
Fakultät Technik und Informatik
Department Informatik

Faculty of Engineering and Computer Science
Department of Informatics

Nikita Ostrovskiy

Comparison of Data Augmentation
Techniques for efficient Training of

Image-Text Classification Algorithms

Bachelorthesis

Nikita Ostrovskiy

Comparison of Data Augmentation Techniques

for efficient Training of Image-Text

Classification Algorithms

Bachelor's thesis submitted as part of the Bachelor's examination

in the Bachelor of Science Business Informatics

at the Department of Computer Science

of the Faculty of Technology and Computer Science

at the University of Applied Sciences Hamburg

Supervising examiner: Prof. Dr. Tropmann-Frick

Second examiner: Prof. Dr. Schultz

Submitted on: 08 June 2022

Autor:

Nikita Ostrovskiy

Thema der Dissertation:

Vergleich von Datenerweiterungstechniken für effizientes Training von Bild-Text-

Klassifikationsalgorithmen

Stichworte:

Maschinelles Lernen, CNN, Neuronales Netzwerk, Datenerweiterung, Bildverarbeitung, Bild-

Text-Klassifikation

Kurze Zusammenfassung:

In diesem Beitrag werden verschiedene Methoden zur Datenerweiterung vorgestellt, die beim

Training eines CNN zur Bild-Text-Klassifikation eingesetzt werden. Die Prinzipien, Konzepte,

Anwendungen sowie die Effektivität dieser Methoden werden auf der Grundlage bereits

durchgeführter wissenschaftlicher Arbeiten diskutiert. Dabei werden sowohl gängige Methoden

als auch komplexere und noch weniger erforschte Methoden behandelt. Im experimentellen Teil

dieser Arbeit wird ein CNN erstellt, das den GTSRB-Datensatz zum Erlernen der Bild-Text-

Klassifikation verwendet. Einige der in dieser Arbeit besprochenen Methoden werden

angewendet, um den Datensatz zu erweitern, so dass wir ihre Auswirkungen auf das Training und

das Ausmaß, in dem sie bei der Aufgabe, für die sie entwickelt wurden, helfen, sehen können.

Author:

Nikita Ostrovskiy

Topic of the thesis:

Comparison of Data Augmentation Techniques for efficient Training of Image-Text Classification

Algorithms

Keywords:

Machine Learning, CNN, Neural Network, Data augmentationm, Image Processing, Image-Text

Classification

Short Abstract:

This paper introduces the reader to the different data augmentation methods used in training of a

convolutional neural networks that conducts image-text classifcations. The principles, concepts,

applications, as well as the effectiveness of these methods will be discussed on the basis of already

conducted scientific work. Commonly used methods as well as more complex and even less

researched methods will be covered in this work. In the experimental part of this paper, a

convolutional neural network will be created that will use the GTSRB dataset to learn image-text

classification. Some of the methods discussed in this paper will be applied in order to augment the

dataset, allowing us to see their effect on training and the extent to which they help with the task

for which they were developed.

i

Table of contents

Table of contents i

List of figures iii

List of tables iv

1. Introduction 1

1.1 Problem definition 1

1.2 Objectives 1

1.3 Structure of the work 2

2. Introduction to Machine Learning 3

2.1 What is Machine Learning? 3

2.2 Neural Networks 4

2.2.1 Theoretical basics of a neural networks 4

2.2.2 General functioning of a an artificial neuron 6

2.2.3 Learning 6

2.2.4 Convolutional Neural Network (CNN) 8

2.2.5 Problematics of Machine Learning 9

2.2.5.1 Generalizability 10

2.2.5.2 Underfitting and Overfitting 10

3. Data Augmentation 12

3.1 General concept of Data Augmentation 12

3.2 Image Data Augmentation Techniques 12

3.2.1 Geometric Transformations 13

 3.2.1.1 Horizontal and vertical Flipping 14

 3.2.1.2 Cropping 14

 3.2.1.3 Rotation 14

 3.2.1.4 Translation (Shifting) 14

 3.2.1.5 Noise Injection 14

ii

 3.2.1.6 Color space 15

 3.2.1.7 Advatages and disadvantages

of geometrical transformations 15

3.2.2 Colour space augmentations 16

3.2.3 Kernel filters 17

3.2.4 Mixing images 17

3.2.5 Random erasing 18

3.3 Deep Learning based Data Augmentation Methods 19

 3.3.1 Adverserial Network 19

 3.3.2 GAN-based Data Enhancement 21

3.4 Test-time Data Augmentation 22

4. Practical Experiment 24

4.1 Concept of the practical experiment 24

4.2 Experiment 24

 4.2.1 Data 25

 4.2.2 Implementation 27

 4.2.2.1 The model 27

 4.2.2.2 Data preprocessing 27

 4.2.2.3 Training 28

 4.2.2.3.1 Data augmentation 28

 4.2.2.3.2 Training initialization 29

5. Evaluation and results 29

 5.1 Experiment conclusion 35

6. Conclusion 36

Bibliography 38

iii

List of figures

1. Figure 1: A taxonomy of feed-forward and recurrentlfeedback network

Architectures- Source: [32 5

2. Figure 2: Overfitting (left) and a good fit (right) depicted with error rates

on both training (blue) and testing (orange) dataset – Source: [22 10

3. Figure 3: Examples of machine learning algorithm output scatter in comparison to

test data in case of underfitting, good fit and overfitting – Source:

https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine

-learning-and-how-to-deal-with-it-6803a989c76 - researched on 10.04.2022 11

4. Figure 4: Classification of (some) Data Augmentation Techniques – Source: [45 13

5. Figure 5: Mixing images through random image cropping and patching – Source: [48] 17

6. Figure 6: the concept of Generative Adversarial Network – Source:

- https://www.kdnuggets.com/2017/01/generative-adversarial-networks-

hot-topic-machine-learning.html - researched on 09.05.2022 21

7. Figure 7: Snippet of meta data from GTSRB dataset - Source: Own representation 25

8. Figure 8: representation of class distribution in GTSRB dataset - Source:

Own representation 26

9. Figure 9: Implementation of class that performs geometric transformation

augmentations – Source: Own representation 28

10. Figure 10: Training accuracy, Training loss, Validation accuracy,

Validation loss plotted after learning with geometric data

augmentations in feature space – author’s work –Source: Own representation 35

11. Figure 11: Snippet of example image data samples in “examples”

directory with predicted labels written on respective sample – Source: Own representation 36

iv

List of tables

1. Table 1: Learning results with no data augmentation - Source:

 Own representation 30

2. Table 2: Learning result with Noise Injection in preprocessing - Source:

 Own representation 31

3. Table 3: Learning result in geometric transformations in preprocessing

 phase - Source: Own representation 33

4. Table 4: Learning with geometric augmentations in feature space - Source:

 Own representation 34

1

1. Introduction

1.1 Problem definition

Image processing and classification of images and texts are now becoming particularly popular in

various computer vision systems. There are now many areas of research in which scientists hope

to improve current results by applying deep convolutional networks to computer vision tasks.

Excitement and demand have been at very high levels for a long time and will remain so for the

foreseeable future. More broadly, almost every other type of classification and training of neural

systems for recognition is attracting the attention of scientists and investors. Recognition of text,

images, speech, music, computer-generated images, music again, photos, faces, speech-all the

different facets of machine learning cover a huge range of tasks and research. But they all require

data for training, for validation, for testing. Data that is designed for specific tasks or provides a

wide range of information and therefore can be used in a variety of learning domains. Providing

data is not an easy process in itself, but that data must also be optimally suited to the task, otherwise

the neural network risks not being able to learn optimally from that data to perform its task.

Sometimes there just isn't enough data or not enough variety. Often the prerequisites for

unsuccessful learning arise already at the data phase alone. Even the most expertly constructed

neural network can suffer from a poor data set and show excellent results on training data, but not

as strong results on test data.

Data augmentation techniques have been invented to solve these problems. They not only increase

the amount of data, but also improve the quality of the data, for example by changing (in our case)

the image to a human-unrecognizable state, but keeping the label, thereby improving the learning

process of the neural network. There is a wide range of methods of data augmentation and for

different tasks. In this paper, we will focus mainly on methods related to image and text

classification tasks, as well as how they affect the learning of the neural network and how this

effect differs.

1.2 Objectives

In this paper the reader will be given a broader introduction and explanation of the concept known

as Data Augmentation, the problems this concept struggles with, and the different variations

(techniques) of it. The aim of this paper is not only to discuss the factors mentioned above, but

also to demonstrate the work of some of these data augmentation methods (techniques) with a

practical example from the field of image-text classification.

2

1.3 Structure of work

Chapter 2 introduces the reader to the theoretical background of machine learning and image-text

classification, such as the learning process, neural network structure, and so on.

Chapter 3 introduces the concept of data augmentation, which is central to this paper, as well as

the neural network training issues that the concept was invented to deal with. The reader will be

given a wide range of different methods (techniques) of data augmentation, more or less relevant

in the context of image-text classification. Some methods will be covered in more detail then

others, especially those that will be later implemented and tested on a dataset. The other techniques

will be partially mentioned as well. Chapters 4 and 5 will deal with the practical part:

• Chapter 4 will introduce the reader to the practical part of this paper – the experiment. It

will introduce the reader to the the dataset used for the experiment. It will go into detail

about the implementation of the experiment and the model used for it and about how the

experiment is conducted.

• Chapter 5 covers in detail the results of the experiment and provides a summary. It will

compare different iterations and different versions ran as well as the results of those

iterations.

Chapter 6 will serve as the conclusion to this paper and will discuss potential ramifications of the

main topic. It will talk about what the results mean for general understanding as well as which

topics discussed in the paper have potential for further research and in what way.

3

2. Introduction to Machine Learning

2.1 What is Machine Learning?
Machine learning is a branch of computational algorithms that are designed to mimic

human intelligence by learning from the environment. It is a component of artificial

intelligence, although it seeks to solve problems based on historical examples [1]. Its

methods and algorithms are being widely used in the fields of Data Science and Software

Developement in order to create systems or programs that can learn and improve it ‘s

performance based on the given data and it‘s past experiences without the need to be

explicitly programmed to do so. However, in contrast to artificial intelligence applications,

machine learning involves learning hidden patterns in data (data mining) and then using

these patterns to classify or predict events related to a problem [2]. Basically, processes

and machines deemed „intelligent“ require knowledge to maintain their performance and

functionality. In essence, machine learning algorithms are embedded in machines, and data

streams are provided so that knowledge and information are extracted and fed into the

system to manage processes more quickly and efficiently [3].

Also commonly referred to as driving force during the current era of Big Data, as methods

based on machine learning have been successfully applied in fields ranging from pattern

recognition, computer vision, spacecraft design, finance, entertainment and computational

biology anc chemistry to medical applications. The ability of machine learning algorithms

to learn from current context and generalize to unseen tasks proves its immense value in

any field it is deployed to as it reaches the levels of accurate performance humans cannot.

Using mathematical analysis methods, ML algorithms look for specific patterns in given

data and use them in order to imrpove their performance and decision making. ML is often

mixed with Deep Learning (DL) when it comes to a discussion about artificial intelligence

and its algorithms. An introduction to the field of machine learning requires clarification

of the essential differences between these concepts. In fact, these terms are very

codependent of one another as deep learning is a sub-field of machine learning. A

significant difference persists when comparing the ways ML differentiates itself from DL

in the ways its algorithms learn:

DL relieves a substantial amount of human intervention into its learning processes by

automating its data extraction processes, making it scalable when compared to classical

ML [4]. It requires less manual activity, but also enables us to work on larger data sets, as

classical ML algorithms require more structure in its data sets, because it is necessary to

4

determine the set of features to understand the differences between data inputs, which can

usually be done manually. This leads to smaller data sets used, as the process of labeling

data is not suitable for larger data sets. DL does not require labeled datasets in order to

extract information, as it can work with raw data form and identify patterns, that help it

destinguish different categories of data from one another [5]. DL is widely used for solving

problems in areas like speech recognition, natural language processing and computer

vision. The learning of both ML and DL algorithms is made possible by the use of neural

networks.

2.2 Neural networks

2.2.1 Theoretical basics of a neural network
Nerve cells of the human neural system basically allow our brain to react and make decision

based on the input of information they receive. From a purely technical point of view, the

underlying principles of the human neural network can basically be imitated in an artificial

neural network. Decisive for the enormous performance of the brain are on the one hand

the large number of nerve cells (estimated 10¹⁴) and on the other hand, the extremely high

number of connections. Far fewer connections are possbile in an artificial neural network

[6].

A neural network, or in our case, an artificial neural network (ANN), consists of multiple

(in this case, artificial) interconnected neurons (also called nodes). An average ANN can

be broken down to 3 entities that build it: the individual neurons, connections between them

(network topology) and the learning rules defined in the network [7].

The neurons of an ANN are grouped in and follow each other in layers, forwarding

information from the neurons of one layer to the neurons of the next. There are 3 general

layer-types to be seen in an ANN:

• Input layer – consisting of input nodes, this is the layer that get the information and

prepares it for the transfer to the next layer. Similar to the human nervous system, input

neurons receive the external stimuli or variables that are to be processed and transferred

to the next set of inner (hidden) layers.

• Hidden layer – one to (usually) multiple layers of neurons that interract differently with

each other based on one’s architecture type. Based on the signal received, each inner

node carries out calculations and sends the result to the next node in the next layer (next

hidden layer or the output layer).

5

• Output layer – layer of output nodes work as a network response (output) as well as

evaluation of this response. [6]

When talking about the architecture of an ANN, the reader may picture it as a connected

directed graph, as the theory behind the structure of both is very similar. The neurons

would be the nodes, and the connections between them would be directed (weighted) edges

[8]. It is important to identify the two most common structures of an ANN:

• feed-forward networks, in which graphs have no loops. These networks are classified

as static and produce one set of output values rather than a sequence of values from a

given input. This type of network is also memory-less, as it’s response to an input does

not differ from the previous network state. Among many other learning algorithms, the

"back propagation algorithm" is the most popular and most commonly used for training

of feed-forward neural networks, as it is essentially a means of updating the synaptic

weights of the network by the back propagation of a gradient vector, in which each

element is defined as the derivative of an error measure with respect to a parameter

[47]. Error signals are usually defined as the difference between the actual outputs of

the network and the desired outputs. Therefore, it is necessary to have a set of desired

outputs for learning. For this reason, back propagation is a supervised learning rule [9].

• recurrent (or feedback) networks, in which loops are present and occur because of

feedback connections. These networks are dynamic. When a new input pattern is

presented, the neuron outputs are computed. Because of the feedback paths, the inputs

to each neuron are then modified, which leads the network to enter a new state [10].

Figure 1: A taxonomy of feed-forward and recurrentlfeedback network architectures

6

Neural networks come in many different forms, each of which is better fit for a specific type of

task. Figure 1 will give the reader a brief overview of what different types of neural networks exist

(certainly not all), what their architecture looks like and what type of network structure (discussed

in the paragraph above) they belong to.

2.2.2 General functionality of a an artificial neuron

An ANN and its artificial neurons are structurally and operationally very similar to the human

biological neural network and its biological neurons. Biological neurons are interconnected with

and transfer information via a synopsis. On the other hand, when it comes to artificial neurons,

this connection is replaced by a weight designation. A positive weight means that the connection

between neurons is excitatory (enambling an action) and a negative weight represents an inhibitory

connection (preventing an action). [11]

The structure of an artificial neuron is illustrated in Figure 2 and might serve the reader as a good

visual representation of a step-by-step description of a neuron‘s function.

A neuron receives information from another neurons of the previous layer, calculates its input and

gives an output to the neuron of the following layer. The calculations that take place between the

neuron receiving the input and transmitting the output to the next neurons can be reduced to 3

consecutive steps:

1. the first is to multiply the inputs with the synaptic weights to calculate the products;

2. the second is to add the products to calculate the sum of the weights;

3. the third and last step is to apply the chosen activation function to the summed weights,

which in its place generates the neuron‘s output.

It is very important to take a closer look at the very tool that produces the output of a

neuron: the activation function. It is a critical part of the design of a neural network. As

such, the choice of an activation function is extremely important for the performance of a

neural network. Different types of layers of the ANN require different activation functions,

as they all have different purposes. For example, the hidden layer and the sublayers within

it require different activation functions not only from the output layer, but sometimes from

each other as well. [11]

2.2.3 Learning

In the context of ANNs, learning may be regarded as the problem of updating the network

architecture and connection weights so that the network can effectively perform a particular task.

7

Typically, the network must learn connection weights from existing training models. Performance

improves over time by iteratively updating the weights in the network. Instead of following a set

of rules given by a human, ANNs seem to learn basic rules (such as input-output relationships)

from a given set of representative examples. To understand or design the learning process, we first

need to have a model of the environment in which the neural network operates, that is, to know

what information is available to the network. We call this model the learning paradigm. Second,

you must understand how the weights of the network are updated, that is, what learning rules

govern the updating process. A learning algorithm refers to a procedure in which learning rules

are used to adjust the weights. The main learning paradigms are supervised, unsupervised, hybdrig,

and reinforced.

• In supervised learning (or learning with a 'teacher'), the network obtains the correct

response (output) for each input pattern. It is a sequence of desired outputs given to the

model. The weights are determined to allow the network to produce answers that are as

close as possible to the known correct answers. The goal of the machine is to learn to

produce the correct output given a new input. This output could be a class label (in

classification) or a real number (in regression) [12]. Figure 3 shows supervised learning as

a distinction along a defined criteria in data, that being predefined classification and the

results falling into exact categories.

• Reinforcement learning is in itself a variant of supervised learning in which the network is

only given a critique of the correctness of the network's output, in the form of scalar

feedback (positive or negative, also called “reward and punishment”), not the correct

answers themselves. The goal is to learn to act in a way that maximizes future positive

feedback (or minimizes negative feedback) over the learning period. There is also an

advanced form or reinforcement learning, which revolves around “game theory” and

generalizes the concept. It works with the same principles of learning as before, but with

one major difference – the environment is no longer static, but dynamic, with other learning

algorithms taking part in it as well, constantly picking up on information and “spitting out”

the results. The goal of the machine is to act in a way that maximizes positive feedback in

relation to the current and future actions of other machines. Thus, the learning process of

all models in this paradigm is more flexible and generalizable [12]. Figure 3 shows this

type of learning as a more complex set of agents that interchange feedback among each

other regarding the produced output.

• Unsupervised learning (teacherless learning) does not require a correct response associated

with each input pattern in the training dataset. In this case, the machine receives input, but

8

not a label, classification, or even potential feedback (reward or punishment) from the

environment. It examines the underlying structure of the data, or correlations between

patterns in the data, and combines patterns into categories based on these correlations. In a

sense, unsupervised learning can be thought of as looking for patterns in the data, beyond

what can be thought of as pure unstructured noise [12]. Figure 3 shows unsupervised

learning on an example of a clustering algorithm, where data is arranged into non

predefined groups, but groups are arranged during learning by data patterns found by the

algorithm.

• Hybrid learning (as the name suggests) combines supervised and unsupervised learning.

Some of the weights are usually determined by supervised learning and the rest by

unsupervised learning.

Learning theory must address three fundamental and practical issues related to learning from

samples: capacity, sample complexity and computational complexity.

• Capacity refers to how many samples can be stored, as well as the features and decision

bounds that the network can form. It can be measured by the number of training examples

that the learning body can always fit, no matter how the values are changed [13].

• The number of training patterns required to train the network to ensure reliable

generalization is determined by sampling complexity. Overfitting can occur when there

are insufficient samples (where the network performs well on the training dataset, but

poorly on independent test samples, that are part of the same dataset as the training

samples).

• Computational complexity of a learning algorithm is the time it takes to evaluate a

solution based on the training patterns. The computational complexity of many existing

learning algorithms is high [14]. The development of efficient algorithms for training

neural networks is a topic of intense scientific interest.

2.2.4 Convolutional neural network (CNN)

Convolutional neural networks (later referred to as “CNN”) are used broadly in the fields of image

processing, computer vision, speech recognition, machine translation and so on. In the case of this

work, image recognition and classification bein the task fields, CNNs are dominant in solving the

problems in that field. A convolutional neural network has had major success in studies over the

last years and has achieved revolutionary results. The most useful aspect of CNN is the reduction

of number the of parameters in the network. This option allowed researchers and developers to

9

turn to larger models to solve complex problems, for which ordinary ANNs lacked the

functionality to solve. The most important assumption is that problems solved with CNNs should

not have features that are spatially dependent. For example, in a face detection application, there

is no need to pay attention to where faces are in images, and the only task remaining is to detect

them regardless of their position in the image data.

A CNN usually consists of 3 different layer types:

• Convolutional layer - most of the computational activity of a CNN takes place in the

convolutional layers. “A convolution is an integral that expresses the amount of overlap of

one function g as it is shifted over another function f. It therefore "blends" one function

with another“ [15]. The layer is called convolutional since it performs a dot product (or it

convolves) between two matrices. The first matrix is a set of parameters able to be taught

and changed (also known as a kernel), and the second one is a portion of the receptive field.

The kernel moves (or strides) along the height and width of the given image, generating

the image data in the receptive field. This results in a two-dimensional image representation

known as an activation map, which returns data for every spatial position of the image [15].

• Pooling layer – the pooling layer analyzes the output data of the convolutional layer and

replaces the output at certain locations with calculated statistics of its neighboring output.

A big advantage of this layer is that it reduces the number of weights and calculations

drastically. By stacking several convolutional layers and a pooling layer, we can extract

the high-level characteristics of inputs [16].

• Fully connected layer – this layer serves as an assistance in mapping of the representation

between input and output. Neurons of this layer are fully connected with all the neurons in

the previous and following layer. A classifier of a convolutional neural network consists

of one or more fully connected layers. These layers do not preserve spatial data [16].

2.2.5 Problematics of Machine Learning

With the theoretical basis of machine learning and CNNs left behind, it is time to look at the main

problems mainly confronted when training and testing CNNs. To conclude this chapter, it is

important to talk about the problems and challenges that stand in the way of successful machine

learning, as a kind of preface, but also as an important thematic transition to the topic of data

augmentation.

11

• The term „overfitting“ is more complex. It is used to refer to a state, that occurs when a

network models the set of training data perfectly, but fails to generalize its learning to

predict the class of unseen data correctly [17]. The results when the network has trained

too well on the data presented for training that the slightest fluctuation (noise) or an

unknown class in the testing or real time data and this is picked up by the model and learned

to be considered as a general pattern. This state occurs when a classification algorithm

learns to classify the training data better than the population of cases at hand, meaning the

algorithm does not generalize well to the population of cases from which the training data

was acquired [19].

The pattern of overfitting can be seen in Figure 2 (above). The left depicts an inflection

point at which the validation error begins to increase as the training rate decreases. Because

of the increased training, the model has overfit to the training data and performs poorly on

the testing set in comparison to the training set. On the right, on the other hand, a model

is producing the desired relationship between training and testing error [22].

Overfitting is a more complex problem than underfitting. Its higher complexity lies in the

fact that overfitting related inoperability of the model is not noticed during the training

period. This becomes noticeable during the testing period and marks the fact that the

training dataset is not suitable for successful learning as well as optimal model

generalization. CNNs are very prone to overfitting as a result of the high number of

parameters involved in their training.

Figure 3: Examples of machine learning algorithm output scatter in comparison to

test data in case of underfitting, good fit and overfitting.

12

3. Data Augmentation

3.1 General concept of Data Augmentation

L. Taylor and G. Nitschke gave a plausible definition of the concept of DA in their paper on

„Improving Deep Learning using Generic Data Augmentation“, which will explore and ellaborate

the general concept of data augmentation (later referred to as DA) and „label preservation“ :

The core of data augmentation methods is an artificial inflation of the original training set. An

important feature of those methods is that the transformations they enable are label preserving.

The core transformation can be represented as this mapping:

where S reprsents the original training data set and T represents the augmented data set of S. The

augmented and artificall inflated set can be represented with a following relation:

where S’ contains the original training set S and the augmented transformation

set T. The transformations taking place in T are defined by φ. These transformations are label

preserving, as the following rule must persist with a good data augmentation method: “if image x

is an element of class y then φ(x) is also an element of class y”.[20]

It is important to note that although DA methods are widely used to inflate training datasets, it is

also a common practice to augment a specific percentage of the dataset without increasing the

number of samples. There is a wide range of data augmentation methods for different kinds of

machine learning tasks. Since the focus of this paper is on image processing and image-text

classification, only the DA techniques that are suitable for this task will be discussed.

3.2 Image Data Augmentation Techniques

DA (as can be derived from a name) combats overfitting by trying to fix the problem in the phase

before initial training, mainly in the dataset. To avoid overfitting and train the model more

effectively a broad line of DA techniques has been developed. The techniques vastly differ from

each other in the sole structure of the algorithm and especially in its complexity. Research papers

on DA often divide its methods into two broad categories: data warping and synthetic

oversampling.

13

Figure 4: Classification of (some) Data Augmentation Techniques

The basic idea of data warping revolves around altering already given data (without introducing

new samples) and thus accelerating the learning process of the model. It does not mean it cannot

be used to create new data and add new samples alongside existing ones. Nevertheless, the idea is

that these methods influence the image on an already persisted level. The concept of Synthetic

Oversampling revolves around the idea, that its methods will result in creating new images (for

example, a mixed image of 2 existing images) and adding them to the dataset, thus inflating the

dataset and creating new samples [21].

3.2.1 Geometric Transformations

First on the list are the DA methods that rely on basic image manipulations. This class of

augmentations is in implementation and in concept, but nevertheless poses challenges when it

comes to safety. Safery relates to the ability to preserve data labels after the transformation of

samples. A basic example would be applying horizontal flipping to a dataset of images of cats and

dogs, which is label preserving and does not pose a conflict or an error and applying the same

method to datasets with digits, particularly with 6 and 9 [22].

Non label-preserving DA methods might strengthen the ability of a model to hesitate on certain

predictions and show a lack of confidence in some predictions. However such a result would

require to commit label refinement [22] after the augmentation took place and that is an extremely

challenging computing task.

14

3.2.1.1 Horizontal and vertical Flipping

One of the least complex techniques to implement is being widely used as an addition to other

techniques. A straight forward technique, horizontal or vertical flip, reverses the pixels (in the

context of images) rows or columns. Flipping the horizontal axis is more common than vertical

axis flipping. This technique has proven very helpful in cases of classifying images to text.

However, in the context of text recognition, numerous experiences have shown this transformation

to fail to preserve labels. The most obvious example is performing horizontal flipping in the

already mentioned above case of digit recognition, specifically with digits 6 and 9. [22]

3.2.1.2 Cropping

This method revolves around cropping a part of the image sample and reducing the size of the

input data. Image cropping can be used as a practical step in processing image data with mixed

dimensions in height and width by cropping the central portion of each image. Depending on the

reduction threshold chosen for pruning, this may not be a label preserving transformation [22].

3.2.1.3 Rotation

Rotation is performed on the image sample by rotating the image along the axis ranging from 1°

to 359°. The safety of this augmentation method hangs from the rotation degree.

3.2.1.4 Translation (Shifting)

Offsetting images left, right, up, or down can be a very useful transformation to avoid positional

bias in the data. For example, if all images in a dataset are centered, as is often the case in face

recognition datasets, this will require testing the model on perfectly centered images as well. When

the original image is translated in a particular direction, the remaining space can either be filled

with a constant value, such as 0 s or 255 s, or with random or Gaussian noise. Such filling preserves

the spatial dimensions of the image after augmentation [22].

3.2.1.5 Noise Injection

This technique refers to adding „noise“ artifically to the data that is then served as an input to a

CNN during the training process. What is referred to as „noise“ is a matrix of random values

injected into the dataset with the purpose of slightly altering it in a specific area. There are different

methods of implementing noise injection. One of them is called „jitter“ – adding a noise vector to

15

each training sample in between training iterations. This causes the training data to “jitter”

(tremble, quiver, shake) in the feature space during training, making it difficult for the model to

find a solution that fits precisely to the original training dataset, and thereby reducing overfitting.

Due to those constant injection, the ANN works with slightly different data every training iteration

[19].

 An important parameter is the variance of the noise kernel, which controls the effect of noise

injection on model training. When variance is too small, it fails to make the training cases‘ „jitter“-

effect significant enough when confronted with them in the feature space, which overall results in

a minimal result on the training of an ANN. A variance too large, however, can cause the „jitter“-

effect to be so significant, that the two classes of the training cases will become too hard for the

model to distinguish from one another, therefore making the training process ineffective. The

perfect match is when the value of variance of the noise kernel is selected so that the ANN training

case feature vectors „jitter“ in the featre space to an extent that an overall „jitter“ of all given

training cases imitates the underlying distribution of each class of the training cases in the feature

space [19].

3.2.1.6 Color space

Digital images are usually encoded as 3 dimensional matrices, encapsulating a height vector, a

width vector, and an RGB channel vector, basically encoding which pixel at which position has

what kind of RGB value or color. A practical strategy is to perform augmentations in the RGB

channels space. It is a simple case, isolating a single color channel. RGB values can be tweaked to

set brightness higher or lower, or, by isolating its matrix and adding two zero matrices from other

color channel, the image will have change its pixels RGB values to value of one specific channel

[22].

3.2.1.7 Advantages and disadvantages of geometric

transofrmations

Geometric transformations provide the case with a very strong solution to positional biases

appearing in the data used for training. For instance, face recognition datasets use images that are

faces perfectly centered in the picture, which spawns a bias that hinders the model from effectively

learning to recognise different placement of a face on the photo. In this case, geometrical

transoformations serve as a perfect solution. Geometric transformations require little

implementation due to their easy concepts and a large number of libraries that provide these

methods for instant use.

16

However, the downside of these transformations includes the resource cost of calculating the

transformation, very high additional learning time and additional memory usage. Further

disadvantage of these methods is a limited application scope, since in some areas of image

recognition (for example medical image analysis), geometrical transformations that differentiate

the training set images from testing set images on a structural level are actually hurting the learning

process and therefore cannot be used as an optimal solution. [22]

Also, it is a challenge to give a simple evaluation on the efficiency of one method over the other.

There are a lot of geometrical data augmentation techniques (not all techniques or variations have

been discussed prior) and some of them are pretty simple in their implementation.

3.2.2 Color space augmentations

As mentioned previosly, image data is encoded as three stacked matrices of height x width size.

These matrices represent individual RGB color values as pixel values. Lighting biases are among

the most common challenges to image recognition problems. As a result, the effectiveness of color

space transformations, also known as photometric transformations, is fairly easy to grasp. A quick

fix for overly bright or dark images is to loop through them and change the pixel values by a

constant amount. Another transformation is to limit pixel values to a specific minimum or

maximum value. A variety of augmentation strategies can be derived from working with pixel

color manipulations. Changing the color distribution of images can be an excellent solution to the

lighting issues encountered by testing data. Image datasets can be represented more simply by

converting the RGB matrices into a single grayscale image. This results in smaller images (height

x width x 1) and faster computation. Color space transformations, like geometric transformations,

also pose a disadvantage of increased memory requirements, transformation costs, and training

time [22]. Color transformations may also discard important color information, making them not

always a label-preserving transformation. For example, when the pixel values of an image are

reduced to simulate a darker environment, the objects in the image may become impossible to see.

Image Sentiment Analysis [23] provides an indirect example of color transformations having a

non-label preserving effect. CNNs attempt to predict the sentiment score of an image in this

application, such as highly negative, negative, neutral, positive, or highly positive. And the

presence of blood is an important indicator of a negative/extremely negative sentiment image. The

dark red color of blood destinguishes it from water, paint, or any other liquid. If color space

transformation is used multiple times, the model will perform poorly in image sentiment analysis

because it will be unable to distinguish red blood from green paint. Color space transformations,

in effect, eliminate color biases in the dataset in favor of spatial characteristics [22].

17

3.2.3 Kernel filters

Kernel filters are a very popular and often used method in image processing. It helps sharpen blurry

images in the dataset. The filters work by moving an n x n matrix over the image with one of the

following filters: Gaussian blur filter (which makes the image blurrier) or a high contrast vertical

or horizontal filter, which will make the image sharper on the edges [22]. In theory, blurring

images to augment data can result in increased resistance to motion blur during testing.

Furthermore, sharpening images for data augmentation can result in the encapsulation of more

information about the objects of interest.

Kernel filters are commonly used to enhance and blur images. The concept has been experimented

with to create a novel filter operation that swaps pixel values in a sliding x-matrix. This image data

augmentation technique got a name Patchshuffle Regularization. It has shown an improved error

rate of 5.66% on CIFAR-10 compared to the previous result of 6.33% [24].

3.2.4 Mixing images

Mixing images is not a straightforward and obvious data augmentation method, which revolves

around combining images by averaging their pixel values, essentially blending images together.

At first glance, it makes little sense for the human eye to see a mixture between an image of a dog

and a cat. However, it has been proven to be a well working data augmentation technique. By

precropping two random images from 256 x 256 to 224 x 224 and flipping them horizontally, after

which the mixing of images takes place

via averaging the pixel values for each of

the RGB channels. The mixed image is

generated that way and it is given a label

of the first of the two randomly chosen

images. By testing this method on the

CIFAR-10 dataset, it managed to improve

the error rate of a learning model to

6.93% from the previous 8.22% without

mixing images. Also, this technique was tested out

to see how it would work on a very small dataset.

For that purpose, CIFAR-10 has been reduced to

Figure 5: Mixing images through

random image cropping and patching

18

just 1000 samples (100 per class) and image mixing has been performed on the dataset. Of course,

the error rate due to insufficient datasets remains high, but the use of image mixing has had a

significant decrease in error rate from 43.1% to 31% [29]. This showed the usefulness of image

mixing in the case of insufficient data. Another important note from the study showed that

combining images from the entire training set has higher results, as opposed to combining only

images of the same class. But this method of image blending is a linear one. A non-linear approach

to image mixing has been explored out in multiple scientific works and has shown effective results

when used on both CIFAR-10 (error rate reduced from 5.4% to 3.8%) and CIFAR-100 (error rate

reduced from 23.6 % to 19.7 %) [25]. Another effective variation of image mixing is randomly

cropping parts of random images and blending them together, generating an entirely new sample.

The curious case of image mixing is that it is highly effective in training models. It is highly

increasing its performance across a variety of tasks, but it makes no sense for human observation.

Furthermore, no one has yet proven the reason for its high effectiveness, and there have only been

theories and hypotheses, like the ones from Zhang [26] and Tokozume [27].

3.2.5 Random erasing

Zhong et al. developed another non-trivial data augmentation technique called random erasing

[28]. When used on CIFAR-10, it managed to achieve the highest accuracy. The technique is

inspired by Dropout regularization and has a lot of similarities to it. The primary distinction

between the two is that one is used during the data input phase and the other is not directly

embedded in the network architecture.

This method was created solely to address issues in the image recognition process caused by a

phenomenon known as “occlusion”. Occlusion refers to an image state in which some parts are

less clear than others, which can lead to a model learning some specific features better than others

and thus overfitting. Random erasing forces the model to learn more descriptive features about an

image, avoiding overfitting to a specific visual feature. As a result, the model is trained to study

and process the entire image equally, rather than using more learning resources to process the parts

of an image that do not have occlusion. Random erasing works by randomly selecting a nx m patch

of an image and masking it with 0s, 255s, mean pixel values, or random values. This reduced the

error rate on the CIFAR-10 dataset from 5.17 to 4.31 percent. Random erasing is a data

augmentation technique that modifies the input space to prevent overfitting directly [22].

This augmentation technique has also shown benefits when combined with other augmentation

techniques like random zoom, rotation, and shifting.

19

The disadvantage of random erasing is that it does not always result in a label-preserving

transformation. In handwritten digit recognition, if the top part of a '8' is randomly cropped out, it

is no different from a '6' [22]. As a result, some manual intervention may be required depending

on the dataset and task.

3.3 Deep Learning based Data Augmentation Methods

Methods, that have been described prior are powerful and useful when it comes to assisting

machine learning, but they are, nevertheless, very limited and constrained by the fact that they

have to be explicitly selected and used by a human expert in the pre-training phase, more

specifically in the input space of the network. These methods help the network to generalize but

are themselves not very generalizable in that they are not fixed as a “silver bullet” for any particular

problem. More often than not, researchers have to combine different techniques with different

parameters to achieve a result, let alone show significant progress. It is left to the researcher to

decide, which method should be used and if it is the optimal combination. And these standard

methods produce only “limited plausible alternative data” [31]. But what if there was a way to

automate the choice and application of data augmentation methods?

Some researchers went as far as to apply deep learning algorithms to enhance and optimize data

augmentation. And when it comes to mapping high-dimensional inputs into lower-dimensional

representations, neural networks are unrivaled. In flattened layers, these networks can map images

to binary classes or nx 1 vectors. The sequential processing of neural networks can be manipulated

in order to separate the intermediate representations from the network as a whole. Lower-

dimensional image data representations in fully-connected layers can be extracted and isolated.

For example, it has been found that manipulating the modularity of neural networks to isolate and

refine individual layers after training improves performance on CIFAR-100 from 66 to 73 percent

accuracy [30].

Some of the known techniques will be covered in the following chapters since they pose a very

high research interest. These methods will not be a part of practical implementation since it

requires higher computational power to run such methods and implementations of them are much

more complex than the standard data augmentation methods.

3.3.1 Adversarial Network

20

A relevant and exciting field of study is expanding the space of possible augmentations and

classifying the situations, to which an individual or combination of methods is plausible. And the

concept of adversarial training provides the necessary ground for that. It is a framework for the

application of two or more networks, which all have competing objectives encoded into their loss

function. One of the sufficient parts of this concept is called “adversarial attack” [22]. Two or more

networks a performing task, that are rival to one another. One network learns image data

augmentations (with different standard methods) and the other one learns to classify visual input

data. The goal of the first network is to perform an augmentation in such a way to make its rival

misclassify. Many interesting results have been derived from experiments using this concept. For

example, Su et. al [35] revealed that 70,97% of images can lead to a misclassification by changing

just one pixel in them. Zajac et al. [36] showed that an adversarial network can cause

misclassifications with adversarial attacks limited to the border of images and that these attacks

have higher success rates with higher image resolution. Such attacks may be targeted or untargeted,

depending on the deliberation they are trying to cause in the classification network [22]. This

concept actually helps identify and analyze weaknesses in network classification better than

standard metrics used for classification.

Adversarial training provides evaluation metrics for classification algorithms and defense against

adversarial attacks, but it can also be an effective way of searching for potential augmentations.

By learning to apply diverse data augmentation methods, it eventually produces an augmentation

that will cause misclassification. Such augmentations will make the classification model more

robust since it will target and identify weak spots in it. The major difference to the standard

methods is that the augmentations are not taking place in the training set, but “but they can improve

weak spots in the learned decision boundary” [22].

The efficiency of adversarial training in the form of noise or augmentation search is still a

relatively novel concept that has not been well examined. It has been demonstrated that adding

noise to adversarial cases improves performance, but it is uncertain whether this is effective for

the goal of reducing overfitting.

22

created with this remarkable technique. The generator network’s ability to circumvent the

discriminator makes it a potent tool for generative modelling.

In the years following the publication of GAN, many papers proposed improvements to the design,

architecture, loss functions, and so on. For example, the initial GAN uses multilayer perceptrons

in both generative and discriminative networks [33], which poses some limitations when it comes

to generating images with higher resolution and quality. Alternatively, a concept of Deep

Convolutional GAN (DCGAN) has been introduced, which implements deep convolutional neural

networks in both the generative and discriminative components of GAN [38] and is supposed to

increase the internal complexity of the generator and discriminator networks [22] [38].

3.4 Test-time augmentation

Data augmentation on training data is the most common method, but surprisingly, a non-trivial

approach has also shown effectiveness. This approach is data augmentation on test -time data.

Augmentation of a test image in the same way as augmenting a training image can lead to a more

accurate prediction. This does, however, spike up the computational cost and slow down the model

learning process and may cause major bottlenecks in models that require real-time prediction [22].

Nevertheless, test-time augmentation has shown great promise for applications such as medical

image diagnosis [41]. Multiple studies have been conducted in order to see the effectiveness of

different standard data augmentation methods in the context of test-time data augmentation.

Wang et al. [42] have researched a mathematical framework for expressing test-time

augmentation. The results have shown that the test-time augmentation scheme outperformed the

single-prediction baseline and dropout-based multiple predictions on medical image segmentation.

Also, it has been shown that data augmentations of test-time data improve uncertainty estimation,

reducing predictions that are highly confident, yet incorrect. In Wang’s et al. [42] research, they

worked with the Monte Carlo simulation in order to generate parameters for various augmentations

such as flipping, scaling, rotation, translation, and noise injections.

Perez et al. [42] have conducted a study that was dedicated to testing various standard data

augmentation techniques in context of test-time augmentation. Among them were color

augmentation, rotation, shearing, scaling, flipping, random cropping, random erasing, elastic,

mixing, and combinations of all the mentioned techniques were tested as well.

The effect of test-time augmentation on classification accuracy is another mechanism for

determining a classifier's robustness. As a result, a robust classifier has low prediction variance

23

across augmentations. Predictions do not differ significantly when an image is rotated by 20

degrees.

If an image is rotated 20 degrees, for example, the prediction should not differ significantly. Minh

et al. [44] compare accuracy on un-augmented data to accuracy on augmented data in their

experiments, searching for augmentations with Reinforcement Learning. When evaluated on

augmented test images, the model’s performance drops from 74.61 to 66.87 percent.

Some classification models put heavier emphasis on the importance of speed. This suggests that

methods for gradually increasing prediction confidence hold promise. This could be accomplished

by first producing a prediction with little or no test-time augmentation and then gradually

increasing the confidence of the prediction.

24

4. Practical experiment

4.1 Concept of the practical experiment

In the last chapter, a rather extensive range of data augmentation methods for image processing

has been discussed. This part of the paper will look at their technical implementation and

application.

The experiment is a PyCharm Project (but is also provided in a Jupiter-Notebook format) of

working with a “GTSRB - German Traffic Sign Recognition Benchmark” dataset. The purpose of

this part is to look at what effect some data augmentations have the learning process and the result

and what additional training measures lead to optimal model training.

The experiment will be conducted in multiple iterations, using slightly altered version of the

project: with or without data augmentation, with data augmentation in feature space or in phase of

data processing as well as with different number of epochs used for training.

Note: machine learning with relatively large datasets uses a lot of computer resources and time in

order to bring the learning process to completion. In the case of data augmentation, the dataset

sometimes grows several times larger, which slows down the training algorithm. For this reason,

the files containing the practical part and provided by the author to the reader are used for the first

training without data augmentation (for future comparison). The author transferred and ran some

of the iterations of the experiment that used data augmentation to Google Collab Notebook for a

more optimal processing speed, as Google Collab allows working with Google cloud resources,

which allows for a much faster training process.

4.2 Experiment: Traffic Sign Classification with Data

Augmentation

When working through research papers that cover data augmentation, CIFAR-10 is very often used

as popular dataset for is a popular dataset for research on machine learning in context of image

processing and image-text classification. It is an interesting visual dataset that helps to diversify

the dataset and learning process. But for this experiment, it has been decided to take a dataset that

is remotely closer to a real world dataset and that would be used for a specific practical purpose.

25

The goal of this experiment is to show, how a process would look when working on a „real world“

dataset, where and how data augmentation is being used, and what effect they have on the learning

process. This experiment does not focus solely on the data augmentation effect on machine

learning. The focus is to see what effect data augmentation has on a model in combination with

normalization techniques and working with a dataset that is not built for research or presentation

purposes. The attributes that will be looked at will be the ETA (estimated time of arrival or the

time it takes for a model to go through a learning epoch), training accuracy, training loss, validation

accuracy, validation loss, test accuracy, test loss.

4.2.1 Data

For the second experiment, the German Traffic Sign Recognition Benchmark (GTSRB) dataset

has been selected. This dataset contains 60 000 samples (50 000 for training, 10 000 for testing)

and 43 different classes as well as meta data in the form of non real world images of traffic signs

(see below).

Figure 7: Snippet of meta data from GTSRB dataset

26

The GTSRB is a suitable candidate for such an experiment since it is a very broad and diverse

dataset, that contains samples from a homogenous thematic field but brings variety. It poses some

challenges to the experiment, which have to be dealt with. One of them is that the traffic sign

images have low resolution and poor contrast. The other is class imbalance. For example the class

depicting the traffic sign „Speed limit (50km/h)“ has 2010 samples in the dataset. „Speed limit

(30km/h)“ has 1980 samples. However, „Speed limit (20km/h)“ only has only 180 samples. It is

a representation of the real world since the 50km/h and 30km/h are encountered way more often

than 20km/h. Nevertheless, it is still a challenge for the model, if the goal is to have a high accuracy

and an optimal generalizability. Class imbalance is represented more precisely in the Figure below.

Figure 8: representation of class distribution in GTSRB dataset

27

4.2.2 Implementation:

The project is implemented using PyCharm and has specific arguments that need to be passed to

the execution path in order for it to run correctly. This is all stored in a README file for better

clarification.

4.2.2.1 The model

The model is implemented in the class TraficSignCNN.py. In this file, the initialization of the

CNN is taking place per static call of the build-method. It is a sequential class model, and its

structure is realized as follows:

1. The input layer consists of a convolutional layer => “relu” activation function => batch

normalization => pooling layer.

2. First set of layers is a set of (convolutional layer => “relu” activation function => batch

normalization)*2 => pooling layer.

3. Second set of layers is a set of (convolutional layer => “relu” activation function => batch

normalization)*2 => pooling layer.

Note: the sets make the learning of the model and reduce volume dimensionality by stacking

two sets of convolutional layers with activation functions and normalization layer before

applying a max pooling layer.

4. First set of fully connected layers is (flatten layer=> dense layer=> „relu“ activation => batch

normalization=> dropout normalization)

5. Second set of fully connected layers is (flatten layer=> dense layer=> „relu“ activation function

=> batch normalization=> dropout normalization)

6. Finally a classifier layer (output layer) consists of dense layer => „softmax“ activation function

4.2.2.2 Data preprocessing

The image dataset is stored locally within the project.

• In this step, the images are being retrieved from the datasets training and testing directories

separetely.

• The data is being randomly shuffled to avoid samples of a particular class following in a

sequential order.

• The data is then splitted into labels and images and images go through a preprocessing

phase.

28

• As mentioned before, the images in the dataset have low contrast, making it challenging

for the model to destinguish between the input data. Because of this the class

ImageProcessor.py is applying Contrast Limited Adaptive Histogramm Equalization

(CLAHE) to all the images in order to improve their contrast [50]. While our images may

look "unnatural", the increased contrast will help our model distinguish our traffic signs

automatically.

• The images are also being resized to be 32x32 pixels, ignoring aspect ratio. It is done so

because the image data in the dataset is not of the same height and width and this way it is

normalized.

• Images and labels are then stored in arrays and converted to NumPy arrays.

• After that label names and their respective Ids are retrieved from „signnames.csv“.

• The numpy arrays are then being normalized. Image data is divided by 255.0 to be scaled

down to the range from 0 to 1. Label data is categorized using one-hot encoding [51].

• The next step is the calculation of class weight. It is an important step, since we have to

account for the class imbalance in the dataset. That way, each class gets a weight assign to

it.

• The data is preprocessed and ready to be served as an input to our model.

4.2.2.3 Training

4.2.2.3.1 Data Augmentation

This is where data augmentation finally comes into play. The ImageDataGenerator class is being

used as a data augmentation tool. It will perform data augmentation on the test set at the feature

level (or will be left out if an iteration without data augmentation is running).

Initial implementation uses methods like random rotation, zoom, shift, shear, and settings flipping

for our training data. Horizontal and vertical flipping methods have been excluded, since there is

no practical need for their use. It is not expected

for the network to ever encounter a real-life

flipped traffic sign. ImageDataGenerator has

been used to both augment data in

preprocessing as well as in feature space.

Figure 9: Implementation of class

that performs geometric

transformation augmentations

29

Gaussian injection has been implemented with its own method and applied to the dataset in its

iteration.

4.2.2.3.2 Training initialization

The model is initialized by a static call to the TrafficSignCNN class. It is then compiled and the

learning process starts either with ImageGenerator performing data augmentations on the dataset

on the fly or with the unchanged training dataset (in case augmentation is not activated in the

iteration). After that, the model is evaluated on a test dataset and stored locally for future

predictions in the „output“ directory along with the plot of training and testing accuracy and loss.

A classification report is also written to the console.

Predicting: In order to see the results of the experiment and not only statistics, predict.py has been

implemented. It has no use of going into detail and dedicating a whole chapter to it, since all that

is being done is once again preprocessing of image data and then delivering it as input to the model.

The model will classify each given image, write its output on that image, and store it in the

„examples“ directory.

5. Evaluation and results

Methods such as geometric transformations and noise injection were used in the experiment. In

different iterations, these methods were applied at different stages of the learning process. The

experiment went through four different iterations, each time having a brand new model work with

the GTSRB dataset: no data augmentation, noise injection in preprocessing, Geometric

transformations in preprocessing, geometric transformations in feature. Each iteration was

conducted with 20 epochs.

Note: there were more iterations made in Google Collab (they are located in directory

“da_method_implementation”), but only these 4 resulted in plausible results that are worth

considering. All of these iterations have been conducted with local computational resources, so

the time it takes for each iteration to run from start to finish is significantly higher, than on Google

Cloud. The performance difference is immense, since it took only around 10 seconds to preprocess

all the training and testing data and start the learning process in Google Collab, but it took every

iteration over 20 minutes to just preprocess the data with local computational resources, before

35

Figure 10: Training accuracy, Training loss, Validation accuracy, Validation

loss plotted after learning with geometric data augmentations in feature space

Iteration 4 clearly achieved the set goal of performing with maximal accuracy, both in testing

and training, and at optimal time. The Predict script can allow the reader to see for himself,

how the network classifies the input data correctly. A snippet of the prediction examples can

be seen in Figure 11 (see below).

5.1 Experiment conclusion
This experiment has shown clearly that geometric data augmentations are way more effective

when applied in combination and in feature space. It resulted in the most optimal result of all

and in a decent amount of computational time. It did not require that many computational

resources, and it got the job done, whereas using them directly on the dataset in preprocessing

phase has

36

Figure 11: Snippet of example image data samples in “examples”

directory with predicted labels written on respective sample

proven to do more harm than good in case of the GTSRB dataset. It has also been shown that

this approach functions well when combined with popular normalization methods (Batch

normalization and Dropout normalization were both part of the neural network).

6. Conclusion

The intriguing methods for enhancing image data fall into two broad categories: data warping

and oversampling. The methods and techniques of data augmentation have ranged from the

most primitive to the most difficult to implement and even the least explored. Data

augmentation is an extremely useful tool in combatting overfitting and generalizing a model.

Yet this field is still genuinely unexplored and has a lot of research potential. The big question

of data augmentation, which helps with generalization is whether it itself is generalizable?

Different techniques are appropriate for different tasks, but there is no common understanding

of which techniques to use for which tasks. A lot of scientific work in the field of data

augmentation is based on trying and discovering the smallest usefulness of different techniques

for different tasks. Data augmentation techniques are difficult to qualify, especially when they

37

can be combined in different ways. For certain tasks, geometric data transformations are known

to be suitable, for example. But even in this situation, there is no clear answer as to which

combination is best to solve the problem or to improve the performance of the model in a way

that other techniques or combinations of techniques cannot. Many of the augmentation

methods explain how to improve the image classifier, while others do not. GANs have a great

potential to generalize standard data augmentation methods and generalize the concept (at least

partially) and maybe even help automate it? A vast part of data augmentation still revolves

around human choice. The development of software tools is an important area of future work

for the practical integration of data augmentation into deep learning workflows. If data

augmentation libraries will automate preprocessing functions in the same way that the

Tensorflow system automates the back-end processes of gradient-descent learning, then the

human factor might play an insignificant role in choosing and applying data augmentation to

combat overfitting.

Another fascinating practical question is determining the size of a dataset post augmentation.

Clearly, inflating the dataset 2 times or even more is not always an optimal solution. There is

no agreement on which original-to-final dataset size ratio produces the best performing model.

If we take solely color augmentations and an initial dataset of with 2 classes, 50 samples each.

If each image is augmented with 100 color filters to yield 5000 samples of both classes, then

the resulting dataset will be heavily biased toward the spatial characteristics of the original 50

samples of each class. Due to the abundance of color-augmented data, a deep model will

outperform the original [22].

Furthermore, there is no unanimity of opinion on the best strategy for combining the two types:

data warping and oversampling. The inherent bias in the initial, limited dataset is an important

factor. There are currently no augmentation techniques that can correct a dataset with very low

diversity in comparison to the testing data. All of these augmentation algorithms perform best

when the training and testing data are drawn from the same distribution. If this is not the case,

these methods are unlikely to be useful.[22]

Yet again, there is a lot of ground to be explored when it comes to the potential of GANs and

also test-time augmentation. The latter has not been explored much yet and has a potential to

bring significant benefits to the field of computer vision and help the field of machine learning

improve drastically on a grand scale.

38

Bibliography

1. Libbrecht, M. W., & Noble, W. S. (2015). Machine learning applications in genetics and

genomics. Nature Reviews Genetics, 321–332

2. Alpaydın, E. (2014). Introduction to machine learning. Cambridge, MA: MIT Press.

3. Berry, M. W., Azlinah, M., Yap, B.W., 2020, Supervised and Unsupervised Learning for

Data Science, Springer Nature Switzerland AG, https://doi.org/10.1007/978-3-030-22475-

2, Retrieved on 20.04.2022

4. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.

5. Gupta, P., Sharma, A., & Jindal, R. (2016). Scalable machine‐learning algorithms for big

data analytics: a comprehensive review. Wiley Interdisciplinary Reviews: Data Mining and

Knowledge Discovery, 6(6), 194-214.

6. Traeger, M., Eberhart, A., Geldner, G., Morin, A. M., Putzke, C., Wulf, H., & Eberhart, L.

H. J. (2003). Künstliche neuronale Netze. Der Anaesthesist, 52(11), 1055-1061

7. Zell, A. (1994). Simulation neuronaler netze (Vol. 1, No. 5.3). Bonn: Addison-Wesley.

8. Xu, J., & Bao, Z. (2002). Neural networks and graph theory. Science in China Series F:

Information Sciences, 45(1), 1-24.

9. Cilimkovic, M. (2015). Neural networks and back propagation algorithm. Institute of

Technology Blanchardstown, Blanchardstown Road North Dublin, 15(1).

10. Medsker, L. R., & Jain, L. C. (2001). Recurrent neural networks. Design and Applications,

5, 64-67.

11. Zhang, L. (2017, July). Implementation of fixed-point neuron models with threshold, ramp

and sigmoid activation functions. In IOP Conference Series: Materials Science and

Engineering (Vol. 224, No. 1, p. 012054). IOP Publishing.

12. Ghahramani, Z. (2004). Unsupervised Learning. In: Bousquet, O., von Luxburg, U.,

Rätsch, G. (eds) Advanced Lectures on Machine Learning. ML 2003. Lecture Notes in

Computer Science(), vol 3176. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-

3-540-28650-9_5

13. Wang, H., Lei, Z., Zhang, X., Zhou, B., & Peng, J. (2016). Machine learning basics. Deep

learning, 98-164.

14. Kearns, M. J. (1990). The computational complexity of machine learning. MIT press.

15. Weisstein, E. W. (2003). Convolution. https://mathworld. wolfram. com/. Retrieved on

03.05.2022

39

16. Guo, T., Dong, J., Li, H., & Gao, Y. (2017, March). Simple convolutional neural network

on image classification. In 2017 IEEE 2nd International Conference on Big Data Analysis

(ICBDA) (pp. 721-724). IEEE.

17. D. M. Hawkins, The Problem of Overfitting, 2004, Journal of Chemical Information and

Computer Sciences, 44 (1), 1-12 DOI: 10.1021/ci0342472

18. Koehrsen, W. (2018). Overfitting vs. underfitting: A complete example. Towards Data

Science.

19. Zur, R. M., Jiang, Y., Pesce, L. L., & Drukker, K. (2009). Noise injection for training

artificial neural networks: A comparison with weight decay and early stopping. Medical

physics, 36(10), 4810-4818.

20. L. Taylor and G. Nitschke, "Improving Deep Learning with Generic Data Augmentation,"

2018 IEEE Symposium Series on Computational Intelligence (SSCI), 2018, pp. 1542-1547,

doi: 10.1109/SSCI.2018.8628742.

21. Wong, S. C., Gatt, A., Stamatescu, V., & McDonnell, M. D. (2016, November).

Understanding data augmentation for classification: when to warp?. In 2016 international

conference on digital image computing: techniques and applications (DICTA) (pp. 1-6).

IEEE.

22. Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep

learning. Journal of big data, 6(1), 1-48.

23. Quanzeng Y, Jiebo L, Hailin J, Jianchao Y. Robust image sentiment analysis using

progressively trained and domain transferred deep networks. In: AAAI. 2015, p. 381–8

24. Kang, G., Dong, X., Zheng, L., & Yang, Y. (2017). Patchshuffle regularization. arXiv

preprint arXiv:1707.07103.

25. Summers, C., & Dinneen, M. J. (2019, January). Improved mixed-example data

augmentation. In 2019 IEEE Winter Conference on Applications of Computer Vision

(WACV) (pp. 1262-1270). IEEE

26. Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2017). mixup: Beyond empirical

risk minimization. arXiv preprint arXiv:1710.09412.

27. Tokozume, Y., Ushiku, Y., & Harada, T. (2018). Between-class learning for image

classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (pp. 5486-5494).

28. Zhong, Z., Zheng, L., Kang, G., Li, S., & Yang, Y. (2020, April). Random erasing data

augmentation. In Proceedings of the AAAI conference on artificial intelligence (Vol. 34,

No. 07, pp. 13001-13008).

40

29. Inoue, H. (2018). Data augmentation by pairing samples for images classification. arXiv

preprint arXiv:1801.02929.

30. Konno, T., & Iwazume, M. (2018). Icing on the cake: An easy and quick post-learnig

method you can try after deep learning. arXiv preprint arXiv:1807.06540.

31. Antoniou, A., Storkey, A., & Edwards, H. (2017). Data augmentation generative

adversarial networks. arXiv preprint arXiv:1711.04340.

32. Jain, A. K., Mao, J., & Mohiuddin, K. M. (1996). Artificial neural networks: A tutorial.

Computer, 29(3), 31-44.

33. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... &

Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing

systems.

34. Seyed-Mohsen MD, Alhussein F, Pascal F. DeepFool: a simple and accurate method to

fool deep neural networks. arXiv preprint. 2016.

35. Su, J., Vargas, D. V., & Sakurai, K. (2019). One pixel attack for fooling deep neural

networks. IEEE Transactions on Evolutionary Computation, 23(5), 828-841.

36. Zajac, M., Zołna, K., Rostamzadeh, N., & Pinheiro, P. O. (2019, July). Adversarial framing

for image and video classification. In Proceedings of the AAAI Conference on Artificial

Intelligence (Vol. 33, No. 01, pp. 10077-10078).

37. Xie, L., Wang, J., Wei, Z., Wang, M., & Tian, Q. (2016). Disturblabel: Regularizing cnn

on the loss layer. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (pp. 4753-4762).

38. Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with

deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.

39. Fang, W., Zhang, F., Sheng, V. S., & Ding, Y. (2018). A method for improving CNN-

based image recognition using DCGAN. Computers, Materials and Continua, 57(1), 167-

178.

40. Shanmugam, D., Blalock, D., Balakrishnan, G., & Guttag, J. (2020). When and why test-

time augmentation works. arXiv e-prints, arXiv-2011.

41. Wang, G., Li, W., Ourselin, S., & Vercauteren, T. (2018, September). Automatic brain

tumor segmentation using convolutional neural networks with test-time augmentation. In

International MICCAI Brainlesion Workshop (pp. 61-72). Springer, Cham.

42. Wang, G., Li, W., Aertsen, M., Deprest, J., Ourselin, S., & Vercauteren, T. (2018). Test-

time augmentation with uncertainty estimation for deep learning-based medical image

segmentation.

41

43. Perez, F., Vasconcelos, C., Avila, S., & Valle, E. (2018). Data augmentation for skin lesion

analysis. In OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic

Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis (pp. 303-311).

Springer, Cham.

44. Minh, T. N., Sinn, M., Lam, H. T., & Wistuba, M. (2018). Automated image data

preprocessing with deep reinforcement learning. arXiv preprint arXiv:1806.05886.

45. C. Khosla and B. S. Saini, "Enhancing Performance of Deep Learning Models with

different Data Augmentation Techniques: A Survey," 2020 International Conference on

Intelligent Engineering and Management (ICIEM), 2020, pp. 79-85, doi:

10.1109/ICIEM48762.2020.9160048.

46. Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., & Arshad, H.

(2018). State-of-the-art in artificial neural network applications: A survey. Heliyon, 4(11),

e00938.

47. Sazli, M. H. (2006). A brief review of feed-forward neural networks. Communications

Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering,

50(01).

48. Takahashi, R., Matsubara, T., & Uehara, K. (2019). Data augmentation using random

image cropping and patching for deep CNNs. IEEE Transactions on Circuits and Systems

for Video Technology, 30(9), 2917-2931.

49. Santurkar, S., Tsipras, D., Ilyas, A., & Madry, A. (2018). How does batch normalization help

optimization?. Advances in neural information processing systems, 31.

50. Setiawan, A. W., Mengko, T. R., Santoso, O. S., & Suksmono, A. B. (2013, June). Color retinal image

enhancement using CLAHE. In International Conference on ICT for Smart Society (pp. 1-3). IEEE.

51. Choong, A. C. H., & Lee, N. K. (2017, November). Evaluation of convolutionary neural networks

modeling of DNA sequences using ordinal versus one-hot encoding method. In 2017 International

Conference on Computer and Drone Applications (IConDA) (pp. 60-65). IEEE.

52. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a

simple way to prevent neural networks from overfitting. The journal of machine learning research,

15(1), 1929-1958.

42

Erklärung zur selbstständigen Bearbeitung einer Abschlussarbeit

Gemäß der Allgemeinen Prüfungs- und Studienordnung ist zusammen mit der Abschlussarbeit eine schriftliche
Erklärung abzugeben, in der der Studierende bestätigt, dass die Abschlussarbeit „– bei einer Gruppenarbeit die
entsprechend gekennzeichneten Teile der Arbeit [(§ 18 Abs. 1 APSO-TI-BM bzw. § 21 Abs. 1 APSO-INGI)] –
ohne fremde Hilfe selbständig verfasst und nur die angegebenen Quellen und Hilfsmittel benutzt wurden. Wört-
lich oder dem Sinn nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich zu
machen.“

Quelle: § 16 Abs. 5 APSO-TI-BM bzw. § 15 Abs. 6 APSO-INGI

Dieses Blatt, mit der folgenden Erklärung, ist nach Fertigstellung der Abschlussarbeit durch den Studierenden
auszufüllen und jeweils mit Originalunterschrift als letztes Blatt in das Prüfungsexemplar der Abschlussarbeit
einzubinden.
Eine unrichtig abgegebene Erklärung kann -auch nachträglich- zur Ungültigkeit des Studienabschlusses führen.

Erklärung zur selbstständigen Bearbeitung der Arbeit

Hiermit versichere ich,

Name:

Vorname:

dass ich die vorliegende − bzw. bei einer Gruppenarbeit die entsprechend

gekennzeichneten Teile der Arbeit − mit dem Thema:

ohne fremde Hilfe selbständig verfasst und nur die angegebenen Quellen und Hilfsmittel
benutzt habe. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen sind unter
Angabe der Quellen kenntlich gemacht.

 - die folgende Aussage ist bei Gruppenarbeiten auszufüllen und entfällt bei Einzelarbeiten -

Die Kennzeichnung der von mir erstellten und verantworteten Teile der ist
erfolgt durch:

 _________________ ________________ ___ __
 Ort Datum Unterschrift im Original

Nikita

Bachelorarbeit

Comparison of Data Augmentation Techniques for efficient Training of Image-Text Classification Algorithms

-bitte auswählen-

Hamburg
08.06.2022

Ostrovskiy

