

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Bachelorarbeit

Houssein Mahfouz

Experimentelle Untersuchung der Strömung von schlanken Deltaflügeln und Doppeldeltaflügeln im Niedergeschwindigkeitsbereich

Fakultät Technik und Informatik Department Fahrzeugtechnik und Flugzeugbau Faculty of Engineering and Computer Science Department of Automotive and Aeronautical Engineering

Houssein Mahfouz

Experimentelle Untersuchung der Strömung von schlanken Deltaflügeln und Doppeldeltaflügeln im Niedergeschwindigkeitsbereich

Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung

im Studiengang Flugzeugbau am Department Fahrzeugtechnik und Flugzeugbau der Fakultät Technik und Informatik der Hochschule für Angewandte Wissenschaften Hamburg

in Zusammenarbeit mit: HAW Hamburg Aerodynamik-Labor Berliner Tor 5 20099 Hamburg

Erstprüfer: Prof. Dr.-Ing. Hartmut Zingel Zweitprüfer: Prof. Dr.-Ing. Detlef Schulze

Abgabedatum: 20.07.2020

Zusammenfassung

Name des Studierenden

Houssein Mahfouz

Thema der Bachelorthesis

Experimentelle Untersuchung der Strömung von schlanken Deltaflügeln und Doppeldeltaflügeln im Niedergeschwindigkeitsbereich

Stichworte

Aerodynamik, Windkanal, Kraft-Momenten-Sensor, Space Shuttle, Doppeldeltaflügel, Deltaflügel, Streckung

Kurzzusammenfassung

Diese Arbeit umfasst die experimentelle Untersuchung der Strömung von schlanken Deltaflügeln und Doppeldeltaflügeln im Niedergeschwindigkeitsbereich. Für die Untersuchungen im Windkanal stehen drei Flügelmodelle und ein Space Shuttle im Maßstab 1:72 zur Verfügung. Die Messergebnisse aus den Windkanalversuchen mit einem Kraft-Momenten-Sensor werden bewertet. Darüber hinaus werden Vergleichsrechnungen mit dem Rechenprogramm von **Blattner et al. 2019** durchgeführt, das auf dem Tragflächenverfahren von Küchemann beruht. Die Anfertigung der Anstrichbilder der jeweiligen Modelle ist ebenfalls Teil dieser Arbeit. Des Weiteren werden die Ergebnisse qualitativ mit Ausführungen von **Brennenstuhl et al. 1982** verglichen. Abschließend werden die Ergebnisse diskutiert.

Name of Student

Houssein Mahfouz

Title of the paper

Experimental investigation of the flow of slender delta wings and double delta wings in the low speed range

Keywords

Aerodynamics, Wind tunnel, Force-Torque-Sensor, Space Shuttle, Double delta wings, Delta wings, Aspect ratio

Abstract

This work includes the experimental investigation of the flow of slender delta wings and double delta wings in the low speed range. Three wing models and a Space Shuttle in 1:72 scale are available for the investigation in the wind tunnel. The measurements resulted in this investigation with the help of a force-torque-sensor were later investigated. In addition, comparative calculations were carried out using the **Blattner et al. 2019** calculation program, which is based on the wing method from Küchemann. The creation of the painting pictures of the respective models is also part of this work. Furthermore, the results are compared qualitatively with statements by **Brennenstuhl et al. 1982**. Finally, the results will be discussed.

Vorwort

Die Idee zu diesem Thema entwickelte sich während einer Studienarbeit von **Steck et al. 2020** an der HAW Hamburg.

Für die Betreuung dieser Arbeit möchte ich mich recht herzlich bei Herrn Prof. Dr.-Ing. Zingel bedanken. Durch seine Fachkenntnisse im Bereich der Aerodynamik konnte er mir wertvolle Einblicke in die Materie verschaffen.

Weiterhin danke ich die Labormitarbeiter, die mich mit all ihren Mitteln beim Durchführen der Messungen an den untersuchten Modellen unterstützten.

Abschließend möchte ich mich bei meinen Eltern bedanken, die mir mein Studium durch ihre Unterstützung ermöglicht haben und stets ein offenes Ohr für mich hatten.

Houssein Mahfouz

Hamburg, 20.07.2020

Inhaltsverzeichnis

A	bbildung	gsverzeichnis	I					
т	abellenv	erzeichnisVI						
F	ormelve	zeichnis	Х					
v	Verwendete BezeichnungenXII							
A	bkürzun	gsverzeichnisX	v					
1	Einlei	tung	1					
2	Theor	retische Grundlage	2					
	2.1 Rey	nold'sches Ähnlichkeitsgesetz	2					
	2.2 Trag	gflächentheorie	2					
	2.2.1	- Theoretische Grundlagen	2					
	2.2.2	Prandtl'schen Traglinientheorie	3					
	2.3 Dru	ckpunkt und Neutralpunkt	5					
	2.4 Wirl	belbildung	7					
	2.4.1	Entstehung der freien Wirbel am Tragflügel endlicher Spannweite	7					
	2.4.2	Wirbelbildung an scharfkantigen schlanken Deltaflügeln	8					
	2.4.3	Wirbelbildung hinter einem Deltaflügel	9					
	2.5 Win	dkanäle1	0					
	2.5.1	Großer Windkanal	0					
	2.5.2	Kleiner Windkanal	1					
	2.5.3	Anstellwinkel-Korrektur	2					
	2.6 Einf	luss der Streckung auf den induzierten Widerstand 1	2					
3	Geom	netrie der Flügelmodelle1	4					
	3.1 Lag	e des geometrischen Neutralpunktes 1	4					
	3.2 Flüg	gelpfeilung1	6					
	3.2.1	Vereinfachte Geometrie des Deltaflügels kleiner Streckung 1	7					
	3.2.2	Vereinfachte Geometrie des Deltaflügels großer Streckung 1	7					
	3.2.3	Vereinfachte Geometrie des Doppeldeltaflügels 1	8					

4	Berechnungsprogramm zur numerischen Tragflügelrechnung	20
	4.1 Anwendungsbereich des Berechnungsprogramms	20
	4.2 Bedienung und Eingabe der Werte	21
	4.3 Analyse der Flügelmodelle	22
	4.4 Theoretische Auswertung	26
5	Berechnung mit Nurflügel	29
	5.1 Anwendungsbereich des Programms	29
	5.2 Eingabe der Werte zum Aufbau des Flügels	29
	5.3 Theoretische Werte	31
6	Versuchsaufbau	32
	6.1 Aufbau zur Messung der Luftkräfte	32
	6.2 Aufbau zur Anfertigung der Anstrichbilder	34
	6.3 Modelle	34
	6.3.1 Flügelmodelle	35
	6.3.2 Space Shuttle-Modell	38
	6.4 Verwendete Geräte	39
	6.5 Kraft-Momenten-Sensor	41
	6.5.1 Kalibriermatrix	43
	6.5.2 Temperaturabhängigkeit	43
	6.5.3 Nullpunktdrift	44
7	Versuchsdurchführung	45
8	Darstellung der Ergebnisse	47
	8.1 Einfluss der Reynoldszahl	48
	8.1.1 Doppeldeltaflügel	48
	8.1.2 Deltaflügel kleiner Streckung	52
	8.1.3 Deltaflügel großer Streckung	56
	8.1.4 Space Shuttle	60
	8.2 Vergleich von Theorie und Praxis	64
	8.3 Vergleich von den unlackierten zu den lackierten Modellen	66

	8.3.1	Doppeldeltaflügel	37
	8.3.2	Space Shuttle	<u> 5</u> 9
9	Diskı	ussion der Ergebnisse	72
10	Strön	nungssichtbarmachung7	74
1	0.1 k	Korrektur der Anstellwinkel	74
1	0.2 5	Strömungsverlauf	75
11	Absc	hließende Betrachtung	79
Que	ellenve	erzeichnis 8	30
Anl	hang l	: Temperaturdaten 8	32
Anl	nang II	: Messergebnisse, Doppeldeltaflügel, drei Geschwindigkeiten. 8	36
Anl	nang I	ll: Messergebnisse, Deltaflügel kleiner Streckung, drei	
Ges	schwir	ndigkeiten 8	39
Anl	nang l'	V: Messergebnisse, Deltaflügel großer Streckung, drei	
Ges	schwir	ndigkeiten) 2
Anl	nang V	/: Messergebnisse, Space Shuttle, drei Geschwindigkeiten 9) 5
Anl	nang V	/I: Messergebnisse von Steck et al. 2020	98
Anl	nang V	/II: Werkszertifikat Sensor10)3
Anl	nang V	/III: Technische Zeichnung Sensor10)9
Anl	nang lì	X: Anstrichbilder und Wandstromlinienbilder11	0

Abbildungsverzeichnis

Abbildung 1: Beispiele von Tragflächenkonturen (einfache Traglinientheori nicht anwendbar), Grundmann
Abbildung 2: Geometrische Bezeichnungen bei Dreieckflügel, Schlichting et al. 1967
Abbildung 3: Geometrische Bezeichnungen bei Trapezflügel, Schlichting et al. 1967 6
Abbildung 4: Entstehung der freien Wirbel am Tragflügel endlicher Spannweite, Hakenesch et al. 20178
Abbildung 5: Strömungsverlauf an schlanken Deltaflügeln, Brennenstuhl et al. 1982 9
Abbildung 6: Auftriebscharakteristik, Brennenstuhl et al. 1982 9
Abbildung 7: Wirbelbildung hinter einem Deltaflügel, Hummel et al. 197010
Abbildung 8: Skizze des Aufbaus des Windkanals "Göttinger Bauart"11
Abbildung 9: Skizze des Aufbaus des Windkanals "Eiffel-Bauart"11
Abbildung 10: Einfluss der Streckung auf den induzierten Widerstand, Hakenesch et al. 2017
Abbildung 11: Bemaßung der Grundrissgeometrie des Deltaflügels kleiner Streckung, Steck et al. 2020 14
Abbildung 12: Bemaßung der Grundrissgeometrie des Deltaflügels großer Streckung, Steck et al. 2020 15
Abbildung 13: Bemaßung der Grundrissgeometrie des Doppeldeltaflügels, Steck et al. 202015

Abbildung 14: Vereinfachte Geometrie, Deltaflügel kleiner Streckung17
Abbildung 15: Vereinfachte Geometrie, Deltaflügel großer Streckung
Abbildung 16: Vereinfachte Geometrie, Doppeldeltaflügel19
Abbildung 17: Abfragen zur Beschreibung des Flügels, Berechnungsprogramm21
Abbildung 18: Beispiel von den ermittelten aerodynamischen Größen, Deltaflügel kleiner Streckung, Berechnungsprogramm
Abbildung 19: Theoretischer Auftriebsbeiwert, drei Flügelmodelle, Berechnungsprogramm27
Abbildung 20: Eingabefenster von Nurflügel
Abbildung 21: Befestigung des Kraft-Momenten-Sensors an der Stange33
Abbildung 22: Versuchsaufbau zur Messung der Luftkräfte
Abbildung 23: Versuchsaufbau zur Anfertigung der Anstrichbilder
Abbildung 24: Unterseite des Doppeldeltaflügels35
Abbildung 25: Unterseite des Deltaflügels kleiner Streckung
Abbildung 26: Unterseite des Deltaflügels großer Streckung
Abbildung 27: Doppeldeltaflügel Modell im großen Windkanal
Abbildung 28: Deltaflügel kleiner Streckung Modell im großen Windkanal37
Abbildung 29: Deltaflügel großer Streckung Modell im großen Windkanal37
Abbildung 30: Abstand der Befestigung zur Flugzeugnase beim Space Shuttle, NASA et al. 1998

Abbildung 31: Space Shuttle Modell im großen Windkanal
Abbildung 32: Der Messverstärker von PEEKEL40
Abbildung 33: Digitales Thermometer40
Abbildung 34: Digitaler Neigungssensor41
Abbildung 35: Betz-Manometer41
Abbildung 36: Sechskomponentensensor K6D27 von ME-Meßsysteme42
Abbildung 37: Aufteilung der aerodynamischen Kraft an einem Profil, Rill 1996 47
Abbildung 38: Auftriebsbeiwert, Doppeldeltaflügel, drei Geschwindigkeiten49
Abbildung 39: Widerstandsbeiwert, Doppeldeltaflügel, drei Geschwindigkeiten
Abbildung 40: Nickmomentsbeiwert, Doppeldeltaflügel, drei Geschwindigkeiten
Abbildung 41: C _A über C _M , Doppeldeltaflügel, drei Geschwindigkeiten50
Abbildung 42: C _A über C _W , Doppeldeltaflügel, drei Geschwindigkeiten51
Abbildung 43: Gleitzahl über korrigierten Anstellwinkel, Doppeldeltaflügel, drei Geschwindigkeiten
Abbildung 44: Gleitzahl über CA, Doppeldeltaflügel, drei Geschwindigkeiten52
Abbildung 45: Auftriebsbeiwert, Deltaflügel kleiner Streckung, drei Geschwindigkeiten
Abbildung 46: Widerstandsbeiwert, Deltaflügel kleiner Streckung, drei Geschwindigkeiten 53

Abbildung Gesch	47: windig	Nickm gkeiten	oments	beiwer	t, Deltaflügel	kleiner	Streckung,	drei 54
Abbildung Geschv	48: windig	C _A gkeiten.	über	См,	Deltaflügel	kleiner	Streckung,	drei 54
Abbildung Gesch	49: windig	C _A gkeiten.	über	Cw,	Deltaflügel	kleiner	Streckung,	drei 55
Abbildung Streckt	50: (ung, d	Gleitzał Irei Ges	nl über schwind	korrig igkeite	ierten Anstel n	lwinkel, l	Deltaflügel kl	einer 55
Abbildung Gesch	51: windig	Gleitza gkeiten	ahl üb	er Ca	, Deltaflügel	kleiner	Streckung,	drei 56
Abbildung Geschv	52: windig	Auftr keiten	iebsbeiv	wert,	Deltaflügel	großer	Streckung,	drei 57
Abbildung Gesch	53: windig	Wider gkeiten	standsb	eiwert,	Deltaflügel	großer	Streckung,	drei 57
Abbildung Gesch	54: windig	Nickm gkeiten	oments	beiwer	t, Deltaflügel	großer	Streckung,	drei 58
Abbildung Gesch	55: windig	C _A gkeiten.	über	См,	Deltaflügel	großer	Streckung,	drei 58
Abbildung Geschv	56: windig	C _A gkeiten.	über	Cw,	Deltaflügel	großer	Streckung,	drei 59
Abbildung Streckt	57: (ung, d	Gleitzał Irei Ges	nl über schwind	korrig igkeite	ierten Anstel n	lwinkel, l	Deltaflügel gi	oßer 59
Abbildung Geschv	58: windig	Gleitza keiten	ahl üb	er Ca	, Deltaflügel	großer	Streckung,	drei 60

Abbildung 59: Auftriebsbeiwert, Space Shuttle, drei Geschwindigkeiten61
Abbildung 60: Widerstandsbeiwert, Space Shuttle, drei Geschwindigkeiten61
Abbildung 61: Nickmomentsbeiwert, Space Shuttle, drei Geschwindigkeiten62
Abbildung 62: C _A über C _M , Space Shuttle, drei Geschwindigkeiten62
Abbildung 63: CA über Cw, Space Shuttle, drei Geschwindigkeiten
Abbildung 64: Gleitzahl über korrigierten Anstellwinkel, Space Shuttle, drei Geschwindigkeiten
Abbildung 65: Gleitzahl über CA, Space Shuttle, drei Geschwindigkeiten64
Abbildung 66: Theoretischer vs. gemessener Auftriebsbeiwert, Doppeldeltaflügel
Abbildung 67: Theoretischer vs. gemessener Auftriebsbeiwert, Deltaflügel großer Streckung
Abbildung 68: Theoretischer vs. gemessener Auftriebsbeiwert, Deltaflügel kleiner Streckung
Abbildung 69: Auftriebsbeiwert, unlackierter & lackierter Doppeldeltaflügel, V367
Abbildung 70: Widerstandsbeiwert, unlackierter & lackierter Doppeldeltaflügel, <i>V</i> 367
Abbildung 71: Nickmomentsbeiwert, unlackierter & lackierter Doppeldeltaflügel, <i>V</i> 368
Abbildung 72: Gleitzahl über korrigierten Anstellwinkel, unlackierter & lackierter Doppeldeltaflügel, <i>V</i> 368
Abbildung 73: Gleitzahl über C _A , unlackierter & lackierter Doppeldeltaflügel, <i>V</i> 369

Abbildung 74: Auftriebsbeiwert, unlackiertes & lackiertes Space Shuttle, V369
Abbildung 75: Widerstandsbeiwert, unlackiertes & lackiertes Space Shuttle, <i>V</i> 370
Abbildung 76: Nickmomentsbeiwert, unlackiertes & lackiertes Space Shuttle, <i>V</i> 370
Abbildung 77: Gleitzahl über korrigierten Anstellwinkel, unlackiertes & lackiertes Space Shuttle, <i>V</i> 371
Abbildung 78: Gleitzahl über C _A , unlackiertes & lackiertes Space Shuttle, V371
Abbildung 79: Anstellwinkel, bei denen die Anstrichbilder durchgeführt wurden, Doppeldeltaflügel
Abbildung 80: Anstellwinkel, bei denen die Anstrichbilder durchgeführt wurden, Deltaflügel kleiner Streckung
Abbildung 81: Anstellwinkel, bei denen die Anstrichbilder durchgeführt wurden, Deltaflügel großer Streckung
Abbildung 82: Anstellwinkel, bei denen die Anstrichbilder durchgeführt wurden, Space Shuttle
Abbildung 83: Anstrichbild, Doppeldeltaflügel, α=18°110
Abbildung 84: Wandstromlinien, Doppeldeltaflügel, α =18°111
Abbildung 85: Anstrichbild, Doppeldeltaflügel, α=28°112
Abbildung 86: Anstrichbild, Doppeldeltaflügel, α=40°113
Abbildung 87: Anstrichbild, Deltaflügel kleiner Streckung, α=18°114
Abbildung 88: Anstrichbild, Deltaflügel kleiner Streckung, α=28°115

Abbildung 89: Anstrichbild, Deltaflügel kleiner Streckung, α=40°116
Abbildung 90: Wandstromlinien, Deltaflügel kleiner Streckung, α=18°, 28°, 40°117
Abbildung 91: Anstrichbild, Deltaflügel großer Streckung, α =8°118
Abbildung 92: Anstrichbild, Deltaflügel großer Streckung, α =14°119
Abbildung 93: Wandstromlinien, Deltaflügel großer Streckung, α =8°, 14°120
Abbildung 94: Anstrichbild, Deltaflügel großer Streckung, α =24°121
Abbildung 95: Wandstromlinien, Deltaflügel großer Streckung, α =24°122
Abbildung 96: Anstrichbild, Space Shuttle, α=14°123
Abbildung 97: Wandstromlinien, Space Shuttle, α =14°124
Abbildung 98: Anstrichbild, Space Shuttle, α =24°125
Abbildung 99: Anstrichbild, Space Shuttle, α=34°126
Abbildung 100: Wandstromlinien, Rumpf des Space Shuttles, α =24°,34°127

Tabellenverzeichnis

Tabelle 1	: Geoi	metrische Größen	der jeweili	gen Flügel, S	teck et a	I. 2020 16
Tabelle Bere	2: chnun	Eingabeparamete gsprogramm	er für	Deltaflügel	kleiner	Streckung, 23
Tabelle Bere	3: chnun	Eingabeparamete gsprogramm	er für	Deltaflügel	großer	Streckung, 23
Tabelle 4	: Eing	abeparameter für [Doppeldel	taflügel, Bere	chnungsp	programm24
Tabelle Abhá	5: Ae ängigk	erodynamische Wo eit der Stützstellen	erte des	Deltaflügels	kleiner	Streckung in 24
Tabelle Abhá	6 : A ängigk	erodynamische W eit der Stützstellen	/erte des	Deltaflügels	großer	Streckung in 25
Tabelle 7 Stütz	7: Aero zstelle	odynamische Wert n	e des Do	ppeldeltaflüge	els in Ab	hängigkeit der 25
Tabelle 8 betra	: Diffe achtete	renzen zwischen d en Stützstellenzahl	er betrach für Deltaf	nteten Stützste lügel kleiner S	ellenzahl Streckung	und der davor J25
Tabelle 9 betra	: Diffe achtete	renzen zwischen d en Stützstellenzahl	er betrach für Deltaf	nteten Stützste lügel großer S	ellenzahl Streckung	und der davor J26
Tabelle 1 betra	0: Diffe	erenzen zwischen o en Stützstellenzahl	der betrac für Doppe	hteten Stützst eldeltaflügel	ellenzahl	und der davor 26
Tabelle Bere	11: echnun	Theoretischer gsprogramm	Auftriel	bsanstieg,	drei l	Flügelmodelle, 27
Tabelle Bere	12: chnun	Theoretische gsprogramm	Neutral	ounktlage,	drei l	Flügelmodelle, 28

Tabelle 13: Berechnete Werte, drei Flügelmodelle, Nurflügel
Tabelle 14: Nennlasten und Messunsicherheiten des Sensors, ME- Meßsysteme
Tabelle 15: Nullpunkterfassung, ME-Meßsysteme43
Tabelle 16: Anströmungsgeschwindigkeiten mit dem zugehörigen dynamischen Drücken
Tabelle 17: Gemessene Größen, Doppeldeltaflügel, lineare Regression48
Tabelle18:GemesseneGrößen,DeltaflügelkleinerStreckung,lineareRegression
Tabelle 19: Gemessene Größen, Deltaflügel großer Streckung, lineare Regression
Tabelle 20: Aerodynamische Größen, Space Shuttle, lineare Regression60
Tabelle 21: Theoretischer und gemessener Auftriebsanstieg 64
Tabelle 22: Theoretische und gemessene Neutralpunktklage65
Tabelle 23: Korrigierte Anstellwinkel, kleiner Windkanal, Flügelmodelle74
Tabelle 24: Korrigierte Anstellwinkel, kleiner Windkanal, Space Shuttle75

Formelverzeichnis

Formel 1 Reynoldszahl	2
Formel 2 Gesamtauftrieb eines Tragflügels endlicher Spannweite	4
Formel 3 Beiwert für den Gesamtauftrieb	4
Formel 4 Numerischer Gesamtauftriebsbeiwert	4
Formel 5 Quadraturformel	4
Formel 6 Beiwert des induzierten Widerstandes	4
Formel 7 Numerischer induzierter Widerstandsbeiwert	4
Formel 8 Nickmomentenbeiwert bezogen auf die Profilnase	4
Formel 9 Numerischer Nickmomentenbeiwert	5
Formel 10 Druckpunt	5
Formel 11 Geometrischer Neutralpunkt	5
Formel 12 Geometrischer Neutralpunkt für ein Dreieckflügel	6
Formel 13 Geometrischer Neutralpunkt für ein Trapezflügel	6
Formel 14 Lineare Näherung für das Nickmoment	6
Formel 15 Neutralpunkt	7
Formel 16 Bezugsflügeltiefe	7
Formel 17 Lage der Bezugsflügeltiefe	7
Formel 18 Korrekturbeiwert	12
Formel 19 Anstellwinkelkorrektur	12
Formel 20 Hydraulischer Durchmesser	12
Formel 21 Streckung	12
Formel 22 Pfeilung der 25%-Linie	17
Formel 23 Kraft- und Momentenberechnung	43
Formel 24 Dynamischer Druck	45
	Х

Formel 25 Umrechnung der Kraft in Auftrieb	.47
Formel 26 Umrechnung der Kraft in Widerstand	.47
Formel 27 Auftriebsbeiwert	.48
Formel 28 Widerstandsbeiwert	.48
Formel 29 Nickmomentenbeiwert	.48

Verwendete Bezeichnungen

Stoffbeiwerte

ρ	[kg/m ³]	Dichte
ν	[m²/s]	kinematische Zähigkeit
μ	[kg/ms]	dynamische Viskosität

Geometrische Größen

x, y, z	[m]	rechtwinklige Koordinaten
$\eta = \frac{x}{s}$	[-]	dimensionslose Koordinate in y-Richtung
l	[m]	charakteristische Länge
b	[m]	Spannweite
S	[m]	Halbspannweite
S	[m²]	Flügelfläche
Λ	[-]	Streckung
l	[m]	Flügeltiefe
l _i	[m]	Flügeltiefe an der Flügelwurzel
la	[m]	Flügeltiefe an der Flügelspitze
l_{μ}	[m]	Bezugsflügeltiefe
λ	[-]	Zuspitzung
φ	[°]	Pfeilwinkel

θ	[rad]	trigonometrische Koordinate
N ₂₅	[m]	geometrischer Neutralpunkt
D	[m]	Strahldurchmesser
d_h	[m]	hydraulischer Durchmesser
A	[m ²]	Strahlquerschnittsfläche

Strömungsgrößen

Р	[Pa]	Druck
q_{∞}	[Pa]	Staudruck
V_{∞}	[m/s]	Anströmgeschwindigkeit
Re	[-]	Reynoldszahl
Ма	[-]	Machzahl
Т	[K]	Temperatur
Г	[m²/s]	Zirkulation
γ	[-]	dimensionslose Zirkulation

Aerodynamische Größen

Р	[Pa]	Druck
α	[°]	Anstellwinkel
α_k	[°]	korrigierter Anstellwinkel
α_g	[°]	geometrischer Anstellwinkel

- α_0 [°] Nullauftriebswinkel
- A [N] Auftrieb
- W [N] Widerstand
- Y [N] Seitenkraft
- *C*_A [-] Auftriebsbeiwert
- *c*_a [-] örtlicher Auftriebsbeiwert
- *C_W* [-] Widerstandsbeiwert
- *C_{Wi}* [-] Beiwert des induzierten Widerstandes
- *C_{M,Nase}* [-] Nickmomentenbeiwert bezogen auf die Profilnase
- *C*_{M0} [-] Nullmomentenbeiwert
- *N* [-] aerodynamischer Neutralpunkt
- *x_N* [m] Lage des aerodynamischen Neutralpunktes
- D [-] Druckpunkt
- *x_D* [m] Lage des Druckpunktes

Sonstige Bezeichnung

n_M	[1/min]	Windkanal-Drehzahl
n	[-]	natürliche Zahl ($n = 1, 2,, M$)
М	[-]	Anzahl der Stützszellen

Abkürzungsverzeichnis

- HAW Hochschule für Angewandte Wissenschaften
- Abb. Abbildung
- DMS Dehnungsmessstreifen
- FS Full scale (Endwert)
- RD Reading (Istwert)

1 Einleitung

Schlanke Deltaflügel und Doppeldeltaflügel sind seit langem Gegenstand der Strömungsforschung (vgl. z.B. **Brennenstuhl et al. 1982**). Diese Flügelformen werden überwiegend im Hochgeschwindigkeitsbereich eingesetzt. Die Flugzeuge müssen aber auch mit schlanken Flügeln starten und landen, sodass der Niedergeschwindigkeitsbereich auftritt. Außerdem weisen die schlanken Flügel bereits bei mäßigen Anstellwinkeln ein ausgeprägtes nichtlineares Strömungsverhalten auf. Das Space Shuttle ist ein Beispiel für ein Fluggerät mit einem Doppeldeltaflügel. Diese Flügelkonfiguration ist Grundlage für die experimentellen Untersuchungen in dieser Arbeit. Es wurden an dem Modell eines Space Shuttles im Maßstab 1:72 von **Steck et al. 2020** Dreikomponentenmessungen im großen Windkanal der HAW Hamburg durchgeführt. Diese Arbeiten werden an einfachen ebenen Flügelmodellen fortgesetzt.

Für die Untersuchungen im Windkanal stehen drei Flügelmodelle zur Verfügung:

- Doppeldeltaflügel, der den Grundriss des Space-Shuttles repräsentiert.
- Deltaflügel kleiner Streckung, ausgehend vom Strake-Flügel des Space Shuttles.
- Deltaflügel großer Streckung, ausgehend von Hauptflügel des Space Shuttles.

Die Windkanalversuche werden an den Modellen für drei Anströmungsgeschwindigkeiten $V_{\infty} = 10 m/s$, 15 m/s und 20 m/s durchgeführt und ausgewertet. Darüber hinaus werden Vergleichsrechnungen mit dem Rechenprogramm von **Blattner et al. 2019** durchgeführt, das auf dem Tragflächenverfahren von Küchemann beruht. Der Vergleich mit dem Tragflächenverfahren wird für den Auftriebsanstieg und die Neutralpunktlage durchgeführt. Außerdem wird das Modell des Space Shuttles für Vergleichszwecke mit den Untersuchungen von **Steck et al. 2020** gemessen. Des Weiteren werden Anstrichbilder zur Visualisierung von Strömungen erstellt. Die Ergebnisse werden dann qualitativ mit Ausführungen von **Brennenstuhl et al. 1982** verglichen. Der Aufbau und Ablauf der Messungen werden im weiteren Verlauf der Arbeit präsentiert.

2 Theoretische Grundlage

2.1 Reynold'sches Ähnlichkeitsgesetz

Gerade für das Versuchswesen, bei dem Arbeiten mit Modellen verschiedener Größe, spielt die mechanische Ähnlichkeit einer Strömung um geometrische Körper (ähnliche Stromlinienbilder), der Vergleichbarkeit halber, eine entscheidende Rolle. Für den Ablauf einer zähen, inkompressiblen Strömung wird mit der einheitenlosen Reynoldszahl gerechnet (vgl. **Schlichting et al. 1967**). Physikalisch beschreibt sie das Verhältnis aus Trägheitskräften und Reibungskräften. Das Reynold'sche Ähnlichkeitsgesetz besagt, dass um geometrisch ähnliche Körper die Strömung ähnlich verläuft, wenn die Reynoldszahl gleich ist.

$$Re = \frac{\rho V_{\infty} l}{\eta} = \frac{V_{\infty} l}{\nu} = const.$$
 (1)

Dabei ist V_{∞} die Anströmgeschwindigkeit, $\nu = \eta/\rho$ die kinematische Zähigkeit und *l* eine charakteristische Länge des Körpers.

2.2 Tragflächentheorie

2.2.1 Theoretische Grundlagen

Zur numerischen Berechnung des Auftriebs von Tragflügeln sind im Wesentlichen drei einfach anwendbare Verfahren zu nennen. Die einfache Traglinientheorie, die erweiterte Traglinientheorie und die Tragflächentheorie (vgl. **Schlichting et al. 1969**).

Die einfache Traglinientheorie ist für ungepfeilte Flügel anwendbar und liefert ab einer Streckung von $\Lambda > 5$ sehr gute Ergebnisse. Dieses gelingt nicht mehr für kleinere Streckungsverhältnisse, gepfeilte Flügel und Deltaflügel. Beispiele solcher Tragflächenkonturen sind in Abb. 1 dargestellt.

Abbildung 1: Beispiele von Tragflächenkonturen (einfache Traglinientheorie nicht anwendbar), Grundmann

Die erweiterte Traglinientheorie ist für beliebige Flügelgrundrisse anwendbar, also auch für Pfeilflügel. Mit ihr lässt sich die Auftriebsverteilung in Spannweitenrichtung berechnen, woraus sich Gesamtauftrieb, Rollmoment und der induzierte Widerstand ergeben. Die Tragflächentheorie hingegen liefert die Auftriebsverteilung in Spannweiten- und in Tiefenrichtung. Dadurch liefert sie zusätzlich zu den Ergebnissen der erweiterten Traglinientheorie auch das Nickmoment und dadurch ebenfalls die Neutralpunktlage.

2.2.2 Prandtl'schen Traglinientheorie

Das Verfahren von H. Multhopp (vgl. **Schlichting et al. 1969**) ist eine numerische Methode zur Lösung der Prandtl'schen Integro-Differentialgleichung. Daher kann dies als Näherungsverfahren betrachtet werden. Die Zirkulationsverteilung wird dabei nicht als kontinuierlich betrachtet, sondern nur als *M* diskrete Werte an *M* diskreten Orten. Wenn sich die Schnittzahl *M* gegen unendlich nähert, stimmt die kontinuierliche Zirkulationsverteilung gemäß der Prandtl'schen Integro-Differentialgleichung mit der Zirkulationsverteilung an diskreten Stellen überein (vgl. **Blattner et al. 2019**). Die Prandtl'sche Integro-Differentialgleichung ist für gepfeilte Flügel kleiner Streckung von D. Küchemann erweitert.

Aus den örtlichen Zirkulationen können die aerodynamischen Beiwerte numerisch bestimmt werden (vgl. **Schlichting et al. 1969**). Hierzu lässt sich zunächst der Gesamtauftrieb eines Tragflügels durch Integration der Auftriebsverteilung und durch Integration der Zirkulationsverteilung über die Flügelspannweite berechnen.

$$A = q_{\infty} \int_{-s}^{+s} c_a(y) l(y) dy = \rho U_{\infty} \int_{-s}^{+s} [(y) dy$$
 (2)

Der Gesamtauftriebsbeiwert ergibt sich nach Gleichung (2) zu:

$$C_A = \Lambda \int_{-1}^{+1} \gamma(\eta) d\eta \tag{3}$$

Diese Gleichung kann mit Quadraturformel in einer numerischen Näherungslösung umgeschrieben werden.

$$C_A = \frac{\pi \Lambda}{M+1} \sum_{n=1}^{M} \gamma_n \sin(\vartheta n)$$
(4)

Mithilfe von:

$$\int_{-1}^{+1} \gamma(\eta) d\eta = \frac{\pi}{M+1} \sum_{n=1}^{M} \gamma_n \sin(\vartheta n)$$
(5)

Zur Ermittlung des induzierten Widerstandsbeiwertes wird folgende Integralgleichung gebildet:

$$C_{Wi} = \Lambda \cdot \int_{-1}^{+1} \gamma(\eta) \,\alpha_{i0} \,d\eta \tag{6}$$

Für den numerischen induzierten Widerstandsbeiwert erhält man durch Anwenden von Gleichung (5) auf Gleichung (6) die folgende Formel:

$$C_{Wi} = \frac{\pi \Lambda}{M+1} \sum_{n=1}^{M} \gamma_n \alpha_{in} \sin(\vartheta n)$$
(7)

Der Nickmomentenbeiwert bezogen auf die Profilnase lässt sich mit folgender Integralgleichung berechnen:

$$C_{M,Nase} = -\Lambda \int_{-1}^{+1} \gamma(\eta) \left[\frac{x_V(\eta)}{l(\eta)} + \frac{x_n(\eta)}{l(\eta)} \right] d\eta$$
(8)

Bei dieser Gleichung ist $x_V(\eta)$ eine Funktion für die örtliche Koordinate der Flügelvorderkante und $x_n(\eta)$ ist eine Funktion für die örtliche aerodynamische Neutralpunktlage. Wird die Gleichung (8) in eine Summenform umformuliert, so ergibt sich der numerische Nickmomentenbeiwert bezogen auf die Profilnase.

$$C_{M,Nase} = -\Lambda \sum_{n=1}^{M} \gamma_n \left[\frac{x_{V,n}}{l(\eta)} + \frac{x_{n,n}}{l(\eta)} \right] \sin(\vartheta n)$$
(9)

2.3 Druckpunkt und Neutralpunkt

Die Lage des Druckpunktes kann angegeben werden als Schnittpunkt der Wirkungslinie der resultierenden Luftkräfte mit der Profilsehne. Dabei steht der dynamische Auftrieb immer senkrecht zur Anströmrichtung, der Strömungswiderstand ist immer in Richtung der Anströmung (vgl. **Schlichting et al. 1967**). Im Druckpunkt wirkt kein Moment, allerdings ist seine Lage mit dem Anstellwinkel veränderlich (Druckpunktwanderung). Die Druckpunktlage wird aus der folgenden Formel bestimmt.

$$\frac{x_D}{l_\mu} = -\frac{c_{M0}}{c_A} - \frac{dc_M}{dc_A} \tag{10}$$

Der Neutralpunkt ist derjenige Punkt, an dem die anstellwinkelinduzierten Luftkräfte angreifen. Seine Lage ist somit nicht vom Anstellwinkel abhängig. Für schwach gewölbte Skelettprofile kann $\frac{x_N}{l} = \frac{1}{4}$ angenommen werden (vgl. **Schlichting et al. 1967**). Der Neutralpunkt des Flugzeugs unterscheidet sich von dem der Tragfläche, da auch die Luftkräfte von Rumpf und Leitwerk einen Einfluss auf die Lage haben. Grundsätzlich liegt der Neutralpunkt des kompletten Flugzeugs hinter dem des Tragflügels allein.

Der geometrische Neutralpunkt lässt sich einfach aus der Form der Flügelfläche berechnen. Er kann als Schwerpunkt der gesamten Flügelfläche gedeutet werden, wobei die zur örtlichen Flügeltiefe proportionale Gewichtsverteilung auf die Einviertelpunktlinie fällt (vgl. **Schlichting et al. 1967**).

$$x_{N_{25}} = \frac{1}{s} \int_{-s}^{s} l(y) x_{25}(y) \, dy \,, \qquad y_{N_{25}} = 0 \tag{11}$$

Für ein Dreieckflügel lässt sich der geometrische Neutralpunkt mit folgender Gleichung bestimmen: Theoretische Grundlage

$$x_{N_{25}} = l_i \left(\frac{1}{4} + \frac{\Lambda}{12} \tan \varphi\right) \tag{12}$$

Abbildung 2: Geometrische Bezeichnungen bei Dreieckflügel, Schlichting et al. 1967

Für ein Trapezflügel wird der geometrische Neutralpunkt mit folgender Formel ermittelt:

$$x_{N_{25}} = l_i \left(\frac{1}{4} + \frac{\Lambda}{12} (1 + 2\lambda) \tan \varphi \right)$$
(13)

Abbildung 3: Geometrische Bezeichnungen bei Trapezflügel, Schlichting et al. 1967

Die Neutralpunktlage lässt sich aus der linearen Näherung für das Nickmoment Gleichung (14) bestimmen.

$$C_M = C_{M0} + \frac{dC_M}{dC_A} \cdot C_A \tag{14}$$

Theoretische Grundlage

$$\frac{x_N}{l_{\mu}} = -\frac{dC_M}{dC_A}, \qquad y_N = 0 \tag{15}$$

Der Gradient $\frac{dc_M}{dc_A}$ des Nickmoments wird als Nickmomentenanstieg bezeichnet und er besitzt eine besondere Bedeutung für die statische Stabilität des Flugzeugs (vgl. **Hakenesch et al. 2017**).

Die Bezugsflügeltiefe errechnet man zu:

$$l_{\mu} = \frac{1}{s} \int_{-s}^{+s} l(y)^2 dy$$
 (16)

Der seitliche Abstand einer Flügelfläche des Flächenschwerpunkts zur Ermittlung der Lage der Bezugsflügeltiefe wird berechnet mit:

$$y_{S} = \frac{2}{S} \int_{0}^{S} l(y) y \, dy \tag{17}$$

2.4 Wirbelbildung

2.4.1 Entstehung der freien Wirbel am Tragflügel endlicher Spannweite

Die Strömung um einen Tragflügel mit theoretischer unendlicher Spannweite kann als ebenes Problem betrachtet werden, weil die Strömungsverhältnisse in jedem Schnitt des Profils in Richtung der Spannweite übereinstimmend sind (vgl. **Hakenesch et al. 2017**). Im Gegensatz dazu unterscheiden sich die Strömungsverhältnisse bei der Umströmung eines Tragflügels endlicher Spannweite. Da der Druck der Unterseite des Flügels von dem Druck der Oberseite des Flügels unterscheidet, führt das zur Umströmung der Flügelenden und zur Bildung einer Strömung an der Unterseite mit einer nach außen weisenden Geschwindigkeitskomponente und einer an der Oberseite mit einer nach innen gerichteten Geschwindigkeitskomponente. Eine Scherschicht wird direkt stromabwärts des Flügelaußenbereichs gebildet, die zu einem Wirbel aufgerollt wird. Diese beiden Wirbel, die von den Flügelenden ausgehen und in Strömungsrichtung vergehen, werden als freie Wirbel bezeichnet.

Abbildung 4: Entstehung der freien Wirbel am Tragflügel endlicher Spannweite, **Hakenesch et** al. 2017

2.4.2 Wirbelbildung an scharfkantigen schlanken Deltaflügeln

Aufgrund der Strömungsablösungen an den scharfen Vorderkanten der schlanken Deltaflügeln unter mäßigen und kleinen Anstellwinkeln, bilden sich zwei spiralförmigen Wirbelschichten, die mit der Vorderkante verbunden sind und sich über der Oberseite des Flügels zu zwei primären Wirbeln aufrollen (vgl. Brennenstuhl et al. 1982). Diese Wirbelbildung ist in Abb. 5.a skizziert. Die beiden Wirbel induzieren zusätzliche Geschwindigkeiten auf der Oberseite des Flügels und die entsprechende Druckverteilung zeigt deutlich ausgeprägte Minima unterhalb der Wirbelachsen. Dementsprechend tritt eine zusätzliche Auftriebskraft auf, die nicht linear vom Anstellwinkel abhängt, siehe Abb. 6. Aufgrund der Wirbel an der Vorderkante wird die Strömung an der Flügeloberfläche nach außen gerichtet und unterliegt einem Druckgradient, der meist zu zusätzlichen Strömungsablösungen in Form von kleinen Sekundärwirbeln verursacht (vgl. Brennenstuhl). Die Sekundärwirbel und die entsprechende Änderung der Druckverteilung sind auch in Abb. 5 dargestellt. Bei sehr großen Anstellwinkeln findet ein Wirbelabbau innerhalb der Primärwirbel statt. Mit zunehmendem Anstellwinkel werden diese Wirbel immer mehr zerstört und dieser Effekt begrenzt die aerodynamischen Koeffizienten.

Abbildung 5: Strömungsverlauf an schlanken Deltaflügeln, Brennenstuhl et al. 1982

- a: Wirbelbildung
- b: Druckverteilung

Abbildung 6: Auftriebscharakteristik, Brennenstuhl et al. 1982

2.4.3 Wirbelbildung hinter einem Deltaflügel

Die Untersuchungen von D. Hummel (vgl. **Brennenstuhl et al. 1982**) über den Verlauf der Strömung stromabwärts von der Hinterkante führen für einen

Theoretische Grundlage

einfachen Deltaflügel zu der Erkenntnis, dass die Wirbelschicht, die von der Hinterkante ausgeht, sich zu einem Wirbel, der sogenannte Hinterkantenwirbel, aufrollt, dessen Drehung der des entsprechenden Vorderkantenwirbels (Primärwirbel) entgegengesetzt ist. Der Hinterkantenwirbel entsteht in Spannweitenrichtung am Ende der Flügel, dessen Verlauf von den induzierten Geschwindigkeiten des Primärwirbels beeinflusst wird (vgl. **Hummel et al. 1970**). Der Hinterkantenwirbel und der Sekundärwirbel besitzen zwar den gleichen Drehsinn, aber sie hängen nicht zusammen. Der Sekundärwirbel befindet sich jedoch an der Hinterkante weiter außen und er stellt eine Ablösungserscheinung der Grenzschicht dar, während der Hinterkantenwirbel hauptsächlich ein potentialtheoretischer Effekt ist (vgl. **Hummel et al. 1970**).

Abbildung 7: Wirbelbildung hinter einem Deltaflügel, Hummel et al. 1970

2.5 Windkanäle

Bei dieser Arbeit werden ein großer Windkanal und ein kleiner Windkanal verwendet.

2.5.1 Großer Windkanal

Der hier für die Messungen verwendete Windkanal ist der "große Windkanal" der HAW Hamburg. Er ist Göttinger Bauart, besitzt einen Düsenaustrittsdurchmesser von 1 m und wird hier mit offener Messstrecke betrieben. Mit diesem Kanal können Geschwindigkeiten von ca. 110 km/h erzielt werden. Der wesentliche Vorteil solchen Windkanälen ist, dass der Leistungsbedarf des Gebläses deutlich reduziert ist.

Abbildung 8: Skizze des Aufbaus des Windkanals "Göttinger Bauart"

2.5.2 Kleiner Windkanal

Zur Anfertigung der Anstrichbilder wird ein kleiner Windkanal nach Eiffel-Bauart verwendet. Er verfügt über eine Düse mit elliptischem Austrittsquerschnitt mit den Radien 0,25 m und 0,35 m. Mit diesem Kanal können Geschwindigkeiten von ca. 120 km/h erzielt werden. Die wesentlichen Vorteile solchen Windkanälen ist, dass die Temperatur in der Messtrecke mit der im Raum bzw. der umgebenden Luft weitgehend übereinstimmt und, dass es keine Turbulenzen durch Umlenkecken entstehen.

Abbildung 9: Skizze des Aufbaus des Windkanals "Eiffel-Bauart"

2.5.3 Anstellwinkel-Korrektur

Die Ablenkung des Freistrahls durch den am Modell erzeugten Auftrieb ist ein systematischer Fehler, der das Messergebnis beeinflusst. Dieser Fehler kann korrigiert werden. Riegels 1958 liefert eine Methode für die Anstellwinkel-Korrektur:

$$\delta = 1 + \frac{3}{16} \left(\frac{b}{D}\right)^4 + \frac{5}{64} \left(\frac{b}{D}\right)^8 + \dots$$
(18)

$$\Delta \alpha = -\delta \frac{c_a S}{8 A} \tag{19}$$

Zur Anwendung der Formel werden die Spannweite b, der Strahldurchmesser D, die Flügelfläche S und Strahlquerschnittsfläche A benötigt.

Der Strahldurchmesser *D* des verwendeten großen Windkanals beträgt 1m. Für den kleinen Windkanal wird der hydraulische Durchmesser eingesetzt. Dieser lässt sich durch folgende Formel berechnen:

$$d_h = \frac{4A}{U} \tag{20}$$

Dabei ist *U* der Umfang der Ellipse.

Der Korrekturwert ist somit für einen Windkanal mit einem Auftriebskörper nur vom Auftriebsbeiwert abhängig.

2.6 Einfluss der Streckung auf den induzierten Widerstand

Der induzierte Widerstand wird neben dem Auftrieb, der quadratisch in den induzierten Widerstand eintritt, auch durch die Streckung Λ beeinflusst, siehe Abb. 10.

Die Streckung Λ ist als dimensionslose Größe für die Schlankheit einer Tragfläche in Spannweitenrichtung definiert (vgl. **Schlichting et al. 1967**). Sie lässt sich einfach aus dem Verhältnis des Quadrats der Flügelspannweite zur Flügelfläche berechnen.

$$\Lambda = \frac{b^2}{s} \tag{21}$$

12

Der Druckgradient vergeht mit steigender Streckung immer flacher in Spannweitenrichtung. Folglich verliert der Druckausgleich an Stärke an den Tragflächenenden und die erzeugten freien Wirbel werden ebenso schwächer (vgl. **Hakene**sch et al. 2017).

Abbildung 10: Einfluss der Streckung auf den induzierten Widerstand, Hakenesch et al. 2017
3 Geometrie der Flügelmodelle

Im Folgenden werden die Grundrissgeometrie, die Lage des geometrischen Neutralpunktes und die Pfeilung der 25%-Linie der jeweiligen Flügel dargestellt.

3.1 Lage des geometrischen Neutralpunktes

Um die auf die Waage wirkenden Momente möglichst klein zu halten, soll diese im Neutralpunkt der Tragfläche befestigt sein. Der geometrische Neutralpunkt der jeweiligen Flügelkonfigurationen wurde von **Steck et al. 2020** bestimmt. Die Abmessung der Grundrissgeometrie sowie die Lage des geometrischen Neutralpunktes der jeweiligen Flügel sind in folgenden Abbildungen dargestellt.

Abbildung 11: Bemaßung der Grundrissgeometrie des Deltaflügels kleiner Streckung, **Steck et** al. 2020

Abbildung 12: Bemaßung der Grundrissgeometrie des Deltaflügels großer Streckung, **Steck et** al. 2020

Abbildung 13: Bemaßung der Grundrissgeometrie des Doppeldeltaflügels, Steck et al. 2020

Die Flügelstreckung ergibt sich nach Gleichung (21):

Für Deltaflügel kleiner Streckung zu:

$$\Lambda_1 = \frac{(2 \cdot 90,752)^2}{50249,019} = 0,655$$

Für Deltaflügel großer Streckung zu:

$$\Lambda_2 = \frac{(2 \cdot 165,283)^2}{47674,955} = 2,292$$

Für Doppeldeltaflügel zu:

$$\Lambda_3 = \frac{(2 \cdot 165,283)^2}{67193,567} = 1,626$$

Die Lage des geometrischen Neutralpunktes, die Bezugsflügeltiefe, die Flügelfläche, die Spannweite und die Streckung der jeweiligen Flügelmodelle sind in folgender Tabelle aufgelistet:

Flügelmo- delle	<i>x</i> _{<i>N</i>₂₅} [mm]	<i>y_s</i> [mm]	<i>l</i> _μ [mm]	<i>S</i> [mm ²]	<i>b</i> [mm]	Λ [−]
Deltaflügel kleiner Streckung	184,964	31,951	351,572	50249,019	181,504	0,655
Deltaflügel großer Streckung	105,482	62,958	167,683	47674,955	330,566	2,292
Doppeldel- taflügel	225,14	52,547	293,163	67193,567	330,566	1,626

Tabelle 1: Geometrische Größen der jeweiligen Flügel, Steck et al. 2020

3.2 Flügelpfeilung

Die Grundrissgeometrie der Flügelmodelle wird vereinfacht, um die Pfeilung der 25%-Linie zu bestimmen. Im Folgenden wird die vereinfachte Geometrie der jeweiligen Flügel dargestellt.

3.2.1 Vereinfachte Geometrie des Deltaflügels kleiner Streckung

Der Deltaflügel kleiner Streckung wird zu einem Dreieckflügel vereinfacht, wobei die Flügelfläche und die Spannweite gleich wie originales Modell bleiben. Die Flügeltiefe muss neu gerechnet werden.

$$l_i = \frac{2S}{b} = 553,695 mm$$

Abbildung 14: Vereinfachte Geometrie, Deltaflügel kleiner Streckung

Die Pfeilung der 25%-Linie lässt sich mit folgender Gleichung berechnen:

$$\varphi_{25} = \tan^{-1}\left(\frac{l_i - a - \frac{l_i}{4}}{\frac{b}{2}}\right) = 77,2^{\circ}$$
(22)

Mit $a = 16,01 \, mm$

Der geometrische Neutralpunkt kann mit Formel (12) gerechnet werden.

$$x_{N_{25}} = 271,421 \, mm$$

Die Bezugsflügeltiefe lässt sich mit Gleichung (16) berechnen:

$$l_{\mu} = 369,13 mm$$

3.2.2 Vereinfachte Geometrie des Deltaflügels großer Streckung

Der Grundriss des Deltaflügels großer Streckung wird in einem Trapezflügel simplifiziert. Wobei $\frac{l_i}{4} = 60,586 mm$ und $\frac{l_a}{4} = \frac{1}{4} \left(\frac{2S}{b} - l_i\right) = 11,525 mm$.

17

Geometrie der Flügelmodelle

Abbildung 15: Vereinfachte Geometrie, Deltaflügel großer Streckung

Die Pfeilung der 25%-Linie kann nach Abb. 15 entnommen werden.

$$\phi_{25} = 35^{\circ}$$

Der geometrische Neutralpunkt ergibt sich nach Gleichung (13) zu:

$$x_{N_{25}} = 105,298 \, mm$$

Die Bezugsflügeltiefe lässt sich mit Gleichung (16) berechnen:

$$l_{\mu} = 166,463 mm$$

3.2.3 Vereinfachte Geometrie des Doppeldeltaflügels

Der Grundriss des Doppeldeltaflügels kann zu einem Doppeltrapezflügel mit geknickter Vorderkante vereinfacht werden. Er kann in einen Deltaflügel mit dem Pfeilwinkel der vorderen Kontur und einen Deltaflügel mit dem Pfeilwinkel der hinteren Kontur zerlegt werden.

Abbildung 16: Vereinfachte Geometrie, Doppeldeltaflügel

Die Pfeilung von der vorderen Kante und von der hinteren Kante der 25%-Linie können aus Abschnitt 3.2.1 und 3.2.2 entnommen werden.

Mit den Gleichungen (11) und (16) ergeben sich für den geometrischen Neutralpunkt $x_{N_{25}} = 316,4 mm$ und für die Bezugsflügeltiefe $l_{\mu} = 304,4 mm$.

4 Berechnungsprogramm zur numerischen Tragflügelrechnung

Da für die Flügelmodelle keine Beiwerte bekannt sind, aus denen sich Widerstand, Auftrieb und Nickmoment berechnen lassen, ist hier eine Abschätzung notwendig. Auftriebsanstieg und Neutralpunktlage der jeweiligen Flügelmodelle werden mit einem Berechnungsprogramm berechnet. Nachfolgend einige Informationen zur Nutzung des Programms.

4.1 Anwendungsbereich des Berechnungsprogramms

Das Berechnungsprogramm wurde ursprünglich von Blattner et al. 2019 mit MATLAB R2019a entwickelt. Das Arbeiten mit dem Programm ist also nur mit MATLAB möglich. Aus den geometrischen Abmessungen der Flügel und einem frei wählbaren Auftriebsbeiwert lässt sich die Zirkulationsverteilung über der Spannweite mithilfe des Programms ermitteln, aus der dann alle weiteren aerodynamischen Größen und Beiwerte berechnet werden können. Dazu zählen auch die Auftriebs- und Widerstandsverteilung über der Spannweite. Zunächst können verschiedene Flügelformen bei dem Programm unterschieden werden. Dazu gehören der Ellipsenflügel mit elliptischer Zirkulationsverteilung, der Trapezflügel und der Doppeltrapezflügel mit Knickstelle. Bei der Berechnung können die Pfeilung und die Verwindung berücksichtigt werden. Hinterklappenausschläge, Nasenklappenausschläge und Querruderausschläge können ebenfalls berücksichtigt werden. Die kompressiblen Strömungseinflüsse können nicht berücksichtigt werden. Folglich gilt es nur bis zu einer Machzahl von M_a = 0,3. Dadurch, dass das Berechnungsprogramm nur die ebene Tragfläche berechnet, kann der Einfluss von Winglets, sowie der von der V-Stellung des Flügels nicht in der Berechnung berücksichtigt werden. Die Berechnung beruht auf den aerodynamischen Grundlagen von D. Küchemann und dem Quadraturverfahren von H. Multhopp.

4.2 Bedienung und Eingabe der Werte

Über Matlab muss das Berechnungsprogramm geöffnet werden. Die im Programm verwendeten Einzelfunktionen und Parameter werden in ein MATLAB-Skript angezeigt. Die Berechnung wird mit "Run" gestartet. Es erscheint danach unter Command Window eine Reihe von Abfragen, bei denen der Flügel ausführlich beschrieben wird, siehe Abb. 17.

```
📣 Command Window
```

```
>> Studienarbeit_Berechnungsprogramm
Bitte Anzahl der Stützstellen eingeben:
Bitte Wert für die Spannweite eingeben:
Für einen Ellipsenflügel bitte 1, für einen Trapezflügel bitte 2 und für einen
Doppeltrapezflügel mit Knickstelle bitte 3 eingeben:
Bitte Wert für die Flügelstreckung eingeben:
Wenn keine Verwindung vorliegt bitte 0, wenn eine lineare Verwindungsverteilung
vorliegt bitte 1 und zur Eingabe der lokalen Verwindung in jedem Schnitt bitte 2
eingeben:
Wenn Klappen-oder Querruderausschläge vohanden sind bitte 1, sonst 0 eingeben:
Bitte den Auftriebsbeiwert eingeben, für den die Analyse vorgenommen werden soll:
>>
```

Abbildung 17: Abfragen zur Beschreibung des Flügels, Berechnungsprogramm

Durch die Eingabe der Stützstellenzahl, der Spannweite, der Flügelstreckung, der Verwindung und der Auftriebsbeiwert wird jeweils der Auftriebsanstieg über den geometrischen Anstellwinkel $\frac{dC_A}{d\alpha_g}$, der geometrische Anstellwinkel α_g , der Beiwert des induzierten Widerstandes des betrachteten Flügels C_{wi} , der Nickmomentenbeiwert bezogen auf die Profilnase $C_{M,Nase}$, und die aerodynamische Neutralpunktlage $\frac{x_N}{l_{\mu}}$ ermittelt. Diese werden unter Workspace angezeigt. Als Beispiel hierfür zeigt Abb. 18.

Workspace		Workspace	
Name 🔺	Value	Name 🔺	Value
H M	31	Η alpha0grad	0
HatGIs	31x31 double	🚽 alphae	31x1 double
🛨 n	31	Η alphag	31x1 double
🛨 n0	31x1 double	alphagcA0	31x1 double
🛨 nSg	31x1 double	Η alphaHK	31x1 double
🛨 nu	31	Η alphai	31x1 double
🛨 ome	31x1 double	Η alphai0	31x1 double
🕂 Oswald	0.9782	🔣 alphainnen	1.0171
🛨 phi25	1.3474	🔠 alphainnengrad	58.2778
🛨 phi50	1.2360	Η alphaNK	31x1 double
🛨 phieff	31x1 double	🔣 alphaQR	31x1 double
🛨 phiVK	1.4037	alphaVerw	31x1 double
s	90.7520	Η alphaVerwgrad	31x1 double
🕂 S	5.0296e+04	🕂 b	181.5040
🛨 Sg	0.6550	📙 bnun	31x31 double
🛨 Sumalphai	31x1 double	E cA	1
🛨 SumcA	31x1 double	cA0	0
🕂 SumcL	31x1 double	Η caVerteilung	31x1 double
🛨 SumcL0	31x1 double	🔣 cL	-3.4352e-16
SumcMNase	31x1 double	cL0	0
🛨 SumcWi	31x1 double	🛨 cMNase	-1.8849
🛨 VekcA	[0;0.9831]	🕂 cWi	0.4968
🛨 VekEta	31x1 double	Η cwiVerteilung	31x1 double
🛨 Vekgam	31x1 double	Η dca_dalpha	0.9831
🛨 Vekgam01	31x2 double	😰 eta	1x1 sym
🕂 VekgamcA0	31x1 double	🛨 Faktor	31x1 double
🛨 Vekphi	31x1 double	🛨 Geo	2
🛨 VekTheta	31x1 double	Η KlappenSteuerung	0
🛨 VerwSteuerung	0	🛨 la	0
🛨 xN	2.7857e+03	Η lameta	31x1 double
🛨 xnzul	31x1 double	lametal	-0.2748
🛨 xNzulmu	1.8849	<u> l</u> ametam	0.0014
<u>→</u> xV	31x1 double	📩 lametar	-7.1737e-04
🛨 Zus	0	📩 li	554.2107

Abbildung 18: Beispiel von den ermittelten aerodynamischen Größen, Deltaflügel kleiner Streckung, Berechnungsprogramm

4.3 Analyse der Flügelmodelle

Die Genauigkeit der im Berechnungsprogramm ermittelten Werte ist wesentlich von der Stützstellenzahl abhängig. Da jedoch eine sehr große Anzahl von Stützstellen auch viel mehr Rechenaufwand und damit längere Zeit bedeutet, wird zuerst eine vernünftige Stützstellenzahl festgelegt. Die folgenden Werte wurden zum Vergleich als Stützstellenzahl *M* ausgewählt:

M = 15; 31; 100

Für die Analyse handelt es sich um einen Dreieckflügel, einen Trapezflügel und einen Doppeltrapezflügel bei denen keinerlei Verwindung und Klappenausschläge vorliegen. Die Geometrie der Flügelmodelle ist in Kapitel 3 dargestellt.

In den folgenden Tabellen werden die Parameter aufgelistet, welche für die Eingabe der jeweiligen Flügel in das Programm verwendet wurden.

Eingabe	Wert
Spannweite b	181,504 mm
Flügelstreckung Λ	0,655
Zuspitzung λ	0
Pfeilwinkel der 25% Linie	77,2°

Tabelle 2: Eingabeparameter für Deltaflügel kleiner Streckung, Berechnungsprogramm

Eingabe	Wert
Spannweite b	330,566 mm
Flügelstreckung Λ	2,292
Zuspitzung λ	0,19
Pfeilwinkel der 25% Linie	35°

Tabelle 3: Eingabeparameter für Deltaflügel großer Streckung, Berechnungsprogramm

Eingabe	Wert
Spannweite b	330,566 mm
Flügelstreckung Λ	1,624
Flügeltiefe an der Flügelwurzel	553,695 mm
Flügeltiefe an der Flügelspitze	46,188 mm
Flügeltiefe an der Knickstelle	164,8 mm
Position der Knickstelle (dimensions- los)	0,38
Pfeilwinkel der 25%-Linie des Ab- schnittes von der Flügelwurzel bis zur Knickstelle	77,2°
Pfeilwinkel der 25%-Linie des Ab- schnittes von der Knickstelle bis zur Flügelspitze	35°

Tabelle 4: Eingabeparameter für Doppeldeltaflügel, Berechnungsprogramm

Der Auftriebsbeiwert, für den die Analyse vorgenommen ist, beträgt $c_A = 1$

Aus diesen Bedingungen ergeben sich die in Tabellen 5, 6 und 7 dargestellten jeweiligen aerodynamischen Werte.

М	$\frac{dC_A}{d\alpha_g}$	$lpha_g$	C _{wi}	$C_{M,Nase}$	$rac{x_N}{l_{\mu}}$
15	0,9842	1,0161	0,4966	-1,8344	1,8344
31	0,9831	1,0171	0,4968	-1,8849	1,8849
100	0,9829	1,0174	0,4968	-1,9100	1,9100

Tabelle 5: Aerodynamische Werte des Deltaflügels kleiner Streckung in Abhängigkeit der Stützstellen

М	$\frac{dC_A}{d\alpha_g}$	α_g	C _{wi}	C _{M,Nase}	$rac{x_N}{l_{\mu}}$
15	2,8216	0,3544	0,1395	-0,8466	0,8466
31	2,8208	0,3545	0,1395	-0,8482	0,8482
100	2,8204	0,3546	0,1395	-0,8488	0,8488

Tabelle 6 : Aerodynamische Werte des Deltaflügels großer Streckung in Abhängigkeit der Stützstellen

М	$\frac{dC_A}{d\alpha_g}$	$lpha_g$	C _{wi}	$C_{M,Nase}$	$rac{x_N}{l_{\mu}}$
15	1,8101	0,5525	0,1939	-2,6439	2,6439
31	1,7738	0,5638	0,1932	-2,6272	2,6272
100	1,7171	0,5824	0,1930	-2,6347	2,6347

Tabelle 7: Aerodynamische Werte des Doppeldeltaflügels in Abhängigkeit der Stützstellen

Es ist deutlich zu erkennen, dass sich die aerodynamische Werte bei den verschiedenen Stützstellen verändern. Um diese Veränderung besser analysieren zu können, werden in Tabelle nur die Differenzen des jeweiligen Wertes der betrachteten Stützstellenzahl zu der davor betrachteten, geringeren Stützstellenzahl aufgeführt:

М	$\frac{dC_A}{d\alpha_g}$	α_g	C _{wi}	C _{M,Nase}	$rac{x_N}{l_{\mu}}$
15	-	-	-	-	-
31	-0,0011	0,001	0,0002	-0,0505	0,0505
100	-0,0002	0,0003	0	-0,0251	0,0251

Tabelle 8: Differenzen zwischen der betrachteten Stützstellenzahl und der davor betrachteten Stützstellenzahl für Deltaflügel kleiner Streckung

М	$\frac{dC_A}{d\alpha_g}$	α_g	C _{wi}	C _{M,Nase}	$rac{x_N}{l_{\mu}}$
15	-	-	-	-	-
31	-0,0008	0,0001	0	-0,0016	0,0016
100	-0,0004	0,0001	0	-0,0006	0,0006

Tabelle 9: Differenzen zwischen der betrachteten Stützstellenzahl und der davor betrachteten Stützstellenzahl für Deltaflügel großer Streckung

М	$\frac{dC_A}{d\alpha_g}$	$lpha_g$	C _{wi}	$C_{M,Nase}$	$rac{x_N}{l_{\mu}}$
15	-	-	-	-	-
31	-0,0363	0,0113	-0,0007	0,0167	-0,0167
100	-0,0567	0,0186	-0,0002	-0,0075	0,0075

Tabelle 10: Differenzen zwischen der betrachteten Stützstellenzahl und der davor betrachteten Stützstellenzahl für Doppeldeltaflügel

Für den Wechsel von M = 15 zu M = 31 sind bereits kaum noch Veränderungen zu erkennen. Von M = 31 auf M = 100 nähren sich die Differenzen für Deltaflügel kleiner und großer Streckung gegen 0.

Da die Rechenzeit bei M = 100 jedoch erheblich länger als bei M = 31 ist, wäre es nicht sinnvoll, die Auswertung mit dies durchzuführen. Es wird also für die folgenden Auswertungen die Stützstellenzahl M = 31 festgelegt.

4.4 Theoretische Auswertung

Das folgende Diagramm zeigt den nach den aerodynamischen Grundlagen von D. Küchemann und dem Quadraturverfahren H. Multhopp berechneten Auftriebsbeiwert im Berechnungsprogramm von **Blattner et al. 2019**.

Abbildung 19: Theoretischer Auftriebsbeiwert, drei Flügelmodelle, Berechnungsprogramm

Die theoretischen Auftriebsanstiegen der jeweiligen Flügelmodelle sind in folgender Tabelle aufgeführt.

Flügelmodelle	$\frac{dC_A}{d\alpha_g}$
Deltaflügel kleiner Streckung	0,9813
Deltaflügel großer Streckung	2,8208
Doppeldeltaflügel	1,7738

Tabelle 11: Theoretischer Auftriebsanstieg, drei Flügelmodelle, Berechnungsprogramm

Der Vergleich des theoretischen Auftriebsanstiegs mit dem gemessenen Auftriebsanstieg wird in Abschnitt 7 durchgeführt.

Die Ergebnisse des Nickmomentenanstiegs $\frac{dc_M}{dc_A}$ sind nicht plausibel, da die Werte, der Bezugsflügeltiefe l_{μ} und der Neutralpunktlage x_N , größer sind als die innere Flügeltiefe l_i , die die maximale örtliche Flügeltiefe darstellt. Diese Werte sind in folgender Tabelle eingetragen.

Flügelmo- delle	$x_N [mm]$	$l_{\mu}[mm]$	$rac{x_N}{l_{\mu}}$	$\frac{x_{N25}}{l_{\mu}}$	$rac{\Delta x_N}{l_{\mu}}$
Deltaflügel kleiner Streckung	2785,7	1477,9	1,8849	0,7353	1,1496
Deltaflügel großer Streckung	421,129	496,485	0,8482	0,6325	0,2157
Doppeldel- taflügel	892,609	339,7624	2,6272	1,0394	1,5878

Tabelle 12: Theoretische Neutralpunktlage, drei Flügelmodelle, Berechnungsprogramm

5 Berechnung mit Nurflügel

Da das Berechnungsprogram von **Blattner et al. 2019** unlogische Werte für die Neutralpunktlage geliefert hat, werden diese mit NURFLÜGEL neu gerechnet werden. Nachfolgend einige Informationen zur Nutzung des Programms.

5.1 Anwendungsbereich des Programms

Das Programm NURFLÜGEL wurde ursprünglich von Ranis, Jochen Schneider und Michael Möller entwickelt. Die aktuellste Version 2.26 (Stand: 20.07.2008) von **Stammler et al. 2008** ist kostenlos aus dem Internet (www.zanonia.de) beziehbar und ebenfalls unter dem Programmnamen RANIS bekannt. Mit dem Programm lassen sich die Auftriebs- und Momentverteilung, sowie die Neutralpunkte, der Druckpunkt und die daraus resultierenden Beiwerte, eines ebenen Nurflügels ohne Seitenleitwerksflächen berechnen. Dabei werden bei der Berechnung auch die Pfeilung und die Verwindung berücksichtigt. Dadurch, dass NURFLÜGEL nur die ebene Tragfläche berechnet, kann der Einfluss von Winglets, sowie der von der V-Stellung des Flügels nicht in der Berechnung berücksichtigt werden. Die Berechnung beruht auf dem Traglinienverfahren nach E. Truckenbrodt.

5.2 Eingabe der Werte zum Aufbau des Flügels

Über Datei/Neuer Flügel wird ein Neuentwurf gestartet. Es erscheint zunächst ein ungepfeilter rechteckiger Grundflügel. Durch die Eingabe der Pfeilung an der Nase, der Spannweite, sowie durch das Setzen von Stützstellen mit den jeweiligen örtlichen Profil-, Verwindungs-, und Profiltiefenwerten wird das Flügelmodell dann Schritt für Schritt aufgebaut. Die Profildaten werden von Nurflügel nur als Textdatei im DAT-Format eingelesen. In der DAT-Datei wird eine beliebige Anzahl von X und Y Werten zur Beschreibung des Profils eingegeben, beginnend und endend an der Hinterkante. Die Werte müssen normiert über die Länge der Profilsehne und mit einem Tabulator getrennt angegeben werden. Besonders im Nasenbereich empfiehlt sich eine höhere Punktdichte da hier die Krümmung am größten ist. Zur Bearbeitung der Profilrohdaten empfiehlt es sich, das Programm NOTEPAD++, oder ähnliche zu nutzen und nicht den einfachen Editor, da hier beispielsweise auch spaltenweise markiert werden kann, was den Eingabeprozess erheblich erleichtert. Des Weiteren müssen die Wirbelzahl und der Auftriebsbeiwert festgelegt werden. Bei dieser Arbeit wird mit 31 Wirbeln und $C_A = 1$ gerechnet werden.

Abbildung 20: Eingabefenster von Nurflügel

5.3 Theoretische Werte

Die von Nurflügel berechneten Werte sind in der folgenden Tabelle aufgelistet:

	Deltaflügel kleiner Stre- ckung	Deltaflügel großer Stre- ckung	Doppeldeltaf- lügel	Einheit
l_{μ}	302,8	166,5	255,1	mm
<i>x</i> _{N25}	221,7	106,2	258,5	mm
<i>x</i> _{<i>N</i>}	278,6	110,4	317,2	mm
Δx_N	56,9	4,2	58,7	mm
$\frac{\Delta x_N}{l_{\mu}}$	0,1879	0,0252	0,2301	_
$\frac{dC_A}{d\alpha}$	1,0994	2,7283	2,1099	1/rad

Tabelle 13: Berechnete Werte, drei Flügelmodelle, Nurflügel

6 Versuchsaufbau

6.1 Aufbau zur Messung der Luftkräfte

Die Messung der Luftkräfte mit einer integrierten Sechskomponentenwaage an den vier Modellen (Deltaflügel großer Streckung, Deltaflügel kleiner Streckung, Doppeldeltaflügel und Space Shuttle) wird am großen Windkanal nach der Göttinger Bauart bei offener Messstrecke der HAW Hamburg untersucht.

Die zu untersuchenden Modelle werden in der Messtrecke des Windkanals über eine Stahlstange und eine Winkelverstellung an dem Aufbau der Windkanalwaage montiert. Auf dem Gestell wird die Winkelverstellung verschraubt, damit verschiedene Anstellwinkel (von $\alpha = -2^{\circ}$ bis $\alpha = 40^{\circ}$) eingestellt werden können. Der Kraft-Momenten-Sensor wird über ein Verbindungsstück an der Stange befestigt. Am Sensor wird dann die Verbindungsplatte verschraubt. Dabei muss geachtet werden, dass die Schrauben nicht zu fest anzuziehen, da der Sensor sehr empfindlich ist und ein zu festes Anziehen zu großen Spannungen erzeugen kann. Anschließend wird das zu untersuchende Modell über die Verbindungsplatte befestigt. Hierbei ist darauf zu achten, dass das Modell keinen Schiebewinkel besitzt.

Die Stange wird durch eine aerodynamische Verkleidung umhüllt. Sie dient zur Führung des Sensorkabels. Der Sensor muss auch verkleidet werden, da dieser außerhalb des Modells liegt. Dabei ist darauf zu achten, dass der Sensor in keinem Punkt berührt ist, da dies zu Verfälschungen der Messergebnisse führt. Die aerodynamischen Verkleidungen sollen Verwirbelungen verringern.

Das Sensorkabel wird mit einem Adapter am Peekel Messverstärker angeschlossen. Der Messverstärkter ist mit einem Computer verbunden, der die gemessenen Spannungen mithilfe der Kalibriermatrix in dem Programm AUTOSOFT von Peekel direkt in Kräfte und Momente umrechnet und die Messreihen abspeichert. Versuchsaufbau

Abbildung 21: Befestigung des Kraft-Momenten-Sensors an der Stange

Abbildung 22: Versuchsaufbau zur Messung der Luftkräfte

6.2 Aufbau zur Anfertigung der Anstrichbilder

Die Anfertigung der Anstrichbilder für den Modellen wird in dem kleinen Windkanal des Aerodynamiklabors der HAW Hamburg durchgeführt. Die zu untersuchenden Modelle werden in der Messtrecke des Windkanals über eine Stahlstange und eine Winkelverstellung an dem Aufbau der Windkanalwaage montiert. Die Windkanalwaage ist zur Vermeidung der Verschmutzung mit Folien abgedeckt.

Abbildung 23: Versuchsaufbau zur Anfertigung der Anstrichbilder

6.3 Modelle

Die Modelle, die einfachen ebenen Flügelmodelle und das Space Shuttle, die für den Versuchsaufbau verwendet werden, wurden von **Steck et al. 2020** erstellt. Sie haben den Maßstab 1:72. In diesem Maßstab werden die Modelle mit den Spannweiten 181,504 mm und 330,566 mm im großen und kleinen Windkanal der HAW Hamburg vollständig umströmt.

6.3.1 Flügelmodelle

Grundlage für die Flügelmodelle ist Revell-Bausatz. Auf der Unterseite der jeweiligen Flügelmodelle wurde eine Metallplatte verschraubt, damit das Flügelmodell mit dem Kraft-Momenten-Sensor über die Verbindungsplatte befestigt werden kann. Die Integration des Sensors an der Unterseite erfolgt im berechneten Neutralpunkt des Modells. Die Modelle wurden von einem Lackierer schwarz lackiert.

Abbildung 24: Unterseite des Doppeldeltaflügels

Abbildung 25: Unterseite des Deltaflügels kleiner Streckung

Abbildung 26: Unterseite des Deltaflügels großer Streckung

Abbildung 27: Doppeldeltaflügel Modell im großen Windkanal

Abbildung 28: Deltaflügel kleiner Streckung Modell im großen Windkanal

Abbildung 29: Deltaflügel großer Streckung Modell im großen Windkanal

6.3.2 Space Shuttle-Modell

Das Space Shuttle Modell von Revell wurde mit Revell Klebstoff zusammengebaut. Das Fahrwerk wurde nicht angebaut. Die Halterung für das Space Shuttle sollte sich auch im berechneten geometrischen Neutralpunkt befinden. Hierfür wurde eine Aluminiumplatte an dem Ort des geometrischen Neutralpunktes an der unteren inneren Rumpfbereich verklebt. Die Aluminiumplatte wurde dann von außen durch den Kunststoffrumpf gebohrt und mit Gewinde versehen, um das Modell mit dem Kraft-Momenten-Sensor durch die Verbindungsplatte verschrauben zu können. Abschließend wurde das Modell von einem Lackierer verspachtelt und schwarz lackiert.

Abbildung 30: Abstand der Befestigung zur Flugzeugnase beim Space Shuttle, NASA et al. 1998

Abbildung 31: Space Shuttle Modell im großen Windkanal

6.4 Verwendete Geräte

Folgende Geräte werden bei dieser Arbeit verwendet:

- Windkanal Göttinger Bauart (Durchmesser Düsenaustrittsebene: 1000mm kreisförmig) mit Aufbau der Windkanalwaage
- Windkanal Eiffel-Bauart (Düse mit elliptischem Austrittsquerschnitt mit den Radien 0,23 m und 0,35 m) mit Aufbau der Windkanalwaage
- Modelle Deltaflügel kleiner und großer Streckung, Doppeldeltaflügel, Space Shuttle
- Betz-Manometer
- Pitotrohr
- Barometer
- Thermometer
- Kraftmomentsensor K6D27 mit Adapter für den Messverstärker
- Messverstärker Peekel
- Computer (Programm AUTOSOFT)

- digitaler Neigungssensor
- zwei aerodynamische Verkleidungen
- Stahlstange
- Winkel
- Airbrush Pistole HP-101
- digitale Waage

System Seriennr.: Firmware: Sprache: 3234007 v1.34 Deutsch Farbzusammensetzung: Uhrzeit GMT+02:00: Standard 19.05.2020 15:41:57 IP Addresse: MAC Addresse: 141. 22. 60. 24 00: 50:C2:D0:30:1A Bildhelligkeit: Bild aus: Ton:	*
MULTICHANNEL MEASURING SYSTEM	PICAS

Abbildung 32: Der Messverstärker von PEEKEL

Abbildung 33: Digitales Thermometer

Versuchsaufbau

Abbildung 34: Digitaler Neigungssensor

Abbildung 35: Betz-Manometer

6.5 Kraft-Momenten-Sensor

Bei dieser Arbeit wurde ein Sechskomponentensensor K6D27 von **ME-Meßsysteme** eingesetzt, um die Kräfte und Momente messen zu können. Die Namensgebung folgt aus Funktion und Abmessung: 6D aus drei Dimensionen der Kräfte + drei Dimensionen der Drehmomente und 27 aus dem Durchmesser des Sensors. Er eignet sich also zur Messung von Kräften und Momenten in den drei Richtungen des Raumes und besteht aus 24 hochohmigen Ultraminiatur-Dehnungsmessstreifen.

Abbildung 36: Sechskomponentensensor K6D27 von ME-Meßsysteme

Die Bruchlast entspricht jeweils 300% der Nennkraft. Folgend sind die Nennlasten und die Messunsicherheiten mit einer Wahrscheinlichkeit von 95 % angegeben.

	F_x [N]	<i>F</i> _y [N]	F_{z} [N]	M_x [Nm]	<i>M_y</i> [Nm]	<i>M_z</i> [Nm]
Nennlast	50	50	200	1	1	1
Messunsicher- heit	±0,2	±0,3	±0,8	±0,02	±0,01	±0,01

Tabelle 14: Nennlasten und Messunsicherheiten des Sensors, ME-Meßsysteme

Eine Nullpunkterfassung wurde vom Hersteller durchgeführt. Sie ist in der folgenden Tabelle aufgeführt.

Kanal	1	2	3	4	5	6
mV/V	0,3396	0,3053	0,1601	0,5511	0,4716	0,5265

Tabelle 15: Nullpunkterfassung, ME-Meßsysteme

Das Werkszertifikat und die technische Zeichnung des Sensors sind in Anhang VII und VIII hinterlegt.

6.5.1 Kalibriermatrix

Um die von dem DMS verursachten Spannungen in Kräfte und Momente umzurechnen, wird eine Kalibiermatrix benötigt. Diese ist ebenfalls von **ME-Meßsysteme** bestimmt. Zur Berechnung der Kräfte und Momente {L} wird die Kalibriermatrix [K] mit den Spannungen der DMS {u} multipliziert.

$$\{L\} = [K] \{u\}$$
 (23)

Mit:

$$[K] = \begin{bmatrix} 30,22 & 0,03 & -29,44 & 28,6 & -0,42 & -28,92 \\ -17,89 & 33,69 & -17,35 & -16,54 & 34,15 & -17,39 \\ 42,51 & 42,09 & 41,91 & 39,98 & 42,46 & 41,5 \\ -0,55m & 0,33m & 0,18m & 0,17m & 0,34m & -0,54m \\ -0,12m & 0,4m & 0,51m & -0,49m & -0,4m & 0,1m \\ 0,32m & -0,3m & 0,3m & -0,28m & 0,29m & -0,29m \end{bmatrix} \frac{N}{V}$$

6.5.2 Temperaturabhängigkeit

Da die im Sensor verbauten DMS nicht temperaturkompensiert sind, werden die ausgegebenen Signale durch Temperaturschwankungen beeinflusst. In dem Produktdatenblatt des Herstellers wird diese angegeben mit dem Temperatureinfluss auf das Nullsignal (0,1%FS/K) und den Temperatureinfluss auf den Kennwert (0,05%RD/K).

6.5.3 Nullpunktdrift

Unbelastet und bei gleichbleibender Temperatur wurde ein Drift festgestellt. Das heißt, dass der Sensor ohne Driftkompensation ist. Für ein Beispiel des Drifts wurde die Waage für eine Stunde unbelastet angeschlossen und beobachtet. Die Nullpunkte der Kräfte haben sich signifikant verändert, während die Nullpunkte der Momente keine signifikante Veränderung hatten. Folgende Werte stellten sich ein: $F_x = -0.02 N$, $F_y = 0.03 N$ und $F_z = -0.42 N$. Auffallend ist, dass die Veränderung des Nullpunktes in Z-Richtung am Stärksten betroffen war. Dies lässt sich mit dem Hexapod-Aufbau des Sensors erklären, da in diese Richtung die DMS in dieselbe Richtung driften.

7 Versuchsdurchführung

Insgesamt wurden zwei Messphasen durchgeführt.

In der ersten Messphase werden die Kräfte und Momente der Modelle unter verschiedenen Anstellwinkeln (von -2° bis 40°) bei drei unterschiedlichen Anströmungsgeschwindigkeiten gemessen. Der Anstellwinkel wird mit einer Schrittweite von 2 Grad verstellt. Bei allen Versuchsdurchläufen ist die Messung für die Modelle identisch durchzuführen. Vor jeder Versuchsreihe wird der Statische Druck abgelesen. Vor und nach jeder Messung wird die Temperatur im Windkanal erfasst und dokumentiert. Für jeden Anstellwinkel wird bei den folgenden Geschwindigkeiten gemessen: $V_1 = 10 m/s$, $V_2 = 15 m/s$ und $V_3 = 20 m/s$. Die Geschwindigkeit wird über die Drehzahl des Windkanals reguliert, bis der passende dynamische Druck am Betz-Manometer erreicht ist. Zur Berechnung des dynamischen Drucks wird folgende Formel genutzt:

$$p_{dyn} = \frac{1}{2} \rho \cdot V_{\infty}^{2} \tag{24}$$

Hierin wird die Dichte ρ auf die Luftdichte in Meereshöhe $\rho_0 = 1,225 \ kg/m^3$ bezogen.

$V_{\infty} [\mathrm{m/s}]$	p_{dyn} [mmWS]		
10	6,243		
15	14,048		
20	24,974		

Tabelle 16: Anströmungsgeschwindigkeiten mit dem zugehörigen dynamischen Drücken

Die Messung wird auf dem Programm AUTOSOFT gestartet. Über den Messverstärker werden die von Kraftmomentsensor gemessene Spannungen an den Computer übermittelt. Pro Messung werden 100 Spannungswerte in einer Zeitspanne von 10 Sekunden aufgenommen, die mit Hilfe einer Kalibiermatrix in Kräfte und Momente umgerechnet werden. Sobald die Aufnahme der gemessenen Spannungswerte für einen Anstellwinkel bei den drei Versuchsdurchführung

Anströmgeschwindigkeiten endet, wird der Windkanal abgeschaltet und gewartet, bis das Betz-Manometer 0mmWS anzeigt. Danach wird der nächste Anstellwinkel mit Hilfe eines digitalen Neigungssensors eingestellt. Dabei muss geachtet werden, dass der digitale Neigungssensor immer am gleichen Ort aufzulegen ist, um Abweichungen zu vermeiden. Dann wird der Sensor über die Programmfunktion TARE tariert. Dieses Vorgehen wird wiederholt, bis alle Anstellwinkel bei den drei Anströmgeschwindigkeiten aufgezeichnet sind. Die Temperaturdaten bei den jeweiligen Geschwindigkeiten sind in Anhang I dokumentiert.

In der zweiten Messphase werden Anstrichbilder zur Visualisierung abgelöster Strömungen bei einer Anströmungsgeschwindigkeit von 20 m/s angefertigt und zwar für Anstellwinkel im Bereich des Wirbelaufplatzens. Für den Doppeldeltaflügel und den Deltaflügel kleiner Streckung werden folgende Anstellwinkel $\alpha =$ 18°, 28° und 40° ausgewählt. Für den Deltaflügel großer Streckung sind das die Anstellwinkel $\alpha = 8^{\circ}, 14^{\circ}$ und 24°. Für das Space Shuttle werden folgende Anstellwinkel $\alpha = 14^{\circ}, 24^{\circ}$ und 34° ausgesucht. Dabei wird die Modelloberfläche mit einer Mischung aus Iriodin und dünnflüssigem Paraffin mithilfe einer Airbrush-Pistole als dünne Schicht besprüht. Danach wird der Windkanal hochgefahren und so geregelt, dass das Betz-Manometer den errechneten Differenzdruck aus statischem Vorkammerdruck und Umgebungsdruck anzeigt. Das flächig aufgetragene Gemisch wird dann von der Luftströmung durch die Scherkräfte entlang der Oberfläche übertragen. Sobald die Flüssigkeit ausgetrocknet ist und sich der Iriodin zu Linien formiert, kann der Windkanal abgeschaltet werden. Die trocknende Farbe stellt den Verlauf wandnaher Stromlinien dar. Anschließend wird ein Foto von dem angefertigten Anstrichbild aufgenommen. Dieses Vorgehen wiederholt sich, bis alle Anstrichbilder aufgenommen sind.

8 Darstellung der Ergebnisse

In diesem Kapitel sind die Ergebnisse aus den Windkanalversuchen mit dem Kraft-Momenten-Sensor dargestellt. Für die Auswertung der Messungen sind nur der Auftrieb, der Widerstand und das Nickmoment relevant, da bei dieser Arbeit kein Schiebe- bzw. Rollwinkel eingestellt wurde.

Wie in Abb. 37 dargestellt ist, ergibt sich die Luftkraft R durch die Summe der Auftriebskraft A und der Widerstandskraft W, die parallel bzw. senkrecht zur Anströmgeschwindigkeit V_{∞} stehen. Die Luftkraft R lässt sich wiederum in die Komponenten Tangentialkraft T und Normalkraft N zerlegen, die bei den Messungen erfasst wurden.

Abbildung 37: Aufteilung der aerodynamischen Kraft an einem Profil, Rill 1996

Die erfassten Größen lassen sich durch folgende Gleichungen in Auftrieb und Widerstand umrechnen:

$$A = N \cdot \cos(\alpha) - T \cdot \sin(\alpha) \tag{25}$$

$$W = N \cdot \cos(\alpha) + T \cdot \sin(\alpha) \tag{26}$$

Zur Berechnung der für die Darstellung benötigten Beiwerte werden folgende Formeln genutzt:

Darstellung der Ergebnisse

$$C_A = \frac{2A}{\rho \, v^2 \cdot S} \tag{27}$$

$$C_W = \frac{2W}{\rho \cdot v^2 \cdot S} \tag{28}$$

$$C_M = \frac{2M}{\rho \cdot v^2 \cdot S \cdot l_{\mu}} \tag{29}$$

8.1 Einfluss der Reynoldszahl

Um den Einfluss der Reynoldszahl auf die Messergebnisse besser analysieren zu können, wird eine lineare Regression für den Auftriebsbeiwert und den C_A über C_M im Anstellwinkelbereich von -2° bis 4° bei den verschiedenen Anströmungsgeschwindigkeiten durchgeführt. Folgend sind die Ergebnisse aus der Messung und aus der linearen Regression dargestellt.

8.1.1 Doppeldeltaflügel

Die Messergebnisse des Doppeldeltaflügels sind in Anhang II hinterlegt.

$V_{\infty}[m/s]$	$\frac{dC_A}{d\alpha} \left[\frac{1}{rad}\right]$	α_0 [rad]	$\frac{dC_M}{dC_A}$	С _{МО}	$x_N \ [mm]$
10	1,8964	0,0183	-0,2377	0,0187	294,8248
15	1,9595	0,0222	-0,2214	0,0158	290,0463
20	1,9710	0,0215	-0,2316	0,0153	293,0366

Tabelle 17: Gemessene Größen, Doppeldeltaflügel, lineare Regression

Abbildung 38: Auftriebsbeiwert, Doppeldeltaflügel, drei Geschwindigkeiten

Abbildung 39: Widerstandsbeiwert, Doppeldeltaflügel, drei Geschwindigkeiten

Abbildung 40: Nickmomentsbeiwert, Doppeldeltaflügel, drei Geschwindigkeiten

Abbildung 41: CA über CM, Doppeldeltaflügel, drei Geschwindigkeiten

Abbildung 42: C_A über C_W, Doppeldeltaflügel, drei Geschwindigkeiten

Abbildung 43: Gleitzahl über korrigierten Anstellwinkel, Doppeldeltaflügel, drei Geschwindigkeiten

Abbildung 44: Gleitzahl über CA, Doppeldeltaflügel, drei Geschwindigkeiten

8.1.2 Deltaflügel kleiner Streckung

Die Messergebnisse des Deltaflügels kleiner Streckung sind in Anhang III hinterlegt.

$V_{\infty}[m/s]$	$\frac{dC_A}{d\alpha} \left[\frac{1}{rad}\right]$	$\alpha_0 [rad]$	$\frac{dC_M}{dC_A}$	С _{м0}	$x_N [mm]$
10	1,3465	0,0130	-0,1135	0,0140	268,5327
15	1,0772	0,0117	-0,1348	0,0149	262,802
20	1,014	0,0210	-0,1372	0,0139	266,3881

Tabelle 18: Gemessene Größen, Deltaflügel kleiner Streckung, lineare Regression

Abbildung 45: Auftriebsbeiwert, Deltaflügel kleiner Streckung, drei Geschwindigkeiten

Abbildung 46: Widerstandsbeiwert, Deltaflügel kleiner Streckung, drei Geschwindigkeiten

Abbildung 47: Nickmomentsbeiwert, Deltaflügel kleiner Streckung, drei Geschwindigkeiten

Abbildung 48: CA über CM, Deltaflügel kleiner Streckung, drei Geschwindigkeiten

Abbildung 49: C_A über C_W, Deltaflügel kleiner Streckung, drei Geschwindigkeiten

Abbildung 50: Gleitzahl über korrigierten Anstellwinkel, Deltaflügel kleiner Streckung, drei Geschwindigkeiten

Abbildung 51: Gleitzahl über CA, Deltaflügel kleiner Streckung, drei Geschwindigkeiten

8.1.3 Deltaflügel großer Streckung

Die Messergebnisse des Deltaflügels großer Streckung sind in Anhang IV hinterlegt.

$V_{\infty}[m/s]$	$\frac{dC_A}{d\alpha} \left[\frac{1}{rad}\right]$	$\alpha_0 [rad]$	$\frac{dC_M}{dC_A}$	С _{мо}	$x_N [mm]$
10	2,8648	0,0097	-0,0607	0,0525	115,6604
15	2,8304	0,0147	-0,0555	0,0521	114,7884
20	2,7960	0,0147	-0,0597	0,0528	115,4927

Tabelle 19: Gemessene Größen, Deltaflügel großer Streckung, lineare Regression

Abbildung 52: Auftriebsbeiwert, Deltaflügel großer Streckung, drei Geschwindigkeiten

Abbildung 53: Widerstandsbeiwert, Deltaflügel großer Streckung, drei Geschwindigkeiten

Abbildung 54: Nickmomentsbeiwert, Deltaflügel großer Streckung, drei Geschwindigkeiten

Abbildung 55: CA über CM, Deltaflügel großer Streckung, drei Geschwindigkeiten

Abbildung 56: C_A über C_W, Deltaflügel großer Streckung, drei Geschwindigkeiten

Abbildung 57: Gleitzahl über korrigierten Anstellwinkel, Deltaflügel großer Streckung, drei Geschwindigkeiten

Abbildung 58: Gleitzahl über C_A, Deltaflügel großer Streckung, drei Geschwindigkeiten

8.1.4 Space Shuttle

Die Messergebnisse des Space Shuttles sind in Anhang V hinterlegt.

$V_{\infty}[m/s]$	$\frac{dC_A}{d\alpha} \left[\frac{1}{rad}\right]$	$\alpha_0 [rad]$	$\frac{dC_M}{dC_A}$	С _{м0}	$x_N \ [mm]$
10	1,7647	0,0091	-0,2843	0,0208	308,4862
15	1,8793	0,0093	-0,2971	0,0171	312,2387
20	1,8850	0,0124	-0,2958	0,0174	311,8576

Tabelle 20: Aerodynamische Größen, Space Shuttle, lineare Regression

Abbildung 59: Auftriebsbeiwert, Space Shuttle, drei Geschwindigkeiten

Abbildung 60: Widerstandsbeiwert, Space Shuttle, drei Geschwindigkeiten

Abbildung 61: Nickmomentsbeiwert, Space Shuttle, drei Geschwindigkeiten

Abbildung 62: CA über CM, Space Shuttle, drei Geschwindigkeiten

Abbildung 63: CA über CW, Space Shuttle, drei Geschwindigkeiten

Abbildung 64: Gleitzahl über korrigierten Anstellwinkel, Space Shuttle, drei Geschwindigkeiten

Abbildung 65: Gleitzahl über CA, Space Shuttle, drei Geschwindigkeiten

8.2 Vergleich von Theorie und Praxis

In diesem Abschnitt werden die Messergebnisse der Flügelmodelle mit den theoretischen Werten verglichen.

	Deltaflügel klei- ner Streckung	Deltaflügel großer Stre- ckung	Doppeldeltaf- lügel
$\left(\frac{dC_A}{d\alpha_g}\right)_{Berechnungsprogramm}$	0,9813	2,8208	1,7738
$\left(\frac{dC_A}{d\alpha}\right)_{Nurflügel}$	1,0994	2,7283	2,1099
$\left(\frac{dC_A}{d\alpha}\right)_{gemessen}$	1,0140	2,7960	1,9710

Tabelle 21: Theoretischer und gemessener Auftriebsanstieg

	Deltaflügel klei- ner Streckung	Deltaflügel großer Stre- ckung	Doppeldeltaf- lügel
$\left(\frac{\Delta x_N}{l_{\mu}}\right)_{Berechnungsprogramm}$	1,1496	0,2157	1,5878
$\left(\frac{\Delta x_N}{l_{\mu}}\right)_{Nurflügel}$	0,1879	0,0252	0,2717
$\left(\frac{\Delta x_N}{l_{\mu}}\right)_{gemessen}$	0,1372	0,0597	0,2316

Tabelle 22: Theoretische und gemessene Neutralpunktklage

Abbildung 66: Theoretischer vs. gemessener Auftriebsbeiwert, Doppeldeltaflügel

Abbildung 67: Theoretischer vs. gemessener Auftriebsbeiwert, Deltaflügel großer Streckung

Abbildung 68: Theoretischer vs. gemessener Auftriebsbeiwert, Deltaflügel kleiner Streckung

8.3 Vergleich von den unlackierten zu den lackierten Modellen

In einer Studienarbeit an der HAW Hamburg wurden die unlackierten Modelle des Space Shuttles und des Doppeldeltaflügels von **Steck et al. 2020** gemessen. In diesem Abschnitt werden die Messergebnisse der unlackierten mit den lackierten Modellen verglichen. Die Messergebnisse von **Steck et al. 2020** sind in Anhang VI hinterlegt.

8.3.1 Doppeldeltaflügel

Abbildung 69: Auftriebsbeiwert, unlackierter & lackierter Doppeldeltaflügel, V3

Abbildung 70: Widerstandsbeiwert, unlackierter & lackierter Doppeldeltaflügel, V3

Abbildung 71: Nickmomentsbeiwert, unlackierter & lackierter Doppeldeltaflügel, V3

Abbildung 72: Gleitzahl über korrigierten Anstellwinkel, unlackierter & lackierter Doppeldeltaflügel, V_3

Abbildung 73: Gleitzahl über CA, unlackierter & lackierter Doppeldeltaflügel, V3

8.3.2 Space Shuttle

Abbildung 74: Auftriebsbeiwert, unlackiertes & lackiertes Space Shuttle, V₃

Abbildung 75: Widerstandsbeiwert, unlackiertes & lackiertes Space Shuttle, V3

Abbildung 76: Nickmomentsbeiwert, unlackiertes & lackiertes Space Shuttle, V₃

Abbildung 77: Gleitzahl über korrigierten Anstellwinkel, unlackiertes & lackiertes Space Shuttle, V_3

Abbildung 78: Gleitzahl über C_A, unlackiertes & lackiertes Space Shuttle, V₃

9 Diskussion der Ergebnisse

Im Folgenden werden die Windkanalergebnisse der Modelle diskutiert. Dabei wird auf die Ergebnisse der Kapitel 4, 5 und 8 eingegangen.

Aus dem Auftriebsbeiwert bei dem unlackierten und lackierten Doppeldeltaflügel ist eine Linearität bis ca. 22° zu erkennen, siehe Abb. 69. Bis hier ist von anliegender Strömung auszugehen. Im Winkelbereich von 24° bis 34° ist ebenfalls eine Linearität zu beobachten. Ab einem Anstellwinkel von 34° tritt der Strömungsabriss bei beiden Zuständen auf. Der Nullauftriebswinkel liegt bei dem lackierten und unlackierten Zustand recht genau bei 1°. Aus Abb. 70 kann entnommen werden, dass der Widerstand bei beiden Zuständen kontinuierlich bis zum Strömungsabriss ansteigt, dann stagniert er. Die maximale Gleitzahl des lackierten Doppeldeltaflügels weicht leicht von der maximalen Gleitzahl des unlackierten Doppeldeltaflügels. So sinkt sie bei V_3 und 6° Anstellwinkel von ca. 5,5 auf ca. 5, siehe Abb. 72.

Bis 8° ist eine Linearität aus dem Auftriebsbeiwert beim Deltaflügel kleiner Streckung festzustellen, siehe Abb. 45. Bemerkenswert ist, dass bei weiterer Anstellwinkelerhöhung der Auftrieb weiterhin annähernd linear steigt, dann stagniert er ab einem Anstellwinkel von 34°. Der Nullauftriebswinkel liegt bei diesem Modell recht genau bei 0°. Auch in der Darstellung des Widerstandsbeiwertes lässt sich bei 8° Anstellwinkel eine Veränderung des Gradienten feststellen, siehe Abb. 46. Aus der Abb. 50 kann entnommen werden, dass die optimale Gleitzahl bei ca. 4,3 liegt. Sie tritt bei einem Anstellwinkel von 8° ein.

Aus dem Auftriebsbeiwert beim Deltaflügel großer Streckung lässt sich feststellen, dass der Strömungsabriss bei ca. 22° auftritt. Ab einem Anstellwinkel von 28° steigt der Auftrieb wieder leicht an, siehe Abb. 52. Der Widerstand in Abb. 53 steigt kontinuierlich bis zum Strömungsabriss an, dann stagniert er, bis er bei einem Anstellwinkel von 28° erneut steigt. Die optimale Gleitzahl kann aus der Abb. 57 abgelesen werden. Sie beträgt ca. 5,5 und wird bei einem Anstellwinkel von 8° erreicht.

Aus der Abb. 74 geht hervor, dass bei dem lackierten Space Shuttle eine Linearität bis 26° und bei dem unlackierten Zustand eine Linearität bis 20° zu beobachten. Bis hier ist von anliegender Strömung auszugehen. Der Strömungsabriss tritt bei dem lackierten und unlackierten Space Shuttle bei ca. 26° auf. Ab einem Anstellwinkel von 32° gibt es bei den beiden Zuständen wieder einen leichten Auftriebsanstieg. Interessant ist, dass der Widerstand kontinuierlich bis 26° Anstellwinkel ansteigt, dann stagniert er, bis er bei einem Anstellwinkel von 32° erneut steigt, siehe Abb. 75. Wenn man bzgl. der Auftriebsmessung bedenkt, dass sich bereits bei 26° die ersten Ablösungserscheinungen bemerkbar machen, siehe Abb. 59 bzw. 74, wird so die oben genannte These gestützt. Beim Space Shuttle wird die Gleitzahl durch die Lackierung kleiner. So sinkt sie bei V_3 und 10° Anstellwinkel von ca. 4,9 auf ca. 4,1, siehe Abb. 77.

Betrachtet man die in den Tabellen 17 bis 20 eingetragenen Werte, lässt sich dabei schlussfolgern, dass die Reynoldszahl einen sehr geringen Einfluss auf die Messergebnisse hat. Beispielsweise beträgt der Auftriebsanstieg bei dem Doppeldeltaflügel 1,8964 bei V_1 , 1,9595 bei V_2 und 1,9710 bei V_3 , siehe Tabelle 17.

Aus der Tabelle 21 geht hervor, dass das Berechnungsprogramm von **Blattner** et al. 2019 und das Nurflügel-Berechnungsprogramm "Ranis" von **Stammler et** al. 2008 sich relativ gut für die Berechnung des Auftriebsanstieges eignen. Beispielsweise beträgt der theoretische Auftriebsanstieg bei dem Deltaflügel kleiner

Streckung $\left(\frac{dc_A}{d\alpha_g}\right)_{Berechnungspr}$ = 0,9813 und $\left(\frac{dc_A}{d\alpha}\right)_{Nurflügel}$ = 1,0994, wäh-

rend der gemessene Auftriebsanstieg $\left(\frac{dc_A}{d\alpha}\right)_{gemessen} = 1,0140$ beträgt. Wie die Tabelle 22 zeigt, weichen die vom Berechnungsprogramm von **Blattner et al. 2019** ermittelten Neutralpunktlagen stark von den gemessenen Neutralpunktlagen ab. Allerdings wurde schon im Abschnitt 4.4 erwähnt, dass die ermittelten Neutralpunktlagen nicht plausibel sind, von daher war eine Starke Abweichung zu erwarten. Dagegen liefert das Nurflügel-Berechnungsprogramm "Ranis" von **Stammler et al. 2008** ein gutes Ergebnis für die Neutralpunktlage, siehe Tabelle 22. Beispielsweise beträgt die theoretische Neutralpunktlage beim Deltaflügel kleiner Streckung $\left(\frac{\Delta x_N}{l_{\mu}}\right)_{Nurflügel} = 0,1879$, während die gemessene Neutral-

punktlage $\left(\frac{\Delta x_N}{l_{\mu}}\right)_{gemessen} = 0,1372$ beträgt.

10 Strömungssichtbarmachung

Um das Verständnis der gemessenen aerodynamischen Größen erleichtern zu können, werden die abgelösten Strömungen visualisiert. In Kapitel 7 wurde eine einfache Methode beschrieben, mit der die Stromlinien in unmittelbarer Nähe der Wand auf der Flügeloberfläche sichtbar gemacht werden können. Im Folgenden werden die Anstellwinkel für den kleinen Windkanal korrigiert und der Strömungsverlauf anschließend diskutiert. Die Anstrichbilder der jeweiligen Modelle sind im Anhang VIIII hinterlegt.

10.1 Korrektur der Anstellwinkel

In Kapitel 2 wurde eine Methode beschrieben, mit der der Anstellwinkel korrigiert werden kann. Die korrigierten Anstellwinkel der jeweiligen Modelle sind für den kleinen Windkanal in den folgenden Tabellen eingetragen.

Flügelmodelle	α [°]	α_k [°]
	18	16,71
Doppeldeltaflügel	28	26,04
	40	37,933
	18	17,34
Deltaflügel kleiner Stre-	28	26,88
ckung	40	38,68
	8	7,53
Deltaflügel großer Stre-	14	13,18
ckung	24	23,06

Tabelle 23: Korrigierte Anstellwinkel, kleiner Windkanal, Flügelmodelle

Modell	α [°]	α_k [°]
	14	13,25
Space Shuttle	24	22,72
	34	32,84

Tabelle 24: Korrigierte Anstellwinkel, kleiner Windkanal, Space Shuttle

10.2 Strömungsverlauf

Abbildung 79: Anstellwinkel, bei denen die Anstrichbilder durchgeführt wurden, Doppeldeltaflügel

Der Strömungsverlauf am Doppeldeltaflügel beim Anstellwinkel $\alpha = 18^{\circ}$ geht aus Abb. 83 hervor. Dabei ist deutlich zu erkennen, dass sich auf jeder Flügelhälfte zwei Primärwirbel ausbilden, die von der Flügelspitze und von der Knickstelle ausgehen. Beide Wirbel sind von Sekundärablösungen begleitet, die sich bis zur Hinterkante ausbilden. Das Wandstromlinienbild ist in Abb. 84 dargestellt. Die beiden primären Wirbel haben den gleichen Rotationssinn und neigen daher dazu, sich umeinander zu bewegen. Da der äußere Wirbel bei Annäherung an die Flügelhinterkante viel stärker wird als der innere, führt diese Tendenz zu einer Bewegung des inneren Wirbels nach außen und nach unten (vgl. **Brennenstuhl et al. 1982**).

Das Anstrichbild des Doppeldeltaflügels für den Anstellwinkel $\alpha = 28^{\circ}$ ist in Abb. 85 dargestellt. Bei dem Modell können zwei getrennte Primärwirbel kaum unterschieden werden. Dies bedeutet, dass der innere Primärwirbel der Knickstelle der Vorderkante folgt (vgl. **Brennenstuhl et al. 1982**).

Abb. 86 zeigt den Stromungsverlauf des Doppeldeltaflügels beim Anstellwinkel $\alpha = 40^{\circ}$. Es findet ein Wirbelabbau im hinteren Teil des Flügels statt (vgl. **Brennenstuhl et al. 1982**).

Abbildung 80: Anstellwinkel, bei denen die Anstrichbilder durchgeführt wurden, Deltaflügel kleiner Streckung

Die Anstrichbilder des Deltaflügels kleiner Streckung sind in Abb. 87, 88 und 89 dargestellt. Das Strömungsfeld hat sich dabei nicht verändert. Eine Wirbelausbildung ist auf jeder Flügelhälfte zu beobachten (vgl. **Brennenstuhl et al. 1982**). Die Strömungsablösung weitet sich in Flügeltiefenrichtung aus. Die von der Hinterkante ausgehende Wirbelschicht rollt sich spiralförmig innerhalb einer Blase auf, siehe Abb. 90 (vgl. **Maskell et al. 1955**).

Abbildung 81: Anstellwinkel, bei denen die Anstrichbilder durchgeführt wurden, Deltaflügel großer Streckung

Das Strömungsbild des Deltaflügels großer Streckung verändert sich kaum bei Anstellwinkel $\alpha = 8^{\circ}$ und 14°. Bei beiden Zuständen wird ein Wirbel auf jeder Flügelhälfte ausgebildet, siehe Abb. 91 und 92. Das zugehörige Wandstromlinienbild ist in Ab. 93 dargestellt. Das Anstrichbild und das Wandstromlinienbild für den Anstellwinkel $\alpha = 24^{\circ}$ sind in Abb. 94 und 95 dargestellt.

Abbildung 82: Anstellwinkel, bei denen die Anstrichbilder durchgeführt wurden, Space Shuttle

Der Strömungsverlauf am Space Shuttle beim Anstellwinkel $\alpha = 14^{\circ}$ geht aus Abb. 96 hervor. Dabei ist zu beobachten, dass sich auf jeder Flügelhälfte drei Wirbel ausbilden, die vom Strake-Flügel, von der Knickstelle und aus der Stufe zwischen Rumpf und Flügel ausgehen. Die Wirbel sind von Sekundärablösungen begleitet, die sich bis zur Hinterkante ausbilden. Das Wandstromlinienbild für den Anstellwinkel $\alpha = 14^{\circ}$ ist in Abb. 97 dargestellt. Bemerkenswert ist, dass die Rumpfwirbel nur bei großen Anstellwinkeln $\alpha = 24^{\circ}$ und 34° sichtbar sind, siehe Abb. 98, 99. Der Wandstromlinienverlauf auf dem Rumpf ist in Abb. 100 dargestellt.

11 Abschließende Betrachtung

Mithilfe der ebenen Flügelmodelle und des Space Shuttles wurde in dieser Arbeit die Strömung von schlanken Deltaflügeln und Doppeldeltaflügel im Niedergeschwindigkeitsbereich erfolgreich untersucht. Aus den Messergebnissen ist zu erkennen, dass die schlanken Flügel ein nichtlineares Strömungsverhalten aufweisen.

Es wurden außerdem die theoretischen Berechnungsmethoden getestet. Mit dem Berechnungsprogramm von **Blattner et al. 2019** konnte zwar eine gute Übereinstimmung des Auftriebsbeiwerts erreicht werden, aber das Programm ist für Flügel mit kleiner Streckung und Zuspitzung bzw. großem Pfeilwinkel ungeeignet. Das Nurflügel-Berechnungsprogramm "Ranis" von **Stammler et al. 2008** eignet sich sehr gut für Flügel mit kleiner Streckung und Zuspitzung bzw. großem Pfeilwinkel Pfeilwinkel.

Die angefertigten Anstrichbilder haben vergleichbare Ergebnisse mit den Anstrichbildern von **Brennenstuhl et al. 1982** gezeigt.

Quellenverzeichnis

- **Blattner et al. 2019** Blattner, C.: Ausarbeitung eines Berechnungsprogramms zur numerischen Tragflügelrechnung. Studienarbeit an der HAW Hamburg, Hamburg, 2019.
- Brennenstuhl et al. Brennenstuhl, U. und Hummel, D.: Vortex formation over dou-ble-delta wings. TU Braunschweig, ICAS-82-6.6.3, 1982.
- Brennenstuhl Brennenstuhl, U. und Hummel, D.: Untersuchung über die Wirbelbildung an Flügeln mit geknickten Vorderkanten, TU Braunschweig.
- Grundmann
 Prof. Dr.-Ing. Grundmann, R.: Aerodynamik TU Dresden.

 (21.06.2020)
 von https://tu-dresden.de/ing/maschinenwe-sen/ilr/ressourcen/dateien/tfd/studium/dateien/Aerodyna-mik_V.pdf?lang=de abgerufen.
- Hakenesch et al. Prof. Dr.-Ing. Hakenesch, P.: Aerodynamik des Flugzeugs,
 2017 2017. (21.06.2020) von <u>http://hakenesch.userweb.mwn.de/ae-</u>rodynamik/skript aero.pdf abgerufen.
- Hummel et al. 1970 Hummel, D. und Redeker, G.: Experimentelle Bestimmung der gebundenen Wirbellinien sowie des Strömungsverlaufs in der Umgebung der Hinterkante eines schlanken Deltaflügels, 1970. (21.06.2020) von <u>https://core.ac.uk/download/pdf/196661707.pdf</u> abgerufen.
- ME-MeßsystemeMeßsystemeSensor K6D27 (21.06.2020) von https://www.me-systeme.de/product-pdf?product_id=921&lang=de abgerufen.
- Maskell et al. 1995 Maskell, E. C.: Flow Separation in Three Dimensions. Royal Aircraft Establishment, Farnboroough, U.D.C. No 5532.526.5 : 5333.691.11, 1955.

- NASA et al. 1998 NASA. Space Shuttle 3-view, 1998. (21.06.2020) von https://www.dfrc.nasa.gov/Gallery/Graphics/STS/Medium/EG-0076-07.gif abgerufen.
- Rill et al. 1996Prof. Dr.-Ing. Stefan Rill MSc. Aerodynamik des Flugzeugs
Hochschule Bremen, 1996. (21.06.2020) von http://home-pages.hs-bremen.de/~kortenfr/Aerodynamik/script/node3.html
abgerufen. (Verändert von Houssein Mahfouz)
- Schlichting et al. SCHLICHTING, H.; TRUCKENBRODT, E.: Aerodynamik des Flugzeuges: Erster Band, Grundlagen aus der Strömungsmechanik, Aerodynamik des Tragflügels (Teil I). Berlin: Springer-Verlag, 1967.
- Schlichting et al. SCHLICHTING, H.; TRUCKENBRODT, E.: Aerodynamik des Flugzeuges: Zweiter Band, Aerodynamik des Tragflügels (Teil II), des Rumpfes, der Flügel-Rumpf-Anordnung und der Leitwerke. Berlin: Springer-Verlag, 1969.
- Steck et al. 2020 Steck, M.: Entwurf und Erprobung eines Windkanalmodells des Space Shuttle. Studienarbeit an der HAW Hamburg, Hamburg, 2020.

Anhang I: Temperaturdaten

	Messung Doppeldeltaflügel					
q∞[mmWS]	n _M [1/min]	α [°]	t ₁ [°C]	t₂[°C]	∆t [°C]	
6,243	520		25	25	0	
14,04	760	-2	25	25	0	
24,974	1011		25	25	0	
6,243	514	•	22,4	22,5	0,1	
14,04	1008	0	22,5	22,6	0,1	
24,974	516		22,0	22,7	0,1	
14 04	759	2	22,0	22,0	0	
24.974	1009	-	22.9	22.9	0	
6,243	516		23	23	0	
14,04	760	4	23	23	0	
24,974	1010		23	23,1	0,1	
6,243	516	<u> </u>	23,1	23,1	0	
14,04	760	6	23,1	23,1	0 1	
24,974	516		23,1	23,2	0,1	
14 04	760	8	23,2	23,2	0	
24,974	1010	•	23,3	23,3	0	
6,243	517		23,3	23,3	0	
14,04	760	10	23,4	23,4	0	
24,974	1011		23,4	23,4	0	
6,243	518	10	23,5	23,5	0	
14,04	760	12	23,5	23,5	0	
24,974	1012		23,5	23,5	0 1	
14 04	762	14	23,0	23,7	0,1	
24.974	1013	••	23,7	23,7	0	
6,243	519		23,8	23,8	0	
14,04	763	16	23,8	23,8	0	
24,974	1014		23,8	23,9	0,1	
6,243	521		23,9	23,9	0	
14,04	764	18	23,9	23,9	0	
24,974	1015		23,9	23,9	0	
0,243	766	20	24	24	0	
24.974	1019	20	24	24	0	
6,243	523		24,1	24,1	0	
14,04	767	22	24,1	24,1	0	
24,974	1020		24,1	24,2	0,1	
6,243	525		24,2	24,2	0	
14,04	1024	24	24,2	24,2	0 1	
6 24,974	526		24,Z 24 २	24,3	0,1	
14.04	771	26	24.3	24,3	0	
24,974	1026	-	24,3	24,3	0	
6,243	528		24,4	24,4	0	
14,04	774	28	24,5	24,5	0	
24,974	1029		24,5	24,5	0	
6,243	530	20	24,5	24,6	0,1	
24,04	1031	30	24,0	24,0	0	
6.243	531		24,0	24,0	0	
14,04	778	32	24,7	24,7	0	
24,974	1033		24,7	24,7	0	
6,243	531		24,7	24,8	0,1	
14,04	780	34	24,8	24,8	0	
24,974	1035		24,8	24,8	0	
0,243	532 791	36	24,9	24,9	0	
24 974	1034	50	24,9	24,9 24 9	0	
6,243	532		24.9	24.9	0	
14,04	780	38	24,9	24,9	0	
24,974	1033		24,9	25	0,1	
6,243	532		25	25	0	
14,04	780	40	25	25	0	
24,974	1033		25	25	0	

Messung Deltaflügel kleiner Streckung					
q∞[mmWS]	n _M [1/min]	α [°]	t₁ [°C]	t₂[°C]	∆t [°C]
6,243	518		25,3	25,3	0
14,04	761	-2	25,3	25,3	0
24,974	1011		25,3	25,3	0
6,243	516		22,3	22,4	0,1
14,04	758	0	22,4	22,4	0
24,974	1009		22,4	22,5	0,1
6,243	517	0	22,6	22,6	0
14,04	1000	Z	22,7	22,7	0 1
24,974	517		22,7	22,0	0,1
14 04	758	4	22,0	22,0	0 1
24 974	1010		22,0	22,0	0,1
6,243	517		23	23	0
14,04	759	6	23,1	23,1	0
24,974	1010		23,1	23,1	0
6,243	517		23,2	23,2	0
14,04	759	8	23,2	23,2	0
24,974	1011		23,2	23,3	0,1
6,243	517		23,3	23,4	0,1
14,04	759	10	23,4	23,4	0
24,974	1011		23,4	23,4	0
0,243	518	10	23,5	23,5	0
24 07/	1011	١Z	20,0 23.6	23,0 23,6	0,1
6 243	518		23,0	23,0	0
14.04	761	14	23,7	23.8	0.1
24,974	1013		23,8	23,8	0
6,243	518		23,8	23,9	0,1
14,04	762	16	23,9	23,9	0
24,974	1014		23,9	23,9	0
6,243	519		24	24,1	0,1
14,04	763	18	24,1	24,1	0
24,974	1014		24,1	24,1	0
6,243	521		24,3	24,3	0
14,04	763	20	24,3	24,3	0
24,974	1014		24,3	24,3	0
0,243	52 I 765	22	24,4	24,4	0
24 974	1015	22	24,4	24,4	0 1
6 243	522		24,4	24,5	0,1
14.04	766	24	24.6	24.6	0
24,974	1017		24,6	24,6	0
6,243	523		24,7	24,7	0
14,04	767	26	24,7	24,7	0
24,974	1018		24,7	24,7	0
6,243	523		24,7	24,7	0
14,04	767	28	24,8	24,8	0
24,974	1019		24,8	24,8	0
6,243	523	20	24,8	24,8	0
14,04	768	30	24,8	24,8	0
24,974	1020		24,8	24,8	0
0,243	524 769	30	24,9	24,9	0
24 97/	1020	JZ	24,9	24,9	0
6.243	524		25	25	0
14.04	770	34	25	25	0
24,974	1021	-	25	25	0
6,243	524		25	25	0
14,04	771	36	25	25	0
24,974	1022		25	25,1	0,1
6,243	525		25,1	25,1	0
14,04	771	38	25,1	25,1	0
24,974	1022		25,1	25,1	0
6,243	525	40	25,1	25,1	0
14,04	771	40	25,2	25,2	0
24,974	1023		25,2	25.2	0

	Messung Deltaflügel großer Streckung					
g∞[mmWS]	n _M [1/min]	α [°]	t ₁ [°C]	t₂[°C]	∆t [°C]	
6,243	519		27,1	27,1	0	
14,04	763	-2	27,1	27,1	0	
24,974	1013		27,1	27,1	0	
6,243	519		26,1	26,1	0	
14,04	762	0	26,1	26,1	0	
24,974	1012		26,1	26,1	0	
6,243	519	0	26,2	26,2	0	
14,04	1012	2	26,2	26,2	0 1	
6 243	520		20,2	20,3	0,1	
14 04	761	4	26,3	26,3	0	
24.974	1012	•	26,3	26,3	0	
6,243	519		26,4	26,4	0	
14,04	762	6	26,4	26,4	0	
24,974	1012		26,4	26,4	0	
6,243	519		26,4	26,4	0	
14,04	761	8	26,4	26,4	0	
24,974	1012		26,4	26,4	0	
6,243	519	10	26,4	26,5	0,1	
14,04	/61	10	26,5	26,5	0	
24,974	1013		20,5	20,5	0	
0,243	519 761	12	20,5	20,0	0	
24 974	1015	12	26,5	26,5	0	
6.243	519		26,5	26,5	0	
14,04	762	14	26,6	26,6	0	
24,974	1015		26,6	26,6	0	
6,243	520		26,6	26,6	0	
14,04	762	16	26,6	26,6	0	
24,974	1016		26,6	26,6	0	
6,243	521		26,6	26,6	0	
14,04	763	18	26,6	26,6	0	
24,974	1017		26,6	26,6	0	
6,243	521	20	26,6	26,6	0	
24.074	1019	20	20,0	26,6	0	
6 243	522		20,0	20,0	0	
14.04	764	22	26,7	26,7	0	
24,974	1018		26,7	26,7	0	
6,243	523		26,7	26,7	0	
14,04	765	24	26,7	26,7	0	
24,974	1018		26,7	26,8	0,1	
6,243	522		26,8	26,8	0	
14,04	765	26	26,8	26,8	0	
24,974	1019		26,8	26,8	0	
6,243	522	20	26,8	26,8	0	
24.074	1010	28	26,8	26,8	0	
6 243	522		20,8	20,8 26 Q	0	
14 04	765	30	26,9	26,9	0	
24.974	1019		26,9	26,9	0	
6,243	523		26,9	26,9	0	
14,04	766	32	26,9	26,9	0	
24,974	1019		26,9	26,9	0	
6,243	523		26,9	26,9	0	
14,04	767	34	26,9	26,9	0	
24,974	1020		26,9	27	0,1	
6,243	522	• -	27	27	0	
14,04	767	36	27	27	0	
24,974	1019		27	27	0	
6,243	523	20	27	27	0	
24.074	1024	30	27	21 ۲ حر	0	
6 243	523		21 27.1	27,1	0,1	
14 04	767	40	27,1	27,1	0	
24 974	1020		27.1	27,1	0	

Messung Space Shuttle												
q∞[mmWS]	n _M [1/min]	α [°]	t ₁ [°C]	t ₂ [°C]	∆t [°C]							
6,243	513		24,7	24,7	0							
14,04	755	-2	24,7	24,7	0							
24,974	1006		24,7	24,7	0							
6,243	513	-	23,1	23,1	0							
14,04	753	0	23,1	23,1	0							
24,974	1003		23,1	23,1	0							
14 04	754	2	23,1	23,1	0							
24.974	1003	L	23.2	23.2	0							
6,243	513		23,3	23,3	0							
14,04	754	4	23,3	23,3	0							
24,974	1003		23,3	23,4	0,1							
6,243	513		23,4	23,4	0							
14,04	754	6	23,4	23,4	0							
24,974	1004		23,4	23,5	0,1							
14 04	755	8	23,5	23,5	0							
24.974	1005	•	23,5	23,5	0							
6,243	514		23,5	23,5	0							
14,04	755	10	23,5	23,5	0							
24,974	1005		23,5	23,6	0,1							
6,243	515	40	23,6	23,6	0							
14,04	755	12	23,6	23,6	0							
24,974	515		23,0	23,0	0							
14 04	756	14	23,0	23,0	0							
24,974	1006		23,7	23,7	0							
6,243	516		23,7	23,7	0							
14,04	757	16	23,7	23,8	0,1							
24,974	1007		23,8	23,8	0							
6,243	515	40	23,8	23,9	0,1							
24 974	1000	18	23,9	23,9	0							
6 243	518		23,9	23,9	0							
14,04	759	20	23,9	23,9	0							
24,974	1010		23,9	24	0,1							
6,243	518		24	24	0							
14,04	759	22	24	24	0							
24,974	1011		24	24	0							
6,243	519	24	24	24	0 1							
24 974	1011	24	24	24,1	0,1							
6,243	520		24.1	24.1	0							
14,04	762	26	24,1	24,1	0							
24,974	1015		24,1	24,1	0							
6,243	520		24,2	24,2	0							
14,04	763	28	24,2	24,2	0							
24,974	1015		24,2	24,3	0,1							
14 04	763	30	24,3	24,3	0							
24.974	1015		24.3	24.3	0							
6,243	522		24,3	24,3	0							
14,04	763	32	24,3	24,3	0							
24,974	1015		24,3	24,4	0,1							
6,243	521	<u>01</u>	24,4	24,4	0							
14,04	1016	34	24,4	24,4	0							
6 24,974	522		24,4	24,4	0							
14.04	764	36	24,5	24.5	0							
24,974	1016		24,5	24,5	0							
6,243	522		24,5	24,5	0							
14,04	765	38	24,6	24,6	0							
24,974	1017		24,6	24,7	0,1							
6,243	523	40	24,7	24,7	0							
24 974	/00 1017	40	24,7	24,7	0							
27,314	1017		24,/	24,1	0							
	Messergebnisse, Doppeldeltaflügel, V1											
-------	---------------------------------------	------------	------------	------------	------------	------------	------------	--------------------------------	--------------------	--	--	--
α [°]	A	Y	W	М	CA	Cw	См	C _A /C _W	α _k [°]			
-2	-0,4204807	-0,0271638	0,09684255	0,0514877	-0,1021674	0,02353057	0,04267372	-4,3419006	-1,9372579			
0	-0,1250312	-0,009531	0,07325128	0,03174447	-0,0303798	0,01779842	0,02631026	-1,7068806	0,01865654			
2	0,13644492	-0,0486904	0,06015241	0,01371819	0,03315306	0,01461569	0,01136983	2,26832028	1,97964036			
4	0,38348425	0,00561413	0,08250875	-0,0046399	0,09317808	0,02004778	-0,0038456	4,64780114	3,94277836			
6	0,78744813	-0,0355302	0,12490655	-0,0246133	0,19133224	0,03034949	-0,0203998	6,30429788	5,88250086			
8	1,04690276	0,00715174	0,21896325	-0,0414812	0,25437391	0,05320316	-0,0343802	4,78118016	7,84378631			
10	1,34173831	0,03035692	0,27717598	-0,0602201	0,32601233	0,06734755	-0,0499113	4,84074518	9,79979239			
12	1,68469561	-0,0093833	0,38120414	-0,0800361	0,40934327	0,09262406	-0,0663351	4,41940527	11,748618			
14	1,96560887	0,01727268	0,50834364	-0,0939877	0,4775989	0,12351611	-0,0778984	3,86669318	13,7067015			
16	2,42694467	0,00051663	0,697682	-0,1202619	0,58969315	0,16952109	-0,0996747	3,47858288	15,6378632			
18	2,73493856	0,01385807	0,88617786	-0,1409354	0,66452877	0,21532136	-0,1168093	3,08621855	17,5919059			
20	3,08012519	0,04391386	1,08269128	-0,1704843	0,74840138	0,26306971	-0,1412998	2,84487855	19,5403988			
22	3,5062554	-0,0076372	1,37238382	-0,1967731	0,85194147	0,33345851	-0,1630883	2,55486501	21,4768138			
24	3,81758026	0,03553241	1,70713825	-0,2059106	0,92758643	0,41479633	-0,1706616	2,23624552	23,4303594			
26	4,00539834	0,01080189	1,93296306	-0,2103041	0,97322201	0,4696667	-0,174303	2,07215462	25,4023341			
28	4,21414107	0,01432434	2,19113262	-0,2246489	1,02394182	0,53239611	-0,1861922	1,92327066	27,3711866			
30	4,38564779	-0,0018926	2,53088139	-0,2392292	1,06561411	0,61494745	-0,1982765	1,73285394	29,3455952			
32	4,58215609	0,05259584	2,78313604	-0,2499905	1,11336122	0,67623967	-0,2071956	1,64640033	31,3162732			
34	4,8289818	0,02049064	3,20572588	-0,2524756	1,17333433	0,77891953	-0,2092553	1,50636142	33,279443			
36	4,82086293	0,03935397	3,44589872	-0,2449014	1,17136163	0,83727615	-0,2029777	1,39901469	35,2806545			
38	4,57632304	0,03443548	3,54123337	-0,2183826	1,11194392	0,86044033	-0,1809986	1,29229637	37,3171435			
40	4,33880989	0,01707695	3,61133186	-0,1860554	1,05423355	0,87747269	-0,1542053	1,20144314	39,3525841			

Anhang II: Messergebnisse, Doppeldeltaflügel, drei Geschwindigkeiten

	Messergebnisse, Doppeldeltaflügel, V2										
α [°]	A	Y	W	М	CA	Cw	См	C _A /C _W	α _k [°]		
-2	-1,0090208	-0,0212145	0,20706175	0,10955049	-0,1089642	0,02236061	0,04035421	-4,873043	-1,9330839		
0	-0,4097645	-0,0216234	0,17905975	0,06714084	-0,0442505	0,01933667	0,02473212	-2,2884236	0,02717469		
2	0,24051721	-0,0359053	0,16994245	0,02870362	0,02597346	0,01835209	0,01057332	1,41528625	1,98404942		
4	0,8432681	0,02411908	0,19765438	-0,0119105	0,09106455	0,0213447	-0,0043874	4,26637709	3,9440763		
6	1,58982172	-0,0278243	0,29467217	-0,0517351	0,17168491	0,03182166	-0,0190572	5,39522178	5,89456649		
8	2,34648128	0,02422342	0,47648143	-0,0927365	0,2533966	0,05145525	-0,0341606	4,92460178	7,84438648		
10	3,0704628	0,00748901	0,65856294	-0,1368319	0,33157939	0,07111824	-0,0504036	4,66236807	9,7963736		
12	3,72739604	0,0074108	0,85083879	-0,1837291	0,40252164	0,09188211	-0,0676788	4,38084875	11,7528072		
14	4,51014395	0,02930576	1,16891106	-0,2173285	0,48705061	0,12623075	-0,0800555	3,85841499	13,7008971		
16	5,42066755	0,0367977	1,54411978	-0,2802699	0,58537809	0,16674955	-0,1032407	3,5105227	15,6405132		
18	6,19462558	0,03629636	2,01622105	-0,3202214	0,66895785	0,21773179	-0,1179573	3,07239407	17,5891859		
20	6,99334861	0,08231138	2,47856624	-0,3842416	0,75521198	0,26766046	-0,1415399	2,82152985	19,5362164		
22	7,96148167	0,08735563	3,20058868	-0,4281286	0,8597607	0,34563169	-0,1577062	2,48750542	21,4720119		
24	8,58828058	0,06633914	3,75914058	-0,4579332	0,92744874	0,40594973	-0,1686851	2,28463937	23,430444		
26	8,9491547	0,06503009	4,29336738	-0,4696651	0,96641955	0,4636409	-0,1730066	2,08441391	25,4065116		
28	9,46578502	0,05929678	4,84588251	-0,5021824	1,02221048	0,52330703	-0,1849848	1,95336659	27,3722498		
30	9,80592123	0,05195524	5,65052179	-0,5341247	1,0589418	0,61020006	-0,1967511	1,73540101	29,3496927		
32	10,2520789	0,11464375	6,18246104	-0,5559849	1,10712239	0,6676442	-0,2048036	1,65825209	31,3201045		
34	10,8294311	0,06244149	7,100159	-0,5741624	1,16947067	0,76674644	-0,2114995	1,52523783	33,2818158		
36	10,7280819	0,07757964	7,61904444	-0,5567674	1,15852596	0,8227809	-0,2050918	1,40806133	35,288537		
38	10,3271246	0,06299103	7,94537376	-0,5011576	1,11522657	0,85802121	-0,1846073	1,29976573	37,3151276		
40	9,7203304	0,04184359	8,07384508	-0,4242711	1,04969885	0,87189483	-0,1562852	1,20392828	39,3553689		

	Messergebnisse, Doppeldeltaflügel, V3											
α [°]	A	Y	W	М	CA	Cw	См	C _A /C _W	α _k [°]			
-2	-1,7702038	-0,0472375	0,35025714	0,19525332	-0,10753	0,02127616	0,04045717	-5,0540121	-1,9339647			
0	-0,7149505	-0,029611	0,32002785	0,11897991	-0,0434292	0,0194399	0,02465305	-2,2340258	0,02667035			
2	0,42127663	-0,0391902	0,30946779	0,0493705	0,02559019	0,01879843	0,01022974	1,36129396	1,98428479			
4	1,54566835	0,01645028	0,36921922	-0,0321994	0,09389069	0,022428	-0,0066718	4,1863161	3,94234074			
6	2,72200735	-0,033082	0,53636262	-0,0896581	0,16534669	0,03258102	-0,0185775	5,07493856	5,89845886			
8	3,95857473	0,01597691	0,79329998	-0,1602586	0,24046123	0,04818853	-0,0332061	4,99000988	7,85233023			
10	5,31158122	0,00769239	1,14421076	-0,2416268	0,32264879	0,06950439	-0,0500659	4,64213535	9,80185798			
12	6,49757652	-0,0037946	1,47479092	-0,321115	0,39469136	0,08958528	-0,0665362	4,40576112	11,7576159			
14	7,81037791	0,06210124	2,03553256	-0,3768453	0,47443669	0,1236472	-0,0780837	3,83701939	13,7086434			
16	9,48785932	0,08284124	2,65643175	-0,4966473	0,57633428	0,16136334	-0,1029071	3,57165559	15,646067			
18	10,8414848	0,06333206	3,49806203	-0,5683578	0,65855944	0,21248767	-0,1177657	3,09928316	17,5955717			
20	12,4298208	0,13441876	4,22562763	-0,6851912	0,75504196	0,2566832	-0,141974	2,94153244	19,5363208			
22	13,9067529	0,02202869	5,40052469	-0,7525079	0,84475731	0,32805161	-0,1559223	2,5750744	21,4812256			
24	14,9304683	0,10404159	6,40267639	-0,7911797	0,90694228	0,38892671	-0,1639352	2,3319105	23,4430372			
26	15,5894353	0,13079526	7,30140115	-0,7991805	0,94697083	0,4435192	-0,165593	2,13512927	25,4184552			
28	16,4571016	0,0339449	8,23410327	-0,8516748	0,9996767	0,50017563	-0,17647	1,99865135	27,386088			
30	17,2900527	0,11365483	9,80995814	-0,9018541	1,05027381	0,59589998	-0,1868673	1,76250015	29,3550158			
32	17,9583363	0,10501245	10,6629127	-0,9357212	1,0908683	0,64771219	-0,1938847	1,68418676	31,3300863			
34	18,7947473	0,04650857	12,1577419	-0,9604561	1,14167558	0,73851469	-0,1990099	1,54590774	33,298885			
36	18,8146832	0,01981562	13,2219219	-0,9459054	1,14288657	0,80315766	-0,1959949	1,42299156	35,2981413			
38	18,4045778	0,0497062	14,0444602	-0,8797444	1,11797496	0,85312226	-0,1822861	1,31045106	37,3134398			
40	17,4295056	0,07107026	14,4197979	-0,7530615	1,05874479	0,87592192	-0,156037	1,20872051	39,3498137			

Messergebnisse, Deltaflügel kleiner Streckung, V1											
α [°]	A	Y	W	М	CA	Cw	См	Ca/Cw	α _k [°]		
-2	-0,1945097	0,00691404	0,08996034	0,0232855	-0,0631986	0,02922923	0,02151977	-2,162172	-1,9710355		
0	-0,0513386	-0,0108927	0,06158165	0,01734763	-0,0166805	0,02000864	0,01603216	-0,8336667	0,00764485		
2	0,08085863	-0,0068516	0,09481483	0,01062337	0,02627197	0,03080652	0,0098178	0,85280572	1,98795931		
4	0,23844547	-0,0372173	0,09212464	0,00675694	0,0774739	0,02993244	0,00624457	2,58829198	3,96449299		
6	0,3558806	-0,0016134	0,09165692	0,00252561	0,11563003	0,02978047	0,00233409	3,88274671	5,94700567		
8	0,42647303	0,01103776	0,10311394	-0,0055691	0,13856639	0,033503	-0,0051468	4,13593982	7,93649372		
10	0,67246526	0,00960628	0,15063101	-0,012528	0,21849232	0,04894189	-0,011578	4,46432163	9,89986292		
12	0,79705833	-0,0023258	0,20614893	-0,0232276	0,25897415	0,06698035	-0,0214663	3,86641995	11,8813097		
14	1,01387565	0,00565087	0,30261928	-0,0332711	0,3294208	0,09832477	-0,0307482	3,35033393	13,8490234		
16	1,07813577	0,0396967	0,3434685	-0,0401777	0,35029971	0,11159718	-0,037131	3,13896549	15,8394544		
18	1,43255156	0,04053137	0,48757917	-0,0520267	0,4654538	0,15842053	-0,0480816	2,93809018	17,7866782		
20	1,58396138	-0,0217238	0,57101932	-0,0613465	0,51464873	0,18553127	-0,0566946	2,77391908	19,7641317		
22	1,76253919	0,00527809	0,71093843	-0,0686177	0,57267088	0,23099273	-0,0634144	2,47917278	21,7375396		
24	1,92517888	0,00811575	1,01267512	-0,0824094	0,62551454	0,32903073	-0,0761603	1,90108242	23,7133208		
26	2,2082819	0,01774954	1,06315283	-0,0907359	0,71749823	0,34543156	-0,0838554	2,07710674	25,6711638		
28	2,35853995	-0,0170886	1,25099082	-0,098753	0,76631893	0,40646246	-0,0912646	1,88533753	27,6487888		
30	2,56796499	0,00439459	1,46089523	-0,1063443	0,83436373	0,47466301	-0,0982803	1,7578023	29,6176033		
32	2,76920841	-0,0032859	1,73220345	-0,1158447	0,89975022	0,56281442	-0,1070603	1,59866234	31,587636		
34	2,84379779	0,01744857	1,90151496	-0,1204603	0,92398523	0,61782584	-0,1113258	1,49554321	33,5765289		
36	2,79533178	0,01241896	2,00610792	-0,1100976	0,90823803	0,65180939	-0,1017489	1,39341047	35,583746		
38	2,79375974	-0,0224502	2,16326249	-0,1003577	0,90772725	0,70287086	-0,0927476	1,29145665	37,5839801		
40	2,79917707	-0,0007688	2,33794461	-0,100424	0,90948741	0,75962725	-0,0928089	1,19728118	39,5831734		

Anhang III: Messergebnisse, Deltaflügel kleiner Streckung, drei Geschwindigkeiten

	Messergebnisse, Deltaflügel kleiner Streckung, V2											
α [°]	A	Y	W	М	CA	Cw	См	C _A /C _W	α _k [°]			
-2	-0,3531095	-0,0049466	0,1491991	0,05324167	-0,050991	0,02154517	0,02186861	-2,3667001	-1,9766304			
0	-0,0632608	0,00053482	0,12912111	0,04052147	-0,0091352	0,0186458	0,01664389	-0,4899334	0,00418675			
2	0,14930754	-0,0052676	0,14637836	0,02696114	0,02156083	0,02113784	0,01107408	1,02001105	1,99011847			
4	0,43534776	-0,0149095	0,16978276	0,01729847	0,06286662	0,02451757	0,00710522	2,56414581	3,97118764			
6	0,73422307	0,00359451	0,18168739	0,00545623	0,10602587	0,02623666	0,0022411	4,04113387	5,95140735			
8	1,04290299	0,00351387	0,24031236	-0,0136376	0,15060095	0,03470243	-0,0056016	4,33978091	7,93097817			
10	1,35370758	0,01496592	0,32569295	-0,030038	0,19548285	0,04703186	-0,0123379	4,15639203	9,91040837			
12	1,77645595	-0,0166402	0,46337723	-0,0517456	0,25653005	0,06691423	-0,0212541	3,83371436	11,8824299			
14	2,29570843	0,0236192	0,66630336	-0,0769627	0,33151297	0,09621788	-0,0316119	3,44544029	13,8480645			
16	2,55415982	0,02099759	0,78568022	-0,0952325	0,36883478	0,11345656	-0,039116	3,25088982	15,8309596			
18	3,23889402	0,05952216	1,10668621	-0,1216536	0,46771418	0,1598116	-0,0499683	2,92665977	17,7856422			
20	3,61103561	-0,0136749	1,32588997	-0,1436665	0,52145348	0,19146583	-0,0590099	2,72348061	19,761013			
22	4,01939177	0,03534729	1,63329286	-0,1628408	0,58042237	0,23585651	-0,0668856	2,46091308	21,733987			
24	4,56064056	0,02760254	2,19424207	-0,1912454	0,65858168	0,31686067	-0,0785526	2,07845826	23,6981658			
26	5,00689768	0,02099791	2,41776518	-0,2116901	0,72302367	0,34913864	-0,0869501	2,0708784	25,6686315			
28	5,45023997	0,01100515	2,8832789	-0,2313045	0,78704475	0,41636139	-0,0950065	1,89029233	27,63929			
30	5,84482215	0,01197628	3,33504949	-0,2489993	0,84402459	0,48159956	-0,1022745	1,75254435	29,6131756			
32	6,24526046	0,02227086	3,87202253	-0,2672962	0,9018501	0,55914144	-0,1097899	1,61291945	31,5866736			
34	6,42513336	0,02091625	4,29988351	-0,2805443	0,92782474	0,62092692	-0,1152315	1,49425754	33,5747692			
36	6,43802548	0,00823389	4,63379259	-0,2517944	0,92968643	0,66914524	-0,1034226	1,38936419	35,573916			
38	6,46332507	-0,0045188	5,01082204	-0,245956	0,93333983	0,72359037	-0,1010246	1,2898732	37,5722416			
40	6,3985421	0,00788495	5,33938476	-0,2324069	0,92398481	0,77103665	-0,0954594	1,19836692	39,5765291			

Messergebnisse, Deltaflügel kleiner Streckung, V3											
α [°]	A	Y	W	М	CA	Cw	См	C _A /C _W	α _k [°]		
-2	-0,6822616	0,00572463	0,24252417	0,09480103	-0,0554188	0,01969978	0,02190308	-2,8131693	-1,974601		
0	-0,2903604	0,01007962	0,22416062	0,07306712	-0,0235854	0,01820814	0,01688162	-1,2953229	0,01080942		
2	0,19691888	-0,019125	0,22169612	0,04980273	0,01599535	0,01800796	0,01150655	0,88823785	1,99266918		
4	0,59924379	-0,0112101	0,26851924	0,0331152	0,04867544	0,02181131	0,00765102	2,23166051	3,97769159		
6	1,21855956	0,01412676	0,3109824	0,01058283	0,09898129	0,02526051	0,00244509	3,91841974	5,95463595		
8	1,80245336	0,00409811	0,42047813	-0,0220173	0,14640987	0,03415464	-0,0050869	4,28667566	7,93289898		
10	2,39742232	-0,0047113	0,60026713	-0,0505286	0,19473807	0,04875856	-0,0116742	3,99392572	9,91074971		
12	3,06052294	-0,015332	0,7965027	-0,0884365	0,24860048	0,06469841	-0,0204326	3,84245143	11,8860641		
14	3,98215687	0,01857852	1,15184067	-0,1336355	0,32346306	0,09356184	-0,0308755	3,45721156	13,8517538		
16	4,68331335	0,04887163	1,45276575	-0,1685157	0,38041667	0,11800541	-0,0389343	3,2237223	15,8256515		
18	5,63708757	0,06176012	1,92750415	-0,2087336	0,45788995	0,15656751	-0,0482263	2,92455275	17,7901447		
20	6,32713604	-0,0103236	2,35273107	-0,2447057	0,51394128	0,19110789	-0,0565374	2,68927296	19,7644559		
22	7,05264495	0,0041621	2,89538738	-0,2784394	0,57287299	0,23518683	-0,0643314	2,43582085	21,7374469		
24	8,03631405	0,01605154	3,74787423	-0,3259825	0,65277457	0,30443273	-0,0753158	2,14423258	23,7008273		
26	8,88039318	0,02078819	4,30375063	-0,364877	0,72133752	0,34958551	-0,0843021	2,06340793	25,6694042		
28	9,65583112	0,08287896	5,13355653	-0,398685	0,78432488	0,41698908	-0,0921132	1,88092428	27,6405365		
30	10,4882755	0,01471852	5,99265725	-0,4450005	0,85194276	0,4867722	-0,1028141	1,75018778	29,6095466		
32	11,1288854	0,0166553	6,8869557	-0,4786141	0,90397829	0,55941437	-0,1105803	1,61593684	31,5856983		
34	11,5689877	0,01687631	7,71468257	-0,5059139	0,93972696	0,62664906	-0,1168876	1,49960645	33,5693143		
36	11,5971565	0,03071528	8,34975044	-0,4506576	0,94201506	0,67823442	-0,1041211	1,38892253	35,5682656		
38	11,5116434	-0,0300287	8,91598084	-0,4289986	0,93506899	0,72422824	-0,099117	1,29112473	37,5714491		
40	11,3371359	-0,0132478	9,46018217	-0,4053342	0,92089408	0,76843268	-0,0936495	1,19840566	39,5779456		

	Messergebnisse, Deltaflügel großer Streckung, V1												
α [°]	A	Y	W	М	CA	Cw	См	C _A /C _W	α _k [°]				
-2	-0,3981484	-0,0249176	0,10132834	0,02963151	-0,1363479	0,03470041	0,06051574	-3,9292892	-1,9405903				
0	-0,0330693	0,01123902	0,09720848	0,02371207	-0,0113248	0,03328954	0,0484266	-0,3401899	0,00493445				
2	0,21286889	-0,0397309	0,05755361	0,02524161	0,07289803	0,01970953	0,05155035	3,69861894	1,96823675				
4	0,47314635	0,0214639	0,10300562	0,02176479	0,16203137	0,0352748	0,04444973	4,59340338	3,92939942				
6	0,67982576	-0,010843	0,09897082	0,01923406	0,23280979	0,03389306	0,03928128	6,86895128	5,89855974				
8	1,03543062	-4,884E-05	0,17391076	0,01645072	0,35458848	0,05955663	0,03359692	5,95380409	7,84549812				
10	1,26515342	0,00700871	0,25377193	0,0129714	0,43325822	0,08690549	0,02649118	4,9853954	9,81122002				
12	1,5444974	-0,0022052	0,37214248	0,0100509	0,52892098	0,12744208	0,02052671	4,15028508	11,7695377				
14	1,75593593	0,02624885	0,42645226	0,00566457	0,60132918	0,14604074	0,01156862	4,11754401	13,7379879				
16	2,01258321	0,0398539	0,59680093	-0,0001046	0,68921935	0,20437751	-0,0002136	3,37228565	15,6996922				
18	2,11732362	0,00899976	0,70347918	-0,0087755	0,72508823	0,24091002	-0,017922	3,00978859	17,6840634				
20	2,0948353	-0,0211832	0,74633114	-0,0309214	0,71738699	0,25558489	-0,0631501	2,80684431	19,687419				
22	2,03128574	0,04254177	0,83091992	-0,0417151	0,69562413	0,28455275	-0,0851937	2,44462275	21,6969015				
24	1,87081405	-0,0082759	0,84279138	-0,0442393	0,64066978	0,28861819	-0,0903489	2,2197831	23,7208463				
26	1,75096881	0,00587889	0,88372334	-0,044931	0,59962817	0,30263555	-0,0917616	1,98135404	25,738729				
28	1,67188635	0,01533978	0,91173485	-0,0456731	0,57254598	0,31222823	-0,0932771	1,83374184	27,7505293				
30	1,71180051	0,01557	1,01184091	-0,0491994	0,58621478	0,34651006	-0,1004788	1,69176843	29,7445735				
32	1,78863378	-0,000603	1,12467778	-0,0540787	0,61252673	0,38515162	-0,1104437	1,59035219	31,7331088				
34	1,80296059	0,00755056	1,22312218	-0,0560296	0,61743302	0,41886441	-0,1144279	1,47406418	33,7309711				
36	1,79120748	0,02371037	1,31115297	-0,0587821	0,6134081	0,449011	-0,1200494	1,36613158	35,7327248				
38	1,78048589	0,00784616	1,39086617	-0,060633	0,60973644	0,47630919	-0,1238293	1,2801274	37,7343246				
40	1,76431437	0.02959459	1,47747623	-0.0640151	0,60419842	0,50596924	-0,1307365	1,19414061	39,7367377				

Anhang IV: Messergebnisse, Deltaflügel großer Streckung, drei Geschwindigkeiten

	Messergebnisse, Deltaflügel großer Streckung, V2											
α [°]	A	Y	W	М	CA	Cw	См	C _A /C _W	α _k [°]			
-2	-0,8359777	-0,0159231	0,2113161	0,06571805	-0,1272377	0,03216279	0,05965086	-3,9560528	-1,9445598			
0	-0,393326	0,01128044	0,19941406	0,05931657	-0,0598651	0,03035127	0,05384038	-1,9724084	0,02608452			
2	0,41951533	-0,0380103	0,13402763	0,05529829	0,06385118	0,02039931	0,05019307	3,13006608	1,97217866			
4	1,01241465	0,02239876	0,23131341	0,04773117	0,1540918	0,03520642	0,04332456	4,3768091	3,93285887			
6	1,62211158	-0,0101429	0,270412	0,04165853	0,24688905	0,04115732	0,03781256	5,99866704	5,8924251			
8	2,25863747	0,00881131	0,42061742	0,03567548	0,34376972	0,06401892	0,03238187	5,36981432	7,85021209			
10	2,78289505	0,00940663	0,53884072	0,029655	0,42356291	0,08201277	0,0269172	5,16459676	9,81544447			
12	3,37519367	0,02766364	0,78618009	0,02223616	0,5137121	0,11965839	0,02018328	4,29315588	11,7761645			
14	3,86281809	0,02250247	0,98451017	0,01248282	0,58792964	0,14984467	0,01133039	3,92359389	13,7438263			
16	4,3930527	0,04312468	1,26291474	-0,0003984	0,66863254	0,19221848	-0,0003616	3,47850299	15,7086623			
18	4,72120641	-0,0166124	1,51322311	-0,0167567	0,71857828	0,23031597	-0,0152097	3,11996717	17,6868999			
20	4,79967396	-0,0018573	1,75209654	-0,0643815	0,73052122	0,26667305	-0,0584377	2,73938898	19,6816961			
22	4,70902166	0,09000804	1,9360169	-0,0951927	0,71672373	0,29466615	-0,0864043	2,43232466	21,687708			
24	4,38074153	0,01638417	1,98364721	-0,1030135	0,66675876	0,30191559	-0,0935032	2,20842775	23,7094788			
26	4,17942295	0,01296216	2,09595034	-0,1064701	0,63611761	0,31900838	-0,0966406	1,99404674	25,7228298			
28	3,91636989	0,0424543	2,10589391	-0,1102535	0,59608034	0,32052181	-0,1000747	1,85971851	27,7402749			
30	3,9208173	0,03618365	2,28000125	-0,1144716	0,59675725	0,34702134	-0,1039034	1,71965576	29,7399799			
32	4,0443714	0,02138302	2,5377621	-0,1234744	0,61556246	0,38625312	-0,1120751	1,59367634	31,7317861			
34	4,08096409	0,03976868	2,7714485	-0,1321681	0,62113195	0,42182072	-0,1199661	1,47250223	33,7293594			
36	4,09749919	0,02508893	2,99590738	-0,1382158	0,62364863	0,45598387	-0,1254555	1,36769889	35,7282628			
38	4,07750007	0,03241512	3,18067808	-0,142408	0,62060472	0,48410639	-0,1292607	1,28195937	37,7295891			
40	4,00420145	0,06729229	3,35757692	-0,146806	0,6094485	0,51103079	-0,1332527	1,19258666	39,7344501			

	Messergebnisse, Deltaflügel großer Streckung, V3										
α [°]	A	Y	W	М	CA	Cw	См	C _A /C _W	α _k [°]		
-2	-1,5203714	-0,0240584	0,40592596	0,11843284	-0,1301647	0,03475285	0,06046816	-3,7454403	-1,9432844		
0	-0,5760276	0,00924552	0,31940171	0,10867962	-0,0493159	0,02734518	0,05548846	-1,8034581	0,021488		
2	0,65495365	-0,0509141	0,3042809	0,09876296	0,05607305	0,02605064	0,05042532	2,15246387	1,97556776		
4	1,78976316	0,03937142	0,41908223	0,08472062	0,15322837	0,03587921	0,04325574	4,27067301	3,93323508		
6	2,8154285	-0,0087885	0,53105635	0,07465709	0,24103945	0,04546574	0,03811761	5,30156263	5,89497389		
8	3,94383875	0,00852182	0,71029515	0,06534321	0,33764691	0,06081105	0,03336223	5,55239432	7,85287993		
10	4,88311003	-0,0018066	0,97525602	0,05485907	0,41806146	0,08349535	0,02800935	5,00700321	9,81784157		
12	5,92675854	0,02272243	1,33843121	0,04147322	0,50741214	0,11458814	0,02117495	4,42813833	11,7789095		
14	6,83135689	0,01754012	1,71481008	0,0236796	0,58485822	0,14681136	0,01209008	3,98373963	13,7451646		
16	7,75746443	0,03387639	2,21509748	0,00058379	0,66414578	0,18964285	0,00029807	3,50208715	15,7106173		
18	8,3317281	-0,0063706	2,66980496	-0,027307	0,71331066	0,22857207	-0,0139421	3,12072538	17,6891951		
20	8,52533491	0,02829714	3,11807851	-0,1047634	0,72988607	0,26695046	-0,053489	2,73416301	19,6819728		
22	8,49329412	0,10262762	3,46257368	-0,166179	0,72714293	0,29644399	-0,0848459	2,45288474	21,6831681		
24	7,87460509	0,05341705	3,54444083	-0,1844607	0,67417463	0,30345294	-0,09418	2,22167768	23,7062475		
26	7,2282023	0,06084806	3,59298013	-0,189349	0,61883365	0,30760858	-0,0966757	2,01175682	25,7303608		
28	6,88644471	0,0472973	3,69788195	-0,1962506	0,5895745	0,31658962	-0,1001995	1,86226732	27,7431096		
30	6,96310644	0,05014385	4,05132714	-0,2096854	0,5961378	0,34684939	-0,1070589	1,71872234	29,7402499		
32	7,08847298	0,05509293	4,43978719	-0,2195658	0,6068709	0,38010692	-0,1121035	1,59657945	31,7355732		
34	7,18764072	0,06962368	4,8625071	-0,2359012	0,61536102	0,41629757	-0,1204439	1,47817588	33,7318739		
36	7,21005192	0,05539248	5,25084353	-0,2451999	0,61727973	0,44954451	-0,1251915	1,3731226	35,7310379		
38	7,12037991	0,07061976	5,56730804	-0,2511839	0,60960257	0,47663823	-0,1282467	1,27896281	37,734383		
40	6,88523185	0,07119909	5,76881931	-0,255922	0,58947066	0,49389037	-0,1306659	1,19352531	39,7431549		

	Messergebnisse, Space Shuttle, V1											
α [°]	A	Y	W	М	CA	Cw	См	CA/Cw	α _k [°]			
-2	-0,2969555	0,03841867	0,25208328	0,05356957	-0,0721535	0,06125059	0,04439921	-1,1780054	-1,9556898			
0	-0,0945073	0,01679184	0,27408104	0,02639434	-0,0229632	0,06659555	0,021876	-0,3448152	0,01410191			
2	0,19358498	0,0395067	0,24859397	0,00902028	0,04703681	0,06040276	0,00747614	0,77871953	1,9711142			
4	0,43711976	0,0052291	0,22799587	-0,0084302	0,1062103	0,05539788	-0,0069871	1,91722669	3,93477513			
6	0,67028048	0,02162374	0,27257949	-0,0302864	0,16286313	0,06623071	-0,0251018	2,45902753	5,89998404			
8	0,88710201	0,0217386	0,23779468	-0,0478098	0,2155459	0,05777878	-0,0396254	3,73053762	7,86763099			
10	1,18738247	0,05970598	0,31878295	-0,064282	0,28850732	0,07745711	-0,0532778	3,72473647	9,82282462			
12	1,38063964	0,03128223	0,35616562	-0,083151	0,33546449	0,08654026	-0,0689167	3,87639789	11,7939877			
14	1,59720144	0,06718343	0,48434119	-0,0999957	0,38808415	0,11768405	-0,0828779	3,29767829	13,7616734			
16	1,81839707	0,04673663	0,60247646	-0,1146311	0,44182973	0,14638827	-0,0950078	3,01820436	15,7286677			
18	2,0196649	0,05898018	0,68923526	-0,1298249	0,4907333	0,16746872	-0,1076007	2,93029829	17,6986355			
20	2,22323142	0,04978659	0,84278486	-0,1609725	0,5401954	0,20477783	-0,1334163	2,63795841	19,6682603			
22	2,55464561	0,02892255	1,04637809	-0,1903553	0,62072162	0,25424642	-0,1577691	2,44141733	21,6188083			
24	2,80955711	0,07615165	1,19858642	-0,2176558	0,6826594	0,29122963	-0,1803962	2,34405886	23,5807717			
26	2,97554249	0,08251704	1,39250983	-0,2410027	0,72299013	0,33834867	-0,1997464	2,13681974	25,5560042			
28	2,86996437	0,07352577	1,48529574	-0,2069276	0,69733701	0,36089357	-0,1715045	1,93225112	27,571758			
30	2,37892492	0,06293159	1,38488025	-0,1436179	0,57802543	0,33649486	-0,1190325	1,71778384	29,6450285			
32	2,44407612	0,02948271	1,51665463	-0,1503722	0,59385571	0,36851308	-0,1246306	1,61149155	31,635307			
34	2,56025248	0,03270774	1,72160256	-0,1645631	0,62208396	0,41831083	-0,1363922	1,48713329	33,6179717			
36	2,62122172	0,02602429	1,88455942	-0,1830223	0,63689812	0,4579057	-0,1516914	1,39089364	35,6088742			
38	2,67342388	0,005491	2,06250325	-0,2054751	0,64958208	0,50114206	-0,1703006	1,29620347	37,6010848			
40	2,68336364	0,05196705	2,22975682	-0,220125	0,65199722	0,54178093	-0,1824427	1,20343331	39,5996016			

Anhang V: Messergebnisse, Space Shuttle, drei Geschwindigkeiten

	Messergebnisse, Space Shuttle, V2											
α [°]	A	Y	W	М	CA	Cw	См	C _A /C _W	α _k [°]			
-2	-0,7026832	0,12399087	0,55677826	0,11817899	-0,0758828	0,06012651	0,04353262	-1,2620522	-1,9533996			
0	-0,2460172	0,15854422	0,57784959	0,05182567	-0,0265674	0,062402	0,0190906	-0,4257461	0,01631533			
2	0,45378169	0,12401934	0,5187633	0,00248215	0,0490039	0,05602127	0,00091433	0,87473746	1,96990619			
4	1,05211364	0,06748481	0,50063373	-0,034405	0,11361779	0,05406346	-0,0126735	2,10156364	3,93022612			
6	1,53447063	0,06594813	0,50655255	-0,0715623	0,16570754	0,05470263	-0,0263608	3,02924275	5,89823725			
8	2,01872516	0,110467	0,53710799	-0,1111093	0,21800221	0,05800231	-0,0409284	3,75850892	7,86612255			
10	2,61522421	0,10210778	0,64294094	-0,1495784	0,28241816	0,06943122	-0,055099	4,06759634	9,82656404			
12	3,09109883	0,13133645	0,78183334	-0,1931202	0,33380788	0,08443021	-0,0711381	3,95365444	11,7950051			
14	3,60373069	0,11440764	1,00562589	-0,2336698	0,38916701	0,10859758	-0,086075	3,58356994	13,7610084			
16	4,12492522	0,12921154	1,26655571	-0,2719256	0,44545083	0,1367754	-0,100167	3,2568052	15,726444			
18	4,52285649	0,09845606	1,51276349	-0,3042824	0,48842344	0,16336339	-0,112086	2,9897975	17,700054			
20	5,02200883	0,08998494	1,87393457	-0,3652883	0,54232692	0,20236626	-0,1345582	2,67992752	19,6669513			
22	5,62199449	0,11781365	2,25785202	-0,4289414	0,6071194	0,24382552	-0,1580056	2,48997474	21,6271616			
24	6,12588067	0,1249973	2,59400755	-0,4892102	0,66153408	0,28012697	-0,1802063	2,36155082	23,593745			
26	6,68847477	0,12484987	3,04681985	-0,5532234	0,72228864	0,32902619	-0,2037863	2,19523145	25,5564349			
28	6,67719243	0,0482679	3,34665498	-0,5303167	0,72107026	0,3614054	-0,1953484	1,99518399	27,5571832			
30	5,89486533	0,21973702	3,35690037	-0,401609	0,63658673	0,3625118	-0,1479374	1,75604417	29,6090654			
32	5,40066771	0,13281866	3,35583842	-0,3393216	0,58321831	0,36239712	-0,1249931	1,60933485	31,6418395			
34	5,59481067	0,14521883	3,75699713	-0,3697489	0,60418381	0,40571826	-0,1362013	1,48917087	33,6289644			
36	5,74264266	0,11533387	4,13084008	-0,4092258	0,6201482	0,44608958	-0,1507431	1,3901876	35,6191605			
38	5,89824221	0,03316783	4,55550111	-0,455361	0,6369514	0,49194874	-0,1677376	1,29475157	37,6088414			
40	5,99853038	0,07169374	4,97364649	-0,495688	0,64778152	0,53710427	-0,1825925	1,20606287	39,6021905			

	Messergebnisse, Space Shuttle, V3											
α [°]	A	Y	W	М	CA	Cw	См	C _A /C _W	α _k [°]			
-2	-1,2461218	0,21738311	0,9485471	0,20717291	-0,0756949	0,05761892	0,04292695	-1,3137163	-1,953515			
0	-0,7025749	0,24489001	0,93840289	0,12510145	-0,0426775	0,05700272	0,02592146	-0,7486922	0,02620869			
2	0,7489211	0,22850507	0,88643345	0,01698872	0,04549276	0,05384586	0,00352012	0,84487009	1,97206242			
4	1,80839516	0,1830587	0,83061496	-0,0647724	0,10984987	0,0504552	-0,0134211	2,17717626	3,93254004			
6	2,67195092	0,16814393	0,86125601	-0,131371	0,16230605	0,05231648	-0,0272205	3,10238871	5,90032615			
8	3,57092277	0,20289218	0,88552172	-0,2005191	0,21691355	0,05379048	-0,0415483	4,03256371	7,86679111			
10	4,40319708	0,20594534	1,06738857	-0,2592048	0,26746955	0,06483787	-0,0537081	4,12520537	9,83574414			
12	5,35169481	0,19663989	1,29706524	-0,3426166	0,32508547	0,07878945	-0,0709914	4,12600279	11,8003616			
14	6,25963957	0,22921709	1,66125798	-0,4235057	0,38023803	0,10091211	-0,0877519	3,76801173	13,7664918			
16	7,14920651	0,26878036	2,08687038	-0,4938235	0,43427423	0,12676568	-0,1023219	3,42580286	15,7333076			
18	8,06372659	0,2632311	2,50859287	-0,5781144	0,4898262	0,15238296	-0,1197873	3,21444212	17,6991926			
20	8,79627912	0,20475728	3,07353007	-0,6609639	0,53432466	0,18669973	-0,136954	2,86194666	19,6718656			
22	9,82177435	0,21774991	3,65662922	-0,7693266	0,59661775	0,22211973	-0,1594071	2,68601867	21,6336108			
24	10,7107348	0,24783532	4,22035662	-0,8795412	0,65061712	0,25636301	-0,182244	2,53787436	23,6004492			
26	11,6442739	0,2658629	4,96303994	-0,9973117	0,70732439	0,30147686	-0,2066465	2,34619791	25,5656246			
28	11,918706	0,16056358	5,64437174	-0,9903812	0,7239946	0,34286395	-0,2052104	2,11160896	27,5553873			
30	10,493368	0,32062961	5,76800791	-0,7437242	0,6374133	0,35037416	-0,1541023	1,81923606	29,6085578			
32	9,43255513	0,42841386	5,76198357	-0,6072118	0,57297487	0,35000821	-0,1258164	1,63703263	31,6481301			
34	9,77871055	0,23642857	6,45028113	-0,6488902	0,59400187	0,39181843	-0,1344523	1,51601308	33,6352172			
36	10,0351268	0,2325252	7,10892335	-0,7182469	0,60957772	0,43182726	-0,1488233	1,411624	35,6256519			
38	10,0588133	0,07041216	7,65652388	-0,7830557	0,61101654	0,46509092	-0,1622519	1,31375718	37,6247683			
40	10,3279693	0,06153449	8,46725843	-0,8701232	0,62736626	0,5143385	-0,1802926	1,21975364	39,6147278			

Anhang VI: Messergebnisse von Steck et al. 2020

Messergebnisse von Steck, Deltaflügel, unlackiert, V1								
alphakorrigiert	Auftrieb	Widerstand	Nickmoment	cA	cW	сМ		
-3,898678556	-0,6583272	0,07120653	0,05925707	-0,1649906	0,0178459	0,05065805		
-2,912647617	-0,5675644	0,10868821	0,04833694	-0,1422436	0,0272395	0,04132257		
-1,938639739	-0,3985486	0,07643466	0,03892877	-0,0999183	0,0191626	0,03329088		
-0,970154451	-0,1938535	0,06865541	0,029683	-0,0486001	0,0172123	0,02538414		
0,029172589	-0,1914152	0,06425889	0,02390804	-0,0475043	0,0159474	0,0202391		
0,986318101	0,08973378	0,08188346	0,0132089	0,02227944	0,0203303	0,0111868		
1,971993874	0,18357306	0,07310814	0,00407886	0,04560484	0,0181622	0,00345646		
2,950185888	0,32640987	0,11488532	-0,0099594	0,0811167	0,0285504	-0,0084425		
3,935441137	0,4228809	0,0866111	-0,0160521	0,10512688	0,0215313	-0,0136119		
4,911557179	0,57912997	0,12601209	-0,0256054	0,14401923	0,0313369	-0,0217204		
5,884575908	0,75529379	0,16128398	-0,0376926	0,1879552	0,0401356	-0,0319952		
6,856442098	0,93917143	0,18637434	-0,0434222	0,23376796	0,0463902	-0,0368674		
7,836483214	1,06937784	0,2267401	-0,0573941	0,26626877	0,0564569	-0,0487469		
8,815502442	1,20618553	0,25340262	-0,0661935	0,3004336	0,0631169	-0,0562394		
9,775213133	1,46907983	0,34768048	-0,0772637	0,36604023	0,0866291	-0,0656674		
10,76849525	1,51247751	0,33298767	-0,0840806	0,37697955	0,082996	-0,0714851		
11,73059386	1,75949232	0,42029676	-0,0936511	0,43869772	0,1047934	-0,0796492		
12,71078615	1,88885654	0,480376	-0,101614	0,47095235	0,1197731	-0,0864216		
13,68627568	2,0484539	0,51128063	-0,1111	0,51086491	0,1275085	-0,0945115		
14,66177089	2,20747653	0,58492731	-0,1195132	0,55076822	0,1459401	-0,1017137		
15,6427176	2,33081278	0,69206868	-0,1321527	0,58179436	0,1727473	-0,1125198		
16,59551573	2,6387449	0,84047704	-0,1467774	0,65865733	0,2097915	-0,1249718		
17,57086495	2,79862075	0,92992854	-0,158647	0,69879836	0,2321974	-0,1351234		
18,53427202	3,03624374	1,06094897	-0,1734893	0,75838583	0,2650013	-0,1478145		
19,52505686	3,09556709	1,12228149	-0,1831298	0,77339169	0,2803891	-0,1560663		
20,48116364	3,38165269	1,31698681	-0,1967463	0,84486688	0,3290339	-0,1676704		
21,45832235	3,5293415	1,42638493	-0,2041144	0,88206137	0,3564855	-0,1740081		
22,43990493	3,64934152	1,53428085	-0,2065419	0,91205206	0,3834511	-0,1760775		
23,43875463	3,65560823	1,61354122	-0,2020354	0,91392521	0,4033955	-0,1722937		
24,4065971	3,86506263	1,79751295	-0,2078935	0,96629014	0,4493896	-0,1772894		
25,3995444	3,90968563	1,90606123	-0,2143422	0,97777468	0,4766875	-0,1828502		
26,37416322	4,07316713	2,04061726	-0,2234222	1,01910509	0,5105618	-0,1906794		
27,36065536	4,16108107	2,18683808	-0,2279415	1,04110113	0,5471462	-0,1945364		
28,33412447	4,3322963	2,38545121	-0,2367174	1,0843037	0,5970399	-0,2020942		
29,32867956	4,36772177	2,48981065	-0,2404918	1,09317012	0,6231593	-0,2053165		
30,3044827	4,52362855	2,71305993	-0,2472397	1,13257201	0,6792635	-0,2111484		
31,28863713	4,62668772	2,87018285	-0,2532851	1,15837473	0,7186021	-0,2163114		
32,25741825	4,82855646	3,21097941	-0,2586878	1,20921118	0,8041228	-0,2209793		
33,24082781	4,93597715	3,45512917	-0,2625302	1,23622687	0,8653451	-0,2242823		
34,27647004	4,70265554	3,26647201	-0,2502082	1,17818748	0,8183709	-0,2138274		
35,2847125	4,65064817	3,34514099	-0,2354482	1,16476556	0,8377983	-0,2011459		
36,29140356	4,6055936	3,44594906	-0,2258611	1,15386991	0,8633365	-0,1930205		
37,31508569	4,45166925	3,45954109	-0,2082235	1,11530622	0,8667418	-0,1779474		
38,32912363	4,35896013	3,53074639	-0,1937575	1,092447	0,8848792	-0,1656406		
39,35078605	4,21821048	3,53877354	-0,1809989	1,05717218	0,886891	-0,1547334		

Messergebnisse von Steck, Deltaflügel, unlackiert, V2

alphakorrigiert	Auftrieb	Widerstand	Nickmoment	cA	cW	сM
-3 899956177	-1 4625583	0 22150896	0 13069213	-0 1629102	0 0246732	0.04965639
-2 918627025	-1 1896059	0 21511327	0 10852942	-0 1325068	0.0239608	0.04123569
-1 936933311	-0.9216726	0 15522838	0.08902047	-0 102697	0.0172963	0.03383467
-0.965093919	-0.5101263	0 16252404	0.06657712	-0.0568406	0.0181092	0.02530446
0.014779667	-0 218197	0 1406502	0.04006167	-0 024067	0.0155137	0.01507279
0 990086321	0 14629415	0 17326048	0.01773105	0.01614332	0 019119	0.00667408
1.971441749	0.42118222	0.13068798	-0.0018926	0.04650391	0.0144296	-0.0007128
2.949640688	0.74246023	0.2087425	-0.0241644	0.0820045	0.0230555	-0.009104
3.930223624	1.02837882	0.2184559	-0.0474541	0.11362301	0.0241366	-0.0178846
4.903409558	1.42308266	0.27293466	-0.0695432	0.15728671	0.0301662	-0.0262185
5.882537488	1,72942307	0.31657348	-0.0892597	0.19127454	0.0350131	-0.0336746
6.857050541	2.10417958	0.39101481	-0.1096188	0.23277718	0.0432564	-0.041365
7.833047817	2.45665097	0.48936897	-0.1342794	0.27186293	0.0541555	-0.0506882
8.810274682	2.79081661	0.55374386	-0.1545055	0.30894642	0.0613	-0.0583427
9.779427512	3.24345833	0.70150186	-0.1771301	0.35917759	0.0776837	-0.0669089
10.7611801	3.51060559	0.75819926	-0.1965888	0.38889144	0.0839904	-0.0742841
11.73240862	3.93219031	0.9528869	-0.2183446	0.43574259	0.1055934	-0.0825332
12.71017882	4.2588518	1.10087635	-0.2366744	0.47194133	0.1219928	-0.0894618
13.68046815	4.69434153	1.22346642	-0.2591094	0.52032182	0.1356093	-0.0979651
14.65394653	5.08172117	1.40109393	-0.281434	0.5635093	0.1553665	-0.1064529
15.63166976	5.40649324	1.59735444	-0.3089904	0.59978454	0.177207	-0.1169271
16,59803513	5,90019528	1,85937193	-0,33758	0.65455476	0,2062747	-0,1277459
17,56224689	6,42335342	2,12861103	-0,3695618	0,7128319	0,2362227	-0,1398953
18,53376972	6,83891641	2,39632796	-0,3947129	0,75920377	0,2660219	-0,1494662
19,51255792	7,14832255	2,60258542	-0,4133161	0,79374482	0,2889893	-0,1565489
20,48338917	7,57608128	2,92438811	-0,4360178	0,84124286	0,324722	-0,1651474
21,45717734	7,95780423	3,20446837	-0,4562072	0,88392589	0,3559415	-0,1728524
22,42431828	8,43951949	3,57321827	-0,4841623	0,93743319	0,396901	-0,1834444
23,41681059	8,54671108	3,75931721	-0,4852674	0,94965862	0,4177125	-0,1839248
24,40190874	8,76509952	4,07579378	-0,483679	0,97392462	0,4528774	-0,1833228
25,38650902	8,98776351	4,3146382	-0,496486	0,99900133	0,4795775	-0,1882401
26,36401704	9,31320465	4,69797952	-0,5132231	1,03562701	0,5224146	-0,194671
27,34847603	9,54078389	5,02737607	-0,5261757	1,06093378	0,5590435	-0,199584
28,31830596	9,97923178	5,53230171	-0,5377411	1,11006237	0,6153981	-0,2040395
29,32007451	9,9533422	5,64564569	-0,5476425	1,10718248	0,6280061	-0,2077965
30,29633299	10,2974266	6,146725	-0,5639212	1,1458429	0,6839749	-0,2140452
31,27966628	10,5413264	6,52057318	-0,5764211	1,17298276	0,7255747	-0,2187898
32,26617845	10,736087	6,98312841	-0,5820061	1,19494618	0,777235	-0,2209635
33,24711681	11,0139466	7,48548409	-0,5898756	1,22598593	0,8332252	-0,223972
34,26941511	10,684147	7,40439874	-0,5721766	1,18967564	0,8244769	-0,2173249
35,27777969	10,5653786	7,5447966	-0,5428158	1,17605486	0,8398274	-0,2061037
36,28419746	10,4679684	7,79039819	-0,5197967	1,16560424	0,8674578	-0,1974299
37,30359362	10,1843171	7,87558944	-0,4801401	1,13401977	0,8769438	-0,1823675
38,31984574	9,9432954	8,02531919	-0,4456347	1,10755501	0,8939172	-0,1693186
39,34523318	9,57215193	8,00551961	-0,4131083	1,06621441	0,8917117	-0,1569602

Messergebnisse von Steck, Deltaflügel, unlackiert, V3

alphakorrigiert	Auftrich	Widerstand	Nickmoment	c۸	c\\/	cN/
-3 80887160/	-2 628280060	0 37//10328	0 2321/17579	-0 164676117	0 023/150338	0 108/150733
-2 918213361	-2 125605943	0 358379717	0,232147375	-0 133180379	0,023455555	0 164450874
-1 938778/03	-1 590591854	0 27621391	0 153945327	-0.099692512	0,022434372	0 131650057
-0.961251351	-1 006724565	0 303978/81	0,133343527	-0.063097834	0,017912005	0.09751346
0.017957781	-0 471318185	0 280445444	0,070750267	-0 029242235	0.01739982	0,05751540
0,017557781	0 109722231	0,280445444	0.028677142	0.006810562	0,0179/7586	0.02/28706
1 973793595	0,105722231	0,258696965	-0.008686015	0.042674194	0,017947988	-0.007360601
2 952456077	1 246137293	0,258050505	-0.042169249	0,077/19952	0,010000540	-0.035746508
3 930620776	1 81782314	0 367332007	-0.084066528	0 112976294	0 022829398	-0 071286872
4 905927193	2 463982106	0 460499582	-0 123339624	0 153187027	0.022629396	-0 104625564
5 88456113	3 021561961	0,40040005	-0 159321965	0,199107027	0,020020404	-0 135239904
6 859/83689	3 677092028	0,545215051	-0 195430749	0,107575207	0,033313125	-0 165929565
7 83/8/9938	4 320236978	0,080101113	-0,133430743	0,22001307	0,042320773	-0,103323305
9 910640092	4,320230978	0,840070302	0 277540907	0,200320373	0,032293313	0,203182390
0,720047460	4,931000894	1 190202059	-0,277349897	0,306330734	0,036016165	-0,253612170
9,782947469	5,674130348	1,189303058	-0,315078196	0,35344573	0,074082558	-0,267788878
10,76528085	6,133911943	1,343824046	-0,349913543	0,382213844	0,083735821	-0,297495487
11,73847604	6,832055205	1,635279043	-0,387058527	0,425862475	0,101931843	-0,329189065
12,71371796	7,478835366	1,886327931	-0,419147299	0,466178221	0,117580473	-0,356480217
13,6884464	8,137121	2,100207094	-0,455350948	0,507330131	0,130942915	-0,387361881
14,65675628	8,96081894	2,432612202	-0,505450052	0,558933945	0,151734963	-0,430171648
15,63350664	9,563610224	2,743383114	-0,552984691	0,596793378	0,17119402	-0,47083202
16,59861174	10,47418932	3,204269966	-0,605580067	0,653615808	0,199954521	-0,515613706
17,5646634	11,35625751	3,746958702	-0,655397961	0,708896881	0,233898125	-0,558217791
18,53674715	12,08043003	4,156653459	-0,700845439	0,754355364	0,259559786	-0,597126842
19,50981614	12,77960995	4,562758389	-0,73440404	0,798209496	0,284988125	-0,625871394
20,48601352	13,40016929	5,051587479	-0,763422329	0,836969392	0,315520201	-0,650601265
21,4641627	13,9651529	5,491312454	-0,794268418	0,87255101	0,343100449	-0,67711616
22,42958705	14,8662738	6,159553391	-0,84666324	0,928853577	0,384852538	-0,7217829
23,42106927	15,08319914	6,482472394	-0,840112709	0,942723827	0,405164788	-0,716439178
24,41433808	15,25857062	6,950031285	-0,824568543	0,953684822	0,434387959	-0,703183279
25,39122929	15,85530791	7,519428527	-0,84949396	0,991314906	0,470134142	-0,724682886
26,36864244	16,43639317	8,170589545	-0,875779418	1,028095052	0,51106971	-0,747432944
27,35049549	16,90882026	8,762416021	-0,897681802	1,057645328	0,548088407	-0,766125508
28,33485897	17,31007	9,353975905	-0,91143235	1,083107647	0,585287225	-0,778122531
29,32331205	17,61057464	9,857024734	-0,93017402	1,10191051	0,616763471	-0,794122968
30,30299942	18,13310306	10,65605156	-0,952928358	1,134987365	0,666983684	-0,813822892
31,29015172	18,46734759	11,26975177	-0,965525882	1,155908402	0,705396413	-0,824581469
32,27893145	18,75467686	11,98850046	-0,976534002	1,174179342	0,750567428	-0,834186146
33,26813315	19,03377427	12,68076018	-0,983879711	1,191763169	0,793981411	-0,840538874
34,27733259	18,78819721	12,87033274	-0,967792204	1,176782911	0,806122453	-0,827073519
35.27581924	18,83388104	13,34571603	-0,941771174	1,179247239	0,835616343	-0,804565104
36.28895425	18.4860527	13,64159402	-0.906147286	1.157858344	0.854429754	-0.77439188
37.30128161	18.16556114	13.9630432	-0.847201465	1.137784625	0.874563452	-0.724016885
38,31249183	17.86809525	14.32924773	-0.797513541	1,119530033	0.897802646	-0.681783221
39.33944945	17,16747626	14,29077504	-0.730656729	1.075632573	0.895392129	-0.624628264
,		,	-,	_,	-,	-,

Messergebnisse von Steck, Space Shuttle, unlackiert, V1									
alphakorrigiert	Auftrieb	Widerstand	Nickmoment	cA	cW	сМ			
-3,911117757	-0,573784638	0,294773663	0,075797307	-0,144734774	0,074355423	0,065218155			
-1,94452375	-0,358200056	0,237094476	0,04595393	-0,090336857	0,059794434	0,03953236			
-0,013082237	0,084947719	0,26603439	0,019665307	0,021302957	0,066715378	0,016822078			
1,974792264	0,163644378	0,233627755	0,002674215	0,041047974	0,058602355	0,002288115			
3,932961701	0,434904279	0,228748268	-0,014376737	0,109164359	0,057417596	-0,01230944			
5,89490222	0,681581378	0,247446975	-0,033075405	0,17113996	0,062132075	-0,028328895			
7,861915476	0,894903045	0,2342903	-0,047816132	0,224855176	0,058868262	-0,040981902			
9,81886592	1,173503741	0,273030552	-0,066934366	0,294956555	0,068625389	-0,057386996			
11,78855272	1,368504126	0,327591755	-0,084574538	0,344318211	0,082422701	-0,072584565			
13,75998117	1,552896262	0,404021445	-0,101853854	0,390843771	0,101686937	-0,087443791			
15,72626308	1,770449674	0,484065633	-0,11634104	0,4457499	0,12187424	-0,099915156			
17,6978665	1,953449229	0,613602963	-0,129699753	0,491990555	0,154540419	-0,111425489			
19,64895179	2,268939876	0,787995132	-0,16170108	0,571642674	0,198529564	-0,13896497			
21,61248719	2,504283385	0,974590948	-0,189749629	0,631021197	0,245574263	-0,163091818			
23.57311053	2.761882691	1.174933755	-0.214801539	0.695141671	0.29572053	-0.184415001			
25,55618739	2.870667607	1.339370785	-0.23046524	0.722699104	0.337190577	-0.197911396			
27.5751993	2,746788506	1.426252093	-0.198412177	0.691740354	0.359181686	-0.170442139			
29.64078316	2.321932965	1.368847167	-0.14171772	0.58494438	0.344841763	-0.121781078			
31,63902441	2,332748345	1,435280218	-0.145778344	0.587808307	0.361663373	-0.125300154			
33,61649803	2,477713125	1,679193197	-0.16023786	0.624489996	0.423228719	-0.137762293			
35 61096488	2 512865482	1 826468849	-0 174713931	0 633500101	0 460457676	-0 150243518			
37 60143376	2 573578741	1 993957069	-0 196097125	0 649020462	0 502848006	-0 168687506			
39 59596483	2 60800798	2 179407668	-0 21239005	0 657926008	0 549802377	-0 182765016			
33,33330103	Messerget	nisse von S	teck, Space S	Shuttle, unlac	ckiert, V2	0,102/03010			
alphakorrigiert	Auftrieb	Widerstand	Nickmoment	cA	cW	сМ			
-3.908216016	-1.333158368	0.602698817	0.157452508	-0.149459935	0.067568361	0.060212047			
-1,94538304	-0,79346679	0,527062726	0,105605244	-0,088937601	0,059077071	0,040376893			
-0.010570695	0.154439095	0.5642325	0.041257446	0.017213193	0.062887205	0.015685462			
1.965446975	0.504702737	0.509712616	-0.010079971	0.05626573	0.056824246	-0.003833172			
3.927969845	1.051403325	0.469172917	-0.04441776	0.117293037	0.052340253	-0.016902475			
5.889813244	1.607819075	0.491615498	-0.083781416	0.179426787	0.054862509	-0.0318925			
7.862982539	1.997972046	0.454510747	-0.115868359	0.223117584	0.050756135	-0.044136715			
9.821328824	2,604479356	0.561874911	-0.158515729	0.290945992	0.062766961	-0.060402454			
11 79056522	3 049820827	0 665163766	-0 198403523	0 341041079	0 074380818	-0 075678499			
13 7559332	3 552935738	0 850561978	-0 239307503	0 397435439	0.095144832	-0.091311676			
15 72096338	4 060626327	1 01030849	-0 277957605	0 454379871	0 113052471	-0 106095113			
17 69397871	+,000020327	1,01030043	0.277337003	· · · · · · · · · · · · · · · · · · ·	0.113032771	0,100033113			
19 65298106	4 451810763	1 317438307	-0 31184521	0 498321384	0 147469808	-0 119070086			
	4,451810763	1,317438307	-0,31184521 -0.371875693	0,498321384	0,147469808	-0,119070086			
21 61716614	4,451810763 5,046514387 5,566580867	1,317438307 1,669936133	-0,31184521 -0,371875693 -0,433251211	0,498321384 0,565081469	0,147469808 0,186990444	-0,119070086 -0,142039163 -0,165504668			
21,61716614	4,451810763 5,046514387 5,566580867	1,317438307 1,669936133 2,062522024	-0,31184521 -0,371875693 -0,433251211	0,498321384 0,565081469 0,623402045	0,147469808 0,186990444 0,230982084	-0,119070086 -0,142039163 -0,165504668			
21,61716614 23,56418943	4,451810763 5,046514387 5,566580867 6,344078197	1,317438307 1,669936133 2,062522024 2,633234905	-0,31184521 -0,371875693 -0,433251211 -0,506945873 0 540752746	0,498321384 0,565081469 0,623402045 0,709668686	0,147469808 0,186990444 0,230982084 0,294561999	-0,119070086 -0,142039163 -0,165504668 -0,193436965			
21,61716614 23,56418943 25,5370957	4,451810763 5,046514387 5,566580867 6,344078197 6,736875677 6,503731776	1,317438307 1,669936133 2,062522024 2,633234905 3,139447503	-0,31184521 -0,371875693 -0,433251211 -0,506945873 -0,549752746	0,498321384 0,565081469 0,623402045 0,709668686 0,753787792	0,147469808 0,186990444 0,230982084 0,294561999 0,351272209	-0,119070086 -0,142039163 -0,165504668 -0,193436965 -0,209820896 0,102685666			
21,61716614 23,56418943 25,5370957 27,55303332	4,451810763 5,046514387 5,566580867 6,344078197 6,736875677 6,502731776	1,317438307 1,669936133 2,062522024 2,633234905 3,139447503 3,283566019	-0,31184521 -0,371875693 -0,433251211 -0,506945873 -0,549752746 -0,504686233	0,498321384 0,565081469 0,623402045 0,709668686 0,753787792 0,727835156	0,147469808 0,186990444 0,230982084 0,294561999 0,351272209 0,367521662	-0,119070086 -0,142039163 -0,165504668 -0,193436965 -0,209820896 -0,192685666			
21,61716614 23,56418943 25,5370957 27,55303332 29,6113907	4,451810763 5,046514387 5,566580867 6,344078197 6,736875677 6,502731776 5,65180687	1,317438307 1,669936133 2,062522024 2,633234905 3,139447503 3,283566019 3,274056374	-0,31184521 -0,371875693 -0,433251211 -0,506945873 -0,549752746 -0,504686233 -0,380927179	0,498321384 0,565081469 0,623402045 0,709668686 0,753787792 0,727835156 0,632806708	0,147469808 0,186990444 0,230982084 0,294561999 0,351272209 0,367521662 0,366580968	-0,119070086 -0,142039163 -0,165504668 -0,193436965 -0,209820896 -0,192685666 -0,145484419			
21,61716614 23,56418943 25,5370957 27,55303332 29,6113907 31,63464517	4,451810763 5,046514387 5,566580867 6,344078197 6,736875677 6,502731776 5,65180687 5,312337688	1,317438307 1,669936133 2,062522024 2,633234905 3,139447503 3,283566019 3,274056374 3,283570005	-0,31184521 -0,371875693 -0,433251211 -0,506945873 -0,549752746 -0,504686233 -0,380927179 -0,333781831	0,498321384 0,565081469 0,623402045 0,709668686 0,753787792 0,727835156 0,632806708 0,594939416	0,147469808 0,186990444 0,230982084 0,294561999 0,351272209 0,367521662 0,366580968 0,36773363	-0,119070086 -0,142039163 -0,165504668 -0,193436965 -0,209820896 -0,192685666 -0,145484419 -0,127508907			
21,61716614 23,56418943 25,5370957 27,55303332 29,6113907 31,63464517 33,61856307	4,451810763 5,046514387 5,566580867 6,344078197 6,736875677 6,502731776 5,65180687 5,312337688 5,544856275	1,317438307 1,669936133 2,062522024 2,633234905 3,139447503 3,283566019 3,274056374 3,283570005 3,71828241	-0,31184521 -0,371875693 -0,433251211 -0,506945873 -0,549752746 -0,504686233 -0,380927179 -0,333781831 -0,362370851	0,498321384 0,565081469 0,623402045 0,709668686 0,753787792 0,727835156 0,632806708 0,594939416 0,62112731	0,147469808 0,186990444 0,230982084 0,294561999 0,351272209 0,367521662 0,366580968 0,36773363 0,416516973	-0,119070086 -0,142039163 -0,165504668 -0,193436965 -0,209820896 -0,192685666 -0,145484419 -0,127508907 -0,138463195			
21,61716614 23,56418943 25,5370957 27,55303332 29,6113907 31,63464517 33,61856307 35,61457786	4,451810763 5,046514387 5,566580867 6,344078197 6,736875677 6,502731776 5,65180687 5,312337688 5,544856275 5,601456817	1,317438307 1,669936133 2,062522024 2,633234905 3,139447503 3,283566019 3,274056374 3,283570005 3,71828241 4,029464639	-0,31184521 -0,371875693 -0,433251211 -0,506945873 -0,549752746 -0,504686233 -0,380927179 -0,333781831 -0,362370851 0,105328631	0,498321384 0,565081469 0,623402045 0,709668686 0,753787792 0,727835156 0,632806708 0,594939416 0,62112731 0,627616772	0,147469808 0,186990444 0,230982084 0,294561999 0,351272209 0,367521662 0,366580968 0,36773363 0,416516973 0,451482475	-0,119070086 -0,142039163 -0,165504668 -0,193436965 -0,209820896 -0,192685666 -0,145484419 -0,127508907 -0,138463195 -0,150120345			
21,61716614 23,56418943 25,5370957 27,55303332 29,6113907 31,63464517 33,61856307 35,61457786 37,60306269	4,451810763 5,046514387 5,566580867 6,344078197 6,736875677 6,502731776 5,65180687 5,312337688 5,544856275 5,601456817 5,766866335	1,317438307 1,669936133 2,062522024 2,633234905 3,139447503 3,283566019 3,274056374 3,283570005 3,71828241 4,029464639 4,454063149	-0,31184521 -0,371875693 -0,433251211 -0,506945873 -0,549752746 -0,504686233 -0,380927179 -0,333781831 -0,362370851 0,105328631 -0,436341043	0,498321384 0,565081469 0,623402045 0,709668686 0,753787792 0,727835156 0,632806708 0,632806708 0,594939416 0,62112731 0,627616772 0,646367943	0,147469808 0,186990444 0,230982084 0,294561999 0,351272209 0,367521662 0,366580968 0,36773363 0,416516973 0,451482475 0,499224963	-0,119070086 -0,142039163 -0,165504668 -0,193436965 -0,209820896 -0,192685666 -0,145484419 -0,127508907 -0,138463195 -0,150120345 -0,166823317			

Messergebnisse von Steck, Space Shuttle, unlackiert, V3								
alphakorrigiert	Auftrieb	Widerstand	Nickmoment	cA	cW	сM		
-3,911398026	-2,287901406	1,064982229	0,251797618	-0,144278389	0,067159328	0,054163455		
-1,946900328	-1,371419715	0,933339254	0,180697746	-0,086466867	0,05884626	0,038861793		
0,002615371	-0,067930223	0,965941214	0,09428173	-0,004258839	0,060559025	0,020162598		
1,971144301	0,749305368	0,870807822	-0,003797828	0,046988273	0,054607584	-0,000812375		
3,932183899	1,759800759	0,798381579	-0,078145794	0,110430922	0,050099998	-0,016727212		
5,897654237	2,654935866	0,815585097	-0,146366182	0,166658609	0,051196822	-0,03134045		
7,867043343	3,44668077	0,821838691	-0,206726121	0,216505021	0,051624219	-0,044294829		
9,82860158	4,441719375	0,90428171	-0,278254037	0,279103125	0,056822106	-0,059641124		
11,79553141	5,293349948	1,051360674	-0,352653155	0,332954199	0,066131081	-0,075664545		
13,76185745	6,163027731	1,301699553	-0,425203509	0,38778846	0,081905207	-0,091261659		
15,73056109	6,970605844	1,66097048	-0,496300163	0,438751085	0,104546522	-0,106557214		
17,69889343	7,787238333	2,176560302	-0,561940932	0,490318311	0,13704568	-0,120691331		
19,66045201	8,778440847	2,696125181	-0,659887363	0,552915864	0,169817216	-0,141775843		
21,6111983	10,05045115	3,272299483	-0,823391575	0,633120012	0,20613585	-0,176928447		
23,5646243	11,26714711	4,38583682	-0,938446281	0,708960548	0,275969174	-0,20142264		
25,54317362	11,81937322	5,104190871	-1,02663345	0,743890587	0,321248806	-0,220404668		
27,54539169	11,75810557	5,668291006	-0,957895567	0,740278701	0,356869997	-0,20571541		
29,60421695	10,23316959	5,76261176	-0,713707954	0,644488357	0,362931167	-0,15332614		
31,63343637	9,475440663	5,800589208	-0,58901869	0,5969078	0,365409596	-0,126569095		
33,62544143	9,679727849	6,405867792	-0,634110208	0,609926664	0,40363837	-0,136291879		
35,62089414	9,794920699	6,965608553	-0,687043897	0,617331418	0,439012131	-0,147704152		
37,61376625	9,975786881	7,63223359	-0,754389104	0,628938383	0,481185566	-0,162235954		
39,60467864	10,20704467	8,412674411	-0,83825524	0,643736542	0,530569436	-0,180332991		

Anhang VII: Werkszertifikat Sensor

Kopie! Original im Ordner "Neve Labormesshechente" -> Dubenblätter

Werkszertifikat 15491033

Kalibriergegenstand:	Mehrkomponenten-Sensor:, Typ K6D27 50N/1Nm S/N: 15491033
Kalibrierlabor:	ME-Meßsysteme GmbH Neuendorfstr. 18a 16761 Hennigsdorf
Auftraggeber:	HS für Angewandte Wissenschaften Hamburg
Auftragsnummer:	20544035
Ort der Kalibrierung	Hennigsdorf
Anzahl Seiten	6
Umgebungsbedingungen	21,0 °C ±1,5°C

Kalibrierverfahren

Der Mehrkomponenten-Sensor Typ K6D27 wurde in Reihe mit einem Referenzgewicht 5) belastet. Die Richtung der Referenzkräfte und Referenzmomente auf den Mehrkomponenten-Sensor wurde durch unterschiedliche Montagepositionen des Mehrkomponenten-Sensors in der Referenzvorrichtung 4) sichergestellt.

Als Anzeige wurde der Messverstärker GSV-1A8USB K6D/M16 (S/N:14456005) verwendet.

Zur Ermittlung der Kalibriermatrix wurden aus 48 Messreihen 6 linear unabhängige Lastvektoren mit Hilfe des Referenzvorrichtung, des Referenzhebels und einer Belastungseinrichtung aufgebracht.

Zur Ermittlung der Kalibriermatrix dienen drei Kräfte in drei zueinander rechtwinkligen Richtungen, sowie drei Momente um drei zueinander rechtwinklige Achsen. Es werden die Lastvektoren (Fx,0,0,0,0,0), (0, Fy,0,0,0,0), (0,0,Fz,0,0,0), (0,0,Fz,Mx,0,0), (0,0,Fz,0,My,0) und (0,Fy,0,0,0,Mz) verwendet.

Zur Bestimmung der Matrix der relativen Spannweiten wird die Kalibriermatrix in gleicher Einbaulage des Mehrkomponenten-Sensors angewendet.

Vor jeder Belastung mit einem Lastvektor wird ein Nullabgleich durchgeführt.

ME-Meßsysteme GmbH, Neuendorfstr. 18a, DE-16761 Hennigsdorf Tel +49 (0)3302 78620 60, Fax +49 (0)3302 78620 69, info@me-systeme.de, www.me-systeme.de

•

1

 \frown

Prüfnormale

4	Referenz- Prüfvorrichtung	140mm x 140mm x 8mm
5	Referenz- Gewicht	Einzelgewicht 20 kg, Klasse M1, SN G140327, Kalibrierzeichen G6-574-DKD-K-11801-14-02
	p.	Einzelgewicht 5kg, Klasse M1, S/N G040036, Kalibrierzeichen G6- 572-DKD-K-11801-14-02
		Einzelgewicht 1kg, Klasse M1, S/N K140852, Kalibrierzeichen G6- 570-DKD-K-11801-14-02
		Gewichtssatz 1g - 500g, Klasse M1, S/N G047265, Kalibrierzeichen G6-569-DKD-K-11801-14-02

Zustand der Kalibriergegenstände

Messmittel	Тур	S/N	Zustand
Mehrkomponenten- Sensor	K6D27 50N/1Nm	15491033	Neu /Erstkalibrierung
Messverstärker	GSV-1A8USB K6D/M16	14456005	Gebraucht /ME Inventar

Nullpunkterfassung

Kanal	1	2	3	4	5	6
mV/V	0,3396	0,3053	0,1601	0,5511	0,4716	0,5265

ME-Meßsysteme GmbH, Neuendorfstr. 18a, DE-16761 Hennigsdorf Tel +49 (0)3302 78620 60, Fax +49 (0)3302 78620 69, info@me-systeme.de, www.me-systeme.de

Kalibriermatrix

Die Kalibriermatrix beschreibt den Zusammenhang zwischen den angezeigten Spannungen des Messverstärkers an den Kanälen 1 bis 6 (Bezeichner "ai0" bis "ai5") und den Komponenten 1 bis 6 (Fx, Fy, Fz, Mx, My, Mz) des Lastvektors.

		Kanal								
	1	2	3	4	5	6				
Referenz										
Fx in N/V	30,22	0.03	-29.44	28.60	-0.42	-28 92				
Fy in N/V	-17.89	33.69	-17.35	-16.54	34 15	-17 30				
Fz in N/V	42,51	42,09	41.91	39.98	42.46	41 50				
Mx in Nm/V	-0,55	0,33	0.18	0.17	0.34	-0.54				
My in Nm/V	-0,12	0.40	0.51	-0.49	-0.40	0.10				
Mz in Nm/V	0,32	-0.30	0.30	-0.28	0.29	-0.29				

Abbildung 1: Kalibriermatrix in N/V und Nm/V

	Kanal							
	1	2	3	4	5	6		
Referenz		-la	<u> </u>					
Fx in N/mV/V	75,56	0,07	-73,61	71,50	-1.04	-72.29		
Fy in N/mV/V	-44,73	84,23	-43.39	-41.35	85.38	-43.48		
Fz in N/mV/V	106,27	105,24	104,77	99.95	106.15	103.75		
Mx in Nm/mV/V	-1,39	0,83	0,44	0,43	0,85	-1.35		
My in Nm/mV/V	-0,30	1,01	1,29	-1,24	-1.00	0.25		
Mz in Nm/mV/V	0,79	-0,75	0,76	-0,71	0,72	-0,73		

 \frown

Abbildung 2: Kalibriermatrix in N/mV/V und Nm/mV/V

ME-Meßsysteme GmbH, Neuendorfstr. 18a, DE-16761 Hennigsdorf Tel +49 (0)3302 78620 60, Fax +49 (0)3302 78620 69, info@me-systeme.de, www.me-systeme.de

Ursprung

Der Ursprung des Koordinatensystems befindet sich im Zentrum des Sensors auf der Oberfläche der oberen Seite. An der Stelle des Ursprungs ist eine Gravierung vorhanden.

Abbildung 3: Ursprung des Koordinatensystems

Matrix der relativen Spannweiten

Die Matrix der relativen Spannweiten ("Reproduzierbarkeit") beschreibt die Abweichung der angezeigten Kräfte und Momente in Prozent vom jeweiligen Endwert bei einachsiger Belastung mit den Lastvektoren (Fx,0,0,0,0,0), (0,Fy,0,0,0,0), (0,0,Fz,0,0,0), (0,0,0,0,Mz,0,0), (0,0,0,0,My,0), (0,0,0,0,Mz).

Messunsicherheit

Mit einer Wahrscheinlichkeit von 95% besitzen die Messergebnisse folgende Unsicherheit.

	Fx	Fy	Fz	Mx	My	Mz
Nennlast	50N	50N	200N	1Nm	1Nm	1Nm
Messunsicherheit	±0,2N	±0,3N	±0,8N	±0,02Nm	±0,01Nm	±0,01Nm

Einzelergebnisse der Prüfung

Merkmal	Istwert	Sollwert	Ergebnis
Isolationswiderstand @5V	> 2GOhm	>2 GOhm	in Ordnung
Messunsicherheit	<2%	<2%	in Ordnung

Wir erklären hiermit, dass alle für das Produkt relevanten Prüfungen auf Einhaltung der Spezifikationen mit Messmitteln durchgeführt wurden, die auf nationale und internationale Normale rückführbar sind. Die regelmäßige Überprüfung durch die zertifizierten und akkreditierten Institutionen sichert, daß die Rückführbarkeit aufrecht erhalten wird.

4

ME-Meßsysteme GmbH, Neuendorfstr. 18a, DE-16761 Hennigsdorf Tel +49 (0)3302 78620 60, Fax +49 (0)3302 78620 69, info@me-systeme.de, www.me-systeme.de

Prüfer Testing Engineer	Datum	ME-Maßsysteme GmbH Neuendorfstraße 18a
Künstner	05.01.16	D-16761 Hennigsdort
		N. (pa-systemo.de N. (pa-systemo.de

Anschlussbelegung

ŝ

1

Adapterkabel 2xSub-D25

Kanal	Bezeichnung	PIN Sub-D25	Aderfarbe 2xSTC-32T-12 (K6D27)
1 & 4	+Us	13	braun
	-Us	25	weiß
	+Ud	11	grün
	-Ud	23	gelb
	+ Uf	12	*
	- Uf	24	*
2&5	+Us	9	rosa
	-Us	21	grau
	+Ud	7	blau
	-Ud	19	rot
	+ Uf	8	*
	- Uf	20	*
3&6	+Us	5	violett
	-Us	17	schwarz
	+Ud	3	orange
	-Ud	15	transparent
	+ Uf	4	*
	- Uf	16	*

*+Us/-Us mit +Uf/-Uf gebrückt auf 6-Leitertechnik Schirm: verbunden mit Steckergehäuse;

> ME-Meßsysteme GmbH, Neuendorfstr. 18a, DE-16761 Hennigsdorf Tel +49 (0)3302 78620 60, Fax +49 (0)3302 78620 69, info@me-systeme.de, www.me-systeme.de

Anschlusskabel Sub-D37

Kanal	Bezeichnung	PIN	Aderfarbe 2xSTC-32T-12 (K6D27)
1	+Us 1	1	braun
	-Us 1	2	weiß
	+Ud 1	3	grün
	-Ud 1	4	gelb
2	+Us 2	5	rosa
	-Us 2	6	grau
	+Ud 2	7	blau
	-Ud 2	8	rot
3	+Us 3	9	violett
	-Us 3	10	schwarz
	+Ud 3	11	orange
	-Ud 3	12	transparent
	+Us 4	13	braun
1	-Us 4	14	weiß
4	+Ud 4	15	grün
	-Ud 4	16	gelb
5	+Us 5	17	rosa
	-Us 5	18	grau
	+Ud 5	19	blau
	-Ud 5	20	rot
3	+Us 6	21	violett
	-Us 6	22	schwarz
	+Ud 6	23	orange
	-Ud 6	24	transparent

Schirm: verbunden mit Steckergehäuse;

6

ME-Meßsysteme GmbH, Neuendorfstr. 18a, DE-16761 Hennigsdorf Tel +49 (0)3302 78620 60, Fax +49 (0)3302 78620 69, info@me-systeme.de, www.me-systeme.de

Anhang VIII: Technische Zeichnung Sensor

Stand 30 Sep 2019

6-Achien Kraftsensor K6027 50N/1Nm 50N/1Nm/CG

Anhang IX: Anstrichbilder und Wandstromlinienbilder

Abbildung 83: Anstrichbild, Doppeldeltaflügel, α =18°

Abbildung 84: Wandstromlinien, Doppeldeltaflügel, α =18°

Abbildung 85: Anstrichbild, Doppeldeltaflügel, α =28°

Abbildung 86: Anstrichbild, Doppeldeltaflügel, α =40°

Abbildung 87: Anstrichbild, Deltaflügel kleiner Streckung, α =18°

Abbildung 88: Anstrichbild, Deltaflügel kleiner Streckung, α =28°

Abbildung 89: Anstrichbild, Deltaflügel kleiner Streckung, α =40°

Abbildung 90: Wandstromlinien, Deltaflügel kleiner Streckung, α =18°, 28°, 40°

Abbildung 91: Anstrichbild, Deltaflügel großer Streckung, α =8°

Abbildung 92: Anstrichbild, Deltaflügel großer Streckung, α =14°

Abbildung 93: Wandstromlinien, Deltaflügel großer Streckung, α =8°, 14°

Abbildung 94: Anstrichbild, Deltaflügel großer Streckung, α =24°

Abbildung 95: Wandstromlinien, Deltaflügel großer Streckung, $\alpha\text{=}24^\circ$

Abbildung 96: Anstrichbild, Space Shuttle, α =14°

Abbildung 98: Anstrichbild, Space Shuttle, α =24°

Abbildung 99: Anstrichbild, Space Shuttle, $\alpha{=}34^\circ$

Abbildung 100: Wandstromlinien, Rumpf des Space Shuttles, α =24°, 34°

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Erklärung zur selbstständigen Bearbeitung einer Abschlussarbeit

Gemäß der Allgemeinen Prüfungs- und Studienordnung ist zusammen mit der Abschlussarbeit eine schriftliche Erklärung abzugeben, in der der Studierende bestätigt, dass die Abschlussarbeit "– bei einer Gruppenarbeit die entsprechend gekennzeichneten Teile der Arbeit [(§ 18 Abs. 1 APSO-TI-BM bzw. § 21 Abs. 1 APSO-INGI)] – ohne fremde Hilfe selbständig verfasst und nur die angegebenen Quellen und Hilfsmittel benutzt wurden. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich zu machen."

Quelle: § 16 Abs. 5 APSO-TI-BM bzw. § 15 Abs. 6 APSO-INGI

Dieses Blatt, mit der folgenden Erklärung, ist nach Fertigstellung der Abschlussarbeit durch den Studierenden auszufüllen und jeweils mit Originalunterschrift als <u>letztes Blatt</u> in das Prüfungsexemplar der Abschlussarbeit einzubinden.

Eine unrichtig abgegebene Erklärung kann -auch nachträglich- zur Ungültigkeit des Studienabschlusses führen.

Erklärung zur selbstständigen Bearbeitung der Arbeit				
Hiermit versichere ich,				
Name:	Mahfouz			
i tuino.	Houssein			
Vorname:				
dass ich die vorliegende Bachelorarbeit bzw. bei einer Gruppenarbeit die entsprechend gekennzeichneten Teile der Arbeit – mit dem Thema: Experimentelle Untersuchung der Strömung von schlanken Deltaflügeln und Doppeldeltaflügeln im Niedergeschwindigkeitsbereich				
ohne fremde Hilfe selbständig verfasst und nur die angegebenen Quellen und Hilfsmittel benutzt habe. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich gemacht.				
- die folgende Aussage ist bei Gruppenarbeiten auszufüllen und entfällt bei Einzelarbeiten -				
Die Kennzeichnung der von mir erstellten und verantworteten Teile der -bitte auswählen- ist erfolgt durch:				
	Hamburg	20.07.20		
[Ort	Datum	Unterschrift im Original	