with the I2C module. When the I2C configuration 

function has completed it returns the HalI2cCoreStateHandle to the calling program. This 

handle points to a struct of type HalI2cCoreState, which holds configuration data about the 

I2C module. The struct is defined in the main driver I2c.c. This handle will be needed to 

write or read data using the provided user facing functions.  

 

3.3.5 I2c.c 
 

The file I2c.c is the actual driver. This file contains all functions that are required for 

configuration and data transmission over I2C. This is where all communication with the 

hardware takes place. The driver will often reference the pinouts, i2cCore enumerations, 

and definitions from the header files. Therefore, each of these files is incorporated in the 

“#include” section of the driver. The driver also assigns the ISR to the NVIC and initiates the 

circular buffer for each I2C Core. The ISR is fully contained inside this file as well. The struct 

mentioned in section 3.3.4, HalI2cCoreState, is also instantiated here: 

// struct definition to hold dynamic core properties used to configure each 

utilized I2C core 

struct HalI2cCoreState { 

    enum i2cCores i2cCore_; 

    bool i2cCoreInitilized_; 

    struct UtilsCircularBufferState * circularBufferRxHandle_; 

    struct UtilsCircularBufferState * circularBufferTxHandle_; 

    bool forceTx_; 

    bool forceRx_; 

}; 

 

3.4 Circular Buffer Interface 
 

A circular buffer is a single, fixed sized buffer that is connected end to end. The code 

for the circular buffer was provided by the university so that it could be incorporated into 

the I2C driver. It is simply a buffer that exists between the main program and the FIFO of the 

I2C core. The program will not place data directly in the I2C FIFO’s, but instead data will go 

into the circular buffer first before transferring into the FIFO.  
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Figure 14: Circular buffer logical implementation diagram 

To initialize the buffer, in the main program there must exist several char arrays that 

are sent to the configuration routine. These arrays will be used to allocate the memory 

space for the buffer. The circular buffer will be initialized and attached to the given I2C core 

during the I2C configuration routine with the following code: 

/* 

     * Initialization of Rx and Tx Circular Buffer for this I2ccore 

     * i2cMemoryAreaRx and i2cMemoryAreaTx are char arrays  

     *passed from main 

     */ 

    struct UtilsCircularBufferState * circularBufferRxHandle =     

utilsCircularBufferInit(i2cMemoryAreaRx, i2cMemoryAreaRxSize); 

    struct UtilsCircularBufferState * circularBufferTxHandle = 

utilsCircularBufferInit(i2cMemoryAreaTx, i2cMemoryAreaTxSize); 

 

     

    i2cCoreStates_[i2cCore].circularBufferRxHandle_ = 

circularBufferRxHandle; 

    i2cCoreStates_[i2cCore].circularBufferTxHandle_ = 

circularBufferTxHandle; 

 

3.5 NVIC integration 
 

The NVIC, or Nested Vector Interrupt Control, is a method of prioritizing and dealing 

with interrupts. The NVIC allows a certain ISR to be assigned to a given peripheral device or 

pin on the microcontroller. To assign interrupts in the driver, the university provided an 

NVIC interface that needed to be expanded to include I2C. To accomplish this, I had to 

extend the enumerations in the NVIC to include the I2C exceptions found in the data sheet: 

enum HalNvicException { 

    //UART Interrupts 

    halNvicUart0Exception = 21,    // UART0 interrupt INT_UART0 

    halNvicUart1Exception = 22,    // UART1 interrupt INT_UART1 

    halNvicUart2Exception = 49,    // UART2 interrupt INT_UART2 

    halNvicUart3Exception = 72,    // UART3 interrupt INT_UART3 

    halNvicUart4Exception = 73,    // UART4 interrupt INT_UART4 

    halNvicUart5Exception = 74,    // UART5 interrupt INT_UART5 

    halNvicUart6Exception = 75,    // UART6 interrupt INT_UART6 

    halNvicUart7Exception = 76,    // UART7 interrupt INT_UART7 

    //I2C Interrupts 

    halNvicI2C0Exception = 24,    // I2C0 interrupt INT_I2C0 

    halNvicI2C1Exception = 53,    // I2C1 interrupt INT_I2C1 

    halNvicI2C2Exception = 77,    // I2C2 interrupt INT_I2C2 

    halNvicI2C3Exception = 78,    // I2C3 interrupt INT_I2C3 
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    halNvicI2C4Exception = 86,    // I2C4 interrupt INT_I2C4 

    halNvicI2C5Exception = 87,    // I2C5 interrupt INT_I2C5 

    halNvicI2C6Exception = 118,   // I2C6 interrupt INT_I2C6 

    halNvicI2C7Exception = 119    // I2C7 interrupt INT_I2C7 

 

}; 

To point the NVIC interrupt response to the correct ISR requires only a few lines of 

code. First, a struct must be created to assign the exception for the I2C module with the 

correct ISR function. The following code snippet defines the ISR for I2C0: 

static const struct i2cCoreSetup_ i2cCoreSetup_[i2cCoreCount] = 

{ 

 // I2C0 

 { 

   .interruptId_ = halNvicI2C0Exception,    / Exception number 

   .isr_ = i2c0ISR_           // pointer to corresponding ISR method 

 }, 

During the I2C configuration routine, the following function calls will register and activate 

the ISR using the NVIC driver: 

halNvicInstallISR(i2cCoreSetup_[i2cCore].isr_, 

i2cCoreSetup_[i2cCore].interruptId_); 

halNvicEnableInterrupt(i2cCoreSetup_[i2cCore].interruptId_); 

 
From now on, any condition from I2C0 that triggers an interrupt will call the function 
i2c0ISR_. Which events can trigger an interrupt is fully configurable.  
 

3.6 User Accessible Functions 
 

There are only 4 functions that are accessible to the programmer. This was by design 

to make the driver extremely user friendly.  

3.6.1 hali2cDriverInit() 
 

This function must be run first by the main program. It has no arguments or return 

values. It accomplishes several important functions. First, it sets the i2cCoreInitialized flag to 

false for each available core. This essentially turns off all I2C modules. The programmer can 

be sure that only I2C cores which are meant to be initialized will be active since they all 

begin with this flag set to false. This function also initializes the NVIC driver and the Circular 

Buffer with specific function calls. After calling this function the foundation is laid so that I2C 

modules can be initialized.  

3.6.2 hali2cCoreInit() 
 

This is the function that will initialize and configure an I2C module on the TM4C. It 

returns a handle, or a pointer to a struct, that can be used to interact with the I2C driver 

during data transmission. Master or slave? Sender or receiver? The same function is used to 
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configure the I2C module no matter what parameters are chosen. The arguments will 

determine the behavior of the I2C module: 

enum Hali2cPinout i2cPinout - this is the pinout for this I2cCore. enumerated in halI2c.h 

header file. 

enum i2cMasterSlave_ MS - 1 for master 0 for slave. Enumerated in halI2c.h header file. 

enum i2cReadWrite_ RW - 1 for read, 0 for write. Enumerated in halI2c.h header file. 

uint8_t SLAVE_ADDRESS - the 8-bit address for the slave device on the I2C bus. Defined in 

the main program.  

uint32_t SysClock - the system clock speed. It is required to configure the master I2cCore. 

Calculated in the main program. 

char * const i2cMemoryAreaTx - a pointer to the transmit memory area of the circular 

buffer this core will use. Declared in the main program. 

unsigned int const i2cMemoryAreaTxSize - size in Bytes of the circular buffer transmit 

memory area. Enumerated in the main program.  

char * const i2cMemoryAreaRx - a pointer to the receive memory area of the circular buffer 

this core will use. Declared in the main program. 

unsigned int const i2cMemoryAreaRxSize - size in Bytes of the circular buffer receive 

memory area. Enumerated in the main program. 

 

Inside this function the GPIO, I2C module, FIFO, NVIC/Interrupts, and Circular Buffer 

will all be initialized for the chosen I2C module.   

 

3.6.3 halI2cTx() 
 

This function transmits data over the I2C bus. First, the data is placed in the TX 

circular buffer. From there, the data is sent to the TX FIFO. When the FIFO is full or when 

there is no more data to send, a command is sent to the master control register to send the 

contents of the FIFO to the receiver over the I2C bus. The return value is the number of 

bytes that were sent. After this function is complete the RX circular buffer will contain the 

bytes that were sent.  

The arguments are: 

char const * const txBuffer - array containing the bytes to be transmitted 

unsigned int const txBufferLength - the length of TxBuffer 

HalI2cCoreStateHandle I2cCoreStateHandle - (pointer) handle provided by the main 

program to interact with the I2cCore 
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3.6.4 halI2cRx() 
 

This function moves the data bytes from the RX circular buffer into a char array that 

is accessible by the main program. From this array, what happens next depends on the 

application. The data could be used for calculations, or sorted, or just sent to another 

peripheral device. The return value is the number of Bytes that were read from the Circular 

Buffer. 

The arguments are:  

char const * const txBuffer - pointer to a character array containing the bytes to be 

transmitted 

unsigned int const txBufferLength - the length of TxBuffer 

HalI2cCoreStateHandle I2cCoreStateHandle - (pointer) handle provided by the main 

program to interact with the I2cCore 

 

3.7 Interrupts 
 

The ISR’s are configured by using the NVIC driver. This process is detailed in section 

3.5. The specific register configurations for the required behavior will be covered in Chapter 

4.  

3.7.1 Triggering the ISR 
 

The main ISR is the function:  

i2cISR_ (i2cCore); 

It accepts a single I2C core as its argument. However, this function is not called 

directly from the NVIC. There is an intermediate step. Each I2C core has its own ISR, which in 

turn calls the main ISR function. I2C0, for example, has the following function call assigned 

in the NVIC when an interrupt is triggered: 

static void i2c0ISR_(void) { 

 

    i2cISR_(i2c0Core); 

 

} 

Each I2C core has a similar function. When called, the ISR for each I2C core only calls 

the main ISR function with its own core value as an argument. This multi-step process is 

required because the main ISR needs the I2C core as an argument for internal function calls. 
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There is no way to include this argument directly from the NVIC. This functionality allows re-

use of the same ISR function by all I2C modules. 

 

3.7.2 ISR functional description 
 

The ISR has a few key tasks. First, it must determine if this is a master or slave 

module that has received an interrupt. Therefore, it calls the function 

Master_Slave(i2cCore); 

This function returns a 1 if the I2C core is a master, and a 0 if it is a slave.  

From there the ISR needs to read the Masked Interrupt Status and service what interrupts 

are found there. Generally, if the I2C core is a slave, then the RX FIFO needs to be read, and 

the bytes found there placed in the circular buffer. This is accomplished with the function 

call: 

readI2cRxHardwareFifo_(i2cCore); 

If the I2c Core is a master, then the master can receive data by using the same 

function call. The functionality is also there for the master to send data when the TX FIFO 

reaches a certain fill level for triggering. This would work with the following function call: 

writeI2cRxHardwareFifo_(i2cCore); 

The ISR is already coded with this functionality. However, as covered in section 2.10 

the TM4C does not currently have a working TX trigger, so this code remains untested. 

 The last task for the ISR is to clear the interrupts by writing into the master or slave 

Interrupt Clear register.  Because of timing requirements, it is important that this is done 

after servicing the interrupts. If the interrupts are cleared too early in the function, then the 

interrupt may trigger again while the original ISR is still processing. The consequences could 

be data loss or data corruption.  
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IMPLEMENTATION 
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4.1 Configuration Registers 
 

This section will cover the specific registers than need to be configured to use the I2C bus.  

4.1.1 GPIO registers 
 

The following registers must be configured for the GPIO to function as an I2C bus: 

Register 95: Inter-Integrated Circuit Run Mode Clock Gating Control 
(RCGCI2C) 

 This register activates an I2C module by providing it with a clock signal. If an I2C 

module is made active, then a clock signal is provided. Otherwise, there is no clock signal 

and the I2C module cannot be used.  

Register 89: General-Purpose Input/Output Run Mode Clock Gating Control 
(RCGCGPIO) 

 This register activates a GPIO port by providing it with a clock signal. If an GPIO port 

is made active, then a clock signal is provided. Otherwise, there is no clock signal and the 

GPIO port cannot be used. 

Register 10: GPIO Alternate Function Select (GPIOAFSEL) 

 This register is essentially a control selection register. If the corresponding bit is left 

at 0, then the pin is used as a standard GPIO pin. If the bit is 1 then the pin will be controlled 

by a peripheral device.  

Register 18: GPIO Digital Enable (GPIODEN) 

 This register determines whether a pin will be used as an analog input pin or a digital 

signal is expected. If the bit is left at 0 it behaves as a standard analog I/O pin. If the bit is set 

at 1 then it will function as a digital I/O pin.  

Register 14: GPIO Open Drain Select (GPIOODR) 

 This register is the open drain control register. Setting the bit to 1 enables the open 

drain functionality of the pin, which is needed for some peripheral devices like I2C. Only the 

SDA must be configured as an open drain for I2C. 

Register 22: GPIO Port Control (GPIOPCTL) 

 When using the AFSEL register to set a pin to work with an alternate function, the 

PCTL register is where the specific peripheral which will be used is set. The value that needs 

to be written into the PCTL for each pin is different depending on which peripheral device is 

used. These values can be found in a table in the data sheet. This table for the TM4C is on 

page 1808. It shows that a value of 0x2 must be written for I2C operation with pins PB2 and 

PB3 being used for I2C0.  
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The following code example shows a manual configuration of the GPIO for the I2C0 

module. However, it should be noted that this type of manual operation is not used in the 

I2C driver. I have integrated a GPIO driver that was provided by the university that allows 

the same functionality without writing directly to the registers.  

case I2C0_BASE: 

     SYSCTL_RCGCI2C_R |= 0x0001;          //activate I2C0 

     SYSCTL_RCGCGPIO_R |= 0x0002;         //activate GPIO port B 

     while((SYSCTL_PRGPIO_R&0x0002) == 0){};// ready? 

     GPIO_PORTB_AHB_AFSEL_R |= 0x0C;      // 3) enable alt funct on PB2,3 

     GPIO_PORTB_AHB_ODR_R |= 0x08;        // 4) enable open drain on PB3 

     GPIO_PORTB_AHB_DEN_R |= 0x0C;        // 5) enable digital I/O on PB2,3 

     GPIO_PORTB_AHB_PCTL_R |= 0x00002200; // 6) configure PB2,3 as I2C 

 

4.1.2 I2C Master config registers 
 

Register 9: I2C Master Configuration (I2CMCR) 

This register configures whether the I2C module runs in master or slave mode. If bit 

4 is set, then the module runs as master. If bit 5 is set, the module runs as a slave.  

Register 4: I2C Master Timer Period (I2CMTPR) 

This register is programmed to set the period for the SCL clock. This value will 

determine the timing of the entire I2C network, since the master always sets the clock value 

for any transmission. The value of the MTPR needs to be calculated using the following 

formula found in the datasheet: 

Equation 3: SCL period 

 

 𝑆𝐶𝐿𝑃𝑅𝐷 = 2 𝑥 (1 + 𝑇𝑃𝑅) 𝑥  

                             (𝑆𝐶𝐿𝐿𝑃 + 𝑆𝐶𝐿𝐻𝑃) 𝑥 𝐶𝐿𝐾𝑃𝑅𝐷  (Texas Instruments, 2014, pg. 1285) 

 

SCL_PRD is the SCL line period (I2C clock). 

TPR is the Timer Period Register Value (range of 1 to 127).  

SCL_LP is the SCL Low period (fixed at 6). 

SCL_HP is the SCL High Period (fixed at 4). 

CLK_PRD is the system clock period in ns. 

 

After doing a bit of algebra, this calculation can be written into the driver with the following 

code: 
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TPR = ((SysClock + (2 * 10 * SCLFreqLow) - 1) / 

                                  (2 * 10 * SCLFreqLow)) - 1; 

        I2C_MTPR = TPR; 

SysClock is the return value of the function SysCtlClockFreqSet(), which configures 

the clock frequency for the entire microcontroller. This function must be run in the main 

program before configuring of I2C modules is possible. The SysClock value is then passed 

into the function from the main program. The SCLFreq can be either 100kbps or 400 kbps. 

This is a choice made by the programmer. For testing, I have chosen 100kbps (SCLFreqLow) 

since this is the standard transmission speed of the I2C bus. These values are enumerated in 

the driver as follows: 

//define baud rate to be used when configuring the I2C modules 

enum baud_rate { 

    SCLFreqLow = 100000, //SCL baud rate at 100kbps(standard speed) 

    SCLFreqHigh = 400000 //SCL baud rate at 400kbps 

}; 

Register 1: I2C Master Slave Address (I2CMSA)   

This register holds the slave address that the master will send on the I2C bus. Recall 

that the full address is 8 bits, with 7 of those being the slave address and the LSB holding the 

read/write bit.  

Register 12: I2C Master Burst Length (I2CMBLEN) 

This register determines how many Bytes are sent per data transmission when using 

the internal FIFO. Each FIFO can hold 8 Bytes, so I have chosen the burst length as 8 bytes. 

The values that can be used as MBLEN are defined in the halI2c.h header file.  

Register 5: I2C Master Interrupt Mask (I2CMIMR) 

This register controls whether or not a raw master interrupt will trigger an ISR in the 

NVIC. Each possible interrupt source always sets the corresponding bit in the Master Raw 

Interrupt Status Register(I2CMRIS). It is always possible to read these bits, but an interrupt 

will only trigger when the corresponding bit in the MIMR is set.  

Each possible source of interrupts is defined in the halI2c.h header file as follows: 

#define I2C_MASTER_INT_TX_FIFO_REQ                                            

\           0x00000100  // TX FIFO Request Interrupt 
 
 
Master interrupts are currently disabled since I am only sending data from the master to the 

slave. To enable a master interrupt, the following function call can be used: 

Master_Interrupt_Enable(i2cCore, I2C_MASTER_INT_TX_FIFO_REQ); 

Any combination of interrupts can be enabled by ORing the defined I2C master interrupts 

together in the function call.  
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4.1.3 I2C Slave config registers 
 

Register 9: I2C Master Configuration (I2CMCR) 

This register must also be configured for the slave I2C module. If bit 4 is set, then the 

module runs as master. If bit 5 is set, the module runs as a slave.  

Register 15: I2C Slave Control/Status (I2CSCSR) 

When read, this is a status register that can give pertinent information about that 

status of a transfer. However, when written to it is a control register that is required to put 

an I2C module into slave mode. It is also used to turn on or off the slave FIFO.  

Register 21: I2C Slave Own Address (I2CSOAR) 

This register stores the slave module’s own address. The slave address is 

configurable and can be chosen by the programmer. For the testing of I2C3 as a slave 

module I have chosen 0x76 as the slave address. This address is defined in the main 

program as follows: 

#define SLAVE_ADDRESS 0x76 

If there is more than a single slave, it may be beneficial to enumerate multiple slave 

addresses. 

Register 17: I2C Slave Interrupt Mask (I2CSIMR) 

This register controls whether a raw slave interrupt will trigger an ISR in the NVIC. 

Each possible interrupt source always sets the corresponding bit in the Slave Raw Interrupt 

Status Register(I2CSRIS). Each possible source of interrupts is defined in the halI2c.h header 

file. Configuring the Interrupt Masks works in the same way as the explanation in section 

4.1.2 with the exception that the proper function call is  

Slave_Interrupt_Enable(i2cCore, I2C_SLAVE_INT_RX_FIFO_REQ); 

For testing purposes, the only bits set in the SIMR are bit 8 and bit 6. Bit 8 triggers 

the ISR when the RX FIFO is full. Bit 6 triggers the ISR when the fill level reaches its trigger, 

which is set to 1 byte. This way, even if only a single byte is transferred the ISR will run and 

the byte is properly handled.   

 

4.1.4 I2C FIFO config registers 
 

The send (TX) FIFO and the receive (RX) FIFO must be configured respectively. In 

most cases a device (microcontroller, sensor, LED…e.tc) will be only a master or a slave, not 

both. Therefore, the RX and TX FIFO are normally assigned to the same I2C module. In this 

case, I only had access to a single device. So, I had to configure one I2C module to be the 
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master and another I2C module on the same device to be the slave. These devices then 

share the FIFO. The master gets the TX FIFO and the slave gets the RX FIFO. 

To configure the FIFO, the following registers are required: 

Register 24: I2C FIFO Control (I2CFIFOCTL) 

This is the main control register for the FIFOs. RX and TX are assigned, the FIFO can 

be flushed, and the FIFO fill trigger level can be set. As mentioned before, the TX FIFO 

trigger fill level does not function on this version of the TM4C, so I was unable to test this 

functionality. However, it does work on the RX side. I have set it to react to a single byte to 

ensure that no data is lost even with single byte transmissions. Bit 31 controls whether the 

RX FIFO is assigned to the master or slave, and bit 15 controls the TX FIFO in the same way. 

Setting bit 14 flushes (empties) the FIFO.  

Register 15: I2C Slave Control/Status (I2CSCSR) 

For the slave only, bit 2 needs to be set to assign the RX FIFO to the slave.  
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4.1.5 Block Diagram for I2C module 

 

Figure 15: I2C module block diagram (Texas Instruments, 2014, pg. 1276) 

 

4.2 Configuration routine 
 

4.2.1 Functional Description of configuration function 
 

The configuration function performs the following necessary actions: 

1. Configure the GPIO pins for the I2C module using the GPIO driver.  

2. Enable the I2C module in the SYSCTL register. 

3.  

 3a. If the module is to be a master: 

1.Enable the master.  
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2. Set the master timer period. 

  3. Set the slave address and the read/write bit. 

  4. Set the master burst length 

 3b. If the module is a slave: 

1. Enable the slave.   

2. Set the slave address.  

4. Enable and configure the FIFOs. 

5. Configure the interrupt masks.  

6. Clear all interrupts. 

7. Register the ISR using the NVIC driver.  

8. Initialize the circular buffer for this I2C module.  

9. Setup the handle for the I2C module.  

10. Return the handle to the main program.  

 

4.2.2 Required data structures in the main program 
 

The following data structures, enums, and defines are needed in the main program for the 

configuration of the I2C module and circular buffer: 

#define SLAVE_ADDRESS 0x76 //Assigned slave address for the I2C Slave 

 

//these are for the circular buffer 

enum i2cAreaMemorySize_ { 

    i2cMasterTxAreaMemorySize_ = 9, 

    i2cMasterRxAreaMemorySize_ = 33, 

    i2cSlaveTxAreaMemorySize_ = 9, 

    i2cSlaveRxAreaMemorySize_ = 33 

}; 

 

//Initialization parameters for the circular buffer 

//the master and slave each need their own TX and RX buffer 

static char i2cMasterMemoryAreaTx_[i2cMasterTxAreaMemorySize_];                              

static char i2cMasterMemoryAreaRx_[i2cMasterRxAreaMemorySize_]; 

static char i2cSlaveMemoryAreaTx_[i2cSlaveTxAreaMemorySize_]; 

static char i2cSlaveMemoryAreaRx_[i2cSlaveRxAreaMemorySize_]; 
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4.2.3 example code for master and slave configuration with descriptors 
 

To configure the master or the slave I2C module, only a single function call is required for 

each: 

//configure i2c0 Master to write 

    HalI2cCoreStateHandle i2cMasterHandle = 

hali2cCoreInit(hali2c0sclPB2sdaPB3,    

            master, 

            write, 

            SLAVE_ADDRESS, 

            SysClock, 

            &i2cMasterMemoryAreaTx_[0], 

            i2cMasterTxAreaMemorySize_, 

            &i2cMasterMemoryAreaRx_[0], 

            i2cMasterRxAreaMemorySize_); 

//configure i2c3 slave to receive 

    HalI2cCoreStateHandle i2cSlaveHandle = 

hali2cCoreInit(hali2c3sclPK4sdaPK5, 

                slave, 

                read, 

                SLAVE_ADDRESS, 

                SysClock, 

                &i2cSlaveMemoryAreaTx_[0], 

                i2cSlaveTxAreaMemorySize_, 

                &i2cSlaveMemoryAreaRx_[0], 

                i2cSlaveRxAreaMemorySize_); 

The specifics of the function arguments are covered in section 3.6.2. The same function call 

is used to configure a master or a slave. It is only the arguments that change. 

  

4.3 Send and Receive data 
 

4.3.1 Functional description of TX and RX functions 
 

To send data over the I2C bus, the function that must be called from the main is: 

halI2cTx(); 

This function will accept a pointer to a char array that contains the bytes to be sent 

as an argument. These bytes are first placed inside the TX circular buffer, 8 bytes at a time. 

From the circular buffer, the bytes are put into the TX FIFO. When the TX FIFO is full, the 

command to transmit the bytes to the slave is sent to the master control register. The 8 

bytes from the TX FIFO are then transmitted over the I2C bus and received in the slave RX 

FIFO. The function returns the number of bytes that were sent, which is used by the main 

program to update a counter that is needed to transfer larger messages. 
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To retrieve this data from the FIFO, an ISR is called which places the transferred 

bytes into the RX circular buffer. In order to maintain a level of abstraction, there exists a 

function that only serves to pull the data from the circular buffer into a data array in the 

main program: 

halI2cRx(); 

This function accepts a pointer to a char array as an argument and simply uses the circular 

buffer driver’s internal read function to place the available bytes into the given array.   

4.3.2 Required data structures in the main program (for TX and RX only) 
 

The following are required in the main program for sending and receiving data: 

 
/** 

 * Constant specifying the length of the message, i.e. 

 * number of bytes to be received (Rx) or send (Tx). 

 */ 

enum i2cMessageLength_ { 

    i2cMessageLength_ = 32 

}; 

//Length of the read buffer 

enum I2cReadBufferSize_ { 

    I2cReadBufferSize_ = 32 

}; 

//Array to store returned values from the RX circular buffer 

char i2cCircularBufferMessageRead_[I2cReadBufferSize]; 

//Message to be transmitted 

static char const i2cMessage_[i2cMessageLength_ + 1] = "message";   

 
 

4.3.2 Example code for master send and slave receive with descriptors 
 

To send a message that is stored in the i2cMessage_[] array: 
 
//TRANSMIT THE CONTENTS OF "i2cMessage_" OVER THE I2C BUS 

    //the message will end up in the RX circular buffer of the I2C 

slave(I2c3) 

    sentBytesCount = 0; 

        while (sentBytesCount < i2cMessageLength_) { 

            sentBytesCount += halI2cTx( 

                    &i2cMessage_[sentBytesCount], 

                    i2cMessageLength_ - sentBytesCount, 

     i2cMasterHandle 

                    ); 

        } 

 

Since the FIFOs can only hold 8 bytes it is necessary to use some programming logic 
to send larger messages. The total message length is arbitrary, but we want to send only 8 
bytes at a time. In this case the i2cMessageLenth is 32 bytes. The variable sentBytesCount is 
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updated during each iteration with the total number of bytes sent thus far. The value of 
sentBytesCount is used to determine the current position in the i2cMessage array. A pointer 
to this memory location is sent as a function argument so the function knows where to 
begin reading from in the following iteration. This occurs until the number of bytes sent is 
equal to or greater than the i2cMessageLength.  
 
To read the contents of the circular buffer after transmission is complete: 
 
        //READ THE MESSAGE BACK FROM THE I2C3 RX Circular Buffer into the 
array "i2cCircularBufferMessageRead_" 

        //receivedBytesCount should be equal to sentBytesCount after 

reading the message 

        unsigned int receivedBytesCount = 0; 

        receivedBytesCount = 

halI2cRx(&i2cCircularBufferMessageRead_[receivedBytesCount], 

                    i2cMessageLength_, 

                    i2cSlaveHandle); 

The data should already exist in the RX circular buffer for the slave. Depending on 

the needs of the program, it may be valuable to transfer the data into a standard char array 

so it can be processed in some way or sent to another peripheral. A pointer to a data array 

is sent as a function argument and the function places the entire contents of the circular 

buffer into that data array. Take care that the array is large enough to receive the entire 

circular buffer or some data may be lost. 

 

4.4 Main program to configure and send data 
 

4.4.1 Steps to send a data transmission 

 

Figure 16: Basic steps for data transmission in the main program 
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4.4.2 Example of a complete main program code 
 

/* 

 * main.c 

 * 

 *  The main program simply instantiates 2 I2C handles. One for the master 

and one for the slave. 

 *  Then a message of Bytes is placed in the circular buffer, and then 

transmitted 

 *  from the master to the slave over the I2C bus. 

 *  This data is then read from the RX I2C FIFO and placed into the RX 

circular buffer, then stored in a buffer array 

 *  visible to the main program 

 *  Created on: June 28, 2020 

 *  Author: Jacob Seal 

 */ 

 

#include <stdint.h> 

#include <stdbool.h> 

 

// HAL libraries 

#include "hal/uart/halUart.h" 

#include "hal/i2c/halI2c.h" 

#include "C:/ti/TivaWare_C_Series-2.1.4.178/driverlib/sysctl.h" 

#include "utils/circularBuffer/utilsCircularBuffer.h" 

 

#define SLAVE_ADDRESS 0x76       //Assigned slave address for the I2CSlave 

 

 

/** 

 * Constant specifying the length of the message, i.e. 

 * number of bytes to be received (Rx) or send (Tx). 

 */ 

enum i2cMessageLength_ { 

    i2cMessageLength_ = 32 

}; 

 

//these are for the circular buffer 

//memory size needs to be 1 bigger than transmission size. ex: 8 bytes 

transmitted needs memory size of 9 

enum i2cAreaMemorySize_ { 

    i2cMasterTxAreaMemorySize_ = 9, 

    i2cMasterRxAreaMemorySize_ = 33, 

    i2cSlaveTxAreaMemorySize_ = 9, 

    i2cSlaveRxAreaMemorySize_ = 33 

}; 

 

enum I2cReadBufferSize_ { 

    I2cReadBufferSize_ = 32 

}; 

 

/** 

 * Static variables will not be seen outside 

 * of their compilation unit. 

 */ 

//Message to be transmitted 

static char const i2cMessage_[i2cMessageLength_ + 1] = 

"TEST1I2CTEST2I2CTEST3I2CTEST4I2C";   
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//Initialization parameters for the circular buffer 

static char i2cMasterMemoryAreaTx_[i2cMasterTxAreaMemorySize_];                              

static char i2cMasterMemoryAreaRx_[i2cMasterRxAreaMemorySize_]; 

static char i2cSlaveMemoryAreaTx_[i2cSlaveTxAreaMemorySize_]; 

static char i2cSlaveMemoryAreaRx_[i2cSlaveRxAreaMemorySize_]; 

 

 

 

int main(void) { 

    char i2cCircularBufferMessageRead_[I2cReadBufferSize_]; 

    //set system clock for I2C - required to initialize the I2C master 

module 

    uint32_t SysClock = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ | 

SYSCTL_OSC_MAIN | 

                                          SYSCTL_USE_PLL | 

SYSCTL_CFG_VCO_480), 120000000); 

    

//*************************************************************************

************** 

    //Initialize and configure I2C0(writer) as master and I2C3(reader) as 

slave 

    

//*************************************************************************

************** 

    hali2cDriverInit(); 

 

    //configure i2c0 Master to write 

    HalI2cCoreStateHandle i2cMasterHandle = 

hali2cCoreInit(hali2c0sclPB2sdaPB3, 

            master, 

            write, 

            SLAVE_ADDRESS, 

            SysClock, 

            &i2cMasterMemoryAreaTx_[0], 

            i2cMasterTxAreaMemorySize_, 

            &i2cMasterMemoryAreaRx_[0], 

            i2cMasterRxAreaMemorySize_); 

    //configure i2c3 slave to receive 

    HalI2cCoreStateHandle i2cSlaveHandle = 

hali2cCoreInit(hali2c3sclPK4sdaPK5, 

                slave, 

                read, 

                SLAVE_ADDRESS, 

                SysClock, 

                &i2cSlaveMemoryAreaTx_[0], 

                i2cSlaveTxAreaMemorySize_, 

                &i2cSlaveMemoryAreaRx_[0], 

                i2cSlaveRxAreaMemorySize_); 

    

//*************************************************************************

************** 

    //Configuration complete 

    

//*************************************************************************

************** 

 

 

    unsigned int sentBytesCount; 

 

    //TRANSMIT THE CONTENTS OF "i2cMessage_" OVER THE I2C BUS 
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    //the message will end up in the RX circular buffer of the I2C 

slave(I2c3) 

    sentBytesCount = 0; 

        while (sentBytesCount < i2cMessageLength_) { 

            sentBytesCount += halI2cTx( 

                    &i2cMessage_[sentBytesCount], 

                    i2cMessageLength_ - sentBytesCount, 

                    i2cMasterHandle 

                    ); 

        } 

 

 

        //READ THE MESSAGE BACK FROM THE I2C3 RX Circular Buffer into the 

array "i2cCircularBufferMessageRead_" 

        //receivedBytesCount should be equal to sentBytesCount after 

reading the message 

        unsigned int receivedBytesCount = 0; 

        receivedBytesCount = 

halI2cRx(&i2cCircularBufferMessageRead_[receivedBytesCount], 

                    i2cMessageLength_, 

                    i2cSlaveHandle); 

        return 0; 

} 
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CHAPTER 5 

TESTING 
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In order to properly test the driver, I determined the most important test cases. The 

size of the RX circular buffer is 32 bytes. This is an arbitrary size that is configurable in the 

main program. This means the maximum single message size is also only 32 bytes. The 

example code from section 4.4.2 was used as the base code for all testing. 

The test cases are as follows: 

Test Case 1: 32 byte message 

Test Case 2: 0 byte message 

Test Case 3: 1 byte message 

Test Case 4: 15 byte message 

Test Case 5: 35 byte message 

Test Case 6: second transmission 
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5.1 Test Case 1: 32 byte message.  
 

A “full” message buffer: 

 

Figure 17: Input data for test case 1 

Figure 18: Output for test case 1 

 

 

As expected, all 32 bytes which were sent over the bus ended up in the 

i2cCircularBufferMessageRead buffer.  
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5.2 Test Cast 2: 0 byte message.  
 

An “empty” 32 byte message buffer: 

 

Figure 19: Input data for test case 2 

Figure 20: Output for test case 2 

 

The process completed without error and the i2cCircularBufferMessageRead buffer is 

empty. Since no bytes were in the message buffer this is the expected output. 
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5.3 Test Case 3: 1 byte message.  
 

A single byte in a 32 byte message buffer: 

 

Figure 21: Input data for test case 3 

Figure 22: Output for test case 3 

 

A single byte ,‘T’, was sent over the I2C bus, and the single byte exists in the 

i2cCircularBufferMessageRead buffer after transmission. This is the expected behavior. 



45 
 

5.4 Test Case 4: 16 byte message.  
 

A “half full” 32 byte message buffer: 

 

Figure 23: Input data for test case 4 

Figure 24: Output for test case 4 

 

16 bytes were sent over the I2C bus, and the 16 bytes exists in the 

i2cCircularBufferMessageRead buffer after transmission. This is the expected behavior. 
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5.5 Test Case 5: 35 byte message.  
 

Extended message buffer with a 35 byte message. The RX circular buffer is still 32 bytes.

 

Figure 25: Input data for test case 5 

Figure 26: Output data for test case 5 with 3 lost bytes 

 

In this case, the circular buffer is only 32 bytes long. So, the maximum transmission 

size is 32 bytes. The i2cCircularBufferMessageRead buffer array contains the first 32 bytes, 

but the last 3 bytes are lost.  
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To get an output that includes all 35 bytes from the transmitted message, the user 

must simply change the size of the circular buffer to be at least 35 bytes: 

enum i2cAreaMemorySize_ { 
    i2cMasterTxAreaMemorySize_ = 9, 
    i2cMasterRxAreaMemorySize_ = 36, 
    i2cSlaveTxAreaMemorySize_ = 9, 
    i2cSlaveRxAreaMemorySize_ = 36 
}; 

After making this change, there is room for all 35 bytes and the transmission will complete 

successfully. 

Figure 27: Output data for test case 5 with no data loss 
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5.6 Test Case 6: Second Transmission 
 

Send a second message directly after the first message using the same code, but with a 

different message buffer containing a new message “ANOTHER1”. 

 

Figure 28: Input data for test case 6 

Figure 29: Output for test case 6 with data overwrite 

 

A second message can be sent over the I2C bus as soon as the current transmission is 

complete. The problem comes when retrieving that message from the RX circular buffer. As 
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shown above in figure 29: if the halI2cRx() function is called after the second transmission, 

the new values will over-write the current values in the i2cCircularBufferMessageRead 

array. This may or may not be OK, depending on the use case. There is not a problem with 

the I2C bus communication. It is only a problem of retrieving the data after it is successfully 

sent over the bus.  

If it is necessary to store all the transmitted values from multiple transmissions a 

small change in programming logic is required in the main program. The programmer simply 

needs to allow the variable receivedBytesCount to accumulate with each call of halI2cRx() 

instead of resetting it to 0 for each read operation.  Then make sure the 

i2cCircularBufferMessageRead array is large enough to hold both transmissions. Then the 

full output from both transmissions can be stored.  

Figure 30: Output for test case 6 with all bytes stored 
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CHAPTER 6 

CONCLUSION 
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6.1 Conclusion 
 

I2C communication is currently working in a predictable and reliable way. The input 

data is consistently seen intact at the output. The test results show exactly the desired 

behavior. The successful testing indicates that the configuration of the I2C modules by the 

driver are correct and working up to the desired specification. Future students who need to 

use I2C communications for their projects should not need to do a “deep dive” into the data 

sheet or a textbook. Everything they need to send and receive data is here with just a few 

simple function calls. This thesis serves as a manual for this driver that can quickly teach a 

person all that they would need to know about I2C communications.  

6.2 Design goals met or unmet 
 

The driver currently fulfills every functional requirement listed in Section 1.2. An 

arbitrary number of bytes can be transmitted by the master and received by the slave. This 

number is configurable by the user based on the maximum size of the chosen data array in 

the main program. The FIFO is being used as the transfer medium, the interrupts are 

configured by the NVIC, and the circular buffer is integrated into the system.  

Each software requirement listed in section 1.3 has also been fulfilled. First and 

foremost, the driver is easy to use. Full functionality can be demonstrated with just 4 

function calls. All the mentioned protections are also included to prevent the user from 

making a dangerous mistake and corrupting data or memory. The user is provided with only 

a “handle (a pointer to a struct),” which is what allows interactions with the I2C module. 

This handle prevents the user from gaining direct access to any registers. The user can only 

interact with the driver in a very abstract way. Finally, when the data is received by the I2C 

slave, there is functionality to transfer that data to a buffer so that it can be processed or 

used in some other way by the main program. 

6.3 Recommendations for expanding the driver 
 

1. Extend the driver to work with more I2C modules. 

The TM4C includes 9 I2C modules. I have only included configuration options for 2 of 

those 9. The driver is, however, easily scalable to include all 9. 

2. Sending data from the Slave to the master 

 When calling the halI2cCoreinit() function from the main, the read or write bit allows 

each module to read or write whether they are the master or slave. For this project, data 

has only been sent from the master to the slave. Some small extension of the ISR and 

master control command may be necessary but sending from the slave to the master should 

also be possible with this driver. 
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3. uDMA functionality 

The DMA is very fast and may be desired in the future project. The configuration 

function could include an argument to select FIFO or DMA and perform a different config 

routine for each situation.    

4. de-configuration 

Currently, there is no mechanism to de-configure an I2C module that is no longer in use. 
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ADDENDUM 
 

Many functions exist in the driver that are not needed for Master to Slave communication 

via the FIFO. Some of these functions may prove to be useful, depending on project needs. 

These functions are prototyped in the halI2c.h header file as static, which needs to be 

changed if they are to be accessed by a program or application. 

It is also possible to send single byte transmissions without using the FIFO. The 

required steps are outlined in the datasheet starting on page 1297, and the required 

functions already exist in the driver. These functions are a good place to start learning about 

I2C communications.  

Manual configuration is also be possible if there is a specific need that falls outside of 

what I have provided here. The modular design of the driver would allow a programmer to 

configure in any way they see fit without having to add any new functions to the driver.  At 

the least, there is a function to configure most registers dealing with the I2C module and the 

FIFO.  
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