
BACHELORTHESIS

Elias Soud

Classi�cation of Electrical Resistors

by a Deep Learning Model embedded

in an Application for Mobile Devices

FACULTY OF COMPUTER SCIENCE AND ENGINEERING

Department of Information and Electrical Engineering

Fakultät Technik und Informatik

Department Informations- und Elektrotechnik

HAMBURG UNIVERSITY
OF APPLIED SCIENCES

Hochschule für Angewandte
Wissenschaften Hamburg

Bachelor Thesis based on the examination and study regulations

for the Bachelor of Engineering degree programme

Bachelor of Science Information Engineering

at the Department of Information and Electrical Engineering

of the Faculty of Engineering and Computer Science

of the University of Applied Sciences Hamburg

Supervising examiner: Prof. Dr.-Ing. Marc Hensel

Second examiner: Prof. Dr. Annabella Rauscher-Scheibe

Day of delivery: 18. July 2022

Elias Soud

Classification of Electrical Resistors by a Deep Learning
Model embedded in an Application for Mobile Devices

Elias Soud

Title of Thesis

Classi�cation of Electrical Resistors by a Deep Learning Model embedded in an Appli-

cation for Mobile Devices

Keywords

Arti�cial Neurons, Arti�cial Neural Networks, Image Processing, Supervised learning,

Reinforced Learning, Training Neural Networks, Parameters and Hyper-parameters,

weight, bias, learning rate, batch size, epoch, data set, optimizer, Android.

Abstract

This work describes designing and training an Arti�cial Neural Network with Keras

Tensor�ow high level Machine Learning framework. this training enables the network to

classify resistors within input images according to their value. The model is to be saved

after training and evaluation, in order to then be employed in this project by an Android

application.

Elias Soud

Thema der Arbeit

Klassi�zierung von elektrischen Widerständen durch ein Deep-Learning-Modell, das in

eine Anwendung für mobile Geräte eingebettet ist

Stichworte

Künstliche Neuronen, Künstliche Neuronale Netze, Bildverarbeitung, Überwachtes Ler-

nen, Verstärktes Lernen, Training Neuronaler Netze, Parameter und Hyper-Parameter,

Gewicht, Bias, Lernrate, Stapelgröÿe, Epoche, Datensatz, Optimierer, Android.

Kurzzusammenfassung

Diese Arbeit beschreibt den Entwurf und das Training eines künstlichen neuronalen Net-

zwerks mit Keras Tensor�ow high level Machine Learning framework. Dieses Training

iii

ermöglicht es dem Netzwerk, Widerstände in Eingabebildern nach ihrem Wert zu klas-

si�zieren. Das Modell soll nach dem Training und der Auswertung gespeichert werden,

um dann in diesem Projekt von einer Android -Anwendung verwendet zu werden.

iv

Contents

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 1

2 Fundamentals 3

2.1 Background . 3

2.2 Computers . 4

2.3 Programming languages . 5

2.3.1 C++ . 6

2.3.2 Java . 7

2.3.3 Python . 8

2.3.4 Integrated Development Environment 9

2.4 Operating Systems . 9

2.4.1 Linux . 10

2.4.2 Android . 10

2.5 Arti�cial Intelligence, Machine Learning, and Deep Learning 11

2.6 Deep Learning . 12

2.6.1 Overview . 13

2.6.2 Arti�cial Neurons . 14

2.6.3 Loss Functions . 18

2.6.4 Gradient Descent, Epochs, and Learning Rate 20

2.6.5 Batch Size and Stochastic Gradient Descent 22

2.6.6 The training process of Deep Learning models 24

2.6.7 Back-propagation . 25

2.6.8 Number of hidden layers and number of neurons 27

v

Contents

2.6.9 Machine Vision and Convolutional Neural Network 27

2.6.10 Widely-used Deep Learning Libraries 32

3 Requirements Analysis 34

3.1 System context . 34

3.2 Stakeholders . 35

3.3 Overview of use case analysis . 36

3.4 Functional and non-functional requirements overview 37

3.4.1 Functional requirements . 37

3.4.2 Non-functional requirements . 37

3.5 De�ning the system's requirements . 37

4 Concept and Design 39

4.1 Design �ow . 39

4.2 Development Environment . 40

4.3 Programming languages, libraries, and frameworks 41

4.3.1 Python . 42

4.3.2 C++ . 44

4.3.3 Java . 44

4.3.4 Alternatives . 45

4.3.5 Dataset . 45

4.3.6 Approach . 46

5 Implementation 47

5.1 Training . 47

5.1.1 Creation of the dataset . 47

5.1.2 Model development . 49

5.2 Integration into the Android application 55

6 Project results, insights, and conclusions 61

6.1 The training process . 61

6.1.1 Problems . 62

6.1.2 Insights . 63

6.2 The Android application . 64

6.2.1 Problems . 64

6.2.2 Insights . 65

vi

Contents

6.3 Conclusions . 65

6.3.1 The deep learning model . 65

6.3.2 The Android application . 66

6.3.3 Working with images . 67

6.3.4 Final comments . 67

Bibliography 68

A Appendix 72

A.1 Back-propagation . 72

A.2 Trained models overview . 76

Declaration 103

vii

List of Figures

2.1 Programming languages popularity - image [9] 7

2.2 Comparison between the scope and approach of AI, ML, and DL. [4] . . . 11

2.3 Simpli�ed comparison between classic programming and Machine Learning

models from [23] . 12

2.4 Simpli�ed comparison between the traditional Machine Learning approach

and Deep Learning. [15] . 13

2.5 Performance of the top entrants to the ILSVRC by year. [15] 14

2.6 General structure of a perceptron. [7] . 16

2.7 Sigmoid and tanh activation functions comparison. [13] 16

2.8 The Recti�ed Linear Unit activation function. [13] 17

2.9 Comparison of Adam to other optimization algorithms training a multi-

layer perceptron. Taken from [14] . 23

2.10 Example of a simple small-scale dense Arti�cial Neural Network. 24

2.11 Example of a model's cost function curve where there exists both a local

and a global minima . 25

2.12 Example of a convolutional layer kernel with an RGB image. [15] 29

2.13 Example of a convolutional layer's activation map with an RGB image. [15] 31

2.14 Example of a pooling layer. [15] . 31

3.1 An outline of the system context . 35

3.2 Use Case Diagram of the application's basic functionality 36

4.1 A visualized design of the application. 42

4.2 Some possible approaches for implementing the application. 46

5.1 Sample images of 150 Ω resistor from the produced dataset. 48

5.2 Code snippet for data handling and preparation in model-trainer.py script. 50

5.3 Code snippet for model �tting and callbacks in model-trainer.py script. . . 51

5.4 Code snippet for the model saving process in model-trainer.py script. . . . 51

viii

List of Figures

5.5 Model 1 and 2 accuracy plot comparison 52

5.6 Model 3 and 7 accuracy plot comparison 52

5.7 Model 5 and 8 accuracy plot comparison 53

5.8 Model 9 accuracy and loss plots . 53

5.9 Model 10, 11, 12, and 13 accuracy plot comparison 54

5.10 Code snippet for model access in CameraAccessActivity.java class. 56

5.11 Class diagram of the Android application with relevant methods. 57

5.12 Activity diagram of the Android application. 59

5.13 Snapshots of the application running on an Android device. 60

A.1 Model 1 summary . 77

A.2 Model 1 accuracy and loss plots . 78

A.3 Model 2 summary . 79

A.4 Model 2 accuracy and loss plots . 80

A.5 Model 3 summary . 81

A.6 Model 3 accuracy and loss plots . 82

A.7 Model 4 summary . 83

A.8 Model 4 accuracy and loss plots . 84

A.9 Model 5 summary . 85

A.10 Model 5 accuracy and loss plots . 86

A.11 Model 6 summary . 87

A.12 Model 6 accuracy and loss plots . 88

A.13 Model 7 summary . 89

A.14 Model 7 accuracy and loss plots . 90

A.15 Model 8 summary . 91

A.16 Model 8 accuracy and loss plots . 92

A.17 Model 9 summary . 93

A.18 Model 9 accuracy and loss plots . 94

A.19 Model 10 summary . 95

A.20 Model 10 accuracy and loss plots . 96

A.21 Model 11 summary . 97

A.22 Model 11 accuracy and loss plots . 98

A.23 Model 12 summary . 99

A.24 Model 12 accuracy and loss plots . 100

A.25 Model 13 summary . 101

A.26 Model 13 accuracy and loss plots . 102

ix

List of Tables

2.1 Some of the well-known advantages and disadvantages of C++ 8

2.2 Some ANN types and their corresponding well-suited applications 27

3.1 Stakeholder Analysis . 35

3.2 Requirements analysis overview . 38

A.1 Trained models . 76

x

1 Introduction

1.1 Motivation

Modern advancements in technology, especially medical technology, have catapulted our

capacity to further observe and understand how the human brain works. Of course, a lot

still remains a mystery to be learned, but fortunately, thus far humanity was able to get

to know some fundamental mechanics regarding biological vision and other sensory and

non-sensory systems. [15]

Inspired by the knowledge of these biological systems and how they function, and enabled

by the rise of e�cient digital computing for researchers to use, computer scientists were

able to somewhat digitally imitate these biological systems and construct arti�cial com-

ponents such as Arti�cial Neural Network which are directly inspired by their physical

counterpart, the neurons and neural networks in the brain.

Today, Arti�cial Intelligence, Machine Learning, and Deep Learning are well known ter-

minology even in the mainstream public. This fame was earned by the increasing number

of milestones and indeed impressive achievements in these domains. To add further, the

ever-increasing number of applications that Machine Learning and Deep Learning mod-

els are able to tackle, from machine vision with object detection and recognition to

autonomous vehicles, is raising interest in these topics even more.

1.2 Objectives

The goal of this work is the development of a software that employs a Deep Learning

model or neural network to e�ciently recognize and identify the value of a resistor within

an image. The application runs on Android devices and also provides the ability to

capture an image of a resistor to identify.

1

1 Introduction

In Machine Learning, such application falls under the term �Classi�cation Problem�,

meaning, that the Deep Learning model is designed and trained to classify images into

di�erent �labels�, i.e. resistor values.

The network is designed and trained on a dataset using the Tensor�ow and Keras frame-

works in Python which is conveniently prepared for us in the Google Colab online python

development environment. The program uses the tensor�ow C_API to run the network

model inside our app, and this C/C++ code that runs the model is also wrapped with

Java which is used of course to construct and implement our Android app.

2

2 Fundamentals

This chapter represents the essential theoretical foundation that is going to be relied on

in order to implement the application. For the scope of this thesis, what is going to

be covered in this chapter is only concerned with directly relevant topics and informa-

tion such as Arti�cial Intelligence overview, some mathematics that are behind Machine

Learning algorithms and mechanics, programming languages that can be used, and so

on.

2.1 Background

The late 1970's into the early 1980's ushered in the beginning of what is now known

as �The Digital Age� or �The Information Era� in which humanity still lives to this

day. The rise of digital technology and the explosion of applications, both industrial

and commercial, irrevocably transformed the lives of everyone. Digital communications

technology, for example, made it so that two individuals are only a click of a button away

from visually speaking to each other regardless of where these individuals are located,

while the digitization of various industries made production easier, cheaper, and more

e�cient. One more further example of just how signi�cant digital technology is of course

the medical �eld which witnessed immense improvement and development from new

machines that can provide medical personnel with essential new information and technical

abilities that enable new forms of life-saving procedures and treatments.

One aspect or domain in this information era is what is now called �Arti�cial Intelli-

gence�1 or AI for short, and like many topics of its caliber it went through many di�erent

stages and phases. This topic has only really caught steam in late September 20122,

1Term was �rst coined in 1956 at a conference at Dartmouth College - New Hampshire - USA [17]
2September 2012 the ImageNet Large Scale Visual Recognition Challenge was impressively won by the
AlexNet model [15]

3

2 Fundamentals

as the impressive performance of the models involved has catapulted the topic into the

mainstream, and it's been on the rise since then.

The fame that was commanded by AI models along with the implications and potential

that was deduced from the AlexNet performance have lead to the explosion of interest in

this domain in academia and even in private tech companies such as Facebook, Google,

and Amazon. Of course, this interest have now been translated into solid achievements

and milestones each year where it seems that AI is here to stay and it is going to be a

big part of the future, even more than it already is now.

Until recently, all software was developed by programmers right from �rst principles.

This meant that every single feature, mechanic, and behavior in any piece of software

had to be addressed and manually 3 designed, coded, and implemented by programmers.

At the present time this has changed with the emergence of more and more dependable

AI models. In cases where the requirements are relatively simple and clear, where it is

possible to achieve solutions that work 100% of the time rather cheaply and conveniently,

then it is preferable, at this time, to not use AI based approaches. Other cases that involve

some more complex problems is where AI approaches can really shine. [34]

2.2 Computers

This section touches brie�y on computers in order to produce a simpli�ed abstraction

of what they are and how they function. Also in order to later understand the rational

background of a programming language, it is helpful to have an understanding of how

computers work.

According to the Oxford Dictionary [8], a computer is an electronic device for storing

and processing data, typically in binary form, according to instructions given to it in a

variable program. Computers carry out the di�erent tasks they do by having specialized

hardware electronic components that work together in order to execute those tasks.

Those components are mainly memory, or ROM and RAM4, Central Processing Unit

CPU or processor, and storage which is typically an HDD5 or SSD6. Computers usually

3I.e., a human was involved directly
4RAM or Random Access Memory is a relatively fast storage for computers and it stores variables and
other data from the di�erent programs running on the machine

5Hard-Disk Drive
6Solid-State Drive

4

2 Fundamentals

have peripheral devices that enable input/output operations enabling human beings to

experience and interact with those digital electronic machines.

Computers, being electrical machines, are powered by electricity. They use electricity

and voltage levels to encode, store, and process information. Thus, computers encode

voltage levels into zeros (low voltage) and ones (high voltage) and therefore the name of

machine language is called �Binary�.

2.3 Programming languages

Looking for a de�nition on wikipedia.org, the following results for a programming language

can be found: �A programming language is any set of rules that converts strings, or

graphical program elements in the case of visual programming languages, to various kinds

of machine code output. Programming languages are one kind of computer language,

and are used in computer programming to implement algorithms. Most programming

languages consist of instructions for computers. There are programmable machines that

use a set of speci�c instructions, rather than general programming languages.� [32]

Programming languages are the means for human beings to communicate instructions and

data to digital machines. They can also be understood as ways of encoding instructions

and information in a way that can be understood by digital machines.

Programming languages vary in sophistication and human readability. Some languages

like Assembly are considered to be low-level, meaning that they have less human readabil-

ity because the structure and syntax re�ect a close resemblance to how digital machines

carry out instructions. It is accurate to say that the Assembly language is intended to

communicate directly with a computer's hardware7.

There are also higher-level languages, like C++, Java, Javascript, and Python. Those

languages also have compilers or interpreters which translate their corresponding high-

level language into machine code or platform-independent byte code. This goes on until

all instructions and data are in binary form ready to be processed by the machine and in-

�uence its behavior. Each programming language has a wide range of APIs, libraries, and

7Assembly is closer to how machines communicate and carry out instructions, although computers can
only understand and process instructions and various operations in binary form, as in zeros (0) and
ones (1), and thus an �Assembler� translates that Assembly code into machine language

5

2 Fundamentals

frameworks and in many applications programming languages work together to achieve

the requirements of the given application.

Programming languages are used to construct and create all the digital software that

most people use every day, they are also used to automate various tasks, and they vary in

purposes and background and therefore they also vary in capabilities, with each language

having advantages in certain applications while su�ering from disadvantages in others.

[18]

Figure 2.1 demonstrates how the popularity of di�erent programming languages have

evolved with time.

This section now lists the relevant programming languages for the development of this

body of work. Each language's main characteristics are explored and a simpli�ed com-

parison is outlined as well.

2.3.1 C++

C++ is a popular programming language that was originally designed by the Danish

computer scientist Bjarne Stroustrup in 1983 at Bell Labs as an expansion of C. It is an

extremely e�cient8, generic9, object-oriented10, and functional language.

Since it was made to be the child of the C programming language, it inherits from the

C language the wide-ranging ability for low-level memory manipulation, which some

consider to be one of the biggest advantages for C/C++. [24]

Like C, it is a compiled language, meaning it needs a compiler in order to be able to

build C++ applications and be able to use and execute them. There exists a wide range

of C++ compilers such as Clang, GCC, Intel C++ compiler, and Microsoft Visual C++

compiler, and these compilers can di�er slightly but mostly the main structure remains

intact. C/C++ is also supported by a wide range of IDEs such as Microsoft Visual

Studio, Netbeans, and CodeBlocks. C++ also has a vibrant community behind it and an

open-source base which is always helpful for individual programmers. [24]

Table 2.1 outlines some of the main characteristics of C++.

8Very fast when in execution time
9As in supports the kind of programming that allows for a later speci�cation for di�erent types in a
given program

10I.e., it supports classes and objects

6

2 Fundamentals

Figure 2.1: Programming languages popularity - image [9]

2.3.2 Java

Java is an object-oriented, class-based, high-level, programming language that requires

checked and unchecked exceptions. Developed by James Gosling at Sun Microsystems

and released in 1985. It is intended to implement the motto �write once, run anywhere�,

which means that compiled Java code can run on any platform that supports Java

and without the need to recompile. Java applications are usually compiled into special

bytecode that can run on any Java virtual machine regardless of the underlying hardware

and architecture. The syntax of Java is similar to that of C/C++, but has fewer low-level

7

2 Fundamentals

Advantages Disadvantages

very high execution speed relatively strict syntax
vibrant community with a lot of sup-
port and a huge range of open-source
libraries

relatively di�cult to learn

broader control over hardware re-
sources

need for some experience in order to be
able to harness the strengths of C++

Table 2.1: Some of the well-known advantages and disadvantages of C++

facilities than either of them. The o�cial reference implementation of the Java virtual

machine is the OpenJDK JVM which is free open-source software and used by most

developers. Java is also supported by several IDEs like Eclipse. [18]

Java is one of the most popular languages for dynamic cross-platform deployment, and

it was the o�cial language for Android applications development until 2019 when it lost

that position to Google's Kotlin language. However, Java can still be used for Android

development today, and during the software development part of this thesis Java is used

to design and build the Android application.

2.3.3 Python

Python is an object-oriented, interpreted11 programming language with dynamic seman-

tics12. It is a very high-level language and its built in data structures, combined with

dynamic typing and dynamic binding, make it very attractive for Rapid Application De-

velopment as well as for use as a scripting or glue language to connect existing components

together. Python's simple, easy to learn syntax emphasizes readability and therefore re-

duces the cost of program maintenance. There is no compilation step, the edit-test-debug

cycle is incredibly fast. The standard implementation of python is called �cpython� and

it is the default and widely used implementation of Python. When a Python code is pro-

cessed, it is converted into byte-code. An interpreter like python virtual machine takes

care of the byte-code execution. [10, 12]

Python's incredibly high-level features and structure makes it an ideal language in academia

and non-software-speci�c industry. Researchers utilize Python in an impressively broad

11Another interpreted language is Java, i.e. byte-code is �interpreted� into machine code
12Has an extremely dynamic and relatively non-strict typing as opposed to a language like C++ for

example

8

2 Fundamentals

range of domains and applications due to its easy-to-learn syntax. Its very high-level

interfaces and libraries and tools allow the programmer using Python to focus more on

their application and desired structure and outcome and less on the syntactical and non-

syntactical restraints and strict development rules that come with other languages.

Python has no type declarations of variables, parameters, functions, or methods in source

code. Instead, what Python does is that it tracks the types of all values at run-time and

�ags code that is invalid as it runs. [12]

2.3.4 Integrated Development Environment

An Integrated Development Environment, or IDE for short, is a kind of software program

that combines many tools, frameworks, and functionalities that enable programmers to

develop software with ease. Some of the tools and functionalities provided by IDEs

include a code/text editor, debugging tools, compilation and built automation tools,

and many others. IDEs hide many lower-level development steps and procedures, plus

environment-related and compilation-related con�gurations, and combine everything in

a more user-friendly Graphical User Interface which can drastically increase development

productivity. [28]

There are many IDE variations but they mostly serve the same function, although there

are some more usage-speci�c IDEs like Code Composer from Texas Instruments for em-

bedded systems and microcontroller development or Android Studio by Google for An-

droid development. The most widely-used general-purpose IDEs includeMicrosoft Visual

Studio, Eclipse, Codeblocks, and Netbeans.

2.4 Operating Systems

Operating Systems are the link between the various computer programs and software

on one hand and the machine's hardware resources on the other. Operating Systems

manages memory and processes and they are considered to be what is called �system

software�13. In most cases nowadays, there are several di�erent programs running at

the same time, and they all compete over the computer's hardware resources like the

processor, memory, and storage. An operating system coordinates all of this to make

13System software is software designed to provide a platform for other software to run on.

9

2 Fundamentals

sure that an e�cient management is being carried out while several di�erent programs

and processes are running and demanding resources. [22, 25]

The most widely-used personal computer operating systems globally are Microsoft Win-

dows with a market share of 76.45%, macOS by Apple, and all the di�erent Linux dis-

tributions. Those operating systems are designed to be general-purpose personal usage

systems but there are other embedded and dedicated systems that are speci�cally de-

signed in order to achieve very speci�c requirements and tasks. Such systems can exist

on micro-controllers or smaller light-weight computers14.

2.4.1 Linux

Linux is a broad collection of open-source operating systems which are based on a Unix-

variant called Minix or Mini-Unix. Since it is an open-source software, Linux has numer-

ous distributions and variations but they are all built around the Linux Kernel which

represents the core of the system and was originally designed by Linus Torvalds and re-

leased in 1991. Linux systems are widely used by programmers and computer scientists

mainly due to their high performance and the amount of control Linux gives the user

over the device's resources, but in recent years more and more distributions, like Ubuntu

and Fedora, are becoming increasingly user-friendly. [22, 29]

2.4.2 Android

Android is an operating system that is dedicated primarily to touch-screen mobile devices,

and it is based on a modi�ed Linux kernel that comes with numerous open-source tools

and other types of software. Core components are taken from the Android Open Source

Project. Android is supported and sponsored by Google and the majority of Android

devices run within the Google software base. It is written in Java for the UI, C for the

core, in combination with C++. Android has been the best-selling OS worldwide on

smartphone devices since 2011 and on tablet devices since 2013. [2]

14An example would be a Raspbian Linux distribution which can run on a Raspberry Pi.

10

2 Fundamentals

2.5 Arti�cial Intelligence, Machine Learning, and Deep

Learning

The terms Arti�cial Intelligence, Machine Learning, and Deep Learning are often used

interchangeably, and while that was more acceptable a decade or two ago, now these

terms have di�erent meanings and de�nitions.

Figure 2.2 abstractly demonstrates the di�erence in scope between the three terms.

Figure 2.2: Comparison between the scope and approach of AI, ML, and DL. [4]

As was outlined in Section 2.1, software used to be designed and developed directly by

programmers and professionals with utmost attention to the details and mechanics of

every piece of functionality within the software. However, while the term Arti�cial Intel-

ligence tends to refer to the general task of automating and imitating human-like behavior

by �smart� machines, its subsets of Machine Learning and especially Deep Learning that

are de�ned by more speci�c approaches to achieve and execute complex tasks have now

changed the often restrictive approach of explicit programming in certain applications.

Figure 2.3 demonstrates a simpli�ed visualization of the di�erence between traditional

programming and machine learning. This comparison is concerned with the abstract

inputs and outputs of each method.

To brie�y touch on some of the distinctions between Machine Learning and Deep Learn-

ing, Machine Learning employs the statistical model and the algorithms that come with

it in order to �learn� from previous experiences and while it has its own milestones and

11

2 Fundamentals

Figure 2.3: Simpli�ed comparison between classic programming and Machine Learning
models from [23]

achievements when it comes to how well it performs certain tasks, it involves procedures

such as �feature engineering�15 in addition to the relatively limited use of neural network

models. [15, 23]

Deep Learning, which is the main focus for the scope of this thesis, extensively depends on

ANN16 and it involves signi�cantly less, human-involved actions like feature engineering

for the DL model to learn from input data. Deep Learning models excel at recognizing

patterns in input data and DL models have recently risen to the top when it comes to

performances when compared with its Machine Learning or even human counterparts.

Figure 2.4 abstractly illustrates the type of work that is involved in each domain. Deep

learning involves more modelling while machine learning involves more feature engineer-

ing.

2.6 Deep Learning

Deep Learning is a subset of Machine Learning, it depends on the concept inspired by

neural networks of the human brain which is known as �Arti�cial Neural Network� and

15The term features generally refers to the inputs of a certain ML model and feature engineering is the
transformation of raw data into a well thought out and structured input variables.

16Arti�cial Neural Network, inspired by the brain's neural networks.

12

2 Fundamentals

Figure 2.4: Simpli�ed comparison between the traditional Machine Learning approach
and Deep Learning. [15]

it uses a layered representation of data. Deep Learning uses multi-layered structures of

algorithms and mathematical functions called �Arti�cial Neurons�17. [23]

Arti�cial Neural Network excel at detecting patterns in data, which means that a Deep

Learning model can learn how carry out a task18 with impressive above-human perfor-

mance and without any explicit programming. [23, 34]

Figure 2.5 describes the performance of the top entrants to the ILSVRC or ImageNet

Large Scale Visual Recognition Challenge19.

The scope of this thesis will mostly focus on exploring a bit further how Deep Learning

works in general terms, and how it can be employed in this thesis's Android application.

2.6.1 Overview

Every DL Network model has an input layer, an output layer, and at least one hidden20

layer in between21.

17Both inspired by the human brain, its neurons and neural connections and structures.
18Such as detecting and classifying objects in images, or simply learn how to play a video game.
19ILSVRC is an international competition for evaluating algorithms for object detection and image

classi�cation at large scale. [15]
20Hidden as is unexposed to the outside environment, like the case with the input and output layers,

and these hidden layers are where the �learning� takes place.
21When a model has less than 3 hidden layers it would be called �shallow network�.

13

2 Fundamentals

Figure 2.5: Performance of the top entrants to the ILSVRC by year. [15]

Hidden layers structure, type, and other characteristics can vary. This variation de�nes

several kinds of hidden layers, among which are the dense22, convolutional, or recurrent

layers.

2.6.2 Arti�cial Neurons

Arti�cial Neurons are the building blocks of ANNs, and also are inspired by the neurons

in the human brain. They are found in ANNs stacked in layers and connected according

to a certain structure and their main purpose is to receive data from one or more inputs,

operate on it by summing them, then �nally producing a result as an output which is

likely to be in itself an input to another neuron deeper in the network. In more technical

22They are the most general type of hidden layers. A layer is dense when each of its neurons are fully
connected to all the neurons from the preceding layer.

14

2 Fundamentals

terms, an Arti�cial Neuron is a mathematical function that takes a number of inputs

which are then summed up to produce an output or �activation�23. [1, 15, 16, 34]

Equation 2.1 is the most fundamental equation in Deep Learning. It mathematically

describes how arti�cial neurons calculate the weighted sum and adds the neuron's corre-

sponding �bias� in order to later evaluate it through an activation function.

z =
n∑

i=1

wixi + b (2.1)

In Equation 2.1 wi represents the weights for each input and xi represent the value of

that input. Neuron bias is represented by b, while n is the total number of inputs for

this particular neuron. [1, 15]

All these aforementioned parameters can have either positive or negative values, and in

programming terms, they usually default to the �oat32 datatype not integers. [15]

The most basic kind of arti�cial neurons is what is known as �Perceptron� [21]. It is an

algorithm for supervised learning24 of linear binary classi�ers. A binary classi�er is a

function which can decide whether or not an input, represented by a vector of numbers,

belongs to some speci�c class [31]. The perceptron algorithm was invented in 1958 at the

Cornell Aeronautical Laboratory by Frank Rosenblatt. The original paper is referenced

in this work's bibliography [21]. The perceptron has a certain threshold and when the

weighted sum is bigger than this threshold the perceptron will ��re� and the output would

be equal to one, otherwise it will be equal to zero.

Fortunately nowadays, there exist some alternatives to the very functionally limited

perceptron like the more practical and more capable sigmoid neuron which is based on

a sigmoid activation function represented by Equation 2.2, or the more widely used

�Recti�ed Linear Unit� or ReLU for short, or the softmax neuron which has a more

speci�c activation.

σ(z) =
1

1 + e−z
(2.2)

23Mathematical symbol for activation of a neuron is �a�.
24Supervised learning (SL) is the machine learning task of learning a function that maps an input to

an output based on example input-output pairs.[1] It infers a function from labeled training data
consisting of a set of training examples. [33]

15

2 Fundamentals

Figure 2.6: General structure of a perceptron. [7]

Figure 2.7: Sigmoid and tanh activation functions comparison. [13]

In Equation 2.2, σ(z) = a where a is the neuron's activation. And z represents Equation

2.1, meaning z =
∑n

i=1wixi + b as Figure 2.7 demonstrates.

The sigmoid activation function can represent gradual output values in contrast with the

perceptron algorithm which only have two output states or values: ��ring� or a 1, and

�silent� or a 0.

A similar activation function to the sigmoid is the tanh activation function. The di�erence

is that while the sigmoid range between 0 and 1 values, the tanh can have values from

-1 to 1. Figure 2.7 outlines this di�erence between the two functions.

16

2 Fundamentals

Figure 2.8: The Recti�ed Linear Unit activation function. [13]

The Equation that represents the ReLU function can be expressed in terms of given

neuron's activation a and z which represents the given neuron's weighted sum from

Equation 2.1:

a =

z : for z > 0

0 : for z ≤ 0
(2.3)

Equation 2.3 can also be expressed as: a = max(0, z). The ReLU neuron is the most

widely used in Deep Learning applications due to several reasons, mainly its fast calcu-

lations characteristic in addition to decreasing the likelihood of neural saturation25 from

happening to the models neurons. It was also inspired by biological neurons and some

of their properties

Each arti�cial neuron input has a corresponding weight which is multiplied by that

input's value and then summed with other inputs of the same neuron, and the sum

is then evaluated and compared according to a non-linear26 function called �activation

function�27. Activation functions are usually a non-linear mathematical function with

some general characteristics such as gradually increasing, continuous, di�erentiable, and

limited or bounded. Examples of such a function are the sigmoid, the tanh, and the

ReLU functions. There are, of course, many other functions out there, some of which

are derived from the ReLU like the Exponential Linear Unit. [1, 15, 34]

25A phenomena that limits the ability of neurons to learn after reaching a certain �saturation� level in
its outputs, meaning it produces z values such that changes in z causes tiny negligible changes in the
activation output a thus the learning capability of this neuron is drastically slowed

26Can be linear in certain applications such as regression.
27Also known as �transfer function�, but not to be confused with a linear system's transfer function.

17

2 Fundamentals

When faced with a binary classi�cation28 problem then a sigmoid neuron would do the

job in the network model's output layer. But if we had say a multi-class classi�cation

then usually a softmax neurons in output layer can suit such applications. [15]

Softmax neurons have been mentioned several times in this document, thus it can be

helpful to understand how they work: Typically, Softmax neurons are used in output

layers, and especially in multi-class classi�cation problems. Based on its connected in-

puts, Softmax neuron will output the highest connected input value but it does so while

providing the likelihoods of each class29. [15]

To summarize so far, for every arti�cial neural network model there are one input and

one output layer and at least one hidden layer. The input layer only stores input values

x in its neurons, the output layer represents the predicted output ŷ of the entire given

network model. The model's predicted output ŷ is contrasted and compared with the

true output value y of the corresponding input. Every connection between two neurons

has a weight w and every neuron has a bias b.

This section will now explore topics that are relevant to the training and learning process

of Deep Learning models.

2.6.3 Loss Functions

In order to qualify the spectrum of output evaluation and move closer and closer to the

true desired output, i.e. train and learn, Deep Learning algorithms often involve what is

called �Cost Function�, also known as �Loss Function�.

This section will touch some of the widely used cost functions categorized by the type of

application. Both these categories that will be discussed are themselves a sub-category

of supervised learning which is to be contrasted with the other type of learning in DL

which is unsupervised learning.

28Binary classi�cations means the possible output is a binary, true or false, yes or no, and so on.
29Each Softmax neuron would represent a single classi�cation class.

18

2 Fundamentals

Regression problems

Regression problems revolve around predicting a continuous value30. Cost functions used

in a regression problem are calculated on the distance-based error31. Examples from [15]

of such functions:

� Mean Error (ME): The errors can be both negative and positive. So they can cancel

each other out during summation and thus it is not a recommended cost function

but it does lay the foundation for other cost functions of regression models.

� Mean Squared Error (MSE) also known as �Quadratic Cost�: This cost function

solves the issue of ME above. Since errors are squared, it penalizes even small

deviations in prediction ŷ from the true value y. But if our dataset has outliers

that contribute to larger prediction errors, then squaring this error further will

magnify the error many times more and also lead to higher error. The MSE cost

function is expressed in Equation 2.4.

MSE =
1

n
·

n∑
i=1

(y − ŷ)2 (2.4)

� Mean Absolute Error (MAE) in contrast with MSE it is robust to outliers thus

it will perform better even when dealing with a dataset that has noise or outliers,

expressed in Equation 2.5.

MAE =
1

n
·

n∑
i=1

|y − ŷ|2 (2.5)

Classi�cation problems

When dealing with a problem where the output variable is a category, such as true or

false, yes or no, blue or red or orange or green, we call such problems Classi�cation

problems, and there are speci�c cost functions that are well suited to such applications.

[1, 15]

One of the cost functions which are typically used for classi�cation problems is the Cross-

Entropy Cost function expressed in Equation 2.6. This function is one way to limit and

30Examples of a continuous value: salary of an employee, price of a house or a car, temperature, etc...
31Error = y − ŷ : where y is the true output and ŷ is the predicted one.

19

2 Fundamentals

minimize the impact of neuron saturation on learning speed, due to it being con�gured

to enable e�cient learning anywhere within the activation function curve.

The Cross-Entropy Cost function is structured in a way so that the derivative that

represents the rate of change of the cost C with regard to the trainable parameters is

related to the term (y − ŷ), and thus the larger the di�erence between ideal output y

and estimated output ŷ32 the greater the rate of change of the cost with regards to the

parameters. [15]

C = − 1

n

n∑
i=1

[yi ln ŷi + (1− yi) ln (1− ŷi)] (2.6)

The C in Equation 2.6 refers to the cost.

2.6.4 Gradient Descent, Epochs, and Learning Rate

This section will dive deeper in the relevant conceptual topics and terms in Deep Learning

and will explore further details in the learning and training process.

Gradient Descent

Gradient Descent is an e�ective computational method or algorithm that can be used

for adjusting a DL model's trainable parameters with the aim of minimizing the cost. It

is particularly useful when there is a lot of training data available33.

It is widely used in Machine Learning and Deep Learning domains. It fundamental idea

is adjusting the parameters of a model, seeking to reach the lowest possible cost. The

amount of the adjustment is called �step size� and is described by Equation 2.7 where η

represents the learning rate. [15]

stepsize = η · ∂Cw

∂w
(2.7)

32When there is a single output neuron in the output layer, it can be stated that the predicted output
of the network model ŷ is the activation a of that output neuron.

33A good general rule in ML and DL domains is: the more the data, the better.

20

2 Fundamentals

Learning Rate η

Learning rate describes the rate in which the trainable parameters are modi�ed, i.e. it

in�uences the �step size� of the gradient descent or the amount of which it changes value.

[15]

It is considered one of several DL model's Hyper-parameters34, other Hyper-parameters

include batch size and hidden layers count.

When the Learning rate is too small then it would take too many iterations of gradient

descent in order to reach the minimal cost. When it is too big it can mean that the

gradient may never reach the minimal cost. Therefore choosing a moderate initial value

for it, like η = 0.01 or η = 0.001, and observe if the model learns35 well or not. If the

cost decrease was small with each iteration then increasing the learning rate by an order

of magnitude can help improve this, but if the cost jumps up and down then it is possible

that the learning rate is too high and it is possible that it should be decreased by an

order of magnitude. [15]

While the learning rate is recommended to have a moderate initial value, it is worth

mentioning that it is also recommended that the weights be initialized with random

values according to a distribution like the Xavier Glorot distribution.

This prevents the initial neurons activation from having extreme values36 and instead

it makes it so that the model activations have a typically ideal distribution which is a

normal distribution with a mean of nearly 0.5. The biases are typically initialized with

a zero.

At this point it is helpful to get familiar with another term, which is �Epochs�. An epoch is

basically a training iteration or a complete training cycle. An epoch represents one com-

plete training cycle in which each sample in the training dataset has had a contribution to

update the internal model parameters. The number of epochs is also a hyper-parameter

that de�nes the number times that the learning algorithm will work through the entire

training dataset before it �nishes training. And like many of a model's hyper-parameters,

34Hyper-parameters are variables of a DL model that can be modi�ed and con�gured before the start
of the training process.

35I.e., if the model's cost decreases consistently with each training iteration.
36Initially when starting the training process, initializing weights with extreme values means that the

model would have many unmerited strong opinions about the input and that can lean to wide-spread
neuron saturation and other learning obstacles and hindrances.

21

2 Fundamentals

choosing the optimal value for a particular application takes considerable amounts of trial

and error and observing the impact every change has on the model's cost.

There are �early-stopping callback functions� which are methods that automatically mon-

itor training and validation costs and stop the training early, i.e. before the total number

of epochs is reached, if they detect a pattern of increasing costs. This behavior allows

setting a relatively arbitrarily-high number of training epochs while avoiding over�tting.

Keep into consideration that over�tting describes a training consequence that takes place

when a model trains for so long to a point where it becomes too familiar and too adapted

to the training data, that it loses its ability to generalize predictions over unseen data37.

In more technical terms, it is when the training cost continues to decrease while the val-

idation cost increases. Over�tting may also indicate that a given model is too complex

for the task at hand and should be simpli�ed. [15]

There are numerous ways that help models to avoid over�tting a particular training

dataset. These methodologies include for example:

� Simply increasing the amount of training data or size of the dataset.

� Reducing the number of training epochs.

� Using an early-stopping callback function.

� Implementing dropout.

� Implementing L1/L2 regularization.

� Implementing batch normalization.

Under�tting is also a problem and it takes place when a model has to deal with too much

complexity while having too few parameters to train. [1, 5, 15, 23, 34]

2.6.5 Batch Size and Stochastic Gradient Descent

When dealing with a large quantity of training data, ordinary gradient descent may

not work because it isn't possible to �t all of the data elements in the memory RAM.

And when dealing with models with too many trainable parameters38, regular gradient

37Like the data that weren't included or available in the training dataset during the training process.
38Again, these parameters are the weights of connections in the model and the bias of each neuron

22

2 Fundamentals

Figure 2.9: Comparison of Adam to other optimization algorithms training a multi-layer
perceptron. Taken from [14]

descent would also likely be impractical and ine�ective because that would mean a lot of

processing power is required for training. [15]

A solution for these limitations is called Stochastic Gradient Descent or SGD for short.

Stochastic Gradient Descent is what is categorized as an optimizer39. It is a variation of

regular gradient descent. In this variation the training dataset is split into mini-batches40

to make gradient descent manageable and productive. [15]

The batch size is another hyper-parameter that represents the size of the aforementioned

mini-batches. It describes the number of training data points used for a given iteration

39Other popular optimizer algorithms include momentum, AdaGrad, AdaDelta, RMSprop, and Adam

which is short for adaptive momentum. Each algorithm has advantages and disadvantages but Adam
is a great deep learning optimizer that is well suited to noisy problems as it adjusts parameters sep-
arately. Adam was presented by Diederik Kingma from OpenAI and Jimmy Ba from the University
of Toronto in their 2015 ICLR paper titled �Adam: A Method for Stochastic Optimization�.

40Each mini-batch is a subset of the dataset with a number of mini-batches is equal to the total number
of data points in the dataset divided by the batch size.

23

2 Fundamentals

of the SGD and it directly a�ects the amount of memory usage of the training process.

[15]

2.6.6 The training process of Deep Learning models

To recap the knowledge base discussed so far in this document, by now it is established

that Arti�cial Neural Networks are made up of layers, each layer consists of arti�cial

neurons of a certain type each with weighted connections and a corresponding bias, the

hidden layers neurons receive weighted inputs which are summed as expressed in Equation

2.1. Thus, input data forward propagates through the model where a prediction will be

made in the output layer. That prediction is then compared to the true desired value

of that corresponding input sequence, thus producing a cost value that is desired to

be minimized and decreased by each passing epoch. Figure 2.10 demonstrates a simple

example of a shallow dense ANN.

Figure 2.10: Example of a simple small-scale dense Arti�cial Neural Network.

24

2 Fundamentals

Local minima and global minima in cost function curve

When the gradient descent �descents� over the cost curve, it is seeking the point in the

curve, called global minimum, where the cost is at its lowest possible value with regards

to the entire curve. Gradients could get stuck in what is known as a local minimum, a

point where the cost is the lowest in a given segment of the cost curve but it is not the

lowest in the entire cost curve. This problem is touched on graphically in Figure 2.11.

Figure 2.11: Example of a model's cost function curve where there exists both a local
and a global minima

Stochastic Gradient Descent or SGD helps with avoiding falling and getting stuck in a

local minima due to its randomized and shu�ed batching of the training dataset. Other

methodologies to reduce the chance of falling into local minima are explored a bit further

in later sections of this document based on their relevance to the implementation of this

work.

For example, increasing the gradient descent's step size, i.e. learning rate η, can also

help in avoiding local minima. Another example is choosing a good batch-size41, as it

is typically recommended not to go above a batch-size of 128 to decrease the chances of

being trapped in a local minima.

2.6.7 Back-propagation

SGD on its own is practically good enough to adjust a model's parameters and minimize

the cost in many types of ML models, but for DL models it is necessary to e�ciently

41A typically good initial value for batch-size is 32

25

2 Fundamentals

adjust parameters through multiple layers of neurons, each layer having a di�erent scale

of impact to the model cost. Thus DL typically partners with a technique called �Back-

propagation� that can be contrasted with forward-propagation which is the forward42

traversal of data through the model's layers in order to �nally produce the model's

prediction or output. [15]

Back-propagation carries information about the cost C backwards in reverse order, i.e.

from the output layer where the cost is calculated and then going backwards through the

model's layers, with the aim of reducing cost by adjusting neuron parameters accordingly

throughout the network model. [15]

The mathematics behind back-propagation involve partial derivative calculus. This doc-

ument's Appendix A has a back-propagation section that touches on some of that math

behind it. Keep in mind that in back-propagation, the amount by which each weight

across the network is adjusted is proportional to the cost function's gradient with regards

to that particular weight, and this adjustment is made in the aim of reducing the cost.

Back-propagation utilizes the cost to calculate the relative contribution of every single

parameter to the total cost which is represented by the cost gradient with regards to that

parameter. Then, it updates each of those parameters accordingly, increasing or decreas-

ing it depending on which is associated with a reduction of the cost, by an amount equal

to the step size from Equation 2.7. And that is how a DL network model, in an iterative

manner, reduces cost, and learns.

A fair deduction from what has been discussed so far is that the gradients that are used

to adjust the weights of a layer that is far away back from the output layer would be

very small. Thus the e�ects of back-propagation could somewhat vanishes in the early

layers far away from the source of the cost and back-propagation which is the output

layer. This phenomena is called vanishing gradients, and it is one of the problems and

obstacles that can be addressed in DL applications.

With regards to back-propagation, it can be summarized with:

1. Finding the error of the cost function δL

2. Use δL for the calculation of the derivative of the cost function with regards to the

weights in layer L

42Forward here means starting at the input layer and ending up with the output layer

26

2 Fundamentals

3. Finding δL−1 then using it to calculate the gradient of the cost function with regards

to the weights in layer L− 1

4. Repeating the process for every layer until reaching the �rst hidden layer which is

the last layer with trainable parameters

2.6.8 Number of hidden layers and number of neurons

Having more hidden layers in a given DL model allows for deeper and more complex

capacity for abstraction but it also can cause problems like vanishing gradients where

back-propagation becomes less e�ective the farther away from the output layer it goes.

This can be solved by several means but that in turn involves some trade-o�s like requiring

more hardware resources and processing power. [15]

A larger number neurons in a network model can lead to more complex learning and

pattern recognition but also would require more processing power and would take longer

to train while having too few neurons can lead to a decrease in the model's accuracy and

performance. [15]

2.6.9 Machine Vision and Convolutional Neural Network

De�nitions of the term machine vision vary, but all include the technology and methods

used to extract information from a digital image in an autonomous43 manner. [30]

In general and in many cases, it can be stated that di�erent network architecture and

structures perform di�erently in various types of applications. Table 2.2 outlines, in

general terms, each network type and the application in which it performs best.

Type of network Best-suited type of applications

Recurrent neural networks RNN Natural language processing
Generative adversarial networks GAN Visual creativity
Convolutional neural networks CNN Machine vision

Table 2.2: Some ANN types and their corresponding well-suited applications

43Autonomous here means certain types of software that are able to process and handle digital images
and extract information from them.

27

2 Fundamentals

Convolutional Nerual Networks (CNN)

It can be said that a DL network model is convolutional when it consists of at least one

convolutional hidden layer. Convolutional layer types enable a DL model to e�ciently

process spatial patterns. [15]

Visual images are structured as a two-dimensional arrays of pixels. For a colored image,

there would typically be 3 channels, e.g; RGB44, for expressing every pixel. So there

would be three two-dimensional matrices, each represents a corresponding color for the

image pixels. [15]

Dense network models can handle an image as an input, only it is required to �atten45

the image pixel data �rst so that it is possible to assign each pixel in the �attened image

vector to an input neuron. One major problem with �attening an image into a vector is

that the data loses signi�cant information about the structure of the visual image and

its spacial patterns. [15]

Inspired by biological vision, CNNs are a form of ANN adaptation to be able to better

deal with visual imagery.

Convolutional layers

Convolutional layers consist of sets of kernels or �lters. Every kernel is a sub-window

that scans across an image from top left to bottom right, and it is made up of weights

which, as in dense layers, are learned through back-propagation. Kernels typically vary

in size but common sizes are (3 × 3) and (5 × 5) and thus a (3 × 3) kernel for an RGB

image would have (3× 3× 3) weights. [15]

As demonstrated in Figure 2.12, kernel weights do not change value as the kernel moves

across an image but instead they are shared across all the inputs which are an image

sub-window of pixels. This means that convolutional layers have orders of magnitude less

weights than a dense layer. The output of a kernel is made up of all kernel activations46,

and it is arranged as a 2-D array. [15]

44RGB signify the three colors Red, Green, and Blue, each one having its dedicated channel for each
pixel.

45A 2-D matrix can be ��attened� into a 1-D matrix, which is a vector
46And that is why a kernel output is called an �Activation Map�

28

2 Fundamentals

Figure 2.12: Example of a convolutional layer kernel with an RGB image. [15]

Typically, there would be multiple kernels for each conv-layer, each allowing the network

to learn a representation of the data in a unique way. For example, a �lter that responds

optimally to vertical lines or color transitions would produce a large activation value a

when it detects those features in the sub-window of the image. [15]

As the network model gets deeper having more layers, those �lters in the convolutional

layers react to more complex combinations of the preceding layer's simpler features,

learning to represent increasingly abstract spacial and color patterns until the �nal layers

have the ability to recognize entire objects.

The number of �lters in each convolutional layer, similar to the number of neurons in a

dense layer, is a model hyper-parameter. Other CNN hyper-parameters are:

1. Kernel size: a common size is 3× 3.

29

2 Fundamentals

2. Stride length or step length: this hyper-parameter refers to the size of the step that

the kernel takes as it moves across an image.

3. Padding: along with the stride, it plays a role keeping the ratio between the image

size, the �lter size, and the step size so that the �lter doesn't �over�ow� over the

image edge and thus padding adds neutral (or zero) values. This is expressed in

equations 2.8 and 2.9 where the activation map needs to be a valid value, i.e. an

even integer.

Wa =
Wi − F + 2P

S
+ 1 (2.8)

where:

Wa : width of activation map

Wi : width dimension of an image

F : size of kernel

P : amount of padding

S : stride length

Ha =
Hi − F + 2P

S
+ 1 (2.9)

where:

Ha : height of activation map

Hi : height dimension of an image

F : size of kernel

P : amount of padding

S : stride length

Pooling Layers

A convolutional layer can have any number of kernels, each producing an activation map

and thus the output of a convolutional layer is a 3-D array of activation maps with the

depth re�ecting the number of kernels in the layer. [15]

Pooling layers work hand in hand with convolutional layer, helping to reduce the overall

count of parameters as well as complexity, thereby speeding up computation and helping

with avoiding over�tting. [15]

30

2 Fundamentals

Figure 2.13: Example of a convolutional layer's activation map with an RGB image. [15]

Pooling layers also have a stride length and �lter size, and these �lters also slide over its

input, applying data-reduction operations.

Pooling layers most often use the max operation, retaining the largest value in its sub-

window as in Figure 2.14 where the stride is 2 × 2 for horizontal and vertical strides.

There is also average pooling and other types of pooling.

Figure 2.14: Example of a pooling layer. [15]

31

2 Fundamentals

Back-propagation and CNNs

During training, CNNs keep track of the index of the max value in each forward pass,

such that the gradient for that particular weight is back-propagated properly and is used

to update and modify the correct parameters. It is common to have a group of two or

three consecutive convolutional layers followed by a pooling layer, all culminating into

conv-pool blocks which can be repeated several times. It is also typical to have these

conv-pool blocks culminate into a dense hidden layer, or a several of them, and ends with

the output layer. [15]

Object Detection

In Deep Learning general terms, object detection aims at �nding where objects are.

Contrast that with object classi�cation which aims at �nding what are the detected

objects and classify them. The list for the famous object detection and classi�cation

models include R-CNN [11], faster R-CNN [20], and YOLO [19].

2.6.10 Widely-used Deep Learning Libraries

Some of the most widely-used frameworks and libraries for deep learning are:

1. Tensor�ow47: best-known and most widely-used, developed by Google who later

made it open-source.

2. Keras48: uses Tensor�ow in the background and thus focusing on more user-

friendly development.

3. pyTorch49: developed by Facebook and is strictly limited to python.

4. MxNet50: developed by Amazon.

5. CNTK 51: Microsoft's cognitive toolkit.

47https://www.tensor�ow.org/
48https://keras.io/
49https://pytorch.org/
50https://mxnet.apache.org
51https://docs.microsoft.com/en-us/cognitive-toolkit/

32

2 Fundamentals

As always, there is a multitude of other topics to talk about when discussing Deep

Learning such as Residual Networks and Residual connections and Transfer Learning but

for the scope of this document, only networks that are relevant to image classi�cation

are explored.

33

3 Requirements Analysis

This chapter is concerned with the requirement analysis of the application. A de�nition

for requirement analysis can be taken directly from wikipedia.org1: �In systems/software

engineering, requirement analysis focuses on the tasks that determine the needs or con-

ditions to meet the new or altered product or project�. In other words, it is a way for

engineers to develop systems/software in accordance with speci�c standards, criterion,

and functionality in a concise informative structure [26]. It is a process used to determine

the needs that a system should meet to achieve a particular task. Requirements also vary

in type, such as functional requirements and non-functional requirements, and they in-

clude what is known as stakeholder requirements in addition to use case diagrams[16].

3.1 System context

A system context describes the environmental factors that may a�ect the performance

and behavior of a system. Figure 3.1 clearly de�nes lighting conditions and a resistor's

distance from the camera as environmental factors that could have an in�uence over the

performance of the system.

De�ning a system context is also helpful for the development process, as it gives the

developer the ability to carry out the construction of a system while taking into consid-

eration the possible hurdles or obstructions that a given system could encounter when

put in practical use.

1https://en.wikipedia.org/wiki/Requirements_analysis - date: 20/May/2022

34

3 Requirements Analysis

Figure 3.1: An outline of the system context

3.2 Stakeholders

When designing software, identifying the stakeholders and their speci�c requirements,

that are involved in the behaviour of the application. It is an essential part of the

requirement analysis phase of development [26].

This stakeholder analysis de�nes the possible users who have a vested interest in the

system's development and those who directly interact with the application [26].

Taking into consideration the signi�cance of each requirement to the functionality of the

application, a list of the system's stakeholders is formalized in Table 3.1.

Stakeholder Interest

Users The system can be used for research purposes and it
can be functionally expandable, improved, and built
upon. Also a reliable system performance that enables
users to classify resistors e�ciently

The Developer The creator of this software has a direct interest in the
applications success, e�ciency, portability, maintain-
ability and ability to be upgraded

The Supervising Professors The supervising examiner Prof. Dr. Hensel has a di-
rect interest in AI and its applications on Android,
in addition to the re-usability of the software compo-
nents. The supervisor also has an interest in acquiring
a well-documented foundation for future thesis

Table 3.1: Stakeholder Analysis

35

3 Requirements Analysis

3.3 Overview of use case analysis

Use case analysis is a technique used to identify the functional requirements of a system

and to de�ne the ways in which an system is used. The use case analysis is the foun-

dation upon which the system will be built and the primary form for gathering usage

requirements for a new software program or task to be completed. The primary goals of

a use case analysis are: designing a system from the user's perspective, communicating

system behavior in the user's terms, and specifying all externally visible behaviors.2

In this section, a clear analysis of the usage of the application will be carried out. Chapter

4 lays out in more detail the methodology behind implementing the design which achieves

the use-cases and other requirements outlined in this chapter.

Figure 3.2: Use Case Diagram of the application's basic functionality

As shown in Figure 3.2, From the user's perspective, the only interactions/use-cases that

a user of the application can carry out are �rstly initiating an image capture by clicking

the dedicated button in the UI and secondly reading the resulting evaluation of the image

by the application via the dedicated label display area in the UI. The resulting use case

analysis is relatively simple as the only user-level functionality is taking a picture of a

resistor to predict its value and display it on the UI.

2https://en.wikipedia.org/wiki/Use-case_analysis - visited on: 20/May/2022

36

3 Requirements Analysis

3.4 Functional and non-functional requirements overview

In software systems engineering, it can be helpful to categorize di�erent requirements

based on some criteria in order to acquire a more detailed understanding of our system

and how to go about developing and implementing it. The two main types of requirements

are functional and non-functional requirements, and both are utilized as categories here

for the requirements analysis of the system.

Functional requirements de�ne particular functionality of the system, While non-functional

requirements de�ne the overall characteristics such as cost and reliability[26].

This section describes those distinctions and provides the requirement analysis of the

overall system of this thesis.

3.4.1 Functional requirements

Functional requirements are tightly connected with the use cases of the system. Func-

tional requirements de�nes a function of a system, where a function is described as a

speci�ed behavior between inputs and outputs. Functional requirements may involve

calculations, data manipulation3.

3.4.2 Non-functional requirements

Non-functional requirements are another component of requirement analysis. It speci�es

the metrics that can be used to evaluate the operation of a system4.

3.5 De�ning the system's requirements

This section employs the de�nitions from Section 3.4 for the purpose of concretely de�ning

the systems requirements. Table 3.2 serves exactly this purpose as it culminates the main

requirements of the application into the two requirements categories from Section 3.4.

3https://en.wikipedia.org/wiki/Functional_requirement - date: 22/May/2022
4https://en.wikipedia.org/wiki/Non-functional_requirement - date: 22/May/2022

37

3 Requirements Analysis

Functional requirements Non-functional requirements

System must be able to produce an
image frame from camera feed

System must be able to display the
top three results within two seconds

System must be able to detect a sin-
gle E24 series resistor located in the
camera frames

System must be easily scalable and
maintainable

System must be able to classify
detected resistors into their corre-
sponding value

System must run on an Android de-
vice with an API level of 25 or
above to balance between new de-
velopment features and compatibil-
ity with older devices

System must be able to display a
detected resistor's predicted value
along with the certainty of the pre-
diction on the UI for the user to read

System must maintain a minimum
prediction accuracy of 90%

System must have a UI that provides
the user with a brief usage guide
and a button to initiate camera feed
and evaluation process and display-
ing evaluation results on UI

System must be able to process the
produces frames before the evalua-
tion process

Table 3.2: Requirements analysis overview

38

4 Concept and Design

This chapter outlines the conceptual blueprint for implementing the system as well as

utilizing the theoretical foundation that was researched and collected in Chapter 2 in

order to put together a conceptual design for the system. A design that would enable it

to achieve the requirements laid out in Chapter 3.

4.1 Design �ow

This section demonstrates an overview of the general �ow of the design that is being

implemented and some of the reasoning behind it.

� The application runs on an Android device with an API level of 25 or above. The

development process is carried out by using the Java programming language with

the Android Studio IDE for constructing the UI, binding events to actions, and

handling the communication with the Android operating system and its hardware.

� The UI contains some usage instructions for the application in text form in addition

to an interactive button that will trigger a request to start the camera. Then, the

application will be able to access the Android Camera Interface and relay the frames

to the application's Native1 library.

� The native library of the application processes the incoming frames received from

the Java wrapper into RGB bitmaps so the pixels can then be fed back to the Java

part for the DL model's evaluation.

� After evaluation, the results returned to the user by the application's UI is the

DL model's top three predicted values of the resistor, and how much is the model

certain about its prediction.

1Native here means written in a di�erent programming language wrapped in Java

39

4 Concept and Design

� The DL model itself is built and trained in Python using a Machine Learning

framework or library.

4.2 Development Environment

Developing any software needs certain environments to edit, compile, and build the dif-

ferent code components. Software that provide these functionalities are called �Integrated

Development Environment� or IDE.

The development process can take place in a more �raw� manner, i.e. without using an

IDE, by using any code/text editor and install the dependencies and do what a modern

IDE does manually. But of course this would make the development process take more

time and e�ort to carry out.

An IDE provides many development-related tools, libraries, and frameworks in one

Graphical User Interface. This enables the developer to focus more on the code itself,

and thus, since the application around-which this work revolves has multiple software

components2, two IDEs were utilized:

1. Android Studio for developing the Android application's User Interface: The most

widely used IDE when it comes to Android development. It was developed by

Google as a fork of the infamous IntelliJ IDE from JetBrains. It provides a package

manager that simpli�es dependency installation and it supports hosting Android

Emulators which are crucial for testing purposes [2].3

2. For this work, the desired development environment was a a local one. The Win-

dows Powershell was used in administrator mode as a terminal to run various

commands and as a running environment for training along with the pip Python

package manager which was used to download dependencies like Tensor�ow. Mi-

crosoft Visual Studio Code editor was utilized to write the python code that con-

structs and trains the model. Another IDE can be utilized, Anaconda for example.

But developing and training the model of this work doesn't include a lot of debug-

ging and the developer chose the lighter and simpler Microsoft Visual Studio Code.

It is useful to also mention the relevant local development hardware and system as

well:

2Such as the DL model and the Android application that is going to communicate with it
3The version used is: Android Studio Chipmunk | 2021.2.1

40

4 Concept and Design

� Operating System: Microsoft Windows 10 v21H2 64-bit Operating system,

x64-based processor.

� Processor: NVIDIA GeForce GTX 1060 with 6 GigaByte of dedicated RAM.4

It signi�cantly cuts training time to use a GPU instead of a CPU. In fact, for this work,

the time saved was 31.4%.

Google Colab can conveniently be used for developing the Deep Learning model: A Google

Research product and it is a dedicated online IDE tailored for building and running

Python code. It is also especially well-suited to Machine Learning applications5.

There are of course many other alternative IDEs, such as Mircosoft Visual Studio or

Eclipse. Mircosoft Visual Studio in particular has a big developer community behind it,

in addition to direct support for several programming languages like C/C++, Python,

and Java. The main reason why this work was implemented using Android Studio over

Mircosoft Visual Studio is because for Android development, Android Studio has signi�-

cantly higher support. But both can be really helpful and reliable for programmers. The

author of this work also had more Android development familiarity with Android Studio

therefore it was the choice.

4.3 Programming languages, libraries, and frameworks

Chapter 2 gave a theoretical overview of the terms and topics that are in some way

or another a part of the system that this work aims to create. This section outlines

the programming languages that were chosen to be a part of the implementation of

the software which realizes the requirements laid out in Chapter 3. It will also discuss

the reasons behind choosing one programming language over another, in addition to

discussing some of the possible alternatives.

Figure 4.1 describes the design that was chosen by the developer to carry out the devel-

opment of the Android application.

All these components will be later explained in this chapter.

4GPU speci�cations url:
https://www.nvidia.com/en-gb/geforce/graphics-cards/geforce-gtx-1060/speci�cations/

5link to the webapp: https://colab.research.google.com/

41

4 Concept and Design

Figure 4.1: A visualized design of the application.

4.3.1 Python

When dealing with a certain complex or research-oriented applications such as the case

with machine learning or deep learning, it becomes considerably helpful when using tools

and higher-level languages and frameworks that facilitates the development process. But

as with most software, the same systems can be developed with several languages, but

opting for development using a low-level language, for example, can make the entire

process unnecessarily more complex, di�cult, and time consuming.

Python is a high-level programming language with dynamic semantics. Its high-level

built-in data structures, combined with dynamic typing and dynamic binding, make it

very attractive for rapid application development, as well as for use as a scripting or glue

language to connect existing components together. Python's simple, easy to learn syntax

emphasizes readability and therefore reduces the cost of program maintenance. [10]

For the purposes and requirements of this work, Python was the most compelling pick for

building and training the DL model that is responsible for evaluating the input images.

42

4 Concept and Design

Reasons for picking Python for the Deep Learning model development

1. Python has a simple syntax and a great readability, thus it is relatively easy to

learn and use.

2. Python's boasts an extremely high-level structure and compilation environment,

meaning that it allows a developer to focus more on the design �ow and less on

writing high-level function to compensate for the lack of them in other programming

languages.

3. Python has a big vibrant community behind it, especially in research domains due

to its syntactical simplicity. This helps in �nding more technical support online or

in academia when faced with a problem during development.

4. Python comes with a set of libraries6 which make Python very suitable to handle

and manipulate di�erent data types like images. This, among the other reasons,

explains why Python is widely used in research and in data science today.

5. Support for a large variety of DL libraries.

6. Python is a scripting language, meaning it can automate tasks execution in a

runtime system. Therefore, scripting languages are usually interpreted at runtime

rather than compiled.

The Python version used for this work is Version: Python 3.9.13. The relevant a�liated

libraries and frameworks used will be mentioned because the compatibility between the

versions used is relatively strict. For example, the local device's GPU was not detectable

and therefore not usable by the interpreter while using the latest versions of the di�erent

libraries involved, speci�cally Cudnn/Cuda, Tensor�ow, and Python. The versions used

were:

1. Python 3.9.13

2. Tensor�ow 2.9.1

3. Tensor�ow-gpu 2.6.0

4. Keras 2.9.0

6Such as the NumPy mathematical library, and the matplotlib for graphs and plots

43

4 Concept and Design

5. Nvidia Cuda 11.7.0 7

6. NumPy 1.22.4

4.3.2 C++

C++ is a general-purpose programming language. It has imperative, object oriented

and generic programming features, while also providing facilities for low-level memory

manipulation. The C++ programming language was designed and implemented by the

Danish computer scientist Bjarne Stroustrup and it emphasizes performance and e�-

ciency at execution time in addition to deeper control over devices hardware resources.

[6, 24, 27]

The purpose behind introducing C++ into this work's development process is due to the

work author's personal preference and interest in promoting C++ and contributing to

its community, in addition to making use of its execution speed and its capable image

processing and machine learning libraries such asOpenCV and Tensor�ow respectively.

The C++ part of this work is there to e�ciently host and run the image processing

functions. In this case, this means converting and reshaping the Java Image datatype

into an RGB Bitmap in order to be able to feed the pixels to the DL model. This way,

the C++ section of the code plays the role of e�ciently processing the Java frames.

The C++ part of this project is also encapsulated with the Java Native Development

Kit or NDK, implementing the JNI or Java Native Interface in order to establish the

connection between the two languages. This is visualized in Figure 4.1.

The Clang compiler was used for compiling the C++ part of this work.

4.3.3 Java

Java is a high-level, class-based, object oriented programming language. It was the

o�cial preferred language for Android development until May 2019 when Kotlin8 was

introduced by Google. [2, 18]

7Cudnn, which exists within the Nvidia Cuda toolkit, is a GPU-accelerated library that allows for using
GPU for the training process.

8Which is largely very similar to Java

44

4 Concept and Design

Java was chosen for this work to be the development language of the Android application

instead of Kotlin because the author of the work has some previous experience in working

with Java. Java also provides the previously mentioned JNI which, in the context of

the application at hand, allows for the outsourcing of the most processing-intensive part

of the application which is the image processing part and enables the utilization of the

C/C++ high execution speed, making the entire application more e�cient performance-

wise.

For this application, the Tensor�ow Lite mobile library was used for deploying or hosting

tensor�ow models on mobile devices.

The local Java Development Kit or JDK installed is JDK 18.0.1.1 and the application

was developed for a target Android API of level 25 or above.

4.3.4 Alternatives

For Machine Learning and Deep Learning applications, the options are becoming more

numerous as time goes by. Java is another popular option, Javascript, and of course

C/C++.

The choice of which programming language, or which combination of them, to be used

in the development of software is in many cases adaptive and dynamic, and can in some

applications just boils down to personal preference and experience.

4.3.5 Dataset

An essential part of any DL model training is the dataset used. For this particular

application, no reliable dataset was found online therefore a dataset had to be created.

The images should be taken from di�erent angles, positions, and lighting conditions in

order to reduce the chances of over�tting and increase the capacity for generalization.

Images of the dataset can have di�erent formats, colored or grayscale depending on the

application, but for the purposes of this thesis RGB formats are necessary because the

classi�cation takes place on the bases of the colored stripes on a given resistor.

In the next Chapter 5, the creation of the dataset will be further discussed.

45

4 Concept and Design

4.3.6 Approach

Several approaches can be applied to tackle the image classi�cation problem at hand.

Using a pre-trained model within a transfer learning paradigm that can identify and

crop the relevant part of an image in order for our model to be trained on classifying

the output of such models. The author opted not to use such pre-trained models and

instead train a CNN model to handle the images as inputs directly and make predictions

based on it. This decision was made because the developer wanted to explore how well a

plain convolutional network can perform in the given task without external interference

or simpli�cation.

Figure 4.2 outlines some of the possible approaches mentioned earlier in this section. Keep

in mind that CNNs can have dense layers as �nal layers that are responsible for classifying

a �attened input coming from convolutional layers. In such cases, the convolutional

layers are responsible for feature extraction while the �nal dense layers are responsible

for classifying the convolutional layers �attened output.

CNN

YOLO

YOLO CNN

Classi�cation Ω

Classi�cation Ω

Bounding box
Classi�cation Ω

Figure 4.2: Some possible approaches for implementing the application.

46

5 Implementation

Achieving the requirements of this thesis can be done in many di�erent ways using various

tools, designs, and approaches. But in the circumstances of a thesis, such as the time

and hardware and other resource limitations, several trade-o�s had to be made and a

speci�c approach was devised.

5.1 Training

This section demonstrates the technical and practical steps that are relevant to the

creation of the dataset and developing the model that will train using the produced

dataset.

5.1.1 Creation of the dataset

For training the network model, a labeled resistor images dataset had to be used, and

because no dependable one could be found online a new dataset had to be produced.

The createDataset.py Python script was used to serve this purpose as it allows for the

capturing of images and saving them to the hard disk.

The script creates folders named with the corresponding resistor value because it is a

convention that the folder names for the di�erent classi�cation classes correspond to the

labels and thus the resistor values.

The script uses the OpenCV Python library's default capture resolution for the images

and that resolution is (width, height) = (640, 480). This resolution is relatively large

for a typical deep learning model input and thus this particular issue later proved to

be a signi�cant factor in further limiting the development and training options and

characteristics.

47

5 Implementation

Figure 5.1: Sample images of 150 Ω resistor from the produced dataset.

The camera used to capture those images was a typical laptop's embedded webcam and

this is suspected to be a major factor in the low quality of the captured images of the

dataset, along with less signi�cant factors like the developer's need for a relatively large

number of images in a short amount of time.

A good and e�ective training process depends on a good quality and a well engineered

dataset, therefore dataset preparation is by itself a large topic to dive into. With this

application as an example, engineering some �noise� in the captured images can result

in a more �healthy� training process and can lead to better results as it allows for better

capacity for generalization among other things. But having too much noise in a dataset

is a recipe for a failed training.

Figure 5.1 demonstrates a selection of sample images from the produced dataset.

As Figure 5.1 outlines, images vary in lighting conditions, distance from camera, back-

ground, and rotation. With about 32000 thousand images in the produced dataset, this

can have a good impact on the model's ability to generalize.

48

5 Implementation

5.1.2 Model development

For this work's DL model's training all the factors mentioned above were very clearly

manifested in the dataset and training performance for several di�erent models1. The

total number of images produced was close to 44,000 images, which was later reduced to

about 32,000 after removing particularly noisy and vague images. Within every classi�-

cation class, i.e. for every single folder in the dataset, the images were taken with di�er-

ent angles, backgrounds, zoom, and lighting conditions in order to reduce the chances of

over�tting and increase the capacity for generalization. The dataset's training/validation

split was 75%/25% respectively in accordance with deep learning conventions and rec-

ommendations laid out in [15]. The end result as far as this dataset goes, was enough to

get some relatively acceptable results but the author of this work has doubts about the

impact of the shortcomings of this dataset on the �real� and practical performance of the

model within the Android app.

A training script was devised as well called model-trainer.py which contains:

1. The Python code that constructs the network model using Keras and compiles it.

2. Dataset handling and other dataset operations like data augmentation as shown in

Figure 5.2.

3. The training code along with training con�gurations and callbacks. Figure 5.3

outlines this part of the script.

4. The code which is responsible for saving the model and converting it to a .t�ite �le

in order for it to be imported and used in the Android application. This part is

shown in Figure 5.4.

Hyper-parameters were initially chosen in accordance with the general guidelines of DL

model development online and in [15].

� The learning rate was chosen to be η = 0.001 which is the default learning rate for

the Adam optimizer that was used in all trained models. The value of the learning

rate was reduced by an order of magnitude when model 1 performance was not

improving as desired. This reduction to η = 0.0001 made a 17% improvement in

validation accuracy for model 2 as can be seen in Figure 5.5.

1Several models were trained for this work in the process of �nding the best �t

49

5 Implementation

Figure 5.2: Code snippet for data handling and preparation in model-trainer.py script.

� Introducing batch normalization and optimizing its momentum caused a further

11% increase in validation accuracy as shown in Figure 5.6.

� Data augmentation, i.e. random rotation, reconstrast, �ipping, and zoom, further

improved the validation accuracy by about 16%. This was coupled with optimizing

normalization momentum and batch size from 16 to 24 in order for a more e�ective

batch normalization process. The improvement can be seen in Figure 5.7.

� ReduceLROnPlatue callback was introduced inmodel 9 and it increased the model's

validation accuracy by about 4%. Figure 5.8 demonstrates this for model 9.

� The resulting validation accuracy after model 9 started stagnating around the 90%

mark. Changes to the model's structure, resolution, and hyper-parameters like the

learning rate, batch size, and number of epochs produced no noticeable improve-

ment. This can be seen in Figure 5.9.

50

5 Implementation

Figure 5.3: Code snippet for model �tting and callbacks in model-trainer.py script.

Figure 5.4: Code snippet for the model saving process in model-trainer.py script.

The training process is initiated by a Windows Powershell with administrator permis-

sions. The cd or change directory command can be used to access the project folder where

the resistors folder that contains the dataset is located along with the model-trainer.py

training script. Then, the training process is launched by typing the command Python

model-trainer.py.

51

5 Implementation

(a) Model 1 (b) Model 2

Figure 5.5: Model 1 and 2 accuracy plot comparison

(a) Model 3 (b) Model 7

Figure 5.6: Model 3 and 7 accuracy plot comparison

The amount of time that training the model takes can vary according to several factors

like hardware, number of parameters, and the size and type of the dataset. On average,

and in the context of this work, a single epoch of training was about 20 minutes.

When the training process is concluded, the script automatically saves the model and

further information, e.g regarding weights and other parameters, in the project path

or directory. The saving takes place in several formats for the model: The default

one, the .h5 format, and the .t�ite format which can be imported and used in Android

applications.

52

5 Implementation

(a) Model 5 (b) Model 8

Figure 5.7: Model 5 and 8 accuracy plot comparison

(a) Accuracy plot (b) Loss plot

Figure 5.8: Model 9 accuracy and loss plots

Appendix A.2 draws some comparison between the trained models and provides each

model's summary, accuracy plot, and loss plot. The developer followed the recommen-

dations laid out in Chapter 2. Models were trained sequentially starting with model 1 as

the �rst trained model, model 2 was second, and so on.

Observations that the developer had during the training of the models are:

� Batch normalization was introduced starting with model 7 to every conv-pool block

before the pooling layer. It had a positive impact on the validation accuracy of the

trained models. It is di�cult to precisely measure the improvement but contrasting

53

5 Implementation

(a) Model 10 (b) Model 11

(c) Model 12 (d) Model 13

Figure 5.9: Model 10, 11, 12, and 13 accuracy plot comparison

model 6 and model 7, the improvement was about 10%. An important note is that

batch normalization is not e�ective when using small batch sizes such as a batch

size of 8 because it relies on calculating the mean and standard deviation of every

batch, thus the larger the batch size the better normalization metrics are. [23]

� Randomly augmented data was introduced to the dataset starting from model 9.

The developer couldn't observe any noticeable impact on the performance of the

models that it was applied to. But like creating the dataset, data augmentation

should be carefully planned and implemented.

� Dropout was also introduced in model 13 and it had no signi�cant impact on the

performance of the model in comparison to remaining models.

54

5 Implementation

� The developer observed a relationship between over�tting, total number of training

epochs, and the learning rate. This relationship is not concrete and it could be a

result of correlation by the developer. The relationship is that when a model is

trained with a high number of training epochs while having a large learning rate like

0.01, chances of bad performance and over�tting occurring are increased especially

when the model is too complex or has a large number of trainable parameters.

� The optimal range for the number of trainable parameters in a model that was

observed by the developer for the application of this thesis is between 300, 000 and

1, 500, 000.

Utilizing batch normalization and dropout can sometimes necessitate increasing the total

number of epochs or the learning rate or both. This is because those two techniques play

a role in avoiding over�tting and increasing a model's ability to generalize over unseen

data by trimming the amount of learning done by the model so it doesn't obtain a strong

�opinion� in a single training epoch.

5.2 Integration into the Android application

Embedding the trained model into the Android application involves using the .t�ite

model �le format and including it in the project's path. Android Studio makes this

process extremely straightforward. After the inclusion of the model �le, it is treated as a

Java class object and allows the developer to pass processed RGB Bitmap images to the

model and then access the results or output of the evaluation carried out by the model

as shown in Figure 5.10.

From the requirements laid out in Chapter 3, there were many di�erent design options

to implement the functionality that achieves those requirements. The chosen design was

as follows: Figure 5.11 is the class diagram for this application. It outlines the methods

and member functions relevant to the core functionality of the application.

Some visualization helps with understanding the structure and functionality of the system

so a class diagram for the system will be provided in Figure 5.11 and an activity diagram

will be provided in Figure 5.12.

55

5 Implementation

Figure 5.10: Code snippet for model access in CameraAccessActivity.java class.

� MainActivity.java class: contains the main root of the application, in addition

to the necessary functions that would be called in its corresponding activity_-

main.xml which is the �le responsible for the visual markup design and layout of the

corresponding java class �le i.e. this �le represents the main UI. The UI contains a

greeting activity with some instructional text and a button called �Open Camera�

which, when clicked, con�gures and initializes the camera by creating an intent

for it, and requests the necessary permissions for using the device's camera, then

it takes the user to the activity responsible for the resistor classi�cation process,

and that activity is CameraAccessActivity.java and its corresponding markup �le

activity_camera_access.xml.

� CameraAccessActivity.java class: contains the functions that are relevant to the

classi�cation process and operating the camera. Its corresponding markup �le

activity_camera_access.xml contains the top three results text element along with

a camera preview element that will display the camera view feed on the UI. The

critical methods that are concerned with the classi�cation process are:

1. bindImageAnalysis: sets up and initializes the camera and creates a camera

view and binds it with a �camera view preview� which exists in the markup �le

activity_camera_access.xml. It also creates and binds an image analysis �use

case� to the functionality in order to allow for operations on the frames coming

from the camera feed. This function also calls the functions �toBitmap� which

56

5 Implementation

Figure 5.11: Class diagram of the Android application with relevant methods.

is responsible for image conversion into RGB bitmaps, and the �classifyImage�

function which is responsible for classifying the processed images.

2. toBitmap: takes an �Image� type and returns a converted RGB bitmap after

calling a native C++ image processing function in the native-lib.cpp native

library �le. It is worth mentioning that the native library here carries out the

calculations in place in RAM.

3. classifyImage: this method instantiates a t�ite object and creates the neces-

sary �bytebu�ers� to allow communication with the deep learning model so

it can be utilized to classify images. After feeding images to the model and

receiving the results back, the method then will display the results on the UI

through the bound text view after qualifying the con�dence level of the model

in its choices.

57

5 Implementation

� native-lib.cpp: The application's native C++ part is represented in this library.

It implements the Java Native Interface or JNI and it is linked with the Camer-

aAccessActivity.java class. The library contains the functions that are relevant for

converting Image data type frame coming from the camera feed to an RGB Bitmap.

All calculations relevant to a frame's pixel data are done in memory directly, i.e.

in place.

Figure 5.12 visually describes the steps in the application's functionality in an activity

diagram. It abstractly outlines the steps that the application takes when the user opens

the camera feed and starts the classi�cation process.

It is worth noting that a single classi�cation loop, shown in Figure 5.12, achieves the

requirement from Chapter 3 which states that the application should classify an image

within two seconds. In the case of the testing Android device2 this classi�cation process

takes milliseconds for a classi�cation cycle to be concluded.

It should be mentioned that as with the rest of modern software development, Android

development involves stating required permissions in the Android manifest markup �le

and the dependencies and build con�gurations for the Gradle build tool that is used to

build the application. Of course, Android Studio makes it so that build-related processes

such as this process or the native code building and linking become signi�cantly more

straightforward.

Figure 5.13 demonstrates snapshots directly from the Android application GUI. It helps

to visualize the �nal shape of the application on an Android device.

2Huawei nova 5T

58

5 Implementation

Figure 5.12: Activity diagram of the Android application.

59

5 Implementation

(a) Welcome GUI (b) Classi�cation GUI with no re-
sistor detected

(c) Classi�cation GUI with a re-
sistor detected

Figure 5.13: Snapshots of the application running on an Android device.

60

6 Project results, insights, and conclusions

In this chapter, some of the developer's/author's evaluations, conclusions, and learned ex-

periences will be discussed. Where does the developer believe that there can be room for

improvement, what alternatives can be utilized to enhance and expand the application,

and what are some of the shortcomings, mistakes, limitations, problems, and obstacles

faced during the development process and where do they originate. In addition, to what

extent the developer thinks those problems are solvable or avoidable or reducible and if

so then how.

As mentioned previously on several occasions in this documentation, the main problem

for development was the developer's lack of experience in both pillar topics of this work,

which are Android development and deep learning. There is also time management issues

and student status elated issues as well, but the discussion of problems in this chapter

will not reiterate this and will focus on the more technical aspects of the development

conclusions.

6.1 The training process

Developing and training the model are the main pillars of this work, and this documen-

tation correspondingly focuses on that process. This section will explore the developer's

main conclusions regarding the training process.

Throughout the training part of this work, several models were trained. The models vary

in accuracy, number of parameters, resolution, learning rate, structure, callbacks, and

techniques used such as batch normalization, data augmentation, and dropout. Each

trained model's summary along with its accuracy and loss plots are brie�y demonstrated

and discussed in appendix Section A.2.

61

6 Project results, insights, and conclusions

6.1.1 Problems

The main issues regarding training the deep learning model in Python were:

1. The large number of options and choices to implement, build, and train a deep

learning model was at �rst a disadvantage because it makes it di�cult to be rela-

tively certain about the e�cacy of the chosen development choices.

2. The complex nature of a successful training process for a deep learning model.

3. Computer vision applications for deep learning means that the training process

will become signi�cantly more resource-expensive and will take a lot more time to

be concluded. This also introduces obstacles and issues that are not necessarily

there in other types of deep learning applications because images are particularly

resource-expensive when it comes to data types. This limits the available options

for development even further, this work being in the context of a Bachelor thesis

with limited and relatively short amount of time.

4. Progress is relatively slow because the e�ects and results of training can only be

properly observed and evaluated after the training is over, making model enhance-

ments take large amounts of time to manifest.

5. The training was done with Keras in Python and compared to other frameworks it

is relatively well-documented and has a larger online community than others, but

it can help if this community was even larger and more active.

6. The limited resources, hardware and other types, that were available during training

was a noticeable issue.

7. The relatively strict nature of frameworks compatibility was a major obstacle in

the beginning and it made preparing the development environment unnecessarily

more di�cult.

8. The still unexplained variation between the model's validation accuracy during

training and the real practical accuracy when integrated into the Android applica-

tion. Although the author speculates that this divergence between the validation

accuracy and the real practical accuracy of the model is mainly due to the bad

quality of the dataset used, i.e. the camera used for the creation of the dataset

di�ered signi�cantly from the camera of the testing Android device. It could be

62

6 Project results, insights, and conclusions

worth noting that the testing device's camera produces images with signi�cantly

better quality than that of the camera that was used to create the dataset.

6.1.2 Insights

This section will layout some of the author's insights regarding the training process,

although currently many of these insights can only be based on rational speculation.

� Regarding the discrepancy between validation accuracy during training and real

practical accuracy in the application, it is believed that the main reason behind

it is the low quality of the dataset, whether it is too much noise or the images

themselves were of bad quality or unrecognizable.

� As mentioned previously in this chapter, the image-related nature of the application

imposes limitations, some of which are solvable by simply using a more powerful,

higher-performance device to train the model. This alone can cut training time

signi�cantly and thus allows for more time for development.

� Using a better camera, technique, and better lighting conditions in the dataset

creation process could've played a major role in improving practical accuracy and

performance altogether.

� Training a model using C++ wouldn't have an impact on training time. This is

because Tensor�ow and the Python code call C++ libraries thus taking advantage

of its high execution speed.

� The models built and trained by the developer varied in architecture and structure,

and in the number of parameters involved. The developer in this regard was limited

to a maximum of several million parameters otherwise the system would run out

of GPU memory and crash.

� Having the resolution of input images during training equaling half or even less1 of

the currently used 640×480 resolution can greatly a�ect the training e�ciency and

allows for more room for the developer to maneuver and further manipulate the

model's architecture and number of parameters. This can be done by processing the

images, using for example an image processing library like OpenCV or a previously

trained transfer learning model, and down-scaling them or simply cropping the

1A typical image size for deep learning models is 224 × 224.

63

6 Project results, insights, and conclusions

relevant parts of the image, resulting in images that contains a higher portion of

relevant information that the model can learn and use to predict. It should be noted

that changing the resolution or size of the model's input must be accompanied in

carrying out the same transformation in the Android application as well.

� Instead of using RGB image format, perhaps using a more condensed and less

scattered representation or format like the Hue2 color channel, can o�er the model

the information in a more consolidated manner and that can have a positive impact

on the e�cacy of the training process, reducing training time and number of model

parameters.

6.2 The Android application

The Android development part of this work was not as vague and foggy as it was the case

for training the deep learning model. It relied more on traditional software development

and thus the developer could manage the development process in a more structured

manner.

6.2.1 Problems

The Android development process was not without obstacles and issues, some of which

are the following:

1. Google dubbing Java as not being the o�cial supported language of Android devel-

opment anymore and replacing it with Kotlin had a big impact on modern Android

development using Java. Less documentation and support content, and a smaller

online community made development unnecessarily complicated.

2. The performance3 of the application was acceptable but it is clear that there is still

room for improvement.

2Hue format can typically be represented by a single number, often corresponding to an angular position
around a neutral point or axis on a color space coordinate diagram, or by its dominant wavelength
or by that of its complementary color. [3]

3The time-related performance and not the accuracy.

64

6 Project results, insights, and conclusions

3. The rate of time consumption that was dedicated to the training process made the

time that was appropriated for the application development relatively smaller than

what the developer planned.

6.2.2 Insights

This section will now go over some suggestions by the developer for the improvement of

the application in general terms:

� Moving more of the Java parts and functionalities of the application to the native

library can further improve the time performance of the application.

� Using a reliable image processing library for image processing instead of the manual

code that was written.

� Using a di�erent image format like Hue can also have an impact here in the appli-

cation, possibly improving both time and accuracy performance.

� Using Kotlin can signi�cantly expand development choices for Android, especially

for inexperienced developers.

6.3 Conclusions

Some of the conclusions were already stated in this chapter, but this section will brie�y

discuss what other possible factors or conditions that can a�ect the development of similar

kinds of applications. This section will also be concluded with the author's verdict on

the application and the prospects of its further enhancement and expansion, and some

deductions that can be learned and used to build better applications of this kind in

general.

6.3.1 The deep learning model

The points regarding the training of deep learning models that the author of this work

would like to emphasize according to the author's learned experience during the course

of this thesis are:

65

6 Project results, insights, and conclusions

� Training deep learning networks within applications that have to do with images

is time consuming and resource expensive. Care should be given to this fact when

trying to manage the limited development time in a more e�cient manner.

� The quality and quantity of the dataset are the main pillars of a successful training

process. Special care should be given to making sure that the dataset provides

enough information with a �healthy� amount of randomness and noise for gener-

alization purposes. If a dataset for the desired application couldn't be found in

online resources then creating a new reliable dataset can be a tedious endeavour.

� The training process involves a fair amount of trial and error. The trial and error

process should be guided by a good understanding of the application and how it

should learn and function, and a good visualization of the model's structure and

inputs.

� Using callback functions or not can depend on the type of application at hand,

but three important callbacks that can always be useful in all applications are the

�ReduceLROnPlateau�, the �EarlyStopping�, and the �ModelCheckpoint� callbacks.

Those callbacks have proved to maximize time-related e�ciency.

� Following some of the guidelines, conventions, and insights of deep learning re-

searchers can, particularly in the early stages of training, provide a good compass

and put the training process closer to the right track.

� Employing batch normalization will require care with regards to the batch size, as

batch normalization is less e�ective with smaller batch sizes. Recommended batch

size is 32, but during the training process of this work, the developer on some

occasions used a smaller size 16 in order to have more memory to allow for a model

with a higher number of parameters.

6.3.2 The Android application

With relation to the Android development part of this project, the main point that the

author found to possibly simplify the development of the application is to use Kotlin,

especially for inexperienced developers. Another valid point is also to make sure to better

understand how the Android operating system works and how the build process is carried

out, as the author believes that the better this understanding, the easier the development

process will be.

66

6 Project results, insights, and conclusions

6.3.3 Working with images

The author found that dealing with image-related applications necessitates some foun-

dational knowledge with images and image processing. This point was particularly clear

during the development of the Android part of this work.

6.3.4 Final comments

The author believes that this particular application of classifying resistor values from

images is possible and having a high practical accuracy is achievable. It may come

down to using an image processing library to identify and crop the relevant parts of the

resistor and passing it to the model, or simply having a more reliable and higher quality

dataset.

The domain of deep learning and the scope and potential for its utilization is really

fascinating and currently expanding. There already exist models that outperform human

being in highly complex and essential applications in medicine, science, industry, and

logistics. There is also the potential and prospects of �Arti�cial General Intelligence�

or AGI which are the kind of models that were able to e�ectively and e�ciently learn

several complex tasks and human-like skills. However, those types of models are still

theoretical.

67

Bibliography

[1] Aggarwal, Charu C.: Neural Networks and Deep Learning. A Textbook. Springer,

2018. � ISBN 9783319944630; 3319944630

[2] Allen, Grant: Android for Absolute Beginners: Getting Started with Mobile

Apps Development Using the Android Java SDK. 1st ed. Apress, 2021. � ISBN

9781484266458; 1484266455; 9781484266465; 1484266463

[3] Burger, Wilhelm ; Burge, Mark J.: Digital Image Processing. 2nd edition.

Springer, 2016

[4] Ceron, Rodrigo: AI, machine learning and deep learning: What's

the di�erence? https://www.ibm.com/blogs/systems/ai-machine-

learning-and-deep-learning-whats-the-difference/. � [Online; ac-

cessed 27/May/2022]

[5] Chow, Tommy W. S.: Neural Networks and Computing: Learning Algorithms

and Applications (Series in Electrical and Computer Engineering). World Scienti�c

Publishing Company, 2007 (Series in Electrical and Computer Engineering 7). �

ISBN 1860947581; 9781860947582

[6] C++.org: Welcome to C++. http://www.cplusplus.org/. � [Online; ac-

cessed 23/May/2022]

[7] DeepAI.org: What is a Perceptron? https://deepai.org/

machine-learning-glossary-and-terms/perceptron. � [Online; ac-

cessed 27/June/2022]

[8] Dictionary, Oxford Advanced L.: Computer. https://www.

oxfordlearnersdictionaries.com/definition/english/computer. �

[Online; accessed 27/May/2022]

68

Bibliography

[9] Economist, The: Python is becoming the world's most popular coding language.

https://www.economist.com/graphic-detail/2018/07/26/python-

is-becoming-the-worlds-most-popular-coding-language. � [Online;

accessed 24/May/2022]

[10] Foundation, Python S.: What is Python? Executive Summary. https://www.

python.org/doc/essays/blurb/. � [Online; accessed 23/May/2022]

[11] Girshick, Ross ; Donahue, Je� ; Darrell, Trevor ; Malik, Jitendra: Rich

feature hierarchies for accurate object detection and semantic segmentation. https:

//arxiv.org/abs/1311.2524. � [Online; accessed 24/May/2022]

[12] Google: Google's Python Class. https://developers.google.com/edu/

python. � [Online; accessed 24/May/2022]

[13] Hensel, Marc: Deep Learning Practitioner (working title). HAW Hamburg, to be

published. � http://www.haw-hamburg.de/marc-hensel

[14] Kingma, Diederik P. ; Ba, Jimmy: Adam: A Method for Stochastic Optimization.

https://arxiv.org/abs/1412.6980. � [Online; accessed 27/June/2022]

[15] Krohn, Jon ; Beyleveld, Grant ; Bassens, Aglae: Deep Learning Illustrated:

A Visual, Interactive Guide to Arti�cial Intelligence. Pearson Education, 2019

(Addison-Wesley Data & Analytics Series). � ISBN 0135121728; 9780135121726

[16] Lee, Roger ; Kim, Jong B.: Software Engineering, Arti�cial Intelligence, Network-

ing and Parallel/Distributed Computing. Springer, 2022 (Studies in Computational

Intelligence, 951). � ISBN 3030670104; 9783030670108

[17] Lewis, Tanya: A Brief History of Arti�cial Intelligence. https://www.

livescience.com/49007-history-of-artificial-intelligence.

html. � [Online; accessed 27/May/2022]

[18] Ogihara, Mitsunori: Fundamentals of Java Programming. 1st ed. Springer, 2018.

� ISBN 9783319894904; 3319894900; 9783319894911; 3319894919

[19] Redmon, Joseph ; Divvala, Santosh ; Girshick, Ross ; Farhadi, Ali: You Only

Look Once: Uni�ed, Real-Time Object Detection. https://arxiv.org/abs/

1506.02640. � [Online; accessed 24/May/2022]

69

Bibliography

[20] Ren, Shaoqing ; He, Kaiming ; Girshick, Ross ; Sun, Jian: Faster R-CNN:

Towards Real-Time Object Detection with Region Proposal Networks. https://

arxiv.org/abs/1506.01497. � [Online; accessed 24/May/2022]

[21] Rosenblatt, Frank: THE PERCEPTRON: A PROBABILISTIC MODEL FOR

INFORMATION STORAGE AND ORGANIZATION IN THE BRAIN. In: Psyco-

logical Review 65 (1958), Nr. 6, S. 386�408

[22] Silberschatz, Abraham: Operating System Concepts. Abridged 10th Edition.

Wiley, 2018 (10). � ISBN 9781119456339; 1119456339

[23] Spencer, Quinn: Neural Networks: Deep Learning and Machine Learning Outlined.

self-publ., 2018. � ISBN 1983255955; 9781983255953

[24] Stroustrup, Bjarne: The C++ programming language. 3rd ed. Addison-Wesley,

1997. � ISBN 9780201889543; 0201889544

[25] Tomsho, Greg: Guide to Operating Systems. 5th. Cengage Learning, 2016. � ISBN

1305107640; 9781305107649

[26] Tsui, Frank ; Karam, Orlando ; Bernal, Barbara: Essentials of Software Engi-

neering, 5th Edition. 5. Jones & Bartlett Learning, 2022. � ISBN 9781284229004;

1284229009; 9781284228991; 1284228991

[27] Wikipedia: C++. https://en.wikipedia.org/wiki/C%2B%2B. � [Online;

accessed 23/May/2022]

[28] wikipedia.org: Integrated development environment. https://en.

wikipedia.org/wiki/Integrated_development_environment. � [On-

line; accessed 24/May/2022]

[29] wikipedia.org: Linux. https://en.wikipedia.org/wiki/Linux. � [On-

line; accessed 25/May/2022]

[30] wikipedia.org: Machine vision. https://en.wikipedia.org/wiki/

Machine_vision. � [Online; accessed 27/May/2022]

[31] wikipedia.org: Perceptron. https://en.wikipedia.org/wiki/

Perceptron. � [Online; accessed 24/May/2022]

[32] wikipedia.org: Programming language. https://en.wikipedia.org/wiki/

Programming_language. � [Online; accessed 24/May/2022]

70

Bibliography

[33] wikipedia.org: Supervised Learning. https://en.wikipedia.org/wiki/

Supervised_learning. � [Online; accessed 27/May/2022]

[34] Zhang, Aston ; Lipton, Zachary C. ; Li, Mu ; ; Smola, Alexander J.: Dive into

Deep Learning. 0.16.1. d2l.ai, 2021

71

A Appendix

A.1 Back-propagation

Keeping Equation 2.1 in mind in addition to the fact that σ refers to the activation

function, if L was to symbolize a model's �nal layer, and therefore (L − 1) would refer

to the layer before last, and aL is layer L activation and zL is layer L output, i.e. each

activation and output for each corresponding neuron in the given layer L. Then, for the

�nal layer, Equation A.1 can be expressed. [15]

zL = wL · aL−1 + bL

aL = σ(zL)

C0 = (aL − y)2

(A.1)

C0 is the �nal layer's cost and the �rst cost to be calculated, i.e. the root cost. After

calculating it, with each layer back that is passed through, the gradient of the total error

from the preceding layer ∂C
∂aL

is calculated, and in this way, the total error of the system

is propagated backwards. [15]

This backwards propagating value of the �nal layer is referred to as δL and with every

layer back this calculation is remade to produce δ(L−1), and so on. So for the �nal layer

the Equation A.2 can be expressed.

δL =
∂C

∂aL
= 2(aL − y) (A.2)

Now, in order to update the weights in layer L, it is necessary to �nd the gradient of

the cost with regards to the weights ∂C
∂wL . And keep in mind that according to the chain

72

A Appendix

rule1, this is equal to the product of the gradient of the cost for the preceding layer with

regards to the preceding layer's output and the gradient of the activation with regards

to z and the gradient of z with regards to the weights w of that same layer. All this is

expressed in Equation A.3. [15]

∂C

∂wL
=

∂C

∂aL
· ∂a

L

∂zL
· ∂z

L

∂wL

= δL · aL−1 · (1− aL−1) · aL−1

(A.3)

In Equation A.3, the term ∂C
∂wL represents the relative amount by which the weights at

layer L a�ect the total cost, and it is used to update and adjust the weights at this

particular layer in the aim of reducing the cost. [15]

The back-propagation process is then continued down the rest of the layers, and to carry

on with equations A.1, A.2, and A.3 for layer (L− 1) and for the sake of some continuity

this will now be explored in A.4 as before for layer L. Notice how the total error δL is

being back-propagated to layer (L− 1). [15]

δL−1 =
∂C

∂aL−1

=
∂C

∂aL
· ∂a

L

∂zL
· ∂zL

∂aL−1

= δL · aL(1− aL) · wL

(A.4)

Then, again but for layer (L− 1), in order to adjust the weights in layer (L− 1) we �nd

the corresponding term ∂C
∂wL−1 with Equation A.5. Every step so far is repeated for every

layer backwards until the �rst hidden layer. [15]

∂C

∂wL−1
=

∂C

∂aL−1
· ∂a

L−1

∂zL−1
· ∂z

L−1

∂wL−1

= δL−1 · aL−1 · (1− aL−1) · aL−2

(A.5)

1The derivative of f(g(x)) is equal to f ′(g(x)) · g′(x).

73

A Appendix

So far in this section, the simpli�ed notation has been used where we don't represent each

neuron and each input and each output and each hidden layer and so on, thus, in order

to have a general idea how everything discussed in this section can be generalized. This

will now be demonstrated in Equation A.6 by revisiting the total cost from Equation

A.1.

C0 =
n∑

i=1

(aLi − yi)2 (A.6)

Notice that in Equation A.6, n refers to the number of neurons in the given layer L. In

the same Equation A.6, the aLn is layer L activation vector consisting of the activation

of each neuron in layer L while the yn is the output vector consisting of every neuron's

output value in the output layer L.

To further improve the notation to suit the applicability of all the back-propagation

equations to typical network models, it can be noticed that referring to speci�c individual

weights requires de�ning the two neurons that are connected with this particular weighted

connection. To solve this, it is stated that i is the index of neurons in the �nal hidden

layer while j is the index of the output layer. This way, a matrix of weights that can be

assessed with a row for each output neuron and a column for each hidden layer neuron

and thus each weight can now be denoted by wji. [15]

Equation A.7 describes the gradient of the cost with regards to each weight2 in layer

L.

How does this a�ect Equation A.3 is expressed in Equation A.7.

∂C

∂wL
ji

=
∂C

∂aLj
·
∂aLj

∂zLj
·
∂zLj

∂wL
ji

(A.7)

Equation A.7 can now be applied on every weight in the given layer layer L creating the

gradient vector for the weights of size j · i. Consequently, Equation A.4 that expresses

the gradient of the cost with regards to the preceding layer's activation/output aL−1

becomes expressed as in Equation A.8

2There are j · i weights, one for each connection between layer L neurons and layer L− 1 neurons.

74

A Appendix

δL−1 =
∂C

∂aL−1
i

=

nj−1∑
j=0

∂C

∂aLj
·
∂aLj

∂zLj
·
∂zLj

∂aL−1
i

(A.8)

75

A Appendix

A.2 Trained models overview

Throughout the training phase of a model that actualizes this work's requirements, sev-

eral models were trained. All models employed the Adam optimizer function. Some of

those models varied in multiple characteristics and it will now be explored in Table A.1.

Note that the accuracy here refers to the validation accuracy.

The Table A.1 does not give a complete picture of the variation between the trained

models. Therefore, this section will also contain the structural summary of each trained

model, along with its corresponding accuracy and loss plots.

Model Accuracy Learning rate Batch size Data augmentation Batch normalization

1 55% 0.0001 32 No No
2 72% 0.0005 32 No No
7 85% 0.001 32 No Yes
8 87% 0.001 24 Yes Yes
9 90% 0.0001 16 Yes Yes
10 90% 0.0001 16 Yes Yes
12 89% 0.001 24 Yes Yes
13 90% 0.001 24 Yes Yes

Table A.1: Trained models

76

A Appendix

Figure A.1: Model 1 summary

77

A Appendix

Figure A.2: Model 1 accuracy and loss plots

78

A Appendix

Figure A.3: Model 2 summary

79

A Appendix

Figure A.4: Model 2 accuracy and loss plots

80

A Appendix

Figure A.5: Model 3 summary

81

A Appendix

Figure A.6: Model 3 accuracy and loss plots

82

A Appendix

Figure A.7: Model 4 summary

83

A Appendix

Figure A.8: Model 4 accuracy and loss plots

84

A Appendix

Figure A.9: Model 5 summary

85

A Appendix

Figure A.10: Model 5 accuracy and loss plots

86

A Appendix

Figure A.11: Model 6 summary

87

A Appendix

Figure A.12: Model 6 accuracy and loss plots

88

A Appendix

Figure A.13: Model 7 summary

89

A Appendix

Figure A.14: Model 7 accuracy and loss plots

90

A Appendix

Figure A.15: Model 8 summary

91

A Appendix

Figure A.16: Model 8 accuracy and loss plots

92

A Appendix

Figure A.17: Model 9 summary

93

A Appendix

Figure A.18: Model 9 accuracy and loss plots

94

A Appendix

Figure A.19: Model 10 summary

95

A Appendix

Figure A.20: Model 10 accuracy and loss plots

96

A Appendix

Figure A.21: Model 11 summary

97

A Appendix

Figure A.22: Model 11 accuracy and loss plots

98

A Appendix

Figure A.23: Model 12 summary

99

A Appendix

Figure A.24: Model 12 accuracy and loss plots

100

A Appendix

Figure A.25: Model 13 summary

101

A Appendix

Figure A.26: Model 13 accuracy and loss plots

102

Declaration

I declare that this Bachelor Thesis has been completed by myself independently without

outside help and only the de�ned sources and study aids were used.

City Date Signature

103

