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Abstract

As the number of online and second-hand dealers increases, a reliable way to evaluate
the quality of these bicycles and their prices has gained importance. In this work, we
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concentrate on the evaluation of bicycles based on pictures of their current condition using
CNNs and semantic segmentation. The experimental results show that using semantic
segmentation, separating bicycles into different parts and categories before the evaluation
is helpful. The assessment using this approach is workable.
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1 Introduction

1.1 Motivation

In recent times, the number of people who use bicycles or are interested in obtaining
one has risen because of climate change concerns and traffic jams in the city center of
bigger cities. Additionally, the number of online shops and online second-hand dealers
has increased as well. Especially with online second-hand dealers, it is difficult to make
a grounded decision on whether the price for the bicycle is reasonable. To help people
and dealers make a grounded decision on the price or price range for the bicycle, it would
be helpful if there is an automatic way to get this information based on the image of the
bicycle in question.

Since there have been many advances in image and object recognition and object classi-
fication with deep learning, it would be interesting to know if we could create a model
with deep learning to solve this problem. Deep learning is used with great success in
similar situations, such as damage assessment of buildings in areas of natural disasters,
as well as a helper in evaluating damage to cars for insurance. Hence, it would interest
if we could use deep learning to assess the quality of a bicycle.

1.2 Goal

This work has two goals. The first one is creating a deep learning model that can evaluate
the quality of a bicycle. The second goal is to check how good semantic segmentation
works on images with bicycles and whether using semantic segmentation is helpful for
the quality assessment of the bicycle. For example, it would be interesting to detect
the bicycle in an image and highlight it from the background and whether this has
any advantage on the quality assessment. Additionally, we want to try using semantic

1



1 Introduction

segmentation to detect certain bicycle parts and focus the quality assessment only on
these parts.

1.3 Structure

The rest of the bachelor thesis is structured as follows.

In chapter 2 we present a review of related works, primarily based on the quality assess-
ment and deep learning methods we want to use.

Chapter 3 explains the proposed method of our model, which tries to assess the quality
of the bicycles.

Chapter 4 contains information on the dataset, explains the preparation of the dataset
for the experiments, describes the experiments, and evaluates and discusses the results
of the experiments.

Chapter 5 concludes the thesis and contains the conclusions. In addition, it gives an
outlook on things that we could improve.
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2 Previous Work

The quality assessment of objects using deep learning is a topic that garnered much
attention in recent years, mainly due to the advancement in object classification and
object recognition, and semantic segmentation. In the section 2.1, we will look into
different fields where quality assessment is already used. We will mainly review the
ways that have been used to solve the quality assessment. In the section 2.2, we check
some of the datasets for object classification and look into the CNN method to solve
object classification. In the section 2.3, we cover semantic segmentation datasets and
algorithms that segment these datasets semantically, especially Faster R-CNN with RPN
and FPN.

2.1 Quality Assessment in other Fields

In recent years, many fields have already experimented with an automatic assessment
of images using neuronal networks to simplify the evaluation of pictures. Examples of
areas in which this has already been tried are building damage assessment [17] and car
damage analysis of insurance [1]. In both these examples, the insurance inspector has
to go through several images to assess the damage to the object in question. Because of
this, it is beneficial to get automatic suggestions beforehand.

Nia [see 17, p. 20-23] proposed three different feature streams to better assess the damage
to buildings by natural disasters by only using postevent images (see Fig. 2.1). Nia uses
three streams to get more and different information extracted from the pictures. The first
stream is a color image feature stream to analyze the raw input data. The second stream
is a color mask feature stream, used to remove the effect that the background or other
factors like camera angle and camera position have by using semantic segmentation to
detect the house and extract it from the image. The third stream is a binary mask feature
stream that uses only a binary channel instead of the three RGB channels used by the
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2 Previous Work

colored streams. The usage of this stream is to learn the shape of the building. Finally,
Nia’s model combines the results of all three streams during the regression process to
evaluate how severe the damage is.

Figure 2.1: Overview over the model by Nia [17]. (1): Color image feature stream. (2):
Color mask feature stream. (3): Binary mask feature stream.
Source: Nia [17, p. 19] (Copyright © 2017, SIMON FRASER UNIVER-
SITY).
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Artan and Kaya [see 1, p. 316-317] realized during their research that they could divide
the car into different areas that are more likely to have different kinds of damage. Because
of this, the approach was to at first use object recognition to detect certain parts of the
car and then analyze and categorize the damage that this part has taken. The advantage,
therefore, is that it is easier to compare the damage costs of a smaller section of the car
than the whole. Thus, we get more specific results. They also examined whether Faster
R-CNN or Single Shot Multi-box Detector (SSD) shows better results and concluded
that Faster R-CNN is better than SSD for this kind of task [see 1, p. 318].

Figure 2.2: Damage analysis model framework by Artan and Kaya [1].
Source: Artan and Kaya [1, p. 317] (Copyright © 2020, Springer Interna-
tional Publishing).

2.2 Object Recognition and Classification

Many algorithms focus on object recognition and classification, but in recent years the
advancements due to neuronal networks have led to a stronger focus on them, mainly
CNN. In this work, we will focus on CNN and consider the bike as an object and get the
quality of the bike by classifying it. This section will focus on already existing datasets
for object classification and explain how CNN works.
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2.2.1 Object Classification Datasets

Object classification distinguishes between Small and Large-Scale Image Datasets. Our
solution can work with both small and large datasets. However, due to restrictions in
graphics card memory and concerning simplicity, we will only work with a small dataset.
In the following section, we will introduce some Small and Large-Scale Image sets that
are already well labeled.

Small Image Datasets

We use Small Image Datasets most commonly for training and evaluation benchmarks
because we get faster results than when we run an algorithm on a Large-Scale Image
Dataset. After all, the Small Image Dataset has fewer images and can run more training
epochs than with a larger dataset. The Caltech101 Dataset [14] contains 101 object
categories with 40 - 800 images per category. It chooses the categories randomly and
downloads the pictures using the Google Search Engine. Similar to Caltech101 is the
Caltech256 Dataset [8], which contains 256 classes instead of 101. Each class has between
80 - 800 images. Therefore, the number of images per category has at least doubled. The
MSRC [21] contains 591 images of 21 object classes and is already randomly split into
45% training, 10% validation, and 45% test sets.

Large-Scale Image Datasets

With the advances in computer vision research and computer hardware over the past
decade, we need larger datasets to improve the development and testing of complex ob-
ject classification algorithms. These advances focus in particular on GPU Performance
and GPU Memory.
MNIST [13] is one of the older and better-known large-scale image datasets and contains
single-digit handwritten numbers. These numbers are divided into a 60,000 image train-
ing set and a 10,000 image test set. It is one of the most commonly used datasets since it
is easy to use for learning and testing, and there exist many published results which used
different algorithms for learning. Thus, many algorithms have been tested on MNIST,
and the results are accessible to check and compare.
ImageNet [4] is organized according to the WordNet [18] hierarchy. That means that the
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object categories are based on synonym sets of synsets. The goal of ImageNet is to pro-
vide 500-1,000 images on average per synset. These images are gathered through several
search engines, using the WordNet synonyms and their translation in different languages
as a query. The resulting images per category are then verified by several humans using
the services of Amazon Mechanical Turk (AMT).

2.2.2 Object Recognition Methods

Object recognition enables Artificial Intelligence (AI)-Systems to detect and identify
objects in images or video. It is part of the fields of robotics, machine learning, and
computer vision. While object recognition is relatively easy for humans, it is a challenge
for a computer system. That is because humans will look at the whole image and make
their decision based on the detected structures, while computer vision systems can only
base their decision on a certain number of pixels. Because of this, the viewpoint, the
illumination, the scale, and the occlusion have a high impact on object recognition. In
this section, we will review some of the deep learning methods that are used in object
recognition and classification.

Variations of CNNs are currently the most used deep learning method in computer vision
applications. These applications include classification and regression. The construction
of CNNs follows a specific pattern: convolutional layers are followed by pooling layers
and the whole application ends with fully connected layers. LeNet-5 [13] is one of the
simplest examples of a network that follows this pattern, while ResNet [9] is one of the
most complex structures up-to-date.

7
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Input
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FC 84

softmax

Figure 2.3: LeNet-5 Architecture

LeNet-5 (see Fig. 2.3) was developed by Lecun et al. [13] for better results learning the
MNIST-dataset. It was the first try on convolutional networks and had an accuracy of
92%.
AlexNet [12], which was the winner of the ImageNet Large Scale Visual Recognition
Competition (ILSVRC) [20] in 2012, popularized ConvNets in computer vision. AlexNet
comprises five convolutional layers, some of which are followed by max-pooling layers.
The three fully connected layers use dropout and data augmentation to reduce overfitting
in the fully connected layers. The network finishes with a Softmax layer. AlexNet com-
prises around 60 million parameters. That makes it one of the most complex ConvNets
to that date. In the following years of the challenge, the structure of AlexNet was further
improved and used as inspiration by other researchers.
VGG [22], a participant in the ILSVRC 2014, used even more convolutional and fully
connected layers and showed that the depth and complexity of the networks have a sig-
nificant impact on the performance. It contains 13 convolutional layers and three fully
connected layers. The convolutional layers use small-size convolutional filters (3×3) and
2× 2 pooling. VGG roughly has 140 million parameters. The Construction of a deeper
network structure leads to a more complex and accurate model. However, it is prone to
overfitting and vanishing/exploding gradients due to the higher number of parameters.
This model also requires more powerful hardware devices to train and evaluate.

8
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Figure 2.4: Inception module with dimension reduction by Szegedy et al. [23].
Source: Szegedy et al. [23, p. 5] (arXiv preprint arXiv:1409.4842, 2014).

Due to the exploding amount of parameters for deeper networks, GoogLeNet [23], the
ILSVRC 2014 winner, developed a module called Inception (see Fig. 2.4). That reduced
the number of parameters drastically to 7 million while simultaneously increasing the
number of layers to 22. The beginning makes two traditional convolutional layers, while
nine Inception modules follow in the deeper part of the network. Average pooling is used
before the fully connected layer and Softmax layers. Each Inception module comprises
two layers. The idea behind the Inception module is that even low-dimensional filters
contain much information about an image. That allows the network to increase in width
and depth of the Inception modules while simultaneously controlling the computational
complexity of the network.

9
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Figure 2.5: Residual learning. left: plain net, right: residual net [9].
Source: Nia [17, p. 11] (Copyright © 2017, SIMON FRASER UNIVER-
SITY).

Residual networks (ResNet) [9], the winner of the ILSVRC 2015, are the best performing
networks in multiple computer vision tasks. These tasks include image classification
and semantic segmentation. The ResNet, used for ILSVRC 2015, contained 152 layers,
which is 8x more extensive than VGG [22], but it still had a lower time complexity than
VGG. Simply stacking more layers on each other and constructing a deeper network
leads to higher training and testing errors since the accuracy gets saturated and degrades
rapidly.To solve the degradation problem, He et al. [9] suggested not to rely on the desired
mapping H(x) but create their mapping F (x) = H(x)−x called residual mapping, shown
in Fig. 2.5. After adding two new layers to the ResNet, the residual mapping comes into
play, and the resulting and desired mapping will be H(x) = F (x)+x, with F (x) resulting
from the two layers and x being the original input for these two layers. This so-called
shortcut connection does not add to the time complexity nor the parameters of the
network.
Additionally, ResNet utilizes batch normalization [10]. Batch normalization improves
the regularization, accelerates the training process, and makes the model less sensitive
during the initialization process of the network.

10
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2.3 Semantic Segmentation

The difference between object recognition and semantic segmentation is that object recog-
nition recognizes the objects present in an image, while semantic segmentation classifies
each pixel of the picture. Semantic segmentation classifies and segments a form at the
pixel level, which makes it a challenging task. This work uses semantic segmentation to
split the input image into pixels containing the bike and the background. It also uses se-
mantic segmentation to extract specific parts of the bicycle for better classification. The
following section focuses on semantic segmentation datasets and algorithms and models
which solve them.

2.3.1 Semantic Segmentation Datasets

Many datasets have been collected and annotated for semantic segmentation. These
datasets cover various types of object categories and provide a different level of detail
quality. While we create our dataset for this work, we still use the annotation style of
the Microsoft COCO dataset [15].

PASCAL VOC dataset [4] contains 500,000 images and 20 object classes used for clas-
sification, detection, and segmentation. Images for VOC2007 were obtained through
the photo-sharing website Flickr1. For each object class, a set of keywords were used
for the query on Flickr. Due to the usage of photos taken for personal interest instead
of for computer vision research, Everingham et al. [5] call the dataset “unbiased”. The
annotation contains the class of the object, a bounding box that surrounds it, its view-
point (front, rear, left, right, or unspecified), and its truncation. The truncation specifies
whether the object is occluded or whether it extends outside the image. Some images
also include pixel-wise information about segmentation, but until VOC2012, only 9,993
images include segmentation.

1https://www.flickr.com/
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Figure 2.6: Comparison of number of annotated images per category for COCO [15] and
PASCAL [5].
Source: Lin et al. [15, p. 7] (arXiv preprint arXiv:1405.0312, 2015).

Microsoft COCO dataset [15] contains 328,000 images of 91 objects. After including
all categories of PASCAL VOC [5], children (between 4 - 8) were asked to name things
they usually see. From the resulting 271 classes, 91 were chosen based on the usefulness
and occurrence. The images were collected using Flickr and other image search engines,
and for the annotations, AMTwas used. COCO has more instances and categories than
PASCAL VOC (see Fig. 2.6) and fewer categories but more instances per category than
ImageNet [12].

2.3.2 Semantic Segmentation Methods

Analogous to object classification algorithms, many algorithms solve semantic segmen-
tation. Due to the strength of CNN, ConvNets are used to solve semantic segmentation
tasks, especially VGG [22] and ResNet [9]. Additionally, there are also methods to ac-
celerate the semantic segmentation to get real-time predictions. We will first introduce
these methods and then follow up on the algorithms that use these methods.

Region Proposal Algorithms for Semantic Segmentation

The idea of region proposal algorithm for semantic segmentation is to get real-time results
for semantic segmentation, so the detection must get faster. Region proposal algorithms
are added as ‘attention’ [2] to the existing model.

12
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Figure 2.7: RPN
Source: Ren et al. [19, p. 4] (arXiv preprint arXiv:1506.01497, 2015).

RPN [19] was one of the first algorithms proposed. The RPN uses the last shared
convolutional layer as its input and slides an n×n (in most cases 3×3) sliding window over
each feature map. The resulting feature is forwarded to two sibling fully connected layers,
one for box regression (reg) and one for box classification (cls). The fully connected level
is used by all sliding windows.. Each sliding window location predicts multiple region
proposals simultaneously, with the center of the window as an anchor. The maximum of
possible proposals for each area is denoted as k. In the case of 3× 3, this means we get
nine anchors (k = 9). The reg layer returns two coordinates, the width and the height
of the anchor box that means 4k values per sliding window, while the cls layer returns
the probability for the class or the background, so 2k values. (see Fig. 2.7)
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Figure 2.8: Different architectures for Detection. (b) is used by RPN, (d) by FPN.
Source: [24] (Copyright © 2019, Towards Data Science).

FPN [16] uses RPN as its basis, but instead of only using a single feature map (see (b)
in Fig. 2.8), it uses a feature pyramid network (see (d) in Fig. 2.8). The bottom-up
pathway of the FPN is a straightforward computation of a CNN, for example, ResNet
[9]. If more than one convolutional layer with an identical resolution exists, only the
last layer will be used as a pyramid level. For the top-down pathway, higher resolution
features will be upsampled to have an equal resolution as the next level of the pyramid.
That ensures that levels with a higher resolution are spatially coarser but semantically
stronger. The results of each level will then be merged with the result from the level
above. That is why both levels need the identical resolution.
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Deep-Learning Methods for Semantic Segmentation

Figure 2.9: Faster R-CNN is a single, unified network for object detection. The RPN
module serves as the ‘attention’ of this unified network.
Source: Ren et al. [19, p. 3] (arXiv preprint arXiv:1506.01497, 2015).

R-CNN [7] was one of the first networks that extracted the bounding boxes and the
features for the semantic segmentation in the same instance. Fast R-CNN [6] and Faster
R-CNN [19] each improve R-CNNto get real-time results for semantic segmentation.
Faster R-CNN is currently the best version of R-CNN adds a RPN as an ‘attention’ and
Region of Interest (RoI) pooling layer to the network. The RoI pooling layer is used
to transform all nonuniform inputs from the feature maps and the RPN to a fixed-size
feature map.
An alternative to Faster R-CNN is Feature Pyramid Networks for Object Detection [16],
using ResNet as the CNN and FPN as a RPN.
Dilated-C5 or Deformable ConvNet [3] is another algorithm for semantic segmentation.
It uses deformable convolution and deformable RoI pooling. Deformable is based on the
idea of augmenting the spatial sampling location with an additional offset. These offsets
are self-learned without supervision. For an example of how deformable convolution
works, see Fig. 2.10.
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Figure 2.10: Standard Convolution (Left), Deformable Convolution (Right).
Source: Dai et al. [3, p. 4] (arXiv preprint arXiv:1703.06211, 2017).
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Our goal in this work is to assess the quality of bicycles automatically. Several attempts
have been made to classify the quality of an object using images as an input. For ex-
ample, damage assessment on buildings with three different feature streams [17] or car
damage analysis using object detection to identify parts of the car [1]. In this work, we
will combine both the idea of multiple feature streams and object detection. Addition-
ally, we will split the quality assessment into two parts. The first is to classify the bicycle
into different categories since some categories have a higher value than others, despite
being of lower quality. The second step then assesses the quality of the bicycles, but only
using the bicycles of the same category as the reference.
Due to the recent advances in deep learning, we use multiple CNN and semantic segmen-
tation networks to assess the quality of the bicycle. Our model comprises two steps, the
first to categorize the bicycle, and the second to assess quality. Both levels of our model
will use three feature streams for better results, and the three feature streams follow the
same principle for both levels. Each feature stream represents a different attribute of the
image data, which is significant for the quality assessment. These three pipelines all use
one to two CNNs to classify the categories of the respective step from the input data.
The Color image stream employs a LeNet5 [13] like structure CNN to extract features
from the raw input data. Color mask stream uses a semantic segmentation deep structure
(R50-FPN [16]) to select objects of interest from the raw input image and then a LeNet5
[13] like structure CNN to obtain the classification from the segmented image. Since
bicycles, unlike buildings, lack a simple to recognize structure, due to different angles
of the picture, the third stream will not be a binary mask stream as proposed by Nia
[17], but a color masked partial image stream. The color masked partial image utilizes a
semantic segmentation deep structure (R50-FPN [16]) to divide the bicycle in the input
data into different, for identification significant, bicycle parts. Due to the subdivision into
partial images with meaningful information about the bicycle, it is easier to categorize
them. For example, a Mountain-bike is easy to identify due to its more robust frame and
wider tires, while a racing bicycle has a lighter frame and narrower tires. After having
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extracted and analyzed the features of the three streams, we combine the results from
the three streams to get one continuous value for each of the categories the current steps
possess. An overview of the proposed model is illustrated in Fig. 3.2 and Fig. 3.3.
In the following sections of this chapter, we describe the behavior of each stream, its in-
puts, and its corresponding outputs. Section 3.1 focuses on the categorization of bicycles,
section 3.2 on the assessment of the quality.

Input

3x3 conv, 64

3x3 conv, 128

2x2 max pool

3x3 conv, 256

2x2 max pool

FC 256

FC 128

softmax

categorical crossentropy

224 × 224 × 3

222 × 222 × 64

222 × 222 × 128

110 × 110 × 128

108 × 108 × 256

54 × 54 × 256

1 × 1 × 256

1 × 1 × 128

1 × 1 × 5

1 × 1 × 1

Figure 3.1: LeNet-5 [13] network structure with some modifications. The network con-
tains 3 convolutional layers followed by 2 fully connected layers. A softmax
and a categorical crossentropy loss layer are appended as classifier.

classifier

Category 1

...

Category n

Quality

...

Quality

2

1

Detects the category
the bicycle belongs to.

Classifies the qual-
ity of the bicycles
in this category.

Classifies the qual-
ity of the bicycles
in this category.

Figure 3.2: Overview of out proposed model. (1): Classifier (section 3.1). Assigns cate-
gories to the bicycles. (2): Assessment (section 3.2). Assesses the quality.
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Segmentation
Network

CNN

class-score vector

Segmentation
Network

CNN

multiple class-
score vector

Combiner

CNN

class-score vector

Combiner

Output

2

single image

3

multiple images

single score-
vector

1

Figure 3.3: Overview of our proposed model for the two steps. (1): Color image stream
(section 3.1.1). A LeNet5 like structure directly analyzing raw input image
data. (2): Color masked stream (section 3.1.2). A LeNet5 like structure
analyzing color masks of the image data. (3): Color masked partial image
stream (section 3.1.3 and 3.2.1). A LeNet5 like structure employed on signif-
icant parts of the bicycle separately. The Combiner utilizes the class-scores
and come to a combined result.
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3.1 Classification

Since the price of a bicycle drastically differs depending on the category, e.g., E-Bikes are
way more expensive than other types of bicycles, the first step of our model is to identify
the type of bicycle that is assessed. The following section explains the three streams we
use and the combination process of the results at the end of the step.

3.1.1 Color Image

The Color image stream, which is the first pipeline of the classification step of our
proposed model. It is designed to analyze the raw input data and requires no semantic
segmentation as a preprocessing step. The raw pixel values of the image are represented
as X(Width × Height × Channels) and given to several convolutional layers. The
convolutional layer computes a feature map using equation 3.1. The parameters of the
equation are the pixels of a small region of the input (X), the weights of the pixels (W ),
and a bias offset (b). An element-wise activation function (ReLU ), shown in equation
3.2, will be applied to the output of the neurons. After some of the convolutional layers,
a downsampling operation (pooling) will be additional connected.

zj = f(
∑
i

wixi + b) (3.1)

f(x) = max(0, x) (3.2)

The output of the additional computations after the last convolutional layer will then be
transformed to a 1-dimensional array and used as the input of the fully connected layers.
The fully connected computes the class probability distribution using equation 3.3. The
parameters are a small part of the input values (X) and their respective weights (W ).
The fully connected layers also use ReLU as its element-wise activation function but no
downsampling operation.

zj = f(
∑
i

wixi) (3.3)

The last layer of the network is a classifier. That is also a fully connected layer, but it uses
the Softmax operation, shown in equation 3.4, as an element-wise activation function.
The loss function used is categorical cross-entropy, as shown in equation 3.5, where y′i is
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the i-th scalar value in the model output and yi the corresponding target value.

σ(xj) =
exj∑K
k=0 e

xk

(3.4)

Loss = −
output

size∑
i=1

yi ∗ log(y′i) (3.5)

The complete network structure and the dimensions of each layer are illustrated in Fig.
3.1.

3.1.2 Color Masked Image

The second pipeline of the classification step of our proposed model is the color masked
image stream. Since most people would not take a picture of their bicycle in front of
a green screen to sell it, several visual factors could affect the performance of a vision-
based system. This factor could be the sky, trees, and other objects in the background.
Because these factors either slow down the learning process or even have counteractive
effects on the accuracy. For example, if one category is always photographed with a clear
sky and the others are not, then the most significant feature to recognize this category
would be the sky. However, if we then test the model and input an image of this category
without a clear sky, it would be classified wrongly. To address this issue, we consider
utilizing semantic segmentation algorithms to help focus on the relevant regions of the
input data. We propose to resize the image using the bounding box to cut away the parts
of the picture that hold no significant areas. Additionally, we suggest to grey-scale the
background of the bounding boxes and only leave the masked segment of the bounding
box in its original color.
The color masked image stream uses a deep structure (R50-FPN [16]) to preprocess the
input image and segment the image into the objects of interest as a mask and the rest as
background. Given an input image, R50-FPN collects all predefined instances of bicycles
and outputs those as foreground. A couple of output instances are shown in Fig. 3.4.
Similar to section 3.1.1, several convolutional layers with ReLU as the activation function
followed by a pooling layer and several fully connected layers with ReLU as the activation
function traverse the masked images. The model extracts the categories using a fully
connected layer with Softmax as the activation function. Categorical cross-entropy is
used as the loss function. The resulting category scores will be combined (section 3.1.4)
with the results from the color image stream.
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Figure 3.4: The first row: raw images which are used by the color image stream pipeline.
Second row: corresponding color masked images as the output to the color
mask pipeline. Instances of greenery and the sky are grey-scaled. Hence, the
model is able to better focus on relevant parts.

3.1.3 Color Masked Partial Image

The third pipeline, the color masked partial image stream, follows the idea and model of
the color masked image stream (section 3.1.2). A R50-FPN [16] is used to segment the
input image in the preprocessing step, while a LeNet5 [13] like structured network for
classification. The main difference between the color masked and color masked partial
image stream is that the color masked partial image stream has more than one image
as the output. It instead creates images according to regions of the bicycle that are
significant for the classification (e.g., frame or tires). An example of the partial pictures
that this will create can be seen in Fig. 3.5.
Not all of these partial image types will be utilized as a classification model since not
all have a value in the categorization step (e.g., handlebar or saddle, because both are
too similar in many different categories). The remaining partial images will afterward
be classified by the CNN. The resulting category scores of all partial images will then be
combined to one single category score, used as the result for the input image. This result
will then be combined with the results from the two other streams. Both combination
functions are described in section 3.1.4.
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Figure 3.5: Partial images extracted from the input image.

3.1.4 Combination

The three aforementioned pipelines provide a continuous category score value for all pos-
sible categories, with the most likely category highlighted. The goal is to combine these
category score values and conclude which category is the most likely category for the
input image.
Since we propose that all three streams have the same impact on the result of the com-
bination, the first step is to combine the results from the colored masked partial image
stream to a single category score vector. To calculate this one category score vector, we
add the values of the same category of all partial images together and divide the result
through the number of partial pictures, as shown in equation 3.6. n is the number of
partial images for one input image, while xj,i stands for the j-th category of the i-th
partial image.

zj =

∑n
i=1 xj,i
n

(3.6)

After the results of the color masked partial image streams have been combined, we use
a similar equation, shown in equation 3.7, to aggregate the results of the three streams
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and determine the category for the input image.

zj =

∑3
i=1 xj,i
3

(3.7)

The category with the highest resulting score is then chosen as the category for the input
image.

3.2 Quality Assessment

The second step of our model assesses the quality of a bicycle after its category has been
determined using only bicycles of the same category.
The quality assessment uses the same three streams as the classification step, but the color
masked partial image stream is different for the quality assessment than the classification
step. Therefore, this section will only contain the differences between the two steps.

3.2.1 Color Masked Partial Image

The color masked partial image pipeline for the quality assessment step follows the same
structure as the classification step. The main difference is, while the classification step
does not take all possible partial images into account (e.g., handlebar and saddle), the
quality assessment step does. The reason for this is, for example, the handlebar does not
differ significantly between different categories. That is because they all follow a very
similar pattern. However, regarding the quality assessment, all recognized parts of the
bicycle hold significant value.
Due to this, the color masked partial image stream of the quality assessment step observes
all detected parts.
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This chapter focuses on the experiments we did to check whether our proposed approach
works or not. In section 4.1, we explain the dataset we use and how the images are
annotated. While in section 4.2, we focus on the experiments divided into two steps.

4.1 Dataset

We used an existing dataset by Khan [11] containing 1380 bicycle images (1080 training,
300 testing). The dataset we use only includes a part of the original dataset, with 523
pictures for training and 131 for testing. The collected images have different sizes. We
do not use downsampling for the segmentation network to bring all images to a fixed
size. However, for the classification with CNN, we downsample all instances to 224×224

pixels.

4.1.1 Data Collection

The Bicycle Image Dataset [11] is composed of 1080 training images and 300 testing
images and was published in 2020 to provide a dataset that can detect bicycles in any
situation. It is most suitable for parking spaces and bicycle competitions. Due to this, the
dataset contains many images which show races or more than one bicycle. These images
do not help us determine the quality of the bicycles shown in the pictures because they
are incomplete or partially hidden. It could also be unclear which bicycle is the main
focus of the picture. Additionally, some of the images show bicycles that are unique
kinds of bicycles (see Fig. 4.1). Finally, 523 training and 131 testing images remain in
our dataset.
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Figure 4.1: Left: example for special kind of bicycle (see handlebar), Middle: important
characteristic are hidden, Right: images with no focused bicycle.

4.1.2 Data Annotation

The data annotation is divided into the annotation used for object classification and
annotations used for semantic segmentation. The part for object classification describes
the classes used for classification, while the part for semantic segmentation includes
examples of the annotations.

CNN Annotation

As described in section 3, our goal is to classify the quality of a bicycle using two steps,
first category classification and then quality assessment. For the category classification,
we use five categories. These five categories are motor, bicycles with a secondary drive,
mountain bike, bicycles with wider tires, old, bicycles notable older or without the
latest technology (e.g., dynamo), race, bicycles used for races, and rest, bicycles not
fitting in the other categories.

motor mountain bike old race rest

training 58 97 115 69 184

test 19 16 28 20 48

Table 4.1: Annotation for the category classification (number indicates the number of
images per category).
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There are three categories for the quality assessment high, medium, and low. We only
choose three as the number of classes because the number of images for some categories
is not that high, and dividing them into more classes would be difficult and would make
testing more complicated.

motor mountain bike old race rest
train test train test train test train test train test

high 30 10 47 9 22 10 30 6 69 16

medium 10 3 40 2 69 15 24 5 77 21

low 18 6 10 5 24 3 15 9 38 11

overall 58 19 97 16 115 28 69 20 184 48

Table 4.2: Annotation for the quality classification (number indicates the number of im-
ages per category).

Segmentation Annotation

For each image of the dataset, two segmentation annotations exist, one to distinguish
between the bicycle and the background of the image (Color Masked Image, see 3.1.2),
and one to highlight different parts of the bicycle (Color Masked Partial Image, see 3.1.3).
We only focus on the handlebar, the tires, the saddle, and the frame of the bicycle.

We use the graphical image annotation tool lableme by Wada [25] for the annotation
of the images. The resulting annotations can be converted to a PASCAL VOC-format
dataset or a COCO-format dataset with the corresponding converter script, which is part
of lableme’s GitHub repository.

Figure 4.2: Left: Lableme annotation of bicycle
Right: Lableme annotation of bicycle parts
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4.2 Training Procedures and Results

In this section, we provide details of the training procedures and the results of the training
procedures. We trained different network structures (R50-FPN [16] and LeNet5 [13]) for
separate tasks and combine various approaches described in Chapter 3 to find the best
combination of the different inputs (color image, color mask, and color mask partial).

4.2.1 Data Preparation

Before evaluating if our approach works, we have to prepare the datasets to run our R50-
FPN and LeNet5 networks. For the R50-FPN, there are two COCO Annotations, one
for bicycle detection and one for bicycle part detection. Both use the original dataset as
their base. The LeNet5 network, on the other hand, uses three different input datasets.
The first is the original dataset, the same as for R50-FPN, and the other two are the
results of the output of the semantic segmentation.

CNN

To let our LeNet5 Network process the image and its corresponding label, we use Keras
ImageDataGenerator() and flow_from_directory() functions. ImageDataGenerator uti-
lizes a directory approach where the images are saved in the directory with the corre-
sponding label (see Figure 4.3). This method lets us automatically resize every image
to 224× 224 pixels and split the train directory into a training set and a validation set.
In the case of the Color Masked and Color Masked Partial Images, we create a new
directory following the same structure as the main directory for the category detection
and quality assessment. Both the training and test images for the Color Masked and
Color Masked Partial Images are modified using the resulting network of semantic seg-
mentation. Every pixel that lies outside of the detected boundary box is ignored. The
remaining background in the boundary box is grey-scaled. We modified the original vi-
sualizer used by the framework detectron2 [26] to ignore the added colored masks used
for better visualization and leave the detected object in its original color.
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/
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rest

Figure 4.3: Example for the category directory tree.

Segmentation Annotation

The framework detectron2 by Yuxin Wu et al. [26] supports the PASCAL VOC and
COCO annotations as the base for the training, validation, and testing set, but only the
COCO annotation is supported for semantic segmentation. As mentioned in section 4.1.2,
the annotation tool lableme contains a script that allows us to convert the annotations
made by lableme into COCO Annotations. The COCO Annotation contains information
on the boundary box surrounding the segment, the area describing the segment, its
category, and whether or not it is part of a crowd. Detectron2 can then use the COCO
Annotation files to generate the dataset and handle the needed modifications for the
R50-FPN.
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1 {

2 "info": info,

3 "images": [image],

4 "annotations": [annotation],

5 "licenses": [license],

6 }

7
8 image{

9 "id": int,

10 "width": int,

11 "height": int,

12 "file_name": str,

13 "license": int,

14 "flickr_url": str,

15 "coco_url": str,

16 "date_captured": datetime,

17 }

18
19 annotation{

20 "id": int,

21 "image_id": int,

22 "category_id": int,

23 "segmentation": RLE or [polygon],

24 "area": float, "bbox": [x,y,width,height],

25 "iscrowd": 0 or 1,

26 }

27
28 categories[{

29 "id": int,

30 "name": str,

31 "supercategory": str,

32 }]

Figure 4.4: Annotation style for COCO.
Info and License contains information for dataset, but not for the detec-
tion (see https://cocodataset.org/#format-data for more infor-
mation).
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4.2.2 Evaluation

We conducted several experiments to evaluate the performance of our proposed algorithm.
As illustrated in Fig. 3.2, the proposed method consists of two steps, the classification
step and the quality assessment step. Both steps consist of three pipelines, as illustrated
in Fig. 3.3, the color image stream, the colored masked stream, and the colored masked
partial image stream. For both steps, the color image stream utilizes a LeNet-5 network,
while the two streams that employ masks use a R50-FPN for semantic segmentation,
providing the masks additionally. Each of the three pipelines performs a distinct visual
analysis. For finding the best-performing combination of these three streams, various
combinations of the three pipelines are combined. First, we will focus on the standalone
evaluation of the two semantic segmentation networks, which are utilized by both the
category classification and the quality assessment step. Afterward, we will evaluate the
category classification step first and the quality assessment second.

Semantic Segmentation (R50-FPN)

Since the modifications of the original images using the R50-FPN [16] are deployed for
both steps of our proposed algorithm, we decided to evaluate the semantic segmentation
as a standalone part of the evaluation. They furthermore contain information on the
feasibility of the detection of the bicycle as a whole and the detection of specific parts
of the bicycle from different angles, making it wiser to evaluate them individually. Ad-
ditionally, this gives a better way for others to decide whether they want to use object
detection to detect specific parts of a larger object or expand on the approach.
To compare some of the results of our models, we compare them with the R50-FPN
example Mask R-CNN model by [26]1 and the winner of the Coco Challenge 20202. Ad-
ditionally, we also include some metrics which are not used by default but still contain
fascinating information.

Both the bicycle and bicycle part detection use a modified version of the original vi-
sualizer by detectron2. Detected objects of the same category possessing overlapping
boundary boxes are combined to one object to reduce the detection of a partial object,
e.g., the handlebar. Furthermore, should the detection generate a resulting image al-
ready containing part of the detected object in the other boundary box, e.g., tire, the

1https://github.com/facebookresearch/detectron2/blob/master/MODEL_ZOO.md
2https://cocodataset.org/#detection-leaderboard
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first bounding box is extended to include both bounding boxes. For the bicycle part de-
tection, we additionally removed the masks of a different object connected to the object
we want to evaluate. E.g., the frame is connected to all other detected objects. And the
frame’s mask thus will be ignored in the other objects.
Both networks also follow the suggestion for one GPU usage for training done by the de-
velopers of detectron2 to speed up the evaluation and handle VRAM restrictions. These
contain setting the images per batch to 2 and base_lr to 0.0025. The base_lr stands for
base learning rate and helps restrain overfitting. Additionally to these two settings, we
also set the warmup phase to 1000 iterations and train for 10000 iterations. After every
250 iterations, we conduct an extra evaluation to evaluate the AP, which is the standard
comparison metric used by PASCAL VOC and COCO.

network AP AP50 AP75 APS APM APL

COCO 2020 0.525 0.764 0.580 0.359 0.559 0.665

R50-FPN on COCO 0.352 0.563 0.375 0.172 0.377 0.503

bicycle detection 0.783 0.984 0.958 NaN NaN 0.783

bicycle parts detection 0.695 0.962 0.824 0.660 0.647 0.692

Table 4.3: Comparison with COCO2020 Winner and R50-FPN on COCO dataset.

AP AP50 AP75 APS APM APL

boundary box 0.888 0.984 0.984 NaN NaN 0.888

segmentation 0.783 0.984 0.958 NaN NaN 0.783

accuracy false-positive false-negative

faster R-CNN 1.0 - 0.0

masked R-CNN 0.971 0.048 0.017

Table 4.4: Evaluations for bicycle detection on boundary box and segmentation. 1. Table
contains the standard AP and 2. Table additional metrics.
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AP-Frame AP-Handlebar AP-Saddle AP-Tire

boundary box 0.821 0.733 0.755 0.972

segmentation 0.671 0.470 0.698 0.943

AP AP50 AP75 APS APM APL

boundary box 0.813 0.996 0.938 0.784 0.747 0.811

segmentation 0.695 0.962 0.824 0.660 0.647 0.692

accuracy false-positive false-negative

faster R-CNN 0.987 - 0.024

masked R-CNN 0.963 0.052 0.023

Table 4.5: Evaluations for bicycle parts detection on boundary box and segmentation. 1.
Table contains the AP for the different objects, 2. Table the standard AP and
3. Table accuracy metrics obtained during the training phase.

CNN category classification

This section focuses on the first of the two parts of our proposed model, and it uses
untrained LeNet-5 [13] deep networks to identify the class belonging to the bicycle. We
use three different models to get better overall results by combining the results of the
three models. Each of the three models is trained for 200 iterations with a batch size
of 32. 20% of the training set is used as a validation set. Additionally, the training set
is shuffled with a seed of 42 to get better training. Adam is used as the optimization
method, which focuses on increasing the accuracy. All networks use a Softmax layer as
the last layer and categorical cross-entropy as the loss function.

The first model is our baseline, named color image, and uses the unmodified version of
our dataset. It gives us a clue whether the categorization is feasible and works as a
reference for the other results. All images are completely colored.
The second model, named color masks, combines the bike detection semantic segmenta-
tion model and the LeNet-5 network to classify the images. The images for this model
only contain the calculated boundary boxes from the bike detection and are partially
grey-scaled to better focus on the bicycle itself.
The third model, named color masked parts, is the most complex model of the three.
It contains the R50-FPN tasked with bicycle parts detection and up to four LeNet-5
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networks. The number of LeNet-5 networks depends on how many of the parts help us
with a better detection. Each of the four LeNet-5 networks is responsible for one of the
four different parts of the bicycle we try to detect. Especially the classification of the
tires is interesting. Since in most cases, the tires are split into two different images by
the bicycle part detection. To give every part the same weight, we combine the predicted
results of the tires into one result. Subsequently, we combine the results of up to four
models used by the color masked parts model. Finally, the aggregated results of the four
LeNet-5 networks decide the category of the bicycle together. Whether all four networks
will be used or not for the final model depends on whether the addition of the networks
helps with a better classification.
After the best performing color masked parts model is determined, we try combining the
results of the three models to decide which of the combinations is the best. For the color
masked parts model, look at table 4.7 and for the complete classification at table 4.6.

model components accuracy wrong out of 131
color image color masks color masked parts

3 7 7 0.794 27

7 3 7 0.702 39

7 7 3 0.786 28

3 3 7 0.779 29

3 7 3 0.794 27

7 3 3 0.710 38

3 3 3 0.801 26

Table 4.6: Accuracy of different combinations between the three networks for the category
classification.

bike parts accuracy wrong out of 131
Frame Handlebar Saddle Tires

3 7 7 7 0.740 34

7 3 7 7 0.580 55

7 7 3 7 0.600 52

7 7 7 3 0.743 30

3 7 7 3 0.786 28

3 3 7 3 0.786 28

3 7 3 3 0.786 28

3 3 3 3 0.740 34

Table 4.7: Accuracy of different combinations between the three bike parts for the cate-
gory classification.
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CNN quality Assessment

The quality assessment is the second step of our proposed model and focuses on assessing
the quality of a bicycle depending on its category. That means we have five different
models, one for each category. These models are also divided into three models: the color
image, color mask, and color masked parts. The evaluation follows the same procedure as
the category classification. Unlike the category classification, the quality assessment will
only use 50 iterations since the number of images is lower by a large margin. Additionally,
only the category rest will have a validation set because, due to the small sample size,
no validation by TensorFlow will be performed.

model components rest
color image color masks color masked parts accuracy wrong out of 48

3 7 7 0.792 10

7 3 7 0.813 9

7 7 3 0.781 11

3 3 7 0.854 7

3 7 3 0.813 9

7 3 3 0.792 10

3 3 3 0.833 8

Table 4.8: Accuracy of different combinations between the three networks for the quality
assessment of the rest category.

bike parts rest
Frame Handlebar Saddle Tires accuracy wrong out of 48

3 7 7 7 0.625 18

7 3 7 7 0.667 16

7 7 3 7 0.667 16

7 7 7 3 0.781 11

7 3 3 7 0.688 15

3 3 3 7 0.688 15

7 3 3 3 0.729 13

3 7 7 3 0.729 13

3 3 3 3 0.708 14

Table 4.9: Accuracy of different combinations between the three bike parts for the quality
assessment of the rest category.
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category accuracy wrong components
motor 1.0 0 out of 19 color & color mask & parts (frame, saddle,

tire)
mountain bike 1.0 0 out of 16 color & color mask & parts (handlebar, sad-

dle, tire)
old 0.821 5 out of 28 color & parts (tire)
race 1.0 0 out of 20 color mask & parts (frame, handlebar, sad-

dle, tire)
rest 0.854 7 out of 48 color & color mask

Table 4.10: This table shows the accuracy of the quality assessment for the different
categories of bicycles and which of the three pipelines where used to get the
best performance.

4.3 Discussion

After we described the training procedures and listed the results of our experiments
in section 4.2, we will discuss the results in this section and find the best-performing
model.

Semantic Segmentation (R50-FPN)

The results for the Semantic Segmentation for bike and bike part detection, as seen in
tables 4.3, 4.4, and 4.5, are very good with an average accuracy of over 80% for an
accuracy of 75% or higher detecting whether a pixel is included in the mask. That
is especially surprising since, due to a fixed learning rate of 0.0025, we have no fine-
tuning in the later stage of the training process. While the learning rate rises slowly
in the beginning due to the slow start option, it remains at the fixed learning rate of
0.0025 afterward, compared to the comparison metrics provided by detectron2, where the
learning rate drops again at the end. The missing entries of the bicycle detection network
for the average precision of the small and medium areas are expected since we are trying
to detect a bicycle, which means we are always trying to detect large contiguous objects.
The low average precision for the segmentation of handlebars is again a result of the lack
of fine-tuning. Since we are good at recognizing the center of an object but not so good
at the outer parts of the object and the handlebar is not a vast continuous entity but
rather a combination of small short parts sticking out in any direction from the central
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section. We can see this clearly in Fig. 4.2, where we see the annotated mask for the
bicycle parts.

CNN category classification

The fact that the handlebar and saddle are not excellent indicators for the category of
a bicycle is not that surprising since especially the saddle of many bicycles has a similar
look regardless of the kind of bicycle. The same goes to a certain extent for the handlebar,
especially since the segmentation of the handlebar is the worst of the segmentation (see
table 4.5), being the only segmentation below 60% average accuracy. Since including the
categorization based on the handlebar or saddle does not increase the accuracy of the
color masked parts model, the best-performing model for the color masked parts model
only contains the information of the frame and tires.

The most powerful model for the entire bicycle categorization is the combination of three
different categorization methods, the color image, color mask, and color masked parts
(see table 4.6). We reach an accuracy of 80% despite not focusing on fine-tuning for the
different LeNet-5 networks that we use for categorization and using the same model for
all of them.

CNN quality classification

Due to the unique quality types for the motor category, which focuses more on the fact
that we have high-class, first-generation, and modified bicycles as quality classes, it is
not surprising that we achieve very high accuracy.

For the mountain bike category, the color masked parts model is only included since it
is nearly as accurate as the color image model and color mask model, both of which get
an accuracy of 100%.

The old category shows that using more than one model to achieve higher success is a
good approach. The color image model and the color masked parts model, only focusing
on the tire, have both a weaker accuracy than 82%, the color image model has 71%,
and the tire 75%. Therefore, one would assume that if one combined the two models,
we would get at best 75%, but instead, we get 82%. That proves that using different
approaches and merging them is good because one model could be good at detecting one
thing and bad at another, while it is precisely the opposite for the other model. In that
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case, both models would help each other by finding a middle ground better at detecting
both aspects. The opposite could also happen, where the combined model gets weaker
and not stronger.

In the race category’s case, all color masked parts models combined lead to the best
result for the color masked parts component, showing the power of dividing the bicycle
into parts to get a better quality assessment.

That the best-performing model for the rest category does not contain any bicycle parts
is not that surprising since the rest category contains several different bicycles. That
makes it easier to assess the quality with the whole bicycle in mind and not by focusing
on parts. Still, the inclusion of bicycle parts allows results of over 80%, and with 78%
as a standalone decider, it is not weak. Finally, the best-performing model for the rest
category reaches 85%.
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5 Conclusion and Future Work

In this work, we tried to build a model that could assess the quality of bicycles. To achieve
that, we proposed to divide the bicycles according to specific categories to simplify the
assessment. We also used object detection with R-CNN to detect specific bicycle parts
and use them to help the categorization and quality assessment. The results show that
using semantic segmentation to identify bicycles or parts of bicycle work and focusing on
bicycle components enhances the overall performance of the categorization and quality
assessment. Additionally, dividing bicycles according to categories before assessing the
quality is helpful since three out of the five categories reach a 100% accuracy by first
categorizing them. The other two have an accuracy of over 80%. The last part of
the proposed approach was using different bicycle features to strengthen the overall
performance of our model, focusing on these features and then combining the results of
the various pipelines. Table 4.10 shows that all five categories use different combinations
of our three proposed pipelines, proving that this approach leads to better results.

5.1 Limitations and Future Directions

For this work, we used a not annotated small dataset because there is no publicly available
dataset for quality assessment on bicycles, as far as we know. That leads to the fact that
the categorization of bicycles follows our subjective view of bicycles. Additionally, the
quality assessment only divides between high, medium, and low quality. Because of this,
we neither get the recommended price for the bicycle nor the exact quality of the bicycle.
Therefore for future directions, it would be helpful to work with a dealer who sells second-
hand bicycles to get a better dataset with more images and better annotations.
Additionally, it would be interesting to see how the average accuracy for the semantic
segmentation changes if we use more than one GPU and have more VRAMM since we
could then remove the added setting for the config files for the R50-FPN. Especially since
the fixed learn rate limits the possible optimizations for the neurons in the model.
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5 Conclusion and Future Work

Another task for future development would be to optimize the CNNs. Furthermore,
adding weights to the three pipelines and five different models of the color mask partial
image pipeline could lead to better results.
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