

Hochschule für Angewandte Wissenschaften Hamburg

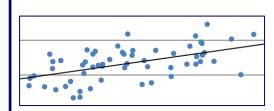
Hamburg University of Applied Sciences

AIRCRAFT DESIGN AND SYSTEMS GROUP (AERO)

Methods for Operating Empty Mass Estimation in Aircraft Design

Dieter Scholz

Hamburg University of Applied Sciences


Based on the Project of Jan Lehnert

Society of Allied Weight Engineers Aerospace • Marine • Offshore • Land Vehicle • Allied Industries 83rd International Conference

SAWE 83rd International Conference on Mass Properties Engineering Online, 20-22 May 2024 Paper 3804 https://doi.org/10.48441/4427.1585

$$rac{m_{OE}}{m_{MTO}} = 0,247 + 0,988 \cdot \left(rac{T_{TO}}{m_{MTO}g}
ight)$$

$$\frac{m_{OE}}{m_{MTO}} = 0,5967 - 0,00000166 \cdot R$$

Abstract

Purpose – Calculation methods from Torenbeek, Raymer, Marckwardt, and Loftin are examined and compared. The question is whether there is a more precise method for passenger aircraft to determine the operating empty mass fraction based on new statistics.

Methodology – Equations for estimating the operating empty mass fraction are determined from parameters including thrust-to-weight ratio, wing loading, design range, payload, and number of engines (on the wing). Only aircraft parameters are used, which are already known in preliminary sizing and for which a physical connection exist to the operating empty mass fraction.

Findings – New methods surpass the accuracy of the classic calculation methods. This is achieved by using more and other design parameters and their optimal mathematical combination.

Practical implications – The risk of incorrect mass estimation in preliminary sizing is reduced.

Acknowledgment

Jan Lehnert prepared a project:

"Methoden zur Ermittlung des Betriebsleermassenanteils im Flugzeugentwurf"

(Methods to Determine the Operating Empty Mass in Aircraft Design)

at

Hamburg University of Applied Sciences,

Aircraft Design and Systems Group (AERO).

http://library.ProfScholz.de

https://nbn-resolving.org/urn:nbn:de:gbv:18302-aero2018-05-24.014

His work is referenced here as: Lehnert 2018

Projekt	
Methoder	n zur Ermittlung des
	eermassenanteils im Flugzeugentwurf
Betriebsle	
Betriebsk Verfasser:	Prof. DrIng. Dieter Scholz, MSME

Slide 3

Table of Contents

- Equations and Numbers from Textbooks
- New Equations
- Contact

Equations and Numbers from Textbooks

"First Law of Aircraft Design" and Operating Empty Mass Ratio

$$m_{MTO} = m_{OE} + m_F + m_{MPL}$$

Basic mass summation

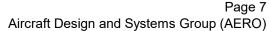
1 -	<i>m_{OE}</i>	m_F	$\perp \frac{m_{MPL}}{m_{MPL}}$
T -	m _{MTO}	m _{MTO}	m _{MTO}

Unity Equation (according to Torenbeek)

$$m_{MTO} = \frac{m_{MPL}}{1 - \frac{m_F}{m_{MTO}} - \frac{m_{OE}}{m_{MTO}}}$$
$$\frac{m_{OE}}{m_{MTO}}$$
Operating Empty Mass ratio

First Law of Aircraft Design (Scholz 2015)

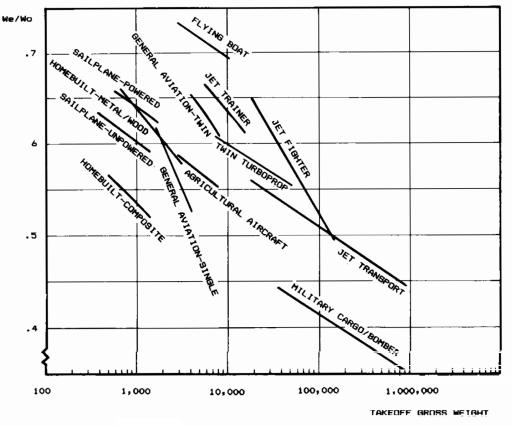
m_F	Fuel Mass
m_{MPL}	Maximum Payload
m_{PL}	Payload
m_{MTO}	Maximum take-off mass
m_{OE}	Operating empty mass



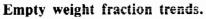
Some Numbers from Torenbeek

Operating Empty Mass ratio

			Percentage o	f MTOW	
Airplane	Category	Airframe structure	propulsion Group	fixed eq. and serv.	empty weight
Passenger Trai	nsport				
short-haul	jets	31,5	8,0	13,5	53,0
	turboprops	32,0	12,5	13,5	58,0
	pistons	29,5	20,5	15,5	65,5
long-haul	jets	24,5	8,5	9,0	42,0
	turboprops	27,0	12,0	12,0	51,0
	pistons	25,5	17,5	11,0	54,0
Freighters					
short-haul	turboprops	35,0	13,0	8,0	56,0
long-haul	turboprops	26,5	10,0	7,0	43,5
Executive Jets		27,5	8,0	15,5	51,0


Dieter Scholz Operating Empty Mass Estimation

Some Numbers from Raymer



Operating Empty Mass ratio

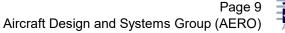
Apparent reduction with aircraft size. Physically, the reduction is due to range.

There is a correlation between aircraft size and range. This explains the reduction of Operating Empty Mass ratio with size.

Raymer 1992. His book published with AIAA.

Dieter Scholz Operating Empty Mass Estimation

Equation from Marckwardt


$$\frac{m_{OE}}{m_{MTO}} = 0,591 \cdot \left(\frac{R[km]}{1000}\right)^{-0,113} \cdot \left(\frac{m_{MTO}[kg]}{1000}\right)^{0,0572} \cdot n_E^{-0,206}$$

$$m_{MTO} = \frac{m_{MPL}}{1 - \frac{m_F}{m_{MTO}} - \frac{m_{OE}}{m_{MTO}}}$$

Operating Empty Mass ratio

According to Marckwardt (HAW Hamburg), OEM ratio reduces with range, R and number of engines, n_E on the wing. MTOM rather increases OEM ratio, but very little. This can all be seen from the exponents in the first equation. MTOM is initially unknown. This leads to an iteration with OEM ratio set to 0.5 initially. The iteration converges after only three steps, because MTOM has very little influence.

Please see my Aircraft Design lecture notes (Scholz 2015) for details.

Equation from Loftin

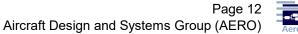
$$\frac{m_{OE}}{m_{MTO}} = 0,23 + 1,04 \cdot \left(\frac{T_{TO}}{m_{MTO} \cdot g}\right)$$

Operating Empty Mass ratio

Loftin 1980 (NASA) calculates OEM ratio from what is know after the matching chart is drawn in aircraft preliminary sizing. The simple equation is based on aircraft data from 1980. It still works well.

Please see my Aircraft Design lecture notes (**Scholz 2015**) for details.

New Equations


Database from Jenkinson Used for the New Equations

		Manufacturer	Туре	Model		Manufacturer	Туре	Model
	1	AIRBUS	A300-	600R	35	DOUG.		DC8-63
	2	AIRBUS	A310-	300	36	DOUG.		DC8-73
	3	AIRBUS	A319-	100	37	DOUG.		DC 9-10
	4	AIRBUS	A320-	200	38	DOUG.		DC 9-30
Data of 67	5	AIRBUS	A321-	200	39	DOUG.		DC 9-40
	6	AIRBUS	A330-	200	40	DOUG.		DC 9-50
Passenger	7	AIRBUS	A330-	300	41	McDON.	DOUG	MD-81
rassenger	8	AIRBUS	A340-	200	42	McDON.	DOUG	MD-82
Jet Aircraft	9	AIRBUS	A340-	300	43	McDON.	DOUG	MD-83
Jel Anciali	10	AIRBUS	A340-	500	44	McDON.	DOUG	MD-87
	11	AIRBUS	A340-	600	45	McDON.	DOUG	MD-90
	12	AIRBUS	A380-	100	46	DOUG.	DC10-	10
Produced by	13	BOEING	707-	320C	47	DOUG.	DC10-	30
Lloyd Jenkinson,	14	BOEING	717-	200	48	McDON.	DOUG	MD-11
•	15	BOEING	727-	200Adv	49	McDON.	DOUG	MD12LR
Loughborough	16	BOEING	737-	200	50	McDON.	DOUG	MD12HC
a	17	BOEING	737-	300	51	LOCKHD	L1011	100
University with	18	BOEING	737-	400	52	ILYUSHIN	II-2M-	MK
students.	19	BOEING	737-	500	53	ILYUSHIN	II-96-	300
Stadents.	20	BOEING	737-	600	54	ILYUSHIN	II-96	M
	21	BOEING BOEING	737- 737-	700 800	55 56	TUPOLEV TUPOLEV	Tu- Tu-	134
His book:	22 23	BOEING	737-	100	57	TUPOLEV	Tu-204	154M -200
	23 24	BOEING	747-	200	58	TUPOLEV	Tu-204	-200 Tu-334
Jenkinson 1999.	24	BOEING	747-	400	59	BAe		RJ70
	26	BOEING	757-	200	60	BAe		RJ85
	27	BOEING	757-	300	61	BAe		RJ100
	28	BOEING	767-	200	62	BAe		RJ115
	29	BOEING	767-	200ER	63	CADAIR	Reg. Jet	100
	30	BOEING	767-	300	64	CADAIR	Reg. Jet	100ER
	31	BOEING	767-	300ER	65	EMBRAER	EMB-	145
	32	BOEING	777-	200	66	FOKKER		F70
	33	BOEING	777-	200IGW	67	FOKKER		F100
	34	BOEING	777-	300				

https://booksite.elsevier.com/9780340741528/appendices/data-a/default.htm, archive at: https://web.archive.org/web/20230402100910/https://booksite.elsevier.com/9780340741528/appendices/data-a/default.htm

Dieter Scholz Operating Empty Mass Estimation

Reevaluating the Equation from Loftin

old (1980):
$$\frac{m_{OE}}{m_{MTO}} = 0,23 + 1,04 \cdot \left(\frac{T_{TO}}{m_{MTO} \cdot g}\right)$$

new (2018):
$$\frac{m_{OE}}{m_{MTO}} = 0,25 + 0,99 \cdot \left(\frac{T_{TO}}{m_{MTO} \cdot g}\right)$$

After 38 years the equation results pretty much unchanged from regression.

Lehnert 2018

Dieter Scholz
Operating Empty Mass Estimation

SAWE 2024 Online, 2024-05-22 Page 13 Aircraft Design and Systems Group (AERO)

Possible Structure of New Equations

Linear Regression: $f(X) = a + b \cdot X$ Lehnert 2018

Multiple Regression:

Nonlinear Regression

$$f(X, Y, Z) = m \cdot X + n \cdot Y + p \cdot Z$$

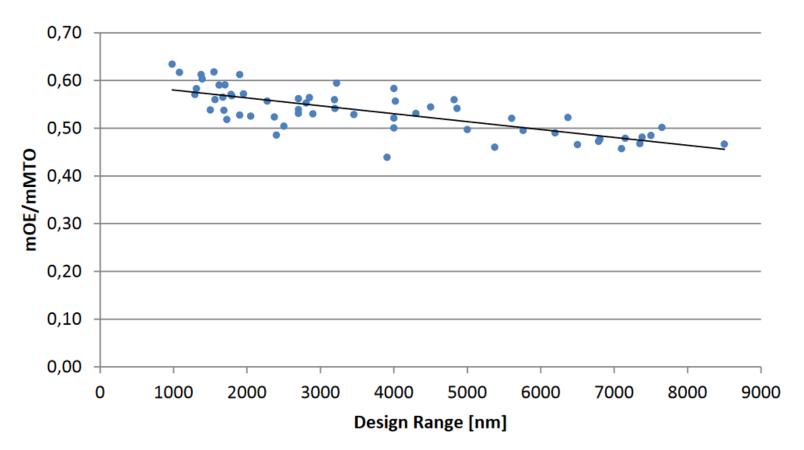
$$f(X, Y, Z) = X^m + Y^n + Z^p$$

$$f(X, Y, Z) = X^m \cdot Y^n \cdot Z^p$$

$$f(X, Y, Z) = X^m \cdot Y^n + Z^p$$

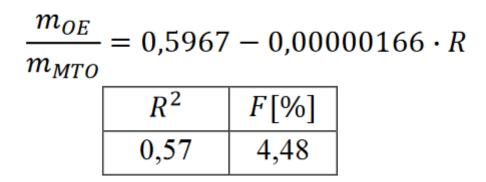
$$f(X, Y, Z) = m \cdot X^n + p \cdot Y^q + r \cdot Z^s$$

$$f(X, Y, Z) = k \cdot X^m \cdot Y^n \cdot Z^p$$


Dieter Scholz Operating Empty Mass Estimation

The best:

Equation from Design Range, Plotting the Data


Long-range aircraft need to be efficient to make money. This is why OEM ratio is decreasing with range. Lehnert 2018

Dieter Scholz	SAWE 2024	F
Operating Empty Mass Estimation	Online, 2024-05-22	Aircraft Design and Systems Group (

Equation from Design Range (R in NM)

Regression coefficient, R^2 and average relative error, F are used to determine the accuracy of the equation. $R^2 > 0.5$ is useful $R^2 > 0.7$ is a good accuracy

Lehnert 2018

Equation from Thrust-to-Weight Ratio and Wing Loading

$$\frac{m_{OE}}{m_{MTO}} = 4,456 \cdot \left(\frac{T_{TO}}{m_{MTO}g}\right)^{0,363} \cdot \left(\frac{m_{MTO}}{S_W}\right)^{-0,262}$$

R^2	<i>F</i> [%]
0,68	4,29

The matching chart in jet aircraft preliminary sizing plots thrust-to-weight ratio versus wing loading. This makes these two parameters natural candidates for an equation. The equation is an extension of Loftin's equation.

Lehnert 2018

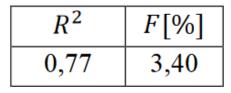
Dieter Scholz
Operating Empty Mass Estimation

Equation from Thrust-to-Weight Ratio, Wing Loading, Range, Payload, and Number of Engines <u>on</u> the Wing

$$\frac{m_{OE}}{m_{MTO}} = 3,533 \cdot \left(\frac{T_{TO}}{m_{MTO}g}\right)^{0,2497} \cdot \left(\frac{m_{MTO}}{S_W}\right)^{-0,2044} \cdot R^{-0,0659} \cdot m_{PL}^{0,0247} \cdot n_e^{0,0086}$$

R^2	<i>F</i> [%]		
0,77	3,36		

Now we add more parameters readily available in preliminary sizing. The more, the better. Range, *R* has proven its usefulness already, engines <u>on</u> the wing reduce wing root bending moment, but number of engines, n_E has little influence. The same is true for payload (exponent close to zero).


Lehnert 2018

Equation from Thrust-to-Weight Ratio, Wing Loading, and Range

$$\frac{m_{OE}}{m_{MTO}} = 3,298 \cdot \left(\frac{T_{TO}}{m_{MTO}g}\right)^{0,2412} \cdot \left(\frac{m_{MTO}}{S_W}\right)^{-0,1863} \cdot R^{-0,04105}$$

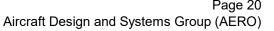
The Winner !

Omitting unnecessary parameters keeps the accuracy almost the same as in the previous equation but simplifies its application.

Lehnert 2018

Contact

info@ProfScholz.de


http://mass.ProfScholz.de and http://library.ProfScholz.de

Quote this document:

SCHOLZ, Dieter, 2024. Methods for Operating Empty Mass Estimation in Aircraft Design. In: Society of Allied Weight Engineers (SAWE), 83rd International Conference on Mass Properties Engineering. Online, 20-22 May 2024. Available from: https://doi.org/10.48441/4427.1585

© Copyright by Author, CC BY-NC-SA, https://creativecommons.org/licenses/by-nc-sa/4.0

List of References

JENKINSON, Lloyd, SIMPKIN, Paul, RHODES, Darren, 1999. Civil Jet Aircraft Design. Oxford, UK: Butterworth-Heinemann. Archived at: <u>https://perma.cc/ZLV5-A5Y8</u>.

LOFTIN, L. K. Jr., 1980. Subsonic Aircraft: Evolution and the Matching of Size to Performance. NASA-RP-1060. Available from: <u>https://ntrs.nasa.gov/citations/19800020744</u>.

MARCKWARDT: Please see lecture notes: SCHOLZ 2015.

RAYMER, Daniel P., 1992. Aircraft Design – A Conceptual Approach. Washington, DC, USA: American Institute of Aeronautics and Astronautics (AIAA). Archived at: <u>https://perma.cc/U478-X52U</u>.

SCHOLZ, Dieter, 2015. Aircraft Design. Lecture Notes. Hamburg University of Applied Sciences. Available from: <u>http://LectureNotes.AircraftDesign.org</u>.

TORENBEEK, Egbert, 1982. Synthesis of Subsonic Airplane Design. Delft : Delft University Press. Archived at: <u>https://perma.cc/K8A2-M7MT</u>.

