
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fakultät Technik und Informatik 
Studiendepartment Informatik 

Faculty of Engineering and Computer Science 
Department of Computer Science 

 

  

Martin Gochevski 

Simulation of an autonomous vehicle in 
real, complex, urban driving scenes in 

Hamburg including its infrastructure 
and a local dynamic map 

Bachelor Thesis 



Error! No text of specified style in document.  2 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Martin Gochevski 

Simulation of an autonomous vehicle in 
real, complex, urban driving scenes in 

Hamburg including its infrastructure and 
a local dynamic map 

Bachelor Thesis eingereicht im Rahmen der Bachelorprüfung 
 
im Studiengang Bachelor of Science Information Engineering 
am Department Informatik 
der Fakultät Technik und Informatik 
der Hochschule für Angewandte Wissenschaften Hamburg 
 
 
Betruender Prüfer: Prof. Dr. Rasmus Rettig 
Zweitgutachter: Prof. Dr. Marc Hensel 
 
 
 
 
Abgabedatum: 20.12.2022 



 
 

Zusammenfassung 
 
Martin Gochevski 
 
Thema der Arbeit  

Simulation of an autonomous vehicle in real, complex, urban driving scenes in 
Hamburg including its infrastructure and a local dynamic map 

 
Stichworte 

CARLA, HiL, Simulation, LDM, Testing, Urban Mobility 
 

 
Kurzzusammenfassung 

In diesem Dokument wird erklärt, wie man eine CARLA-Simulationsumgebung 
einrichtet, um einen realen Ort zu repräsentieren, in diesem Fall die Teststrecke für das 
automatisierte und vernetzte Fahren (TAVF), um eine einfachere standortbezogene 
Forschung zu ermöglichen, die unter ressourcenknappen Bedingungen durchgeführt 
werden kann. Die Simulationsumgebung umfasst ein Fahrzeugmodell, das dem Tesla 
Model S des Urban Mobility Lab nachempfunden ist und zusätzliche 
Messmöglichkeiten bietet. Darüber hinaus wird in diesem Beitrag demonstriert, wie 
eine solche Simulation genutzt werden kann, indem eine Kommunikation mit der Urban 
Dynamic Map des Cloud-Servers von European Digital Dynamic Mapping hergestellt 
wird, um - wenn auch derzeit noch begrenzt - Verkehrsobjekte anzuzeigen. Auch die 
Reproduzierbarkeit wird berücksichtigt, indem die in CARLA eingebaute 
Umgebungsaufzeichnung genutzt wird, mit der Möglichkeit, zusätzliche Zustände 
aufzuzeichnen, d.h. dynamische Objekte, die aus der Cloud abgerufen werden, und 
das Fahrzeug selbst. 

 
 
Martin Gochevski 
 
Title of the paper 

Simulation of an autonomous vehicle in real, complex, urban driving scenes in 
Hamburg including its infrastructure and a local dynamic map 
 

 
Keywords 

CARLA, HiL, Simulation, LDM, Testing, Urban Mobility 
 

 
Abstract 

Within this document it is explained how to setup a CARLA simulation environment to 
represent a real-world location, in this case the Teststrecke für das automatisierte und 
vernetzte Fahren (TAVF), for the purpose of enabling easier location-based research 
which can be performed under resource scarce conditions. The simulation environment 
includes a vehicle model which mirrors the Urban Mobility Lab’s Tesla Model S with 
additional measurement capabilities. Additionally, this paper demonstrates how such a 
simulation can be used by establishing communication with the Urban Dynamic Map of 
the European Digital Dynamic Mapping’s cloud server to display, albeit currently 
limited, traffic objects. Reproducibility is considered as well by using CARLA’s built-in 
environment recording with the ability to record additional states i.e., dynamic objects 
retrieved from the cloud and the vehicle itself. 
 

 
 



Error! No text of specified style in document.  1 

 

 

1 
 

Acknowledgment 

I would like to take this opportunity to thank my parents for the years of support of any 
kind throughout my studies as I could not have managed without them. Furthermore, I 
am extremely grateful to Prof. Dr. Rettig mentoring me and introducing me to the Urban 
Mobility Lab and their research efforts, it has been a great journey so far and I hope 
that it stays that way. Finally, I must acknowledge Prof. Dr. Hensel for his ability to 
inspire young students to do more and do better. One of the major highlights during my 
first semester at the HAW was his lecture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Error! No text of specified style in document.  2 

 

 

2 
 

Table of Contents 

Acknowledgment ................................................................................................ 1 

1 Introduction ................................................................................................. 4 

1.1 Motivation ..................................................................................................... 4 
1.2 Objective....................................................................................................... 4 
1.3 Structure ....................................................................................................... 5 

2 Terms and Concepts .................................................................................. 6 
2.1 TAVF ............................................................................................................ 6 

2.2 Hardware-In-The-Loop ................................................................................. 6 
2.3 CARLA.......................................................................................................... 8 

2.4 Local Dynamic Map ...................................................................................... 8 

2.5 EDDY ........................................................................................................... 9 
2.6 Robot Operating System .............................................................................. 9 

3 State of the art .......................................................................................... 11 

4 Requirements Analysis ............................................................................ 13 

4.1 System Expectations .................................................................................. 13 
4.2 EDDY-in-The-Loop ..................................................................................... 13 

5 Hardware and Software ............................................................................ 14 
5.1 Hardware .................................................................................................... 14 

5.2 Software ..................................................................................................... 14 
5.2.1 Requirements ............................................................................................. 14 
5.2.2 Used ........................................................................................................... 15 

5.2.3 Circumvention ............................................................................................. 15 

6 Implementation ......................................................................................... 16 
6.1 System Concept ......................................................................................... 16 

6.1.1 Communication with UDM .......................................................................... 16 
6.1.2 Simulated Test Vehicle ............................................................................... 17 
6.2 Simulation Setup ........................................................................................ 18 

6.2.1 TAVF in CARLA .......................................................................................... 19 
6.2.2 Test Vehicle ................................................................................................ 22 

6.2.3 Path Planning and Route Following ............................................................ 24 
6.3 ROS Communication .................................................................................. 25 

7 Functionality Test ..................................................................................... 26 
7.1 Underlying Components ............................................................................. 26 

7.1.1 Vehicle controller test ................................................................................. 26 
7.1.2 Displaying objects received from UDM ....................................................... 27 

8 Testing UDM with the Digital Twin .......................................................... 29 

9 Conclusion ................................................................................................ 30 

10 Future Work .............................................................................................. 31 

11 Appendix ................................................................................................... 32 



Error! No text of specified style in document.  3 

 

 

3 
 

11.1 System Setup Manual ................................................................................ 32 
11.1.1 ........................................................................................................... CARLA Installation32 
11.1.2 ............................................................................................................... Distributed Client34 
11.2 Source Code ............................................................................................... 41 
11.2.1 ......................................................................................................................... manager.py41 

12.1.1 .................................................................................................................................... pid.py49 
12.1.2 ........................................................................................................................... sensors.py60 
12.1.3 ......................................................................................................... simulation_setup.py62 
12.1.4 ..................................................................................................................... conversion.py66 
12.1.5 ................................................................................................ eddy_digital_twin.launch67 

List of Figures ................................................................................................... 68 

List of Tables 70 

List of Listings .................................................................................................. 71 

Bibliography 72 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Error! No text of specified style in document.  4 

 

 

4 
 

1 Introduction 

1.1 Motivation 

Most automotive researchers and manufacturers are focused on the vision of future 
mobility. While it’s apparent that fully autonomous vehicles are the goal, defining how 
this will be achieved is a seemingly Sisyphean task that becomes more difficult with 
the introduction of every proprietary Autonomous Driving (AD) system [1]. This has 
been recognized and is being worked on by the European Digital Dynamic Mapping 
(EDDY) [2] project, its goal being the creation of a Local Dynamic Map (LDM) [3] 
implementation called the Urban Dynamic Map (UDM) for the city of Hamburg and 
establishing a framework for UDM implementation for other European cities. Such an 
implementation of an LDM will provide enhanced collective perception capabilities to 
automated vehicles which in turn should result in improved localization and protection 
of Vulnerable Road Users (VRUs) [4]. 

The UDM as conceptualized by EDDY will allow the vehicles of tomorrow to 
communicate in a standardized manner within urban environments with a focus on 
safer and more efficient mobility for all participants in traffic. AD vehicles will specifically 
benefit from openly available information on traffic conditions and obstructions and by 
integrating the collective perception offered by the UDM VRUs will be better protected 
with early recognition of potentially dangerous scenarios. 

Testing the systems developed for the improvement of the UDM itself is crucial. 
However, running such tests using a physical vehicle is costly in terms of man-hours 
and energy and their adaptability is limited [5]. Complex systems for which physical 
tests can be potentially destructive, externally or to the system, have been tested in 
simulations for the past century [6]. Testing the UDM with an AD capable vehicle is 
currently bureaucratically prohibitive since authorization is required to drive a vehicle 
using its AD system. The process to acquire such authorization is time consuming and 
the authorization itself might be limited by the authorities based on road and traffic 
conditions [7]. Whereas a simulation can be run at any point in time for any length of 
time and requires no active monitoring, meaning new features of the UDM can be 
tested as soon as they are developed. 

1.2 Objective 

The fundamental goal of the thesis is to establish a digital twin [8] of the Teststrecke 
für Automatisiertes und Vernetztes Fahren (TAVF) [9] within a simulation environment, 
including a vehicle capable of automated driving, communication with the UDM, visual 
representation of UDM data and session recording. Furthermore, the aim is to use the 
digital twin to test the UDM’s performance to the extent possible as of writing this paper 
and allow for anyone reading to create tests suitable for future features of the UDM. 

Testing the UDM as part of this study shall be rudimentary, as the UDM is in its early 
stages of development and the reliable data available is basic, mainly consisting of the 
location of traffic signs along the TAVF. Therefore, the criteria for the test will be 



Error! No text of specified style in document.  5 

 

 

5 
 

reliability of the connection to the UDM and a comparison of the latency of a standalone 
request and the latency of a request as part of the digital twin. 

1.3 Structure 

In section 2 the terms and concepts necessary to understand the rest of the paper are 
introduced and explained. Section 3 presents a brief overview of the progress of 
Hardware-in-the-Loop (HiL) testing, how widely CARLA is used with and without HiL 
in research studies and some noted publications relevant to the thesis and EDDY. 
Section 4 describes what the system should do, how it should perform and what is its 
purpose. In section 5 a systemic overview of hardware and software requirements and 
how they were fulfilled is given. Section 6 shows the implementation of the system i.e., 
how the system expectations from 4.1 were accomplished. Sections 7 and 8 present 
test results, where the former revolves around the functionality of the system’s 
components and it as a whole and the latter shows the use of the system coupled with 
the UDM. At the end section 9 discusses the system as a whole and how it can impact 
future mobility and section 10 proposes possibilities for improvement and additions to 
the system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Error! No text of specified style in document.  6 

 

 

6 
 

2 Terms and Concepts 

2.1 TAVF 

The TAVF in Hamburg is a track which serves the purpose of testing future mobility 
concepts. The track can be seen in Figure 1. It consists of more than 70 communication 
systems designed to exchange data with vehicles using it. The data is sent via ITS-G5 
[10], a communication standard based on WLAN 802.11p. Currently provided are 
Signal Phase and Timing (SMaT) messages of the traffic lights, Map Data Messages 
(MAP) messages of the road topology, virtual signs as In-Vehicle Information (IVI) and 
sensor data for VRU protection as Collective Perception Messages (CPM) [11]. 
Researchers and manufacturers alike take advantage of the TAVF to develop and 
shape their concepts of what urban mobility will look like [12]. 

 

2.2 Hardware-In-The-Loop 

Hardware-In-The-Loop (HiL) testing is a design approach based on using simulated 
process signals as input to a real controller [14]. A visual representation of a simulation 
substituting the physical process is shown in Figure 2. Simulating the process allows 
for the design of the application to increase in complexity while keeping testing costs 
in terms of time, money, and energy lower than building and installing the components 
for an experimental test. In the case of all simulations the trade-off for cost savings is 

Figure 1: TAVF [13] 



Error! No text of specified style in document.  7 

 

 

7 
 

accuracy [15]. A simulation does not account for all factors that influence the physical 
system as its purpose is to approximate the behavior of the process with a model 
accurately enough to ensure that the rest of the system operates as expected. Figure 
3 presents the trade-off between costs and precision of testing methods, where 
accuracy reduction refers to the ability of the testing method to provide precise outputs.  

 

 

 

Figure 2: a) Classical control experimental setup; b) Hardware-in-the-loop method, 
adapted from [14] 

Figure 3: Precision, time, and cost trade off in computer simulation, HiL simulation 
and actual situation [15] 



Error! No text of specified style in document.  8 

 

 

8 
 

2.3 CARLA 

CAR Learning to Act (CARLA) is an open-source research simulator [16] with 
continued regular maintenance and updates contributed by dozens more [17]. CARLA 
is implemented in C++ and provides a range of features and tools for simulating and 
testing autonomous driving systems, including: 

- A realistic 3D urban environment with a variety of roads, intersections, buildings, 
and other objects 

- A physics engine for simulating vehicle dynamics and sensor behavior 

- A range of sensors, including cameras, lidar, radar, and GPS 

- Tools for controlling and interacting with the environment, such as the ability to 
spawn and control vehicles, manipulate traffic conditions, and set up scenarios 

- APIs for connecting to external autonomous driving algorithms and systems 

 

2.4 Local Dynamic Map 

A Local Dynamic Map (LDM), standardized by ETSI [3], combines static and dynamic 
information relevant for Cooperative Intelligent Transport Systems (C-ITS) as four 
layers, as seen in Figure 3. 

Figure 4: CARLA simulating an urban environment in different weather conditions [16] 



Error! No text of specified style in document.  9 

 

 

9 
 

 

2.5 EDDY 

The European Digital Dynamic Mapping (EDDY)  project is an on-going, publicly 
funded, collaborative effort from the German Center for Air and Space Travel [19] (DLR 
– Deutsches Zentrum für Luft- und Raumfahrt e. V), Urban Mobility Lab [20] (UML) of 
the University of Applied Sciences Hamburg (HAW – Hochschule für Angewandte 
Wissenschaften Hamburg), Institute for Climate Protection, Energy and Mobility [21] 
(IKEM - Institut für Klimaschutz, Energie und Mobilität), OECON Products & Services 
[22], consider it [23] and Ubilabs [24]. Its goal is to conceptualize and develop an Urban 
Dynamic Map, a cloud database implementation of an LDM which is open to 
contribution and use of data for ITS. This implementation is based in the city of 
Hamburg with the vision of creating a framework to be used by cities across Germany 
and Europe. 

2.6 Robot Operating System 

Robot Operating System (ROS) [25] is a flexible framework for developing robotic 
applications. It provides a set of tools and libraries for building and deploying robot 
software, as well as a communication infrastructure for connecting different parts of a 
robot system. 

ROS is based on a publish-subscribe model, in which nodes (individual components 
of a robot system) publish data to and subscribe to data from a shared message-
passing system. This allows nodes to communicate with each other and exchange 

Figure 5: LDM and its four layers [18]  



Error! No text of specified style in document. 10 

 

 

10 
 

information about their environment, sensors, and actions. An overview of a system 
called turtlesim, a simulation most commonly used as an introduction to ROS, using 
the publish-subscribe model to control a robot is given in Figure 6. 

 

ROS provides a wide range of libraries and tools for tasks such as robot localization, 
motion planning, and perception. It also has a large community of users and 
developers, which makes it easy to find support and resources for building and 
deploying robotic applications. 

In summary, ROS is a powerful and flexible platform for building and deploying robotic 
applications, with a rich set of libraries and tools and a strong community of users and 
developers.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Nodes and topics (in ellipses and rectangles, respectively) [27] 



Error! No text of specified style in document. 11 

 

 

11 
 

3 State of the art 

The first system which can be considered as having applied HiL even by today’s 
standards was an analog flight simulation, created in 1910 by the “Sanders Teacher”. 
Since then, HiL has been adapted to the emerging technologies of the time. The 
Defense and Aerospace industry had been taking advantage of HiL since the 1950’s, 
however major improvements to digital computers in the 1970’s and 1980’s led to the 
use of HiL in the automotive industry. The introduction of commercial HiL systems in 
the 1990’s resulted in widespread applications relying on HiL [6]. The aerospace and 
automotive industries significantly rely on HiL as part of their validation process for 
critical systems due to the inherent risk posed by possibly destructive tests and cost-
savings as opposed to building the full physical system. An often-overlooked benefit in 
recent years is the ability to perform distributed tests i.e., remotely, as the design and 
manufacturing team can be located at such a distance from the testing team where it 
is economically unfeasible to physically test the system [26]. 

With AD being “the next big thing” in the automotive industry for the past decade, HiL 
has followed suit, as can be seen in Figure 7. While the number of publications seems 
quite low, the trend indicates growth of the academic interest in researching HiL for 
AD. This is no surprise however, as most systems using HiL are developed with the 
efforts and for the purposes of private companies, as indicated by dSPACE’s, a leading 
company in HiL and one of the first to offer commercial vertical HiL solutions [27], list 
of cooperating partners [28] consisting of only private companies for which there is no 
incentive to publish their work. 

 

Research publications in which CARLA is used are scarcer and even more so when it 
comes to publications involving application of HiL within CARLA, as can be seen in 
Figure 8. 

0

20

40

60

80

100

120

140

160

180

1
9

9
9

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

2
0

1
8

2
0

1
9

2
0

2
0

2
0

2
1

P
u

b
lic

at
io

n
s

Publishing year

Figure 7: Number of publications on use of HiL for AD per year in Scopus database 



Error! No text of specified style in document. 12 

 

 

12 
 

 

Two of the publications using CARLA are of special interest to this study. One of them 
proposes a framework for testing communication between vehicles and other systems 
using the ITS-G5 communication standard [29], whereas the other developed a 
framework which focuses on preparing sensor information data to be used for collective 
perception [30]. As the EDDY project involves both concepts, these publications 
provide an insight to how the digital twin can incorporate them using their respective 
frameworks. Testing the performance of ITS-G5 communication between multiple test 
vehicles and the UDM simultaneously can be more easily implemented based on the 
framework. The standardization of object messages for the UDM requires a significant 
effort from the EDDY project partners, thus the ability to measure their effectiveness 
with the digital twin is of great importance. 

 

 

 

 

 

 

 

 

 

Figure 8: Number of publications per year in Scopus database, CARLA vs. CARLA 
and HiL 



Error! No text of specified style in document. 13 

 

 

13 
 

4 Requirements Analysis 

4.1 System Expectations 

The digital twin shall consist of a fully setup CARLA simulation containing a digital 
recreation of the TAVF, a simulated test vehicle and have established communication 
with the UDM. The CARLA simulation server will run on a computer capable of 
maintaining a framerate which will provide viable accuracy of the data. As the data 
received from the UDM depends on the vehicle’s location, significant lag in reporting 
the location to the UDM, caused by a low framerate, will stagger the representation of 
objects from the UDM, in practical terms the simulation might not reflect the actual 
state surrounding the vehicle. The simulated vehicle shall be capable of reenacting 
test drives based on real recorded data and random path following when no such data 
is used. Communication with the UDM shall be conducted by a ROS node which will 
report the GNSS position of the test vehicle, gathered by a simulated GNSS sensor, 
and the traffic objects returned from the UDM based on that position shall be visualized. 
Additionally, the system will visualize data from the simulated sensors.  

To fulfill the expectations, the following procedure is established: 

- Choosing hardware components for a computer which are compatible and 
powerful enough to run a CARLA server at a high framerate 

- Installing Ubuntu 22.04 on the computer 

- Downloading and building CARLA and Unreal Engine 4.26 from source 

- Creating a CARLA compatible replica of the TAVF 

- Integrating a simulated vehicle into the simulation 

- Establishing a controller capable of guided and randomized test drives 

- Communication using ROS’s Publisher/Subscriber architecture 

- Recording and storing simulation data 

4.2 EDDY-in-The-Loop 

In the interest of presenting the viability of HiL testing using CARLA, the communication 
with the UDM shall be tested. As the simulated test vehicle executes test drives it shall 
communicate its position to the UDM via a ROS node and measure the response time 
needed for the UDM to respond. As the planned features of the UDM are not yet 
implemented this is the most viable test as of the development of the system. EDDY-
in-The-Loop is to be expanded with the addition of features to the UDM. The addition 
of tests shall be a simple procedure due to the digital twin’s adaptability. 

 



Error! No text of specified style in document. 14 

 

 

14 
 

5 Hardware and Software 

5.1 Hardware 

The minimum and recommended hardware requirements for CARLA presented in 
Table 1 are based on the minimum and recommended hardware for Unreal Engine 
4.26 [31] [32], aside from the storage which takes both Unreal Engine and CARLA into 
account [33] 1. Access to the used hardware was provided by the Urban Mobility Lab 
[21] for the writing of this thesis.  

 Minimum Recommended Used 

CPU [threads] 6 8 32 

RAM [GB] 16 32 128 

VRAM [GB] 6 8 24 

Storage [GB] Min. 130 Min. 130 2000 

The choice of components may seem excessive when compared to the recommended 
hardware, however these requirements are more suited for game development where 
the visuals make use of most of the graphics processing unit (GPU). CARLA on the 
other hand approximates real life physics in its simulations which alongside the visuals 
on a large enough scale, such as that of the TAVF, will throttle most commercial grade 
GPUs. Therefore, a factory overclocked Nvidia RTX 3090 with 24GB of VRAM was 
chosen. As for the processor, a CARLA client script is executed exclusively on the 
central processing unit so in order to ensure best case scenario parallelization the 16 
core, 32 thread AMD Ryzen 9 5950X with a base clock of 3.4GHz and a maximal boost 
clock of 4.9GHz was the obvious choice. The only dilemma arised upon considering 
the dynamic RAM, where a trade-off between capacity and speed had to be made, 
however capacity prevailed at the end as it is more versatile and the computer, being 
funded by the UML, shall be used for further projects. 

5.2 Software 

5.2.1 Requirements 

The latest version of CARLA (0.9.13 as of writing this paper) is officially supported for 
Ubuntu 18.04 [34], however it is available for Ubuntu 20.04 as well.  

 

1 The amount of required storage is not prohibitively high, regardless its speed might be a limiting factor 
to performance. Both minimum and recommended system builds for Unreal Engine 4.26 specifically 
recommend an SSD for storage. 

Table 1: Hardware Requirements for Unreal Engine 4.26 + CARLA 



Error! No text of specified style in document. 15 

 

 

15 
 

5.2.2 Used 

Software Purpose 

CARLA version 0.9.13 Creating a CARLA simulation 

Unreal Engine 4.26  

SUMO’s netconvert Conversion from OpenStreetMap file to OpenDRIVE file 

RoadRunner Conversion from OpenDRIVE file to CARLA compatible 
objects 

VirtualBox Set up of Virtual Machine for distributed CARLA client 

ROS Communication with UDM 

 

The author used Ubuntu 22.04 for the implementation of the digital twin, despite the 
apparent lack of support for it by CARLA. The reason for this is the GPU used in the 
system, an NVIDIA GeForce RTX 3090, was unrecognizable to the drivers available 
on Ubuntu 20.04. This resulted in CARLA running purely on the CPU which led to an 
abysmal framerate, under 5 FPS at any given time. To take advantage of the full 
potential of the system the circumvention described next was used. Furthermore, a 
Virtual Machine (VM) with Ubuntu 20.04 LTS, created using VirtualBox, was employed 
for executing the CARLA client scripts. 

5.2.3 Circumvention 

Since Ubuntu 22.04 was deemed necessary to continue with the efforts for this study, 
the author attempted building CARLA from source on it. This attempt was unsuccessful 
as the compiler central to building CARLA and Unreal Engine 4.26 [34], clang version 
8 or 10, is not provided for Ubuntu 22.04 [35] [36]. Upon coming across this issue, 
Ubuntu 20.04 was reinstalled on the system. This allowed for CARLA to be built. The 
author took advantage of Ubuntu’s ability to upgrade the operating system and kernel 
while keeping all data intact [37]. Such an upgrade is only possible on an Ubuntu Long 
Term Supported (LTS) system. CARLA works without any issues under Ubuntu 22.04 
and the NVIDIA RTX 3090 card is fully recognized and utilized with the latest drivers. 
One must take note that when applying this circumvention the make commands to 
use/adapt CARLA from the terminal [38] can not be used, as they depend on the clang-
10 compiler, this is easily remediated by running the shell scripts called by the make 
commands. To launch CARLA, we use BuildCarlaUE4.sh from the directory it is in as 
shown in Listing 1. 

./BuildCarlaUE4.sh --launch  

  

Listing 1: Terminal command to launch CARLA 



Error! No text of specified style in document. 16 

 

 

16 
 

6 Implementation 

6.1 System Concept 

 

The diagram in Figure 9 shows the system architecture of the Digital Twin, 

accompanied by external nodes necessary for testing the UDM on the left and keeping 
records and visualization on the right. The implementation of the diagram modules 
belonging to the scope of the digital twin will be discussed in the following sections 
based on their joint functionality in terms of the digital twin, whereas the rest of this 
section gives an overview of the modules externally provided for the improvement of 
the digital twin. 

6.1.1 Communication with UDM 

The communication with the UDM is established via the Cloud2ROS ROS node [39] 
which sends an HTTP request to the server. Based on the GNSS position, reported by 
ROS2Carla, Cloud2ROS establishes a square bounding box with a customizable side 
length and packs it in an HTTP request that is then sent to the UDM. The UDM returns 
all objects registered for the area represented by the bounding box i.e., in the vicinity 
of the vehicle. These objects are then stored in an array and published to its respective 
ROS node. 

To make use of ROS, it must be installed on the system and a ROS workspace must 
be configured. The guides [40], [41] for both procedures were followed. Additionally, a 
launch file was created in order to have the ability to pass parameters via the command 
line. The launch file is shown in Listing 2, it effectively initializes the ROS parameters 
[42] to be used within the simulation management script and then runs the script. 

Figure 9: Diagram displaying the Digital Twin functionalities and communications 



Error! No text of specified style in document. 17 

 

 

17 
 

<!-- --> 

<launch> 

  <!-- launch a complete carla-ros-environment --> 

    <!-- Simulation manager --> 

    <param name="display" type="bool"/> 

    <param name="rosbag" type="str"/> 

    <param name="loop_rosbag" type="bool"/> 

    <param name="timer" type="float"/> 

  <node pkg="eddy_digital_twin" type="manager.py" 
name="eddy_digital_twin_manager"> 

</launch> 
 

6.1.2 Simulated Test Vehicle 

The simulated test vehicle used for this thesis is modelled after the Urban Mobility 
Lab’s Tesla Model S [43] with advanced sensing and communications capabilities, 
both the physical and simulated vehicle can be seen in Figure 10. The model used in 
CARLA reflects all capabilities of the UML’s test vehicle. 

In addition to the LiDAR and cameras, a GNSS sensor [44] was coupled to the 
simulated vehicle. The sensor is configured to report the Geodetic location of the test 
vehicle every 10 frames to ensure the UDM is not overloaded with requests, nor the 
ROS communication pipeline gets bottlenecked. 

 

 

 

 

Listing 2: Launch file used for managing the simulation 



Error! No text of specified style in document. 18 

 

 

18 
 

 

  

6.2 Simulation Setup 

CARLA version 0.9.13 was built from source as other installation methods do not 
provide access to the Unreal Engine editor which limits the user to interacting with the 
CARLA server only via the Python API. The additional capabilities allowed by the editor 
are essential when integrating a custom map in CARLA, as it provides the ability to 
check the map for accuracy and correctness easily.  

The CARLA client alongside the Cloud2ROS node were ran in a VM to take advantage 
of CARLA’s server/client architecture. While this was not strictly necessary for this 
study, it was deemed beneficial for future use of the digital twin when direct access to 
the system running the server is not immediately available. Ubuntu 20.04 LTS was 
chosen for the VM’s operating system primarily due to ROS noetic, the ROS version 
of choice for the UML’s research activities, is not supported on Ubuntu 22.04 LTS, 
additionally the graphics card is not utilized by CARLA client scripts. The virtualization 
software of choice for this thesis was VirtualBox due to the author’s previous familiarity 
with it and its ease of use on Ubuntu. 

The full, step by step, procedure to set up a system mirroring the one used for this 
thesis is provided in the Appendix, section 11.1. 

An overview of the communication flow of the digital twin is shown in Figure 11. 

a) b) 

Figure 10: a) Urban Mobility Lab’s Upgraded Tesla Model S [20]; 

b) Simulated Tesla Model S [43] 

 



Error! No text of specified style in document. 19 

 

 

19 
 

 

6.2.1 TAVF in CARLA 

At the start of writing this paper the TAVF was not available as a CARLA compatible 
map, thus the procedure to create one such map, shown in Figure 12 and described 
next, was established. 

 

Foremost a base map must be acquired. OpenStreetMap (OSM) hosts open-source 
map data and allows extraction of a specific area on their website [45]. After navigating 
the map view to display the area which is to be extracted, it is recommended to use 
OSM’s feature for manual selection of a specific area. 

A rectangle representing the bounds of the area to be extracted is displayed overlayed 
on the map view. Figure 13 shows the selected map area of interest within the 
rectangle’s highlighted inner area, for the purposes of this paper this area is focused 
on the TAVF. 

Figure 11: Communication flow of the digital twin 

Figure 12: Custom map generation and ingestion in CARLA 
sources left to right: [45], [46], [47], [48] 



Error! No text of specified style in document. 20 

 

 

20 
 

 

In case the selected area is too large to request from OSM directly, they recommend 
BBBike’s [49] extraction tool which allows the user to define a shape with more than 
four sides, as well as JOSM [50], a Java based OSM editor which can handle larger 
amounts of data at once. 

The conversion from OSM to ASAM OpenDRIVE is done using Simulation of Urban 
Mobility’s (SUMO) netconvert tool [48]. First SUMO must be installed, which can be 
done by using the command from Listing 2 in the terminal. 

sudo apt install sumo  

After navigating to the folder where the OSM map is stored, the command from Listing 
3 can be run to convert it to an ASAM OpenDRIVE road network description. 

 

netconvert –osm-files <OSM filename>.osm -o <OpenDRIVE filename>.xodr  

Figure 13: OSM map view showing the highlighted TAVF to be extracted 

Listing 3: Terminal command to install SUMO 

Listing 4: Terminal command to convert from OSM to OpenDRIVE using netconvert 



Error! No text of specified style in document. 21 

 

 

21 
 

The next step requires MathWorks’ RoadRunner program, an interactive 3D editor for 
automated driving system simulation. Using Blender [51], a 3D modelling program, with 
the blender-osm [52] addon is an open-source alternative however the author had little 
success using it to properly extract the roads. Additionally, there is the possibility to 
ingest an OSM or OpenDRIVE map directly in CARLA [48], however this method is 
rudimentary and depends on the robustness of the map file. 

The installation of RoadRunner, version R2022b, was executed according to the guide 
provided by MathWorks [53]. While the program runs well on Ubuntu, some 
OpenDRIVE files could not be imported in it, thus using a Windows system to generate 
the 3D road models with RoadRunner is recommended. The attempts to import 
OpenDRIVE files in RoadRunner on Ubuntu provided no warnings or errors upon 
failure, thus it is not specifically clear as to why they happen. The same files can be 
imported on Windows flawlessly so it is presumed that RoadRunner does not function 
quite as well on Ubuntu. 

Following MathWorks’ guide [54] the OpenDRIVE file previously created was imported 
in RoadRunner, the successful output of this is shown in Figure 14. The Filmbox file 
and necessary accompanying files were exported from RoadRunner and ingested in 
CARLA by following the sections relevant for an export/import using Filmbox in 
MathWorks’ guide [47] as well. 

 

Figure 14: TAVF OpenDRIVE road network supplied by LGV imported in RoadRunner 



Error! No text of specified style in document. 22 

 

 

22 
 

 

6.2.1.1 Provided OpenDRIVE data 

The Landesbetrieb Geoinformation und Vermessung (LGV) [55] i.e., State Office for 
Geoinformation and Surveying, Hamburg, provided a more accurate and handcrafted 
OpenDRIVE network representing the TAVF as part of the EDDY project. Such a 
network will be in most cases of higher quality than a semi-automatically generated 
one resulting in its use for the purposes of this thesis. This difference in quality and 
workability can be seen between Figure 14 and Figure 15, where the former which 
shows the LGV provided map contains only the roads that are part of the TAVF, 
whereas the latter includes every side street and alley within the designated area. The 
additional information extracted from OSM primarily impacts the performance of the 
CARLA server negatively as well as being irrelevant to the study.  

6.2.2 Test Vehicle 

As previously stated, the test vehicle used in the digital twin was provided [43], however 
some adaptations to the management of sensor data were made to ensure better 
performance and visual clarity. Figure 11 displays the architecture employed. The 
major distinction from the provided sensor management system is the synchronized 
gathering and output of sensor data, as well as the organization of the display, the 
difference of which can be seen in Figure 17 and Figure 18. The new management 

Figure 15: TAVF OpenDRIVE generated from OSM data 



Error! No text of specified style in document. 23 

 

 

23 
 

system display output is more human comprehensive by outlaying the 360-degree 
camera panoramically. 

 

 

Figure 16: Sensor Management and Display Diagram 

Figure 17: Display organization of provided sensor management system, [45] 



Error! No text of specified style in document. 24 

 

 

24 
 

 

6.2.3 Path Planning and Route Following 

To simulate a test drive within CARLA, a path planning and following algorithm had to 
be created and implemented, this algorithm is shown in Listing 5, basically if a route is 
given in the form of Geodetic coordinates the vehicle will follow it, otherwise the system 
chooses a random point on the map to start and chooses the next point as the nearest 
to the previous of the same road network. Important to note is that a CARLA waypoint 
requires the location provided to be converted from Geodetic to Scene East-North-Up 
(ENU) coordinates i.e., a conversion from GNSS to local Unreal Engine 4 World 
coordinates. The formula for this conversion is provided in Equation 1. The reference 
latitude and longitude, Latref (reference latitude) and Lonref (reference longitude), 
represent the center of the map as Geodetic coordinates and Rearth is the Earth’s 
equatorial radius in meters. 

if rosbag path given: 
 extract GNSS positions and store in array: positions 
 convert positions[0] to World coordinates and store as spawn point 
 convert positions[1] to World coordinates 
 find closest waypoint to position[1] and store as next waypoint 
  
 while waypoint index < len(positions): 
  if car distance to next waypoint < 2.5 (m): 
   increase waypoint index 
   get next waypoint 
  compute control with PID 
  apply control to vehicle 
 else: 
  reset 
else: 
 choose random waypoint and store as spawn point 
 find closest waypoint to spawn point 
 if closest waypoint exists: 
  set as next 
 else: 
  reset 
  
 while next waypoint exists: 
  if car distance to next waypoint < 2.5 (m): 
   get next waypoint 
  compute control with PID 
  apply control to vehicle  

𝑥 = cos (𝐿𝑎𝑡𝑟𝑒𝑓 ∗
𝜋

180
) ∗ 𝜋 +

𝑅𝑒𝑎𝑟𝑡ℎ

180
∗ 𝑙𝑜𝑛 − cos (𝐿𝑎𝑡𝑟𝑒𝑓 ∗

𝜋

180
) ∗ 𝜋 ∗

𝑅𝑒𝑎𝑟𝑡ℎ

180
∗ 𝐿𝑜𝑛𝑟𝑒𝑓 

Figure 18: Display organization of used sensor management system, 
top row: blank, LiDAR visualization, Top Camera, Depth Camera; 
bottom row: Back-Left Camera, Front-Left Camera, Front Camera, 

 Front-Right Camera, Back-Right Camera 

Listing 5: Algorithm for path planning and following 



Error! No text of specified style in document. 25 

 

 

25 
 

𝑦 = 𝑐𝑜𝑠 (𝐿𝑎𝑡𝑟𝑒𝑓 ∗
𝜋

180
) ∗ 𝜋 +

𝑅𝑒𝑎𝑟𝑡ℎ

180
∗ log (tan(90 ∗ 𝑙𝑎𝑡) ∗

𝜋

360
) − (𝐿𝑎𝑡𝑟𝑒𝑓 ∗

𝜋

180
) ∗ 𝑅𝑒𝑎𝑟𝑡ℎ 

∗ log (tan(90 + 𝐿𝑎𝑡𝑟𝑒𝑓) ∗
𝜋

360
) 

Aside from the coordinate system conversion a proportional–integral–derivative (PID) 
controller [56] must be tuned to ensure proper route following. While it is possible to 
give specific instructions on tuning the PID controller, it is not practical as it is highly 
system dependent i.e., any difference whether apparent or not between the hardware 
or software used to run the simulation will drastically impact the behavior of the PID 
controller. A much more effective way of considering the coefficient adaptations is 
anecdotally, where the effects of the tuning can be thought of as such: 

- Proportional coefficient corresponds to the immediate response of the 

system to changes in its environment 

- Derivative coefficient adapts the immediate response based on the 

instantaneous error of the system’s output 

- Integral coefficient corrects the system over time 

6.3 ROS Communication 

As mentioned in Communication with UDM, a ROS node is necessary for transmitting 
the GNSS position to the UDM and to receive traffic data from it. The CARLA client 
script creates a “sim_manager” node which is used to publish the simulated vehicle’s 
GNSS position to the “gps_pos” topic. Before publishing the vehicle’s longitude and 
latitude are packed into a message of type SbgGpsPos [57]. The “cloud_linker” node, 
created by the Cloud2ROS script, is subscribed to the “gps_pos” topic and upon seeing 
a message it sends an HTTP request to the UDM containing the position and the radius 
for which traffic objects are to be returned. Any objects that are returned are then 
packed into an array of a custom message type where the object’s name, type, object 
class and position are stored. This message array is published to the 
“eddy_objects_msg” topic to which the “sim_manager” node is subscribed. The objects 
are then displayed within CARLA using the debugging feature. 

 

 

Equation 1: Conversion from given latitude and longitude to Unreal Engine 4 World 
Coordinates [56] 

Figure 19: RQT Graph displaying the ROS nodes of communication between Digital 
Twin and UDM 



Error! No text of specified style in document. 26 

 

 

26 
 

7 Functionality Test 

As the nature of the test results is partly visual, recordings are cited to display them. 
The following subsections shall describe the conditions under which the tests were 
performed, any issues with the test results and whether they are deemed acceptable. 

7.1 Underlying Components 

It is vital to ensure that the components of the digital twin are functional individually, 
before attempting to use the system to test another system. 

7.1.1 Vehicle controller test 

7.1.1.1 Provided route 

The ability of the simulated test vehicle controller to follow a given route was tested by 
inputting recorded GNSS positions from a physical test drive, performed as part of the 
activities of the UML. The waypoints for the provided route were visualized using 
CARLA’s debugging module which draws bounding boxes in the simulation. [58] 

The conversion from GNSS positions to CARLA waypoints is imperfect, as the 
assignment of a position to a waypoint depends on the accuracy of the position 
recording and the underlying road network in CARLA. The inaccuracies that result from 
faults in the recording and road network have been summarized in Figure 20. The 
mean error between the recorded positions and simulated waypoints is 12.03318 
meters. Despite such a significant error, the route following of the controller 
approximates the real route well enough to be feasible for use in testing the UDM. 



Error! No text of specified style in document. 27 

 

 

27 
 

 

7.1.1.2  Randomized route 

Simulating the test vehicle driving along randomized routes can be beneficial when 
collecting data across a longer period, as repeating a provided route will produce 
approximately the same results each time [59]. The time to reset was the chosen metric 
to check whether the randomized route following is viable for testing the UDM. After 
letting the simulation run for 30 minutes the mean time to reset the simulated vehicle 
was 15.71548 seconds, with a minimum of 7 nanoseconds i.e., instantaneous reset 
after choosing a spawn point with no following waypoint, and a maximum time to reset 
of 72.143 seconds. The time to reset will be improved with the improvement of the road 
network representing the TAVF. 

7.1.2 Displaying objects received from UDM 

Upon receiving the list of traffic objects from the UDM, the digital twin displays them 
without any issues [60]. The visual representation of the traffic objects can be seen in 
Figure 21. 

0

5

10

15

20

25

30

D
is

ta
n

ce
 (

m
)

Sampling index

Figure 20: Distance between recorded positions and simulated waypoints 

 



Error! No text of specified style in document. 28 

 

 

28 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Traffic Signs returned from the UDM displayed in the simulation 



Error! No text of specified style in document. 29 

 

 

29 
 

8 Testing UDM with the Digital Twin 

Testing the UDM was done by gathering the latencies of the response to a sent GNSS 
location. The latency was gathered from within the Cloud2ROS and the client script to 
observe the effects of the digital twin by processing the information. As can be seen in 
Figure 22, each request takes longer when sent from the digital twin. This is expected, 
as the communication pipeline has been extended with an additional ROS node along 
with the processing inside the client script. 

 

The data has been summarized in Table 2. An overall factor of 4.368 was found in the 
time it takes to send to and receive data from the UDM between the Digital Twin and 
the Cloud2ROS script. 

 

 

 Cloud2ROS latency (s) Digital Twin latency (s) 

Minimum 0.23088 0.82161 

Maximum 0.465356 8.17102 

Mean 0.288734 1.261217 

 

0

1

2

3

4

5

6

7

8

9

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

1
2

6

1
3

1

1
3

6

1
4

1

La
te

n
cy

  (
s)

Time elapsed since simulation start (s)

Digital Twin

Cloud2ROS

Figure 22: Latencies of Cloud2ROS script (orange) and  
Digital Twin client script (blue) for communication with UDM 

Table 2: Latency statistics for Cloud2ROS and Digital Twin scripts 



Error! No text of specified style in document. 30 

 

 

30 
 

9 Conclusion 

A framework for creating a digital twin which consists of a CARLA simulation and 
communication with the UDM was established. The CARLA simulation successfully 
simulates the TAVF and its road network, and a test vehicle with sensing capabilities, 
modelled after the physical sensors, capable of autonomous and guided driving. 
Furthermore, the simulation visualizes the sensor data and traffic objects provided by 
the UDM at an acceptable framerate. Unfortunately, CARLA’s functionality for the 
addition of custom assets to the simulation is not working on version 0.9.13. Such 
issues are expected of open-source projects which are still in development, thus a 
workaround taking advantage of CARLA’s debugging abilities was employed. 

For the purposes of the digital twin a highly capable computer was assembled and 
Ubuntu 22.04 LTS was set up as its operating system. Additionally, the computer runs 
a VM with Ubuntu 20.04 LTS as its operating system to use ROS for the 
communication with the UDM. 

To retrieve the traffic objects from the UDM with ROS a ROS workspace was created 
which was used to manage the message types and run the CARLA client script. The 
script initializes its own ROS node via which the messages are transmitted and 
received using ROS’s publisher/subscriber communication model. This was chosen to 
ensure compatibility with the rest of the efforts of the UML as well as the EDDY project. 

The digital twin performs as per its expected tasks i.e., the test vehicle drives along the 
TAVF while gathering data from the UDM and using that data to test the UDM’s 
functionalities. As the UDM is in its early stages of data collection the test presented in 
this study is rudimentary, yet adequate, with the purpose of presenting the system’s 
capabilities in future testing. EDDY-in-the-Loop has been established and can be 
adapted with minimal effort. 

 

 

 

 

 

 

 

 

 

 



Error! No text of specified style in document. 31 

 

 

31 
 

10 Future Work 

As the digital twin was built as part of EDDY, a project that will be continuously 
developed throughout the next 2 years, naturally the system will have to be adjusted 
for the changes and additions from the EDDY project. Changes that will predictably 
impact the digital twin are the addition of data to the UDM for which new tests should 
be conceptualized and implemented. The additions most significant to the digital twin 
will be the VRU recognition and improved localization based on landmarks. With the 
implementation of VRUs and landmarks within the digital twin, the capabilities of the 
simulated vehicle to perceive VRUs and report them to the UDM, react to situations 
involving VRUs announced by the UDM, and calculate its location based on 
surrounding landmarks can be tested. Likewise, a test to inspect the viability of 
communicating objects to and from the UDM simultaneously can be set up with a multi-
client environment where several test vehicles are simulated. Once the object 
message formats of the UDM have been proposed, their ability to effectively convey 
information between the UDM and vehicles can be empirically tested. Furthermore, the 
simulated map of the TAVF shall change to reflect the actual TAVF. 

Considering more than additional functionalities and data of the UDM on which the 
system relies, the opportunity to further increase the performance of the simulation 
server and with that the digital twin is open. This could be fulfilled by implementing 
multi-threading to the client script where the route following, sensor data collection, 
and UDM communication are each managed by a separate thread to ensure 
concurrent executions of these processes.  However, the introduction of multi-
threading comes with the possibility of limiting the system’s adaptability as multi-
threaded scripts require quite a bit more care when working with. The advantages and 
disadvantages of this approach should be taken into consideration before the script is 
reworked. 

A significant improvement to the visualization of traffic objects can be made by taking 
advantage of CARLA’s custom object addition as soon as an updated version of 
CARLA fixes this feature. Simulating and displaying the traffic objects as would be 
seen in real life could be utilized for additional testing of the UDM. 

With the aim of more closely approximating the real behavior of vehicle localization 
noise can be introduced to the simulated GNSS sensor as part of its configuration. The 
noise could be gathered from the measurements of the physical GNSS sensor. 

 

 

 

 

 

 



Error! No text of specified style in document. 32 

 

 

32 
 

11 Appendix 

11.1 System Setup Manual 

11.1.1 CARLA Installation 

Guide URL Purpose 

https://ubuntu.com/tutorials/install-ubuntu-
desktop#1-overview 

Ubuntu installation 

https://carla.readthedocs.io/en/0.9.13/build_linux/ 
- software-requirements 

 

https://www.unrealengine.com/en-US/ue-on-
github 

CARLA and Unreal Engine installation 

https://carla.readthedocs.io/en/0.9.13/build_linux/ 
- unreal-engine 

 

 

https://carla.readthedocs.io/en/0.9.13/build_linux/ 
- part-two-build-carla 

 

Install Ubuntu 20.04 LTS on the computer. 

Install the software necessary for building CARLA and Unreal Engine. 

Link a GitHub account to an Unreal Engine (Epic Games) account. 

Clone Unreal Engine 4.26’s source code adapted for CARLA from GitHub and build 
Unreal Engine. 

Clone CARLA’s source code from GitHub, setup the environment and build CARLA. 

Back up Unreal Engine and CARLA directories to another drive. 

Ensure system is up to date by entering command shown in Listing 6 into a terminal 
and following the terminal’s instructions until completion of the update. 

sudo apt update && sudo apt upgrade  

Open the Software Updater from the Ubuntu application menu 

Table 3: Guides to aid with CARLA installation 

Listing 6: Command to update Ubuntu system 

https://ubuntu.com/tutorials/install-ubuntu-desktop#1-overview
https://ubuntu.com/tutorials/install-ubuntu-desktop#1-overview
https://carla.readthedocs.io/en/0.9.13/build_linux/#software-requirements
https://carla.readthedocs.io/en/0.9.13/build_linux/#software-requirements
https://www.unrealengine.com/en-US/ue-on-github
https://www.unrealengine.com/en-US/ue-on-github
https://carla.readthedocs.io/en/0.9.13/build_linux/%20-%20unreal-engine
https://carla.readthedocs.io/en/0.9.13/build_linux/%20-%20unreal-engine
https://carla.readthedocs.io/en/0.9.13/build_linux/%20-%20part-two-build-carla
https://carla.readthedocs.io/en/0.9.13/build_linux/%20-%20part-two-build-carla


Error! No text of specified style in document. 33 

 

 

33 
 

If additional updates are offered by the Software Updater, install them 

A prompt to upgrade Ubuntu to the latest LTS version (22.04 as of writing this paper) 
will be presented as seen in Figure 23. 

 

Follow the instructions by the systems until Ubuntu 22.04 LTS is installed and running 

Create a convenience shell script to launch CARLA from the Desktop as shown in 
Listing 7. 

#!/bin/bash 
echo “Launching CARLA Server” 
export carla_dir=<CARLA installation directory>/carla/Util/BuildTools 
cd $carla_dir 
source BuildCarlaUE4.sh --launch  

Within a terminal navigate to the Desktop and make the convenience script executable 
as in Listing 8. 

sudo chmod +x <name of convenience shell script>.sh  

Run convenience shell script and verify the Unreal Engine editor is opened with the 
CARLA project loaded as seen in Figure 15. 

Figure 23: Prompt to upgrade Ubuntu to latest LTS version (22.04) 

Listing 7: Shell script that launches CARLA from script’s directory 

Listing 8: Command to make convenience shell script executable 



Error! No text of specified style in document. 34 

 

 

34 
 

 

11.1.2 Distributed Client 

Guide URL Purpose 

https://www.virtualbox.org/wiki/Linux_Downloads VirtualBox download 

https://help.ubuntu.com/community/VirtualBox/SharedFolders 
Creation of shared folder with 

Virtual Machine 

Download the Ubuntu 22.04 VirtualBox package. 

Within a terminal navigate to the Downloads folder, then execute the command as 
shown in Listing 9. 

sudo apt install ./virtualbox-<package version>.deb  

Follow instructions as shown in terminal output 

Run VirtualBox from the Application Menu 

Figure 24: Unreal Engine Editor with CARLA project loaded 

Table 4: Collected guides for the purposes of setting up a Virtual Machine 

Listing 9: Terminal command to install Debian package 

https://www.virtualbox.org/wiki/Linux_Downloads
https://help.ubuntu.com/community/VirtualBox/SharedFolders


Error! No text of specified style in document. 35 

 

 

35 
 

Add a new Virtual Machine from VirtualBox’s start menu by clicking on New in the 
toolbar shown in Figure 25. 

 

In the prompt that follows use the settings as shown in Figure 26, with <VM name> 
changed to the readers preference 

 

Figure 25: VirtualBox Start Menu 



Error! No text of specified style in document. 36 

 

 

36 
 

 

Choose RAM size according to what is available in the system, author’s 
recommendation is minimum 2GB allocated, prompt to choose RAM size is shown in 
Figure 27 

 

Figure 26: Virtual Machine Initial Settings 

Figure 27: Virtual Machine RAM Size Setting 



Error! No text of specified style in document. 37 

 

 

37 
 

 

Set up a virtual hard disk to store data as shown in Figures 28, 29, 30 and 31, the 
amount of hard disk storage can be as small as 20GB 

 

 

Figure 28: Virtual Hard Disk Creation 

Figure 29: Hard Disk File Type Setting 



Error! No text of specified style in document. 38 

 

 

38 
 

 

 

 

 

Figure 30: Hard Disk Allocation Setting 

Figure 31: Hard Disk Location and Size Settings 



Error! No text of specified style in document. 39 

 

 

39 
 

Once all settings have been applied, the new VM will be displayed in the start menu 
as in Figure 32. 

 

By clicking Start the prompt displayed in Figure 33 will be presented where the disk 
image downloaded in the first step must be chosen 

Figure 32: New Virtual Machine displayed in VirtualBox Start Menu 



Error! No text of specified style in document. 40 

 

 

40 
 

 

Final step is to follow the installation instructions given by the operating system 

Once the VM is running CARLA’s Python API needs to be set up as follows: 

Copy the PythonAPI folder located under <Carla Installation Directory>/carla/ to the 
VM via method of choice, the author created a virtual share folder for this purpose. 

Install the CARLA Python package by running the command from Listing 10 in the 
terminal 

pip3 install carla  

Navigate to the PythonAPI folder in the terminal and install the packages required for 
running client scripts with the command from Listing 11. 

pip3 install -r requirements.txt  

Verify successful setup by executing one of the example scripts found in <PythonAPI 
path>/examples/, as shown in Listing 12. 

python3 manual_control.py  

Figure 33: Virtual Machine start-up disk settings 

Listing 10: Terminal command to install CARLA Python package 

Listing 11: Terminal command to install Python packages necessary for running client 
scripts 

Listing 12: Terminal command to run example client script 



Error! No text of specified style in document. 41 

 

 

41 
 

11.2 Source Code 

11.2.1 manager.py 

12 #!/usr/bin/env python 

import random 

import time 

import carla 

import rospy 

from simulation_setup import Simulation, DisplayManager 

from sensors import Sensors 

from pid import VehiclePIDController 

import pygame 

from pygame.locals import K_ESCAPE 

from conversion import convert_world_to_sim 

from eddy_cloud.msg import sbg_gps_pos_old, eddy_cloud_array 

import rosbag 

import datetime 

import csv 

 

LATENCY_LOG_NAME = f"/home/umlclient/catkin_ws/src/eddy_digital_twin/log/" \ 

           f"latency_{datetime.datetime.now().strftime('%Y-%m-%d-%H:%M:%S.csv')}" 

 

RESET_LOG_NAME = f"/home/umlclient/catkin_ws/src/eddy_digital_twin/log/" \ 

           f"reset_{datetime.datetime.now().strftime('%Y-%m-%d-%H:%M:%S.csv')}" 

 

 

def bag_handler(bag_name): 

    try: 

        bag = rosbag.Bag(bag_name) 

    except ValueError: 

        return None 

    positions = [] 

 



Error! No text of specified style in document. 42 

 

 

42 
 

    for topic, msg, t in bag.read_messages(topics='/gps_pos'): 

        positions.append(msg.position) 

 

    bag.close() 

 

    return positions 

 

 

class WaypointManager: 

    def __init__(self, wmap, rosbag_path): 

        self.rosbag_exists = rosbag_path is not None 

        self.reset = False 

        self.timer = None 

 

        if self.rosbag_exists: 

            self.target_positions = bag_handler(rosbag_path) 

            self.waypoint_index = 4200 

 

        self.look_ahead_wp = None 

        self.map = wmap 

        self.waypoints = self.map.generate_waypoints(1.0) 

        self.start_location = self.generate_start_location() 

        self.next() 

 

    def generate_start_location(self): 

        if self.rosbag_exists: 

            latitude = self.target_positions[self.waypoint_index].x 

            longitude = self.target_positions[self.waypoint_index].y 

            x, y, z = convert_world_to_sim(latitude, longitude) 

 

            location = carla.Location(x / 100, y / 100, 0) 

            return location 

        else: 

            try: 

                location = random.choice(self.waypoints) 

                self.look_ahead_wp = location.next(50.0)[0] 

                # print(self.look_ahead_wp) 



Error! No text of specified style in document. 43 

 

 

43 
 

                location = location.transform.location 

 

                return location 

            except IndexError: 

                self.reset = True 

 

    def look_ahead(self): 

 

        if self.rosbag_exists: 

            look_ahead_lat = self.target_positions[self.waypoint_index].x 

            look_ahead_lon = self.target_positions[self.waypoint_index].y 

            look_ahead_x, look_ahead_y, z = convert_world_to_sim(look_ahead_lat, look_ahead_lon) 

 

            look_ahead_loc = carla.Location(look_ahead_x / 100, look_ahead_y / 100, 0) 

            possible_waypoints_la = [wp for wp in self.waypoints if wp.transform.location.distance(look_ahead_loc) 

< 2.5] 

            next_waypoint = min(possible_waypoints_la, key=lambda wp: 

wp.transform.location.distance(look_ahead_loc)) 

        else: 

            try: 

                next_waypoint_possible = self.look_ahead_wp.next(10.0) 

                next_waypoint = min(next_waypoint_possible, 

                                    key=lambda wp: 

wp.transform.location.distance(self.look_ahead_wp.transform.location) 

                                    ) 

            except (ValueError, AttributeError): 

                self.reset = True 

                return 

 

        self.look_ahead_wp = next_waypoint 

 

    def next(self): 

        if self.rosbag_exists: 

            if self.waypoint_index >= len(self.waypoints): 

                self.reset = True 

            # print(self.waypoint_index) 

            self.waypoint_index += 10 



Error! No text of specified style in document. 44 

 

 

44 
 

        self.look_ahead() 

 

 

class Manager: 

    def __init__(self, host: str, port: int, display: bool, rosbag_path: str, loop_rosbag: bool): 

        self.display = display 

        # create sim 

        self.sim = Simulation(host, port) 

        # create waypoints 

        self.rosbag_path = rosbag_path 

        self.loop_rosbag = loop_rosbag 

        self.waypoint_manager = WaypointManager(self.sim.map, self.rosbag_path) 

        spawn_location = self.waypoint_manager.start_location 

        # create vehicle 

        self.tesla = self.create_tesla(spawn_location) 

        self.pid = VehiclePIDController(self.tesla, {"K_P": 1.5, "K_D": 0.75, "K_I": 0.25, "dt": 0, 

"use_real_time": True}, 

                                                    {"K_P": 5.0, "K_D": 4.0, "K_I": 0.5, "dt": 0, "use_real_time": 

True}) 

        # create sensors 

        self.sensors = Sensors(self.sim.world, self.tesla) 

        if self.display: 

            self.display_manager = DisplayManager(self.sensors.display_sensors) 

        self.spectator = self.sim.world.get_spectator() 

        self.publisher = rospy.Publisher('/gps_pos', sbg_gps_pos_old) 

        rospy.Subscriber("/eddy_objects_msg", eddy_cloud_array, self.draw_objects) 

        self.timer = 0 

        self.reset_timer = 0 

        self.time_to_reset = [] 

        self.response_times = [] 

        self.received = True 

 

    def create_tesla(self, spawn_location): 

        if spawn_location is not None: 

            wp = self.sim.map.get_waypoint(spawn_location) 

            spawn_transform = wp.transform 

            spawn_transform.location.z = 0.5 



Error! No text of specified style in document. 45 

 

 

45 
 

        else: 

            spawn_transform = random.choice(self.sim.map.get_spawn_points()) 

        vehicle_bp = self.sim.world.get_blueprint_library().filter('model3')[0] 

        vehicle_bp.set_attribute('role_name', 'ego_vehicle') 

 

        return self.sim.world.spawn_actor(vehicle_bp, spawn_transform) 

 

    def vehicle_handler(self): 

        car_loc = self.tesla.get_location() 

        sensor_tf = self.sensors.gnss.get_transform() 

        spec_tf = carla.Transform(sensor_tf.location + carla.Location(z=2), sensor_tf.rotation) 

 

        self.spectator.set_transform(spec_tf) 

 

        current_wp = self.waypoint_manager.look_ahead_wp 

        # check if car close 

        if car_loc.distance(current_wp.transform.location) < 5: 

            self.waypoint_manager.next() 

 

        control = self.pid.run_step(30, current_wp) 

        self.tesla.apply_control(control) 

 

    def publish_position(self): 

        location = self.sensors.location 

 

        if location is None: 

            return 

 

        msg = sbg_gps_pos_old() 

        msg.position.x = location[0] 

        msg.position.y = location[1] 

        msg.position.z = location[2] 

 

        # start response timer 

        if self.received: 

            self.timer = time.time() 

 



Error! No text of specified style in document. 46 

 

 

46 
 

        self.publisher.publish(msg) 

 

    def draw_objects(self, msg): 

        # end response timer 

        end = time.time() 

 

        # log time 

        self.response_times.append([str(end), str(end - self.timer)]) 

 

        for traffic_sign in msg.objects: 

            world_position = traffic_sign.position.position 

            position = convert_world_to_sim(world_position.x, world_position.y) 

            sign_location = carla.Location(position[0] / 100, position[1] / 100, 1) 

 

            sign_bb = carla.BoundingBox(sign_location, carla.Vector3D(0.5, 0.5, 2)) 

 

            self.sim.world.debug.draw_box( 

                sign_bb, 

                carla.Rotation(0, 0, 0), 0.1, carla.Color(255, 0, 0), 

                5) 

 

            self.sim.world.debug.draw_string( 

                sign_location + carla.Location(z=3), 

                traffic_sign.object_class, 

                False, 

                carla.Color(255, 0, 0), 

                5) 

        self.received = True 

 

    def log_response_times(self): 

        with open(LATENCY_LOG_NAME, 'w') as log: 

            wr = csv.writer(log, delimiter=';') 

            wr.writerows(self.response_times) 

 

    def log_reset_times(self): 

        with open(RESET_LOG_NAME, 'w') as log: 

            wr = csv.writer(log, delimiter=';') 



Error! No text of specified style in document. 47 

 

 

47 
 

            wr.writerows(self.time_to_reset) 

 

    def destroy(self): 

        self.sensors.destroy() 

        self.tesla.destroy() 

        self.sim.quit() 

        self.log_response_times() 

        self.log_reset_times() 

 

    def update(self): 

        self.sim.world.tick() 

        if self.reset_timer == 0: 

            self.reset_timer = time.time() 

        if self.waypoint_manager.reset or self.tesla.get_location().z < -0.25 or \ 

                abs(self.tesla.get_transform().rotation.roll) > 5: 

            reset_time = time.time() - self.reset_timer 

            self.time_to_reset.append((reset_time, 0)) 

            self.reset_timer = 0 

            self.reset_vehicle() 

            return 

        if self.display: 

            for event in pygame.event.get(): 

                if event.type == pygame.QUIT or (event.type == pygame.KEYDOWN and event.key == K_ESCAPE): 

                    raise SystemExit 

            self.display_manager.clock.tick() 

            self.display_manager.render() 

        self.publish_position() 

        self.received = False 

        self.vehicle_handler() 

 

    def reset_vehicle(self): 

        print("RESET") 

        self.sensors.destroy() 

        self.tesla.destroy() 

 

        time.sleep(3) 

 



Error! No text of specified style in document. 48 

 

 

48 
 

        rosbag_path = None 

        if self.waypoint_manager.rosbag_exists and self.loop_rosbag: 

            rosbag_path = self.rosbag_path 

 

        self.waypoint_manager = WaypointManager(self.sim.map, rosbag_path) 

 

        spawn_location = self.waypoint_manager.start_location 

 

        self.tesla = self.create_tesla(spawn_location) 

 

        self.pid = VehiclePIDController(self.tesla, 

                                        {"K_P": 1.5, "K_D": 0.75, "K_I": 0.25, "dt": 0, "use_real_time": True}, 

                                        {"K_P": 5.0, "K_D": 4.0, "K_I": 0.5, "dt": 0, "use_real_time": True}) 

 

        # create sensors 

        self.sensors = Sensors(self.sim.world, self.tesla) 

        if self.display: 

            self.display_manager = DisplayManager(self.sensors.display_sensors) 

 

 

def main(): 

    rospy.init_node('sim_manager', anonymous=True) 

    display = rospy.get_param("~display", True) 

    rosbag_path = rospy.get_param("~rosbag", None) 

    loop_rosbag = rospy.get_param("~loop_rosbag", False) 

    timer = rospy.get_param("~timer", -1) 

    timer_enabled = False if timer == -1 else True 

    timer = timer * 60 

 

    manager = None 

    try: 

        manager = Manager("192.168.10.109", 2000, display, rosbag_path, loop_rosbag) 

        if timer_enabled: 

            start_time = time.time() 

        # Game loop 

        while True: 

            manager.update() 



Error! No text of specified style in document. 49 

 

 

49 
 

            if timer_enabled: 

                if time.time() - start_time >= timer: 

                    break 

            if rospy.is_shutdown(): 

                raise KeyboardInterrupt() 

    except KeyboardInterrupt: 

        print("Executing console shutdown.") 

    finally: 

        print("Removing actors.") 

        manager.destroy() 

        rospy.signal_shutdown("Simulation done") 

 

 

if __name__ == '__main__': 

    main() 

12.1.1 pid.py 

"""This module implements a longitudinal and lateral controller.""" 

 

import math 

import time 

from collections import deque 

 

import carla 

import numpy as np 

 

 

class Vector3D(object): 

    """Represents a 3D vector and provides useful helper functions. 

    Args: 

        x: The value of the first axis. 

        y: The value of the second axis. 

        z: The value of the third axis. 

    Attributes: 



Error! No text of specified style in document. 50 

 

 

50 
 

        x: The value of the first axis. 

        y: The value of the second axis. 

        z: The value of the third axis. 

    """ 

    def __init__(self, x: float = 0, y: float = 0, z: float = 0): 

        self.x, self.y, self.z = float(x), float(y), float(z) 

 

    @classmethod 

    def from_simulator_vector(cls, vector): 

        """Creates a pylot Vector3D from a simulator 3D vector. 

        Args: 

            vector: An instance of a simulator 3D vector. 

        Returns: 

            :py:class:`.Vector3D`: A pylot 3D vector. 

        """ 

        from carla import Vector3D 

        if not isinstance(vector, Vector3D): 

            raise ValueError('The vector must be a Vector3D') 

        return cls(vector.x, vector.y, vector.z) 

 

    def as_numpy_array(self): 

        """Retrieves the 3D vector as a numpy array.""" 

        return np.array([self.x, self.y, self.z]) 

 

    def as_numpy_array_2D(self): 

        """Drops the 3rd dimension.""" 

        return np.array([self.x, self.y]) 

 

    def as_simulator_vector(self): 

        """Retrieves the 3D vector as an instance of simulator 3D vector. 

        Returns: 

            An instance of the simulator class representing the 3D vector. 

        """ 

        from carla import Vector3D 

        return Vector3D(self.x, self.y, self.z) 

 

    def l1_distance(self, other): 



Error! No text of specified style in document. 51 

 

 

51 
 

        """Calculates the L1 distance between the point and another point. 

        Args: 

            other (:py:class:`~.Vector3D`): The other vector used to 

                calculate the L1 distance to. 

        Returns: 

            :obj:`float`: The L1 distance between the two points. 

        """ 

        return abs(self.x - other.x) + abs(self.y - other.y) + abs(self.z - 

                                                                   other.z) 

 

    def l2_distance(self, other) -> float: 

        """Calculates the L2 distance between the point and another point. 

        Args: 

            other (:py:class:`~.Vector3D`): The other vector used to 

                calculate the L2 distance to. 

        Returns: 

            :obj:`float`: The L2 distance between the two points. 

        """ 

        vec = np.array([self.x - other.x, self.y - other.y, self.z - other.z]) 

        return np.linalg.norm(vec) 

 

    def magnitude(self): 

        """Returns the magnitude of the 3D vector.""" 

        return np.linalg.norm(self.as_numpy_array()) 

 

    def to_camera_view(self, extrinsic_matrix, intrinsic_matrix): 

        """Converts the given 3D vector to the view of the camera using 

        the extrinsic and the intrinsic matrix. 

        Args: 

            extrinsic_matrix: The extrinsic matrix of the camera. 

            intrinsic_matrix: The intrinsic matrix of the camera. 

        Returns: 

            :py:class:`.Vector3D`: An instance with the coordinates converted 

            to the camera view. 

        """ 

        position_vector = np.array([[self.x], [self.y], [self.z], [1.0]]) 

 



Error! No text of specified style in document. 52 

 

 

52 
 

        # Transform the points to the camera in 3D. 

        transformed_3D_pos = np.dot(np.linalg.inv(extrinsic_matrix), 

                                    position_vector) 

 

        # Transform the points to 2D. 

        position_2D = np.dot(intrinsic_matrix, transformed_3D_pos[:3]) 

 

        # Normalize the 2D points. 

        location_2D = type(self)(float(position_2D[0] / position_2D[2]), 

                                 float(position_2D[1] / position_2D[2]), 

                                 float(position_2D[2])) 

        return location_2D 

 

    def rotate(self, angle: float): 

        """Rotate the vector by a given angle. 

        Args: 

            angle (float): The angle to rotate the Vector by (in degrees). 

        Returns: 

            :py:class:`.Vector3D`: An instance with the coordinates of the 

            rotated vector. 

        """ 

        x_ = math.cos(math.radians(angle)) * self.x - math.sin( 

            math.radians(angle)) * self.y 

        y_ = math.sin(math.radians(angle)) * self.x - math.cos( 

            math.radians(angle)) * self.y 

        return type(self)(x_, y_, self.z) 

 

    def __add__(self, other): 

        """Adds the two vectors together and returns the result.""" 

        return type(self)(x=self.x + other.x, 

                          y=self.y + other.y, 

                          z=self.z + other.z) 

 

    def __sub__(self, other): 

        """Subtracts the other vector from self and returns the result.""" 

        return type(self)(x=self.x - other.x, 

                          y=self.y - other.y, 



Error! No text of specified style in document. 53 

 

 

53 
 

                          z=self.z - other.z) 

 

    def __repr__(self): 

        return self.__str__() 

 

    def __str__(self): 

        return 'Vector3D(x={}, y={}, z={})'.format(self.x, self.y, self.z) 

 

 

class Location(Vector3D): 

    """Stores a 3D location, and provides useful helper methods. 

    Args: 

        x: The value of the x-axis. 

        y: The value of the y-axis. 

        z: The value of the z-axis. 

    Attributes: 

        x: The value of the x-axis. 

        y: The value of the y-axis. 

        z: The value of the z-axis. 

    """ 

    def __init__(self, x: float = 0, y: float = 0, z: float = 0): 

        super(Location, self).__init__(x, y, z) 

 

    @classmethod 

    def from_simulator_location(cls, location): 

        """Creates a pylot Location from a simulator location. 

        Args: 

            location: An instance of a simulator location. 

        Returns: 

            :py:class:`.Location`: A pylot location. 

        """ 

        from carla import Location, Vector3D 

        if not (isinstance(location, Location) 

                or isinstance(location, Vector3D)): 

            raise ValueError('The location must be a Location or Vector3D') 

        return cls(location.x, location.y, location.z) 

 



Error! No text of specified style in document. 54 

 

 

54 
 

    @classmethod 

    def from_gps(cls, latitude: float, longitude: float, altitude: float): 

        """Creates Location from GPS (latitude, longitude, altitude). 

        This is the inverse of the _location_to_gps method found in 

        https://github.com/carla-simulator/scenario_runner/blob/master/srunner/tools/route_manipulation.py 

        """ 

        EARTH_RADIUS_EQUA = 6378137.0 

        # The following reference values are applicable for towns 1 through 7, 

        # and are taken from the corresponding OpenDrive map files. 

        # LAT_REF = 49.0 

        # LON_REF = 8.0 

        # TODO: Do not hardcode. Get the references from the open drive file. 

        LAT_REF = 0.0 

        LON_REF = 0.0 

 

        scale = math.cos(LAT_REF * math.pi / 180.0) 

        basex = scale * math.pi * EARTH_RADIUS_EQUA / 180.0 * LON_REF 

        basey = scale * EARTH_RADIUS_EQUA * math.log( 

            math.tan((90.0 + LAT_REF) * math.pi / 360.0)) 

 

        x = scale * math.pi * EARTH_RADIUS_EQUA / 180.0 * longitude - basex 

        y = scale * EARTH_RADIUS_EQUA * math.log( 

            math.tan((90.0 + latitude) * math.pi / 360.0)) - basey 

 

        # This wasn't in the original method, but seems to be necessary. 

        y *= -1 

 

        return cls(x, y, altitude) 

 

    def distance(self, other) -> float: 

        """Calculates the Euclidean distance between the given point and the 

        other point. 

        Args: 

            other (:py:class:`~.Location`): The other location used to 

                calculate the Euclidean distance to. 

        Returns: 

            :obj:`float`: The Euclidean distance between the two points. 



Error! No text of specified style in document. 55 

 

 

55 
 

        """ 

        return (self - other).magnitude() 

 

 

    def as_simulator_location(self): 

        """Retrieves the location as a simulator location instance. 

        Returns: 

            An instance of the simulator class representing the location. 

        """ 

        from carla import Location 

        return Location(self.x, self.y, self.z) 

 

    def __repr__(self): 

        return self.__str__() 

 

    def __str__(self): 

        return 'Location(x={}, y={}, z={})'.format(self.x, self.y, self.z) 

 

 

class PIDLongitudinalController(object): 

    """Implements longitudinal control using a PID. 

    Args: 

       K_P (:obj:`float`): Proportional term. 

       K_D (:obj:`float`): Differential term. 

       K_I (:obj:`float`): Integral term. 

       dt (:obj:`float`): time differential in seconds. 

    """ 

    def __init__(self, 

                 K_P: float, 

                 K_D: float, 

                 K_I: float, 

                 dt: float = 0.03, 

                 use_real_time: bool = False): 

        self._k_p = K_P 

        self._k_d = K_D 

        self._k_i = K_I 

        self._dt = dt 



Error! No text of specified style in document. 56 

 

 

56 
 

        self._use_real_time = use_real_time 

        self._last_time = time.time() 

        self._error_buffer = deque(maxlen=10) 

 

    def run_step(self, target_speed: float, current_speed: float): 

        """Computes the throttle/brake based on the PID equations. 

        Args: 

            target_speed (:obj:`float`): Target speed in m/s. 

            current_speed (:obj:`float`): Current speed in m/s. 

        Returns: 

            Throttle and brake values. 

        """ 

        # Transform to km/h 

        error = (target_speed - current_speed) * 3.6 

        self._error_buffer.append(error) 

 

        if self._use_real_time: 

            time_now = time.time() 

            dt = time_now - self._last_time 

            self._last_time = time_now 

        else: 

            dt = self._dt 

        if len(self._error_buffer) >= 2: 

            _de = (self._error_buffer[-1] - self._error_buffer[-2]) / dt 

            _ie = sum(self._error_buffer) * dt 

        else: 

            _de = 0.0 

            _ie = 0.0 

 

        return np.clip( 

            (self._k_p * error) + (self._k_d * _de) + (self._k_i * _ie), -1.0, 

            1.0) 

 

 

class PIDLateralController(object): 

    """Implements lateral control using a PID. 

    Args: 



Error! No text of specified style in document. 57 

 

 

57 
 

       K_P (:obj:`float`): Proportional term. 

       K_D (:obj:`float`): Differential term. 

       K_I (:obj:`float`): Integral term. 

       dt (:obj:`float`): time differential in seconds. 

    """ 

    def __init__(self, 

                 K_P: float = 1.0, 

                 K_D: float = 0.0, 

                 K_I: float = 0.0, 

                 dt: float = 0.03, 

                 use_real_time: bool = False): 

        self._k_p = K_P 

        self._k_d = K_D 

        self._k_i = K_I 

        self._dt = dt 

        self._use_real_time = use_real_time 

        self._last_time = time.time() 

        self._e_buffer = deque(maxlen=10) 

 

    def run_step(self, waypoint, vehicle_transform): 

        v_begin = Location(vehicle_transform.location.x, vehicle_transform.location.y, vehicle_transform.location.z) 

        v_end = v_begin + Location( 

            x=math.cos(math.radians(vehicle_transform.rotation.yaw)), 

            y=math.sin(math.radians(vehicle_transform.rotation.yaw))) 

 

        v_vec = np.array([v_end.x - v_begin.x, v_end.y - v_begin.y, 0.0]) 

        w_vec = np.array([ 

            waypoint.location.x - v_begin.x, waypoint.location.y - v_begin.y, 

            0.0 

        ]) 

        _dot = math.acos( 

            np.clip( 

                np.dot(w_vec, v_vec) / 

                (np.linalg.norm(w_vec) * np.linalg.norm(v_vec)), -1.0, 1.0)) 

 

        _cross = np.cross(v_vec, w_vec) 

 



Error! No text of specified style in document. 58 

 

 

58 
 

        if _cross[2] < 0: 

            _dot *= -1.0 

 

        if self._use_real_time: 

            time_now = time.time() 

            dt = time_now - self._last_time 

            self._last_time = time_now 

        else: 

            dt = self._dt 

 

        self._e_buffer.append(_dot) 

        if len(self._e_buffer) >= 2: 

            _de = (self._e_buffer[-1] - self._e_buffer[-2]) / dt 

            _ie = sum(self._e_buffer) * dt 

        else: 

            _de = 0.0 

            _ie = 0.0 

 

        return np.clip( 

            (self._k_p * _dot) + (self._k_d * _de) + (self._k_i * _ie), -1.0, 

            1.0) 

 

 

class VehiclePIDController: 

    """ 

    VehiclePIDController is the combination of two PID controllers 

    (lateral and longitudinal) to perform the 

    low level control a vehicle from client side 

    """ 

 

    def __init__(self, vehicle, args_lateral, args_longitudinal, offset=0, max_throttle=0.75, max_brake=0.3, 

                 max_steering=0.8): 

        """ 

        Constructor method. 

 

        :param vehicle: actor to apply to local planner logic onto 

        :param args_lateral: dictionary of arguments to set the lateral PID controller 



Error! No text of specified style in document. 59 

 

 

59 
 

        using the following semantics: 

            K_P -- Proportional term 

            K_D -- Differential term 

            K_I -- Integral term 

        :param args_longitudinal: dictionary of arguments to set the longitudinal 

        PID controller using the following semantics: 

            K_P -- Proportional term 

            K_D -- Differential term 

            K_I -- Integral term 

        :param offset: If different than zero, the vehicle will drive displaced from the center line. 

        Positive values imply a right offset while negative ones mean a left one. Numbers high enough 

        to cause the vehicle to drive through other lanes might break the controller. 

        """ 

 

        self.max_brake = max_brake 

        self.max_throt = max_throttle 

        self.max_steer = max_steering 

 

        self._vehicle = vehicle 

        #self._world = self._vehicle.get_world() 

        self.past_steering = self._vehicle.get_control().steer 

        self._lon_controller = PIDLongitudinalController(**args_longitudinal) 

        self._lat_controller = PIDLateralController(**args_lateral) 

 

    def run_step(self, target_speed, waypoint): 

        """ 

        Execute one step of control invoking both lateral and longitudinal 

        PID controllers to reach a target waypoint 

        at a given target_speed. 

 

            :param target_speed: desired vehicle speed 

            :param waypoint: target location encoded as a waypoint 

            :return: distance (in meters) to the waypoint 

        """ 

 

        speed = self._vehicle.get_velocity() 

        current_speed = 3.6 * math.sqrt(speed.x ** 2 + speed.y ** 2 + speed.z ** 2) 



Error! No text of specified style in document. 60 

 

 

60 
 

 

        acceleration = self._lon_controller.run_step(target_speed, current_speed) 

        current_steering = self._lat_controller.run_step(waypoint.transform, self._vehicle.get_transform()) 

        control = carla.VehicleControl() 

        if acceleration >= 0.0: 

            control.throttle = min(acceleration, self.max_throt) 

            control.brake = 0.0 

        else: 

            control.throttle = 0.0 

            control.brake = min(abs(acceleration), self.max_brake) 

 

        # Steering regulation: changes cannot happen abruptly, can't steer too much. 

 

        if current_steering > self.past_steering + 0.1: 

            current_steering = self.past_steering + 0.1 

        elif current_steering < self.past_steering - 0.1: 

            current_steering = self.past_steering - 0.1 

 

        if current_steering >= 0: 

            steering = min(self.max_steer, current_steering) 

        else: 

            steering = max(-self.max_steer, current_steering) 

 

        control.steer = steering 

        control.hand_brake = False 

        control.manual_gear_shift = False 

        self.past_steering = steering 

        return control 

12.1.2 sensors.py 

import carla 

 

 

class Sensors: 



Error! No text of specified style in document. 61 

 

 

61 
 

    def __init__(self, world, tesla): 

        self.world = world 

        self.tesla = tesla 

        self.display_sensors = self.create_display_sensors() 

        self.gnss = self.create_gnss() 

        self.location = None 

        self.gnss.listen(self.__gnss_data) 

 

    def create_display_sensors(self): 

        # camera setup 

        yaws = [0, 216, 288, 0, 72, 144]  # top, back left, front left, front, front right, back right 

        pitches = [90, 0, 0, 0, 0, 0] 

        cameras = [] 

        camera_bp = self.world.get_blueprint_library().find('sensor.camera.rgb') 

        camera_bp.set_attribute('image_size_x', '320') 

        camera_bp.set_attribute('image_size_y', '240') 

        camera_bp.set_attribute('focal_distance', '0.48') 

 

        for yaw, pitch in zip(yaws, pitches): 

            position = carla.Transform(carla.Location(z=2), carla.Rotation(yaw=yaw, pitch=pitch)) 

            cameras.append(self.world.spawn_actor(camera_bp, position, attach_to=self.tesla), ) 

 

        # setup lidar 

        lidar_bp = self.world.get_blueprint_library().find('sensor.lidar.ray_cast') 

        lidar_bp.set_attribute('rotation_frequency', '20.0') 

        lidar_bp.set_attribute('points_per_second', '1390000') 

        lidar_bp.set_attribute('range', '100') 

        lidar_bp.set_attribute('horizontal_fov', '360') 

        lidar_bp.set_attribute('channels', '32') 

 

        position = carla.Transform(carla.Location(z=1.55, y=0.5), carla.Rotation()) 

        lidar = self.world.spawn_actor(lidar_bp, position, attach_to=self.tesla) 

 

        # setup depth cam 

        depth_cam_bp = self.world.get_blueprint_library().find('sensor.camera.depth') 

        depth_cam_bp.set_attribute('image_size_x', '320') 

        depth_cam_bp.set_attribute('image_size_y', '240') 



Error! No text of specified style in document. 62 

 

 

62 
 

        depth_cam_bp.set_attribute('fov', '110') 

 

        position = carla.Transform(carla.Location(z=1.50, y=0.5)) 

        depth_cam = self.world.spawn_actor(depth_cam_bp, position, attach_to=self.tesla) 

 

        return cameras, lidar, depth_cam 

 

    def create_gnss(self): 

        gnss_bp = self.world.get_blueprint_library().find('sensor.other.gnss') 

        position = carla.Transform(carla.Location()) 

        gnss = self.world.spawn_actor(gnss_bp, position, attach_to=self.tesla) 

 

        return gnss 

 

    def __gnss_data(self, data): 

        if data.frame % 10 == 0: 

            self.location = (data.latitude, data.longitude, data.altitude) 

 

    def destroy(self): 

        for sensor in self.display_sensors: 

            if type(sensor) == list: 

                for camera in sensor: 

                    camera.destroy() 

            else: 

                sensor.destroy() 

 

        self.gnss.destroy() 

 

12.1.3 simulation_setup.py 

import carla 

import numpy as np 

import pygame 



Error! No text of specified style in document. 63 

 

 

63 
 

 

 

class Simulation: 

    def __init__(self, host: str, port: int): 

        self.client = carla.Client(host, port) 

        self.client.set_timeout(5.0) 

        self.world = self.client.get_world() 

 

        self.old_settings = settings = self.world.get_settings() 

 

        traffic_manager = self.client.get_trafficmanager(10000) 

        traffic_manager.set_synchronous_mode(True) 

        settings.synchronous_mode = True 

        settings.fixed_delta_seconds = 0.05 

        self.world.apply_settings(settings) 

 

        self.map = self.world.get_map() 

        print("done with map") 

 

    def quit(self): 

        self.client.reload_world() 

 

 

class DisplayManager: 

    def __init__(self, sensors): 

        self.surface = None 

        self.window_x = 1600 

        self.window_y = 450 

        self.sensors = sensors 

        self.display = pygame.display.set_mode((self.window_x, self.window_y), pygame.HWSURFACE | pygame.DOUBLEBUF) 

        self.display.fill((255, 255, 255)) 

        self.__init_listeners() 

 

        pygame.init() 

        pygame.font.init() 

        self.clock = pygame.time.Clock() 

        pygame.display.flip() 



Error! No text of specified style in document. 64 

 

 

64 
 

 

    class LadybugHandler: 

        def __init__(self, lb_display, lb_camera, index): 

            self.display = lb_display 

            self.camera = lb_camera 

            self.offset = self.__get_offset(index) 

            self.surface = None 

            self.init_listener() 

 

        def init_listener(self): 

            self.camera.listen(self.create_surface) 

 

        def create_surface(self, image): 

            image.convert(carla.ColorConverter.Raw) 

            array = np.frombuffer(image.raw_data, dtype=np.dtype("uint8")) 

            array = np.reshape(array, (image.height, image.width, 4)) 

            array = array[:, :, :3] 

            array = array[:, :, ::-1] 

 

            surface = pygame.surfarray.make_surface(array.swapaxes(0, 1)) 

 

            if surface is not None: 

                rect = self.display.blit(surface, self.offset) 

                pygame.display.update(rect) 

 

        def __get_offset(self, index): 

            offset_width = [320, 240] 

            offset_factors = [[2, 0], [0, 1], [1, 1], [2, 1], [3, 1], [4, 1]] 

 

            offset_factor = offset_factors[index] 

            return offset_factor[0] * offset_width[0], offset_factor[1] * offset_width[1] 

 

    def __init_listeners(self): 

        cameras, lidar, depth_cam = self.sensors 

 

        for ladybug_cam in cameras: 

            index = cameras.index(ladybug_cam) 



Error! No text of specified style in document. 65 

 

 

65 
 

            self.LadybugHandler(self.display, ladybug_cam, index) 

 

        depth_cam.listen(self.depth_cam_handler) 

        lidar.listen(self.lidar_handler) 

 

    def lidar_handler(self, data): 

        disp_size = [320, 240] 

        lidar_range = 2.0 * float("100") 

 

        points = np.frombuffer(data.raw_data, dtype=np.dtype('f4')) 

        points = np.reshape(points, (int(points.shape[0] / 4), 4)) 

 

        lidar_data = np.array(points[:, :2]) 

        lidar_data *= min(disp_size) / lidar_range 

        lidar_data += (0.5 * disp_size[0], 0.5 * disp_size[1]) 

        lidar_data = np.fabs(lidar_data) 

        lidar_data = lidar_data.astype(np.int32) 

        lidar_data = np.reshape(lidar_data, (-1, 2)) 

        lidar_img_size = (disp_size[0], disp_size[1], 3) 

        lidar_img = np.zeros(lidar_img_size, dtype=np.uint8) 

 

        lidar_img[tuple(lidar_data.T)] = (255, 255, 255) 

 

        surface = pygame.surfarray.make_surface(lidar_img) 

 

        if surface is not None: 

            rect = self.display.blit(surface, (320, 0)) 

            pygame.display.update(rect) 

 

    def depth_cam_handler(self, image): 

        image.convert(carla.ColorConverter.Raw) 

        image.convert(carla.ColorConverter.LogarithmicDepth) 

        array = np.frombuffer(image.raw_data, dtype=np.dtype("uint8")) 

        array = np.reshape(array, (image.height, image.width, 4)) 

        array = array[:, :, :3] 

 

        def grayscale_image(image_rgba): 



Error! No text of specified style in document. 66 

 

 

66 
 

            # turning RGBA-Surface to Grayscale-Surface 

            width, height = image_rgba.get_size() 

            for x in range(width): 

                for y in range(height): 

                    red, green, blue, aplha = image_rgba.get_at((x, y)) 

                    L = (red + green + blue) // 3 

                    gs_color = (L, L, L) 

                    image_rgba.set_at((x, y), gs_color) 

            return image_rgba 

 

        surface = pygame.surfarray.make_surface(array.swapaxes(0, 1)) 

        surface_gray = grayscale_image(surface) 

 

        if surface_gray is not None: 

            rect = self.display.blit(surface_gray, (3 * 320, 0)) 

            pygame.display.update(rect) 

 

    def render(self): 

        pygame.display.update() 

 

12.1.4 conversion.py 

import math 

 

 

def convert_world_to_sim(lat, lon): 

    EARTH_RADIUS_EQUA = 637813700. 

    LAT_REF, LON_REF = 53.55417195412835, 9.979838256781566 

 

    # LAT_REF, LON_REF =0.01162190670750506, 4.521712683426776 

    latitude, longitude = lat, lon 

 

    scale = math.cos(LAT_REF * math.pi / 180.0) 



Error! No text of specified style in document. 67 

 

 

67 
 

    basex = scale * math.pi * EARTH_RADIUS_EQUA / 180.0 * LON_REF 

    basey = scale * EARTH_RADIUS_EQUA * math.log( 

        math.tan((90.0 + LAT_REF) * math.pi / 360.0)) 

 

    x = scale * math.pi * EARTH_RADIUS_EQUA / 180.0 * longitude - basex 

    y = scale * EARTH_RADIUS_EQUA * math.log( 

        math.tan((90.0 + latitude) * math.pi / 360.0)) - basey 

 

    # This wasn't in the original carla method, but seems to be necessary. 

    y *= -1 

 

    return x, y, 0 

12.1.5 eddy_digital_twin.launch 

<!-- --> 

<launch> 

  <!-- launch a complete carla-ros-environment with an ad agent that steers the ego-vehicle --> 

    <!-- Simulation manager --> 

    <param name="display" type="bool"/> 

    <param name="rosbag" type="str"/> 

    <param name="loop_rosbag" type="bool"/> 

    <param name="timer" type="float"/> 

 

 

  <node pkg="eddy_digital_twin" type="manager_new.py" name="eddy_digital_twin_manager"> 

  </node> 

 

  <!--<include file="$(find carla_spawn_objects)/launch/carla_spawn_objects.launch"> 

    <arg name="objects_definition_file" value='$(find carla_spawn_objects)/config/objects.json'/> 

    <arg name="spawn_sensors_only" value="True" /> 

  </include>--> 

 

</launch> 



Error! No text of specified style in document. 68 

 

 

68 
 

List of Figures 

 

Figure 1: TAVF [13] ................................................................................................ 6 

Figure 2: a) Classical control experimental setup; b) Hardware-in-the-loop method, 
adapted from [14] ............................................................................................ 7 

Figure 3: Precision, time, and cost trade off in computer simulation, HiL simulation and 
actual situation [15] ......................................................................................... 7 

Figure 4: CARLA simulating an urban environment in different weather conditions [16] 8 

Figure 5: LDM and its four layers [18] ..................................................................... 9 

Figure 6: Nodes and topics (in ellipses and rectangles, respectively) [27] ........... 10 

Figure 7: Number of publications on use of HiL for AD per year in Scopus database
 11 

Figure 8: Number of publications per year in Scopus database, CARLA vs. CARLA and 
HiL 12 

Figure 9: Diagram displaying the Digital Twin functionalities and communications ....... 16 

Figure 10: a) Urban Mobility Lab’s Upgraded Tesla Model S [20]; ....................... 18 

Figure 11: Communication flow of the digital twin ................................................. 19 

Figure 12: Custom map generation and ingestion in CARLA sources left to right: [45], [46], [47], 
[48] 19 

Figure 13: OSM map view showing the highlighted TAVF to be extracted ........... 20 

Figure 14: TAVF OpenDRIVE road network supplied by LGV imported in RoadRunner .. 21 

Figure 15: TAVF OpenDRIVE generated from OSM data .................................... 22 

Figure 16: Sensor Management and Display Diagram ......................................... 23 

Figure 17: Display organization of provided sensor management system, [45] .... 23 

Figure 18: Display organization of used sensor management system, top row: blank, 
LiDAR visualization, Top Camera, Depth Camera; bottom row: Back-Left Camera, 
Front-Left Camera, Front Camera,  Front-Right Camera, Back-Right Camera24 

Figure 19: RQT Graph displaying the ROS nodes of communication between Digital Twin 
and UDM ....................................................................................................... 25 

Figure 20: Distance between recorded positions and simulated waypoints .......... 27 



Error! No text of specified style in document. 69 

 

 

69 
 

Figure 21: Traffic Signs returned from the UDM displayed in the simulation ........ 28 

Figure 22: Latencies of Cloud2ROS script (orange) and  Digital Twin client script (blue) 
for communication with UDM ......................................................................... 29 

Figure 23: Prompt to upgrade Ubuntu to latest LTS version (22.04) ..................... 33 

Figure 24: Unreal Engine Editor with CARLA project loaded ................................ 34 

Figure 25: VirtualBox Start Menu .......................................................................... 35 

Figure 26: Virtual Machine Initial Settings............................................................. 36 

Figure 27: Virtual Machine RAM Size Setting ....................................................... 36 

Figure 28: Virtual Hard Disk Creation ................................................................... 37 

Figure 29: Hard Disk File Type Setting ................................................................. 37 

Figure 30: Hard Disk Allocation Setting ................................................................ 38 

Figure 31: Hard Disk Location and Size Settings ................................................. 38 

Figure 32: New Virtual Machine displayed in VirtualBox Start Menu .................... 39 

Figure 33: Virtual Machine start-up disk settings .................................................. 40 

 

 

 

 

 

 

 

 

 

 

 

 

 



Error! No text of specified style in document. 70 

 

 

70 
 

List of Tables 

 

Table 1: Hardware Requirements for Unreal Engine 4.26 + CARLA .................... 14 

Table 2: Latency statistics for Cloud2ROS and Digital Twin scripts ..................... 29 

Table 3: Guides to aid with CARLA installation .................................................... 32 

Table 4: Collected guides for the purposes of setting up a Virtual Machine ......... 34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Error! No text of specified style in document. 71 

 

 

71 
 

List of Listings 

Listing 1: Terminal command to launch CARLA ................................................... 15 

Listing 2: Launch file used for managing the simulation ....................................... 17 

Listing 3: Terminal command to install SUMO ...................................................... 20 

Listing 4: Terminal command to convert from OSM to OpenDRIVE using netconvert .... 20 

Listing 5: Algorithm for path planning and following .............................................. 24 

Listing 6: Command to update Ubuntu system ..................................................... 32 

Listing 7: Shell script that launches CARLA from script’s directory ....................... 33 

Listing 8: Command to make convenience shell script executable ....................... 33 

Listing 9: Terminal command to install Debian package ....................................... 34 

Listing 10: Terminal command to install CARLA Python package ........................ 40 

Listing 11: Terminal command to install Python packages necessary for running client 
scripts 40 

Listing 12: Terminal command to run example client script .................................. 40 

 

 

 

 

 

 

 

 

 

 

 

 



Error! No text of specified style in document. 72 

 

 

72 
 

Bibliography 

 

[1]  CB Insights, „Autonomous Driverless Vehicles Corporations List,“ 16 December 2020. [Online]. 

Available: https://www.cbinsights.com/research/autonomous-driverless-vehicles-corporations-

list/. [Zugriff am 20 September 2022]. 

[2]  Bundesministerium für Digitales und Verkehr, „European Digital Dynamic Mapping - "EDDY",“ 2 

November 2021. [Online]. Available: https://bmdv.bund.de/SharedDocs/DE/Artikel/DG/mfund-

projekte/eddy.html. [Zugriff am 20 September 2022]. 

[3]  European Telecommunications Standards Institute, Intelligent Transport Systems (ITS); Vehicular 

Communications; Basic Set of Applications; Local Dynamic Map (LDM), European 

Telecommunications Standards Institute, 2014.  

[4]  H.-J. Günther, „Collective Perception in Vehicular Ad-hoc Networks,“ 2018. 

[5]  C. Brogle, C. Zhang, K. Li Lim und T. Bräunl, „Hardware-in-the-Loop Autonomous Driving Simulation 

Without Real-Time Constraints,“ IEEE Trans. Intell. Veh, Bd. 4, Nr. 3, pp. 375-384, 2019.  

[6]  N. Brayanov und A. Stoynova, „Review of hardware-in-the-loop – a hundred years progress in the 

pseudo-real testing,“ Bd. 54, Nr. 3-4, pp. 70-84, 2019.  

[7]  N. Vignard, A. Bolovinou, A. Amditis, G. Wallraf, O. Ur-Rehman, M. Kremer, A. Milingal Ziyad, A. T. 

Sheik, U.-I. Atmaca, M. Dianati, V. Mayr, P. Borodani, J.-F. Grönvall, A. Van Vliet, A. Rahman, Y. 

Page und T. Gasser, „Legal Requirements for AD Piloting and Cyber Security Analysis,“ 2019. 

[8]  M. Grieves und J. Vickers, „Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior 

in Complex Systems,“ in Transdisciplinary Perspectives on Complex Systems: New Findings and 

Approaches, Springer International Publishing Switzerland, 2017, pp. 85-113. 

[9]  Geschäftsstelle der Teststrecke für automatisiertes und vernetztes Fahren Hamburg c/o ITS 

mobility e. V., „Homepage,“ [Online]. Available: https://tavf.hamburg/. 

[10]  ETSI, „Intelligent Transport Systems; Access layer specification for Intelligent Transport Systems 

operating in the 5 GHz frequency band,“ ETSI, 2019. 

[11]  Geschäftsstelle der Teststrecke für automatisiertes und vernetztes Fahren Hamburg c/o ITS 

mobility e. V., „TAVF Fact Sheet,“ Hamburg, 2022. 

[12]  Geschäftsstelle der Teststrecke für automatisiertes und vernetztes Fahren Hamburg c/o ITS 

mobility e. V., „Referenzen,“ [Online]. Available: https://tavf.hamburg/referenzen. [Zugriff am 20 

September 2022]. 

[13]  Geschäftsstelle der Teststrecke für automatisiertes und vernetztes Fahren Hamburg c/o ITS 

mobility e. V., „Test track map,“ Hamburg. 

[14]  W. Grega, „Hardware-in-the-loop simulation and its application in control education,“ FIE'99 

Frontiers in Education. 29th Annual Frontiers in Education Conference. Designing the Future of 



Error! No text of specified style in document. 73 

 

 

73 
 

Science and Engineering Education. Conference Proceedings (IEEE Cat. No.99CH37011}, Bd. 2, pp. 

12B6/7-12B612 vol.2, 1999.  

[15]  P. Sarhadi und S. Yousefpour, „State of the art: hardware in the loop modeling and simulation with 

its applications in design, development and implementation of system and control software,“ 

International Journal of Dynamics and Control, Bd. 3, pp. 470-479, 2015.  

[16]  A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez und V. Koltun, „CARLA: An Open Urban Driving 

Simulator,“ Proceedings of the 1st Annual Conference on Robot Learning, Bd. 78, pp. 1-16, 2017.  

[17]  CARLA, „About page,“ [Online]. Available: https://carla.org/about/. 

[18]  H. Shimada, A. Yamaguchi, H. Takada und K. Sato, „Implementation and Evaluation of Local 

Dynamic Map in Safety Driving Systems,“ Journal of Transportation Technologies, Bd. 5, Nr. 2, 

January 2015.  

[19]  DLR, „Homepage,“ Deutsches Zentrum für Luft- und Raumfahrt. [Online].  

[20]  Urban Mobility Lab, „Urban Mobility Lab Homepage,“ [Online]. Available: 

http://urbanmobility.gnet.haw-hamburg.de/. [Zugriff am 21 September 2022]. 

[21]  Institut für Klimaschutz, Energie und Mobilität e.V:, „Homepage,“ [Online]. Available: 

https://www.ikem.de/. 

[22]  OECON Products & Services, „Homepage,“ [Online]. Available: https://www.oecon-

line.de/en/startseite-2/. 

[23]  consider it GmbH, „Homepage,“ [Online]. Available: https://consider-it.de/. 

[24]  Ubilabs GmbH, „Homepage,“ [Online]. Available: https://ubilabs.com/en. 

[25]  „ROS Homepage,“ [Online]. Available: https://www.ros.org/. 

[26]  U. Lauff, C. Störmer und D. Vijayaraghavan, „Entwicklung und Test verteilter Funktionen; 

Simulation und Virtualisierung von Fahrzeugsystemen,“ Automoblil Elektronik, 2017.  

[27]  dSPACE, „Company History,“ [Online]. Available: 

https://www.dspace.com/en/pub/home/company/companyhistory.cfm. 

[28]  dSPACE, „Cooperating Partners,“ [Online]. Available: 

https://www.dspace.com/en/pub/home/company/cooperations/cooperating_partners.cfm#. 

[29]  C. Anagnostopoulos, C. Koulamas, A. Lalos und C. Stylios, „Open-Source Integrated Simulation 

Framework for Cooperative Autonomous Vehicles,“ in 11th Mediterranean Conference on 

Embedded Computing (MECO), 2022.  

[30]  M. Shan, K. Narula, S. Worrall, Y. F. Wong, J. S. Berrio Perez, P. Gray und E. Nebot, „A Novel 

Probabilistic V2X Data Fusion Framework for Cooperative Perception,“ in 2022 IEEE 25th 

International Conference on Intelligent Transportation Systems (ITSC), 2022.  



Error! No text of specified style in document. 74 

 

 

74 
 

[31]  Epic Games Inc., „Hardware and Software Specifications,“ Epic Games Inc., [Online]. Available: 

https://docs.unrealengine.com/4.26/en-US/Basics/RecommendedSpecifications/. [Zugriff am 20 

September 2022]. 

[32]  „Recommended Hardware,“ Catalyst Softworks, 7 April 2020. [Online]. Available: 

https://unrealcommunity.wiki/recommended-hardware-x1p9qyg0. [Zugriff am 20 September 

2022]. 

[33]  CARLA, „Linux build - System Requirements,“ [Online]. Available: 

https://carla.readthedocs.io/en/0.9.13/build_linux/#system-requirements. [Zugriff am 20 

September 2022]. 

[34]  CARLA, „Linux Build - Software Requirements,“ [Online]. Available: 

https://carla.readthedocs.io/en/latest/build_linux/#software-requirements. [Zugriff am 21 

September 2022]. 

[35]  Canonical Ltd., „Package Search Results: clang-8,“ Canonical Ltd., 2022. [Online]. Available: 

https://packages.ubuntu.com/search?keywords=clang-8. [Zugriff am 21 September 2022]. 

[36]  Canonical Ltd., „Package Search Results: clang-10,“ Canonical Ltd., 2022. [Online]. Available: 

https://packages.ubuntu.com/search?keywords=clang-10. [Zugriff am 21 September 2022]. 

[37]  Canonical Ltd., „Upgrade Ubuntu desktop,“ Canonical Ltd., [Online]. Available: 

https://ubuntu.com/tutorials/upgrading-ubuntu-desktop#1-before-you-start. [Zugriff am 21 

September 2022]. 

[38]  CARLA, „Linux Build - Other Make Commands,“ [Online]. Available: 

https://carla.readthedocs.io/en/latest/build_linux/#other-make-commands. [Zugriff am 21 

September 2022]. 

[39]  M. Weltz, „Master Thesis,“ to be published. 

[40]  „ROS Installation on Ubuntu,“ [Online]. Available: http://wiki.ros.org/noetic/Installation/Ubuntu. 

[41]  „Create a workspace,“ [Online]. Available: 

http://wiki.ros.org/catkin/Tutorials/create_a_workspace. 

[42]  „ROS Parameter Server,“ [Online]. Available: http://wiki.ros.org/Parameter%20Server. 

[43]  A. C. Rüdenauer, „Entwicklung der Simulation eines autonomen Fahrzeugs mit zugehöriger 

Sensorik auf einer Beispielstrecke in CARLA,“ HAW Hamburg, Hamburg, 2022. 

[44]  CARLA, „Sensors References - GNSS Sensor,“ [Online]. Available: 

https://carla.readthedocs.io/en/0.9.13/ref_sensors/#gnss-sensor. 

[45]  OpenStreetMap Foundation, „OSM Export,“ OpenStreetMap Foundation, [Online]. Available: 

https://www.openstreetmap.org/export. [Zugriff am 22 September 2022]. 

[46]  „netconvert,“ [Online]. Available: https://sumo.dlr.de/docs/netconvert.html. 



Error! No text of specified style in document. 75 

 

 

75 
 

[47]  The MathWorks, Inc., „Export to CARLA,“ [Online]. Available: 

https://de.mathworks.com/help/roadrunner/ug/export-to-carla.html. [Zugriff am 23 September 

2022]. 

[48]  CARLA, „Generate maps with OpenStreetMap - Ingest into CARLA,“ [Online]. Available: 

https://carla.readthedocs.io/en/0.9.13/tuto_G_openstreetmap/#ingest-into-carla. [Zugriff am 22 

September 2022]. 

[49]  W. Schneider, „OSM Extract,“ 2022. [Online]. Available: https://extract.bbbike.org/. [Zugriff am 22 

September 2022]. 

[50]  „JOSM,“ [Online]. Available: https://josm.openstreetmap.de/. [Zugriff am 22 September 2022]. 

[51]  Blender Foundation, „Blender Homepage,“ Blender Foundation, [Online]. Available: 

https://www.blender.org/. [Zugriff am 22 September 2022]. 

[52]  Prochitecture, „Blender OSM Add-On,“ 12 January 2017. [Online]. Available: 

https://github.com/vvoovv/blender-osm. [Zugriff am 22 September 2022]. 

[53]  The MathWorks, Inc., „Install and Activate RoadRunner,“ The MathWorks, Inc., [Online]. Available: 

https://de.mathworks.com/help/roadrunner/ug/install-and-activate-roadrunner.html. [Zugriff am 

23 September 2022]. 

[54]  The MathWorks, Inc., „Importing ASAM OpenDRIVE Files,“ [Online]. Available: 

https://de.mathworks.com/help/roadrunner/ug/importing-opendrive-files.html. [Zugriff am 23 

September 2022]. 

[55]  „Landesbetrieb Geoinformation und Vermessung - Hamburg,“ [Online]. Available: 

https://www.hamburg.de/bsw/landesbetrieb-geoinformation-und-vermessung/. 

[56]  I. Gog, S. Kalra, P. Schafhalter, M. A. Wright, J. E. Gonzales und I. Stoica, „Pylot: A modular platform 

for exploring latency-accuracy tradeoffs in autonomous vehicles,“ 2021 IEEE International 

Conference on Robotics and Automation (ICRA), pp. 8806-8813, 2021.  

[57]  „SBG messages,“ [Online]. Available: http://wiki.ros.org/sbg_driver#SBG_custom_messages. 

[58]  „CARLA Simulation: Simulated Test Vehicle Controller With Provided Route,“ 2022. 

[59]  „CARLA Simulation: Simulated Test Vehicle Controller - Randomized Route,“ 2022. 

[60]  „CARLA Simulation: Displaying Traffic Signs Along Randomized Test Drive,“ 2022. 

[61]  ETSI, „Intelligent Transport systems; Vehicular Communications; Basic Set of Applications; Local 

Dynamic Map,“ ETSI, 2014. 

[62]  J. M. O'Kane, „Creating launch files,“ in A Gentle Introduction to ROS, Jason Matthew O'Kane, 

2018, pp. 86-91. 

[63]  Bundesministerium für Digitales und Verkehr, „EDDY Project,“ [Online]. Available: 

https://bmdv.bund.de/SharedDocs/DE/Artikel/DG/mfund-projekte/eddy.html. 



Error! No text of specified style in document. 76 

 

 

76 
 

 

 

Declaration 

 

I declare that this Bachelor Thesis has been completed by myself independently 

without outside help and only the defined sources and study aids were used. 

 

 

Hamburg, _______________                      __________________________ 

                                                      Martin Gochevski 

 

 

 


