

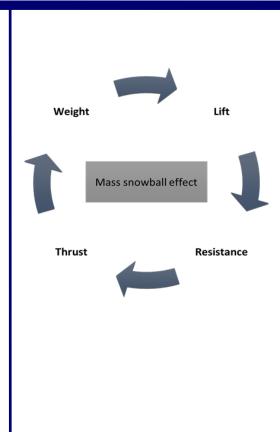
Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

AIRCRAFT DESIGN AND SYSTEMS GROUP (AERO)

The Aircraft

Mass Growth and Reduction Factor

Dieter Scholz Hamburg University of Applied Sciences


Based on https://doi.org/10.5281/zenodo.4159259

Society of Allied Weight Engineers Aerospace • Marine • Offshore • Land Vehicle • Allied Industries 83rd International Conference

SAWE 83rd International Conference on Mass Properties Engineering Online, 20-22 May 2024 Paper 3802 https://doi.org/10.48441/4427.1588

Abstract

Purpose – This project work shows a literature survey, clearly defines the mass growth factor, shows a mass growth iteration, and derives an equation for a direct calculation of the factor (without iteration). Definite values of the factor seem to be missing in literature. To change this, mass growth factors are being calculated for as many of the prominent passenger aircraft as to cover 90% of the passenger aircraft flying today. The dependence of the mass growth factor on requirements and technology is examined and the relation to Direct Operating Costs (DOC) is pointed out.

Methodology – Calculations start from first principles. Publically available data is used to calculate a list of mass growth factors for many passenger aircraft. Using equations and the resulting relationships, new knowledge and dependencies are gained.

Findings – The mass growth factor is larger for aircraft with larger operating empty mass ratio, smaller payload ratio, larger specific fuel consumption (SFC), and smaller glide ratio. The mass growth factor increases much with increasing range. The factor depends on an increase in the fixed mass, so this is the same for the payload and empty mass. The mass growth factor for subsonic passenger aircraft is on average 4.2, for narrow body aircraft 3.9 and for wide body aircraft (that tend to fly longer distance) 4.9. In contrast supersonic passenger aircraft show a factor of about 14.

Practical implications – The mass growth factor has been revisited in order to fully embrace the concept of mass growth and may lead to a better general understanding of aircraft design.

Social implications – A detailed discussion of aircraft costs as well as aircraft development requires detailed knowledge of the aircraft. By understanding the mass growth factor, consumers can have this discussion with industry at eye level.

Originality/value – The derivation of the equation for the direct calculation of the mass growth factor and the determination of the factor using the method for 90% of current passenger aircraft was not shown.

Acknowledgment

This presentation is based on the project of John Singh Cheema prepared at Hamburg University of Applied Sciences Aircraft Design and Systems Group (AERO)

Download from:

http://library.ProfScholz.de

https://nbn-resolving.org/urn:nbn:de:gbv:18302-aero2020-03-31.011

Referenced here as:

Cheema 2020

	НАШ НАМВИ	RG
Project		
	Growth Factor – Effects in Aircraft Design	
	Effects in Aircraft Design	
Snowball Author:	Effects in Aircraft Design John Singh Cheema Prof. DrIng. Dieter Scholz, MSME	

Slide 3

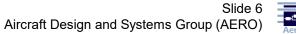
Table of Contents

- Background
- Literature Review (Overview)
- Definition & Overall Picture
- Iteration of the Mass Growth Factor
- Mass Growth Factor Considering 90% of Passenger Aircraft
- Mass Growth Factor
 - Obtained from Payload Fraction
 - Obtained from Technology and Range
 - Linked to Direct Operating Costs (DOC)
- Summary

Slide 4

Background

- The aircraft mass growth factor is fundamental to aircraft preliminary design. Due to the fact that mass during some aircraft design phases seems rather to increase than to decrease compared to initial estimates, the factor is called mass growth factor.
- However, a mass reduction factor is mathematically the same. The mass reduction factor can lead to even substantial mass reduction and is as such the secret to efficient aircraft design. For simplicity and tradition we may just talk about mass growth.
- It is usually defined as the ratio of an increase in the total mass (take-off mass) due to an arbitrary increase in local mass (empty mass) determined after a full iteration in aircraft design to achieve the original performance requirements (payload and range).
- The aircraft design iteration sees after each loop another increment in the take-off mass, so that an initial (local) mass increase aggravates the situation like a snow ball transforming into an **avalanche**. Hence the pseudonym **snowball factor**.
- The concept of the mass growth factor is probably as old as aviation. It has been discussed heavily from the 1950th to the 1970th and has continued to be mentioned until today. Nevertheless, it seems not to be well enough understood today. Maybe its importance has declined due to modern computing power providing quite accurate mass estimates in each design phase, but detaching the engineer from the feel for the numbers.

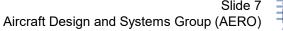


Avalanche – Snow Ball Effect

Avalanche (Dahu1, wikimedia.org, CC BY-SA)

Dieter Scholz: Aircraft Mass Growth Factor

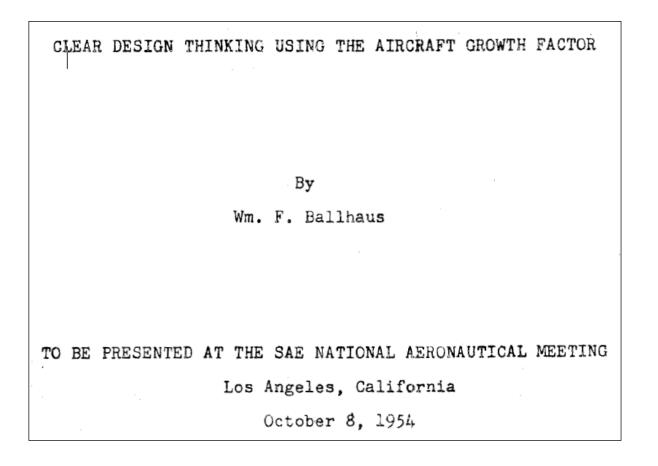
Literature Review (Overview)

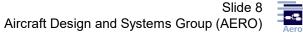

Aircraft Design Books

Torenbeek 1976 Roskam 1989 Jenkinson 1999 Howe 2000 Müller 2003

talk about design aspects

For details: Cheema 2020.

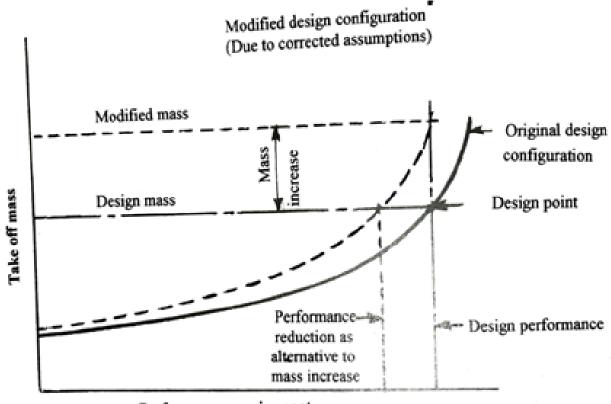

SAWE: Society of Allied Weight Engineers LTH: Luftfahrttechnisches Handbuch



Literature Review (Overview)

Definition

Change in Gross Weight


$G = \frac{G}{\text{Fixed Weight Added or Change in Fixed Weight}}$

Ballhaus 1954

Aircraft Design Mass Growth (Overall Picture)

Performance requirement (Such as range or payload)

New curve may become asymptotic at a mass less than the design value

Howe 2000

Slide 10

Dieter Scholz	:	
Aircraft Mass	Growth	Factor

Iteration of the Mass Growth Factor (Equations)

 $\Delta m_L = 1 \text{ kg}$

$$m_{MTO,0} = m_{MTO} + \Delta m_G = m_{MPL} + m_{OE} + \Delta m_L + m_F$$

$$m_{MTO,1} = m_{MPL} + \frac{m_{OE}}{m_{MTO}} \cdot m_{MTO,0} + \Delta m_L + \frac{m_F}{m_{MTO}} \cdot m_{MTO,0}$$

$$\Delta m_G = m_{MTO,X} - m_{MTO}$$

$$m_F \qquad Fuel Mass$$

$$m_{MPL} \qquad Maximum Payload$$

$$m_{PL} \qquad Payload$$

$$m_{MTO} \qquad Maximum take-off mass$$

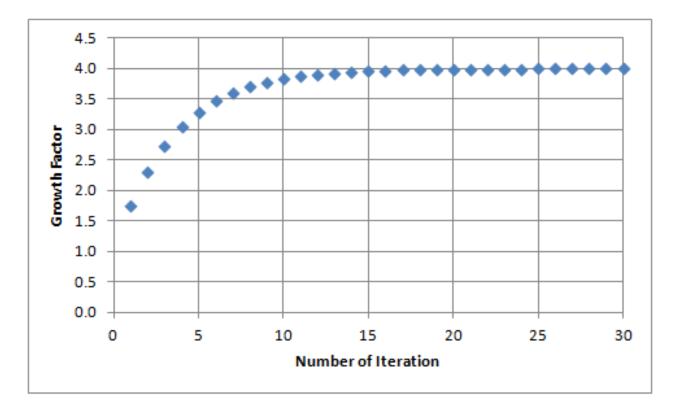
$$m_{MTO} \qquad Maximum take-off$$

$$m_{MTO} \qquad Maximum$$

Iteration of the Mass Growth Factor (Excel Table)

1			Ma	ss Growth	n Factor by Iteratio	n									
2															
					1. For the iteration	method,	the masses must be research	ed and thus	the mass						
	Local Mass Growth	DmL	1	-	fractions determine	ed									
	Maximum take-off mass	mMTO	73000	-											
	Operating empty mass fraction		0.5	4	2. Enter the values	in the blu	ue fields								
	Operating empty mass	mOE	36500	kg											
-	Fuel mass fraction	mF/mMTO	0.25		3. The iteration star	rts auton	natically and the mass growth	factor is cal	ulated		-				
		mF	18250	-			in the the mass growth					Dete	ermination of	mass frac	tio
	Maximum Payload	mMPL	18250	kg											
1															
2							Iteration			1		m _{MTO}	73000 k	g	
3				i	mMTO,i		Global mass growth: DmG	Change	DmG/DmL	kMGW		m _{PL}	18250 k	g	
F				0	73001.000	g	1.00000			4.00		m _{oe}	36500 k	g	
				1	73001.750	g	1.75000	75.0000%	1.75000			m _F	18250 k	g	
				2	73002.313	g	2.31250	32.1429%	2.31250						
,				3	73002.734	g	2.73438	18.2432%	2.73438						
:				4	73003.051		3.05078	11.5714%	3.05078						
1				5	73003.288	g	3.28809	7.7785%	3.28809			m _{PL} /m _{MTO}	0.250		
)				6	73003.466	g	3.46606	5.4128%	3.46606			moe/mmo	0.500		
L				7	73003.600	g	3.59955	3.8512%	3.59955			m _F /m _{MTO}	0.250		
2				8	73003.700	g	3.69966	2.7813%	3.69966						
				9	73003.775	g	3.77475	2.0295%	3.77475						
				10	73003.831	g	3.83106	1.4918%	3.83106						
				11	73003.873	g	3.87329	1.1024%	3.87329						
				12	73003.905	g	3.90497	0.8178%	3.90497						
				13	73003.929	g	3.92873	0.6084%	3.92873						
				14	73003.947	g	3.94655	0.4535%	3.94655						
				15	73003.960	g	3.95991	0.3386%	3.95991						
				16	73003.970	g	3.96993	0.2531%	3.96993						
				17	73003.977	g	3.97745	0.1893%	3.97745						
				18	73003.983	g	3.98309	0.1417%	3.98309						
				19	73003.987	g	3.98732	0.1062%	3.98732						
F.				20	73003.990	(E	3.99049	0.0795%	3.99049						

HARVARD Dataverse


Data and tools uploaded to Harvard Dataverse: <u>https://doi.org/10.7910/DVN/6NHDDP</u>

Dieter Scholz:
Aircraft Mass Growth Factor

Iteration of the Mass Growth Factor (Convergence)

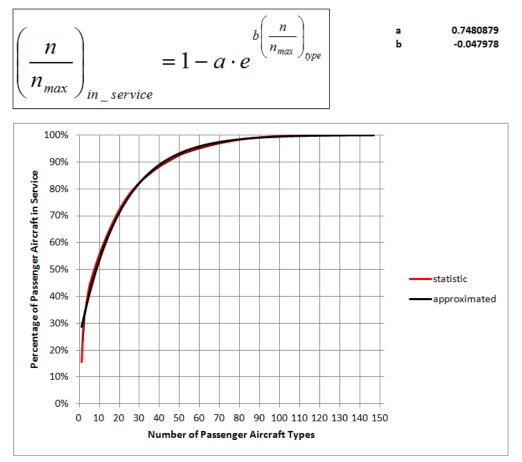
Convergence of the mass growth factor using the example of the Boeing 767-300

Dieter Scholz:
Aircraft Mass Growth Factor

Considering 90% of Passenger Aircraft

World Fleet

Aircraft Type	Number in Operation	Percent of total	Sum of most aircraft types in percent
Boeing 737-800	4804	16.83%	16.83%
A320	4135	14.48%	31.31%
A320neo	658	2.30%	33.61%
A321neo	160	0.56%	34.18%
A321	1650	5.78%	39.95%
Boeing 737 Max 8		0.00%	39.95%
A319	1249	4.37%	44.33%
Boeing 737-700	1005	3.52%	47.85%
ATR72	775	2.71%	50.56%
Boeing 777-300(ER)	829	2.90%	53.47%
Embraer 175	595	2.08%	55.55%
Boeing 787-9	451	1.58%	57.13%
A330-300	707	2.48%	59.61%
Boeing 767-300	622	2.18%	61.79%
A350-900	261	0.91%	62.70%
Boeing 757-200	600	2.10%	64.80%
A330-200	547	1.92%	66.72%
Boeing 737-900	550	1.93%	68.64%
De Havilland Canada Dash 8-400	502	1.76%	70.40%
Embraer 190	495	1.73%	72.14%
Boeing 737 Max TBD		0.00%	72.14%
Bombardier CRJ900	444	1.56%	73.69%
A220	77	0.27%	73.96%
Boeing 777-200	431	1.51%	75.47%
Embraer ERJ-145	422	1.48%	76.95%
Boeing 737 Max 10		0.00%	76.95%
Boeing 787-8	328	1.15%	78.10%


e.g. 27 aircraft, 78.1% of fleet

Dieter Scholz: Aircraft Mass Growth Factor

Considering 90% of Passenger Aircraft

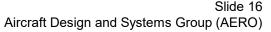
with data from Flight 2016

Dieter Scholz:
Aircraft Mass Growth Factor

Mass Growth Factor – Considering 90% of Passenger Aircraft

Table 3.3

Evaluation of 90% of all current flying commercial aircraft including two supersonic aircraft


ancian					
Aircraft	m _{MTO} [kg]	m _{OE} [kg]	m _{MPL} [kg]	k _{MGW}	Sources
Boeing 737-800	78220	41480	14690	5.32	Jenkinson 2019
A320-200	73500	42100	18633	3.94	Jackson 2011
A320neo	79000	44300	20000	3.95	Airbus 2005, Wiki 2020
A321neo	97000	50100	25500	3.80	Airbus 2005a, Wiki 2020
A321-200	89000	48000	22780	3.90	Jenkinson 2019
A319-100	64000	39200	17390	3.68	Jenkinson 2019
Boeing 737-700	69400	37585	11610	5.97	Jenkinson 2019
ATR 72-500	22500	12950	7350	3.06	Jackson 2011
Boeing 777-300 ER	299370	155960	68570	4.36	Jackson 2011
Embraer 175	37500	21810	9890	3.79	Jackson 2011
Boeing 787-9	244940	128850	52587	4.65	Boeing 2018, Wiki 2020c
A330-300	217000	118189	48400	4.48	Jenkinson 2019
Boeing 767-300	156489	87135	39140	3.99	Jenkinson 2019
A350-900	280000	142400	53300	5.25	Airbus 2005b, Wiki 2020a
Boeing 757-200	115900	58040	25690	4.51	Jenkinson 2019
A330-200	230000	120200	36400	6.31	Jenkinson 2019
Boeing 737-900	74389	42901	19831	3.75	Boeing 2013, Wiki 2020e
DHC Dash 8-400	24993	14968	7257	3.44	Lambert 1991
Embraer 190	50300	28080	13530	3.71	Jackson 2011
Bombardier CRJ900	36500	21430	10320	3.53	AirlinesInform 2020
A220-100	63049	35221	15127	4.16	Airbus 2019, Wiki 2020d
Boeing 777-200	242670	135875	54635	4.44	Jenkinson 2019

90% of aircraft considered globally with more than 19 seats by looking at 44 aircraft types.

ATR 72: propeller aircraft, short range

Cheema 2020

Dieter Scholz: Aircraft Mass Growth Factor

Wisdom Gained

- 1.) Larger aircraft do not necessarily have a higher mass growth factor.
- 2.) It does not matter how large the local mass growth is; the mass growth factor remains unaffected.*

 $m_{MTO} + \Delta m_G = m_{MPL} + m_{OE} + \Delta m_L + m_F$

- 3.) It does not matter whether there is one kg more operating empty mass or one kg more payload on board. The mass growth factor for a growth in the operating empty mass is therefore the same factor as for a growth in the payload.
- 4.) Old long-range aircraft are more sensitive to local mass growth than new short-range aircraft.
- This as long as the local mass growth is much smaller than the fixed mass.
 The position of the local mass growth does not matter, if the wing is not yet fixed and is positioned according to the new weight and balance situation.

Mass Growth Factor – Aircraft Categories

Table 4.1 Mass growth factor for different aircraft categories

	Aircraft categories			
	Wide-Body	Narrow-Body	Subsonic	Supersonic
k_{MG}	4.91	3.85	4.23	13.82

Mass Growth Factor – Obtained from Payload Fraction

After a longer derivation (Cheema 2020), we find a simple equation:

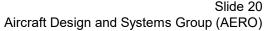
$$k_{MG} = rac{m_{MTO}}{m_{MPL}} = rac{1}{1 - rac{m_F}{m_{MTO}} - rac{m_{OE}}{m_{MTO}}}$$

Table 4.2Mass growth factor for typical mass fractions

	Range type		
	Short-range	Medium-range	Long-range
m _{OE} /m _{MTO}	0.60	0.525	0.45
m_F/m_{MTO}	0.15	0.3	0.45
k _{MG}	4	5.7	10

Dieter Scholz:
Aircraft Mass Growth Factor

Mass Growth Factor – Can Go to Infinity

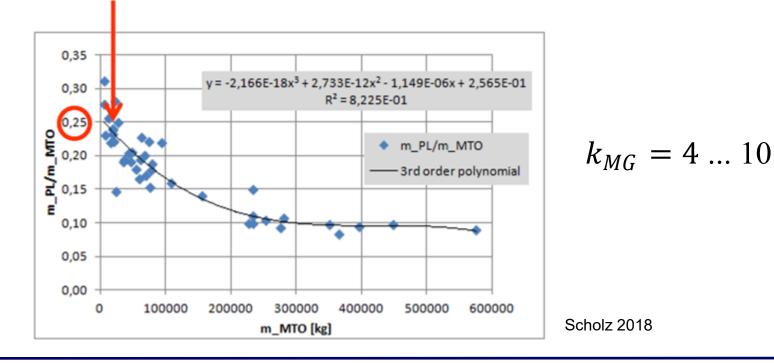

$$k_{MG} = \frac{m_{MTO}}{m_{MPL}} = \frac{1}{1 - \frac{m_F}{m_{MTO}} - \frac{m_{OE}}{m_{MTO}}}$$

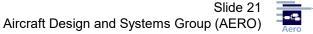
As soon as

$$\left(\frac{m_F}{m_{MTO}} + \frac{m_{OE}}{m_{MTO}}\right)$$

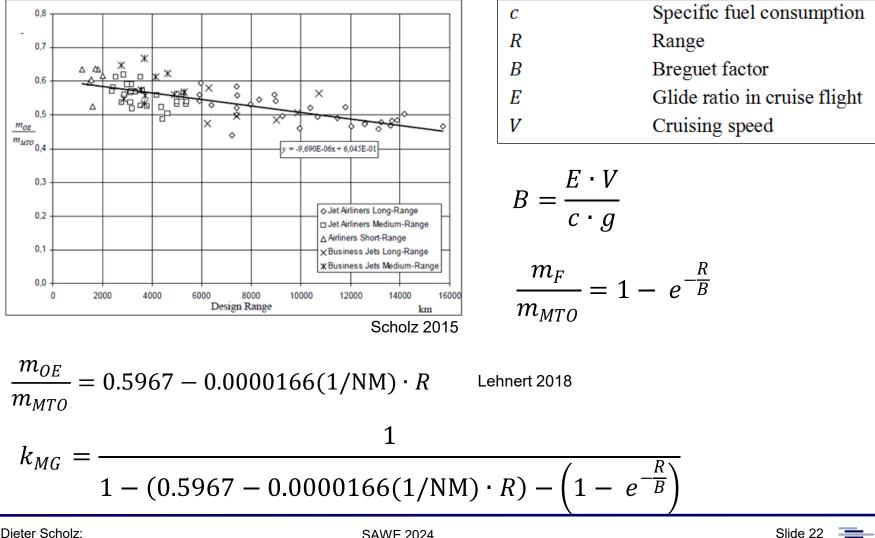
approaches 1.0 the mass growth factor, k_{MG} goes towards infinity!

This means the design task has no solution!




Mass Growth Factor – Payload Fraction from Statistics

$$k_{MG} = \frac{1}{\frac{m_{MPL}}{m_{MTO}}}$$

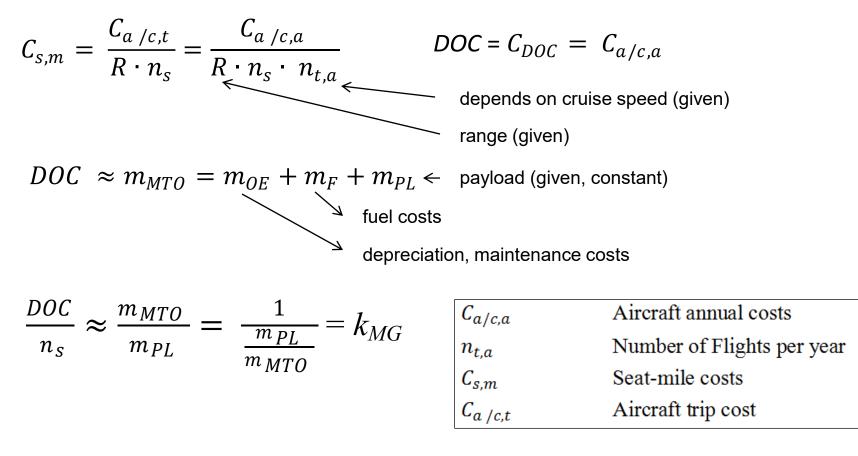


Dieter Scholz: Aircraft Mass Growth Factor

Mass Growth Factor – Obtained from Technology and Range

Dieter Scholz: Aircraft Mass Growth Factor

SAWE 2024 Online, 2024-05-22


Aircraft Design and Systems Group (AERO)

Mass Growth Factor – Linked to Direct Operating Costs (DOC)

Seat-Mile-Costs:

Summary

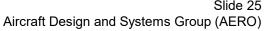
- The mass growth (and reduction) factor is well known, but not well understood:
 - Derivation missing => added
 - Numerical values missing => added
- Average value for subsonic passenger aircraft: 4.2 range from 3.1 (ATR-72) via 6.2 (A380) and 6.5 (B747-400) to 15.6 (Concorde)
- The mass growth factor important for the design phase (snow ball effect) and also a good indicator to quickly understand the aircraft's economy.
- The mass growth factor can be estimated from basic parameters: range, R; E = L/D; c = SFC; cruise speed, V:

$$k_{MG} = \frac{1}{1 - (0.5967 - 0.0000166(1/NM) \cdot R) - (1 - e^{-\frac{R}{B}})} \bigwedge_{B = \frac{E \cdot V}{c \cdot g}}$$

 $k_{MG} = \frac{1}{\frac{m_{MPL}}{m_{MTO}}}$

Contact

info@ProfScholz.de


http://mass.ProfScholz.de and http://library.ProfScholz.de

Quote this document:

SCHOLZ, Dieter, 2024. The Aircraft Mass Growth and Reduction Factor. In: *Society of Allied Weight Engineers (SAWE), 83rd International Conference on Mass Properties Engineering*. Online, 20-22 May 2024. Available from: <u>https://doi.org/10.48441/4427.1588</u>

© Copyright by Author, CC BY-NC-SA, https://creativecommons.org/licenses/by-nc-sa/4.0

Understanding the Aircraft Mass Growth and Reduction Factor

List of References

BALLHAUS, William F., 1954. Clear Design Thinking Using the Aircraft Growth Factor. In: 14th National Conference, Hilton Hotel, Fort Worth, Texas, May 2-5. Los Angeles, California: Society of Allied Weight Engineers, Inc. Available from: <u>https://www.sawe.org/papers/0113</u>

FLIGHT INTERNATIONAL, 2016. *World Airliner Census 2016*. Archived at: <u>https://bit.ly/35oZqn4</u>

FÜRST, A., 1999. *Masseeinfluß-/Massezuwachsfaktor (growth-factor)*. Ottobrunn, Germany: IABG LTH-Koordinierungsstelle, Aeronautical manual.

- HOWE, Denis, 2000. *Aircraft Conceptual Design Synthesis*. London: Professional Engineering Publishing.
- JENKINSON, Lloyd; SIMKIN, Paul; RHODES, Darren, 1999. *Civil Jet Aircraft Design*. Oxford, UK: Butterworth-Heinemann.
- LEHNERT, Jan, 2018. Methoden zur Ermittlung des Betriebsleermassenanteils im Flugzeugentwurf. Hamburg, Germany: Department of Automotive and Aeronautical Engineering, University of Applied Science of Hamburg, Master Thesis.
 Available from: <u>https://nbn-resolving.org/urn:nbn:de:gbv:18302-aero2018-05-24.014</u>

- MULLER, Friedrich, 2003. Flugzeugentwurf : Entwurfssystematik, Aerodynamik, Flugmechanik und Auslegungsparameter für kleinere Flugzeuge. Fürstenfeldbruck: TFT-Verlag.
- ROBSON, Melanie, 2019. *Flight Magazine: Perfect formation*. Sutton: Flight Global, 2019-07-30.
- ROSKAM, Jan, 1989. *Aircraft Design. Vol.1: Preliminary Sizing of Aircraft*. Ottawa, Kansas: Design Analysis and Research Corporation.
- SAELMAN, B., 1973. *The Growth Factor Concept*. In: 32nd Annual Conference, London, England, June 25-27. Los Angeles, California: Society of Allied Weight Engineers, Inc. Available from: <u>https://www.sawe.org/papers/0952</u>
- SAWE, 2019. *Introduction to Aircraft Weight Engineering*. Los Angeles, California: Society of Allied Weight Engineers, Inc. Available from: https://www.sawe.org/technical/publications/aircrafttextbook
- SCHOLZ, Dieter, 2015. *Aircraft Design*. Hamburg, Germany: Department of Automotive and Aeronautical Engineering, University of Applied Science of Hamburg, Lecture Notes. Available from: <u>http://HOOU.ProfScholz.de</u>
- SCHOLZ, Dieter, 2018. Evaluating Aircraft with Electric and Hybrid Propulsion. In: UKIP Media & Events: Conference Proceedings : Electric & Hybrid Aerospace Symposium 2018 (Cologne, 08 -09 November 2018), 2018. – Download: <u>http://EHA2018.ProfScholz.de</u>

- SINKE, Jos, 2019. *How Aircraft Fly*. Delft, Netherlands: Department of Aerospace Engineering, Delft University of Technology, Lecture Notes.
 Available from: <u>https://bit.ly/3jakseW</u>
 Archived as: <u>https://perma.cc/NKX9-WKLY</u>
- TORENBEEK, Egbert, 1982. Synthesis of Subsonic Aircraft Design. Delft: Delft University Press.

Available from: <u>https://bit.ly/3dLSeVQ</u>

