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Short Abstract: 

This paper introduces the reader to the different data augmentation methods used in training of a 

convolutional neural networks that conducts image-text classifcations. The principles, concepts, 

applications, as well as the effectiveness of these methods will be discussed on the basis of already 

conducted scientific work. Commonly used methods as well as more complex and even less 

researched methods will be covered in this work. In the experimental part of this paper, a 
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1. Introduction 

1.1 Problem definition 

Image processing and classification of images and texts are now becoming particularly popular in 

various computer vision systems. There are now many areas of research in which scientists hope 

to improve current results by applying deep convolutional networks to computer vision tasks. 

Excitement and demand have been at very high levels for a long time and will remain so for the 

foreseeable future. More broadly, almost every other type of classification and  training of neural 

systems for recognition is attracting the attention of scientists and investors. Recognition of text, 

images, speech, music, computer-generated images, music again, photos, faces, speech-all the 

different facets of machine learning cover a huge range of tasks and research. But they all require 

data for training, for validation, for testing. Data that is designed for specific tasks or provides a 

wide range of information and therefore can be used in a variety of learning domains. Providing 

data is not an easy process in itself, but that data must also be optimally suited to the task, otherwise 

the neural network risks not being able to learn optimally from that data to perform its task. 

Sometimes there just isn't enough data or not enough variety. Often the prerequisites for 

unsuccessful learning arise already at the data phase alone. Even the most expertly constructed 

neural network can suffer from a poor data set and show excellent results on training data, but not 

as strong results on test data. 

Data augmentation techniques have been invented to solve these problems. They not only increase 

the amount of data, but also improve the quality of the data, for example by changing (in our case) 

the image to a human-unrecognizable state, but keeping the label, thereby improving the learning 

process of the neural network. There is a wide range of methods of data augmentation and for 

different tasks. In this paper, we will focus mainly on methods related to image and text 

classification tasks, as well as how they affect the learning of the neural network and how this 

effect differs. 

1.2  Objectives 

In this paper the reader will be given a broader introduction and explanation of the concept known 

as  Data Augmentation, the problems this concept struggles with, and the different variations 

(techniques) of it. The aim of this paper is not only to discuss the factors mentioned above, but 

also to demonstrate the work of some of these data augmentation methods (techniques) with a 

practical example from the field of image-text classification. 
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1.3  Structure of work 

Chapter 2 introduces the reader to the theoretical background of machine learning and image-text 

classification, such as the learning process, neural network structure, and so on.  

Chapter 3 introduces the concept of data augmentation, which is central to this paper, as well as 

the neural network training issues that the concept was invented to deal with. The reader will be 

given a wide range of different methods (techniques) of data augmentation, more or less relevant  

in the context of image-text classification. Some methods will be covered in more detail then 

others, especially those that will be later implemented and tested on a dataset. The other techniques 

will be partially mentioned as well. Chapters 4 and 5 will deal with the practical part: 

• Chapter 4 will introduce the reader to the practical part of this paper – the experiment. It 

will introduce the reader to the the dataset used for the experiment. It will go into detail 

about the implementation of the experiment and the model used for it and about how the 

experiment is conducted. 

• Chapter 5 covers in detail the results of the experiment and provides a summary. It will 

compare different iterations and different versions ran as well as the results of those 

iterations. 

Chapter 6 will serve as the conclusion to this paper and will discuss potential ramifications of the 

main topic. It will talk about what the results mean for general understanding as well as which 

topics discussed in the paper have potential for further research and in what way. 
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2. Introduction to Machine Learning  

2.1 What is Machine Learning? 
Machine learning is a branch of computational algorithms that are designed to mimic 

human intelligence by learning from the environment. It is a component of artificial 

intelligence, although it seeks to solve problems based on historical examples [1]. Its 

methods and algorithms are being widely used in the fields of Data Science and Software 

Developement in order to create systems or programs that can learn and improve it ‘s 

performance based on the given data and it‘s past experiences without the need to be 

explicitly programmed to do so. However, in contrast to artificial intelligence applications, 

machine learning involves learning hidden patterns in data (data mining) and then using 

these patterns to classify or predict events related to a problem [2]. Basically, processes 

and machines deemed „intelligent“ require knowledge to maintain their performance and 

functionality. In essence, machine learning algorithms are embedded  in machines, and data 

streams are provided so that knowledge and information are extracted and fed into the 

system to manage processes more quickly and efficiently [3]. 

Also commonly referred to as driving force during the current era of Big Data, as methods 

based on machine learning have been successfully applied in fields ranging from pattern 

recognition, computer vision, spacecraft design, finance, entertainment and computational 

biology anc chemistry to medical applications. The ability of machine learning algorithms 

to learn from current context and generalize to unseen tasks proves its immense value in 

any field it is deployed to as it reaches the levels of accurate performance humans cannot. 

Using mathematical analysis methods, ML algorithms look for specific patterns in given 

data and use them in order to imrpove their performance and decision making. ML is often 

mixed with Deep Learning (DL) when it comes to a discussion about artificial intelligence 

and its algorithms. An introduction to the field of machine learning requires clarification 

of the essential differences between these concepts. In fact, these terms are very 

codependent of one another as deep learning is a sub-field of machine learning. A 

significant difference persists when comparing the ways ML differentiates itself from DL 

in the ways its algorithms learn:  

DL relieves a substantial amount of human intervention into its learning processes by 

automating its data extraction processes, making it scalable when compared to classical 

ML [4]. It requires less manual activity, but also enables us to work on larger data sets, as 

classical ML algorithms require more structure in its data sets, because it is necessary to 
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determine the set of features to understand the differences between data inputs, which can 

usually be done manually. This leads to smaller data sets used, as the process of labeling 

data is not suitable for larger data sets.  DL does not require labeled datasets in order to 

extract information, as it can work with raw data form and identify patterns, that help it 

destinguish different categories of data from one another [5]. DL is widely used for solving 

problems in areas like speech recognition, natural language processing and computer 

vision. The learning of both ML and DL algorithms is made possible by the use of neural 

networks.  

 

2.2 Neural networks 
 

2.2.1 Theoretical basics of a neural network 
Nerve cells of the human neural system basically allow our brain to react and make decision 

based on the input of information they receive. From a purely technical point of view, the 

underlying principles of the human neural network can basically be imitated in an artificial 

neural network. Decisive for the enormous performance of the brain are on the one hand 

the large number of nerve cells (estimated 10¹⁴) and on the other hand, the extremely high 

number of connections. Far fewer connections are possbile in an artificial neural network 

[6]. 

A neural network, or in our case, an artificial neural network (ANN), consists of multiple 

(in this case, artificial) interconnected neurons (also called nodes). An average ANN can 

be broken down to 3 entities that build it: the individual neurons, connections between them 

(network topology) and the learning rules defined in the network [7]. 

The neurons of an ANN are grouped in and follow each other in layers, forwarding 

information from the neurons of one layer to the neurons of the next. There are 3 general 

layer-types to be seen in an ANN:  

• Input layer – consisting of input nodes, this is the layer that get the information and 

prepares it for the transfer to the next layer. Similar to the human nervous system, input 

neurons receive the external stimuli or variables that are to be processed and transferred 

to the next set of inner (hidden) layers. 

• Hidden layer – one to (usually) multiple layers of neurons that interract differently with 

each other based on one’s architecture type. Based on the signal received, each inner 

node carries out calculations and sends the result to the next node in the next layer (next 

hidden layer or the output layer). 
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• Output layer – layer of output nodes work as a network response (output) as well as 

evaluation of this response. [6] 

When talking about the architecture of an ANN, the reader may picture it as a connected 

directed graph, as the theory behind the structure of both is very similar.  The neurons 

would be the nodes, and the connections between them would be directed (weighted) edges 

[8]. It is important to identify the two most common structures of an ANN: 

• feed-forward networks, in which graphs have no loops. These networks are classified 

as static and produce one set of output values rather than a sequence of values from a 

given input. This type of network is also memory-less, as it’s response to an input does 

not differ from the previous network state. Among many other learning algorithms, the 

"back propagation algorithm" is the most popular and most commonly used for training  

of feed-forward neural networks, as it is essentially a means of updating the synaptic 

weights of the network by the back propagation of a gradient vector, in which each 

element is defined as the derivative of an error measure with respect to a parameter  

[47]. Error signals are usually defined as the difference between the actual outputs of 

the network and the desired outputs. Therefore, it is necessary to have a set of desired 

outputs for learning. For this reason, back propagation is a supervised learning rule [9].  

• recurrent (or feedback) networks, in which loops are present and occur because of 

feedback connections. These networks are dynamic. When a new input pattern is 

presented, the neuron outputs are computed. Because of the feedback paths, the inputs 

to each neuron are then modified, which leads the network to enter a new state [10]. 

Figure 1: A taxonomy of feed-forward and recurrentlfeedback network architectures 
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Neural networks come in many different forms, each of which is better fit for a specific type of 

task. Figure 1 will give the reader a brief overview of what different types of neural networks exist 

(certainly not all), what their architecture looks like and what type of network structure (discussed 

in the paragraph above) they belong to.  

2.2.2 General functionality of a an artificial neuron 
 

An ANN and its artificial neurons are structurally and operationally very similar to the human 

biological neural network and its biological neurons. Biological neurons are interconnected with 

and transfer information via a synopsis. On the other hand,  when it comes to artificial neurons, 

this connection is replaced by a weight designation. A positive weight means that the connection 

between neurons is excitatory (enambling an action) and a negative weight represents an inhibitory 

connection (preventing an action). [11] 

The structure of an artificial neuron is illustrated in Figure 2 and might serve the reader as a good 

visual representation of a step-by-step description of a neuron‘s function. 

A neuron receives information from another neurons of the previous layer, calculates its input and 

gives an output to the neuron of the following layer. The calculations that take place between the 

neuron receiving the input and transmitting the output to the next neurons can be reduced to 3 

consecutive steps: 

1. the first is to multiply the inputs with the synaptic weights to calculate the products;  

2. the second is to add the products to calculate the sum of the weights;  

3. the third and last step is to apply the chosen activation function to the summed weights, 

which in its place generates the neuron‘s output. 

It is very important to take a closer look at the very tool that produces the output of a 

neuron: the activation function. It is a critical part of the design of a neural network. As 

such, the choice of an activation function is extremely important for the performance of a 

neural network. Different types of layers of the ANN require different activation functions, 

as they all have different purposes. For example, the hidden layer and the sublayers within 

it require different activation functions not only from the output layer, but sometimes from 

each other as well. [11] 

2.2.3 Learning 
 

In the context of ANNs, learning may be regarded as the problem of updating the network 

architecture and connection weights so that the network can effectively perform a particular task. 
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Typically, the network must learn connection weights from existing training models. Performance 

improves over time by iteratively updating the weights in the network. Instead of following a set 

of rules given by a human, ANNs seem to learn basic rules (such as input-output relationships) 

from a given set of representative examples. To understand or design the learning process, we first 

need to have a model of the environment in which the neural network operates, that is, to know 

what information is available to the network. We call this model the learning paradigm.  Second, 

you must understand how the weights of the network are updated, that is, what learning rules 

govern the updating process. A learning algorithm refers to a procedure in which learning rules 

are used to adjust the weights. The main learning paradigms are supervised, unsupervised, hybdrig, 

and reinforced.  

• In supervised learning (or learning with a 'teacher'), the network obtains the correct 

response (output) for each input pattern. It is a sequence of desired outputs given to the 

model. The weights are determined to allow the network to produce answers that  are as 

close as possible to the known correct answers. The goal of the machine is to learn to 

produce the correct output given a new input. This output could be a class label (in 

classification) or a real number (in regression) [12]. Figure 3 shows supervised learning as 

a distinction along a defined criteria in data, that being predefined classification and the 

results falling into exact categories.   

• Reinforcement learning is in itself a variant of supervised learning in which the network is 

only given a critique of the correctness of the network's output, in the form of scalar 

feedback (positive or negative, also called “reward and punishment”), not the correct 

answers themselves. The goal is to learn to act in a way that maximizes future positive 

feedback (or minimizes negative feedback) over the learning period. There is also an 

advanced form or reinforcement learning, which revolves around “game theory” and 

generalizes the concept. It works with the same principles of learning as before, but with 

one major difference – the environment is no longer static, but dynamic, with other learning 

algorithms taking part in it as well, constantly picking up on information and “spitting out” 

the results. The goal of the machine is to act in a way that maximizes positive feedback in 

relation to the current and future actions of other machines. Thus, the learning process of 

all models in this paradigm is more flexible and generalizable [12]. Figure 3 shows this 

type of learning as a more complex set of agents that interchange feedback among each 

other regarding the produced output.   

• Unsupervised learning (teacherless learning) does not require a correct response associated 

with each input pattern in the training dataset. In this case, the machine receives input, but 
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not a label, classification, or even potential feedback (reward or punishment) from the 

environment. It examines the underlying structure of the data, or correlations between 

patterns in the data, and combines patterns into categories based on these correlations. In a 

sense, unsupervised learning can be thought of as looking for patterns in the data, beyond 

what can be thought of as pure unstructured noise [12]. Figure 3 shows unsupervised 

learning on an example of a clustering algorithm, where data is arranged into non 

predefined groups, but groups are arranged during learning by data patterns found by the 

algorithm. 

 

• Hybrid learning (as the name suggests) combines supervised and unsupervised learning. 

Some of the weights are usually determined by supervised learning and the rest by 

unsupervised learning. 

Learning theory must address three fundamental and practical issues related to learning from 

samples: capacity, sample complexity and computational complexity.  

• Capacity refers to how many samples can be stored, as well as the features and decision 

bounds that the network can form. It can be measured by the number of training examples 

that the learning body can always fit, no matter how the values are changed [13]. 

• The number of training patterns required to train the network to ensure reliable 

generalization is determined by sampling complexity. Overfitting can occur when there 

are insufficient samples (where the network performs well on the training dataset, but 

poorly on independent test samples, that are part of the same dataset as the training 

samples). 

• Computational complexity of a learning algorithm is the time it takes to evaluate a 

solution based on the training patterns. The computational complexity of many existing 

learning algorithms is high [14]. The development of efficient algorithms for training 

neural networks is a topic of intense scientific interest. 

2.2.4 Convolutional neural network (CNN)  
 

Convolutional neural networks (later referred to as “CNN”) are used broadly in the fields of image 

processing, computer vision, speech recognition, machine translation and so on. In the case of this 

work, image recognition and classification bein the task fields, CNNs are dominant in solving the 

problems in that field. A convolutional neural network has had major success in studies over the 

last years and has achieved revolutionary results. The most useful aspect of CNN is the reduction 

of number the of parameters in the network.  This option allowed researchers and developers to 
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turn to larger models to solve complex problems, for which ordinary ANNs lacked the 

functionality to solve. The most important assumption is that problems solved with CNNs should 

not have features that are spatially dependent. For example, in a face detection application, there 

is no need to pay attention to where faces are in images, and the only task remaining is to detect 

them regardless of their position in the image data. 

A CNN usually consists of 3 different layer types: 

• Convolutional layer - most of the computational activity of a CNN takes place in the 

convolutional layers. “A convolution is an integral that expresses the amount of overlap of 

one function g as it is shifted over another function f. It therefore "blends" one function 

with another“ [15]. The layer is called convolutional since it performs a dot product (or it 

convolves) between two matrices. The first matrix is a set of parameters able to be taught 

and changed (also known as a kernel), and the second one is a portion of the receptive field. 

The kernel moves (or strides) along the height and width of the given image, generating 

the image data in the receptive field. This results in a two-dimensional image representation 

known as an activation map, which returns data for every spatial position of the image [15].  

• Pooling layer – the pooling layer analyzes the output data of the convolutional layer and 

replaces the output at certain locations with calculated statistics of its neighboring output. 

A big advantage of this layer is that it reduces the number of weights and calculations 

drastically. By stacking several convolutional layers and a pooling layer, we can extract 

the high-level characteristics of inputs [16]. 

• Fully connected layer – this layer serves as an assistance in mapping of the representation 

between input and output. Neurons of this layer are fully connected with all the neurons in 

the previous and following layer. A classifier of a convolutional neural network consists 

of one or more fully connected layers. These layers do not preserve spatial data [16]. 

 

2.2.5 Problematics of Machine Learning 
 

With the theoretical basis of machine learning and CNNs left behind, it is time to look at the main 

problems mainly confronted when training and testing CNNs. To conclude this chapter, it is 

important to talk about the problems and challenges that stand in the way of successful machine 

learning, as a kind of preface, but also as an important thematic transition to the topic of data 

augmentation.  
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• The term „overfitting“ is more complex. It is used to refer to a state, that occurs when a 

network models the set of training data perfectly, but fails to generalize its learning to 

predict the class of unseen data correctly [17].  The results when the network has trained  

too well on the data presented for training that the slightest fluctuation (noise) or an 

unknown class in the testing or real time data and this is picked up by the model and learned 

to be considered as a general pattern. This state occurs when a classification algorithm 

learns to classify the training data better than the population of cases at hand, meaning the 

algorithm does not generalize well to the population of cases from which the training data 

was acquired [19].   

The pattern of overfitting can be seen in Figure 2 (above). The left depicts an inflection 

point at which the validation error begins to increase as the training rate decreases. Because 

of the increased training, the model has overfit to the training data and performs poorly on 

the testing set in comparison to the training set. On the right, on the other hand,  a model 

is producing the desired relationship between training and testing error [22]. 

Overfitting is a more complex problem than underfitting. Its higher complexity lies in the 

fact that overfitting related inoperability of the model is not noticed during the training 

period. This becomes noticeable during the testing period and marks the fact that the 

training dataset is not suitable for successful learning as well as optimal model 

generalization. CNNs are very prone to overfitting as a result of the high number of 

parameters involved in their training. 

 

Figure 3: Examples of machine learning algorithm output scatter in comparison to 

test data in case of underfitting, good fit and overfitting. 
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3. Data Augmentation 

3.1 General concept of Data Augmentation 
 

L. Taylor and G. Nitschke gave a plausible definition of the concept of DA in their paper on 

„Improving Deep Learning using Generic Data Augmentation“, which will explore and ellaborate 

the general concept of data augmentation (later referred to as DA) and „label preservation“ : 

The core of data augmentation methods is an artificial inflation of the original training set. An 

important feature of those methods is that the transformations they enable are label preserving. 

The core transformation can be represented as  this  mapping:  

where  S reprsents the original training data set and T represents the augmented data set of S. The 

augmented and artificall inflated set can be represented with a following relation:  

where S’ contains the original training set S and the augmented transformation 

set T. The transformations taking place in T are defined by φ. These transformations are label 

preserving, as the following rule must persist with a good data augmentation method: “if image x 

is an element of class y then φ(x) is also an element of class y”.[20]   

It is important to note that although DA methods are widely used to inflate training datasets, it is 

also a common practice to augment a specific percentage of the dataset without increasing the 

number of samples. There is a wide range of data augmentation methods for different kinds of 

machine learning tasks. Since the focus of this paper is on image processing and image-text 

classification, only the DA techniques that are suitable for this task will be discussed.  

3.2 Image Data Augmentation Techniques 
 

DA (as can be derived from a name) combats overfitting by trying to fix the problem in the phase 

before initial training, mainly in the dataset. To avoid overfitting and train the model more 

effectively a broad line of DA techniques has been developed. The techniques vastly differ from 

each other in the sole structure of the algorithm and especially in its complexity. Research papers 

on DA often divide its methods into two broad categories: data warping and synthetic 

oversampling.  
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Figure 4: Classification of (some) Data Augmentation Techniques 

The  basic idea of data warping revolves around altering already given data (without introducing 

new samples) and thus accelerating the learning process of the model. It does not mean it cannot 

be used to create new data and add new samples alongside existing ones. Nevertheless, the idea is 

that these methods influence the image on an already persisted level. The concept of Synthetic 

Oversampling revolves around the idea, that its methods will result in creating new images (for 

example, a mixed image of 2 existing images) and adding them to the dataset, thus inflating the 

dataset and creating new samples [21].  

3.2.1 Geometric Transformations 
 

First on the list are the DA methods that rely on basic image manipulations. This class of 

augmentations is  in implementation and in concept, but nevertheless poses challenges when it 

comes to safety. Safery relates to the ability to preserve data labels after the transformation of 

samples. A basic example would be applying horizontal flipping to a dataset of images of cats and 

dogs, which is label preserving and does not pose a conflict or an error and applying the same 

method to datasets with digits, particularly with 6 and 9 [22].  

Non label-preserving DA methods might strengthen the ability of a model to hesitate on certain 

predictions and show a lack of confidence in some predictions. However such a result would 

require to commit label refinement [22] after the augmentation took place and that is an extremely  

challenging computing task. 
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3.2.1.1 Horizontal and vertical Flipping 
 

One of the least complex techniques to implement is being widely used as an addition to other 

techniques. A straight forward technique, horizontal or vertical flip, reverses the pixels (in the 

context of images) rows or columns. Flipping the horizontal axis is more common than vertical 

axis flipping.  This technique has proven very helpful in cases of classifying images to text. 

However, in the context of text recognition, numerous experiences have shown this transformation 

to fail to preserve labels. The most obvious example is performing horizontal flipping in the 

already mentioned above case of digit recognition, specifically with digits 6 and 9. [22]  

3.2.1.2 Cropping 
 

This method revolves around cropping a part of the image sample and reducing the size of the 

input data. Image cropping can be used as a practical step in processing image data with mixed 

dimensions in height and width by cropping the central portion of each image. Depending on the 

reduction threshold chosen for pruning, this may not be a label preserving transformation [22]. 

3.2.1.3 Rotation 
 

Rotation is performed on the image sample by rotating the image along the axis ranging from 1° 

to 359°. The safety of this augmentation method hangs from the rotation degree. 

3.2.1.4 Translation (Shifting) 
 

Offsetting images left, right, up, or down can be a very useful transformation to avoid positional 

bias in the data. For example, if all images in a dataset are centered, as is often the case in face 

recognition datasets, this will require testing the model on perfectly centered images as well. When 

the original image is translated in a particular direction, the remaining space can either be filled 

with a constant value, such as 0 s or 255 s, or with random or Gaussian noise. Such filling preserves 

the spatial dimensions of the image after augmentation [22]. 

3.2.1.5 Noise Injection 
 

This technique refers to adding „noise“ artifically to the data that is then served as an input to a 

CNN during the training process. What is referred to as „noise“ is a matrix of random values 

injected  into the dataset with the purpose of slightly altering it in a specific area. There are different 

methods of implementing noise injection. One of them is called „jitter“ – adding a noise vector to 
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each training sample in between training iterations. This causes the training data to “jitter” 

(tremble, quiver, shake) in the feature space during training, making it difficult for the model to 

find a solution that fits precisely to the original training dataset, and thereby reducing overfitting. 

Due to those constant injection, the ANN works with slightly different data every training iteration 

[19]. 

 An important parameter is the variance of the noise kernel, which controls the effect of noise 

injection on model training. When variance is too small, it fails to make the training cases‘ „jitter“-

effect significant enough when confronted with them in the feature space, which overall results in 

a minimal result on the training of an ANN. A variance too large, however, can cause the „jitter“-

effect to be so significant, that the two classes of the training cases will become too hard for the 

model to distinguish from one another, therefore making the training process ineffective. The 

perfect match is when the value of variance of the noise kernel is selected so that the ANN training 

case feature vectors „jitter“ in the featre space to an extent that an overall  „jitter“ of all given 

training cases imitates the underlying distribution of each class of the training cases in the feature 

space [19]. 

3.2.1.6 Color space  
 

Digital images are usually encoded as 3 dimensional matrices, encapsulating a height vector, a 

width vector, and an RGB channel vector, basically encoding which pixel at which position has 

what kind of RGB value or color. A practical strategy is to perform augmentations in the RGB 

channels space. It is a simple case, isolating a single color channel. RGB values can be tweaked to 

set brightness higher or lower, or, by isolating its matrix and adding two zero matrices from other 

color channel, the image will have change its pixels RGB values to value of one specific channel 

[22].    

3.2.1.7 Advantages and disadvantages of geometric 

transofrmations  
 

Geometric transformations provide the case with a very strong solution to positional biases 

appearing in the data used for training. For instance, face recognition datasets use images that are 

faces perfectly centered in the picture, which spawns a bias that hinders the model from effectively 

learning  to recognise different placement of a face on the photo. In this case, geometrical 

transoformations serve as a perfect solution. Geometric transformations require little 

implementation due to their easy concepts and a large number of libraries that provide these 

methods for instant use.  
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However, the downside of these transformations includes the resource cost of calculating the 

transformation, very high additional learning time and additional memory usage. Further 

disadvantage of these methods is a limited application scope, since in some areas of image 

recognition (for example medical image analysis), geometrical transformations that differentiate 

the training set images from testing set images on a structural level are actually hurting the learning 

process and therefore cannot be used as an optimal solution. [22] 

Also, it is a challenge to give a simple evaluation on the efficiency of one method over the other. 

There are a lot of geometrical data augmentation techniques (not all techniques or variations have 

been discussed prior) and some of them are pretty simple in their implementation. 

3.2.2 Color space augmentations 
 

As mentioned previosly, image data is encoded as three stacked matrices of height x width size. 

These matrices represent individual RGB color values as pixel values. Lighting biases are among 

the most common challenges to image recognition problems. As a result, the effectiveness of color 

space transformations, also known as photometric transformations, is fairly easy to grasp. A quick 

fix for overly bright or dark images is to loop through them and change the pixel values by a 

constant amount. Another transformation is to limit pixel values to a specific minimum or 

maximum value. A variety of augmentation strategies can be derived from working with pixel 

color manipulations. Changing the color distribution of images can be an excellent solution to the 

lighting issues encountered by testing data. Image datasets can be represented more simply by 

converting the RGB matrices into a single grayscale image. This results in smaller images (height 

x width x 1) and faster computation. Color space transformations, like geometric transformations,  

also pose a disadvantage of increased memory requirements, transformation costs, and training 

time [22]. Color transformations may also discard important color information, making them not 

always a label-preserving transformation. For example, when the pixel values of an image are 

reduced to simulate a darker environment, the objects in the image may become impossible to see. 

Image Sentiment Analysis [23] provides an indirect example of color transformations having a 

non-label preserving effect. CNNs attempt to predict the sentiment score of an image in this 

application, such as highly negative, negative, neutral, positive, or highly positive. And the 

presence of blood is an important indicator of a negative/extremely negative sentiment image. The 

dark red color of blood destinguishes it from water, paint, or any other liquid. If color space 

transformation is used multiple times, the model will perform poorly in image  sentiment analysis 

because it will be unable to distinguish red blood from green paint. Color space transformations, 

in effect, eliminate color biases in the dataset in favor of spatial characteristics [22]. 
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3.2.3 Kernel filters 
 

Kernel filters are a very popular and often used method in image processing. It helps sharpen blurry 

images in the dataset. The filters work by moving an n x n matrix over the image with one of the 

following filters: Gaussian blur filter (which makes the image blurrier) or a high contrast vertical 

or horizontal filter, which will make the image sharper on the edges [22].  In theory, blurring 

images to augment data can result in increased resistance to motion blur during testing. 

Furthermore, sharpening images for data augmentation can result in the encapsulation of more 

information about the objects of interest. 

Kernel filters are commonly used to enhance and blur images. The concept has been experimented 

with to create a novel filter operation that swaps pixel values in a sliding x-matrix. This image data 

augmentation technique got a name Patchshuffle Regularization. It has shown an improved error 

rate of 5.66% on CIFAR-10 compared to the previous result of 6.33% [24]. 

 

3.2.4 Mixing images 
 

Mixing images is not a straightforward and obvious data augmentation method, which revolves 

around combining images by averaging their pixel values, essentially blending images together. 

At first glance, it makes little sense for the human eye to see a mixture between an image of a dog 

and a cat. However, it has been proven to be a well working data augmentation technique. By 

precropping two random images from 256 x 256 to 224 x 224 and flipping them horizontally, after 

which the mixing of images takes place 

via averaging the pixel values for each of 

the RGB channels. The mixed image is 

generated that way and it is given a label 

of the first of the two randomly chosen 

images. By testing this method on the 

CIFAR-10 dataset, it managed to improve 

the error rate of a learning model to 

6.93% from the previous 8.22% without 

mixing images. Also, this technique was tested out 

to see how it would work on a very small dataset. 

For that purpose, CIFAR-10 has been reduced to 

Figure 5: Mixing images through 

random image cropping and patching 
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just 1000 samples (100 per class) and image mixing has been performed on the dataset. Of course, 

the error rate due to insufficient datasets remains high, but the use of image mixing has had a 

significant decrease in error rate from 43.1% to 31% [29]. This showed the usefulness of image 

mixing in the case of insufficient data. Another important note from the study showed that 

combining images from the entire training set has higher results, as opposed to combining only 

images of the same class. But this method of image blending is a linear one. A non-linear approach 

to image mixing has been explored out in multiple scientific works and has shown effective results 

when used on both CIFAR-10 (error rate reduced from 5.4% to 3.8%) and CIFAR-100 (error rate 

reduced from 23.6 % to 19.7 %) [25]. Another effective variation of image mixing is randomly 

cropping parts of random images and blending them together, generating an entirely new sample. 

The curious case of image mixing is that it is highly effective in training models. It is highly 

increasing its performance across a variety of tasks, but it makes no sense for human observation. 

Furthermore, no one has yet proven the reason for its high effectiveness, and there have only been 

theories and hypotheses, like the ones from Zhang [26] and Tokozume [27]. 

3.2.5 Random erasing 
 

Zhong et al. developed another non-trivial data augmentation technique called random erasing 

[28]. When used on CIFAR-10, it managed to achieve the highest accuracy. The technique is 

inspired by Dropout regularization and has a lot of similarities to it. The primary distinction 

between the two is that one is used during the data input phase and the other is not directly 

embedded in the  network architecture. 

This method was created solely to address issues in the image recognition process caused by a 

phenomenon known as “occlusion”. Occlusion refers to an image state in which some parts are 

less clear than others, which can lead to a model learning some specific features better than others 

and thus overfitting. Random erasing forces the model to learn more descriptive features about an 

image, avoiding overfitting to a specific visual feature. As a result, the model is trained to study 

and process the entire image equally, rather than using more learning resources to process the parts 

of an image that do not have occlusion. Random erasing works by randomly selecting a nx m patch 

of an image and masking it with 0s, 255s, mean pixel values, or random values. This reduced the 

error rate on the CIFAR-10 dataset from 5.17 to 4.31 percent. Random erasing is a data 

augmentation technique that modifies the input space to prevent overfitting directly [22]. 

This augmentation technique has also shown benefits when combined with other augmentation 

techniques like random zoom, rotation, and shifting. 
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The disadvantage of random erasing is that it does not always result in a label-preserving 

transformation. In handwritten digit recognition, if the top part of a '8' is randomly cropped out, it 

is no different from a '6' [22]. As a result, some manual intervention may be required  depending 

on the dataset and task. 

 

3.3 Deep Learning based Data Augmentation Methods 
 

Methods, that have been described prior are powerful and useful when it comes to assisting 

machine learning, but they are, nevertheless, very limited and constrained by the fact that they 

have to be explicitly selected and used by a human expert in the pre-training phase, more 

specifically in the input space of the network. These methods help the network to generalize but 

are themselves not very generalizable in that they are not fixed as a “silver bullet” for any particular 

problem. More often than not, researchers have to combine different techniques with different 

parameters to achieve a result, let alone show significant progress. It is left to the researcher to 

decide, which method should be used and if it is the optimal combination. And these standard 

methods produce only “limited plausible alternative data” [31]. But what if there was a way to 

automate the choice and application of data augmentation methods? 

Some researchers went as far as to apply deep learning algorithms to enhance and optimize data 

augmentation. And when it comes to mapping high-dimensional inputs into lower-dimensional 

representations, neural networks are unrivaled. In flattened layers, these networks can map images 

to binary classes or nx 1 vectors. The sequential processing of neural networks can be manipulated 

in order to separate the intermediate representations from the network as a whole. Lower-

dimensional image data representations in fully-connected layers can be extracted and isolated. 

For example, it has been found that manipulating the modularity of neural networks to isolate and 

refine individual layers after training improves performance on CIFAR-100 from 66 to 73 percent 

accuracy [30]. 

Some of the known techniques will be covered in the following chapters since they pose a very 

high research interest. These methods will not be a part of practical implementation since it 

requires higher computational power to run such methods and implementations of them are much 

more complex than the standard data augmentation methods.   

3.3.1 Adversarial Network 
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A relevant and exciting field of study is expanding the space of possible augmentations and 

classifying the situations, to which an individual or combination of methods is plausible. And the 

concept of adversarial training provides the necessary ground for that. It is a framework for the 

application of two or more networks, which all have competing objectives encoded into their loss 

function. One of the sufficient parts of this concept is called “adversarial attack” [22]. Two or more 

networks a performing task, that are rival to one another. One network learns image data 

augmentations (with different standard methods) and the other one learns to classify visual input 

data. The goal of the first network is to perform an augmentation in such a way to make its rival 

misclassify. Many interesting results have been derived from experiments using this concept. For 

example, Su et. al [35] revealed that 70,97% of images can lead to a misclassification by changing 

just one pixel in them. Zajac et al. [36] showed that an adversarial network can cause 

misclassifications with adversarial attacks limited to the border of images and that these attacks 

have higher success rates with higher image resolution. Such attacks may be targeted or untargeted, 

depending on the deliberation they are trying to cause in the classification network [22]. This 

concept actually helps identify and analyze weaknesses in network classification better than 

standard metrics used for classification. 

Adversarial training provides evaluation metrics for classification algorithms and defense against 

adversarial attacks, but it can also be an effective way of searching for potential augmentations. 

By learning to apply diverse data augmentation methods, it eventually produces an augmentation 

that will cause misclassification. Such augmentations will make the classification model more 

robust since it will target and identify weak spots in it. The major difference to the standard 

methods is that the augmentations are not taking place in the training set, but “but they can improve 

weak spots in the learned decision boundary” [22]. 

The efficiency of adversarial training in the form of noise or augmentation search is still a 

relatively novel concept that has not been well examined. It has been demonstrated that adding 

noise to adversarial cases improves performance, but it is uncertain whether this is effective for 

the goal of reducing overfitting.  
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created with this remarkable technique. The generator network’s ability to circumvent the 

discriminator makes it a potent tool for generative modelling.  

In the years following the publication of GAN, many papers proposed improvements to the design, 

architecture, loss functions, and so on. For example, the initial GAN uses multilayer perceptrons 

in both generative and discriminative networks [33], which poses some limitations when it comes 

to generating images with higher resolution and quality. Alternatively, a concept of Deep 

Convolutional GAN (DCGAN) has been introduced, which implements deep convolutional neural 

networks in both the generative and discriminative components of GAN [38] and is supposed to 

increase the internal complexity of the generator and discriminator networks [22] [38]. 

3.4 Test-time augmentation 

Data augmentation on training data is the most common method, but surprisingly, a non-trivial 

approach has also shown effectiveness. This approach is data augmentation on test -time data. 

Augmentation of a test image in the same way as augmenting a training image can lead to a more 

accurate prediction. This does, however, spike up the computational cost and slow down the model 

learning process and may cause major bottlenecks in models that require real-time prediction [22]. 

Nevertheless, test-time augmentation has shown great promise for applications such as medical 

image diagnosis [41]. Multiple studies have been conducted in order to see the effectiveness of 

different standard data augmentation methods in the context of test-time data augmentation. 

Wang et al. [42] have researched a mathematical framework for expressing test-time 

augmentation. The results have shown that the test-time augmentation scheme outperformed the 

single-prediction baseline and dropout-based multiple predictions on medical image segmentation. 

Also, it has been shown that data augmentations of test-time data improve uncertainty estimation, 

reducing predictions that are highly confident, yet incorrect. In Wang’s et al. [42] research, they 

worked with the Monte Carlo simulation in order to generate parameters for various augmentations 

such as flipping, scaling, rotation, translation, and noise injections.  

Perez et al. [42] have conducted a study that was dedicated to testing various standard data 

augmentation techniques in context of test-time augmentation. Among them were color 

augmentation, rotation, shearing, scaling, flipping, random cropping, random erasing, elastic, 

mixing, and combinations of all the mentioned techniques were tested as well.  

The effect of test-time augmentation on classification accuracy is another mechanism for 

determining a classifier's robustness. As a result, a robust classifier has low prediction variance 
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across augmentations. Predictions do not differ significantly when an image is rotated by 20 

degrees. 

If an image is rotated 20 degrees, for example, the prediction should not differ significantly. Minh 

et al. [44] compare accuracy on un-augmented data to accuracy on augmented data in their 

experiments, searching for augmentations with Reinforcement Learning. When evaluated on 

augmented test images, the model’s performance drops from 74.61 to 66.87 percent. 

Some classification models put heavier emphasis on the importance of speed. This suggests that 

methods for gradually increasing prediction confidence hold promise. This could be accomplished 

by first producing a prediction with little or no test-time augmentation and then gradually 

increasing the confidence of the prediction.  
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4. Practical experiment 
 

4.1 Concept of the practical experiment  
 

In the last chapter, a rather extensive range of data augmentation methods for image processing 

has been discussed. This part of the paper will look at their technical implementation and 

application.  

The experiment is a PyCharm Project (but is also provided in a Jupiter-Notebook format) of 

working with a “GTSRB - German Traffic Sign Recognition Benchmark” dataset. The purpose of 

this part is to look at what effect some data augmentations have the learning process and the result 

and what additional training measures lead to optimal model training.  

The experiment will be conducted in multiple iterations, using slightly altered version of the 

project: with or without data augmentation, with data augmentation in feature space or in phase of 

data processing as well as with different number of epochs used for training. 

Note: machine learning with relatively large datasets uses a lot of computer resources and time in 

order to bring the learning process to completion. In the case of data augmentation, the dataset 

sometimes grows several times larger, which slows down the training algorithm. For this reason, 

the files containing the practical part and provided by the author to the reader are used for the first 

training without data augmentation (for future comparison). The author transferred and ran some 

of the iterations of the experiment that used data augmentation to Google Collab Notebook for a 

more optimal processing speed, as Google Collab allows working with Google cloud resources, 

which  allows for a much faster training process. 

 

4.2 Experiment: Traffic Sign Classification with Data 

Augmentation 
 

When working through research papers that cover data augmentation, CIFAR-10 is very often used 

as popular dataset for  is a popular dataset for research on machine learning in context of image 

processing and image-text classification. It is an interesting visual dataset that helps to diversify 

the dataset and learning process. But for this experiment, it has been decided to take a dataset that 

is remotely closer to a real world dataset and that would be used for a specific practical purpose.  
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The goal of this experiment is to show, how a process would look when working on a „real world“ 

dataset, where and how data augmentation is being used, and what effect they have on the learning 

process. This experiment does not focus solely on the data augmentation effect on machine 

learning. The focus is to see what effect data augmentation has on a model in combination with 

normalization techniques and working with a dataset that is not built for research or presentation 

purposes. The attributes that will be looked at will be the ETA (estimated time of arrival or the 

time it takes for a model to go through a learning epoch), training accuracy, training loss, validation 

accuracy, validation loss, test accuracy, test loss. 

4.2.1 Data 
 

For the second experiment, the German Traffic Sign Recognition Benchmark (GTSRB) dataset 

has been selected. This dataset contains 60 000 samples (50 000 for training, 10 000 for testing) 

and 43 different classes as well as meta data in the form of  non real world images of traffic signs 

(see below). 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Snippet of meta data from GTSRB dataset 
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The GTSRB is a suitable candidate for such an experiment since it is a very broad and diverse 

dataset, that contains samples from a homogenous thematic field but brings variety. It poses some 

challenges to the experiment, which have to be dealt with. One of them is that the traffic sign 

images have low resolution and poor contrast. The other is class imbalance. For example the class 

depicting the traffic sign „Speed limit (50km/h)“ has 2010 samples in the dataset. „Speed limit  

(30km/h)“ has 1980 samples. However,  „Speed limit (20km/h)“ only has only 180 samples. It is 

a representation of the real world since the 50km/h and 30km/h are encountered way more often 

than 20km/h. Nevertheless, it is still a challenge for the model, if the goal is to have a high accuracy 

and an optimal generalizability. Class imbalance is represented more precisely in the Figure below.  

 

 

 

 

 

 

Figure 8: representation of class distribution in GTSRB dataset 
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4.2.2 Implementation: 

The project is implemented using PyCharm and has specific arguments that need to be passed to 

the execution path in order for it to run correctly. This is all stored in a README file for better 

clarification. 

4.2.2.1 The model 

The model is implemented in the class TraficSignCNN.py. In this file, the initialization of the 

CNN is taking place per static call of the build-method. It is a sequential class model, and its 

structure is realized as follows: 

1. The input layer consists of a convolutional layer => “relu” activation function => batch 

normalization => pooling layer. 

2. First set of layers is a set of (convolutional layer => “relu” activation function => batch 

normalization)*2 => pooling layer. 

3. Second set of layers is a set of (convolutional layer => “relu” activation function => batch 

normalization)*2 => pooling layer.  

Note: the sets make the learning of the model and reduce volume dimensionality by stacking 

two sets of convolutional layers with activation functions and normalization layer before 

applying a max pooling layer.  

4. First set of fully connected layers is  (flatten layer=> dense layer=> „relu“ activation => batch 

normalization=> dropout normalization) 

5. Second set of fully connected layers is (flatten layer=> dense layer=> „relu“ activation function 

=> batch normalization=> dropout normalization) 

6. Finally a classifier layer (output layer) consists of dense layer => „softmax“ activation function 

 

4.2.2.2 Data preprocessing 

The image dataset is stored locally within the project.  

• In this step, the images are being retrieved from the datasets training and testing directories 

separetely.  

• The data is being randomly shuffled to avoid samples of a particular class following in a 

sequential order. 

• The data is then splitted into labels and images and images go through a preprocessing 

phase.  
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• As mentioned before, the images in the dataset have low contrast, making it challenging 

for the model to destinguish between the input data. Because of this the class 

ImageProcessor.py is applying  Contrast Limited Adaptive Histogramm Equalization 

(CLAHE) to all the images in order to improve their contrast [50]. While our images may 

look "unnatural", the increased contrast will help our model distinguish our traffic signs 

automatically.  

• The images are also being resized to be 32x32 pixels, ignoring aspect ratio. It is done so 

because the image data in the dataset is not of the same height and width and this way it is 

normalized.  

• Images and labels are then stored in arrays and converted to NumPy arrays. 

• After that label names and their respective Ids are retrieved from „signnames.csv“. 

• The numpy arrays are then being normalized. Image data is divided by 255.0 to be scaled 

down to the range from 0 to 1. Label data is categorized using one-hot encoding [51].  

• The next step is the calculation of class weight. It is an important step, since we have to 

account for the class imbalance in the dataset. That way, each class gets a weight assign to 

it. 

• The data is preprocessed and ready to be served as an input to our model. 

4.2.2.3 Training 

4.2.2.3.1 Data Augmentation 

This is where data augmentation finally comes into play. The ImageDataGenerator class is being 

used as a data augmentation tool. It will perform data augmentation on the test set at the feature 

level (or will be left out if an iteration without data augmentation is running).  

Initial implementation uses methods like random rotation, zoom, shift, shear, and settings flipping 

for our training data. Horizontal and vertical flipping methods have been excluded, since there is 

no practical need for their use. It is not expected 

for the network to ever encounter a real-life 

flipped traffic sign. ImageDataGenerator has 

been used to both augment data in 

preprocessing as well as in feature space. 

Figure 9: Implementation of class 

that performs geometric 

transformation augmentations 
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Gaussian injection has been implemented with its own method and applied to the dataset in its 

iteration. 

 

4.2.2.3.2 Training initialization  

 

The model is initialized by a static call to the TrafficSignCNN class. It is then compiled and the 

learning process starts either with ImageGenerator performing data augmentations on the dataset 

on the fly or with the unchanged training dataset (in case augmentation is not activated in the 

iteration). After that, the model is evaluated on a test dataset and stored locally for future 

predictions in the „output“ directory along with the plot of training and testing accuracy and loss. 

A classification report is also written to the console. 

Predicting: In order to see the results of the experiment and not only statistics, predict.py has been 

implemented. It has no use of going into detail and dedicating a whole chapter to it, since all that 

is being done is once again preprocessing of image data and then delivering it as input to the model. 

The model will classify each given image, write its output on that image, and store it in the 

„examples“ directory. 

 

5. Evaluation and results 
 

Methods such as geometric transformations and noise injection were used in the experiment. In 

different iterations, these methods were applied at different stages of the learning process. The 

experiment went through four different iterations, each time having a brand new model work with 

the GTSRB dataset: no data augmentation, noise injection in preprocessing, Geometric 

transformations in preprocessing, geometric transformations in feature. Each iteration was 

conducted with 20 epochs.  

Note: there were more iterations made in Google Collab (they are located in directory 

“da_method_implementation”), but only these 4 resulted in plausible results that are worth 

considering. All of these iterations have been conducted with local computational resources, so 

the time it takes for each iteration to run from start to finish is significantly higher, than on Google 

Cloud. The performance difference is immense, since it took only around 10 seconds to preprocess 

all the training and testing data and start the learning process in Google Collab, but it took every 

iteration over 20 minutes to just preprocess the data with local computational resources, before 
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Figure 10: Training accuracy, Training loss, Validation accuracy, Validation 

loss plotted after learning with geometric data augmentations in feature space 

 

Iteration 4 clearly achieved the set goal of performing with maximal accuracy, both in testing 

and training, and at optimal time. The Predict script can allow the reader to see for himself, 

how the network classifies the input data correctly. A snippet of the prediction examples can 

be seen in Figure 11 (see below). 

5.1 Experiment conclusion 
This experiment has shown clearly that geometric data augmentations are way more effective 

when applied in combination and in feature space. It resulted in the most optimal result of all 

and in a decent amount of computational time. It did not require that many computational 

resources, and it got the job done, whereas using them directly on the dataset in preprocessing 

phase has  
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Figure 11: Snippet of example image data samples in “examples”  

directory with predicted labels written on respective sample 

                                                                                                                                                       

proven to do more harm than good in case of the GTSRB dataset. It has also been shown that 

this approach functions well when combined with popular normalization methods (Batch 

normalization and Dropout normalization were both part of the neural network). 

 

 

6. Conclusion 
 
 

The intriguing methods for enhancing image data fall into two broad categories: data warping 

and oversampling. The methods and techniques of data augmentation have ranged from the 

most primitive to the most difficult to implement and even the least explored. Data 

augmentation is an extremely useful tool in combatting overfitting and generalizing a model.  

Yet this field is still genuinely unexplored and has a lot of research potential. The big question 

of data augmentation, which helps with generalization is whether it itself is generalizable? 

Different techniques are appropriate for different tasks, but there is no common understanding 

of which techniques to use for which tasks. A lot of scientific work in the field of data 

augmentation is based on trying and discovering the smallest usefulness of different techniques 

for different tasks. Data augmentation techniques are difficult to qualify, especially when they 
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can be combined in different ways. For certain tasks, geometric data transformations are known 

to be suitable, for example. But even in this situation, there is no clear answer as to which 

combination is best to solve the problem or to improve the performance of the model in a way 

that other techniques or combinations of techniques cannot. Many of the augmentation  

methods explain how to improve the  image classifier, while others do not. GANs have a great 

potential to generalize standard data augmentation methods and generalize the concept (at least 

partially) and maybe even help automate it? A vast part of data augmentation still revolves 

around human choice. The development of software tools is an important area of future work 

for the practical integration of data augmentation into deep learning workflows. If data 

augmentation libraries will automate preprocessing functions in the same way that the 

Tensorflow system automates the back-end processes of gradient-descent learning, then the 

human factor might play an insignificant role in choosing and applying data augmentation to 

combat overfitting. 

 

Another fascinating practical question is determining the size of a dataset post augmentation. 

Clearly, inflating the dataset 2 times or even more is not always an optimal solution.  There is 

no agreement on which original-to-final dataset size ratio produces the best performing model. 

If we take solely color augmentations and an initial dataset of with 2 classes, 50 samples each. 

If each image is augmented with 100 color filters to yield 5000 samples of both classes, then 

the resulting dataset will be heavily biased toward the spatial characteristics of the original 50 

samples of each class. Due to the abundance of color-augmented data, a deep model will 

outperform the original [22]. 

Furthermore, there is no unanimity of opinion on the best strategy for combining the two types: 

data warping and oversampling. The inherent bias in the initial, limited dataset is an important 

factor. There are currently no augmentation techniques that can correct a dataset with very low 

diversity in comparison to the testing data. All of these augmentation algorithms perform best 

when the training and testing data are drawn from the same distribution. If this is not the case, 

these methods are unlikely to be useful.[22]  

Yet again, there is a lot of ground to be explored when it comes to the potential of GANs and 

also test-time augmentation. The latter has not been explored much yet and has a potential to 

bring significant benefits to the field of computer vision and help the field of machine learning 

improve drastically on a grand scale. 
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