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Kurzzusammenfassung

In dieser Arbeit vergleichen wir zwei ONOS Architekturen, die alte (vor v1.14) und die
neue (ab v1.14) in Bezug auf ihre Verfügbarkeit und, ob die neue Architektur eine höhere
Verfügbarkeit als die alte bieten kann. ONOS ist ein weitverbreiteter und populärer SDN
Controller dessen Architektur mit Version 1.14 geändert wurde, um Software Upgrades
während der Laufzeit zu ermöglichen. Um diese Frage zu beantworten, erstellen wir
ein GSPN Modell, anhand dessen wir zeigen, dass die neue Architektur eine höhere
Verfügbarkeit aufweist, vor allem wenn unzuverlässigere Hardware genutzt wird.
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Abstract

In this work, we compare two ONOS architectures, old (before v1.14) and new (v1.14
and after), in terms of their availability and answer the question if the new outperforms
the old architecture. ONOS is a widely used and popular open source SDN controller
that changed his architecture with version 1.14 to enable in service software upgrades.
For this we create a GSPN model, upon which we can present that the new architecture
has a higher availability, especially in environments with less available hardware.
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1 Introduction

In 2014 the development of software defined networks (SDN) rapidly gained traction
which kept up till today. Since then, ideas have been implemented, tested and altered.
[5, 13, 16, 67, 61, 19, 30, 54, 65, 57, 20, 12, 6]. One such alteration was the extraction of
the embedded data store in ONOS into a separate executable, how this change affected
ONOS’ overall availability is the focus of this work.

ONOS is one of the most popular open source SDN controllers, and it uses Atomix as
its shared data store for a logical centered but physical distributed deployment. Atomix
implements the Raft consensus protocol, for which the number and location of Atomix
instances need to be immutable. From ONOS version 1.14 onwards, ONOS and Atomix
are separated, this separation allows ONOS to be upgraded and horizontally scaled much
easier than before. Performance analysis of architectures [36, 26, 14, 28, 62, 42, 35,
33, 34, 53], SDNs [51, 52, 54, 40] and older ONOS versions [1, 2, 4] have been done
before, but not with the newer ONOS versions and not with focus on its architectures.
Additionally, authors write about the need for more performance evaluations in SDNs,
especially regarding reliability and availability [45, 66, 52, 51, 30, 20].

As ONOS has availability within its core focus, this raises the question, if this architec-
tural change was beneficial to ONOS’ availability. To the best of our knowledge, this is
the first attempt to evaluate and compare the availability of the two ONOS architectures.
The contribution of this master thesis is an availability analysis to determine under which
circumstances which architecture, old or new, offers higher availability. This analysis is
based upon simulation results of a generalized stochastic Petri net model simulated within
the tool GreatSPN.

The master thesis is structured as follows: In Chapter 2, we describe important basics
for this work. Published work that is related to this thesis, either by a similar goal,
tool or formalism, is presented in Chapter 3. Then, we present and validate our model
in Chapter 4 and Chapter 5 respectively. The last two Chapters 6 and 7 answer the
research question, conclude the paper and point out interesting future work.
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2 Basics

In this chapter relevant basics are presented and explained, so the reader is well suited
for the upcoming technicalities. First we will describe dependability and its elements
in Section 2.1, of which ’availability’ is of special interest. Then we will continue with
software defined networks in Section 2.3, which includes an introduction to the ONOS
application. As ONOS makes use of a consensus protocol, we introduce general aspects
of it in Section 2.2. At last, we present stochastic Petri nets in Section 2.5, which form
the basis for our analysis.

2.1 Dependability

Dependability is a group of concepts and attributes, each is explained in this section.
[8, 60]

2.1.1 Reliability Attribute

Reliability is the continuity of correct service [8]. A highly reliable system is a system that
continuously works as expected for a long period of time, at best forever. An important
metric for this attribute is ’Mean Time To Failure’ (MTTF), as the name suggests,
this represents the average of how long the service works without interruptions. The
measurement of how long it takes to repair the interruption is ’Mean Time To Repair’
(MTTR). [29, 60]

2



2 Basics

2.1.2 Availability Attribute

Availability is the probability for correct service in a given moment. A highly available
system is a system that has a high probability to work as expected in any given moment,
at best always. This probability can be calculated with MTTF

MTTF+MTTR . [8, 60, 29]

Once the system is stabilized and the availability is roughly a constant value, we can talk
of it as being the ’Steady State Availability’. This is widely used in previous publications
as the basis of their availability evaluations. [42, 53, 36, 35, 27, 24, 62, 8, 44, 54, 23, 45]

2.1.3 Safety Attribute

Safety means the ’[...] absence of catastrophic consequences on the user(s) and the
environment’ [8]. [60] gives the example of control systems in nuclear power plants or
spacecrafts, if ’[...] such control systems temporarily fail for only a very brief moment,
the effects could be disastrous’.

2.1.4 Maintainability Attribute

This attribute addresses how easy it is to repair failed systems. Automatic and / or easy
maintenance can help to improve the availability of a system, this for example can be
observed when the maintenance needs less time which leads to a lower MTTR and to a
higher availability. Another example is preemptive maintenance in form of an upgrade
that fixes bugs to increase reliability of a system. [8, 60]

2.1.5 Threats

Threats to the dependability of a system are faults, errors and failures.

Faults are the basis of the threats, they can activate errors. They are either introduced
during development, via incorrect code, due to physical problems, e.g. an old hard drive
stops working, or are generated from outside the system, e.g. during interaction with the
user. [8]

3



2 Basics

Errors are part of the system’s state and may activate failures if the error has external
consequences [8, 60]. Errors can be detected if they generate any kind of message or
signal [8]. Regarding their timing they can be [60]:

Temporary: Will occur once, this error may be resolved by repeating the process.

Permanent: Is equal to an unrecoverable disaster, this can only be repaired by exchang-
ing the fault part.

Reoccurring: Will occur and resolve multiple times, e.g. a loose connection in an
electronic circuit.

[8] defines failures as ’[...] an event that occurs when the delivered service deviates from
correct service’, they can lead to the activation of further faults. [60] describes failures as
unmeet specifications. An example failure is an uncaught error of a software that leads
to a complete crash of the software. This crash failure example is one of multiple failure
models, in the following a selection [8, 60, 38, 9, 15]:

Crash Failure: A system is fully working until its crash, if the crash is permanent its also
called a ’crash-stop’ failure mode. More examples are ’crash-recovery’ for eventually
recovering systems or ’crash-safe’ for failures that do not harm the system.

Omission Failure: A system does not send any messages. This can be the result of
multiple errors.

Timing Failure: The response time of a system is outside the specified interval. For
example this can be fixed with offloading load, in this case the error will reoccur
until the system load is within a tolerable range or the clients adjust to higher
response times.

Response Failure: A response is in the wrong format or its values are incorrect. For
example this can be due to faulty code, in this case the error is permanent or
reoccurring.

Byzantine Failure: The failure may cause the system to fail ’[...] in any possible way
[...]’ and ’[...] may be unobservable [...]’ [60]

4



2 Basics

2.1.6 Fault Tolerance

[60] calls a system fault tolerant if ’[...] it can continue to operate in the presence
of failures’. This includes the detection and right response upon detection. In other
words, fault tolerance helps to avoid failures through error detection and an automatic
maintenance [8, 14]. In [9, 8] fault tolerance is seen as the basis for dependability.

2.2 Consensus

Consensus protocols help to synchronize a state across distributed systems. In consensus
protocols there is one leader which will order incoming updates. It will then ask the
participating systems if a certain order is consistent with their respective state. If the
majority of systems acknowledge the update, it is committed by the leader and each
system applies the update. The same way consensus can be used to elect a participating
system to their leader. [70, 39, 38, 54, 60, 64]
One such consensus protocol is Raft1. Raft can work if the majority of the participating
instances are available. To be specific, the majority is defined as 1+ instancecount

2 . [70, 5,
67, 39, 32, 38, 54]

2.3 Software Defined Networks (SDN)

Networks have a control and a data plane, while the control plane is more of a logical
nature, the data plane is more of a physical nature. The control plane can insert, modify
or delete forwarding rules to impact routes through the network. The data plane forwards
packets from one ingress port to certain egress ports according to the set forwarding rules.
In traditional networks, both planes reside in each router. SDNs split these planes, the
SDN controller has the control over the routers which are only left with the data plane.
Routers are then called SDN switches.
The control plane can be ’in-band’, on the same links as the data plane, or ’out-of-band’,
on own links. As an example, when in an out-of-band control plane a controller has a
direct connection to a certain switch, the same connection in in-band control planes may
require additional switches in between. [58, 63, 21, 16, 51, 52]

1Raft Visualizations: http://thesecretlivesofdata.com/raft/, https://raft.github.io/

5



2 Basics

Figure 2.1: Logic placement in traditional and software defined networks, from [51]

The controller communicates in three major ways [58, 63, 21, 13, 16, 51, 52]:

• ’Southbound’ (e.g. via OpenFlow) to the switches: As long as they have a common
southbound protocol, SDN controller can communicate to software or hardware
switches. Depending on the southbound protocol in use, the switch has one or
more masters. A switch may report changes in the network (e.g. link is down) only
to its master.

• ’Northbound’ (e.g. via HTTP) to SDN applications: SDN applications have the
possibility to modify the network according to their needs, this flexibility is often
mentioned as one of the main reasons to adopt SDNs. For example, if a latency
sensitive application needs a low latency connection from one of its users to a certain
server, it can request the SDN controller to create such a route. The controller will
then make sure the route is created according the specified requirements, in this
example the low latency.

• ’East-/Westbound’ to other SDN controllers: The inter-controller communication
is for example used to share the network state. Multiple controllers can be used to
balance the load or to increase the availability of the control plane. The possibility
to only use cheaper off the shelf hardware is an important reason for the adoption
of SDNs. This also enables further programmatic verification and debugging of
networks.

6
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SDNs have the benefit, that protocols and devices are easier to update or replace. Fur-
thermore, SDNs can improve resource optimization, ease of maintenance and ease of
operation. [51, 52]

2.4 ONOS

The ’Open Network Operating System’ (ONOS) is, next to OpenDaylight, the largest
open source SDN controller [67]. It is widely mentioned in publications, for example
[61, 31, 59, 57, 54]. ONOS was created in 2014 on the basis of the Floodlight SDN
controller. Its target was to tackle high throughput, low latency, large network state
sizes and high availability, detailed performance numbers can be found in [13]. To handle
this in an efficient and partition tolerant manner, the controller is physically distributed
and logically centered. It uses the Raft consensus algorithm to synchronize the shared
network state between instances, currently implemented via Atomix [39, 13, 5, 65].

2.5 Stochastic Petri Nets (SPN)

We describe in what follows an extension that adds time into Petri nets, the so called
stochastic Petri nets (SPN). In our work we create SPNs with the tool GreatSPN.

SPNs are Petri Nets with the extension that transitions have a timer which makes them
’timed transitions’. If enough tokens are provided in the respective input places, the
timer of a transaction runs, when a timer runs out it fires. Timers with zero time are
called ’instantaneous’, if we have both timed and instantaneous transitions in an SPN,
we have a Generalized SPN (GSPN). If an instantaneous transition is ready to fire, it
will do so before any other timed transition. [37, 49, 48, 10]

When a transition is disabled, its timer stops running. When the transition is enabled
again, there are two main approaches. First, to start the timer from where it left (’age
memory’) or second, reset the timer (’enabling memory’). Furthermore, the probability
that two timers run out at the same time is zero. [48]

Besides additional transitions, a GSPN also add ’inhibitor’ arcs. They are the exact
opposite of what an input arc is. If a place contains a specified amount of tokens ore
more, the transition connected via an inhibitor arc is disabled. [48]

7



2 Basics

A (G)SPN can be converted to a Markov chain for evaluation [37, 49]. This evaluation
can be used to assess characteristics like performance, reliability, fault recovery, fault
tolerance and fault coverage [37, 49]. The chosen tool, GreatSPN, is able to create
and evaluate GSPNs via the mentioned conversion to Markov chains. It is also well-
established for this use case. [10, 47, 17, 7, 22]
To avoid confusion, we will always write out ’GreatSPN’ and never abbreviate it with
’GSPN’.

8



3 Related Work

This chapter will present published work with a similar context in Section 3.1 and work
with similar tools or formalism in Section 3.2.

3.1 Performance Evaluations with similar context

In this section we present published work with a similar context.

3.1.1 Reliability Prediction for Fault-Tolerant Software
Architectures

[14] use reliability prediction in the context of Software Product Lines (SPL) with optional
fault tolerance mechanisms on different levels. An SPL consists of a core and adjustable
extensions, which can lead to multiple versions of the same basic software. They create
a tool to analyze all variations of a given SPL. The model and their reliability solver is
based upon the Palladio Component Model and implemented via the Eclipse Modeling
Framework. Their tool converts the model into Markov-based prediction models for
evaluation.

Their model considers the reliability of the software, hardware and network layer. Each
layer has its own basis for the reliability prediction:

• On the software layer they have an action’s probability to fail and the probability
of the (nested) recovery blocks to fail.

• On the hardware layer they use steady state availability, this is based upon the
MTTF and MTTR of a given resource like CPU or disk. Resources can either be
’OK’ or ’FAIL’. Hardware failures are expected to be independent of each other.

9



3 Related Work

• On the network layer a coarse grained link availability is considered, with the
expectation that every communication has a request and a response that can fail.
Single links are expected to be independent of each other.

For evaluation, they test their tool in two case studies regarding its sensitivity, by chang-
ing certain parameters, and accuracy, by comparing the numerical approach with multiple
simulations that ran 107 and 106 seconds for the first and second case study respectively.
In the first case study they create an SPL with artificial failure probabilities and in the
second they extend previously published work by considering e.g. new fault tolerance
mechanisms.

3.1.2 Availability Modelling of Software-Defined Backbone Networks

The authors of [51] predict the steady state availability of SDNs and traditional IP
backbone networks. Unclear is if they used an in-band or out-of-band control network.

Their model considers the availability of traditional IP routers, SDN switches, SDN
controllers and links. The model is split in two hierarchical layers to avoid a potential
’[...] uncontrolled growth in model size [...]’. First the structural model, it sees the
network elements either as independent of each other or as sets of network elements that
may experience multiple errors with a vaguely described ’[...] advanced recovery strategy
[...]’. It is modeled with structure functions based on minimal cut and path sets. Second
the dynamic model that focuses on the dependencies between the network elements and
their multiple errors. This is modeled with a Markov model. A Network is up if all hosts
can reach all other hosts and if all hosts can reach at least one SDN controller. Each
network element has its own availability relevant metrics, see their Table 2, and basis for
the availability prediction. While the links are solely dependent on their hardware, all
other elements also consider their respective software availability.

• Traditional IP routers are assumed to contain one primary and one backup
controller. More detailed failure scenarios are omitted as they are infrequent, not
very probable and do not have a significant impact on the results.

• The SDN switch are without operation and maintenance errors due to their simple
design in comparison, the idea is that its failure rate is pretty low and even then
the reparation should not take much time.

10



3 Related Work

• For the SDN controllers it is considered that these are operated upon processors.
Only when there are less working processors than the SDN controller would need,
it fails. Furthermore, the authors consider software, operation, maintenance and
coverage failures. Due to the importance of SDN controllers in SDNs, their impact
if they fail is increased by the number of network elements. The basic assumption
is that both traditional and software defined networks need the same processing
power in total, in SDNs this power is needed for the SDN controllers in contrast to
the distribution in traditional networks.

For evaluation, they perform sensitivity tests with two case studies, on a ’national’ and
’world-wide’ backbone network. First contains four ’sites’, ten switches and two SDN
controllers. The second contains ten ’sites’, 28 switches and two SDN controllers.

3.1.3 Availability Modeling and Analysis for Software Defined
Networks

The context in [52] is a generic SDN. The author’s goal was to assess the availability of
an SDN using a stochastic availability model to calculate the steady state availability
and analyze the downtime.

They propose a hierarchical availability model that prevents the ’[...] state-space explo-
sion problem [...]’ that might occur with a large monolithic approach. The upper layer
contains reliability graphs and focus on the network. It captures how the hosts are con-
nected and represents the capability of an SDN to form multiple network topologies. The
lower layer focuses on devices and uses an approach that is based upon SPNs, stochas-
tic reward nets (SRN). Each device has its own SRN. Finally, SDN controllers are able
to create links between two devices. Failures of the SDN controller are not considered.
The model was implemented using the Symbolic Hierarchical Automated Reliability and
Performance Evaluator.

Each device has its own basis for the availability prediction in the SRNs:

• Virtual machines, hosts and links are based upon their MTTF and MTTRec.
These failures are propagated, e.g. if a virtual machine fails all services on it fail
too.

• The SDN switch can have downtime due to a number of reasons: Upgrades, failure
of chassis hosting components (e.g. power supply), network interfaces (ingress and
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egress), internal cards, the gigabit routing processor and the ’[...] internetworking
operating system [...]’.

• For evaluation, they have a storage device in the network for which they consider
failures and repairs of single disks in a manual process.

Their evaluation contains an artificial SDN with six hosts, three switches, one controller
and one storage. The evaluation considers a certain network communication between
certain hosts via certain routes. Only if these hosts can continuously have a successful
communication, the SDN is considered up. In their Table 2 they show their input in the
evaluations, these include e.g. a VMs MTTF, MTTR, time to boot and also mean time
to upgrade a switch. They conclude that link availability is of vital importance for SDN
steady state availability.

3.1.4 Response Time and Availability Study of Raft Consensus in
Distributed SDN Control Plane

The goal of [54] is to evaluate the response time and availability of distributed SDN
clusters regarding the old (pre v1.14) ONOS architecture and ODL with Raft as its
distributed data store.

They use stochastic activity networks as a model generation framework, which they
prefer over GSPNs due to two points. Its additional inhibition of transitions and the ’[...]
flexible predicate assignment to the gate abstractions [...]’. One of their three models is
interesting for our work. The ’RAFT Recovery SAN Model’ which contains hardware
and software (Java OSGI, Processes) failures that can impact the SDN controllers. All
failures follow a negative exponential distribution. To evaluate the response time they
also model failure injection to cause further failures that can be correlated. They consider
an in-band control network with a coarse-grained static data plane reliability.

For evaluation, they compare their models to an experimental Raft setup with no failures
and to an ODL setup. The failure probabilities are gathered from the ODL controller and
published work. They also transform their models to Markov chains via the Möbius tool.
One result is that if five or more controllers are in the cluster, the steady state availability
is higher than 99,987659%. In their evaluation, they also analyze the complexity of their
Markov chains and propose the evaluation of the worst case only, to be able to scale out
this performance evaluation approach for larger models.
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3.1.5 Better Safe than Sorry: Modeling Reliability and Security in
Replicated SDN Controllers

The goal of [40] is to offer mitigations on the basis of their proposed modelling framework
that considers reliability, availability and security in distributed consensus protocols like
Raft.

They use Figaro as a language to create a knowledge base from which they generate their
model. Their model considers among others, failure probabilities from published work
(includes ONOS related ones), detectability of failures and different repair rates. They
do not consider downtime due to attacks.

Their evaluation is based upon Markov chains generated from the model above and
explored via the Monte Carlo simulation via the YAMS tool. With three controllers the
availability of Raft is at 70%, with seven it is at 99,9%. With 4, 7 or 10 controllers, the
addition of one or two controllers decreased the overall availability.

3.2 Performance Evaluations with similar tooling or
formalism

In Chapter 2 we presented the GreatSPN tool and the GSPN formalism. Both are widely
used in the context of performance evaluation, for example in these publications:

• Validation and evaluation of a software solution for fault tolerant dis-
tributed synchronization [11]: Presents a case study to analyze and evalu-
ate UML diagram types with the use of multiple tools. GreatSPN and Stochas-
tic Well-Formed Nets (SWN, which are coloured GSPNs) are used for transla-
tion into another tool with the ’GreatSPN-to-PROD’ utility, as a solver with the
’algebra’,’Multisolve’ utilities and to create images of the models. They choose
GreatSPN for these tasks for its efficient solution methods regarding the analytic
approach and simulation. They describe similarities between GSPN and SWN in
regard to GreatSPN, but they do not explain why they choose SWN over GSPN.
As they make heavily use of the colours in the SWN, we assume that this is the
reason.
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• Performance Modelling for the CSMA/CD Protocol Using GSPN [41]:
Evaluate performance characteristics of a LAN with a single bus and multiple
devices. GreatSPN and GSPN are used for validation and solving.

• Distributed transactions on mobile systems: performance evaluation us-
ing SWN [55]: Validation of a transaction protocol in a mobile environment.
GreatSPN and SWNs are used for validation and solving with the ’WNSIM’ util-
ity.

• Freshness-Aware Metadata Management: Performance Evaluation with
SWN models [22]: Analyzes the performance of query routing to create a new
algorithm for needed metadata. GreatSPN and SWNs are used for validation, eval-
uation and simulation with the ’WNSIM utility’. They point out that GreatSPN is
the only tool that permits symbolic simulation with SWNs, which is heavily used
in their work.

• On the use of formal models in Software Performance Evaluation [46]:
Creates a translator from UML activity diagrams to GSPNs for performance eval-
uations, which extends their previous work with similar goals. The created GSPNs
are recommended to be analyzed with GreatSPN.

Interested readers are directed to the following papers for more examples: [56, 68, 43,
18, 25, 69, 26, 71, 28]

3.3 Chapter conclusion

Now with the relevant basics and related work in mind, we have a foundation on which
we can begin to formulate our research question and create & validate our model in the
next chapters.
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In this chapter, we will introduce our assumed model. We will present the analyzed
ONOS architectures and define our research question in Section 4.1. After that, we will
explain what the model includes in Section 4.2.1 and what it excludes in Section 4.2.2.
At last, Section 4.3 presents the used parameters and Section 4.4 the final GSPN model
in GreatSPN.

4.1 The ONOS Architectures

The work on a new ONOS architecture arouse 2017 with the formation of the ONOS
internal ’In Service Software Upgrade’ team1. An ISSU means to upgrade software that
is currently running and answering requests. The goal is to upgrade without a loss of
availability. For this goal the ISSU team decided to change ONOS’ architecture: ’[...]
In past versions, ONOS embedded Atomix nodes to form Raft clusters, replicate state,
and coordinate state changes. In ONOS 1.14, that functionality is moved into a separate
Atomix cluster’. [5]

The differences between the architectures is best presented with two example clusters.
The example cluster of an old ONOS architecture in Figure 4.1 contains three item
types, ONOS controllers (C1-C3, squares), SDN switches (S1-S3, circles) and hosts (H1-
H3, hexagons). Each controller has contact to each switch (green dotted lines), but
only one controller is the master of a switch (bold green dotted lines). Also, there is a
communication between the controllers (purple dotted lines). The black lines between
switches and hosts are signaling the connectivity between these items. The example
cluster of a new ONOS architecture in Figure 4.1 is noticeably noisier. Here we have
one item type more in the cluster, Atomix instances (A1-A3, triangles). Additional to
the Atomix instances, we have more links, these connect each Atomix instance with each

1Also called ISSU Brigade lead by Jordan Halterman
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Figure 4.1: Cluster of ONOS before v1.14 (left) and (after) v1.14 (right)

controller (blue dotted lines). Our controllers still have their controller to controller
communication (red dotted lines).

The interesting point is the mentioned additional noise in the new example cluster. This
separation of Atomix and ONOS brings certain flexibility benefits like dynamic horizontal
scaling of the ONOS instances and separate & easier upgrade of ONOS and Atomix
instances. It also brings some costs in form of additional links, communication, instances
and nodes, if as shown in the example clusters each instance is deployed on its own node.
This leads us to question if this new architecture benefits the overall availability. We
want to analyze the following points:

• Does the additional complexity in the cluster, as described above, harm the overall
availability?

• If so, does it only decrease cluster availability in certain scenarios?

4.2 Model Elements

To make the description of the model easier, we classify elements of our model as either
objects or behaviour of these objects. In the following we will present included and
excluded model elements and argue why.
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Objects are either up or failed, like for example in [14]. up objects can fail, failed objects
can recover. Initially all objects are up.

4.2.1 Included model elements

The included elements are enumerated with the prefix EO for objects and EB for be-
haviours.

EO1 We need to consider ONOS instances in our work, including four versions of
ONOS. Each ONOS version has its own software availability. We consider four
ONOS versions as ONOS releases quarterly and with four versions we represent
one year.

EO2 We also consider Atomix instances. Together with the ONOS instances, these
elements are the core of our model.

EO3 We consider the control plane links, between Atomix & Atomix and between
ONOS & Atomix.

EO4 As an own object we model the consensus protocol status. The consensus
protocol is up, if the majority of Atomix instances are up. Otherwise, it is failed.
Reason: This is due to the basic requirement of the Raft consensus protocol, which
needs an active participation of the majority of instances as explained in Chapter
2. In the following sections and chapters we will use ’consensus’ and ’consensus
protocol’ interchangeably.

EO5 The cluster availability is also modeled as an object. It is up, if consensus and
at least one ONOS instance is up, in any other case it is failed.
Reason: Only if consensus is up, which includes that enough Atomix instances are
up, and at least one ONOS instance is up, the cluster can work as intended and so
only then it is available.

EB1 Failure of ONOS and Atomix instances can be due to hardware failures, soft-
ware failures and network partitions. Every instance has its own hardware node
and all nodes are equal.
Reason: The consideration of these failures is intuitive. Besides that, we assume
that each instance has its own node to achieve a simpler model in contrast when
we would consider shared nodes. This node separation can also be found in [51].
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EB2 If consensus fails, the Atomix and ONOS instances become idle and can no
longer fail from software problems.
Reason: This is based upon the behaviour of Atomix and ONOS described in [5],
in that case they can not fully answer incoming requests and only execute a limited
amount of their code, which again means less possibility to execute faulty code.

EB3 For the old ONOS architecture we consider the combined failure of ONOS and
Atomix. If one fails, the other fails too.
Reason: This is due to the deeply coupled deployment of ONOS and Atomix
instances in the old architecture as described in [5].

EB4 We consider worst case network partitions by accounting the number of failed
links. Once a certain amount of links has failed, one respective instance fails. Links
are either between the Atomix instances or between Atomix and ONOS instances.
In the example in Figure 4.1 this would mean that for each two Atomix links one
Atomix instance fails, or that after three failed ONOS-Atomix links one ONOS
instance fails.
Reason: The consideration of link failures and partition is an interesting topic for
this work as it hits one of the main points of the architecture change, the additional
links. We do not consider specific node connections of links, as it would drastically
increase the models complexity and also would overstep set time limits of this
work. As for why we see this as a failure, with reference to [5]: Atomix / ONOS
instances stop serving requests and wait for the partition recovery once they are
partitioned. This is similar to the case when consensus fails, as explained above.
The ONOS-Atomix partition does not lead to a failed Atomix instance, as Atomix
is not dependent on ONOS instances, but it is the other way around.

EB5 In the new architecture, the cluster can be upgraded if all Atomix and ONOS
instances are up. First Atomix will be upgraded, to be compatible with the new
ONOS version, then ONOS is upgraded. The influence of the upgrades onto ONOS’
availability are dependent on the used parameters for each version and theoreti-
cally could improve or worsen its availability. We will perform a rolling upgrade,
upgrading one instance after another. This also means that the multiple versions
are compatible to each other. The upgrade can fail, which leads to a longer upgrade
time, but it can not fail entirely, so a rollback is not necessary to consider.
Reason: The rolling upgrade procedure described is based upon their mailing list2

2See https://tinyurl.com/u39fj9px, https://tinyurl.com/2n8u4jfp and https://tinyurl.com/2yb86t8b
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and [5]. That an upgrade only temporary fails, is based upon the assumption that
an expert performs the upgrade and also verifies the success, as the ISSU team
mentions in their presentation3 of the upgrade procedure.

4.2.2 Excluded model elements

EO6 Our model focuses on the control plane, so the data plane is not considered.
Reason: As it can be observed from the old cluster to the new cluster in Figure
4.1 the connections (green dotted lines) between SDN controller, SDN switches and
hosts do not differ. We reason that the architectural change in the control plane
does not affect the data plane in any way and so the impact of the data plane on
the overall availability is equally in both architectures and so can be omitted as we
are only interested in the changes between the two architectures.

EB6 We model a failure detection probability of 100%, which in other words excludes
it from the model.
Reason: This approach simplifies our model and can also be found in [51, 52].

EB7 We do not consider load related software, hardware or link failures.
Reason: In our opinion, this would lead to a much more complex model that
would cost sparse time for creation we rather spend on other areas we think have
a greater benefit for this work.

EB8 The stacking of failures is not considered. For example on top of being already
partitioned, one ONOS instance fails due to a software failure.
Reason: An idea of how complex it is to model this detail, can be seen in the
Section A.1 in the Appendix. It would extend the time limits of this work to
incorporate this into the model.

EB9 As described in Section 4.2.1, Atomix instances must be upgraded before ONOS
can, but this has no impact on the overall availability.
Reason: Since this upgrade is done so Atomix is compatible with the new ONOS
version, we do not expect it to also include an impact of availability for example
through bug fixes. Henceforth, we exclude this detail from our model.

3See https://wiki.onosproject.org/display/ONOS/ISSU within [5]
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EB10 The old architecture can not be upgraded.
Reason: We reason this exclusion with our goal to compare between less complex-
ity and less flexibility in the old architecture, against more complexity and more
flexibility in the new architecture, as discussed at the beginning of this chapter in
Section 4.1.

EB11 The gossip protocol that is implemented in ONOS is excluded.
Reason: As the gossiping is only used for bidirectional exchange of state, it is
used to detect smaller state drifts between instances and to bring new instances
faster up-to-date. If consensus is not longer working as mentioned above, the gossip
protocol can’t work either. [5]

EB12 Unavailability due to attacks or other security related threats to availability are
not modeled.
Reason: As security is a whole new topic that has a depth on its own which would
extend the scope of this work too much. This approach can also be found in [40],
as mentioned in Chapter 3.

4.3 Used Parameters

According to the included elements explained above, we will now present the used pa-
rameters. As for wording we use ’parameter’ and ’rate’ interchangeably.

The ONOS parameters sourced from [40, 50, 4] do not include Atomix. We can therefore
use them as purely ONOS parameters. This is important to point out as in older versions
Atomix and ONOS were very closely coupled, as described in Section 4.1.

For Atomix we could not find any published work that states specific numbers for it.
What we could find was a software failure rate of one week in [54], but this value is for
the complete SDN controller that implements the Raft consensus protocol. The same
programmers that wrote ONOS wrote Atomix. Therefore, we assume that both have the
same reliability, so we set the Atomix failure rate equal to the failure rate of ONOS
v1.13.

The Atomix software repair duration is set by us to 10 seconds. This number is
gathered by a coarse grained test we did by starting and stopping an Atomix container
within a Virtual Machine with 6 vCPUs and 14 GB RAM with an i7-9750H. We assume
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that an ONOS deployment could be done via Kubernetes, as they suggest on their web-
site4. The number above is reasoned like following, one second is the time Kubernetes
needs to perform liveness and readiness probes to check the status of the Atomix in-
stance. If the instance is detected as unhealthy, it is shutdown which takes up around
two seconds and starts up a new one on the same host which takes up roughly seven
seconds. As we deploy the new Atomix instance on the same node we need to wait for
the old one to be shutdown.

Getting the Atomix and ONOS upgrade durations is hard, as there exists no documen-
tation for either one online. Furthermore, the tools that an installed ONOS version
provides, do not contain hints on how to upgrade an existent cluster.
As the upgrade of Atomix and ONOS instances is mainly done via shutting down the
old version and starting a new version instance in its place5, one could argue that we
plainly could take the time that needs. So for Atomix that would be nine seconds, as
described above minus the one second for failure detection that is not necessary in this
proactive process. For ONOS a restart takes around seven seconds, measured in the same
environment. The problem is that these numbers seem pretty low for a major version
upgrade. For this reason we set the upgrade duration arbitrarily.
For Atomix upgrade this means five minutes with regard to the easy upgrade as de-
scribed in Section 4.2.2. We set the ONOS upgrade durations to 15 minutes, for the
failure free upgrade, and four hours, when failures are encountered by the expert. 15 min-
utes, since we assume that upgrading ONOS is more complex than to upgrade Atomix
due to expected data migration. The four hours are a mean of considering pretty simple
errors, like wrong IP address in configuration, and more complex ones, like (partly) failed
data migration.

In Table 4.1 we listed all sourced or calculated bugs per hour per ONOS version. Bugs
per hour of v1.10, v1.12 and v1.13 are based upon published work, these are also the
basis for our calculation of v1.11, v1.14 and the upgrades after v1.14. Version 1.14 and
the upgrades are based upon the logarithmic trend, as we expect that fewer bugs are
getting fixed for each release as it gets more time intensive to fix them.

4See https://tinyurl.com/fhkzmvae
5See https://wiki.onosproject.org/display/ONOS/ISSU within [5]
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Version Bugs per
hour

Relative
to v1.10

Source

v1.10 0,01750 100,00% From published work: [40, 50]
v1.11 0,01517 86,67% Calculated: mean of v1.10 and v1.12
v1.12 0,01080 61,71% From published work: [4]
v1.13 0,01050 60,00% From published work: [4]
v1.14 0,00885 50,56% Calculated: Based upon logarithmic trend

from Excel: f(x) = −0, 005386747003005 ∗
ln(x) + 0, 017517342986504

1. Upgrade 0,00787 44,95%
2. Upgrade 0,00704 40,20%
3. Upgrade 0,00632 36,09%

Table 4.1: Bugs per hour from ONOS v1.10 to v1.14

Rate and Source Value
ONOS

ONOS v1.10 failure rate (from [40, 50]) 50 per year
ONOS v1.13 failure rate (calculated based upon v1.10 failure rate and
the relative percental difference from v1.13 to v1.10 in Table 4.1)

30 per year

ONOS v1.14 failure rate (calculated like v1.13 failure rate) 28,28 per year
ONOS 1. Upgrade failure rate (calculated like v1.13 failure rate) 22,47 per year
ONOS 2. Upgrade failure rate (calculated like v1.13 failure rate) 20,10 per year
ONOS 3. Upgrade failure rate (calculated like v1.13 failure rate) 18,05 per year
ONOS v1.10 recovery rate (from [40, 50]) 2 per hour

Atomix
Atomix Software failure rate (see above, like ONOS v1.13) 30 per year
Atomix Software recovery rate (see above) 6 per minute

Upgrade
Cluster upgrade rate (see Section 4.2.1 element EB4) 4 per year
Atomix upgrade rate (see above) 12 per hour
ONOS upgrade rate (see above) 4 per hour
ONOS upgrade rate with encountered failures (see above) 6 per day

Hardware
Hardware failure rate (from [54, 51]) 2 per year
Hardware recovery rate (from [54, 51]) 2 per day
Link failure rate (from [51]) 3 per year
Link recovery rate (from [51]) 4 per hour

Table 4.2: Used failure, recovery and upgrade rates
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4.4 GSPN model in GreatSPN

In the following sections we will present our GSPN model in detail and explain why we
did not change our formalism to SWNs. Specific parts of the model will be shown in the
following sections. The full model can be seen in Figure A.2 in the Appendix.

4.4.1 Model explanation

In the next sections we will describe the model in depth, this is structured according to
the squares in which the model is visually split with different background colours:

White squares : ONOS model elements

Grey square : Atomix model elements

Blue squares : Partitioning of Atomix and ONOS instances

Green squares : Upgrading elements

Pink square : Cluster metadata, like cluster availability or which architecture (old/new)
is represented

Orange square : Contains the used parameters and their default values

The name of the elements are adjusted to their type. Places should reflect the
current status in its name, e.g. ONOSAtomixLinkup or ONOSAtomixLinkfailed.
Transitions should reflect that something is happening, e.g. PartitionONOSv1 or
LinkFailsONOSAtomix. Parameters have the suffix ’Rate’, e.g. LinkFailRate or
LinkRecRate. Note that ’Rec’ is an abbreviation of ’Recovery’ to make the model
easier and to use the shared space more efficiently.
In the following we will speak of ’versioned’ elements, this means that
this element exists with different versions, for example Oup with OupV 1,
OupV 2 or PartitionRecoversONOSAtomix with PartitionRecoversONOSv1Atomix and
PartitionRecoversONOSv2Atomix.
We also use the terms ’ONOS cluster’ and ’cluster’. When we speak of ’ONOS clus-
ter’, we specifically mean all ONOS instances in the cluster, excluding anything else. In
’cluster’ we mean the whole cluster, for example with all ONOS instances, all Atomix
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instances and consensus status6.
Another important wording is ’immediate’, which means the described transition is mod-
elled with an instantaneous transition, with reference to its description in Chapter 2.

ONOS elements

Figure 4.2: The white ONOS square in GreatSPN

Figure 4.3: The white ONOS cluster square in GreatSPN

6Note that the model per default presents the new architecture in which the difference between ’ONOS
cluster’ and ’cluster’ exists.
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We have multiple white squares, one per ONOS version and one to present the current
availability of the ONOS cluster.
In each ONOS version square, like the ONOS v1 square in Figure 4.2, we can find the
following:

versioned Oup Place : Holds tokens that represent up ONOS instances.

versioned OSWfailed Place : Holds tokens that represent failed ONOS instances due to
software failure.

versioned OHWfailed Place : Holds tokens that represent failed ONOS instances due to
hardware failure.

FSW Transition : This transition represents a software failure of an ONOS instance.
When it fires, it moves one token from the versioned Oup place into the versioned
OSWfailed place. Additionally, it has an inhibitor arc to COfailed and its rate is
defined by the versioned ONOSSWFailRate parameter.

RSW Transition : This transition represents a software recovery of an ONOS instance.
When it fires, it moves one token from the versioned OSWfailed place into the
versioned Oup place. Its rate is defined by the ONOSSWRecRate parameter.

FHW Transition : This transition represents a hardware failure of an ONOS instance.
When it fires, it moves one token from the versioned Oup place into the versioned
OHWfailed place. Its rate is defined by the HWFailRate parameter.

RHW Transition : This transition represents a hardware recovery of an ONOS instance.
When it fires, it moves one token from the versioned OHWfailed place into the
versioned Oup place. Its rate is defined by the HWRecRate parameter.

In the ONOS cluster status square in Figure 4.3 we can find:

ONOSClusterup Place : Holds at most one token, representing that at least one ONOS
instance is up.

ONOSClusterfailed Place : Holds at most one token, representing that no ONOS in-
stance is up.

ONOSClusterFails Transition : This transition represents the move to unavailability
for the ONOS cluster. When it fires, it moves the token from ONOSClusterup to
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ONOSClusterfailed. Additionally, it has inhibitor arcs to OldArch and all versions
of Oup. Its rate is immediate.

versioned ONOSClusterRecovers Transition : This transition represents the move
to availability for the ONOS cluster. When it fires, it moves the token from
ONOSClusterfailed to ONOSClusterup. Additionally, it has as one input and
output arc to the respective versioned Oup place with the multiplicity of 1. Its rate
is immediate.

Atomix elements

Figure 4.4: The grey Atomix square in GreatSPN

The grey square in Figure 4.4 contains Atomix elements:

Aup Place : Holds tokens that represent up Atomix instances.
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ASWfailed Place : Holds tokens that represent failed Atomix instances due to software
failure.

AHWfailed Place : Holds tokens that represent failed Atomix instances due to hardware
failure.

COup Place : Holds at most one token, representing that consensus is up.

COfailed Place : Holds at most one token, representing that consensus is failed.

FSW Transition : This transition represents a software failure of an Atomix instance.
When it fires, it moves one token from the Aup place into the ASWfailed place.
Additionally, it has an inhibitor arc to COfailed and its rate is defined by the
AtomixSWFailRate parameter.

RSW Transition : This transition represents a software recovery of an Atomix instance.
When it fires, it moves one token from the ASWfailed place into the Aup place. Its
rate is defined by the AtomixSWRecRate parameter.

FHW Transition : This transition represents a hardware failure of an Atomix instance.
When it fires, it moves one token from the Aup place into the AHWfailed place. Its
rate is defined by the HWFailRate parameter.

RHW Transition : This transition represents a hardware recovery of an Atomix instance.
When it fires, it moves one token from the AHWfailed place into the Aup place. Its
rate is defined by the HWRecRate parameter.

FCO Transition : This transition represents the failure of the consensus protocol. When
it fires, it moves one token from the COup place into the COfailed place. Addi-
tionally, it has an inhibitor arc to Aup with the multiplicity of atomixminority,
whereas atomixminority is equal to the rounded down result of atomixcount

2+1 . Its
rate is immediate.

RCO Transition : This transition represents the recovery of the consensus protocol.
When it fires, it moves one token from the COfailed place into the COup place.
Additionally, it has one input and output arc to Aup with the multiplicity of
atomixminority each. Its rate is immediate.
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Figure 4.5: The blue Partition square for ONOS instances in GreatSPN

Network Partition elements

Next up are the blue squares, they contain the network partition elements.
One square, Figure 4.6, is for Atomix:

AtomixLinkup Place : Holds tokens that represent up Atomix links.

AtomixLinkfailed Place : Holds tokens that represent failed Atomix links.

APartitionfailed Place : This place holds tokens that represent failed Atomix instances
due to network partitioning.

AtomixLinkfailedPartitioning Place : This place exits two times, once in combi-
nation with PartitionLastAtomixInstances and once in combination with
PartitionAtomixInstance. In both variants it holds tokens that represent failed
Atomix links that are also part of a partition.

LastAtomixPartitioned Place : This place holds zero or two tokens, representing the
last two failed Atomix instances due to network partitioning.

LinkFailAtomix Transition : This transition represents the failure of an Atomix link.
When it fires, it moves a token from AtomixLinkup to AtomixLinkfailed. Its rate
is defined by the LinkFailRate parameter.

LinkRecoversAtomix Transition : This transition represents the recovery of an Atomix
link. When it fires, it moves a token from AtomixLinkfailed to AtomixLinkup. Its
rate is defined by the LinkRecRate parameter.
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Figure 4.6: The blue Partition square for Atomix instances in GreatSPN
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PartitionAtomixInstance Transition : This transition represents a partition failure of
an Atomix instance. When it fires, it moves atomixcount − 1 (alinksub1) tokens
from AtomixLinkfailed to AtomixLinkfailedPartitioning and one token from Aup to
APartitionfailed. Its rate is immediate.

RecoverPartition Transition : This transition represents a partition recovery of an
Atomix instance. When it fires, it moves atomixcount−2 (alinksub2) tokens from
AtomixLinkfailedPartitioning to AtomixLinkfailed, one token into AtomixLinkup

and one token from APartitionfailed to Aup. Its rate is defined by the LinkRecRate

parameter.

PartitionLastAtomixInstances Transition : This transition represents the partition
failure of the last two up Atomix instances. When it fires, it moves a token
from AtomixLinkfailed to AtomixLinkfailedPartitioning and two tokens from Aup

to LastAtomixPartitioned. Additionally, it has an inhibitor arc to AtomixLinkup

and its rate is immediate.

RecoverLastPartition Transition : This transition represents the partition recovery
of the two Atomix instances mentioned above. When it fires, it moves the to-
ken from AtomixLinkfailedPartitioning to AtomixLinkup and the two tokens from
LastAtomixPartitioned to Aup. Its rate is defined by the LinkRecRate parameter.

As a separate paragraph we now explain the reason why the partitioning of the last two
Atomix instances is considered differently than the partitioning of all Atomix instances
before.
Let’s assume a network like presented in Figure 4.1. If two Atomix links fail, the first
Atomix instance is partitioned. Now we cannot continue like before, waiting for two
Atomix links to fail, as there is only one Atomix link left. So, if the last Atomix link fails,
the last two Atomix instances are partitioned. In the model this is done via the transition
PartitionLastAtomixInstances. The recovery of these two instances is considered with
the RecoverLastPartition transition.

And the blue square on the right side of the model, Figure 4.5, is for ONOS:

ONOSAtomixLinkup Place : Holds tokens that represent up ONOS-Atomix links.

ONOSAtomixLinkfailed Place : Holds tokens that represent failed ONOS-Atomix
links.
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ONOSAtomixLinkfailedPartitioning Place : Holds tokens that represent failed ONOS-
Atomix links that are also part of a partition.

versioned OPartitionfailed Place : Holds tokens that represent failed ONOS instances
due to network partition.

LinkFailsONOSAtomix Transition : This transition represents the failure of an ONOS-
Atomix link. When it fires, it moves a token from ONOSAtomixLinkup to
ONOSAtomixLinkfailed. Additionally, it has an inhibitor arc to OldArch and
its rate is defined by the LinkFailRate parameter.

LinkRecoversONOSAtomix Transition : This transition represents the recovery of an
ONOS-Atomix link. When it fires, it moves a token from ONOSAtomixLinkfailed

to ONOSAtomixLinkup. Its rate is defined by the LinkRecRate parameter.

versioned PartitionONOS Transition : This transition represents the partition fail-
ure of an ONOS instance. When it fires, it moves atomixcount tokens from
ONOSAtomixLinkfailed to ONOSAtomixLinkfailedPartitioning and one token
from the versioned Oup to the versioned OPartitionfailed place. Its rate is imme-
diate.

versioned PartitionRecoversONOSAtomix Transition : This transition represents the
partition recovery of an ONOS instance. When it fires, it moves atomixcount− 1

tokens from ONOSAtomixLinkfailedPartitioning to ONOSAtomixLinkfailed, one
token into ONOSAtomixLinkup and one token from the versioned OPartitionfailed

to the versioned Oup place. Its rate is defined by the LinkRecRate parameter.
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Upgrade elements

Figure 4.7: The green upgrade (v1 to v2) square in GreatSPN

The green squares contain the upgrade process, one for each version upgrade. The
square for the upgrade from version 1 to version 2 can be seen in Figure 4.7. All green
squares have the same places and transitions. The multiple green upgrade squares only
differ in the connected versioned Oup places.

ONOSUpgradeReady Place : Holds at most one token, representing that the next
ONOS instance can be upgraded.

AtomixUpgradeReady Place : Holds at most one token, representing that the next
Atomix instance can be upgraded.

ONOSBeingUpgraded Place : Holds at most one token, representing the currently
upgraded ONOS instance.

AtomixLeftToUpgrade Place : Holds at most atomixcount tokens, representing the
number of Atomix instances that are left to upgrade.

AtomixBeingUPgraded Place : Holds at most one token, representing the currently
upgraded Atomix instance.
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UpgradeCluster Transition : This transition represents the start of a cluster up-
grade. When it fires, it moves a token into ONOSUpgradeReady and
AtomixUpgradeReady. Additionally, it has one input and output arc to the re-
spective Oup place with the multiplicity of onoscount. Analogue to that is the
connection to Aup with the multiplicity of atomixcount. It also has three inhibitor
arcs to OldArch, ONOSUpgradeReady and AtomixUpgradeReady and its rate
is defined by the UpgradeClusterRate parameter.

StartUpgradeONOS Transition : This transition represents a starting ONOS upgrade.
When it fires, it removes the token from ONOSUpgradeReady, and it moves one
token from the versioned Oup place to ONOSBeingUpgraded. Its rate is immedi-
ate.

ONOSUpgradeF inished Transition : This transition represents a finished ONOS up-
grade. When it fires, it moves the token from ONOSBeingUpgraded to the ver-
sioned Oup place and inserts a token into ONOSUpgradeReady. Its rate is defined
by the ONOSUpgradeF inishedRate.

ONOSUpgradeF inishedFailEncountered Transition : This transition represents a
finished ONOS upgrade with encountered and handled failures. When it
fires, it moves the token from ONOSBeingUpgraded to the versioned Oup

and inserts a token into ONOSUpgradeReady. Its rate is defined by the
ONOSUpgradeF inishedFailEncounteredRate

StartUpgradeAtomix Transition : This transition represents a starting Atomix
upgrade. When it fires, it removes one token from AtomixUpgradeReady

& AtomixLeftToUpgrade, and it moves one token from Aup to
AtomixBeingUpgraded.

AtomixUpgradeF inished Transition : This transition represents a finished Atomix up-
grade. When it fires, it moves the token from AtomixBeingUpgraded to Aup and
inserts a token into AtomixUpgradeReady.
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Cluster Metadata elements

Figure 4.8: The pink cluster metadata square in GreatSPN

In Figure 4.8 we can find the pink square with the cluster metadata:

Clusterup Place : Holds at most one token, representing that the cluster is available.

OldArch Place : If at least one token is set, it signalizes that the current model and its
set parameters represent the old architecture. The token has to be manually set,
and it makes no difference if more than one token is set.

ClusterFailsONOS Transition : This transition represents the move to unavailability for
the cluster due to a failed ONOS cluster. When it fires, it removes the token from
Clusterup. Additionally, it has inhibitor arcs to OldArch and ONOSClusterup

and its rate is immediate.

ClusterFailsCO Transition : This transition represents the move to unavailability for
the cluster due to failed consensus. When it fires, it removes the token from
Clusterup. Additionally, it has an inhibitor arc to COup and its rate is immediate.

ClusterRecovers Transition : This transition represents the move to availability for
the cluster due to an up ONOS cluster and up consensus. When it fires, it in-
serts a token into Clusterup. Additionally, it has input and output arcs to both
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ONOSClusterup and COup, and it has an inhibitor arc to Clusterup. Its rate is
immediate.

Model Parameters

Figure 4.9: The used parameters and their default values in GreatSPN

At last, we present in Figure 4.9 the used parameters and their default values according
to Section 4.3. Even though GreatSPN can handle formulas as a link multiplicity, e.g.
atomixcount−1, the upcoming tool used for automated simulation cannot. So we needed
to fixate all parameter values, including the ones we could calculate, which for example
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explains the existence of the alinksub1 parameter that otherwise could be replaced with
the simple atomixlink − 1 formula where needed.

One model for both architectures

The possibility of the two architectures being modeled in one GSPN has the benefit
that changes are not needed to be applied in two different files, which could lead to
inconsistencies, e.g. if the copying from one to the other model file is forgotten.

Due to the separated ONOS and Atomix instances, the shown GSPN model represents
the new architecture per default, but we can also represent the old ONOS architecture
with it by taking the following steps. The first step is to set one token into the OldArch

place. The next one is to set the ONOScount parameter to zero and the AtomixCount

parameter to the count of wanted ONOS instances. At last, we need to adjust the failure
and recovery rates of Atomix by setting them to the rates for the old architecture ONOS
instances. In our case, in regard to the used parameters in Section 4.3, we only need
to adjust the AtomixSWRecRate parameter to the value of ONOSSWRecRate. The
AtomixSWFailRate is already set to the failure rate of ONOS v1.13, which is realized
with the ONOSv0SWFailRate parameter.

4.4.2 Move to SWNs

We could have refactored our model with the use of SWNs. For example by merging
multiple places (e.g. the versioned Oup) into one, because the identity a place gives an
anonymous token is then replaced by the coloured token itself. Since this change would
maybe only increase the visual clarity of the model, which we think is good enough right
now, we are not switching to SWNs.

4.5 Chapter Conclusion

In this chapter we formulated and reasoned our research question in Section 4.1, we
reasoned the considered elements of our model in Section 4.2 and the used parameter
values in Section 4.3. In the last Section 4.4 we presented the GSPN model and its
details.
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The next Chapter 5 builds heavily upon this chapter, in it, we will validate our realized
model and its results, so we can evaluate our model in Chapter 6.
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In this chapter we will validate our model in three major ways. First we will validate the
realization of our model from Section 4.4 in Section 5.1. Then we will describe manual
simulations in Section 5.2 and automatic simulations in Section 5.3. The latter is used
for our sensitivity analysis in Section 5.4 and plausibility analysis in Section 5.5.

5.1 Model Realization

The goal of this section is to provide arguments, that the specified behaviour in Sections
4.2.1 and 4.2.2 is correctly realized in the model presented in Section 4.4. This section
extends Section 4.4.1 and the explained terms are reused here.

In the following itemisation we will reason how and if the included elements from Section
4.2.1 are realized.

EO1, ONOS instances : up ONOS instances and their respective version are realized
with tokens in the versioned Oup places.

EO2, Atomix instances : up Atomix instances are considered with tokens in the Aup

place.

EO3, Control plane links : We modelled the up control plane links with tokens in the
ONOSAtomixLinkup, AtomixLinkup and failed links in their associated failed
places.

EO4, Consensus status : The up consensus status is included in the model with the
COup place, the failed consensus status is considered with the COfailed place.

EO5, Cluster availability : Cluster availability is incorporated into the model with the
Clusterup place, if it contains a token the cluster is available, otherwise it is not.

38



5 Validation

EB1, ONOS and Atomix failures : ONOS and Atomix failures are represented by
the respective failures due to hardware (FHW transition, AHWfailed place and
versioned OHWfailed places) and software (FSW transition, ASWfailed place and
versioned OSWfailed places). One node per instance is considered, as each Atomix
or ONOS instance token can fail due to hardware, independent of the other
instances’ status.
The modelling of the network partitioning includes the PartitionAtomixInstance,
PartitionLastAtomixInstances transitions & APartitionfailed,
PartitionLastAtomixInstances places for Atomix and the versioned
PartitionONOS transitions & versioned OPartitionfailed places for ONOS.
All failures are recoverable via their respective recovery transition, soft-
ware (RSW ), hardware (RHW ) and network partition (RecoverPartition,
RecoverLastPartition and versioned PartitionRecoversONOSAtomix).

EB2, ONOS and Atomix idle : That all instances are idling while the consensus is failed
is considered by having an inhibitor arc from COfailed to all FSW transitions which
prevents these transitions to fire in this failure case.

EB3, Combined failure of ONOS and Atomix in old architecture : In the old archi-
tecture we only fill the Aup place with token that represent coupled Atomix and
ONOS instances, as described in Section 4.4.1. As there is one token for both
Atomix and ONOS, they only can fail and recover together.

EB5, Upgrade of cluster in new architecture : The upgrade of the cluster in the new
architecture is started with the UpgradeCluster transition for each new version.
Each upgrade takes tokens from the current ONOS version, e.g. OupV 1, and even-
tually moves them into the next ONOS version, e.g. OupV 2. The effect of the up-
grade onto ONOS’ availability is dependent on the used parameters for the different
ONOS versions, so according to the current simulation, the upgrade can improve,
worsen or not impact ONOS’ availability for each ONOS version independently.

In the following itemisation we explain how the excluded elements from Section 4.2.2 are
not considered in the model.

EO6, No data plane : The realization does not consider any SDN switches, hosts or
date plane links. Nor do we consider any data plane failures and recoveries in our
cluster availability.
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EB6, 100% failure detection : If a failure occurs it has a direct impact, e.g. with FSW

that moves a token from Aup to ASWfailed.

EB7, No load related failures : Load is not considered in the failure rates, as it can be
seen in Section 4.3, nor do we model special failure transitions that are specific for
load failures.

EB8, Failure stacking : Once an instance is failed, it cannot fail anymore. Only once
it has recovered the next failure can happen. For example a token from ASWfailed

(Atomix instance failed due to software) has no transition to directly move into
AHWfailed (failed due to hardware), only after it recovers from its software failure
via RSW and the token is in Aup, it can fail due to FHW and move into AHWfailed.

EB9, Atomix upgrade does not improve its availability : This easily be seen in the dif-
ference of the ONOS squares (white) and the Atomix square (grey). The Atomix
square does not contain versioned Aup places, neither any versioned failure transi-
tions with different failure rates. Atomix instances always fail / recover with the
same rate as they always use the same transitions and parameters.

EB10, No upgrade in old architecture : As explained in Section 4.4.1, we place a token
in OldArch when we want to simulate the old architecture. The token in this place
and the inhibitor arc from it to the first UpgradeCluster transition, prevents the
first upgrade. All other upgrades are prevented as an upgrade needs onoscount

tokens in the versioned Oup places, but the OupV 2 and OupV 3 places will always be
empty.

EB11, No gossip protocol : The parameters described in Section 4.3 do not consider
the gossip protocol, neither does it any place nor transition as presented in Section
4.4.1.

EB12, No security related unavailability : Analogue to EB11, no parameter, place or
transition does consider security related failures and recoveries.

5.2 Manual Simulation

Especially during development of the model, we started manual simulations within Great-
SPN to verify if we modelled correctly. This way we can test if the model behaves as
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expected in certain situations. An example use case is to check if tokens are duplicat-
ing or diminishing, e.g. when a UpgradeCluster transition fires, we take atomixcount

tokens from Aup and directly put them back. With manual simulations we can force
this situation, manually fire the transition and check if Aup still has atomixcount tokens
afterwards.
This way we could identify and locate wrong realizations in the model, essentially de-
bugging it. Once we felt confident that no error is left, we began with automated simu-
lations.

5.3 Automated Simulations

Additional to the manual approach, GreatSPN features tools to analyze performance
aspects of a GSPN or SWN model, e.g. with the ’WNSIM’ tool mentioned in Chapter 3
which was used by [55, 22].
The results of a WNSIM simulation are the mean number of tokens for each place and
the mean throughput for each transition throughout the simulation time. As our cluster
steady state availability, described in Section 2.1, we take the mean number of tokens
in the Clusterup place. This is possible since the number of tokens is at most one,
as described in Sections 4.2.1 and 4.4, which can represent a percentage with its value
between 0 and 1. To get this value, we do not have to wait for the simulation to finish as
it constantly creates fine-grained logs from which one can gather the cluster availability.
This allows us to interrupt simulations if they are running too long.
For all simulations we use a confidence of 90% and an approximation of 50%. Lower
approximation leads to more precise results, but also to immensely increased simulation
times. With the current value we have simulations that do not finish within six hours.
This time is not negligible, as we execute for example 160 simulations1 for the upcoming
HWFailRate parameter sensitivity analysis alone.

The simulations are executed on the same hardware that was used in Section 4.3. We
can call the ’WNSIM’ tool from the command line via /usr/local/GreatSPN/bin/WNSIM

and via optional arguments we can overwrite the default parameter values in the model,
as explained in Section 4.3 and shown in Section 4.4.1. Our fully automated simulation
and results gathering tool works like:

1. Read the configuration files, these can include new parameter values
1architectures ∗ stepcount ∗ repititions = 2 ∗ 16 ∗ 5
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2. Start the simulations

a) Sequentially or parallel with an optional limit of concurrent simulations

b) Generate a new seed for each simulation

c) Timeout simulation after an optional given time

3. Waiting for all simulations to finish

4. Gather the fine-grained results from all simulations

5. Create one xlsx file with one worksheet per parameter and create charts

For the interested reader, we added more description of our simulation tool in the ap-
pendix Section A.2.

5.4 Sensitivity Analysis

For our sensitivity analysis, we interrupt a simulation after one hour. Each sensitivity
analysis analyzes one parameter. All others parameters are unaltered, see Sections 4.3
and 4.4.1 for parameter default values. The value of an analyzed parameter is altered
with each ’step’. We configured our steps to be between -5 and 10 inclusive, each step
differs 10% ∗ step from the default value which is used in step 0. For example with the
ONOSSWRecRate parameter we have the different values per step:

Step -5, -50% : 1440 ∗ 0, 5 = 720

Step -4, -40% : 1440 ∗ 0, 6 = 864

...

Step -1, -10% : 1440 ∗ 0, 9 = 1296

Step 0, +0% : 1440 ∗ 1 = 1440 (default value)

Step 1, +10% : 1440 ∗ 1, 1 = 1584

Step 2, +20% : 1440 ∗ 1, 2 = 1728

...

Step 9, +90% : 1440 ∗ 1, 9 = 2736
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Step 10, +100% : 1440 ∗ 2 = 2880

For parameters with integer values, the difference is 1∗stepno. Each step is repeated five
times. For each repetition we generate a new seed which is the value of BASHs $RANDOM
variable at that moment.
So from a different perspective, each analyzed parameter, step, repetition and architec-
ture is a separate simulation with a unique seed. As an optimization, not all parameters
are executed in all architecture. For example, the upgrade parameters are only analyzed
in the new architecture as they have no impact in the old architecture.

As a side note, we originally planned to only simulate and analyze the sensitivity of
selected parameters which in turn means that we could have missed interesting points.
This decision was revised once we thought of automating this process. Due to the high
degree of automation we can easily analyze all parameters to see if some of them have
an interesting course throughout their steps.

In all simulations, the step difference did not propagate to the cluster availability. In
other words, when the value of a parameter was increased by 10%, the cluster availabil-
ity did change by less than 10%. We present one sensitivity result in more depth, as an
example how these results have to be read and interpreted.
In Figure 5.5 we can see the mean result of multiple sensitivity analyzes of the
UpgradeClusterRate parameter. For the sensitivity analysis it is not important what
this parameter represents, just how much it influences the overall result when its value
changes. The results have a blue line if the sensitivity analysis was done only once, and
it is green like in our example if the analysis was repeated multiple times, the green line
then represents the mean.
Like explained above, the sensitivity analysis has 16 steps, from -5 to 10 inclusive, three
steps and their meaning are described next:

Step 0 : The base value of the sensitivity analysis is always step 0 as it represents results
with the default values of our model from Section 4.3. In this case step 0 results
in a cluster availability of 0, 9999872 (99, 99872%).

Step -5 : The parameter has -50% of its default value (1440 ∗ 0, 5). This results in a
cluster availability of 0, 9999817. This is a difference to our base cluster availability
of about 0, 00055%, this is far from -50%.
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Step 4 : The parameter has +40% of its default value (1440 ∗ 1, 4). This results in a
cluster availability of 0, 9999904. This is a difference to our base cluster availability
of about 0, 00032%, which is far away from +40%.

So the change of the parameter value did influence to the cluster availability, but not by
the same percentage.

This can be observed for all other results too. More result examples like the one just
described. Some of them will be discussed multiple times in the upcoming sections and
chapters, the figures are placed next to the discussion that depends the most on it.

5.5 Simulation Results Plausibility

Besides looking at sensitivity we are now looking at the plausibility of some simulation
results, partly already created during sensitivity analysis.

In contrast to the sensitivity analysis, it is very important for the plausibility analysis
to consider the context of the analyzed parameter, as different parameters have different
impact on the cluster’s availability. For example an increased recovery rate is expected
to increase the cluster availability while an increased failure rate is expected to decrease
it.

5.5.1 Basic Architecture Results

For the basic architecture results, we take both unaltered architectures, execute each five
times and calculate the mean of all repetitions. Like a sensitivity analysis without steps.
The simulation results are an availability of 99,9981% for the new and 99,99550% for the
old architecture.
These results are just slightly above of the 99,99% availability that ONOS specified
themselves [5, 13]. Keep in mind that these sources are based upon an older version of
ONOS in the old architecture. With reference to Table 4.1, ONOS’ availability most
certainly improved over the last few years, so we are confident that the basic architecture
results are plausible.
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Figure 5.1: Cluster availability (blue) and linear trend line (black) of the
ONOSv2SWFailRate parameter steps in the new architecture

Figure 5.2: Cluster availability (blue) and linear trend line (black) of the
ONOSv3SWFailRate parameter steps in the new architecture
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Figure 5.3: Cluster availability (green) and linear trend line (black) of the
AtomixSWFail parameter steps in the new architecture

5.5.2 Failure Rates

The Atomix software failure rate results in Figure 5.3 do only consider the new
architecture, as in the old architecture this parameter has the value of the ONOS v1.13
software failure rate as described in Section 4.4.1. We executed this sensitivity analysis
multiple times, since the cluster availability improves when the Atomix software failure
rate increases and this is counterintuitive. When an instance is more likely to fail, we
expect it to generate more unavailability for the whole cluster. We wanted to make sure
that this result is not based upon coincidence, e.g. a bad seed. The retries confirmed the
first result, this can be said about all sensitivity analysis repetitions (green lines).
We assume, that the cluster improves as the Atomix instance is more likely to fail due
to software than to hardware or partitioning and this improves the cluster availability,
as a software failure is faster recovered than the other two.

In the Figure 6.3 we can observe the hardware failure rate results. The results match
our expectations, as the increasing failure rate decreases the cluster availability in both
architectures. The same is true for the software failure rate of ONOS v2 and v3
and link failure results in Figures 5.1, 5.2 and 6.1.

5.5.3 Recovery Rates

In Figure 5.4 we can observe that sometimes the results are very inconsistent as the results
line takes rapid changes. This could be a hint that we have set a too low repetition count,
and we need a higher variety of results per steps to get a more consistent course of the
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Figure 5.4: Cluster availability (blue) and linear trend line (black) of the
ONOSSWRecRate parameter steps in the new architecture

steady state availability. Even though, the differences between steps are minimal, they
begin to differ from the fifth decimal place onwards. For this reason we do not further
investigate this problem.
Despite this, the results trend line matches our expectations as the increasing recovery
rate also increases the cluster availability.

In the Figures 6.4, 6.5 and 6.2 we can observe the hardware, Atomix software and
link recovery rate results. The results match our expectations, as the increasing
recovery rate increases the cluster availability in both architectures. Except the hardware
recovery rate in the new architecture which stagnates.

5.5.4 Upgrade Rates

For the same reason as in Section 5.5.2 the upgrade cluster rate results in Figure 5.5
only consider the new architecture and also it presents a mean of multiple sensitivity
analysis as the result is counterintuitive. With a faster upgrade rate the cluster availabil-
ity decreases slightly. Even though the observed difference from the start of the trend
line to its end is minimal2, we want to give an idea why the trend line could behave this
way. With a higher upgrade rate, the cluster has more often instances that are being
upgraded, which takes the cluster one instance closer to unavailability. By that we mean,
if a cluster has three Atomix instances and one is being upgraded, the cluster is only left

2With a value of about 0,0000025 (0, 999985− 0, 9999825)
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Figure 5.5: Cluster availability (green) and linear trend line (black) of the
UpgradeClusterRate parameter steps in the new architecture

Figure 5.6: Cluster availability (green) and linear trend line (black) of the
ONOSUpgradeFailF inishedRate parameter steps in the new architecture
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with two up Atomix instances, if one of them fails, the cluster becomes unavailable as
too few up Atomix instances are left to keep the consensus up.

In contrast to the upgrade rate results before, we can present in Figure 5.6 the results of
the ONOS upgrade finished rate when a problem is encountered with a slight
increase of cluster availability. This is an expected result, as a faster upgrade shortens
the time the instance cannot answer requests.

5.6 Chapter Conclusion

We validated our model in various ways and can conclude that our model is valid. In
Section 5.1 we showed that the model considers everything it should and does not consider
anything it should not. In Sections 5.2 and 5.3 we explained how we created simulations
of our model. At last in Sections 5.4 and 5.5 we took a close look at the results of these
simulations in terms of sensitivity and plausibility.
Now with a successfully validated model we can begin to evaluate it and answer the
research question in Chapter 6.
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In this chapter we will compare the availability of the two ONOS’ architectures. First
by taking a new look at the results from the sensitivity analysis from Section 5.4 in
Section 6.1. Afterwards we will present specific deployment scenarios and interpret their
results in Section 6.2. Finally, in Section 6.3 we will answer the research question, if the
architecture change was beneficial for ONOS’ availability. It will turn out that the new
architecture has an overall higher availability than the old architecture.

6.1 Sensitivity Results interesting for architecture
comparison

In the following we will present results of the sensitivity analysis results originally in-
tended for Chapter 5, but they fit much better here as they let us compare the availability
in both architectures. These results may not have been gathered if we had executed the
simulations manually like mentioned in Section 5.3.

6.1.1 Link fail and recovery rate

In the sensitivity results of links with their fail rate in Figure 6.1 and their recovery rate
in Figure 6.2, we can see that the new architecture does not depend on link availability
as much as the old architecture does. It also has a higher mean availability throughout
the comparison.

We come to this conclusion for the link failure rate since the new architecture trend
line changes slightly. The old architecture trend line has a bigger difference between its
start and end value. In other words, the higher failure rate is more noticeable in the old
architecture.
Additionally, the new architecture trend line stays on a high level between 0,99998 and
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Figure 6.1: Cluster availability (green, blue) and linear trend line (black) of the
LinkFailRate parameter steps in the new (left) and old (right) architecture

Figure 6.2: Cluster availability (green, blue) and linear trend line (black) of the
LinkRecRate parameter steps in the new (left) and old (right) architecture
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Figure 6.3: Cluster Availability (blue) and linear trend line (black) of the HWFailRate
parameter steps in the new (left) and old (right) architecture

1. The old architecture comes into that range with two steps, but its trend line is way
lower, between 0,99995 and 0,99994.

For the link recovery rate we can observe and interpret the same. The new architecture
trend line is on a higher level and also changes slightly, while the old architecture trend
line is way lower and has a higher change from the trend line start to end.

At last, one remark to [52]. As described in Section 3.1.3, [52] concludes that link
availability is of vital importance to the SDN steady state availability. In the next
Section 6.1.2, we will present the hardware rates. When we compare their availability
results with the ones of the links, we can see, that in the new architecture the hardware
availability has a greater impact than link availability. We reason this as the hardware
results are generally on a lower level and their trend lines are steeper. The same could be
said about the old architecture, although here the results from the hardware rates and
link rates are noticeably closer.

6.1.2 Hardware fail and recovery rate

We can observe in the Figures 6.3 and 6.4 that both architectures behave the same when
the hardware failure and recovery rates change. Different is the degree of which the
availability is impacted.

The hardware failure rate sensitivity analysis for the new and old architecture in Figure
6.3 clearly shows, that the new architecture is less dependent on its hardware, as its
trend line declines less steep when compared to the old architecture.
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Figure 6.4: Cluster Availability (blue) and linear trend line (black) of the HWRecRate
parameter steps in the new (left) and old (right) architecture

Figure 6.5: Cluster availability (blue) and linear trend line (black) of the
AtomixSWRecRate parameter steps in the new (left) and old (right)
architecture

In the old architecture the hardware recovery rate develops slightly worse than in the
new architecture, as with better recovery rates the availability does not rise as fast as in
the new architecture. It also does not reach cluster availabilities beyond 0, 99998 as often
as the new architecture does, especially in later steps when the recovery rate is 180%
(step 8) to 200% (step 10) of its default value.

Like observed in the link rates in Section 6.1.1, the availability of the new architecture
is generally higher and less dependent on other elements, compared to the old architec-
ture.
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6.1.3 Atomix software recovery rate

In contrast to the examined hardware rates, we can see with the Atomix software recovery
rate in Figure 6.5 that the old and new architecture can also behave differently when
a parameter changes. In this case this maybe due to the fact that the value of this
parameter differs in both architectures. As a reminder, in the new architecture this value
represents the Atomix software recovery rate, in the old architecture it represents the
ONOS v1.13 software recovery rate.
In the new architecture, the trend line stagnates on a high level, slightly above 0,99998.
The old architecture has a steep trend line, so a higher recovery rate increases the cluster
availability in the old architecture. Nether the less, even the best availability in the
old architecture (roughly 0,999966) is below the average value of the new architecture
(slightly above 0,99998). So again we can see what we already observed in Sections 6.1.1
and 6.1.2, that the new architecture generally offers a higher availability than the old
architecture.

6.2 Scenarios

Additional to our results from Chapter 5, we now present scenarios to compare the avail-
ability in both architectures with specific viewpoints for a more in depth comparison.

6.2.1 Upgrade scenarios

For this deployment scenario, we simulate four scenarios. The two first are the unaltered
new and old architecture. The other two are altered new architectures, one version has
no upgrade at all, which means that ONOS is never upgraded to improve its availability.
The other version of the new architecture considers upgrades, but all ONOS versions
have the same availability, so if for example new bugs are introduced with a release,
others are fixed. In the following this scenario is called ’stagnating’.

The results of this deployment scenario can be seen in Figure 6.6. In this figure we can
observe that the deployment with a stagnating upgrade in the new architecture has the
worst availability. Second is the old architecture which is followed up by the unaltered
new architecture and the new architecture without any upgrade.
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Figure 6.6: Cluster availability of the old and new architectures, including different up-
grade behaviours

ONOS software failure rate decrease
Scenario v2 v3 v4
’increase1’ 2% 4% 6%
’increase2’ 8% 10% 12%
’increase3’ 14% 16% 18%
’increase4’ 20% 22% 24%

Table 6.1: Decreases of the ONOS software failure rates in the ’increase’ scenarios

It makes sense, that the new architecture has a higher availability than the old architec-
ture, as already presented in Sections 5.5.1, 6.1.1, 6.1.2 and 6.1.3. That a new architecture
with unchanging failure rates after each upgrade performs the worst can be reasoned with
the point that an upgrade always means that during an upgrade of an instance we are
one instance closer to unavailability, as described in Section 5.5.4. So in other words we
’buy’ the upgrade with availability, but the availability does not improve afterwards to
balance out the cost.

We expected that the unaltered new architecture would result in the highest availability,
as it contains the improving ONOS availability with each upgrade. Because of this, it is
a surprise that the new architecture without any upgrade has the best availability, even
though the difference is very low. This surprise maybe due to the fact, that the availability
improvement after an upgrade is not high enough to balance out the mentioned cost.

To test if this assumption is true, we simulated the new architecture in four additional
scenarios as an extension to the presented scenarios above. Each ’increase’ scenario
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Figure 6.7: Extension of Figure 6.6, Cluster availability of the new architectures, includ-
ing different upgrade behaviours

increases the ONOS availability, by decreasing the ONOS software failure rate of the
upgrades by (2 + (increasenumber − 1) ∗ 6)%. This is done to see, how much the
upgrades need to improve the ONOS availability before we can balance out the cost of
an upgrade. All decrease percentages are listed in Table 6.1.
The results can be seen in Figure 6.7. We do not further explain the difference between
the ’increase1’ and the basic new architecture results since their difference is negligible1.
We can observe, that with increasing ONOS availability, the results come closer to the
’no upgrade’ scenario and even can surpass it with ’increase3’ and ’increase4’. So if our
assumed ONOS software failure rates would decrease significantly of about the value of
’increase3’ in Table 6.1 or more, the cluster availability would benefit from upgrades. In
other words, the ONOS software failure rate would be needed to decrease around 23%
for the first, 33% for the second and 41% for the fourth upgrade when compared to the
v1 software failure rate. An overview of the default and needed software failure rates and
their decreases in percent can be found within Section A.4 in Table A.4.

6.2.2 Different Atomix and ONOS counts

In this deployment scenario we simulate multiple combinations of Atomix and ONOS
instance counts. These combinations are arbitrarily set.
We recommend and do not recommend a certain set of deployment scenarios. The sep-
arating line is an availability of 99,99%. This line is arbitrarily set to only recommend
deployments that are an improvement over the ONOS availability of 99,99% from [5, 13]
mentioned within Section 5.5.1.

10,000000069 (0, 99998152− 0, 9999814151)
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The recommended ones can be seen in Figure 6.8.
Scenarios that deploy the old architecture are named like <onoscount>’o’ and the new
architecture deployments are named like <onoscount><atomixcount>’n’. We also will
use the term of the ’consensus instances’, by which we mean ONOS instances in the old
and Atomix instances in the new architecture. We are creating this term as it shorts the
explanation, and they respectively are the basis for the consensus status (up or failed).

The not recommended deployment scenarios have an availability of or below 99,99%.
The scenarios 13n and 19n have an availability around 99,55%. The reason we assume
for the low availability is, that only one ONOS instance needs to fail, to make the cluster
unavailable.
We also simulated the scenarios 22n, 12n and 2o, with a result of 0% each. The reason
is the realization of the instance partitioning, as described in Section 4.4.1. Only two
consensus instances would lead to an immediate partitioned consensus instance, as the
immediate transition PartitionAtomixInstance can fire without prior link failure2. This
could be fixed by altering the model, however, we will not do that since an instance count
that is below three or that is even is highly discouraged for high availability deployments
[5, 60].

The recommended deployment scenarios in Figure 6.8, have an availability above 99,99%.
Interesting to see, is that the consensus instance count mainly influences the cluster
availability, to observe between 23n and 57n as they are sorted by the second number.
With one exception to 29n which has a very high consensus instance count, but with a
very low ONOS count which we assume diminishes the availability, because the cluster
is close to unavailability with just two ONOS instances. Especially during an upgrade,
with reference to Section 6.2.1.

Although this work only looks at the availability a deployment can offer and does not
consider for example load on the instances or operational costs, we want to point out, that
an availability beyond 99,999% is achieved in the old architecture with fewer instances
than in the new architecture. To reach this availability, the old architectures needs at
least five ONOS instances, while the new architecture needs at least three ONOS and
five Atomix instances. This result could be interesting for future work, e.g. if this is still
true once the model considers load on the instances or the availability is put into context
with operational costs.

2Because the only input arc preventing the firing has a multiplicity of alinksub1 = 0, with reference to
our formulas within Figure 4.9
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Figure 6.8: Cluster availability of the recommended deployed instance counts

6.3 Evaluation Summary

We presented in Section 6.1.1, that link failures and recoveries do have less impact in
the new than in the old architecture. In other words, in environments with unreliable
or hard to maintain links, the ONOS instances should be upgraded to at least v1.14 to
profit from the higher availability the new architecture offers.
The same is true for the Atomix recovery rate in Section 6.1.3 and the hardware results
presented in Section 6.1.2. As here again, the failures and recoveries have less impact
onto the new architecture.
The new architecture within ONOS v1.14 or newer, should also be considered in de-
ployments with a low hardware availability. Especially if the hardware’s reliability or
maintenance is worse than what we assumed in Section 4.3. This is important, as it
could mean in this case to lose availability from over 0,99995 to around 0,99875 in our
considered worst case for the old architecture (Step 10 in the right chart in Figure 6.3).
When looked at in context of a year3, this means an increase of cluster unavailability of
roughly 26 minutes to 657 minutes4.

That the new architecture performs better in terms of availability than the old archi-
tecture can also be seen in our upgrade scenarios in Section 6.2.1 and the deployment
scenarios in Section 6.2.2.
In our upgrade scenarios we could observe, that the upgrade comes with an availability
cost. So operators of ONOS in the new architecture should not update every release but

3Based upon 365 days
4Calculated with (1− availbility) ∗ 365 ∗ 24 ∗ 60.
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pick the ones that are needed, when viewed from the availability point of view. With
reference to [3], one should also wait a few months after the release before upgrading.
When we looked at the instance counts, we could see that for the old architecture at least
five ONOS instances should be deployed. In the new architecture the operator should
deploy at least five instances of Atomix and at least three instances of ONOS from an
availability point of view. In these deployments, both architectures can reach a cluster
availability beyond 99,999%. More instances do not drastically increase the cluster’s
availability in both architectures according to our model.

So, to answer our research question which architecture has a higher cluster steady state
availability, we strongly recommend ONOS v1.14 or newer with the new architecture over
ONOS v1.13 and older with the old architecture. Especially in environments with worse
hardware or link availability than we assumed.
This advantage of the new architecture however does mainly come from the increased
count of links and hardware nodes. And so its higher tolerance towards single failures of
such elements.
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In this work we presented and evaluated the research question, if the additional com-
plexity in the new architecture harms the overall availability and if so, if this is only the
case in certain scenarios.
This research question was formulated and reasoned in Chapter 4. In this chapter we also
defined our model elements and reasoned which are considered and which are not. With
these elements specified, we continued to create our GSPN model within GreatSPN.
Our GSPN model was then validated in Chapter 5. We started of with an explanation
how the specified elements from Chapter 4 were realized and presented arguments why
this was done correctly. We then continued with the explanation of the manual simula-
tion, used during model development, and automated simulations, used for the following
sensitivity and plausibility analysis. In the first we could show, that no parameter does
overwhelmingly influence the model results. In the latter we presented further results,
explaining if these were expected or not. Although some results were counterintuitive,
they could still be reasoned and are plausible.
With a validated model we continued to Chapter 6. We took once more a look at the
results of simulations and could observe that the new architecture performs better than
the old architecture in terms of availability. This was confirmed with specific upgrade and
deployment scenarios. The chapter was concluded with, besides others, recommendations
for ONOS deployments and the overall recommendation to deploy the new ONOS archi-
tecture, this is also a signal to the ONOS developers that their architecture change was
beneficial for ONOS’ availability. Even though, the fact that the new architecture can
be easily upgraded, was not the main factor for the availability gain over the old archi-
tecture in our model. This was foreshadowed in the counterintuitive results in Chapter
6 mentioned above. The availability gain over the old architecture is based upon the
addition of new hardware nodes and especially links. Single hardware or link failures can
be much easier tolerated as the cluster has a higher replication degree.
We conclude this work, with a clear recommendation for the new ONOS architecture in
ONOS version 1.14 and onwards.
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Our work can be extended in multiple ways.

One idea is to create a more realistic model, e.g. include load dependent reliability into
the model or include a more sophisticated network partitioning. Additional ideas can be
found in Sections 4.2.2 and 6.2.2.
Also, we mentioned in the introduction, that the new architecture can be used for easier
horizontal scaling. This could be combined with a model that includes load dependent
reliability as mentioned above.
Here we want to remind the reader, that some of our rates, as explained in Section 4.3,
are based upon older literature or are guessed. So our results should be taken with a
grain of salt. Further specific and reliable rates are needed for future work for more
realistic performance analyzations.
The mentioned ideas could all lead to more realistic results that make more reliable or
fine-grained recommendations possible.

As mentioned in Section 4.4, we thought about moving to SWNs, when the model be-
comes more complex this may help to improve readability and maintainability of the
model. Additionally, one could think about creating a hierarchical model like done in
[51, 52] as mentioned in Chapter 3.
These ideas might be needed if the model becomes more complex, like with the men-
tioned ideas above. A SWN or hierarchical model might in this case be easier to read,
maintain and extend for even further future work.
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A Appendix

In the appendix we present additional information that may interest readers. We explain
further information of the stacked failure extension in Section A.1, the used tool to start
simulations & gather their results in Section A.2, the full URLs for the used shortened
links in Section A.3, ONOS software failure rates to surpass the ’no upgrade’ scenario
from Section 6.2.1 in Section A.4, and the full GSPN model in Section A.5.

A.1 Stacked Failure Extension

To model stacked failures, we need to consider the dependencies the have between each
other. For a start, any failure (software, hardware, network partition) can happen on
top of any other, with one exception. Software failures are overwritten by a hardware
failure, as a software cannot be executed on top of failed hardware. This can be seen in
Figure A.1. To improve readability, the failure transitions are horizontal and the recovery
transitions are immediate and vertical. This has no semantic meaning.

This becomes more complex if we want to incorporate that into the presented model,
we need to keep track which instance has currently which failures, to make sure it is
recovered the correct way. For example a partitioned node with a software failure, must
recover both before that instance is up again. Especially for ONOS, this would drastically
increase the amount of transitions and places, as we have to model each specific failure
scenario for each version.

A.2 Simulation Tool

The tool mentioned in Chapter 5 consists of BASH and Python code.
BASH scripts start and handle the simulations, while the Python scripts are used to
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Figure A.1: Basic idea for stacked failure extension
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gather results and write the xls file. Initially the result gathering was also done in BASH,
we quickly re-implemented the logic in Python as it gave us an immense performance
advantage, for example to parse a 10.000 line text file BASH needed several minutes,
Python can do that in matter of seconds. This is even more helpful once these text files
reach 54 GB in combined size.

For the xls file creation we use the xlsxwriter library which is very useful. With that we
even can create line charts in a few lines of code. The manual creation of these charts,
as we have done in previous projects, is a tedious and error prone task we are glad to
have getting rid of by automation.

In Listing A.1 we show an example configuration of the simulation tool. With that
configuration we have a total of 320 simulations1. Interesting point is that not ev-
ery parameter is analyzed in both architectures like in the example configuration, e.g.
UpgradeClusterRate is not analyzed in the old architecture as there is no upgrading
and so it has no impact on its availability, in that case architecturecount would be 1.
As a side note, the count of concurrent simulations should not exceed the thread count
as each simulation fully utilizes one thread, in our case we choose 9 with a 12 thread
CPU.

1 approximation=50 # Markov Steady State Approximation in percent

2 min=-5 # Minimum of steps from default value

3 max=10 # Maximum of steps from default value

4 repetitions=5 # Count of simulations repetion, each with own seed

5 step_diff_percent=10 # Difference per step to the default value in percent

6 sleep_between_starts=0.1s # Wait time between parallel simulation starts

7 simultanious_containers=9 # Maximum number of concurrent simulations

8 timeout_min=60 # Timeout per simulation

9 params=’HWFailRate HWRecRate’ # Analyzed Parameters

Listing A.1: Example simulation tool configuration

Furthermore, the tool is split in the following files to make the code more readable:

1. clean_results.sh: Deletes the results and temporary simulation files to have a clean
setup

2. create_comparison.sh: The tool’s entry point

1Calculated with stepcount ∗ repetitions ∗ analyzedparameters ∗ architecturecount = 16 ∗ 5 ∗ 2 ∗ 2
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3. create_csvs.sh: Gathers the simulation results and puts them into csv files with
the help of get_mean_from_wnsimlog.py

4. create_xls.py : Creates one xls file from the csv files

5. get_mean_from_wnsimlog.py : Gather the availability out of the result files, this
is the mentioned task that is much quicker with Python

6. start_sim.sh: Start a simulation with a given set of parameters in sequence or
parallel, also keeps track of running simulations and executes the timeout

7. util_container.sh: Functions to interact with the containers

8. util_log.sh: Functions for logging

9. util_math.sh: Functions for easier calculations within BASH

10. util_sim_params.sh: Configuration of the simulation tools, Listing A.1 would be
defined here.

The simulation tool can be requested and may be uploaded to GitHub in the future.

A.3 URL Links

We used shortened links for long URLs. It could be, that after some time, the shortened
URLs break. For this reason we provide the full URLs here:

1 https://tinyurl.com/u39fj9px = https://groups.google.com/a/onosproject.org/g/

onos-dev/c/iu_iP8pFs-U/m/OGtYzVy_CwAJ

2 https://tinyurl.com/2n8u4jfp = https://groups.google.com/a/onosproject.org/g/

onos-dev/c/hzfjjEyruGo/m/xsnEiMCdAwAJ

3 https://tinyurl.com/2yb86t8b = https://docs.google.com/document/d/1-

xZ3Wnr6VZS34paYVdZhF8WWo3M6VWKNJXQTmBnnM7Y

4 https://tinyurl.com/fhkzmvae = https://atomix.io/docs/latest/user-manual/

deployment/kubernetes/

Listing A.2: Full URLs of shortened links
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A.4 ONOS Software failure rates to surpass ’no upgrade’
scenario

With reference to Section 6.2.1, we now list the needed ONOS software failure rate for
each version, so our model could benefit from upgrades in terms of availability. These
numbers are based upon our parameters described in Section 4.3.

Default To surpass ’no upgrade’ scenario
Version Rate Decrease Rate Decrease
v1 2,1067 0% 2,1067 0%
v2 1,8725 11,12% 1,6104 23,56%
v3 1,6750 20,49% 1,4070 33,21%
v4 1,5042 28,60% 1,2334 41,45%

Table A.1: Decreases of the ONOS software failure rates to surpass the ’no upgrade’
scenario

A.5 Full GSPN model

In Figure A.2 we added the full GSPN model, in addition to the shown squares in Section
4.4, so that one can better understand how the squares are connected.
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Figure A.2: Our model in GSPN and GreatSPN
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