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Abstract

This bachelor thesis evaluates Conditional Diffusion Models, a rapidly emerging class of
Generative Models. Although Conditional Diffusion Models have a wide range of appli-
cations, this thesis focuses on analyzing their usage in the realm of image manipulation.
It accomplishes this by reviewing the current state of the Unconditional and Conditional
Diffusion Model. Through various image manipulation experiments, the findings on Condi-
tional Diffusion Models are examined. In the final discussion, all discoveries are put into a
broader context, drawing a conclusion about the capabilities, limitations and implications of
Conditional Diffusion Models.

Abstrakt

Diese Bachelorarbeit analysiert Konditionelle Diffusionsmodelle, eine immer mehr an Popu-
larität gewinnende Klasse Generativer Modelle. Obwohl Konditionelle Diffusionsmodelle
in einer Vielzahl von Bereichen angewendet werden können, befasst sich diese Bachelorar-
beit speziell mit dem Bereich der Bildbearbeitung. Dies wird realisiert, indem der aktuelle
Stand der Unkonditionellen und Konditionellen Diffusionsmodelle untersucht wird. Anhand
verschiedener Bildmanipulationsexperimente werden die Erkenntnisse des Konditionellen
Diffusionsmodells auf die Probe gestellt. In der abschließenden Diskussion werden alle
Ergebnisse in einen umfassenden Kontext eingeordnet und Schlussfolgerungen über die
Möglichkeiten, Grenzen sowie Implikationen von Konditionellen Diffusionsmodellen gezo-
gen.
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1 Introduction

This introductory chapter provides an overview of the bachelor thesis. It offers insights into
its motivation, outline and notation providing the reader with a quick summary of all topics
explored within the main body.

1.1 Aim and Motivation

Generative Models have been increasing in popularity which is largely attributed to advance-
ments in Diffusion Models. Since their introduction by Sohl-Dickstein et al., 2015, they have
evolved into one of the most important classes of Generative Models.

Understanding how they can be conditioned in the realm of image manipulation can offer
significant insights for the creative industry, society and more importantly future research.
Therefore, this bachelor thesis focuses on the capabilities and limitations of the Conditional
Diffusion Model. It does so by explaining the theoretical foundations of the Unconditional
and Conditional Diffusion Model. Following this, these theories and concepts are evaluated
through various experiments. Last but not least, a final resolution discusses the limitations
and implications of all findings and brings them into a wider context culminating in a final
conclusion.

All in all, this thesis aims to investigate the capabilities of the Conditional Diffusion Model
and uses these findings to evaluate the implications and limitations thereof.

1.2 Outline

The thesis begins with the Unconditional Diffusion Model, starting with an introduction to
Generative Models and a high-level explanation of the diffusion architecture. It then dives
into the two primary discrete formulations: Score-Based Generative Models and Denoising
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Diffusion Probabilistic Models. Subsequently, these formulations are translated into continu-
ous space using Stochastic Differential Equations. Last but not least, the key elements of the
U-Net backbone, that build the foundation of the Diffusion Model, are explained.

Having explained the Unconditional Diffusion Model, the next chapter shifts to the Con-
ditional Diffusion Model. The first section starts by illustrating the fundamentals of the
Conditional Diffusion Model, showing how the score function can be rewritten to model a
conditional data distribution either through Classifier Guidance or Classifier-free Guidance.
Besides that, the conditioning techniques of SDEdit and ControlNet are explained. In the
next section, different architectural variations of commercial Diffusion Models are explained
showing performance optimization techniques (e.g. Latent Diffusion, Cascading Diffusion)
and conditioning methods (e.g. CLIP Guidance, Cross-Attention). Finally, the last section of
this chapter presents Fine-Tuning methods such as DreamBooth, Low-Rank Adaptation and
Textual Inversion, which offer different strategies for implementing personalized concepts.

In the following chapter, the theoretical foundation of the Conditional Diffusion Model is
evaluated using various experimental designs. Each section of the Conditional Diffusion
Model has a specific experiment. The first experiment turns a sketch into an image using the
fundamentals of the Conditional DiffusionModel. In the next experiment, various commercial
architectures are tested on an Inpainting job. Finally, different fine-tuning techniques are
analyzed using a personal dataset.

Last but not least, the final chapter puts everything into a broader perspective looking at
the limitations and implications of all findings. It analyses the role of Diffusion Models in
the Generative Trilemma, what needs to be done to achieve photorealism and what societal
impact all of this could have. With every aspect being discussed, this ends in a conclusion.

1.3 Notation

AsDiffusionModels can be formulated in awide variety of ways and each of their architectures
employs a unique notational style, this thesis includes additional notational information
about all used symbols inside the appendix.

Overall, in this thesis, all vectors are represented in bold (e.g., Image Vector x) and all scalars
are presented in a plain typeface (e.g., Timestamps 𝑇).
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2 Unconditional Diffusion Models

The Conditional Diffusion Model cannot be explained without explaining the Unconditional
Model first. Therefore, this chapter quickly explains Generative Models themselves and
examines the different formulations of the Diffusion Model. Finally, the most important
building blocks of the U-Net backbone are explained.

2.1 What are Generative Models?

A Diffusion Model is a specific type of Generative Model. Before explaining the underlying
mechanisms of Diffusion Models, it is necessary to understand the main goal of Generative
Modeling.

In Generative Modeling, there is a dataset {x1,x2, ⋯ ,x𝑁} which is assumed to be from an
unknown data distribution 𝑝𝑑𝑎𝑡𝑎(x). The goal is to train a Generative Model 𝑝𝜃(x) that fits
the data distribution 𝑝𝜃(x) ≈ 𝑝𝑑𝑎𝑡𝑎(x) and is able to synthesize new samples from it (Luo,
2022).

2.1.1 Implicit Generative Models

A popular method for achieving this goal is the usage of Implicit Generative Models, where
the probability density function is implicitly represented through a model of its sampling
process (Y. Song, 2021).

An example of such models are Generative Adversarial Networks (GANs) which were de-
veloped by Goodfellow et al., 2014. A GAN consists of two interconnected neural networks:
a Generator 𝐺 and a Discriminator 𝐷. The Generator creates data (e.g. images) and the
Discriminator evaluates if these images are authentic or generated. Using the loss of the
Discriminator the Generator and Discriminator are updated creating a zero-sum game.
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This type of adversarial approach has yielded impressive results, as demonstrated in works
like Karras et al., 2019. However, it also comes with many challenges, such as a difficult
training process troubled by mode collapse and catastrophic forgetting (Thanh-Tung and
Tran, 2020).

2.1.2 Explicit Generative Models

Explicit Generative Models, as opposed to Implicit ones, directly model the data distribution𝑝𝑑𝑎𝑡𝑎(x). These so-called Likelihood-based Models attempt to model the probability density
function (Y. Song and Kingma, 2021) which is defined as:𝑝𝜃(x) = 𝑒−𝑓𝜃(x)𝑍𝜃 (2.1)

Here (see equation 2.1), the function 𝑓𝜃(x) is a real-valued function 𝑓𝜃(x) ∈ ℝ parameterized
by a learnable parameter 𝜃 and represents the output of a neural network. Since a probability
density function needs to be non-negative everywhere, the neural output is exponentiated
by 𝑒−𝑓𝜃(x). Additionally, a normalizing constant 𝑍𝜃 is required, because the integral of a a
probability density function must satisfy ∫ 𝑝𝜃(x)dx = 1 to ensure that the area under the
entire curve equals one (Y. Song, 2021).

While this normalizing constant is easily traceable for a simple Gaussian Distribution it is
intractable for higher dimensions (Hyvärinen, 2005). This untraceability makes it impossible
to calculate and maximize the log-likelihood of the data:

max𝜃 𝑁∑𝑖=1 log 𝑝𝜃(x𝑖). (2.2)

To address this, Likelihood-based models either restrict their architectures (e.g. causal convo-
lutions in Autoregressive Models) to make 𝑍𝜃 traceable or approximate it (e.g. variational
inference in Variational Autoencoders), which can be a computationally expensive endeavor
(Y. Song, 2021).

Compared to Implicit Models, Explicit Models are generally easier to train, but their sampling
quality is often times only moderate (Xiao et al., 2022).

2.2 Diffusion Model – A high-level approach

Before explaining the complex mathematics of Diffusion Models in Generative Modeling,
let’s start with a high-level explanation.

4



Diffusion models, discovered by Sohl-Dickstein et al., 2015, draw inspiration from techniques
of non-equilibrium thermodynamics. A good way of understanding them is to use dye
spreading inwater as an analogy: In the beginning, the dye appears in thewater representative
of a complex probability distribution. As time goes by, it diffuses until it results in a uniform
distribution. Diffusion models take advantage of the theoretical reversibility of this process,
step-wise transforming a uniform distribution back into a complex one.

In the context of Generative Modeling, this process starts with an image x0 that has noise
added gradually. This forward process step-wise transforms the original data into a uniform
distribution. Subsequently, a reverse process is initiated, where a neural network, often a
U-Net, step-wise tries to remove the noise. This is done by minimizing the difference between
generated samples and the original data until the original data is restored. Once training is
completed, it can generate an image belonging to a complex data distribution from simple
Gaussian noise (Ho et al., 2020).

This diffusion process can be formulated in numerous ways. Some approaches use a continu-
ous noise schedule modeled by Stochastic Differential Equations (Y. Song et al., 2021), while
others use a discrete noise schedule (Ho et al., 2020). Such a discrete noise schedule can be
formulated by either predicting the score function of a probability distribution using a Noise
Conditional Score Network (Y. Song and Ermon, 2020) or by predicting the amount of noise
in a noisy image at a given timestamp, as it is done in Denoising Diffuson Probalistic Models
(Ho et al., 2020).

2.3 Score-Based Generative Models

As mentioned in the previous paragraph, one way to formulate Diffusion Models is as a
Score-Based Generative Model. This type of model employs an annealed variant of Score
Matching and Langevin Dynamics to learn how to generate new samples belonging to a data
distribution. This framework is proposed in Y. Song and Ermon, 2020.

2.3.1 Score Matching

Looking back at the Explicit Generative Model, one way of realizing a Generative Model is to
directly model the probability density function of an unknown data distribution (see equation
2.1). A Score Based Generative Model tackles the problem of the intractable normalizing
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constant 𝑍𝜃 by modeling the score function ∇x log 𝑝(x) and utilizing a neural network to
approximate the gradient of the logarithmic probability density:

s𝜃(x) ≈ ∇x log 𝑝(x) (2.3)

As the gradient of a constant is equal to zero, the model is independent of the 𝑍𝜃 normalizing
constant, which removes all model restrictions. Training a Score Based Generative Model
can be done by comparing the vector fields of the actual and estimated score functions. This
is done using the Fisher divergence objective, which is calculated between the model s𝜃 and
the 𝑝(x) data distribution. 𝔼𝑝(x)[‖∇x log 𝑝(x) − s𝜃(x)‖22] (2.4)

Unfortunately, the 𝑝(x) data distribution is unknown making it impossible to directly use
this objective. A solution for this was discovered in Hyvärinen, 2005. It works by calculating
the Jacobian of s𝜃(x): 𝔼𝑝data(x) [tr(∇x𝑠𝜃(x)) + 12 ‖𝑠𝜃(x)‖22] (2.5)

If one wants to use this objective for a deep neural network there is a scalability issue, because
calculating the tr(∇xs𝜃(x)) would require too many backpropagations Y. Song and Ermon,
2020. Furthermore, this technique has a problem in accurately estimating the score function
in areas with a low data density. This problem is solved using a Denosing Score Matching
objective:

𝜃∗ = argmin𝜃 𝑁∑𝑖=1 𝜎2𝑖 𝔼𝑝data(x)𝔼𝑝𝜎𝑖( ̃x|x)[ ‖s𝜃( ̃x, 𝜎𝑖) − ∇ ̃x log 𝑝𝜎𝑖( ̃x ∣ x)‖22 ] (2.6)

In this method a noise schedule, increasingly perturbing the data, is applied. The neural
network s𝜃( ̃x, 𝜎𝑖) is expanded, making it recognize the noise level of a given sample to
accurately estimate the noise function. In their paper, Y. Song and Ermon, 2020 call this type
of neural network Noise Conditional Score Network (NCSN). If trained correctly, it delivers
an accurate score estimation in both high and low data density regions (2.1)

Figure 2.1: Score Model, Perturbed Scores (Y. Song, 2021)
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2.3.2 Langevin Dynamics

In a Noise Conditional Score Network, sampling is done using a Markov Chain Monte Carlo
Algorithm called Langevin Dynamics. The regular equation is initialized from an initial valuẽx0 ∼ 𝜋(x), where 𝜋 is characterized by a prior distribution (e.g., a Gaussian distribution), and
employing a fixed step size 𝜖 > 0. The regular Langevin equation is defined as:̃x𝑡 = x̃𝑡−1 + 𝜖2∇x log 𝑝( ̃x𝑡−1) + √𝜖z𝑡, (2.7)

Here, the distribution of ̃x𝑡 equals 𝑝(x) when 𝑇 → ∞ and 𝜖 → 0. To adapt this for approxima-
tion by a Noise Conditional Score Network, the data distribution 𝑝( ̃x𝑡−1) is substituted by a
conditional neural network s𝜃( ̃x𝑡−1, 𝜎𝑖). Furthermore, the method is annealed by gradually
tuning down the step size 𝜖 and multiplying it with a noise schedule 𝜎2𝑖 /𝜎2𝐿 resulting in the
final equation: ̃x𝑡 ← x̃𝑡−1 + 𝛼𝑖2 s𝜃( ̃x𝑡−1, 𝜎𝑖) + √𝛼𝑖z𝑡 (2.8)

2.4 Denoising Diffusion Probabilistic Models

Besides Score-Bases Generative Models, another discrete formulation of Diffusion Models
was invented during a similar time frame. These models are called Denoising Diffusion
Probabilistic Models. While the main idea was outlined in Sohl-Dickstein et al., 2015, it was
further advanced by Ho et al., 2020. Essentially, these models are noise predictors, predicting
the noise in a generated image during the reverse process.

2.4.1 Forward Process

Figure 2.2: DDPM, Noise Schedule (Linear, Cosine) (Nichol and Dhariwal, 2021)

Their forward process starts with a data point x0 (e.g., an image vector) that step-wise gets
Gaussian noise added. When 𝑇 → ∞, the x𝑇 approaches a Gaussian distribution. This is done
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by applying a noise schedule 𝛽𝑡, which can be a simple linear function (Ho et al., 2020) or a
more complex cosine function (Nichol and Dhariwal, 2021). Utilizing a cosine function has
the advantage that noise is injected at a much slower rate. All in all, the step-wise forward
process is captured in the following equations:

𝑞(x𝑡|x𝑡−1) = 𝒩 (x𝑡; √1 − 𝛽𝑡x𝑡−1, 𝛽𝑡I) 𝑞(x1∶𝑇|x0) = 𝑇∏𝑡=1 𝑞(x𝑡|x𝑡−1) (2.9)

These equations describe the unparametrized forward process. One issue with this formula-
tion is that each x𝑡 depends on the previous step x𝑡−1, causing the forward process to become
increasingly costly for a huge amount of timestamps 𝑇. To solve this problem, Ho et al.,
2020 utilizes the reparametrization trick. With this trick, the equations are reduced to the
following: 𝑞(x𝑡|x0) = 𝒩 (x𝑡; √ ̄𝛼𝑡x0, (1 − ̄𝛼𝑡)I) (2.10)

Here, every x𝑡 depends only on the starting data point x0, thereby avoiding a costly Markov
chain. The new variable ̄𝛼𝑡 is calculated in the following manner:

𝛼𝑡 ∶= 1 − 𝛽𝑡 ̄𝛼𝑡 ∶= 𝑡∏𝑠=1 𝛼𝑠 (2.11)

2.4.2 Reverse Process

During the reverse process, a neural network is trained to recover the original data. This
process also utilizes a Markov chain, starting with a x𝑡 sampled from a Gaussian distribution.
It is defined as:

𝑝𝜃(x𝑡−1|x𝑡) ∶= 𝒩 (x𝑡−1; 𝜇𝜃(x𝑡, 𝑡), Σ𝜃(x𝑡, 𝑡)) 𝑝𝜃(x0∶𝑇) ∶= 𝑝(x𝑇) 𝑇∏𝑡=1 𝑝𝜃(x𝑡−1|x𝑡), (2.12)

To achieve this reversal process, a neural network is added that has the goal to predict the
amount of noise added to the image at a specific timestamp 𝑡. This network is trained after
the following objective: 𝔼𝑡 ,x0,𝜖 [‖𝜖 − 𝜖𝜃(√ ̄𝛼𝑡x0 + √1 − ̄𝛼𝑡𝜖, 𝑡)‖2] (2.13)

As the term √ ̄𝛼𝑡x0 + √1 − ̄𝛼𝑡𝜖 equals an arbitrary x𝑡, the model essentially receives a noised
sample x𝑡 at a timestamp 𝑡, from which it tries to predict the amount of noise 𝜖𝜃. This is then
compared to the actual 𝜖, making the model a noise predictor.
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2.4.3 Sampling

After the training procedure is completed, it is possible to sample from a Denoising Diffusion
Probabilistic Model using a Markov Chain similar to that of Langevin Dynamics:

x𝑡−1 = 1√𝛼𝑡 (x𝑡 − 1 − 𝛼𝑡√1 − ̄𝛼𝑡 𝜖𝜃(x𝑡, 𝑡)) + 𝜎𝑡z (2.14)

As this forward process is slow and computationally intensive, especially with a high number
of 𝑇 timestamps, J. Song et al., 2022 proposed the technique of Denoising Diffusion Implicit
Models (DDIM). They allow sampling using a non-Markovian chain that allows to skip steps
which in practice offers a good trade-off between sampling speed and image quality. Finally,
this equation is defined as follows:

x𝑡−1 = √𝛼𝑡−1 (x𝑡 − √1 − 𝛼𝑡𝜖(𝑡)𝜃 (x𝑡)√𝛼𝑡 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
“predicted x0”

+√1 − 𝛼𝑡−1 − 𝜎2𝑡 ⋅ 𝜖(𝑡)𝜃 (x𝑡)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
“direction pointing to x𝑡”

+ 𝜎𝑡𝜖𝑡⏟
random noise

(2.15)

2.5 Score-Based Generative Modeling through Stochastic
Differential Equations

2.5.1 Equivalence of NCSN and DDPM

In their paper, Ho et al., 2020 states that the DDPM model can be formulated either as an
image x or noise 𝜖 predictor, with the latter only delivering better results. Additionally, there
exists a third possible option that can be derived from combining Tweedie’s formula with the
reparameterization trick, as done in Luo, 2022. This results in the following equation proving
the equality between the DDPM and NCSN models:∇ log 𝑝(x𝑡) = − 1√1 − ̄𝛼𝑡 𝜖 (2.16)

Using this equivalence, it is possible to rewrite the objective of the DDPM in a way that
underlines its resemblance to the Score Matching approach (Y. Song et al., 2021):

𝜃∗ = argmin𝜃 𝑁∑𝑖=1(1 − 𝛼𝑖)𝔼𝑝data(x)𝔼𝑝𝛼𝑖( ̃x|x)[‖s𝜃( ̃x, 𝑖) − ∇ ̃x log 𝑝𝛼𝑖( ̃x ∣ x)‖22] (2.17)
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2.5.2 Stochastic Differential Equation

These strong similarities motivated Y. Song et al., 2021 to generalize both formulations under a
unified framework using a continuous noise schedule. This causes both discrete formulations
to become Stochastic Differential Equations (SDEs) following the form of:

dx = f(x, 𝑡)d𝑡 + 𝑔(𝑡)dw (2.18)

In general, SDEs are mathematical models describing systems influenced by randomness
and noise. They consist of a drift and a diffusion term. The drift term is a vector-valued
function f(⋅, 𝑡) ∶ ℝ𝑑 → ℝ𝑑 that represents the deterministic component of the system that
predictably evolves over time. On the other hand, the diffusion term is a scalar-valued
function 𝑔(⋅) ∶ ℝ → ℝ that is multiplied by a Wiener Process. This Wiener Process is a
mathematical model of Brownian motion that models the random fluctuations of the system.

dx = [f(x, 𝑡) − 𝑔2(𝑡)∇x log 𝑝𝑡(x)]d𝑡 + 𝑔(𝑡)d ̄w (2.19)

According to Anderson, 1982 there exists a corresponding reverse SDE for every forward SDE.
In this reverse SDE (see equation 2.19) d𝑡 represents a negative infinitesimal timestep from𝑡 = 𝑇 until 𝑡 = 0. Furthermore, there is a reappearance of the score function ∇x log 𝑝𝑡(x) that
is approximated by the diffusion model. Finally, this results in an updated training objective
that includes the continuous noise schedule:𝔼𝑡∈𝒰(0,𝑇 )𝔼𝑝𝑡(x)[𝜆(𝑡)‖∇x log 𝑝𝑡(x) − s𝜃(x, 𝑡)‖22] (2.20)

During their analysis Y. Song et al., 2021 show that the Noise Conditional Score Network as
well as the Denoising Diffusion Probabilistic Model can be seen as a discretization of a SDE.
For both models, they provide a corresponding continuous representation:

[NCSN] dx = √d [𝜎2(𝑡)]
d𝑡 dw [DDPM] dx = −12𝛽(𝑡)xd𝑡 + √𝛽(𝑡)dw (2.21)

2.5.3 SDE and ODE solver

Modeling a Diffusion Model through the use of SDEs enables the usage of various approx-
imation techniques. For example, it is possible to integrate numerical methods such as
Euler-Maruyama or Runge-Kutta into the Diffusion Model (Y. Song et al., 2021).

Furthermore, there is the option to rewrite the SDE into an Ordinary Differential Equation
(ODE). This opens up Diffusion Models to a broad design space, using approximation tech-
niques like Euler’s or Heun’s methods, which offer a wide range of optimization techniques
in terms of performance and image quality (Karras et al., 2022).
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2.6 U-Net – The Backbone of Diffusion Models

The architecture of choice for working with DiffusionModels is a U-Net, which was developed
by Ronneberger et al., 2015 for the task of biomedical image segmentation. Attempting to
describe all possible U-Net variations used in Diffusion Models would go beyond the scope
of this paper. Therefore, the following paragraph will focus only on the building blocks used
in Ho et al., 2020 and Rombach et al., 2022.

2.6.1 Architecture

Figure 2.3: U-Net, Architecture (Ronneberger et al., 2015)

As the name suggests, the architecture (see Figure 2.3) is shaped in the form of a “U”, consisting
of a contracting path and an expansive path.

In the contracting path, the model follows a typical convolutional network structure, with
two Convolutions followed by a ReLU activation and a max pooling operation. During
this contraction, the feature information increases while the spatial information is reduced,
enabling the model to capture the contextual information in the image.

The expansive path replaces the max pooling operator with an upsampling convolution. Ad-
ditionally, the cropped feature maps of the corresponding contracting paths are concatenated.
This allows the model to precisely localize elements within the image.
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2.6.2 Residual Blocks

The first important building block of the Diffusion U-Net Model is the Residual Block. First
mentioned in He et al., 2015, Residual Blocks address a significant issue in deep neural
networks. After reaching a certain depth, many models encounter a degradation problem
where, although their depth increases, they stop improving and may start having a reduced
accuracy.

Figure 2.4: U-Net, Residual Block (He et al., 2015)

One solution to this degradation problem is the use of Residual Blocks (see Figure 2.4). These
blocks function by adding the input back into the network after skipping a certain amount of
steps. This allows for deeper networks by enabling deeper layers to access features learned
in shallower ones.

2.6.3 Sinusoidal Position Embeddings

Besides the performance-oriented Residual Blocks, the U-Net needs a way to encode the 𝑡
timestamps so it can learn at which noise level it is operating. One way to integrate these
timestamps is the usage of a technique called Sinusoidal Positional Embeddings. It has its
origins in the famous “Attentions is all you need” paper by Vaswani et al., 2023.

PE(𝑝𝑜𝑠,2𝑖) = sin(𝑝𝑜𝑠/100002𝑖/𝑑model)
PE(𝑝𝑜𝑠,2𝑖+1) = cos(𝑝𝑜𝑠/100002𝑖/𝑑model) (2.22)

In theory, there are many possible ways of adding a positional embedding, but the use of
Sinusoidal Embeddings (see Figure 2.22) offers some clear advantages. This is best to be
understood by looking at alternative methods and their drawbacks.
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A simpleway of adding Positional Embeddingswould be the use of growing integers. However,
these are not a good option, because for high values they add a huge amount of distortion by
placing the tensors into too distant places.

Furthermore, neural networks operate best with normalized data. A second solution could
be the use of fractions ( 11−𝑁 ). While these fulfill the criteria of being bound to [-1, 1], they
change according to the sequence length 𝑁. This could result in the network not working
properly when fed data of different sequential lengths.

As Sinusoidal Embeddings solve both these problems, they are chosen as the preferred method
for Positional Embeddings in a Transformer Model, as well as for Timestamp Embeddings in
a Diffusion Model (Ho et al., 2020).

2.6.4 Attention Module

Last but not least, the Attention Module is another important technique borrowed from
the Transformer architecture (Vaswani et al., 2023). The way this module operates is best
understood by examining the following equation:

Attention(Q,K,V) = softmax (QKT√𝑑𝑘 )V (2.23)

It starts with creating Q Query, K Key and V Value matrices by multiplying the input tensor
with the corresponding weights WQ,K,V. These weight matrices are updated during training,
enabling the attention techanism. They are essential in determining the relevance of different
parts of input data. In the next step, the attention scores QK𝑇 are calculated. These are the
dot product of the Query and the transposed Key Matrix. Subsequently, a scaling factor 1√𝑑𝑘
is used to counteract the effects of vanishing gradients due to a large dot product. Finally,
the softmax is calculated and the results are multiplied by the V value vector.

Within Diffusion Models, these Attention Modules are inserted between the convolutional
blocks of the expanding and contracting paths, optimizing the performance of the U-Net
model (Ho et al., 2020).
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3 Conditional Diffusion Model

After providing a comprehensive overview of the Unconditional Diffusion Model, this leads to
an in-depth exploration of the Conditional Diffusion Model. This chapter is dedicated to the
fundamental techniques, alongside an investigation into the various architectural variations
and commercial models. Finally, different methods of Fine-Tuning are examined.

3.1 Fundamentals of the Conditional Diffusion Model

This section explains the fundamentals of the Conditional Diffusion Model. It explains how
the score function can bemodified tomodel a conditional distribution 𝑝(x|y), thereby enabling
guidance through either Classifier Guidance or Classifier-Free Guidance. Additionally, it
delves into the supplementary conditioning techniques of SDEdit and ControlNet.

3.1.1 Mathematical Foundations

An Unconditional Diffusion Model models a data distribution 𝑝(x). On the other hand, a
Conditional DiffusionModel has a conditional distribution 𝑝(x|y), where the diffusion process
is guided by additional conditioning information y.𝑝(x|y) = 𝑝(y|x) ⋅ 𝑝(x)𝑝(y) (3.1)

Using the Bayes’ rule (see equation 3.1) it is possible to split the score function into a
conditional and unconditional component (Y. Song, 2021). Applying this rule to the score
function results in the following equation:∇x log 𝑝(x ∣ y) = ∇x log 𝑝(y ∣ x) + ∇x log 𝑝(x) − ∇x log 𝑝(y) (3.2)

Due to the fact that the gradient x of 𝑝(y) equals zero, the conditional score function is just
the sum of the unconditional score function and a conditioning term.∇x log 𝑝(x ∣ y) = ∇x log 𝑝(y ∣ x) + ∇x log 𝑝(x) (3.3)
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Classifier Guidance

There are many possible ways to obtain the conditioning term ∇x log 𝑝(y ∣ x). Dhariwal and
Nichol, 2021, in their paper “Diffusion Models Beat GANs on Image Synthesis”, proposes a
method for obtaining the conditioning gradient using a classifier:∇x log 𝑝(x ∣ y) = ∇x log 𝑝(x) + 𝛾∇x log 𝑝(y ∣ x) (3.4)

To implement this, a classifier is trained on noisy images x to provide accurate class predictions
y. Additionally, the variable 𝛾 serves as a guidance scale hyperparameter, allowing for the
adjustment of the conditioning signal’s influence on the generated output.

Classifier-Free Guidance

As Classifier Guidance requires training an additional classifier on noisy images, this adds
a training step and strongly resembles an adversarial technique similar to GANs. These
disadvantages inspired Ho and Salimans, 2022 to develop amethod of Classifier-Free Guidance.𝑝(y ∣ x) = 𝑝(x ∣ y) ⋅ 𝑝(y)𝑝(x) (3.5)

Similar to Classifier Guidance, it can be derived by applying Bayes’ rule (see equation 3.5) to
the score function, but this time in the opposite direction 𝑝(y|x):∇x log 𝑝(y ∣ x) = ∇x log 𝑝(x ∣ y) + ∇x log 𝑝(y) − ∇x log 𝑝(x) (3.6)

This function can be further simplified by excluding ∇𝑥 log 𝑝(y) = 0 and substituting∇x log 𝑝(y ∣ x) into the Classifier Guidance. Finally, this causes the conditional equation to
only rely on the conditional and unconditional score function which is provided entirely by
the Diffusion Model: ∇x log 𝑝(y ∣ x) = ∇x log 𝑝(x ∣ y) − ∇x log 𝑝(x) (3.7)

Because training a conditional and unconditional model separately would be expensive, Clas-
sifier Free Guidance trains both at the same time. This is done by replacing the conditioning
information with fixed constants (e.g., zeros) for a certain percentage during training (Luo,
2022). ∇x log 𝑝(x ∣ y) = (1 − 𝛾)∇x log 𝑝(x) + 𝛾∇x log 𝑝(x ∣ y) (3.8)

Finally, adding a 𝛾 scaling factor similar to that of Classifier Guidance completes the equation.
With this scaling factor, the model is unconditional when 𝛾 = 0 and conditional when 𝛾 = 1.
Additionally, if the value exceeds 𝛾 > 1 there is a strong increase in adherence to the guidance
combined with a diminishing diversity.
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3.1.2 SDEdit: Guided Image Synthesis and Editing with Stochastic
Differential Equations

The architecture of Diffusion Models allows for a special way of conditioning. This technique,
described in Meng et al., 2022, works by hijacking the generative process. It allows the
Diffusion Model to perform various Image-to-Image tasks.

Figure 3.1: SDEdit, Mechanism (Meng et al., 2022)

Exploring the mechanism behind SDEdit, as shown in Figure 3.1, reveals that the Diffusion
Model is guided using a perturbed input image. Depending on the amount of perturbation
termed denoising strength 𝑡0 ∈ (0, 1), the resulting image can be more or less faithful to the
input. At the extremes if 𝑡0 = 0 is used the image remains unchanged and conversely, if𝑡0 = 1 the produced image is completely independent of the input. This allows for a trade-off
between realism and fidelity to the input. According to Meng et al., 2022 the sweet spot for
an optimal output seems to lie between 𝑡0 = 0.3 and 𝑡0 = 0.6.

Figure 3.2: SDEdit, Examples (Meng et al., 2022)

As mentioned in the introduction, SDEdit allows for multiple Image-to-Image tasks (see
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Figure 3.2). For example, it is possible to use a sketch to create an image. Furthermore, it is
possible to Inpaint a certain area of an image and refill it with something else.

3.1.3 ControlNet – Advanced Conditioning

Lastly, another powerful way of adding additional conditioning to a Diffusion Model is the
usage of a ControlNet which was proposed in Zhang et al., 2023.

Figure 3.3: ControlNet, Model
(Zhang et al., 2023)

Figure 3.4: ControlNet, Examples
(Zhang et al., 2023)

Here (see Figure 3.3), the main Diffusion Model is locked while a trainable copy is created.
This trainable copy could be the whole model or a smaller version. For example, only the
encoder block of the U-Net could be used largely reducing the required training resources.
Furthermore, training only a copy leaves the original model unaffected by overfitting and
catastrophic forgetting.

Subsequently, the ControlNet model receives the original image x and a c conditioning term
as input. At the end of the process, both the output of the ControlNet and the Diffusion
Model are combined, creating a yc conditioned image.

In their paper, Zhang et al., 2023 demonstrates the various conditional methods (see Figure
3.4). For example, one could use an edge detection mechanism like Canny Edge or a human
pose detection model to guide the diffusion process. It is also possible to mix multiple
ControlNets allowing to heavily control the image synthesis of Diffusion Models.
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3.2 Architectural Variations and Commercial Models

This second section of the Conditional Diffusion Model explores various architectural vari-
ations, building upon the insights gained from the Unconditional Diffusion Model and the
fundamentals of the Conditional Diffusion Model. Here, additional conditioning methods
and performance optimizations are explored. Overall this section includes an overview of
the three most significant models: DALL-E, Imagen and Stable Diffusion focusing on their
origins and contributions.

3.2.1 DALL-E – Hierarchical Text-Conditional Image Generation with
CLIP Latents

DALL-E, or more specifically DALL-E 2, is one of the first diffusion-based Text-to-Image
models released by Open AI. Its research is a continuation of the findings from the GLIDE
model (Nichol et al., 2022).

GLIDE – Guided Language to Image Diffusion for Generation and Editing

Building on the idea of using class labels y as guidance for Diffusion Models, the GLIDE model
uses c text inputs as conditioning. In their paper “GLIDE: Towards Photorealistic Image
Generation and Editing with Text-Guided Diffusion Models”, Nichol et al., 2022 evaluates the
usage of Classifier Guidance and Classifier Free-Guidance for Text-to-Image generation.

CLIP Guidance

While any type of classifier could technically be used for Guidance, GLIDE uses the Contrastive
Language-Image Pre-Training (CLIP) model which was constructed in Radford et al., 2021.
CLIP is amodel that consists of an image encoder f(x) and a text encoder g(c). During training,
the model optimizes a cross-entropy loss that encourages a high dot product f(x) ⋅ g(c). This
causes the model to learn how close an image is to a caption because when trained properly,
an input image that matches a given text prompt returns a high dot product. Within the
GLIDE model, CLIP is used as a classifier to guide the diffusion process. For this purpose, the
CLIP model is retrained on noisy images to optimize Guidance.
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Classifier Free Guidance

The second approach chosen in the GLIDE paper is text conditioning using Classifier-Free
Guidance only. This procedure is done the same way as normal Classifier-Free Guidance,
only substituting the class labels y with c text captions and using an ∅ empty sequence for
20% of the training: ̂𝜖𝜃(xt|c) = 𝜖𝜃(xt|∅) + 𝑠 ⋅ (𝜖𝜃(xt|c) − 𝜖𝜃(xt|∅)) (3.9)

During experimentation, this method was superior to Classifier Guidance (CLIP Guidance),
with the 𝑠 hyperparameter giving good control over balancing diversity against image quality.
This matches with the results of Ho and Salimans, 2022.

DALL-E 2

While the first DALL-E model uses a discrete Variational Autoencoder in combination with
an Autoregressive Transformer (Ramesh et al., 2021), its successor DALL-E 2, also utilizes
a two-stage approach (Ramesh et al., 2022). Here, OpenAI uses their findings in GLIDE to
propose a new model combining the powers of CLIP and Classifier-Free Guidance.

Figure 3.5: DALL-E 2, Model (Ramesh et al., 2022)

The process illustrated in Figure 3.5 starts with an input text being converted into a CLIP
text embedding. During the prior stage, a Diffusion or Autoregressive Model creates a CLIP
image embedding from the CLIP text embedding. Afterward, in the decoding step, a Diffusion
Model creates an image out of the CLIP image embedding.

As the decoder is able to create images out of CLIP image embeddings, DALL-E 2 has the
ability to create image variations. An input image is encoded using CLIP and used as decoder
input. This creates a new image that preserves the semantic information while varying the
non-essential details.
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Currently, DALL-E 3 is the latest version of DALL-E (Betker et al., 2023). It is integrated
into ChatGPT, which is built on top of the multimodal Large Language Model GPT-4. Un-
fortunately, most aspects of the DALL-E 3 architecture are not publicly available, making a
concrete evaluation impossible.

3.2.2 CDM – Cascaded Diffusion Models

While the DALL-E 2 model from OpenAI relies on a two-stage approach, Imagen from Google
Research uses a Cascaded Diffusion Model instead. This architecture was first described in a
Super Resolution model (Saharia et al., 2021), tested on an ImageNet benchmark (Ho et al.,
2021) and finally combined with a text encoder (Saharia et al., 2022).

SR3 – Super Resolution

The main idea of Cascading Diffusion Models stems from “Image Super-Resolution via
Iterative Refinement”. Here, Saharia et al., 2021 examines the use of Conditional Diffusion
Models for the task of Super-Resolution.

𝔼(x,y)𝔼𝜖,𝛾 ‖𝑓𝜃(x, √𝛾y0 + √1 − 𝛾𝜖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟̃y , 𝛾 ) − 𝜖‖𝑝𝑝 (3.10)

They achieve this by building a Conditional Diffusion Model that learns to upscale images.
Adapting the DDPM algorithm (see equation 3.10), the model receives high-resolution y0
images during the forward process. In the reverse process, a noisy image ̃y is conditioned
with a low-resolution image x that is concatenated around the channel dimension. With this
training procedure, the model learns to upscale low-resolution images into high-resolution
images.

A key finding of this paper is that these upscaling models can be used in a cascading manner.
Starting with an Unconditional model that creates the ground image, consecutive Conditional
Diffusion Models can upscale it to the target resolution.

Cascading Diffusion Models

Building upon the idea of Cascaded Diffusion Models in SR3, Ho et al., 2021 examines the
Cascaded Diffusion Model on an ImageNet benchmark. In their study, the first model (see
Figure 3.6) creates an image according to an ImageNet class label with a resolution of 32x32
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pixels. This image, along with the class label, serves as the input for the second model, which
creates a 64x64 image. Finally, a third model, conditioned on the 64x64 image and the class
label, creates a 256x256 image. Using this technique, Ho et al., 2021 achieved good results at
the ImageNet generation benchmark.

Figure 3.6: CDM, Model (Ho et al., 2021)

Imagen

This Cascading Diffusion Model is further combined with a text encoder to create the Text-
to-Image model Imagen (Saharia et al., 2022).

Similar to CLIP (Radford et al., 2021), Imagen uses a text encoder to turn text input into
text embeddings. Its main distinction is that rather than using a text encoder trained on
text-image pairs, Imagen uses the T5 text encoder belonging to a Large Language Model. This
encoder is bigger, but only trained on a text-only corpus. According to the results published
by the Google Research Team (Saharia et al., 2022), the sheer usage of a larger text encoder
results in a better sample quality as well as image-text alignment.

Overall, the Imagen model starts with a frozen T5 text encoder that converts the input text
to a textual embedding. These embeddings are then put into a Conditional Diffusion Model
that creates a 64x64 image. Subsequently, two consecutive Super-Resolution models receive
the input image as well as the text embedding and upscale it to a 1024x1024 resolution.

3.2.3 LDM – Latent Diffusion Model

A major problem of Diffusion Models is that they require a significant amount of computa-
tional resources to create high-resolution images. This is primarily due to the reversal process
requiring a certain amount of steps to successfully converge to an image. While methods
like the non-Markovian DDIM (J. Song et al., 2022) can help, the creation of high-resolution
images remains computationally expensive.

21



In their paper, “High-Resolution Image Synthesis with Latent Diffusion Models”, Rombach
et al., 2022 attempts to solve this problem by transforming the diffusion process from pixel
space to a lower dimensional latent space.

Figure 3.7: LDM, Model (Rombach et al., 2022)

Departure to the Latent Space

This transformation is achieved by utilizing pre-trained Autoencoders. It begins with an image
x ∈ ℝ𝐻×𝑊×3, which is encoded by an ℰ Encoder into a downsampled latent representation
z ∈ ℝℎ×𝑤×3. The downsampling factor is 𝑓 = 𝐻/ℎ = 𝑊/𝑤. After the diffusion process, the
image ̃x is reconstructed by a decoder 𝒟.

The paper discusses two types of regularization techniques. One method is the use of
KL-divergence, which regularizes a continuous latent representation towards a standard
Gaussian distribution. The other method is Vector Quantization during which a discrete
latent representation is learned.

Employing an Autoencoder as preprocessing stems from the insight that Likelihood models
learn in two stages. Initially, the model engages in perceptual compression, removing high-
frequency details. Subsequently, semantic compression is done, focusing on the semantic and
conceptual composition of the data. Separating these stages saves computational resources
because the diffusion process is only applied to semantic details, while the high frequency
and imperceptible details are abstracted away or rather learned by a less computationally
expensive architecture.
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Additional Conditioning

The Latent Diffusion paper not only presents performance optimizations but also introduces
new conditioning techniques. This is achieved by introducing a domain-specific encoder 𝜏𝜃,
which projects the condition y into an intermediate representation 𝜏𝜃(y) ∈ ℝ𝑀×𝑑𝜏 .
In the example of text inputs, this intermediate representation is implemented into the U-Net
via Cross-Attention Layers. These layers work similarly to the attention module described in
the Attention 2.23 equation. Here, the difference is that the query weights are projected to
the flattened, intermediate representations, while the key and value weights are projected
onto the 𝜏𝜃(y) intermediate representation:𝑄 = 𝑊 (𝑖)𝑄 ⋅ 𝜑𝑖(z𝑡) (3.11)𝐾 = 𝑊 (𝑖)𝐾 ⋅ 𝜏𝜃(y) (3.12)𝑉 = 𝑊 (𝑖)𝑉 ⋅ 𝜏𝜃(y) (3.13)

In the case of Image-to-Image tasks, conditioning is applied by concatenation. Here, the
latent vector z is concatenated, alongside the channel dimension, by the intermediate rep-
resentation 𝜏𝜃(y) in a way similar to that of the SR3 Super-Resolution model (Saharia et al.,
2021). Additionally, the diffusion process can be hijacked using the SDEdit method (Meng
et al., 2022).

Stable Diffusion

The research on the Latent Diffusion Model was supported by Stability AI, which resulted in
the creation of a Text-to-Image Latent Diffusion Model called Stable Diffusion. Using the
open-source LAION-5B dataset, the first version of Stable Diffusion was trained to create
512x512 images. It uses a frozen version of the CLIP ViT-L/14 text encoder to create the
textual embeddings. While Inpainting is possible out of the box, Stable Diffusion offers an
additional Inpainting model. This has a U-Net with five additional input channels, from
which four are used for the encoded masked image and one for the mask itself. During
training the model is explicitly trained to restore images with synthetic masks covering up a
quarter of the image.

In November 2022 a second version of the Stable Diffusion model was released. It uses the
larger OpenCLIP text encoder and was trained on a larger resolution of 768x768. Besides a
specialized Inpainting model, it also comes with a model that turns depth maps into images.
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Figure 3.8: LDM, Stable Diffusion XL (Podell et al., 2023)

Last but not least, another series of Latent Diffusion Models Stable Diffusion XL, was released
in July 2023. This model follows a two-stage pipeline (see Figure 3.8), where a base model
creates a latent image out of a text prompt and a refinement model adds additional detailing
by using the latent image combined with the text prompt (Podell et al., 2023).
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3.3 Personalization through Fine-Tuning

In this final section, different techniques for incorporating personalized concepts into Diffu-
sion Models are explained.

The direct training of a model could pose several challenges. For example, because the training
dataset is often way smaller than the original, this can lead to overfitting and language drift
(Ruiz et al., 2023). Additionally, training the model as a whole is computationally expensive.
To address these issues, techniques such as DreamBooth, Low Rank Adaptation and Textual
Inversion employ different strategies.

3.3.1 DreamBooth

Adding a personalized concept can mean integrating oneself, one’s friends or anything else
that comes to mind into a Diffusion Model. This is what DreamBooth (Ruiz et al., 2023)
attempts to accomplish by updating the language-vision dictionary of the Diffusion Model.

Figure 3.9: DreamBooth, Loss
(Ruiz et al., 2023) Figure 3.10: DreamBooth, Synthesis

(Ruiz et al., 2023)

Training a DreamBooth model requires 3-5 images of a subject that should be implemented.
Additionally, it is necessary to specify an [identifier] and a [class noun]. The chosen [identi-
fier] should be a word that has a weak prior in the Language- and Diffusion Model. It should
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not be a selection of random letters, as the tokenizer could interpret them as single letters,
which have a strong prior. Within Ruiz et al., 2023 rare tokens are identified by performing a
rare-token lookup and inverting these into text. Alternatively, it is possible to use a word
that is not commonly used in the vocabulary.

Besides the [identifier], it is necessary to specify a [class noun] that accurately describes the
input images. For example, if trying to integrate a personal dog, the [class noun] should be
“dog”. 𝐿𝑆𝑢𝑏𝑗𝑒𝑐𝑡 = 𝑤𝑡‖ ̂x𝜃(𝛼𝑡x + 𝜎𝑡𝜖, c) − x‖22 (3.14)𝐿𝐶𝑙𝑎𝑠𝑠 = 𝑤𝑡′‖ ̂x𝜃(𝛼𝑡′xpr + 𝜎𝑡′𝜖′, cpr) − xpr‖22 (3.15)𝔼x,c,𝜖,𝜖′,𝑡[𝐿𝑆𝑢𝑏𝑗𝑒𝑐𝑡 + 𝜆 ∗ 𝐿𝐶𝑙𝑎𝑠𝑠] (3.16)

DreamBooth training utilizes a class-specific prior preservation loss. This concept is best
understood by examining the loss equation (see equation 3.16). While the loss equation may
seem complex, it can be divided into two parts. Additionally, 𝜔𝑡 is a weighting term specific
to the Imagen model and can be ignored (Saharia et al., 2022).

The left part (see equation 3.14) compares the ̂x𝜃 output of a Diffusion Model, conditioned
by an x input image and the [class noun] [identifier] text prompt, to an input image. On
the right side (see equation 3.15), there is another output of a Diffusion Model, conditioned
by a class-specific image and the [class noun] text prompt, which is compared to a class-
specific image. Both terms are then added together, using 𝜆 as a hyperparameter to adjust
the influence of the class-specific loss. This process is visualized in Figure 3.9 .

During training, DreamBooth trains the complete model making the training not less compu-
tationally expensive and the resulting models match the size of the original. Finally, when
the model is trained successfully, the Diffusion Model is capable of synthesizing the provided
images in various novel styles. Some examples of these novel styles include art renditions,
property modifications or text-guided view synthesis, as demonstrated in Figure 3.10.

3.3.2 LoRA – Low-Rank Adaptation

Taking inspiration from techniques across different fields often proves beneficial, as seen by
the adoption of the diffusion process from non-equilibrium thermodynamics (Sohl-Dickstein
et al., 2015). Similarly, Low-Rank Adaptation, which was primarily invented for Fine-Tuning
Large Language Models, can also be used for Fine-Tuning Diffusion Models.
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Background

Diving into Large Language Models, “GPT-3 175B” stands out with its 175 billion trainable
parameters, demanding 1.2 TB of VRAM. Training such a model is computationally extremely
expensive, but research (Aghajanyan et al., 2020) suggests these models have a low “intrinsic
dimension” and are still able to learn while being projected to a smaller subspace.

For example, a model can have a weight matrix W0 ∈ ℝ𝑑×𝑘, where 𝑑 = 50 and 𝑘 = 100,
totaling 5000 trainable parameters (𝑑 ∗ 𝑘). The hypothesis from Aghajanyan et al., 2020
suggests that many rows in this matrix are linearly dependent and thus redundant. This
leads to the possibility of using a lower-rank matrix for Fine-Tuning using a method called
Low-Rank Adaptations, which was proposed in Hu et al., 2021.

Figure 3.11: LoRA, Model (Hu et al., 2021)

Understanding how this method works can be accomplished very well using an example.
Continuing with the values of the introduction, according to the hypothesis in Hu et al., 2021
this 5000-parameter W0 weight matrix can be projected into a lower rank subspace ΔW.

W0 + ΔW = W0 + BA (3.17)

This ΔW matrix consists of the matrix multiplication of a matrix A ∈ ℝ𝑟×𝑘 and a matrix
B ∈ ℝ𝑑×𝑟. The 𝑟 value corresponds to the rank of the matrix and can be any number in ℝ that
fulfills 𝑟 ≪ min (𝑑, 𝑘). For this example, the value is set to 𝑟 = 2 causing matrix A to have
200 parameters and matrix B to have 100 parameters, which effectively reduces the amount
of learnable parameters to 300.
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At the start of the training, the original W0 weight matrix is locked and the starting values
of the training matrix A are sampled from a normal distribution 𝒩 (0, 𝜎2), while the matrix𝐵 contains only zeros. Finally, the output of the model will be the addition of W0 and ΔW
as described in equation 3.17. Using this technique, only 300 parameters need to be trained,
significantly reducing the computational resources required.

Usage in Diffusion Models

Figure 3.12: LoRA, Example (Cuenca and Sayak, 2023)

In the original paper (Hu et al., 2021), this technique is applied to the four weight matrices of
the Self-Attention Module in a Large Language Model, but in theory, this technique can be
adapted to all kinds of weight matrices.

Therefore, it is also possible to Fine-Tune a Diffusion Model using Low-Rank Adaptation. In
an experimental script provided by Cuenca and Sayak, 2023, Low-Rank Adaptation is used
on the Attention Layers of the Stable Diffusion U-Net model. These are crucial because they
relate the image representations with the text prompts.

As only a small part of the model is getting trained, the resulting file size is only a few
megabytes and the hardware requirements are reduced. In an experiment using the “pokemon-
blip-captions” dataset (see Figure 3.12), Low-Rank Adaptation successfully integrated a
personalized concept into the Diffusion Model.

3.3.3 Textual Inversion

While the last two methods attempted to influence the Diffusion Model, the technique of
Textual Inversion takes a different route. Published in the paper “An Image is Worth One
Word: Personalizing Text-to-Image Generation using Textual Inversion” by Gal et al., 2022, it
attempts to integrate a personalized concept by manipulating the text embedding of the text
encoder.
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Figure 3.13: Textual Inversion, Process (Gal et al., 2022)

The Textual Inversion process, as seen in Figure 3.13, starts with a prompt containing a
user-specified pseudo-Word 𝑆∗. In the next step, the text is tokenized and the discrete tokens
are converted into a continuous text embedding vector. Here, a special point of interest lies
on the embedding vector v∗ of the pseudo-word, because it will be optimized during training:

v∗ = argmin
v

𝔼𝑧∼ℰ(𝑥),𝑦 ,𝜖∼𝒩 (0,1),𝑡 [‖𝜖 − 𝜖𝜃(z𝑡, 𝑡 , c𝜃(𝑦))‖22] (3.18)

Subsequently, the text transformer converts the textual embedding vector into a conditioning
vector c𝜃(𝑦), which conditions the Diffusion Model. While both the text transformer and
generator remain locked, the text embedding vector is optimized by minimizing the noise
difference between the generated image and the input sample.

Figure 3.14: Textual Inversion, Samples (Gal et al., 2022)

When training is successful, the user-specified word can be used to generate images (see
Figure 3.14) containing the newly integrated concept. As only a part of the textual encoder is
trained, the resulting model is small and the training does not require many resources.
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4 Experiments

In this chapter, the advancements of the Conditional Diffusion Model are put to the test.
Using different experimental settings, the methods and models are evaluated. This aims to
provide insights into their practical performance.

Each section of the Conditional Diffusion Model is explored in a specialized experiment.
During the first experiment, a sketch is turned into an image. This examines the fundamentals
of the Conditional DiffusionModel, including techniques like SDEdit, Classifier-Free Guidance
and ControlNet. In a subsequent experiment, three architectural variations (DALL-E 2,
CDM and LDM) are tested through three Inpainting tasks. Ultimately, the last experiment
tries to add a personalized concept using methods of Fine-Tuning (DreamBooth, Low-Rank
Adaptation and Textual Inversion).

Overall, these experiments aim to showcase the strengths and limitations of using a Condi-
tional Diffusion Model for image manipulation.

4.1 Tools

These experiments were conducted using a large amount of libraries and tools. However, this
section focuses on explaining the two fundamental resources that had a significant impact.

4.1.1 Google Colab

Google Colab (Google Colab, 2024), which is a product of the Google Research Team, allows
users to write and execute Python code directly through the browser. It is a popular research
tool because of its ease of sharing notebooks.

Additionally, Google Colab provides access to computational resources such as GPUs and
TPUs. Utilizing the Google Colab Pro Tier, all experiments are executed on a 16GB T4 Nvidia
GPU.
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4.1.2 HuggingFace

Being an important platform for sharing models and datasets, HuggingFace is a key player in
the field of machine learning. It offers a wide variety of libraries that simplify working with
state-of-the-art models. For instance, the Transformers library (Wolf et al., 2020) facilitates
workingwith transformermodels, making them easily usable for Natural Language Processing
or Computer Vision tasks.

Crucial for carrying out all experiments is the Diffusers (von Platen et al., 2022) library. It
provides inference pipelines, training scripts and pre-trained models of various diffusion
architectures. All these things are essential when testing the Conditional Diffusion Model on
image manipulation.

Finally, a HuggingFace dataset (Lhoest et al., 2021) is used as a repository for all utilized
images.
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4.2 Experiment 1: Turning a sketch into an image

Many historians speculate that Leonardo da Vinci might have created two versions of the
Mona Lisa (Foundation, 2024). Although it is unclear if this theory will ever be confirmed, a
Conditional Diffusion Model can be used to turn a sketch (see Figure 4.1) of the supposed
second version into a realistic painting.

Figure 4.1: Experiment 1, Raphael’s ‘Young Woman on a Balcony’
(Foundation, 2024)

This can be accomplished using the different methods described in the fundamentals of the
Conditional Diffusion Model. The following experiment will evaluate how these can be set
up to turn a sketch into an image.

4.2.1 Methodology

In this experiment, the Latent Diffusion Model Stable Diffusion 1.5 is used as the base model.
This allows for the integration of a wide variety of ControlNet models and supports Classifier-
Free Guidance and SDEdit.

During testing, the Fine-Tuned Realistic Vision V6.0 model (SG161222, 2024) showed superior
aesthetic results when compared to the 1.5-base model. Although it was trained on achieving
photorealism, it still performs well in turning a sketch into a painting, which is why it was
chosen to demonstrate the different methods.
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4.2.2 SDEdit

The first part of the experiment evaluates guided image synthesis by hijacking the diffusion
process, as described in Meng et al., 2022. By using varying denoising values 𝑡0, starting from
0 and running in 0.2 steps until 1, the sketch is injected into the denoising process. Further
guidance is applied using a text prompt “A painting of a woman in the style of a renaissance
artist” with a Classifier-Free Guidance scale of 5. According to Meng et al., 2022, increasing
the denoising strength should make the result less dependent on the injected sketch.

Figure 4.2: Experiment 1, SDEdit𝑡0 = [0.0, 0.2, 0.4, 0.6, 0.8, 1]
As expected, the higher the denoising value 𝑡0, the more the image (see Figure 4.2) diverges
from the initial conditioning. Notably, at the extreme ends, the image is either unaffected or
almost completely random. In their paper, Meng et al., 2022 picks the range of 𝑡0 ∈ [0.3, 0.6]
as the sweet spot for SDEdit. Looking at the results, this finding is replicated, with the
subjectively best representation occurring at 𝑡0 = 0.6. All in all, it is confirmed that hijacking
the diffusion process can turn an image into a sketch and that the denoising value 𝑡0 can be
used as a trade-off between a more realistic and less faithful result.

4.2.3 Classifier-Free Guidance

In the next step, Classifier-Free Guidance is assessed. Utilizing the same prompt as in the
previous experiment, various 𝛾 scaling factors of Classifier-Free Guidance are analyzed. This
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is done at a constant denoising value of 𝑡0 = 0.6. It is expected that at lower 𝛾 values, the
impact of the text prompt will be moderate, but will increase significantly at higher values
(Ho and Salimans, 2022).

Figure 4.3: Experiment 1, Classifier-Free Guidance𝛾 = [1, 2.5, 5.0, 10.0, 20.0, 40.0]
Similar to the SDEdit experiment, the expected results (see Figure 4.3) are replicated during
the experiment. Using a higher Classifier-Free Guidance causes the image to obtain more
details, indicating stronger prompt adherence. At a certain threshold, in this case when𝛾 > 10, the image starts to break down and exhibit visible artifacts combined with a strong
contrast.

4.2.4 ControlNet

For the last part of this experiment, conditioning using ControlNet models is tested. As a
wide variety of models exist, testing all of them would go beyond the scope of this thesis.
Therefore, this experiment is limited to six conditional methods which are: Canny Edge
Detection, Depth Map, Normal Map, OpenPose, LineArt and Soft Edge.

Before setting up the ControlNets, the images need to be pre-processed (see Figure 4.4) to fit
the requirements of the specific model. For instance, in the case of a Depth Map, the image
is put through the “Intel/dpt-large” neural network. It estimates the depth of all objects in
the image and generates a corresponding depth map. Another example is the Canny Edge
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detection. Here, a lower and upper threshold is defined, specifying the areas affected by
edge detection. Utilizing the Canny() function from the OpenCV library, a pre-processed
image is created. A complete breakdown of all pre-processing methods can be found in the
complementary source codes of this thesis.

In this experimental setting, all images are created using a diffusion inference pipeline with
a single ControlNet matching the created pre-processing. The used text prompt remains
the same and the ControlNet image is used as only input. During the diffusion process, the
ControlNet is active over all timestamps. It is expected, that the reproduced image matches
the selected conditional method.

Figure 4.4: Experiment 1, ControlNet
(Pre-Processing)

Figure 4.5: Experiment 1, ControlNet
(Results)

Judging by the results in Figure 4.5, using ControlNets is a powerful way of conditioning
Diffusion Models. Depending on the type of conditioning, their closeness to the input sketch
varies. For instance, all edge detection algorithms (images 1-3 in Figure 4.5) create images
closely related to the sketch, while OpenPose (image 6 in Figure 4.5) on the other hand, allows
for a stronger deviation, especially around the facial features. This is expected because every
condition contains only a certain characteristic of the sketch. Overall, the various ways of
conditioning make ControlNet another powerful tool to creatively influence the diffusion
process.
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4.2.5 Evaluation

All in all, the fundamentals of the Conditional Diffusion Model offer a wide variety of
possibilities to influence the diffusion process. With their architectural uniqueness, methods
like SDEdit are powerful tools for image manipulation. In these experiments, the claims made
by the authors of SDEdit (Meng et al., 2022) and Classifier-Free Guidance (Ho and Salimans,
2022) could be replicated.

Last but not least, it has to be noted that the results are pretty good, but not perfect. Especially
small contextual details like hands or background elements are often displayed incorrectly, as
seen in Figure 4.5. Interestingly, using specialized ControlNets like OpenPose, which contain
information about face and hand placements, recreates these details correctly. This suggests
that exploring additional ways of conditioning Diffusion Models could help to accurately
reproduce small contextual details.
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4.3 Experiment 2: Inpainting

In the second experiment, different architectural variations of the Diffusion Model are tested.
To do this, the models are conditioned to solve three Inpainting tasks, on which they will be
judged according to their performance and quality.

4.3.1 Methodology

Three images (see Figure 4.6) are chosen for this experiment. The first shows a woman
wearing a mask, the second shows a man wearing a virtual reality headset and the last one
depicts a woman wearing a jacket.

Figure 4.6: Experiment 2, Images

As it is an Inpainting task, three masks (see Figure 4.7) are created. In the first image, the
mask of the woman should be removed, therefore this area is Inpainted. The same applies
to the virtual reality headset in the second image. Last but not least, the woman wearing
a jacket should receive a scarf, which is the reason the area around her jacket is Inpainted.
Additionally, this is further supported by using a conditional text prompt “A woman wearing
a scarf”.

Figure 4.7: Experiment 2, Masks
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4.3.2 DALL-E 2

DALL-E 2 is the first model being tested. It is accessible through the OpenAI API. For this,
an OpenAI client with a corresponding API key is created.

Before a request can be made, the images undergo pre-processing. First, the mask is adapted
by converting it into a RGBA images, incorporating the inverted mask in the alpha channel
and retaining the original image in the RGB channels. Subsequently, the mask and the original
image are converted into byte format before initiating the request.

Figure 4.8: Experiment 2, DALL-E 2

Looking at the results seen in Figure 4.8, the DALL-E 2 model can provide a contextually
correct solution to the Inpainting tasks. The problem with these solutions is that they do
not match the overall style of the image. They have a rather soft look that lacks essential
high-frequency structures and contains unrealistic structures. Overall, the DALL-E 2 model
only achieves a moderately good Inpainting output.

Due to the model being only available through an API request, the performance cannot be
evaluated.

4.3.3 Cascaded Diffusion Model

In this second part of the architectural experiment, the Cascaded Diffusion Model is tested.
Unfortunately, the original Cascaded Diffusion Model Imagen, developed by the Google Brain
Research Team, is not publicly available. As a workaround, the Deep Floyd IF model by
Stability AI is used for this experiment. This model comes with a zero-shot Inpainting version
and has no model specifically trained in Inpainting.

38



Figure 4.9: Experiment 2, Deep Floyd IF Schematic
(Shonenkov et al., 2024)

Deep Floyd (Shonenkov et al., 2024) is heavily inspired by Google Imagen, utilizing similar
building blocks (Saharia et al., 2022). For the creation of text embeddings, it uses a T5 text
encoder and the diffusion process consists of a multi-stage approach with a wide variety of
differently sized Diffusion Models.

In this experimental design, the first stage uses the “IF-I-XL” model which creates a 64x64
image. The next stage uses the 64x64 image and the original image as input for the “IF-II-L”
second stage model. During the second stage, a 256x256 image is created, which itself is
used as input for the third stage. At this third stage, the Stable x4 latent diffusion upscaler
is required because the pixel-based “IF-III-L” model has not been publicly released. This
is unfortunate, as it prohibits testing a completely pixel-based approach. All pipelines are
created using the HuggingFace Diffusers library.

Performance is a huge disadvantage of the Deep Floyd IF model. Running the model at a full
32-bit precision would require over 40GB of VRAM (Shonenkov et al., 2023), mainly due to
the huge T5 Text Encoder (20GB) and the first stage U-Net (17.2GB). To get this model to run
on a T4 GPU, optimization techniques and CUDA memory management are required.

Because of these memory issues, the experiment starts by loading the Text Encoder with an
8-bit precision and creating the textual embeddings. Subsequently, the T5 Text Encoder is
deleted from the CUDAmemory and the “IF-I-XL” model is initialized using a 16-bit precision.
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This model, conditioned on the input images, is then used to create the 64x64 images of the
first stage.

Figure 4.10: Experiment 2, Cascaded Diffusion Model, Stage 1

All images of the first stage (see Figure 4.10), excluding the second one, look promising but
are still inconclusive regarding the success of the Inpainting task. For the next stage, the
“IF-II-L” is loaded using a 16-bit precision and conditioned with the original images and the
64x64 generated images of the first stage.

Figure 4.11: Experiment 2, Cascaded Diffusion Model, Stage 2

In the second stage, 256x256 images (see Figure 4.11) are created, which exhibit an interesting
founding. While they are mostly contextually correct, they fail to match the sharpness of the
original image. Furthermore, the second image completely fails to produce a contextually
sensible solution. Despite these negative findings, the second-stage images are used as the
sole input for the Stable x4 Upscaler. For this purpose, the CUDA memory is cleared again
and the pipeline is loaded using a 16-bit precision.
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Figure 4.12: Experiment 2, Cascaded Diffusion Model, Stage 3

During the third and last stage, 1024x1024 images are created (see Figure 4.12). They exhibit
certain misrepresentations outside the Inpainted regions. Without anticipating the analysis
of the Latent Diffusion Model, this will be solved by creating a composite of the primary
image and the masked area.

Figure 4.13: Experiment 2, Cascaded Diffusion Model, Composite

Even though this fixes artifacts outside the Inpainted area, there is still a lack of sharpness
and detail inside the Inpainted area (see Figure 4.13).

Overall, the Deep Floyd IF Cascaded Diffusion model does not perform well on the task of
Inpainting. With the last pixel-based third stage not being released and a scientific paper still
missing, the model seems unfinished and further investigation is necessary to conclude if the
architecture or the conception of the model is at fault. Additionally, the large Text Encoder
(20 GB) makes it difficult to run the model on a T4 GPU.
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4.3.4 LDM – Latent Diffusion Model

In the last part, the Latent Diffusion Model is evaluated. This is done using a specialized Stable
Diffusion 1.5 Inpainting model (Rombach et al., 2022), that comes with a U-Net which has 5
additional input channels. Of these five input channels, four contain the encoded-masked
image and one the mask itself. The model is implemented using the Diffusers inference
pipeline.

A major advantage of the Latent Diffusion Model is its performance. With only one inference
pipeline, it can be loaded on a T4 (16 GB) GPU without requiring any type of optimization.

Figure 4.14: Experiment 2, Latent Diffusion Model

Looking at the results (see Figure 4.14), the Latent Diffusion Model is able to achieve good
results for all tasks. In the first image, the Inpainting job looks seamless, but the second and
third showminor artifacts. Inside the second image, there exists a structural misrepresentation
with the inpainted area not completely matching the rest of the image.

Figure 4.15: Experiment 2, Autoencoder Artefacts
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Additionally, the third image contains similar artifacts to those found in the Latent Diffusion
stage of the Cascaded Diffusion Model (see Figure 4.12). These artifacts are created due to a
reconstruction error by the Autoencoder. This can be proven by creating an Autoencoder
pipeline that simply encodes and decodes an image. An example of this can be seen in Figure
4.15.

Figure 4.16: Experiment 2, Latent Diffusion Model, Composite

Again, a workaround for this issue is to create a composite of the masked area and the original
image. As seen in Figure 4.16, this seamlessly resolves the issue but remains a disadvantage
of Latent Diffusion Models.

Overall, the image quality and performance of the Latent Diffusion Model is really good.
Unfortunately, the tasks are not completed perfectly, with structural misrepresentation still
present in the second image and faulty reconstruction occurring in the third image.

4.3.5 Evaluation

In the category of performance, Stable Diffusion is the best-performing model. Utilizing a
departure into the latent space, it fits easily in the T4 testing GPU. The opposite is true for
the Deep Floyd IF model. Here, just the large T5 Text Encoder alone would require 20 GB
VRAM on full precision. The DALL-E 2 model is exempt from this category because it is only
available via API.

Judging in terms of quality, the Stable Diffusion model comes back on top again. Although
there are visible issues (see Figure 4.15), the images created by the Latent Diffusion Model are
the closest to a real solution. Interestingly, in the second image, every model fails to accurately
reproduce the skin texture of the man. These problems of reproducing a photorealistic level
of detail are even more pronounced in DALLE-2 and Deep Floyd IF. Further investigation is
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needed to evaluate if these deviations occur because of the lower space representations or
the Diffusion Model itself.

Overall, comparing different architectures is complicated and not always a fair endeavor. It
could be possible, that using a dedicated Inpainting model for the Cascading Diffusion Model
could give better results, Furthermore, the performance of a Cascading architecture could
be optimized by using a smaller text encoder. Finally, the fact that DALLE-2 is not publicly
available is really unfortunate, because it complicates research.
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4.4 Experiment 3: Personalization

The final experiment evaluates the different Fine-Tuning methods of Diffusion Models. In
this section, a personalized concept is added to the model.

4.4.1 Methodology

For this experiment, five images from a photo shoot of a woman in different poses and outfits
are used (see Figure 4.17). The goal is to enable the Diffusion Model to learn her features,
allowing the generation of new images without the need for an additional photoshoot.

Figure 4.17: Experiment 3, Dataset

All three Fine-Tuning methods are implemented using scripts from the HuggingFace Diffusers
library. These scripts are run using the Accelerate library (Gugger et al., 2022) to simplify the
use of multi-GPU and mixed precision training. The training is done on the “Realistic Vision
6.0” Stable Diffusion 1.5 model (SG161222, 2024), which was designed for photorealism.

After the training of each model, three images are created using the prompts “A photorealistic
portrait of a woman”, “A painting of a woman in the style of vincent van gogh starry night”
and “A photorealistic portrait of a woman in a space suit”. The first prompt is expected to
create results similar to the dataset images, while the other two are designed to produce more
creative outcomes.

4.4.2 Dreambooth

The first tested method is DreamBooth, which requires the specification of an [identifier]
and a [class noun] (Ruiz et al., 2023). In the case of the identifier, the rarely used token “sks”
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is used and the class noun, describing the overall class of the dataset, is termed “woman”.

Judging from a performance perspective, this method is resource-intensive because it requires
training the complete Diffusion Model. Running this model without optimization techniques
and in the fastest way possible would require more than 30GB of VRAM. To enable running
on a 16GB T4 GPU, an 8-bit Adam optimizer is used.

Training a DreamBooth model carries a risk of overfitting and is sensitive to hyperparameters.
It is recommended to use a low learning rate and a high number of training steps (Patil et al.,
2022). In this experiment, good results were achieved using the default script parameters,
which specify a learning rate of 5e-6 and 400 training steps. Finally, when working with a
small dataset, a batch size of one is utilized and all images are adapted to 512x512, matching
the resolution of the Stable Diffusion Model.

Figure 4.18: Experiment 3, DreamBooth

While not achieving complete photorealism, the images (see Figure 4.18) created using
DreamBooth recognizably display the woman from the training dataset. This works in
scenarios closely matching the dataset as well as in scenarios strongly differing from the
dataset.

When the model is saved, it has a sizing of a couple of gigabytes matching the size of
the original Diffusion Model. This is reasonable considering the whole model was trained.
However, this is a major disadvantage making models not easily shareable.
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4.4.3 Low-Rank Adaptation

Having achieved good results using the DreamBooth Fine-Tuning method, the next step will
test Fine-Tuning using Low-Rank Adaptation (LoRA). Inside the Stable Diffusion Model, this
step is applied to the Cross-Attention layers (Cuenca and Sayak, 2023), which are responsible
for the relationship between image and text representations.

Low-Rank Adaptation does not require a lot of computational resources. They are easily
runnable on as little as 11GB of VRAM without optimization. This is due to the fact that only
the Cross-Attention layers are trained.

Training is conducted using 400 steps, matching the DreamBooth experiment. Furthermore,
a higher learning rate of 1e-04 is combined with a cosine learning rate scheduler and a batch
size of one is used. These values are left untouched from the example experiment of the
HuggingFace script (Cuenca and Sayak, 2023).

Before the training can be started, it is necessary to create image captions that describe the
images inside the dataset. While this can be done manually, this experiment utilizes the BLIP
model (Li et al., 2022) for automatic caption creation. Last but not least, all captions are added
the “sks” token which triggers the LoRA after training is completed.

Figure 4.19: Experiment 3, LoRA

The method of Low-Rank Adaptation (LoRA) achieves moderate results. While the facial
structure might be reproduced with slightly less accuracy, the model is capable of creating
images that resemble the subject of the dataset (see Figure 4.19).

Finally, the saved model is only a couple of megabytes in size and easily shareable.
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4.4.4 Textual Inversion

Textual Inversion is the last tested Fine-Tuning method in this experiment. In this method, a
new “word” is integrated into the embedding space of the text encoder. It is necessary to
specify a placeholder token as well as an initializer token (Gal et al., 2022). The placeholder
token is “<sks>” and the initializer token, which describes the object, is called “woman”.
Additionally, the type of learnable property is defined. As this experiment trains an object
instead of a style, the learnable property is an object.

Similar to Low-Rank Adaptation (LoRA), Textual Inversion does not require a lot of computa-
tional resources. By training only the textual embeddings of the Text Encoder, it can easily
be loaded on a T4 (16GB) GPU without the use of specialized optimization techniques.

For this method a scalable learning rate of 5e-04, matching the values of the original paper
(Gal et al., 2022), is used. Furthermore, a batch size of 1 and 400 training steps are used. This
corresponds to the values used in previous experiments.

Figure 4.20: Experment 3, Textual Inversion

Judging by the results (see Figure 4.20), Textual Inversion displays only a weak integration of
the visual concept. The model is unable to create a convincing representation of the subject,
although outlines are recognizable.

Finally, the saved model is only a few kilobytes in size, making it easily shareable.
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4.4.5 Evaluation

All methods can integrate the personalized concept to a certain degree. Judging by the results,
the best choice appears to be between DreamBooth and Low-Rank Adaptation. In comparison,
DreamBooth achieves the best results but requires the most resources and creates the largest
models. On the other hand, Low-Rank Adaptations create results of moderate quality, while
requiring fewer resources and creating smaller models.

Unfortunately, in this experimental setting, Textual Inversion does not provide good results.
Further research has to be done to see if there are ways how this method could be made viable.
Possible options include hyperparameter optimization or using a different/larger dataset.

Last but not least, although all created images convincingly depict the woman, they fail to
achieve photorealism. This is primarily due to incorrect contextual elements (e.g., hands)
and missing structural details (e.g., skin pores).
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5 Resolution

This final chapter integrates all findings into a broader context, addressing the problems and
implications of the Conditional Diffusion Model leading to a conclusion that revisits the aim
of the thesis.

5.1 Discussion

In this discussion, the Conditional Diffusion Model is placed into a broader context, analyzing
the findings and their implications. It addresses the role of the Diffusion Model in the
Generative Trilemma, how close its quality approaches photorealism and what societal
impact this might have.

5.1.1 The Generative Learning Trilemma

In their paper, Xiao et al., 2022 presents the idea of the Generative Learning Trilemma. This
Trilemma states that none of the major generative architectures can achieve fast sampling,
high quality and diversity at the same time. When examining the Diffusion Model, the
Trilemma says that it achieves a high quality and good diversity, but not a fast sampling.

Figure 5.1: The Generative Learning Trilemma (Xiao et al., 2022)
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This notion is reproduced within the findings of this thesis. Sampling requires multiple
denoising steps and is far from away being fast. Additionally, most Diffusion Models require
dedicated GPUs with at least 10GB of VRAM (Rombach et al., 2022) and if the trend towards
using larger text encoders (Saharia et al., 2022) continues, this issue will only worsen in the
future.

To fix this issue, lots of research is done trying to optimize the performance of Diffusion
Models. One approach involves optimizing the architecture of the Diffusion Model, as seen in
the case of Latent DiffusionModels (Rombach et al., 2022). Another approach is to enhance the
reversal process by employing non-Markovian sampling (J. Song et al., 2022) or approximating
SDEs/ODEs through methods like the Eule-Maruyama or Heun’s method (Y. Song et al., 2021).

Interestingly, it seems like current approaches can not fix the inherent flaw of the diffusion
architecture. They rather trade off performance over quality (J. Song et al., 2022). All in all,
finding out if the Generative Learning Trilemma will be solvable is an interesting topic in
determining the future of Diffusion Models.

At thewriting of this thesis, current research can reduce sampling up to 1-4 reversal steps using
techniques like Adversarial Diffusion Distillation (Sauer et al., 2023) or Latent Consistency
Models (Y. Song et al., 2023). If these techniques are shown to be successful, future Diffusion
Models could be used in real-time applications, but still require dedicated hardware.
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5.1.2 Photorealism

While the Generative Learning Trilemma (see Figure 5.1) claims that Diffusion Models can
create high-quality samples, they often fail to provide a photorealistic solution. This issue
can be split up into contextual and structural problems.

Before beginning this analysis, it is important to highlight that image quality was assessed
through simple human evaluation. Several alternative methods exist for evaluating the image
quality of Generative Models. For instance, the Fréchet Inception Distance (FID) measures
the distance between the distribution of Inception-V3 features of real images and those of
generated images (Heusel et al., 2018). A lower FID score indicates better quality. Despite their
widespread usage in research, metrics like FID often produce results that differ from human
evaluations and solely offer a quantitative analysis (Jayasumana et al., 2024). Considering
these factors, human evaluation is used to obtain a more realistic and in-depth analysis.

Contextual

In these contextual problems, Diffusion Models create images that have small details like
eyes and hands displayed incorrectly or even completely missing.

One reason for these problems can be found in the second experiment (see Figure 4.15). Here,
the departure into the latent space or the usage of an Autoencoder introduces artifacts. As a
Latent Diffusion Model was mostly used in all experiments, this explains the occurrence of
this problem in almost all experiments.

Interestingly, one way of solving this issue was found when providing the model with more
accurate conditioning. For example, during the ControlNet Experiment (see Figure 4.4)
OpenPose conditioning gave Information about facial structure and hand placement. This
caused the model to reproduce these details more accurately, indicating that conditioning
could counter this reconstructional problem.

Further investigations are needed to evaluate if this problem can be solved using additional
conditioning information. Besides that, looking into different architectures or Autoencoders
improvements could be beneficial as well. Unfortunately, during testing none of the other
architectures tested could reach a performance and quality equal to that of Latent Diffusion
Models.
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Structural

Besides contextual details being displayed incorrectly, many of the generated images are
also missing structural details like skin pores. This makes images generated by Diffusion
Models look rather soft and artificial. In the Fine-Tuning experiment, this can be seen when
comparing the images of the DreamBooth model to the original dataset (see Figure 4.18 and
4.17). While the face is recognisable the produced images do not look like a convincing
photograph.

What would come to mind first is that the departure into the latent space might also be
responsible for removing these details, but when looking at Figure 5.2, which was created by
the pixel-based Score Based Generative Model, this soft look is also visible.

It could be plausible that this problem is inherent to the diffusion architecture itself because
fine details like skin textures are not that dissimilar from noise. If a Diffusion Model creates
an image by denoising, it runs into the risk of removing these noise-like structures.

Figure 5.2: Pixel-based
(Y. Song and Ermon, 2020)

Figure 5.3: (a) Noise (b) No Noise
(Karras et al., 2019)

A good indicator of this can be found in the importance of noise in the generative process of
the StyleGAN architecture. Here, Karras et al., 2019 discovers that adding noise into the layers
of the synthesis network promotes the creation of finer background details and skin pores
(see Figure 5.3). Ablating these noise inputs causes the images to obtain a soft and painterly
look that has similar qualities to that found in images generated by Diffusion Models.

Investigating if an additional refining step could add these details or if the diffusion architec-
ture itself can be adjusted could solve these issues.
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5.1.3 Societal Impact

While complete photorealism might not be achieved, there already have been images good
enough to trick the public. For example, a viral image of Pope Franziskus (see Figure 5.4) in a
stylish down jacket made international headlines.

Figure 5.4: Deep Fake, Pope Franziskus (Huang, 2023)

Additionally, the results of the first experiment show how easily diffusion models can recreate
the style of an artist (see Figure 4.5) and do a job that would have required many man-hours,
in a couple of minutes. This can become a problem concerning copyright violations as well
as changes in the labor market.

Copyright

The recreation of an image in the style of a Renaissance painter causes no copyright issues
because the creators died a long time ago. However, this does not hold true if a contemporary
artist is being copied.

A major problem is that models like Stable Diffusion can recreate many contemporary artists
because they are trained on the LAION-5B dataset. According to Schuhmann et al., 2022, the
LAION-5B dataset is a reference dataset that indexes to the internet and completely lacks
any kind of copyright surveillance.

This has already caused a lawsuit between Stability AI and Getty Images (Brittain, 2023). Here,
Getty Images claims that Stability AI violated copyright laws by training Stable Diffusion on
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their images without having a license. Trying to avoid further legal troubles, other models
are already adapting. For example, OpenAI is limiting DALL-E 3’s (Betker et al., 2023) ability
to generate images by following a strict content policy.

Precedent cases and governmental regularisation like the European Artificial Intelligence Act
(Satariano, 2023) are needed to obtain a clear understanding of how the Conditional Diffusion
Model can be used.

Deep Fakes

Another difficult area is the risk of conditioning Diffusion Models for malicious use, like the
creation of Deep Fakes. This has been one of the reasons why the Imagen model has not
been publicly released by the Google Research Team (Saharia et al., 2022).

While Deep Fakes are a big threat, there is already a promising Joint Developmental Founda-
tion project trying to stop them. This project called, “Coalition for Content Provenance and
Authenticity (C2PA)” is an alliance between big tech companies like Adobe, Microsoft and
Intel (C2PA, 2024). It works on a technical standard that ensures that every media contains
metadata, showing every editing step that was made. This is done utilizing digital signatures
and hashcodes to protect their truthfulness.

If such a standard became the norm, images manipulated by Diffusion Models would easily
be recognizable.

Labor Market

The last point concerns the influence Conditional Diffusion Models can have on the labor
market.

Turning a sketch into a painting could take a skilled worker many man-hours. Judging by
the results of the first experiment (see Figure 4.5), a Diffusion Model could potentially do this
in a couple of minutes in the future. Additionally, methods like DreamBooth could be used
to substitute photographers for product and portrait photography.

While it is unclear if this will result in a rise in productivity or a loss of jobs, companies
and workers in the fields affected by Conditional Diffusion Models should be aware of the
potential effects these developments could have.
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5.2 Conclusion

Reflecting on the aim of this thesis, it attempted to investigate the capabilities and uses of
the Conditional Diffusion Model, leading to its limitations and implications

In image manipulation, the Conditional Diffusion Model is an extremely capable tool. It can
turn sketches into paintings, solve Inpainting tasks and integrate personalized concepts. Using
the fundamental conditioning techniques (SDEdit, Classifier-Free Guidance, ControlNet) the
model can be guided in numerous ways offering a great creative toolkit. For the integration
of personalized concepts, the methods of DreamBooth and Low-Rank Adaptation offer a
good choice between performance and quality.

Performance is one of the main limitations. Most research has tried to fix this issue by
either optimizing the architecture of the Diffusion Model or enhancing the diffusion process.
While these techniques have been successful, it seems that they always come with a trade-off
between performance and quality.

Quality is another important limitation of the Conditional Diffusion Model. The Diffusion
Model often fails to create photorealistic images. As some of the quality issues may stem from
the architecture itself, future research is required to see if these obstacles can be overcome.

Despite all these limitations Diffusion Models are good enough to have a societal impact. For
all tasks not depending on photorealism Diffusion Models can speed up their creation process.
To protect Diffusion Models from being exploited for Deep Fakes and copyright violations
precedent cases and new legislation are needed. Furthermore, it is sensible to introduce a
system that can track image manipulation caused by Diffusion Models.
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Appendix

.1 Notation notes

Unconditional Diffusion Model

x Image Vector𝑝𝑑𝑎𝑡𝑎(x) Data Distribution𝑝𝜃(x) Generative Model𝑓𝜃 Neural Network Output𝑍𝜃 Normalising Constant

Score Based Generative Models

x Image Vector
̃x Image Vector, Perturbed
̃x0 Image Vector, Perturbed, Initial
̃x𝑡−1 Image Vector, Perturbed, Previous𝜎 Noise Schedule𝜋 Prior Distribution (e.g., Gaussian)∇x log 𝑝(x) Score Function

s𝜃 Score Based Generative Model
s𝜃(x, 𝜎) Score Based Generative Model, NCSN𝜖, 𝛼𝑖 Step Size
tr() Trace
z Sample from Gaussian Distribution
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Denoising Diffusion Probabilistic Models

x0 Image Vector, Initial
x𝑡 Image Vector, Noisy at 𝑡
x𝑇 Image Vector, Noisy at 𝑇
I Identity Matrix𝑞(x𝑡|x𝑡−1) Process, Forward𝑞(x𝑡|x0) Process, Forward, Reparametrization𝑝𝜃(x𝑡−1|x𝑡) Process, Reverse𝛽𝑡 Noise Schedule𝛼𝑡, ̄𝛼𝑡 Noise Schedule, Reparametrization𝜖 Noise, Target𝜖𝜃(𝑥𝑡, 𝑡) Noise, Prediction (Network)𝑇 Timestamps𝑧 Sampled from Gaussian Distribution, z ∼ 𝒩 (0, I)
Score-Based Generative Modeling through Stochastic Differential Equations

f(x, 𝑡) Drift Term𝑔(𝑡) Diffusion Term
dx Infinitesimal change in x
dw Infinitesimal increment of a Wiener process
d𝑡 Infinitesimal increment in time𝜆(𝑡) Weighting function

Sinusoidal Position Embeddings𝑑𝑚𝑜𝑑𝑒𝑙 Dimensionality𝑖 Dimension
PE(𝑝𝑜𝑠,2𝑖) Function Sinus, Even Indices
PE(𝑝𝑜𝑠,2𝑖+1) Function Cosine, Odd Indices𝑝𝑜𝑠 Position
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Attention Module𝑑𝑘 Dimension, Keys
Attention() Function, Attention
softmax() Function, Softmax
Q Matrix, Query
K Matrix, Key
V Matrix, Value
WQ,K,V Weight Matrices (Query, Keys, Values)

Mathematical Foundations𝑝(x) Unconditional Data Distribution𝑝(x|y) Conditional Data Distribution∇x log 𝑝(x) Unconditional Diffusion Model∇x log 𝑝(x ∣ y) Conditional Diffusion Model∇x log 𝑝(y ∣ x) Classifier𝛾 Scaling Factor

DALL-E – Hierarchical Text-Conditional Image Generation with CLIP Latents𝜖𝜃(x𝑡|∅) Diffusion Model, Unconditional𝜖𝜃(x𝑡|c) Diffusion Model, Conditional∅ Empty Sequence
c Conditioning𝑠 Scaling Factor𝜖𝜃 Diffusion model

CDM – Cascaded Diffusion Models

x Image Vector, Source Imagẽy Image Vector, Target Image, Noisy
y0 Image Vector, Target Image𝑓𝜃 Denoising model𝜖 Noise, Target𝛾 Noise Schedule
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LDM – Latent Diffusion Modelℰ Autoencoder, Encoder𝒟 Autoencoder, Decoder
Q,K,V Cross-Attention, Query, Key, Value Matrices
WQ,WK,WV Cross-Attention, Query, Key, Value Weight Matrices𝜏𝜃(y) Domain Encoder (Conditioning)
x Image Vector, Pixel Spacẽx Image Vector, Pixel Space, Reconstructed
zt Image Vector, Latent Space𝜑(zt) Intermediate Representation, U-Net𝜖𝜃 Noise, Denoising Model𝜖 Noise, Target𝐻, ℎ Scaling, Height, Pixel and Latent𝑊, 𝑤 Scaling, Width, Pixel and Latent𝑓 Scaling, Downsampling factor

DreamBooth

c Conditioning, [identifier] [class noun]
cpr Conditioning, [class noun]̂x𝜃 Image Vector, Denoised, Diffusion Model
xpr Image Vector„ Class Generated Image
x Image Vector„ Subject Image𝜖 Noise𝐿𝐶𝑙𝑎𝑠𝑠 Loss, Class Generated Images𝐿𝑆𝑢𝑏𝑗𝑒𝑐𝑡 Loss, Subject Images𝜆 Weighting Term, Class Loss𝜔𝑡, 𝛼𝑡, 𝜎𝑡 Weighting Term, Image Quality and Noise Schedule

LoRA – Low Rank Adaptation𝑟 Rank
A Matrix, Normal Distribution
B Matrix, Zeros
W0 Weight Matrix, Pre-TrainedΔW Weight Matrix, Low Rank Adaptation
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Textual Inversion𝑐𝜃(y) Conditioning Vector (Textual Embedding)
z𝑡 Image Vector, Latent
v∗ Text Embedding Vector𝑆∗ User-specified Pseudo-Word𝜖𝜃 Noise, Denoising Model𝜖 Noise, Target
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