
BACHELOR THESIS
Hani Alshikh

Evaluation and Use of
Event-Sourcing for Audit
Logging

Faculty of Engineering and Computer Science
Department Computer Science

HOCHSCHULE FÜR ANGEWANDTE
WISSENSCHAFTEN HAMBURG
Hamburg University of Applied Sciences

Bachelor thesis submitted for examination in Bachelor´s degree
in the study course Bachelor of Science Angewandte Informatik
at the Department Computer Science
at the Faculty of Engineering and Computer Science
at University of Applied Science Hamburg

Supervisor: Prof. Dr. Stefan Sarstedt
Supervisor: Prof. Dr. Olaf Zukunft

Submitted on: 28. February 2023

Hani Alshikh

Evaluation and Use of Event-Sourcing for Audit
Logging

Hani Alshikh

Title of Thesis

Evaluation and Use of Event-Sourcing for Audit Logging

Keywords

Event-Sourcing, Audit-Log, Audit-Trail, Auditing, Auditing-2.0, Software-Engineering,
Software-Architecture, gRPC-Web

Abstract

Keeping accurate audit records is a requirement for compliant Information-Technology
(IT) systems, especially when used in sensitive industries such as government, finance,
infrastructure, etc.

Event-Sourced architectures are rapidly gaining in popularity as they provide reliability,
flexibility, and scalability. One of the primary benefits of Event-Sourcing is the complete
and immutable records of all events and state changes within the system, allowing for
efficient and thorough audit logging by design.

This work evaluates Event-Sourcing in comparison to other patterns for audit logging
as well as showcases how an event-sourced system to manage Kubernetes (k8s) multi-
cloud multi-cluster authentication and authorization requests can be utilised to save
organisations time and effort, when answering various compliance questions and requests,
by implementing the corresponding Audit Component and Audit Browser.

iii

Contents

List of Figures vii

List of Tables ix

Shell Instructions x

Abbreviations xi

1 Acknowledgments 1

2 Introduction 2

3 Audit 4
3.1 IT Audit . 5
3.2 IT Auditing in Context . 6
3.3 Audit Log . 8
3.4 Auditing 2.0 . 9

3.4.1 Business Provenance . 9
3.4.2 Process Mining . 9

4 Event Sourcing 11
4.1 Terminology . 12

4.1.1 The Event in Event-Sourcing . 12
4.1.2 Event Store . 12
4.1.3 Streams . 13
4.1.4 Projections . 13
4.1.5 Snapshots . 13

4.2 The Core Pattern . 14
4.3 Event-Sourced Architecture . 15

iv

Contents

4.4 Challenges . 16
4.4.1 Event Storage . 16
4.4.2 Event Schema Evolution . 16
4.4.3 Deleting Data is Tricky . 17
4.4.4 Querying the Event Store is Challenging. 17
4.4.5 Eventual Consistency . 19

4.5 Benefits . 20

5 Software Architecture and Auditing 22
5.1 Implementing audit logging . 23

5.1.1 Audit Logging Code in Business Logic 23
5.1.2 Aspect-Oriented Programming . 24
5.1.3 Event Sourcing . 24

5.2 What to Consider . 24
5.2.1 Traditional Persistence . 24
5.2.2 Auditing 2.0 . 25

6 Audit Component 26
6.1 Monoskope . 27

6.1.1 Architecture . 28
6.2 Requirements . 29

6.2.1 Use-Cases . 30
6.2.2 Architectural Constraints . 31

6.3 System Design . 32
6.3.1 Scope and Context . 32
6.3.2 Solution Strategy . 33
6.3.3 Building Block View . 35
6.3.4 Runtime View . 38

7 Audit Browser 39
7.1 Requirements . 40

7.1.1 Use-Cases . 41
7.1.2 Architectural Constraints . 42

7.2 System Design . 43
7.2.1 Scope and Context . 43
7.2.2 Solution Strategy . 45
7.2.3 Building Block View . 46

v

Contents

7.2.4 Runtime View . 57
7.3 Design Decisions . 61

7.3.1 DD01: gRPC Client-Server Communication 61
7.4 Technical Decisions . 64

7.4.1 TD01: Javascript and React . 64
7.4.2 TD02: Headless Use-Cases Implementation 65

8 Installation and Configuration 66
8.0.1 Deployment View . 66

8.1 Test Run . 67
8.2 Prerequisite . 68

8.2.1 Configure . 69
8.2.2 Install . 69

9 Conclusion 72

Bibliography 74

A Anhang 78
A.1 Audit Browser GUI . 78

Glossary 84
Declaration of Autorship . 88

vi

List of Figures

3.1 IT auditing commonality with other types of audit [Gantz, 2014a] 5
3.2 IT audit activities and scopes [Gantz, 2014a] 6

4.1 Command Query Responsibility Segregation (CQRS) implementation in
a microservices system [Richards, 2015] . 18

6.1 Monoskope architecture [Monoskope-Authors, 2021] 28
6.2 Monoskope data module . 29
6.3 Audit Component business context diagram 32
6.4 Audit Component technical context diagram 33
6.5 Audit Component overall system component diagram 35
6.6 Audit Component class diagram . 36
6.7 Audit Component UC01-04 sequence diagram 38

7.1 Audit Browser business context diagram 43
7.2 Audit Browser technical context diagram 44
7.3 Audit Browser overall system component diagram 46
7.4 Audit Browser MonoGUI gRPC class diagram 49
7.5 Audit Browser scenes audit class diagram 50
7.6 Audit Browser scenes auth class diagram 52
7.7 Audit Browser usecases audit class diagram 54
7.8 Audit Browser usecases auth class diagram 56
7.9 Audit Browser UC01 sequence diagram . 57
7.10 Audit Browser UC02 sequence diagram . 58
7.11 Audit Browser UC02 sign in sequence diagram 58
7.12 Audit Browser UC02 auth state machine 59
7.13 Audit Browser UC03-06 sequence diagram 60
7.14 HTTP/1.1 compared to HTTP/2 . 61
7.15 gRPC-Web proxy to allow browser gRPC support [Brandhorst, 2019] . . . 62

vii

List of Figures

7.16 gRPC-Gateway architecture diagram [gRPC Gateway Authors, 2023] . . . 63
7.17 Top programming languages - rankings in comparison [Tagliaferri, 2023] . 64

8.1 Deployment view diagram . 67

A.1 MonoGUI sign in light . 79
A.2 MonoGUI sign in dark . 79
A.3 MonoGUI audit log . 80
A.4 MonoGUI audit log . 80
A.5 MonoGUI audit log by user . 81
A.6 MonoGUI audit log by user . 81
A.7 MonoGUI audit log user actions . 82
A.8 MonoGUI audit log user actions . 82
A.9 MonoGUI audit log users overview . 83
A.10 MonoGUI audit log users overview . 83

viii

List of Tables

3.1 Internal controls categorized by type and purpose [Gantz, 2014a] 7

6.1 Audit Component derived use-cases . 30
6.2 Audit Component technical constraints . 31
6.3 Audit Component organisational constraints 31
6.4 Audit Component solution strategy . 34
6.5 Audit Component contained building blocks component black box 35
6.6 Audit Component contained building blocks interface black box 36
6.7 Audit Component class diagram . 37

7.1 Audit Browser derived use-cases . 41
7.2 Audit Browser technical constraints . 42
7.3 Audit Browser organisational constraints 42
7.4 Audit Browser solution strategy . 45
7.5 Audit Browser contained building blocks MonoGUI black box 47
7.6 Audit Browser contained building blocks scenes black box 47
7.7 Audit Browser contained building blocks use-cases black box 48
7.8 Audit Browser contained building blocks API black box 48
7.9 Audit Browser MonoGUI gRPC class diagram 49
7.10 Audit Browser scenes audit class diagram 51
7.11 Audit Browser scenes auth class diagram 53
7.12 Audit Browser usecases audit class diagram 55
7.13 Audit Browser usecases auth class diagram 56

8.1 Installation required tools . 68
8.2 Installation automated tools . 69

ix

Shell Instructions

8.1 Deploy with custom command . 68
8.2 Deploy all resources to a local cluster . 70
8.3 Trust Monoskope (m8) certificate authority 70
8.4 Update hosts file . 70
8.5 Create port-forwards to route local request 71
8.6 Populate the Event Store with some data 71

x

Abbreviations

AI Artificial Intelligence.

AOP Aspect-Oriented Programming.

API Application Programming Interface.

CA Certificate Authority.

CD Continuous Delivery.

CI Continuous Integration.

CQRS Command Query Responsibility Segregation.

CRD Custom Resource Definition.

CRUD Create, Read, Update and Delete.

CSV Comma Separated Values.

DDD Domain-Driven Design.

GDPR General Data Protection Regulation.

gRPC google Remote Procedure Call.

GUI Graphical User Interface.

HTML HyperText Markup Language.

HTTP HyperText Transfer Protocol.

IAM Identity and Access Management.

xi

Abbreviations

IDP IDentity Provider.

ISO International Organization for Standardization.

IT Information-Technology.

JS Javascript.

JSON JavaScript Object Notation.

k8s Kubernetes.

m8 Monoskope.

OIDC Open-ID Connect.

PKI Public Key Infrastructure.

POC Proof Of Concept.

REST REpresentational State Transfer.

TS Typescript.

URI Universal Resource Identifier.

URL Universal Resource Locater.

UX User Experince.

XML Extensible Markup Language.

xii

1 Acknowledgments

Special thanks to Prof. Dr. Stefan Sarstedt for supervising this work, the guidance and
support throughout the process, Prof. Dr. Olaf Zukunft for reviewing and evaluating
this work and Christian Hüning for the help finding, choosing and polishing this work
and being there and supportive.

1

2 Introduction

Audits are systematic and objective examinations of one or more aspects of an organi-
zation, that compares what the organization does to a defined set of criteria or require-
ments. IT auditing examines processes, IT assets, and controls at multiple levels within
an organization to determine the extent to which the organization adheres to applicable
standards or requirements.

Event-Sourcing is a software architecture pattern that insures a complete log of changes
made to a system as a series of events. Instead of storing the current state in a traditional
database, Event-Sourcing stores the history of changes made over time. This allows
developers to rebuild the current state at any point in time and see exactly how it
changed by replaying the stored events, which is very useful for debugging and performing
rollbacks or reversals of changes.

Having a comprehensive and immutable audit trail makes Event-Sourcing particularly
well-suited for systems with complex business processes, that need to track and audit
changes to sensitive data and ensure they are in compliance with regulations and stan-
dards without relying on traditional logging mechanisms.

In addition to providing a detailed audit trail, Event-Sourcing also offers a number of
other benefits. Since the events are stored in a chronological order, it is possible to
implement time-based queries and manipulations, which lays the base for Auditing 2.0
[3.4].

Besides evaluating Event-Sourcing in regards to auditing and audit logging this work
handles a real world use-case of auditors needs to track users authentication and autho-
rization activities in k8s (a system for automating deployment, scaling, and management
of containerized applications).

Not only dose this apply to different environments users activities may span multiple
k8s instances, also known as clusters, that are hosted by multiple hosting providers
(Clouds).

2

2 Introduction

The event-sourced authentication and authorization management system in use by a
FinTech organization will be extended by implementing an Audit Component to serialize
the event log into human-readable audit log and offer an audit Application Programming
Interface (API), that can be utilised by various clients.

Since auditors tend to have all kind of technical backgrounds an Audit Browser is also
implemented, which should ease auditors interactions with the system and help answer
various compliance questions with minimal overhead.

3

3 Audit

An audit is often defined as an independent examination, inspection, or review. While
the term applies to evaluations of many different subjects, the most frequent usage is
with respect to examining an organization’s financial statements or accounts. Words like
assessment, evaluation, and review are often used synonymously with the term audit and
while it is certainly true that an audit is a type of evaluation, some specific characteristics
of auditing distinguish it from concepts implied by the use of more general terms.

An audit always has a baseline or standard of reference against which the subject of the
audit is compared. An audit is not intended to check on the use of best practices or to
see if opportunities exist to improve or optimize processes or operational characteristics.
Instead, there is a set of standards providing a basis for comparison established prior to
initiating the audit. [Gantz, 2014a]

Audit determinations tend to be more binary than results of other types of assessments
or evaluations, in the sense that a given item either meets or fails to meet applicable
requirements. Auditors often articulate audit findings in terms of controls conformity or
nonconformity to criteria.

The International Organization for Standardization (ISO) guidelines on auditing use the
term audit to mean:

A systematic, independent and documented process for obtaining objective
evidence and evaluating it objectively to determine the extent to which the
audit criteria are fulfilled [ISO 19011, 2018]

In contrast to conventional dictionary definitions and sources focused on the accounting
connotation of audit, definitions used by broad-scope audit standards bodies and in IT
auditing contexts neither constrain nor presume the subject to which an audit applies.

Such general interpretations are well suited to IT auditing, which comprises a wide range
of standards, requirements, and other auditing criteria to audit IT subjects.

4

3 Audit

3.1 IT Audit

IT audit is the process of collecting and evaluating evidence of an organization’s IT
systems, practices, and operations to determine whether they are adequate, efficient,
and effective in meeting the organization’s objectives. [Gantz, 2014a]

An IT audit typically includes a review of an organization’s policies, procedures, and
controls related to its IT systems, as well as an assessment of the security, reliability,
and performance of its IT infrastructure. The goal of an IT audit is to identify any
weaknesses or deficiencies in an organization’s IT systems and recommend improvements
that can help the organization achieve its goals.

Figure 3.1: IT auditing commonality with other types of audit [Gantz, 2014a]

IT auditing has much in common with other types of audit and overlaps in many respects
with financial, operational, and quality audit practices. It is important to use “IT” to
qualify IT audit and distinguish it from the more common financial connotation of the
word audit used alone.

5

3 Audit

3.2 IT Auditing in Context

From the perspective of planning and performing IT audits, controls represent the sub-
stance of auditing activities, as the controls are the items that are examined, tested,
analyzed, or otherwise evaluated [Gantz, 2014a].

Figure 3.2: IT audit activities and scopes [Gantz, 2014a]

IT audits are performed both by internal auditors working for the organization and
external auditors hired by it. The processes and procedures followed in internal and
external auditing are often quite similar

The following is a one of the wide spread controls categorization schemes used in internal
control frameworks. Controls are normally classified by purpose, functional type, or
both.

6

3 Audit

Preventive Detective Corrective

Administrative Acceptable use pol-
icy; Security aware-
ness training

Audit log review pro-
cedures; IT audit
program

Disaster recovery
plan; Plan of action
and milestones

Technical Application firewall;
Logical access con-
trol

Network monitoring;
Vulnerability scan-
ning

Incident response
center; Data and
system backup

Physical Locked doors and
server cabinets; Bio-
metric access control

Video surveillance;
Burglar alarm

Alternate processing
facility; Sprinkler
system

Table 3.1: Internal controls categorized by type and purpose [Gantz, 2014a]

Administrative controls specify what an organization intends to do to safeguard the
integrity of its operations, information, and other assets.

IT audits and the approaches used to conduct them may consider internal controls from
multiple perspectives by focusing on different IT elements. For now the focus will lay on
audit log reviews and audit logging.

7

3 Audit

3.3 Audit Log

The purpose of audit logging is to record each state change. An audit log is typically
used to help customer support, ensure compliance, and detect suspicious behaviors. Each
audit log entry records at minimum the identity of the entity, the action performed, and
the business object(s) [Richardson, 2018]

Depending on the requirements maintaining and ensuring a comprehensive and im-
mutable audit log is mandatory and might dictate the way a system is architected and
developed. An example will be showcased in chapter 6.

The Federal Financial Supervisory Authority (short BaFin in german) requires appro-
priate precautions to be taken within the framework of application development, so that
the confidentiality, integrity, availability and authenticity of the data to be processed are
transparently ensured even after each deployment of an application [BaFin, 2021].

One of the appropriate precautions suggested by BaFin is audit logs. Audit logging is
not only a suggestion but also an indirect requirement:

In accordance with the target protection requirements the institution must
set up processes for logging and monitoring, which make it possible to verify,
that authorizations are only used as intended [BaFin, 2021].

An audit log can take many forms. The most common form is a file. A database table is
also an option. However most problems come mainly from the kind of logs written and
the way they are processed. More on this is discussed in chapter 5

An audit log is easy to write but harder to read, especially as it grows large. Occasional
ad-hoc reads can be done by eye and simple text processing tools. More complicated or
repetitive tasks can be automated [Fowler, 2004a]. Audit log entries lack the context and
describe an action, that may or may not be related to other entries in a specific period of
time. Keeping track of changes without proper automation becomes harder and harder
to the point it becomes impossible.

For some organizations logging system changes alone is not enough. Suspicious activities
might originate from read attempts. Logging such activities increase the complexity of
the audit log, as it might introduce false positives, when analysing for suspicious patterns,
violate the audit log definition [3.3] and pose the question of how to make sense of such
data.

8

3 Audit

3.4 Auditing 2.0

Auditing 2.0, also known as continuous auditing, is a modern approach to auditing that
uses technology and data analytics to continuously monitor and assess an organization’s
processes. Unlike traditional auditing, which is typically conducted on a periodic basis,
continuous auditing is a continuous process that uses, but not limited to, real-time data to
identify and address potential risks and issues as they arise. [van der Aalst u. a., 2010]

Auditing 2.0 makes use of technologies such as Artificial Intelligence (AI) to automate and
streamline the audit process. For example, AI-powered systems can be used to analyze
and interpret data in real-time, while patterns like Event-Sourcing provide a transparent
and immutable record of events.

3.4.1 Business Provenance

The systematic, reliable, and trustworthy recording of events, known as business prove-
nance, is essential to auditing in general and Auditing 2.0 in particular. This term ac-
knowledges the importance of traceability by ensuring that history cannot be rewritten
or obscured [van der Aalst u. a., 2010].

Traditionally, an audit can only provide reasonable assurance that business processes are
executed within the given set of boundaries. Auditors assess the operating effectiveness
of process controls, and when these controls are not in place or functioning as expected,
they typically check samples of factual data. However, with detailed information about
processes increasingly available in high-quality event logs, auditors no longer have to rely
on a small set of samples offline. Instead, using process mining techniques, they can
evaluate all events in a business process, and do so while it is still running.

3.4.2 Process Mining

The goal of process mining is to discover, monitor, and improve real (not assumed)
processes by extracting knowledge from event logs.

Process mining starts with the event log: a sequentially recorded collection of events,
each of which refers to an activity (well-defined step) and is related to a particular case
(process instance). Some mining techniques use other information such as the person or

9

3 Audit

resource initiating the activity, the event’s timestamp, or data elements recorded with
the event [van der Aalst u. a., 2010].

Auditors can use process mining techniques to evaluate all events in a business process,
and do so while it is still running. With the help of AI potential compliance violation
and suspicious behaviour can be be detected while in the making and prevented before
even happening. Reliable information is needed to determine whether these processes
are executed within certain boundaries set by managers, governments, and other stake-
holders.

10

4 Event Sourcing

Event-Sourcing is a software architecture pattern that was originally established by
[Fowler, 2005] and is gaining popularity as an alternative to traditional database sys-
tems. Event-Sourcing stores data in an append-only log. It is part of a wider ecosystem
of design patterns that work together in various ways to allow developers to create the
most effective architecture for their needs.

Traditionally applications use the current state to answer various queries, however in
most cases such quires fails, when the path leading to the current state is required.

Event-Sourcing ensures that all changes to application state are stored as a sequence of
events. Writing an event to the log is one single, therefore atomic, operation. These
events can be aggregated in multiple ways not only can they be quired, reconstructing
past states is also possible. Event-Sourcing can be thought of as the version-control way
of working with system’s state. Each change is committed and can be traced back and/or
revisited.

Event-Sourcing is a superior pattern for auditing compared to other architectures. Just
like accounting transactions, events are never deleted nor modified. Event-Sourcing pro-
vides a complete and immutable record of all actions taken within a system, allowing for
thorough and accurate auditing. Unlike traditional architectures that rely on snapshots
of data at a specific point in time, Event-Sourcing captures every individual event and
action, providing a more comprehensive and transparent record. This allows for more
effective detection and investigation of potential issues or irregularities, ensuring the in-
tegrity and reliability of the auditing process. Additionally, the use of Event-Sourcing
allows for greater flexibility and scalability in auditing, as it allows for easy replay and
reconstruction of past states. Alternative histories can also be explored by injecting
hypothetical events when reconstructing the state.

11

4 Event Sourcing

4.1 Terminology

4.1.1 The Event in Event-Sourcing

While Event-Sourcing and Event-Driven might sound similar they differ in multiple as-
pects. The events in Event-Sourcing, as opposed to general event-driven architectures
are stored as an append-only log of all state changes. The following are the two main
key characteristics as derived by [Fowler, 2017] separating Event-Sourcing from other
event-driven approaches.

1. Events in Event-Sourcing systems are stored as the state of the system. Other
approaches use events to communicate and sometimes to passively send commands
to the recipients. While the communication aspect in Event-Sourcing is present, it
fail second to the usage as the state.

2. The second characteristic is, that events in Event-Sourcing are used as the source
of truth. Unlike other patterns that uses events to carry state changes. Event-
Sourcing uses the events to derive the state change.

An event is a class with a name formed using a past-participle verb. It has properties
that meaningfully convey the event. Each property is either a primitive value or a value
object [Richardson, 2018]. Events typically also have metadata, such as the event ID
and a timestamp. The metadata can be part of the event object or, alternatively, in a
separate envelope object. It might also have the identity of the entity who made the
change. Such details will come in handy when utilising process mining as described in
section 3.4.2. Examples of such events are showcased later in chapter 6.

4.1.2 Event Store

The event store is the database storing the events. The event store is the principal source
of truth, and the system state is purely derived from it [Fowler, 2017]. Thus the database
musst satisfy the following criteria:

• Events are immutable.

• New events are appended to the previous event.

• Events are stored in chronological order.

12

4 Event Sourcing

4.1.3 Streams

The set of events comprising a particular domain object are called a stream. Event
streams are the the source of truth of all domain objects in a system and contain the full
history of changes. Retrieving the state of a domain object consist of reading all events
in a stream and applying them one by one in the order of appearance.

A stream have a unique identifier present in all corresponding events. Detecting concur-
rency issues and insuring ordinality require uniq numerical value, that can be used as a
form of versioning.

4.1.4 Projections

Projections provide a view of the underlying stream as a form of a transient state. They
represent the logic of translating the source events into a representation of the object
state.

In many applications it is more common to request recent application states, if so, a faster
alternative is to store the current application projections and upsert on new changes.

4.1.5 Snapshots

snapshots create a working copy of a state that can be updated without replaying all
events from scratch every time.

A common mistake is the assumption, that accessing the Event Store is required to
rebuild the state on each change. Accessing the Event Store should generally be reserved
to determining useful information. Only elements that really need the information in the
event log should have to access it [Fowler, 2017].

Snapshots can also be used to mark a state just like a tag in version-control systems.
Depending on the use-case, this becomes helpful if the event log became too large in
size.

13

4 Event Sourcing

4.2 The Core Pattern

The fundamental idea of Event-Sourcing is that of ensuring every change to the state of a
system is captured in an event object, and that these event objects are themselves stored
in the sequence they were applied for the same lifetime as the system state itself.

This leads to a number of facilities that can be built on top of the event log [Fowler,
2005]:

• Complete Rebuild: the system state can be discarded completely and rebuilt by
re-running the events from the event log.

• Temporal Query: the application state at any point in time can be determined.
Notionally this is done by starting with a blank state and rerunning the events up
to a particular time or event.

• Event Replay: the consequences of a corrupting event can be computed by reversing
it and later events and then replaying the new event and later events. The same
technique can handle events received in the wrong sequence - a common problem
with systems that communicate with asynchronous messaging.

A common example of an application that uses Event-Sourcing is version control. Such
a system uses temporal queries quite often [Fowler, 2005]. Recently, the Event-Sourcing
pattern has become a popular answer to the challenges of complex, mission-critical,
scalable systems [Overeem u. a., 2021]. Examples of organizations that apply Event-
Sourcing are Netflix [Avery und Reta, 2017], and Walmart’s Jet.com [Gorodinski, 2017],
with the goal of creating scalable and reliable critical systems.

The main introduction to the inner workings of Event-Sourcing by [Fowler, 2005] gives
a clear impression on the general implementation of the different building blocks of the
pattern. More details and advanced concepts are covered by [Richardson, 2018].

14

4 Event Sourcing

4.3 Event-Sourced Architecture

Using Event-Sourcing as a design pattern within a wider architecture allows for the
inclusion of other design patterns in the system that are the most suitable for the needs
of the domain. For example, Domain-Driven Design (DDD) in combination with Event-
Sourcing and CQRS lay the basis for a scalable architecture, that can be used in a variety
of systems or in conjunction with many other patterns depending on the specific needs.

Domain-Driven Design (DDD)

Using DDD with Event-Sourcing is not mandatory. However, in Event-Sourcing events
are modeled as first-class objects and closely resemble real world business processes. The
better business processes are understood, the more precise the business information will
be in the events and thus the audit log. Concepts like speaking the same language as
the business and using events as a design tool when modelling a system are advocated
by DDD [Evans, 2004] as well, which makes Event-Sourcing a natural fit for DDD.

Command Query Responsibility Segregation (CQRS)

Event-Sourcing is discussed in the context of CQRS, a pattern strongly related to Event-
Sourcing.

CQRS and Event-Sourcing have a symbiotic relationship. CQRS allows
Event-Sourcing to be used as the data storage mechanism for the domain.
One of the largest issues when using Event-Sourcing is that you cannot ask
the system a query such as “Give me all users whose first names are ‘Greg’ ”.
This is due to not having a representation of current state. With CQRS the
only query that exists within the domain is GetById which is supported with
Event-Sourcing [Young, 2010].

The loosely coupled nature of CQRS combined with the benefits of the Event-Sourcing
approach makes it a fitting architectural pattern for cloud systems. Event-Sourcing itself
is not tied exclusively to CQRS, the coupling based on events is similar to that in more
general event-driven architectures.

15

4 Event Sourcing

The justification for CQRS is that in complex domains, a single model to handle both
reads and writes gets too complicated, and can be simplified by separating the models.
This is particularly appealing when difference in access patterns is observed, such as lots
of reads and very few writes. However the gain for using CQRS has to be balanced
against the additional complexity of having separate models [Fowler, 2017].

While using CQRS is also not mandatory the strong relation and added benefits do
justify the cost. Aggregating the Event Store to satisfy the Audit Component use-cases
is an example, where CQRS shines. More on this in chapter 6

4.4 Challenges

Event-Sourcing does have its problems. Replaying events becomes problematic when
results depend on interactions with outside systems. Dealing with changes in the schema
of events over time is not an easy task and event processing adds complexity to the
system (mostly when improperly done) [Fowler, 2017].

4.4.1 Event Storage

Event-Sourcing enables the reconstruction of arbitrary past states. However, an entirely
unbounded log size can conflict with other system requirements. As discussed in section
4.1.5, snapshots offer a mitigation when the history is not relevant anymore for further
processing as for example described in section 3.4.2.

Other approaches like log pruning are discussed by [Erb u. a., 2018] including an assess-
ment of the impact of such mechanisms on state reconstructibility.

4.4.2 Event Schema Evolution

With Event-Sourcing, the schema of events (and snapshots) will evolve over time. Be-
cause events are stored forever, business objects potentially need to fold events corre-
sponding to multiple schema versions. There is a real risk that the objects may become
bloated with code to deal with all the different versions [Richardson, 2018].

Upgrading events to the latest version when they are loaded from the Event Store insures,
that the system only ever deals with the current event schema. A component commonly

16

4 Event Sourcing

called an upcaster as described by [Richardson, 2018] updates individual events from
an old version to a newer one.

4.4.3 Deleting Data is Tricky

One of the key characteristics of Event-Sourcing is the immutable event log. The tradi-
tional way to delete data is to do a soft delete [Richardson, 2018]. The system deletes
an object by setting a deleted flag. The object will typically emit a deleted event, which
notifies any interested consumers. Any code that accesses that object can check the flag
and act accordingly.

However complying with General Data Protection Regulation (GDPR) grants individuals
the right to erasure [EU, 2016]. An application must have the ability to forget a user’s
personal information. One way of doing so is to ensure, that user data are encapsulated
in an independent data object, that can either be encrypted by per user encryption key,
which is discarded on request or iteratively overwritten, which is against the immutability
aspect of the event.

Some form of anonymization and removal of information are two techniques mentioned
by the engineers of the study conducted by [Overeem u. a., 2021]. The system separates
the events and the personal information in two different stores. When events are read,
they are supplemented with the personal information. If that information is no longer
present (because of removal requests), default values are supplied.

4.4.4 Querying the Event Store is Challenging.

As discussed in section 4.3 implementing the core Event-Sourcing pattern alone comes
with the challenge of query complications. As put by [Richardson, 2018]:

Imagine you need to find customers who have exhausted their credit limit.
Because there isn’t a column containing the credit, you can’t write SELECT

* FROM CUSTOMER WHERE CREDIT_LIMIT = 0 . Instead, you must use
a more complex and potentially inefficient query that has a nested SELECT

to compute the credit limit by folding events that set the initial credit
and adjusting it. To make matters worse, a NoSQL-based event store will
typically only support primary key-based lookup.

17

4 Event Sourcing

Which highlight the benefits of implementing a pattern like CQRS, but also a big
limitation of Event-Sourcing, especially when the produced event log need to be utilized
for auditing.

By implementing CQRS a separate query handler service is maintained. The query side
keeps its data model synchronized with the command-side data model by subscribing to
the events published by the command side and thus have direct access to the current
transient state to efficiently handle such queries.

The following digram showcase how CQRS can be be implemented in a microservices
system.

Figure 4.1: CQRS implementation in a microservices system [Richards, 2015]

18

4 Event Sourcing

4.4.5 Eventual Consistency

Eventual consistency forces developers to let go of guarantees that they would have in a
system using current state and synchronous processing. In a CQRS system, an update
sent through a command will not immediately be reflected in the result of a query.

The system first needs to process the event into one or more projections [Overeem u. a.,
2021], which leads to difficulties such as returning items to a client that in fact are already
deleted. The reader systems are liable to be out of sync with the master (and each other)
due to differences in timing with event propagation.

Getting people to understand eventual consistency is not easy. Eventual consistency
forces developers to rethink the basic interactions of the user with the system.

However, eventual consistency is a weaker form of consistency. The system guarantees
that the query-side eventually will reflect the events produced in the command-side.
However, there are no guarantees on how fast this will happen.

A system with a large delay is unfeasible, because in that case queries will often return
data that does not reflect the latest changes

19

4 Event Sourcing

4.5 Benefits

Event-Sourcing introduces a lot of challenges and complexity. As with any other pattern
Event-Sourcing is not always the solution. However a study conducted on 25 engineers
with different roles and experiences reveled, that all systems under study benefit from
Event-Sourcing. Flexibility, debug-ability, reliability and auditability are common ratio-
nal given for using Event-Sourcing [Overeem u. a., 2021].

It is obvious, that the most repeated and almost always mentioned benefit of Event-
Sourcing is the events serialization into an audit log, that satisfies all characteristics as
defined in chapter 3. Beside all other benefits, this makes Event-Sourcing an optimized
pattern to utilise when implementing Auditing 2.0 as discussed in section 3.4

Event-Sourcing also comes with debug-ability and customer support advantages. As put
by [Fowler, 2005]:

I chatted with someone who got their online accounts into an awkward state
and phoned in for help. He was impressed that the helper was able to tell
him exactly what he did and thus was able to figure out how to fix it.

Providing such capability means exposing the audit trail to the support group so they can
walk through a user’s interaction. [Fowler, 2005] acknowledge, that using Event-Sourcing
is not a requirement for such capabilities. Regular logging mechanisms are more than
capable of achieving such results. However this assumes a logging infrastructure and
utilisation that is capable of providing such information at ease, which is not always the
case. More on this in chapter 5

Furthermore, Event-Sourcing allows developers and auditors to consider multiple time-
lines (analogous to branching in version control systems) and recreate historic states or
explore alternative histories by injecting hypothetical events when replaying. This means
that even if the current tarnsaite state of the data has been corrupted or lost, it is still
possible to recreate it from the event log. In contrast, traditional systems rely on the
current state of the data. If this state is lost or corrupted, there is no way to recover the
data’s history without extensive backups.

Having the entire history of the state comes with the advantage of preserving the context,
which allows for evidence based explanations of when and why something happened.

20

4 Event Sourcing

Events can also be analysed for patterns in usage. Such information is impossible to
extract from a store that only persists the latest state of the data.

As long as the stores criteria are meet a diverse range of databases can be used, such as
relational, graph, or NoSql databases. The main goal of this store is to support the easy
and fast retrieval of the data, in whatever form the system requires.

Another advantage of Event-Sourcing is that it allows for easy implementation of fine-
grained access controls. Because each event is stored as an individual record, it is possible
to apply different access controls to different events, allowing for more precise control over
who can access the data. This is in contrast to traditional systems, which typically apply
access controls at the level of the entire database or table.

Event-Sourcing can be a key element of a system, and that system can be as simple or
as complex as the business domain requires it to be. It is useful to consider putting
an event-sourced system in a part of the architecture that requires the preservation of
context for all events, as this is where Event-Sourcing is most effective.

21

5 Software Architecture and Auditing

Software architecture is the structure, or set of structures, which comprises software
elements, the externally visible properties of those elements, and the relationships among
them [Bass u. a., 2003].

This structure is an artifact from a software development process and is represented by a
document composed by one or more models, which represent different perspectives about
how the system will be structured, and information sets, that facilitate the understanding
of the proposed computational solution.

The software architecture is defined based on the software requirements. Among the
different types of requirements, the quality requirements are the most important for the
specification of an architecture since it exerts considerable influence over it structure
[Bass u. a., 2003].

Having a system that is designed and built from the ground up to offer the highest
inclusion of auditing standards and capabilities starts by choosing the right architectural
components. Auditing functionalities is often added as an afterthought, resulting in an
inherent risk of incompleteness.

Avoiding such risk and insuring auditability by design can be done in many different
ways. Ultimately, the choice of architecture patterns for auditing will depend on the
specific needs of the system and the requirements of the audit process.

As discussed in section 3.3 audit logging is one of the simplest way to have an auditable
system, that satisfies regulators specifications.

22

5 Software Architecture and Auditing

5.1 Implementing audit logging

The glory of the Audit Log pattern is its simplicity. Comparing Audit Log to other
patterns such as Temporal Property [Fowler, 2004d] and Temporal Object [Fowler, 2004c]
shows, that these alternatives add a lot of complexity to an object model, although these
are both often better at hiding that complexity than using Effectivity [Fowler, 2004b]
everywhere [Fowler, 2004a].

As described in section 3.3 simply writing log entries into a file is not enough. At least
when ensuring business provenance [3.4.1] is a requirement. Provenance data will make
it possible to replay history reliably and accurately and to predict problems, thereby
improving business processes.

Using Audit Log in some parts of the system and other patterns elsewhere is common
and sometimes necessary. For example Audit Log can be used in combination with
Event-Sourcing for state changes and a different pattern for read operations.

[Richardson, 2018] describes three main ways to implement audit logging:

1. Add audit logging code to the business logic.

2. Use Aspect-Oriented Programming (AOP).

3. Use Event-Sourcing.

5.1.1 Audit Logging Code in Business Logic

The first and most straightforward option is to sprinkle audit logging code throughout
the service’s business logic. Each service method, for example, can create an audit log
entry and save it in the database.

The drawback with this approach is that it intertwines audi logging code and business
logic, which reduces maintainability. The other drawback is that it is potentially er-
ror prone, because it relies on the developer writing audit logging code and insuring
compliance.

Logging in general is mostly associated with debugging and has no direct relation to
the system state. Logging style and verbosity might negatively effect the integrity and
completeness of the audit log.

23

5 Software Architecture and Auditing

5.1.2 Aspect-Oriented Programming

The second option is to use AOP. Frameworks like spring offer AOP support, which
automatically intercepts each service method call and persists an audit log entry.

This is a much more reliable approach, because it automatically records every service
method invocation, which insures a complete audit log of both reading and writing op-
erations.

The main drawback of using AOP is that it only has access to the method name and
its arguments, thus it might be challenging to determine the business object being acted
upon and generate a business-oriented audit log entry.

5.1.3 Event Sourcing

The third option is to implement the business logic with auditability as a first class
property by utilising Event-Sourcing and its complementary patterns as discussed in
chapter 4.

Event-Sourcing offer an audit log by design for all state changing operations. The main
limitation when using Event-Sourcing is the missing records for read operations.

If logging read operations is a requirement, using one of the other options is a must.
Patterns like CQRS help encapsulate the different implementations and unify the auditing
API

5.2 What to Consider

5.2.1 Traditional Persistence

When it comes to auditing a limitation of the traditional persistence methods is that,
they only store the current state of a business object. Once the object has been updated,
its previous state is lost.

Such historical records are the base for services like Asana or Jira. Keeping track of such
changes, while insuring association to the correct object and actor is a challenge, that
comes with its added complexity.

24

5 Software Architecture and Auditing

Simply logging different kind of operations is not enough. If tracking objects history and
insuring association between each log entry, the object involved and the actor initiating
the operation is a requirement choosing the right pattern makes all the difference.

The challenge of implementing auditing as an added feature like the case with the first
two options discussed in section 5.1 is that, besides being a time-consuming chore, the
audit logging code and the business logic can diverge, resulting in all different kind of
bugs.

5.2.2 Auditing 2.0

Performing and supporting IT audits and managing IT audit programs are time-, effort-,
and personnel-intensive activities [Gantz, 2014b]. In an age of cost-consciousness and
competition for resources, it is reasonable to keep Auditing 2.0 in mind when implement-
ing Audit Log. Having an audit log, that can be utilised by the different process mining
techniques as described in section 3.4.2 enables new forms of auditing. Rather than sam-
pling a small set of cases, the whole process and all of its instances can be considered.
Moreover, this can be done continuously.

Auditors can utilise process mining techniques to address multiple use-cases/processes.
By implementing patterns like Event-Sourcing organizations can use data analytics and
machine learning techniques to analyze the event data and identify patterns and trends
that may indicate potential risks or issues. By continuously analyzing the event data,
organizations can proactively identify and address potential problems as they arise, rather
than waiting for them to be discovered during a periodic audit.

25

6 Audit Component

As discussed in chapter 5 choosing the correct architecture for auditing is an important
choice to make. Handling auditing and audit logging as first class citizens comes with its
owen constraints and requirements.

In an industry where strict auditing requirements apply using patterns like Event-Sourcing
not only ensures a compliant audit log but also lays the ground work for broader auditing
technologies like Auditing 2.0

Combining DDD, Event-Sourcing, and CQRS produces an architecture that is praised
by many, when it comes to building audit first cloud systems.

To showcase the capabilities of such architecture and evaluate the development overhead
compared to the gained benefits a real word example was chosen as a base to implement
the Audit Component from scratch.

The Audit Component utilises the produced event log by the Event-Sourcing implemen-
tation to offer an auditing API, that can be utilised by all kind of clients like auditing
programs as described in section 5.2.2 or in this case by the Audit Browser implemented
in chapter 7

26

6 Audit Component

6.1 Monoskope

Monoskope (short m8 spelled "mate") implements the management and operation of
authenticating and authorizing entities in a Kubernetes multi-cloud multi-cluster envi-
ronments. It fulfills the needs of operators of the clusters as well as the needs of developers
using the cloud infrastructure provided by the operators [Monoskope-Authors, 2021].

Monoskope was developed at Finleap Connect with the primary use-case of managing
developers access and permission requests to the Finleap Connect cloud infrastructure.

The Finleap Connect cloud infrastructure spans multiple clusters, clouds and environ-
ments. Allowing compliant access, monitoring and logging authorisation as required by
[BaFin, 2021] is not an easy task.

The complex orchestration to allow for a coherent development experience powered by
k8s regardless of the hosting provider meant dealing with multiple cluster and cloud
instances with various setup requirements.

The cloud team at Finleap Connect was faced with the challenge of satisfying all users
requests while also ensuring a systematic and complaint trace of all authentication and
authorization activities regardless of the backing setup complexity or compatibility.

Managing user roles and permissions while ensuring traceability and auditability required
dealing with multiple APIs on many different levels of complexity to eventually collect
the produced logs and seilrize them into compliant audit logs using complex automation
setups.

Ultimately this lead to the development of m8 as an audit first system to ease and unify
the different processes involved. The event-sourced architecture [4.3] was chosen, as it
satisfied all of the system requirements.

27

6 Audit Component

6.1.1 Architecture

M8 was designed with auditing in mind. It uses the event-sourced architecture [4.3] with
a purpose built implementation of the Event Store as well as the CQRS pattern.

Figure 6.1: Monoskope architecture [Monoskope-Authors, 2021]

Since m8 is meant to be used as the single source of truth authority for authenticating and
authorizing users into different clusters on different cloud providers ensuring auditability
and complying with different regulators requirements was not an option.

While the base system was implemented and the main features were complete m8 still
lacked a proper implementation to utilise the gained event log and offer an auditing API,
that answers Auditors questions.

M8 has no classic CRUD database with tables for storing state, however, the transient
state built based on that has. The following is the data model for the projected transient
state:

28

6 Audit Component

Figure 6.2: Monoskope data module

Generally users represent developers that are bound/a part of one or many teams/tenants
that are bound/have access to one or many clusters.

6.2 Requirements

M8 has by nature a full audit log of every change to the system. This should be utilised
to provide auditors and operators the ability to get detailed information of who is allowed
to do what and why to answer questions like:

• How did a user get a specific role?

29

6 Audit Component

• How did a user become a tenant member?

• What actions were taken by a user?

• etc. . .

Auditors have different backgrounds and technical knowledge thus all events musst have
a human-readable representation.

It should be possible to utilise Event-Sourcing’s temporal quires [4.2] to get a users
overview at any date and time

6.2.1 Use-Cases

From the requirements overview the following use-cases were derived:

ID Use-Case Description

UC01 Audit-Log for date-range As an Auditor, I want to get all actions taken
within a specific date-range

UC02 Audit-Log about a user As an Auditor, I want to get all actions taken on
a user

UC03 Audit-Log of user-actions As an Auditor, I want to get all actions taken by
a user

UC04 Audit-Log users overview As an Auditor, I want to get an overview of all
users at a specific timestamp, tenants they be-
longs to, and their roles within the system or ten-
ants/clusters

Table 6.1: Audit Component derived use-cases

30

6 Audit Component

6.2.2 Architectural Constraints

Technical Constraints

ID Constraint Description

TC01 Human-Readable representation Event objects musst contain a human-
readable representation

TC02 Programming language M8 is written in GO. No reason to use
other languages

TC03 Middleware M8 uses gRPC. No reason to use or support
any other framework

Table 6.2: Audit Component technical constraints

Organisational Constraints

ID Constraint Description

OC01 Deadline Implementation musst be finalised before
31.01.2023

OC02 The Twelve-Factor App Implementation musst adhere to the The Twelve-
Factor App methodology

Table 6.3: Audit Component organisational constraints

31

6 Audit Component

6.3 System Design

6.3.1 Scope and Context

Business Context

Audit

UC02
Audit-Log

about a user

Auditor
UC03

Audit-Log of
user-actions

UC01
Audit-Log for

date-range

UC04
Audit-Log users

overview

Figure 6.3: Audit Component business context diagram

32

6 Audit Component

Technical Context

Node

«ExecutionEnvironment»
Monoskope

«binary»
EventStore

«library»
Audit

depend on Monoskope techinical context

Figure 6.4: Audit Component technical context diagram

6.3.2 Solution Strategy

Funktion UCID Semantics Pre-condition Post-condition

newEvent-
Formatter-
Registry()

All Creates a new
EventFormatter-
Registry

QueryHandler is
initializing

EventFormatters
can be registered

registerEvent-
Formatter(-
eventFormatter,-
eventType)

All Register Event-
Formatter for an
event type

EventFormatter
registry is initi-
ated

EventFormatter
can be used to
format events of
eventType

newAuditLog-
Server(event-
StoreClient,
eventFormatter-
Registry)

All Creates server
instance of the
Audit Compo-
nent to handle
client requests

Event
StoreClient
and EventFor-
matterRegistry
are initialized

Audit-log server
is ready to
handle client
requests

33

6 Audit Component

getByDate-
Range(date-
RangeRequest)

UC01 Streams human-
readable events
within a date-
range

AuditLogServer
is running

Human-readable
events were
streamed to the
client

newHuman-
ReadableEvent(-
event)

All creates a human-
readable event of
an event

EventFormatter
for the corre-
sponding event
type was regis-
tered

A new event with
human-readable
details is created

getByUser(get-
ByUserRequest)

UC02 Streams format-
ted events caused
by others actions
on the given user

AuditLogServer
is running

Human-readable
events were
streamed to the
client

getUsers-
Actions(getUser-
ActionsRequest)

UC03 Streams format-
ted events caused
by the given user
actions

AuditLogServer
is running

Human-readable
events were
streamed to the
client

getUsers-
Overview(get-
UsersOverview-
Request)

UC04 Streams format-
ted events at the
specified times-
tamp of users,
tenants/clusters
they belong to,
and their roles

AuditLogServer
is running

Human-readable
events were
streamed to the
client

Table 6.4: Audit Component solution strategy

34

6 Audit Component

6.3.3 Building Block View

Overall System White Box

QueryHandler

Audit

AuditLogClient

Figure 6.5: Audit Component overall system component diagram

Level 1

Contained Building Blocks

Audit Component Black Box

Component Description

Audit handles aggregating and formatting events for audit related queries

Table 6.5: Audit Component contained building blocks component black box

35

6 Audit Component

Interface Description

AuditLogClient handles communication with the audit log server

Table 6.6: Audit Component contained building blocks interface black box

Level 2

Audit Component White Box

«component»
Audit

EventFormatters

EventFormatter

«EventFormatterRegistry»
EventFormatterRegistry

«Interface»
EventFormatter

«Interface»
EventFormatterRegistry

«AuditLogServer»
AuditLogServer

«EventFormatter»
CertificateEventFormatter

«EventFormatter»
BaseEventFormatter

«EventFormatter»
ClusterEventFormatter

«EventFormatter»
TenantEventFormatter

«EventFormatter»
UserEventFormatter

«Interface»
AuditLogServer

«AuditFormatter»
AuditFormatter

«Interface»
AuditFormatter

*

1111

Figure 6.6: Audit Component class diagram

36

6 Audit Component

Object Description

CertificateEventFormatter Formates certificate events in human-readable format

ClusterEventFormatter Formates cluster events in human-readable format

TenantEventFormatter Formates tenant events in human-readable format

UserEventFormatter Formates user events in human-readable format

BaseEventFormatter Base implementation of the EventFormatter interface to
generalize common methods

EventFormatterRegistry Register EventFormatter for event type

AuditFormatter Creates a human-readable event of a given event

AuditLogServer Handles communication with the AuditLogClient

Table 6.7: Audit Component class diagram

37

6 Audit Component

6.3.4 Runtime View

UC01-04: Audit-Log *

«QueryHandler»
AuditLogServer

newHumanReadableEvent(event)

get*()

«EventStore»
EventStoreClient

«Audit»
AuditFormatter

retrieve(eventFilter)

the filter changes
depending on the

use-case

eventsSet

«Audit»
EventFormatterRegistry

createEventFormatter
(eventType)

eventFormatter

«EventFormatter»
(Object)Formatter

the business object is
derived from the

event type
(User, Tenant, etc...)

getFormattedDetails(event)

human-readable details about the event
human readable event

Figure 6.7: Audit Component UC01-04 sequence diagram

38

7 Audit Browser

When it comes to staying compliant ascertaining the validity and reliability of information
in organizations and their associated processes is a very important job of the organization
security officers. It is also customary to have yearly audit sessions done by external
entities. However, waiting for the audit report to hit should not be an option. Especially
when it comes to highly regulated industries.

In chapter 3 an example overview of the different internal auditing activities were show-
cased and discussed. The detective controls done by administrators like security officers
rely on audit logs and the corresponding aggregation programs. Assuming a proper audit
logging infrastructure there is still a dependency on the developer to properly log the
relevant activities, which poses the responsibility to evaluate and reliably provide a con-
sistent and compliant audit logs. Not only is this prone to human errors it is by design
bond to to not provide the full picture and might lead to over logging.

With time the audit log file just becomes larger and larger and going through the logs
becomes very tedious and tend to be avoided. Even when it comes to external controls it
is customary to work with pre-recorded parteitonend samples, which might give a good
overview but never the full one.

Auditing 2.0 discussed in section 3.4 describe practices to mitigate the mentioned prob-
lems and provides the basis for an auditing frameworks in attempt of continues auditing
approach. Using Event-Sourcing as a reliable audit logging mechanism and the Audit
Component to implement the the underlying API all what is left is to provide a user
friendly interface to the auditors while keeping the fact in mind, that most auditors have
different technical backgrounds and some have none.

39

7 Audit Browser

7.1 Requirements

The Audit Component implemented in chapter 6 is to be utilised to offer an audit log
reporting Graphical User Interface (GUI) to enable continues auditing and lay the ground
work for Auditing 2.0.

M8 offer much more features, that can be utilised. Since m8 has no official GUI the
base implementation for the Audit Browser should be expandable to accommodate other
use-cases and implementations.

Upstream Identity and Access Management (IAM) providers like Onelogin are to be
supported.

Since Auditors have different backgrounds and technical knowledge the User Experince
(UX) should be intuitive and well thought out. The following is to be considered:

• The same event view musst be ensured to ease dealing with different events and
allow for a sense of familiarity. For example if a table is used to showcase the event,
the table structure is preserved for all types.

• lack of events is not an error and musst be clearly represented

To ease auditors workflows and external auditing needs audit reports should be exportable
in a spread-sheet compatible format like Comma Separated Values (CSV).

40

7 Audit Browser

7.1.1 Use-Cases

ID Use-Case Description

UC01 Monoskope GUI As a user, I want to use m8 fea-
tures through an easy to navigate
GUI

UC02 OIDC authentication As a user, I want to authenticate
using my OIDC provider account

UC03 Audit-log for date-range report As an auditor, I want to see all ac-
tions taken within a specific date-
range

UC04 Audit-log about a user report As an auditor, I want see all ac-
tions taken on a user

UC05 Audit-log of user-actions report As an auditor, I want see all ac-
tions taken by a user

UC06 Audit-log users overview As an auditor, I want a report of
all users at a specific timestamp,
tenants they belongs to, and their
roles within the system or ten-
ants/clusters

UC07 CSV audit-log reports export As an auditor, I want to export
audit-log reports in a CSV for-
matted file

Table 7.1: Audit Browser derived use-cases

41

7 Audit Browser

7.1.2 Architectural Constraints

Technical Constraints

ID Constraint Description

TC01 Expandable GUI GUI implementation allow for other m8 features support

TC02 Unified event view Audit-log reports have unified event views

TC03 Backend M8 is written in GO

Table 7.2: Audit Browser technical constraints

Organisational Constraints

ID Constraint Description

OC01 Deadline Implementation musst be finalised before
24.02.2023

OC02 The Twelve-Factor App Implementation musst adhere to the The Twelve-
Factor App methodology

OC03 Userbase Userbase is mainly desktop users

Table 7.3: Audit Browser organisational constraints

42

7 Audit Browser

7.2 System Design

7.2.1 Scope and Context

Business Context

Audit Browser

UC04
audit-log about
a user report

Auditor UC05
audit-log of user-

actions report

«extend»

UC03
audit-log for date

-range report

«extend»

UC06
audit-log users

overview

UC01
M8 GUI

UC02
Onelogin IAM
authentication

UC07
CSV audit-log
reports export

Figure 7.1: Audit Browser business context diagram

43

7 Audit Browser

Technical Context

Node

«ExecutionEnvironment»
Browser

«device»
Mouse

«WebApplication»
Monogui

«Library»
Connect-Web

«device»
Keyboard

«Framework»
React

«UI-Kit»
MaterialUI

«DevelopmentEnvironment»
Vite

«Library»
Protobuf

«Proxy»
Envoy

«Proxy»
Nginx

Figure 7.2: Audit Browser technical context diagram

44

7 Audit Browser

7.2.2 Solution Strategy

Function UCID Semantics Precondition Postcondition

render(-
components)

UC01 render compo-
nents in the
browser

user navigated
to MonoGUI
based URI

requested com-
ponents are ren-
dered or user is
redirected to au-
thenticate him-
self

signIn(-
m8APIUrl)

UC02 Kick in m8
OIDC authenti-
cation flow

user clicked the
sign in button

user is redirected
to IDP authenti-
cation URL

requestAuth(-
authCode)

UC02 request authen-
ticaton token
from m8

user signed in
using his IDP
account

user can access
protected routes

getAuditLog(-
from, to, kargs)

UC03-06 get audit log de-
pending on the
usecase as de-
scribed in 7.1

user provided
date range and
other inputs
based on the
usecase

user can browse
the requested
log entries

exportCSV(table) UC07 export a table as
CSV file

user requested
audit log

CSV formatted
file of the table is
downloaded

Table 7.4: Audit Browser solution strategy

45

7 Audit Browser

7.2.3 Building Block View

Overall System White Box

MonoGUI

Scenes

Audit Auth

API

Audit Gateway

gRPC

UseCases

Audit Auth

gRPC-Web Proxy

Figure 7.3: Audit Browser overall system component diagram

46

7 Audit Browser

Level 1

Contained Building Blocks

MonoGUI

Component Description

gRPC handles comunication with gRPC-Web Proxy

Table 7.5: Audit Browser contained building blocks MonoGUI black box

Scenes

Component Description

Audit handles rendering of the audit components and user inputs

Auth handles rendering of the authentication components and user inputs

Table 7.6: Audit Browser contained building blocks scenes black box

47

7 Audit Browser

UseCases

Component Description

Audit handles communication with m8’s Audit Component and data prepa-
ration

Auth handles communication between m8’s Gateway, the user and the up-
stream IDP

Table 7.7: Audit Browser contained building blocks use-cases black box

API

Component Description

Audit m8’s Audit Component stubs to handel gRPC requests

Auth m8’s Gateway stubs to handel gRPC requests

Table 7.8: Audit Browser contained building blocks API black box

48

7 Audit Browser

Level 2

MonoGUI White Box

gRPC

«component»
gRPC

«class»
GrpcConnectionFactory

Figure 7.4: Audit Browser MonoGUI gRPC class diagram

Object Description

GrpcConnectionFactory creates preconfigured gRPC connection based on the use
case for example authenticated with timeout and retries
connection

Table 7.9: Audit Browser MonoGUI gRPC class diagram

49

7 Audit Browser

Scenes White Box

Audit

«component»
Audit

components

global

«Component»
Sidebar

«Component»
Header

«Component»
Topbar

global

«Component»
AuditDatePicker

«Component»
AuditLog

1

1 1 1 1

«Component»
AuditLogByDateRange

«Component»
AuditLogByUser

«Component»
AuditLogUsersOverview

«Component»
AuditLogUserActions

1

1 111

Figure 7.5: Audit Browser scenes audit class diagram

50

7 Audit Browser

Object Description

Sidebar composition component for sidebar presentation and inter-
action

Header composition component for content header presentation
and interaction

Topbar composition component for topbar presentation and inter-
action

AuditDatePicker composition component for date range presentation and in-
teraction

AuditLog composed component for all audit log usecases presentation
and interaction

AuditLogByDateRange composition component for get by date-range use-case pre-
sentation and interaction

AuditLogByUser composition component for get by user use-case presenta-
tion and interaction

AuditLogUserActions composition component for get user actions use-case pre-
sentation and interaction

AuditLogUsersOverview composition component for get users overview use-case pre-
sentation and interaction

Table 7.10: Audit Browser scenes audit class diagram

Auth

51

7 Audit Browser

«component»
Audit

components

global

«Component»
ThemeButton

1

1

«Component»
Auth

«Component»
AuthContext

«Component»
AuthPopup

«Component»
useAuth

«Component»
useAuthenticatedClient

«Component»
AuthSecuer

Figure 7.6: Audit Browser scenes auth class diagram

52

7 Audit Browser

Object Description

ThemeButton composition component for the sign in button presentation
and interaction

Auth composed component for the authentication use case
UC02 7.1 presentation and interaction

AuthContext composition component to provide authentication context
for composing components

useAuth composed component to manage authentication flow com-
ponents

AuthSecure composition component to put composing components be-
hind authentication wall

useAuthenticatedClient composition component to provide preconfigured and au-
thenticated gRPC client for composing components

AuthPopup composition component for upstream IDP presentation and
interaction

Table 7.11: Audit Browser scenes auth class diagram

53

7 Audit Browser

UseCases White Box

Audit

«component»
Audit

«Component»
GetAuditLogUseCase

«Interface»
UseCase

«Component»
GetAuditLogByUserUseCase

«Component»
GetAuditLogUsersOverviewUseCase

«Component»
GetAuditLogUserActionsUseCase

Figure 7.7: Audit Browser usecases audit class diagram

54

7 Audit Browser

Object Description

UseCase Use-case base for API aggregation and data
preparation for presentation components

GetAuditLogUseCase Request audit log events from the API and pre-
pare them for presentation components

GetAuditLogByUserUseCase Request audit log events about a user from the
API and prepare them for presentation compo-
nents

GetAuditLogUserActionsUseCase Request audit log events of a user’s actions
from the API and prepare them for presenta-
tion components

GetAuditLogUsersOverviewUseCase Request audit log overview events of all users
from the API and prepare them for presenta-
tion components

Table 7.12: Audit Browser usecases audit class diagram

55

7 Audit Browser

Auth

«component»
Auth

«Component»
AuthUseCase

«Interface»
UseCase

Figure 7.8: Audit Browser usecases auth class diagram

Object Description

AuthUseCase coordinate authentication flow initialisation and callbacks between the
API and presentation components

Table 7.13: Audit Browser usecases auth class diagram

56

7 Audit Browser

7.2.4 Runtime View

UC01: Monoskope GUI

AuthSecure

[isNotSecured]

[else]
Router

[isLoggedIn]

[else]

«monogui»
App

User

render()

render()

navigate to monogui based URI

«scenes»
Content

«scenes»
Auth

render()

Figure 7.9: Audit Browser UC01 sequence diagram

57

7 Audit Browser

UC02: OIDC authentication

«scenes»
Auth

render()

compose and present
sign in page

Figure 7.10: Audit Browser UC02 sequence diagram

«scenes»
AuthContext

ctx.signIn(userInfo)

«scenes»
Auth

User

createContext()

clicked sign in button

«scenes»
useAuth

ctx

useAuth(ctx, onSuccess, onError))

«useCases»
Auth

«useCases»
Auth

[onAuthenticated]
requestAuthentication(state, authCode)

onAuthenticated(state, authCode)

«scenes»
AuthPopup

[onRedirect]
open(upstreamIdpUrl(onAuthenticated)

run(ctx, onRedirect, onAuthenticated)(authState

Figure 7.11: Audit Browser UC02 sign in sequence diagram

58

7 Audit Browser

authState

[authState reference update]

Updated Logged in

onSuccess(authInfo)

onError(error)

Set Error

Figure 7.12: Audit Browser UC02 auth state machine

59

7 Audit Browser

UC03-06: Audit Log Use-Cases

setData(data)

«scenes»
AuditLog

navigate to audit URI

compose and present
audit page

Auditor

«scenes»
AuditLog

onAuditLogUseCaseRequest()

«useCases»
AuditLogUseCase

run(ctx, from, to, setData, kargs)

Figure 7.13: Audit Browser UC03-06 sequence diagram

60

7 Audit Browser

7.3 Design Decisions

7.3.1 DD01: gRPC Client-Server Communication

HyperText Transfer Protocol (HTTP)/2 comes with multiple advantages to handle HTTP/1.1
limitations like multiplexing, HPACK compression and server push mechanism, which
allows the server to push streams of messages without waiting for an explicit client re-
quest [Belshe u. a., 2015]

As of the time of writing Browsers do support HTTP/2 but only for static files like images,
javascript, css etc. XMLHttpRequest/Ajax calls are still carried over HTTP/1.1. This is
due to the fact, that browsers have no unified specification to handle HTTP/2 trailers.

200 OK
date Sun, 19 Feb 2023 00:31:00 GMT
server: WebServer
content-type: application/json

"message":"hello world"

HEADERS frame

DATA frame

HTTP/1.1

200 OK
date Sun, 19 Feb 2023 00:31:00 GMT
server: WebServer
content-type: application/grpc

1: hello world

grpc-status: Success

HEADERS frame

DATA frame

HTTP/2

TRAILERS frame

HTTP/2

HTTP/1.1

H
P
A

C
K

com
pression

Figure 7.14: HTTP/1.1 compared to HTTP/2

gRPC makes heavy use of trailers to send status messages when streaming responses [Google,
2015]. Because of the browser HTTP/2 limitations Javascript (JS), the programming
language of the web, can not directly talk to a gRPC APIs as normally done with REp-
resentational State Transfer (REST) APIs.

To mitigate this limitation a translation proxy has to be used to translate gRPC to REST
requests/responses [Brandhorst, 2019].

61

7 Audit Browser

Figure 7.15: gRPC-Web proxy to allow browser gRPC support [Brandhorst, 2019]

Why stick to gRPC?

Deciding weather or not it is worth the effort to go through the hassle of proxying all
requests to mitigate browser support and navigating through mainly an edge technology
when it comes to web-development with no clear guides and mediocre documentation
comes back to the magic phrase "it depends". the gained efficiency compared to REST
and the maintainability efforts, especially for production usecases, requires thorough
evaluation.

• Messages passing back and forth are encoded which makes them hard to read and
debug

• Production use is minimal at best since the effort is still not worth the gaines for
already established services

• there is still no Client-side and Bi-directional streaming support

• official Protobuf compiler extensions are buggy and have no ECMAScript support
(usage of third party extensions like protobuf-es is needed)

62

7 Audit Browser

Despite the mentioned above gRPC still shines when it comes to straightforward API def-
initions, efficient and compact mechanism to exchange big messages [Richardson, 2018],
streaming and HTTP/2 advantages justify its usage in the right context.

Other Options

The only other option is to actively provide backend REST support by Transcoding
HTTP/JavaScript Object Notation (JSON) to gRPC and utilising a reverse proxy to to
serve a RESTful API [gRPC Gateway Authors, 2023]

Figure 7.16: gRPC-Gateway architecture diagram [gRPC Gateway Authors, 2023]

While this comes with the RESTful API advantages and full support of the web devel-
opment community it dose not differ in it’s essnase to gRPC-Web yet comes with the
disadvantage of the server transcoding overhead.

63

7 Audit Browser

Conclusion

From the perspective of using a technology that is on the bleeding edge of its peers just
getting the basic workflows working with it vs. the well established patterns of REST is
challenging.

However, since m8 only speaks gRPC and maintaining a REST API is not an options
TC03, due to the fact that solutions do exists to to handle REST-gRPC translation,
until full gRPC support by the browsers and the alternatives offers no real advantages
in this case it was decided to go with gRPC for client-server communication.

7.4 Technical Decisions

7.4.1 TD01: Javascript and React

It is no secret that JS is the language of the web and is almost always ranked first by
multiple indexes compared to other web development programing languages.

Figure 7.17: Top programming languages - rankings in comparison [Tagliaferri, 2023]

64

7 Audit Browser

In a survey conducted on 39,472 person a clear trend towards Typescript (TS) can be
seen as it improves the developer experience and provides various other features mainly
based on the added typing support [Greif und Burel, 2022]

However writing vanilla JS or TS tend to be very cumbersome and follow a scripting ap-
proach (hence the name). Depending on the use-case this might be much preferable, sense
it offer total control and a declarative approach when it comes to handling Extensible
Markup Language (XML) and HyperText Markup Language (HTML) elements.

On the other hand building and maintaining web applications requires a programming
approach and patterns to achieve production level results, which lead to the development
of many frontend development frameworks lke React, Angular, Vue.js and many others.

Among the 3 stables mentioned above React has the higher usage across all years since
2016 [Greif und Burel, 2022] since it comes with many basic yet powerful features, that
can be expanded depending on the use-case. Angular on the other hand tend to be
tailored towards enterprise usage and comes with greater complexity and steeper learning
curve, while Vue.js attempt to be the happy medium in between.

Conclusion

While TS seems to be the smart choice to make, especially for production environments
the added complexity requires more development time. Since MonoGUI is meant to be a
Proof Of Concept (POC) and is for now mainly developed as a base for the Audit Browser
and due to the deadline set by OC01 it was decided to go with JS in combination with
React since they offer the perfect platform for the planned solution.

7.4.2 TD02: Headless Use-Cases Implementation

While TD01 specifies usage of JS and React MonoGUI expansion and further develop-
ment should be kept in mind as specified by TC01.

To stay flexible and framework independent it was decided to split the business logic
from the presentation logic or as is commonly known follow a headless implementation
approach. The latter specifies writing business logic in vanilla JS and the presentation
logic in the used framework notation. This allows for easier migration to Typescript
while also staying framework independent.

65

8 Installation and Configuration

Installing and configuring the Audit Component and Audit Browser spans multiple re-
sources and requires intricate yet clear and logical orchestration.

Such processes tend to be automated in production environments to insure auditable
and reversible actions through Version Control systems, speed up development, reduce
human errors, and benefits from Continuous Integration (CI)/Continuous Delivery (CD)
practices.

Utilizing Docker, k8s, Helm and various backing technologies while keeping The Twelve-
Factor App [Wiggins, 2017] rules in check (OC02) the entire installation and configuration
process also known as a deployment can be trimmed down to just a few steps.

8.0.1 Deployment View

The following is a general overview of the main resources and services to successfully
deploy and use the Audit Component and Audit Browser

66

8 Installation and Configuration

«device»
Node

«executionEnvironment»
Containerization Engine

«proxy»
Reverse Proxy

MonoGUI

HTTPS/1.1 (REST)

«device»
Node

«executionEnvironment»
Browser

MonoGUI URL

«device»
Node

HTTPS/1.1 (REST)

«proxy»
gRPC-Web Proxy

«device»
Node

«executionEnvironment»
Containerization Engine

Monoskope

Cert-Manager

«device»
Node

«webService»
Identify Provider

HTTPS/2 (gRPC)

Figure 8.1: Deployment view diagram

Running MonoGUI and the gRPC-Web proxy on separate nodes is not necessary but
supported to allow for flexible deployment usecases.

8.1 Test Run

For the local installation all resources and services will be deployed on the same k8s node.
Since m8 already uses Emissary-Ingress it will be used as the gRPC-Web proxy. Dex will
be used as the IDP.

To deploy m8 and MonoGUI along all other resources to a local cluster and experiment
with the Audit Component and Audit Browser a script is provided, that will:

67

8 Installation and Configuration

1. take care of the preparation work and installing the automated (8.2) tools

2. create local k8s cluster using Kind

3. setup and deploy all needed resources

All while making sure to stay idempotent and localized.

8.2 Prerequisite

Required

- A supported system from the following:

• MacOS

• Linux (tested on Ubuntu)

• Windows (WSL should work but not tested)

For a sandboxed run VirtualBox and Ubuntu can be used. Providers like LinuxVMImages
offer a ready to boot images, that runs with zero installation and configuration efforts.

- Standard userspace utilities like bash, curl, tar, etc... should be available natively
but can always be changed to alternatives by setting the corresponding environment
variable. For example replacing curl with wget will be as follows:

$ CURL=wget make deploy

Shell 8.1: Deploy with custom command

- The following tools:

Tool Reson

Docker to create isolated environments

Make to run deployment scripts

Table 8.1: Installation required tools

68

8 Installation and Configuration

Automated

The following will be downloaded and configured locally. If any should fail please down-
load and install manually then follow the same instruction as described in the shell
example 8.1.

Tool Reson

Kubectl to manage k8s

Kind to create a local k8s cluster

Helm to generate components resources and install required CRDs

Step-cli to generate m8 PKIs trust-anchor

Table 8.2: Installation automated tools

8.2.1 Configure

Depending on the version on hand open the provided CD-Drive or navigate to https:

//thesis.alshikh.de and clone the repository.

As specified by The Twelve-Factor App [Wiggins, 2017] methodology (OC02) all con-
figuration are environment specifc and can be configured locally or using k8s resource
definiations by setting the the corresponding enviorment variable.

All variables can be found under the directory deploy/setup and set with defaults
for ease of use.

8.2.2 Install

Open the directory deploy and follow the following instruction1.

1. Create a local cluster and deploy all resources:

1If for some reason a command should fail the system and commands are ensured to be idempotent.
Just retry.

69

https://thesis.alshikh.de
https://thesis.alshikh.de

8 Installation and Configuration

$ make deploy

you can also run the following

to monitor the state of the resources

$ make kind-watch

Shell 8.2: Deploy all resources to a local cluster

2. Trust m8 CA: tmp/ca.crt , otherwise the browser will block communication
with m8 API

Linux/Ubuntu

Please add the CA

to the browser specific store

usually under advanced settings -> ceritifcates

MacOS

the following works for chrome and safari.

Firefox manages its owen store. Please add manually

$ make trust-m8-ca

Shell 8.3: Trust m8 certificate authority

3. Add the following to your hosts file:

Linux & MacOS: /etc/hosts

Windows: c:\Windows\System32\Drivers\etc\hosts

127.0.0.1 api.monoskope.dev

127.0.0.1 dex

Shell 8.4: Update hosts file

70

8 Installation and Configuration

4. Create port-forwards to route local request to backing services in the cluster: (Make
sure 8443 , 5556 and 3000 are not in use)

$ make port-forward

Shell 8.5: Create port-forwards to route local request

5. navigate to http://localhost:3000 and sign in using the following credintials:

• username: admin@monoskope.dev

• password: password

6. Populate the Event Store with some data for a better UX

$ make mock-data

Shell 8.6: Populate the Event Store with some data

71

http://localhost:3000

9 Conclusion

IT-Auditing is a part of every regulated organisation lifecycle. Not only dose it insure the
organisation compliance with regulators requirements it gives the organisation credibility
and trustworthiness. However awaiting periodic audits and hopping for the best outcome
is not advisable nor reflect the real world. Auditors have an important role in ensuring
confidentiality, integrity and authenticity of various systems.

Supporting Auditors is their mission not only shows teamwork, it is almost always manda-
tory. Building a compliant system requires a well thought out architecture, that is ade-
quate, efficient, and effective in meeting the organization’s objectives. Architecting and
developing such system, especially the critical ones, requires a good understanding of the
requirements. Mainly the non-functional ones, that might not be of a problem at the
beginning.

Auditability tend to be one of them. A great care should be takin when handling such
decisions. Choosing the right architecture might make or break the system. As discussed
in chapter 5 auditing might be build as a feature, which delegates the complexity on the
developer and comes with its owen risk, or built in by design.

Event-Sourcing and the event-sourced architecture discussed in chapter 4 tend to be
on top of the list, when talking about audit first systems. Systematic, reliable, and
trustworthy recording of events is insured. Events can be easily retrieved from the Event
Store and manipulated as desired. In chapter 6 a real world use-case of an event-sourced
system to manage users authentication and authorization in k8s multi-cloud multi-cluster
environments was examined and further developed to support a FinTech organisation
in its compliance needs. Being an event-sourced system m8 offered the event log to
implement the missing Audit Browser as showcased in chapter 7 that shows how the
implemented Audit Component can be utilised to easily retrieve various audit logs of
users activates and present them in a friendly and intuitive human-readable formats for
the auditors of the organisation. This saved the organisation the need to aggregate and

72

9 Conclusion

process logs on the k8s API level, which poses its complexity, as it will require various
techniques to make sense of the collected logs while insuring context and durability. The
Audit Component can be taken as is and integrated into another Event-Sourcing system.
The only thing to adapt are the domain specific formatters. Satisfying all audit log
specification as described in chapter 3 make it also possible for all kind of integrations
like the case with Auditing 2.0 discussed in section 3.4.

However one of the auditors request was answering questions like who attempted access-
ing restricted information or tried deleting business objects, without having any business
doing so. Such questions were intentionale skipped, as this is a known limitation of Event-
Sourcing and mainly as it contradict with the the audit log definition [3.3]. And even if
required, this limitation must be handled with or without Event-Sourcing as discussed
in section 5.1.3.

If done correctly (which is the hard part) the implementation of other options compared
to Event-Sourcing shouldn’t differ much. Collecting log entries is the same wether they
are coming from an Event Store or an audit log database. It all comes down to the
system requirements. Is audit logging an added feature? and human errors and bugs
are not much of a harm and other architectures are of a greater benefit, then there is no
extra advantage to use Event-Sourcing when it comes to audit logging. However having
a log of all changes by design and the assurance that the history audited is the actual
system history and represent the actual business objects with ability to restore it and
test it on a real system without needing to replay commands or script any behavior gives
Event-Sourcing the bigger advantage.

It goes without saying, that the mentioned is valid for all options and ways of implement-
ing an audit first system. The only thing that differ is the complexity delegation. Either
at the beginning, as is the case with Event-Sourcing, or throughout the entire lifecycle of
the system. Other features like Event-Sourcing’s complete rebuild, temporal query and
event replay are much harder to implement if not planned correctly.

73

Bibliography

[van der Aalst u. a. 2010] Aalst, Wil M. van der ; Hee, Kees M. van ; Werf,
Jan M. van der ; Verdonk, Marc: Auditing 2.0: Using Process Mining to Support
Tomorrow’s Auditor. In: Computer 43 (2010), Nr. 3, S. 90–93. – URL https:

//ieeexplore.ieee.org/document/5427384

[Avery und Reta 2017] Avery, Phillipa ; Reta, Robert: Scaling event sourcing for
netflix downloads. (2017). – URL https://www.infoq.com/presentations/

netflix-scale-event-sourcing

[BaFin 2021] BaFin, Bundesanstalt für F.: Rundschreiben 11/2021 (BA) - Zahlungs-
diensteaufsichtliche Anforderungen an die IT (ZAIT). 11 2021. – URL https:

//www.bafin.de/dok/16514544. – (Accessed on 12/15/2022)

[Bass u. a. 2003] Bass, Len ; Clements, Paul ; Kazman, Rick: Software Architecture
In Practice. URL https://books.google.de/books?id=mdiIu8Kk1WMC, 01
2003. – ISBN 978-0321154958

[Belshe u. a. 2015] Belshe, M. ; Peon, R. ; Thomson, M.: Hypertext Transfer
Protocol Version 2 (HTTP/2) / RFC Editor. RFC Editor, May 2015 (7540). – RFC. –
URL http://www.rfc-editor.org/rfc/rfc7540.txt. http://www.rfc-

editor.org/rfc/rfc7540.txt. – ISSN 2070-1721

[Brandhorst 2019] Brandhorst, Johan: The state of gRPC in the browser | gRPC.
(2019), 01. – URL https://grpc.io/blog/state-of-grpc-web/. – (Accessed
on 02/19/2023)

[Erb u. a. 2018] Erb, Benjamin ; Meißner, Dominik ; Ogger, Ferdinand ; Kargl,
Frank: Log Pruning in Distributed Event-Sourced Systems. In: Proceedings of the 12th
ACM International Conference on Distributed and Event-Based Systems. New York,
NY, USA : Association for Computing Machinery, 2018 (DEBS ’18), S. 230–233. –
URL https://doi.org/10.1145/3210284.3219767. – ISBN 9781450357821

74

https://ieeexplore.ieee.org/document/5427384
https://ieeexplore.ieee.org/document/5427384
https://www.infoq.com/presentations/netflix-scale-event-sourcing
https://www.infoq.com/presentations/netflix-scale-event-sourcing
https://www.bafin.de/dok/16514544
https://www.bafin.de/dok/16514544
https://books.google.de/books?id=mdiIu8Kk1WMC
http://www.rfc-editor.org/rfc/rfc7540.txt
http://www.rfc-editor.org/rfc/rfc7540.txt
http://www.rfc-editor.org/rfc/rfc7540.txt
https://grpc.io/blog/state-of-grpc-web/
https://doi.org/10.1145/3210284.3219767

Bibliography

[EU 2016] EU: Art. 17 GDPR – Right to erasure (‘right to be forgotten’) - General Data
Protection Regulation (GDPR). 05 2016. – URL https://gdpr-info.eu/art-

17-gdpr/. – (Accessed on 02/21/2023)

[Evans 2004] Evans, Eric: Domain-driven design: tackling complexity in the heart of
software. Addison-Wesley Professional, 2004

[Fowler 2004a] Fowler, Martin: Audit Log. 03 2004. – URL https://

martinfowler.com/eaaDev/AuditLog.html. – (Accessed on 02/20/2023)

[Fowler 2004b] Fowler, Martin: Effectivity. 03 2004. – URL https://

martinfowler.com/eaaDev/Effectivity.html. – (Accessed on 02/22/2023)

[Fowler 2004c] Fowler, Martin: Temporal Object. 03 2004. – URL
https://martinfowler.com/eaaDev/TemporalObject.html. – (Accessed
on 02/22/2023)

[Fowler 2004d] Fowler, Martin: Temporal Property. (2004), 03. – URL https:

//martinfowler.com/eaaDev/TemporalProperty.html. – (Accessed on
02/22/2023)

[Fowler 2005] Fowler, Martin: Event Sourcing. In: martinfowler.com (2005). – URL
https://martinfowler.com/eaaDev/EventSourcing.html. – (Accessed on
12/24/2022)

[Fowler 2017] Fowler, Martin: What do you mean by “Event-Driven”? 02 2017.
– URL https://martinfowler.com/articles/201701-event-driven.

html. – (Accessed on 02/21/2023)

[Gantz 2014a] Gantz, Stephen D. ; Gantz, Stephen D. (Hrsg.): The Basics of IT
Audit. Boston : Syngress, 2014. – URL https://www.sciencedirect.com/

book/9780124171596. – ISBN 978-0-12-417159-6

[Gantz 2014b] Gantz, Stephen D.: Chapter 1 - IT Audit Fundamentals. In:
Gantz, Stephen D. (Hrsg.): The Basics of IT Audit. Boston : Syngress, 2014,
S. 1–19. – URL https://www.sciencedirect.com/science/article/pii/

B9780124171596000018. – ISBN 978-0-12-417159-6

[gRPC Gateway Authors 2023] Gateway Authors gRPC: gRPC-Gateway. (2023),
02. – URL https://github.com/grpc-ecosystem/grpc-gateway#usage. –
(Accessed on 02/19/2023)

75

https://gdpr-info.eu/art-17-gdpr/
https://gdpr-info.eu/art-17-gdpr/
https://martinfowler.com/eaaDev/AuditLog.html
https://martinfowler.com/eaaDev/AuditLog.html
https://martinfowler.com/eaaDev/Effectivity.html
https://martinfowler.com/eaaDev/Effectivity.html
https://martinfowler.com/eaaDev/TemporalObject.html
https://martinfowler.com/eaaDev/TemporalProperty.html
https://martinfowler.com/eaaDev/TemporalProperty.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/articles/201701-event-driven.html
https://martinfowler.com/articles/201701-event-driven.html
https://www.sciencedirect.com/book/9780124171596
https://www.sciencedirect.com/book/9780124171596
https://www.sciencedirect.com/science/article/pii/B9780124171596000018
https://www.sciencedirect.com/science/article/pii/B9780124171596000018
https://github.com/grpc-ecosystem/grpc-gateway#usage

Bibliography

[Google 2015] Google: gRPC over HTTP2. (2015), 08. – URL https:

//github.com/grpc/grpc/blob/master/doc/PROTOCOL-HTTP2.md. – (Ac-
cessed on 02/01/2023)

[Gorodinski 2017] Gorodinski, Leo: Scaling Event-Sourcing at Jet. At Jet,
we’ve been using event-sourcing. . . | by Leo Gorodinski | Medium. (2017), 10.
– URL https://medium.com/@eulerfx/scaling-event-sourcing-at-

jet-9c873cac33b8. – (Accessed on 02/22/2023)

[Greif und Burel 2022] Greif, Sacha ; Burel, Eric: The State of JS 2022. (2022), 12.
– URL https://2022.stateofjs.com/en-US/. – (Accessed on 02/19/2023)

[ISO 19011 2018] ISO 19011: ISO - ISO 19011:2018 - Guidelines for auditing man-
agement systems. 07 2018. – URL https://www.iso.org/obp/ui/#iso:std:

iso:19011:ed-3:v1:en:term:3.1. – (Accessed on 12/13/2022)

[Monoskope-Authors 2021] Monoskope-Authors: finleap-connect/monoskope: Au-
thN & AuthZ for Kubernetes multi-cluster, multi-cloud environments. 10 2021. –
URL https://github.com/finleap-connect/monoskope. – (Accessed on
02/10/2023)

[Overeem u. a. 2021] Overeem, Michiel ; Spoor, Marten ; Jansen, Slinger ;
Brinkkemper, Sjaak: An empirical characterization of event sourced systems and
their schema evolution — Lessons from industry. In: Journal of Systems and Software
178 (2021), S. 110970. – URL https://www.sciencedirect.com/science/

article/pii/S0164121221000674. – ISSN 0164-1212

[Richards 2015] Richards, Mark: Software architecture patterns. Bd. 4. O’Reilly
Media, Incorporated 1005 Gravenstein Highway North, Sebastopol, CA . . . , 2015

[Richardson 2018] Richardson, Chris: Microservices patterns: with examples in
Java. Simon and Schuster, 2018. – URL https://books.google.de/books?

id=QTgzEAAAQBAJ

[Tagliaferri 2023] Tagliaferri, Costanza: Programming Languages Ranking: Top 9
in 2023 - DistantJob - Remote Recruitment Agency. (2023), 01. – URL https:

//distantjob.com/blog/programming-languages-rank. – (Accessed on
01/31/2023)

[Wiggins 2017] Wiggins, Adam: The Twelve-Factor App. (2017). – URL https:

//12factor.net/. – (Accessed on 02/15/2023)

76

https://github.com/grpc/grpc/blob/master/doc/PROTOCOL-HTTP2.md
https://github.com/grpc/grpc/blob/master/doc/PROTOCOL-HTTP2.md
https://medium.com/@eulerfx/scaling-event-sourcing-at-jet-9c873cac33b8
https://medium.com/@eulerfx/scaling-event-sourcing-at-jet-9c873cac33b8
https://2022.stateofjs.com/en-US/
https://www.iso.org/obp/ui/#iso:std:iso:19011:ed-3:v1:en:term:3.1
https://www.iso.org/obp/ui/#iso:std:iso:19011:ed-3:v1:en:term:3.1
https://github.com/finleap-connect/monoskope
https://www.sciencedirect.com/science/article/pii/S0164121221000674
https://www.sciencedirect.com/science/article/pii/S0164121221000674
https://books.google.de/books?id=QTgzEAAAQBAJ
https://books.google.de/books?id=QTgzEAAAQBAJ
https://distantjob.com/blog/programming-languages-rank
https://distantjob.com/blog/programming-languages-rank
https://12factor.net/
https://12factor.net/

Bibliography

[Young 2010] Young, Greg: CQRS documents by greg young. In: Young 56 (2010).
– URL https://cqrs.files.wordpress.com/2010/11/cqrs_documents.

pdf

77

https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf
https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf

A Anhang

A.1 Audit Browser GUI

78

A Anhang

Figure A.1: MonoGUI sign in light

Figure A.2: MonoGUI sign in dark

79

A Anhang

Figure A.3: MonoGUI audit log

Figure A.4: MonoGUI audit log

80

A Anhang

Figure A.5: MonoGUI audit log by user

Figure A.6: MonoGUI audit log by user

81

A Anhang

Figure A.7: MonoGUI audit log user actions

Figure A.8: MonoGUI audit log user actions

82

A Anhang

Figure A.9: MonoGUI audit log users overview

Figure A.10: MonoGUI audit log users overview

83

Glossary

RESTful the REST architectural style defines six guiding constraints. When these con-
straints are applied to the system architecture, it gains desirable non-functional
properties, such as performance, scalability, simplicity, modifiability, visibility, porta-
bility, and reliability. A system that complies with some or all of these constraints
is loosely referred to as RESTful.

Angular is a TypeScript-based, free and open-source web application framework.

Audit Browser is a POC implementation to utilise the audit API provided by the Audit
Component... more under chapter 7.

Audit Component is the technical implementation of an audit log API for Event-Sourcing
in m8... more under chapter 6.

Auditing 2.0 also knowen as continuous auditing, describes the usage of advanced pro-
cess mining techniques to enable a new form of auditing. More under section 3.4.

BaFin the Federal Financial Supervisory Authority (short BaFin in german).

Command Query Responsibility Segregation a pattern that separates read and update
operations for a data store..

Dex is an identity service that uses OpenID Connect to drive authentication for other
apps..

Docker is a platform designed to help developers build, share, and run modern applica-
tions..

84

Glossary

Domain-Driven Design is an approach to software development that centers the devel-
opment on programming a domain model that has a rich understanding of the
processes and rules of a domain..

Emissary-Ingress is an open-source Kubernetes-native API Gateway + Layer 7 load
balancer + Kubernetes Ingress built on Envoy Proxy..

Event Store is the database behind Event-Sourcing to store the state events... more
under section 4.1.2.

Event-Sourcing is a pattern for storing data as events in an append-only log... more
under chapter 4.

Finleap Connect is a FinTech organisation, that enables partners to deliver seamless,
digitized financial services to customers with full-stack Open Banking platform..

FinTech a portmanteau of "financial technology", refers to firms using new technology
to compete with traditional financial methods in the delivery of financial services..

GO is a statically typed, compiled high-level programming language designed at Google.
It is syntactically similar to C, but with memory safety, garbage collection, struc-
tural typing, and CSP-style concurrency..

gRPC-Web A JavaScript implementation of gRPC for browser clients..

Helm helps you manage Kubernetes applications — Helm Charts help you define, install,
and upgrade even the most complex Kubernetes application..

HPACK a compression format for efficiently representing HTTP header fields, to be used
in HTTP/2.

idempotent idempotency is a property of a system or operation where the result of
performing that operation multiple times is the same as performing it once. In
other words, if an idempotent operation is performed multiple times, the end result
is the same as performing it only once..

Kind is a tool for running local Kubernetes clusters using Docker container “nodes”..

85

Glossary

Kubectl The Kubernetes command-line tool, kubectl, allows you to run commands
against Kubernetes clusters.

Kubernetes also known as K8s, is an open-source system for automating deployment,
scaling, and management of containerized applications..

LinuxVMImages Boot ready OS images to run with VirtualBox or others. See https:
//www.linuxvmimages.com/ for more information.

Make is a tool which controls the generation of executables and other non-source files
of a program from the program’s source files..

MonoGUI is a Graphical User Interface for Monoskope (m8).

Monoskope (short m8 spelled "mate") implements the management and operation of
tenants, users and their roles in a Kubernetes multi-cloud multi-cluster environ-
ment..

Open-ID Connect is a simple identity layer on top of the OAuth 2.0 protocol. It allows
Clients to verify the identity of the End-User based on the authentication performed
by an Authorization Server, as well as to obtain basic profile information about the
End-User in an interoperable and REST-like manner..

React is a free and open-source front-end JavaScript library for building user interfaces
based on components..

Step-cli is an easy-to-use CLI tool for building, operating, and automating Public Key
Infrastructure (PKI) systems and workflows..

The Twelve-Factor App is a methodology for building software-as-a-service applica-
tions. These best practices are designed to enable applications to be built with
portability and resilience when deployed to the web..

Version Control also known as source control, is the practice of tracking and managing
changes to software code.

86

https://www.linuxvmimages.com/
https://www.linuxvmimages.com/

Glossary

VirtualBox ox is a powerful x86 and AMD64/Intel64 virtualization product for enterprise
as well as home use..

Vue.js is an open-source model–view–viewmodel front end JavaScript framework for
building user interfaces and single-page applications..

87

Erklärung zur selbstständigen Bearbeitung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig
verfasst und nur die angegebenen Hilfsmittel benutzt habe. Wörtlich oder dem Sinn
nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich
gemacht.

Ort Datum Unterschrift im Original

88

	List of Figures
	List of Tables
	Shell Instructions
	Abbreviations
	Acknowledgments
	Introduction
	Audit
	ac:it Audit
	ac:it Auditing in Context
	Audit Log
	Auditing 2.0
	Business Provenance
	Process Mining

	Event Sourcing
	Terminology
	The Event in Event-Sourcing
	Event Store
	Streams
	Projections
	Snapshots

	The Core Pattern
	Event-Sourced Architecture
	Challenges
	Event Storage
	Event Schema Evolution
	Deleting Data is Tricky
	Querying the gl:est is Challenging.
	Eventual Consistency

	Benefits

	Software Architecture and Auditing
	Implementing audit logging
	Audit Logging Code in Business Logic
	ac:aop
	Event Sourcing

	What to Consider
	Traditional Persistence
	Auditing 2.0

	gl:ac
	Monoskope
	Architecture

	Requirements
	Use-Cases
	Architectural Constraints

	System Design
	Scope and Context
	Solution Strategy
	Building Block View
	Runtime View

	Audit Browser
	Requirements
	Use-Cases
	Architectural Constraints

	System Design
	Scope and Context
	Solution Strategy
	Building Block View
	Runtime View

	Design Decisions
	DD01: gRPC Client-Server Communication

	Technical Decisions
	TD01: ac:js and gl:react
	TD02: Headless Use-Cases Implementation

	Installation and Configuration
	Deployment View
	Test Run
	Prerequisite
	Configure
	Install

	Conclusion
	Bibliography
	Anhang
	gl:ab ac:gui

	Glossary
	Declaration of Autorship

