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1 Introduction

This chapter will discuss the motivation behind this thesis and the objective that it will
work towards, and it will outline the contents of the remaining chapters.

1.1 Motivation

The technological innovations of AI and machine learning have been on the rise in the last
few decades. What started a storytelling device, which told of intelligent machines and
automatons1, has developed into an academic discipline that has expanded into major
fields such as astronomy, media, healthcare, finance, and so on [25]. During its evolution,
AI has carved an important role for itself in the gaming industry, since games present a
reproducible, virtual environment with controllable conditions but with many complex
challenges and scenarios, in which AI can be trained [20]. Board games, such as chess
and go, have also been a focus point in AI, as it is easy to determine the winner of the
game, and their state possibilities are fully observable, albeit large [5].

This thesis will focus its efforts on the game Yahtzee being trained by reinforcement
learning algorithms. Different deep learning approaches will be compared, and it will be
analysed how they are affected by random variables, such as dice rolling. The objective
is to use reinforcement learning to train an agent to not only learn the rules of the game,
but to also learn from its previous actions and improve its future gameplay.

1.2 Outline

The thesis will start with Chapter 2, which will provide an overview of artificial intel-
ligence and machine learning, with a focus on reinforcement learning fundamentals and

1a mechanism that is relatively self-operating [12]
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1 Introduction

algorithms, and will explain the rules of the game Yahtzee. Chapter 3 will discuss the
results of a stakeholder analysis, the possible use cases in the game, and the functional
and non-functional requirements. Chapter 4 will detail the software programs and lan-
guages used, and the planning of the implementation including the gameplay design and
the deep learning algorithms that will be used. Chapter 5 will lay out how the game and
the deep learning algorithms were implemented, and will comment on any changes made
to the plans from the previous chapter. Chapter 6 will serve as a closing statement to
this paper by discussing the results of the implementation, the challenges that arose, and
the ways that this work could be improved or built upon, in the future.
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2 Background

This chapter will provide an overview of artificial intelligence and the development of
some of its subgroups such as machine learning and representation learning. The foun-
dations of artificial neural networks will also be discussed, with an emphasis being placed
on reinforcement learning fundamentals and algorithms. The chapter will end by provid-
ing some history about the game Yahtzee and will outline its rules.

2.1 Artificial Intelligence and Machine Learning

Artificial Intelligence (AI) is a subsection of computer science, which centers around
the creation of machines designed to mimic human intelligence [4], which has been at the
forefront of technology in the recent decades, with big leaps being made in the fields of
speech and image recognition, recommendation systems, robotics, and so on. In order to
better define intelligence, in 1950 Alan Turing created the Turing test, which a computer
passes if, after a written question and answer session with an examiner, the examiner
does not know whether the answers are coming from a human or a machine [19]. There
is also, an extended version of the Turing test, which tests the machine’s perceptual
abilities and its ability to manipulate physical objects; through these tests the six focus
areas of artificial intelligence were defined [19], those being:

• Natural Language Processing

• Knowledge Representation

• Automated Reasoning

• Machine Learning

• Computer Vision

• Robotics

3



2 Background

Figure 2.1: Venn diagram of artificial intelligence [10]

Machine learning Machine learning is a subset of AI which focuses on creating soft-
ware that can teach itself to recognize patterns, thus removing the need of human guid-
ance [4]. Machine learning traditionally focuses a large part of its efforts on feature en-
gineering which consists of processing the raw data, whether that be from text, images,
or audio excerpts, into data that could more easily be used by traditional statistical
techniques [10]. While feature engineering is important and it allows the use of ma-
chine learning algorithms that are not yet equipped to process raw data, it also requires
subject-specific knowledge and draws time away from optimizing the machine learning
algorithms.

Representation learning Representation learning, on the other hand, stops relying
on feature engineering and works to create machine learning models that can automati-
cally transform the raw data into features, and can adapt quickly to changes in that data
[10]. As can be seen in Figure 2.1, deep learning, which will be discussed in more detail
below, has dominated and led the field of representation learning
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2 Background

2.2 Artificial neural networks

Artificial neural networks (ANN) are a subset of machine learning which were initially
created to simulate the natural behaviors of neurons in the brain. Biological neural
networks or neural circuits as they might otherwise be called, are collections of thousands
of neurons, which communicate with each other by sending and receiving chemical or
electrical signals [2]. A neuron, as shown in Figure 2.2, is built up of the cell body
(soma), multiple dendrites which receive the signals, and a single axon which sends the
signals out [2]. The neurons are not directly in contact with each other, but instead have
a small gap between them called the synapse which is what enables the transmission of
the signals [2].

Figure 2.2: Diagram of a biological neuron [19]

Artificial neural networks can be split into single-layer networks, where the input neurons
send information directly to the output neurons and multi-layer networks, where the
input and output neurons are separated by a number of hidden layers [2]. These multi-
layer networks, or deep neural networks, are organized in several layers [10]: the input
layer, the output layer, and a certain number of hidden layers. The input layer gathers
data from an external source, which may be the pixels in an image the software needs
to recognize, or the state in which a game piece is in. Whereas the output layer is
responsible for producing the ultimate result. The number and size of the hidden layers
are left completely up to the programmer to determine.

5



2 Background

Figure 2.3: Simple structure of a deep neural network with two hidden layers

2.2.1 Types of deep learning

The paragraphs below will detail the three main types of training techniques used in neu-
ral networks, which are: supervised learning, unsupervised learning, and reinforcement
learning.

Supervised learning Supervised learning is used in neural networks when the desired
output is known and is communicated to the network. The training data that the network
is provided with, has a label accompanying it which contains the correct output; this
enables the network to compare its current output with the correct one and adjust its
parameters accordingly. Supervised learning involves two main statistical techniques,
regression and classification [14].

• Regression is used when the outcome that should be predicted is a continuous value
[14]. An example of this would be predicting the weather or predicting house prices,
based on certain input variables.

• Classification is used when the neural network should predict the category in which
the input belongs in [14]. The output, in this case, will be a categorical value, such
as deciding whether an email is spam or not or recognizing a numerical digit written
in an image.

Unsupervised learning Unsupervised learning differs from supervised learning, in
that the training data has no label, and there is no fixed outcome that should be predicted.

6
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Instead, the network itself is responsible for finding a pattern or a hidden structure among
the training data, and group them accordingly [6]. This type of learning comes in useful
for example, in recommending similar products on an e-commerce website, or even in
anomaly/error detection.

Reinforcement learning Reinforcement learning has to do with observing how the
network, represented by an agent, learns to navigate an environment in order to receive
the highest reward [3]. There are no data labels, and the training data looks very different
from the two types of learning mentioned above. The training data contains information
about the environment in which the agent is in, about the possible actions the agent can
take, and the different states in which an agent can be in.

2.3 Reinforcement learning

The goal of reinforcement learning is to train an agent to improve its behaviour in a
defined environment. Unlike supervised learning, there are no labelled data sets but
instead, the environment provides information about its state and gives feedback after an
action is taken. Ultimately, the agent is very autonomous, and is responsible for deciding
whether to accept certain feedback, and what information to pay attention to. During
the training process, the agent uses trial and error to experiment with different actions
and to map out the best path that achieves the set goal. This autonomy proves to be
beneficial to reinforcement learning, since it can be used in a wide range of environments
where the best solution or the best strategy to solve a problem is not yet known.

To best achieve the goal, it is important to find a strategy that the agent will use to
determine what is the best action to take in a certain state; the best action being the
one that maximises the possible reward [3]. At a predetermined time in the game, the
environment will give the agent positive feedback, which is referred to as a reward, or
negative feedback, which is referred to as a punishment.

2.3.1 Agent and Environment

Figure 2.4 shows the interaction and feedback loop between the agent and the environ-
ment. At time t the environment is in state st. After the agent takes an action at, the

7



2 Background

Figure 2.4: Reinforcement learning diagram [16]

environment is then in the state st+1, which it communicates to the agent, along with
the reward st+1.

The environment can be very broad in nature, and it can be quite difficult to find the
best reinforcement learning method that fits with a specific environment. Therefore, in
order to better understand and work with the environment, it can be classified into the
following categories [19]:

• Fully observable vs. Partially observable

• Deterministic vs. Stochastic

• Single-agent vs. Multi-agent

• Sequential vs. Episodic

• Static vs. Dynamic

• Discrete vs. Continuous

• Known vs. Unknown

Fully observable vs. Partially observable A fully observable environment is one
in which the agent can see the state of the whole environment at any point in time, and if
this is not possible, then the environment is partially observable. For example, in a chess
game the agent can see the state of the board at any point in time, so the environment
is fully observable but in a card game with an opponent, the environment is partially
observable since the cards of the opponent are not known to the agent.

8



2 Background

Deterministic vs. Stochastic A deterministic environment is one where the next
state can be determined just from the current state and the action taken [19], this means
that all the input variables are known and produce the same output each time. On the
other hand, stochastic environments sometimes have random or unpredictable variables,
which produce different outputs each time and are not replicable.

Single-agent vs. Multi-agent If an agent is defined as a decision-making entity, then
a multi-agent environment is one where there are multiple agents. These agents could
be opponents, which would create a competitive multi-agent environment, or they could
be working towards the same goal, which creates a cooperative multi-agent environment
[19].

Sequential vs. Episodic In sequential environments, the actions taken by the agent
depend on the previous actions taken, and in turn can affect any possible future ac-
tions. Whereas, in episodic environments actions do not have any effect on each other,
and the agent does not need to take into consideration any previous events or future
possibilities.

Static vs. Dynamic An environment is considered dynamic if it changes while the
agent is considering a decision, otherwise it is considered static. In a dynamic environ-
ment, it can be deemed that the environment is constantly asking the agent for a decision,
and deliberation can be seen as deciding to not do anything.

Discrete vs. Continuous A discrete environment is one in which the states and the
actions are quantitative, whereas a continuous environment may have an infinite number
of actions or states. For example, chess, while it may have a very large number of states
and actions, has a discrete environment, whereas the environment of a self-driving car is
continuous since the position of the entities around it such as other cars or pedestrians
change continuously over time.

Known vs. Unknown In a known environment, the agent knows the outcome or the
probability of an outcome of a certain action, whereas in an unknown environment the
agent does not know what each action does [19].

9



2 Background

2.3.2 Markov decision process

Reinforcement learning utilizes sequential decision making, meaning that actions are
made one by one in a sequential form, and after each action the agent recalibrates and
observes the changes made to the environment [17]. Mathematically, sequential decision
making can be represented by a Markov decision process (MDP). The Markov decision
process is defined by five components [17]:

• S represents all the possible states, also known as the state space.

• A represents all the possible actions, also known as the action space.

• Ra(s, s’) represents the reward given when going from state s to state s’ with
action a.

• Pa(s, s’) stands for probability distribution. It represents the probability that
action a at state s at time t will lead to state s’ at time t+1.

• γ (gamma) represents the discount factor. The discount factor is a value between 0
and 1, and is responsible for guiding the agent to favor either immediate or delayed
rewards. The lower the discount factor, the more importance is placed on the
possible immediate rewards.

2.3.3 Policy and Value functions

In order to achieve the optimal behaviour of the agent, finding the optimal policy function
is crucial. A policy, denoted by π, maps each state with the probability of selecting a
certain action [21]. If, at time t, the agent is following policy π, then π(a|s) shows the
probability of choosing action a from action space A when in state s from state space
S.

The value function, denoted as vπ(s) is also an important part of reinforcement learning,
since it starts to take into consideration the possible reward that an agent can receive
when in state s and following policy π [21]. The Q-value function, noted as qπ(s, a) is
also quite important, as it calculates the expected return when taking action a from state
s while following policy π [21].

The optimal policy is defined as the policy that is better than or equal to all the other
policies. Which mathematically can be expressed as, π ≥ π′ if vπ(s) ≥ vπ′(s) for s ∈ S

10



2 Background

[21]. Unfortunately, in a real environment the optimal policy rarely gets reached, since,
for quite a lot of reinforcement learning problems, even with the high-powered computers
of today, the memory and computing power needed is too high.

2.4 Reinforcement learning algorithms

Figure 2.5: Types of reinforcement learning algorithms [1]

There are many algorithms that implement reinforcement learning, and as shown in
Figure 2.5, they can be grouped into model-based and model-free learning. A model-
based algorithm places an emphasis on planning the strategy beforehand, and tries to
acquire a model of the environment, and an understanding of how states interact with
each other [7]. Model-free algorithms, on the other hand, emphasize learning; during the
course of the training, information about the value of actions and states is stored, which
is then used to help predict future actions.

Exploration vs Exploitation The balance between exploration and exploitation is
one of the main obstacles in reinforcement learning. When using exploitation as the main
learning method, the agent chooses to use a greedy policy, with which the action with
the highest probability of a win is always chosen. While this method may sometimes
yield a high return, it does create some tunnel vision in the agent, since they will not
be encouraged to take risks on less probable options which may produce a higher return.
Agents can also use the exploration method, with which they take more risks, and try to

11
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explore many different options in their environment. While this method allows them to
have a better view of their environment, it fails to take advantage of the agent’s previous
experience. One option that combines the above-mentioned methods is the ε-greedy
approach, where ε represents the probability of choosing the exploration option. So,
there is a ε chance that the agent picks the exploration option, and a 1− ε chance that
the agent picks the exploitative option [13].

2.4.1 Q-learning algorithm

To find the most optimal policy, finding the maximum expected reward for the current
state and action is needed. Unfortunately, this method requires very high computational
power, which makes it quite troublesome to implement. To find a fix for this issue,
the Q-learning method was developed. As mentioned in the previous section, the value
function defined by Vπ(s), lets the agent know how beneficial a certain state is, if from
then onward policy π is followed [21]. The Q-value function, denoted as Qπ(s, a), builds
upon that by utilising state-action pairs, to represent the expected rewards that the
agent can receive if action a is taken from state s while following policy π, as shown in
Equation (2.1) [23]. Equation (2.2) shows how the Q-value is updated after every time
step [23].

Qπ(st, at) = Eπ[Gt|St = s,At = a] (2.1)

Q(st, at) ⇐ Q(st, at) + α[rt + γ ·max
a

(Q(st+1, at))−Q(st, at)] (2.2)

rt = reward received when moving from state st to st+1 with action at

γ = discount factor of future rewards

αγmax
a

(Q(st+1, at)) = the max reward that can be received from state st, weighted by
the learning rate and discount rate

Implementation steps

1. The Q-value function Q(st, at) is initialised with random variables.

12



2 Background

2. The agent selects action a from state s using the Q(st, at) policy.

3. After action a is carried out, the action chosen, the reward received, and the current
state of the environment are stored.

4. The new Q(st, at) is calculated according to the Equation (2.2).

5. If a terminal state is not reached, then steps 2 to 5 are repeated.

2.4.2 Policy Gradient algorithm

Policy based methods learn a policy that can select actions, without first referring to
the value function. The policy gradient, which will be looked at in this section, is an
algorithm which seeks to find the optimal parameter θ for a stochastic parametric policy
π(θ) [8]. The θ parameter, is the parameter for which π(θ) receives the maximum reward.
To optimize this parameter, Equation (2.3) is used [15]

θt+1 = θt + α · ∇J(θt) (2.3)

θt = current parameter

θt+1 = parameter in the next time step

α = learning rate parameter

∇J(θt) = policy gradient, which optimizes the parameter θ

J(θt) is a performance metric that the agent would like to maximise, it can be represented
as the value function of the initial state, seen in Equation (2.4).

J(θt) = vπ0(s0) (2.4)

From this point, the gradient of this performance metric needs to be calculated. This
calculation is documented in Sutton und Barto [21] and it leads to Equation (2.5), with
Gt representing the total rewards accumulated from step t until the end of the episode.

∇J(θt) = Gt · ∇θ ln(π(st, at, θ) (2.5)

13
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Implementation steps

1. The parameter θ is initialized randomly.

2. The agent completes an episode with the policy π(θ), in which the action chosen,
the reward received, and the current state of the environment are stored.

3. The stored data is then used to calculate the policy gradient value according to
∇θ(Tn;π(θn)).

4. θ is then updated according to Equation (2.3).

5. If a terminal state is not reached, then steps 2 to 4 are repeated.

2.4.3 Actor Critic algorithm

While the policy gradient algorithm enables the agent to finetune the policy without
needing to know the value of each action, it does lead to the agent having a limited view
of the environment [8], since it has not learned any specific state-action behaviour. The
Actor Critic method combines the policy optimization from the Policy Gradient method,
with value optimization from the Q learning method [9]. The policy optimization is
represented by the actor agent, who chooses an action based on the π(θ) policy. On the
other hand, the value optimization is represented by the critic agent, who evaluates the
chosen action and provides feedback as to how or if it should be changed [9].

In the Actor Critic algorithms, the cumulative reward Gt is replaced with another value,
depending on the type of the algorithm. The Advantage Actor Critic algorithm, replaces
it with the advantage function, denoted in Equation (2.6), with V (st, ϕ) being the value
function which estimates the value of state s, resulting in Equation (2.7) [8].

A(st, at) = Gt − V (st, ϕ) (2.6)

θt+1 = θt + α ·A(st, at) · ∇θ ln(π(st, at, θ) (2.7)
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Implementation steps

1. The parameters θ and the weights of the critic ϕ are initialized randomly.

2. The agent completes an episode with the policy π(θ), in which the action chosen,
the reward received, and the current state of the environment are stored.

3. The critic calculates the advantage according to Equation (2.6).

4. The policy gradient is calculated.

5. The θ parameter is updated according to Equation (2.7)

6. The weights ϕ of the critic are minimized with the A(st, at) loss function.

2.5 Yahtzee

The dice game Yahtzee was patented in the year 1956 by Edwin Lowe, the founder of the
E. S. Lowe Company which had popularised the game Bingo [22]. Yahtzee has similarities
to certain board games that predated it, those being the games Kniffel from Germany,
Generala, and Poker Dice and Cheerio from England [27]. According to Hasbro, the
company who owns the rights to the Milton Bradley company which bought the E. S.
Lowe company in 1973, the current version of Yahtzee was created by an anonymous,
wealthy Canadian couple who initially called it the Yacht game, since they used to play
it on their yacht with their friends [22].

2.5.1 Game rules

The main goal in Yahtzee is to attain more points than your opponent by rolling/rerolling
a set of dice in order to get the combination with the highest number of points. There are
thirteen rounds in the game, since there are thirteen different point categories available,
each with their own set of requirements. The players at first roll 5 dice simultaneously,
then they have two chances to reroll some or all of the dice. After the three dice throwing
rounds, the players must pick the point category that should be used for that round. Each
point category must be used only once, and if the dice do not match the requirements
needed for that category, then the player gets 0 points for that round.
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Table 2.1: Point categories in Yahtzee [27]

Category Dice Requirements Points
Aces Any dice Total of Ones only
Twos Any dice Total of Twos only

Threes Any dice Total of Threes only
Fours Any dice Total of Fours only
Fives Any dice Total of Fives only
Sixes Any dice Total of Sixes only

Three of a kind Three of the same dice Sum of all dice
Four of a kind Four of the same dice Sum of all dice

Full house Three of one number and two of another 25
Small straight Four sequential dice 30
Large straight Five sequential dice 40

Yahtzee All five of the same dice 50
Chance Any dice Sum of all dice

2.5.2 Point System

In Yahtzee, the categories are split into the Upper section and the Lower section; the
Upper section consisting of the top six categories1, and the Lower section consisting of
the remaining 7 categories2. The points for each category are listed in Table 2.1, but
there are also other chances for the player to receive bonus points.

Upper bonus If the total sum of points in the Upper section is higher than or equal to
63, then the player receives an extra 35 points. The number 63 is chosen based on the sum
of the Upper section categories, if three of each number is rolled for each corresponding
category.

Yahtzee bonus As the name of the game suggests, rolling a Yahtzee is quite important
in this game, not only because it is the category with the highest amount of points but
also because of the existence of the Yahtzee bonus. The Yahtzee bonus occurs only when
the Yahtzee category has been filled, and when a player rolls another Yahtzee, which
consists of five of the same dice. If the category has been filled with fifty points, the

1Aces, Twos, Threes, Fours, Fives, Sixes
2Three of a kind, Four of a kind, Full house, Small straight, Large straight, Yahtzee, Chance
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player receives an additional 100 points, whereas if the category has been filled with zero
points, the player does not receive any additional points. The player can then move on
to pick a category based on the Joker rules.

The Joker rules state, that if the player has rolled a Yahtzee, and has already filled in
the Yahtzee point category, then they have to pick the respective category in the Upper
section. For example, if the player rolls 5 Threes, then they would have to pick the Threes
category. If the respective Upper section category is already filled in, then the player can
pick a category of their choice from the Lower section. Whereas, if the respective Upper
section category and all categories from the Lower section are filled in, then the player
has to enter a 0 in any open Upper section category.
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This section will cover the stakeholder analysis, use case diagrams, and the requirement
analysis, including functional/non-functional requirements.

3.1 Stakeholder Analysis

Figure 3.1, shows an analysis of the possible stakeholders based on their influence and
interest over this project. There are four main categories available:

Key player = high influence, high interest

• The supervising professor has a hand in the development of the project from the
very beginning. He invests more time into getting familiar with the project and
the field that it is in, and he takes on a more advisory/editorial role both with the
software solution and the written paper. The supervising professor is interested
in the following of the scientific methods, which involves the literature being re-
searched correctly and the testing of any claims or hypotheses made, but also in
the development of more projects in the deep learning field. With this stakeholder,
holding a constant line of communication is key. He needs to be kept up to date
with any progress made, and needs to be informed of any blockers or problems that
have arisen.

• One of the stakeholders with the most interest in the success of this project is the
thesis author. The interest stems not only from her interest in this field, but since
this is also the final hurdle before she receives her bachelor’s degree certification.
Whilst she does not have complete influence over the project, since the evaluation is
done by some of the other stakeholders mentioned, she does have full responsibility
over the writing of this research paper, and of creating the system itself.
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Figure 3.1: Stakeholder analysis, factoring their influence and interest

Meet their needs = high influence, low interest

• At this point in time, there are no stakeholders that could be identified in this
category.

Show consideration = low influence, high interest

• Researchers and students who wish to cite the work done in this project, or use it as
a foundation in their own work are important stakeholders, with a high interest in
its success. The main way to appease them would be by having thorough documen-
tation and well-tested, quality software. Since these stakeholders will most likely
come into contact with this project after its completion, there is no concrete line of
communication. Instead, information will be communicated to them through the
thesis itself, which will detail how the project was created, and any issues that may
have emerged along the way.

• Players, who would like to play against the AI agent, also must be shown consid-
eration during the implementation process. In order for the game experience to
be problem free for them, the game rules and point calculations must be followed
without fault. There should be occasional communication with these stakeholders,
since they have a very solution focused view of the project, and might have helpful
insights.
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Monitor = low influence, low interest

• The thesis assessor assists in the evaluation and the grading of the final project.
Since her role starts only once the project has been finished, she, in contrast to
the supervising professor, does not have any invested interest in the outcome of
the project. Her main interests lie in the engineering methods used, and in learn-
ing more about AI and deep learning. The needs of this stakeholder should be
monitored, but there is no need for excessive communication.

3.2 Use cases

This section contains an analysis of the most important actions that can be taken during
the game, including the main actors involved, the conditions that have to be met, and
the steps needed to complete the action. The use case diagram in Figure 3.2 shows an
overview of all the possible use cases, which are looked at in more detail below.

Figure 3.2: Use case diagram

3.2.1 Actors

There are three types of external entities that can interact with the system, which are
represented in Figure 3.2 as actors. The actors ’Human’ and ’Agent’ are specializations
of the ’Player’ actor, which is involved in the gameplay use cases. The Agent inherits all
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the roles of the Player, but is part of other use cases which relate to the training of the
neural network.

3.2.2 Use cases

Choose dice Player chooses which dice to keep and which dice to reroll. Player can
do this three times during the dice throwing round of the game.

Table 3.1: Use case: Choose dice

Name Choose dice
Primary Actor Player
Preconditions Dice rolling rounds are not over

Postconditions Game moves to the next round
If all dice are kept, the dice rolling rounds are over

Action sequence Player decides which dice should be kept
Other dice are rerolled

Pick category After the dice throwing round, player must pick which point category
to use. Player can only do this thirteen times, once for each category.

Table 3.2: Use case: Pick category

Name Pick category
Primary Actor Player
Preconditions Dice rolling rounds are over

Postconditions Game moves to the next round
Points are calculated based on category requirements

Action sequence Check if category is available
Player picks point category

Give reward The agent gets a reward, once a category has been filled or when the
game is over.
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Table 3.3: Use case: Give reward

Name Give reward
Primary Actor Agent

Preconditions Category has been filled
Game is over

Postconditions Agent receives reward
Action sequence The score is then measured against reward threshold

3.3 Requirements

This section will discuss the functional and non-functional requirements that will be used
as a guide during the implementation process. Functional requirements define a certain
functionality of the program, or to state it more simply, they define what a program
can do. If any of the functional requirements are not followed, the program will not be
successful. Non-functional requirements, on the other hand, are a set of specifications
used to determine the operational ability of the program, so they define how a system
should perform. Many of the requirements will be based around the rules of the game
Yahtzee as described in Section 2.5.1, since they represent the main constraints that the
program will face.

3.3.1 Functional Requirements

F1: The player must roll all the dice at the beginning of each round.

F2: The player can reroll the dice a maximum of two times.

F3: The game must end when all the categories have been filled.

3.3.2 Non-functional requirements

NF1: Agent should be trained using reinforcement learning.

NF2 Categories must not be chosen more than once.

NF3: The player can confirm all the dice, according to the game rules mentioned in
Section 2.5.1, and move to the category choosing stage.
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This chapter will discuss the preparation that was done in order to make the implemen-
tation process be carried out correctly. It will delve into the software programs that
were used, how the game Yahtzee will be implemented programmatically, and how deep
learning concepts will be incorporated.

4.1 Programming Language

The coding of the neural network will be done using the Python language. The reason
why Python was chosen is threefold. Firstly, it is a widely used language in the field
of machine learning/artificial intelligence, and thus there would be more documentation
around its use in various reinforcement learning methods, and it would be significantly
easier to find solutions for any future issues that might arise. Secondly, since Python has
an extensive set of data collection and data manipulation tools, it would be a good fit for
this project, in which the main computational obstacle is the handling of large amounts of
data [11]. Lastly, Python is the language in which I have the most proficiency in, having
worked with it for a couple of years, so the learning curve for the new terminology would
not be as steep.

4.2 Implementation Strategy

4.2.1 Gameplay Design

The basic design of the gameplay is shown in the activity diagram in Figure 4.1, with
the actions and their respective action values being shown in Appendix A.1. There are
thirteen rounds in the game, representing each of the categories; in the beginning of each
round, a check will be carried out to see if there are any empty categories left. In each
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Figure 4.1: Diagram showing a walkthrough of the game
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round the agent must roll all the dice at least once, and after each roll they shall decide
whether they would like to keep the dice and move on to the category picking stage, or
reroll some or all the dice.

Action Space The action space variable defines all the possible actions that can be
taken by the player. Throughout the game, the agent will be able to choose between
two sets of actions, a dice action or a category action. The dice action will be used
to determine which dice should be rerolled and which dice should be kept, whereas a
category action means that the agent must choose the point category that should be
used. Each action will be represented by a number between 0 and 44, with the dice
actions taking values between 0 and 31, and category actions taking values between 32
and 44. The dice action value will be converted into its binary value, with ’0’ representing
the dice to be kept, and ’1’ representing the dice to be rerolled. For example, the action
25 is equivalent to the binary value of 11001, which means that the first, second and fifth
dice will be kept, and the third and fourth dice will be rerolled. The category action
values represent one out of the thirteen categories, in the order listed in Table 2.1.

During the action handling process, the question of what will happen when the agent
picks an invalid category comes up, and there are multiple ways in which this issue could
be handled. Firstly, each turn the agent could be given a new list of valid actions to
choose from. Although, this option would be slightly troublesome to implement, since
many reinforcement learning methods use a static action space. Secondly, whenever an
invalid action is chosen, another random valid action could be chosen in its place. This
option might disrupt the learning process of the agent, since it will be hard to predict
the outcome of each action. Lastly, whenever an invalid action is chosen, the agent will
just be prompted to choose another action.

Game states During a regular1 gameplay of Yahtzee, players can decide at any point
before the second dice reroll, that they would like to pick a point category, instead of
continuing to roll the dice. In this version of the game, it was decided that the agent
would not have the option to choose between a category or a dice action, but instead
would have to either confirm all the dice or run out of rerolls. To make the traversal
through these different scenarios easier, the game is split into 4 different game states.
The possible game states are shown in Figure 4.2, and the agent can move between them

1In this case, regular refers to a game between two human opponents
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by picking which dice to keep and which to reroll. This information is given through a
Boolean array where ‘1’ means that the dice should be kept, and ‘0’ means that the dice
should be rolled again. Thus, with the action [0,0,0,0,0] the agent decides to roll all the
dice, and in contrast with the action [1,1,1,1,1] all the dice are kept as they are. Taking
a closer look at the states and the state transitions:

• State 0 is used only as a signifier that the game has yet to start. While in this
state, the agent cannot take any action since the only action available is rolling all
of the dice. After this happens, the agent moves to State 1.

• State 1 is the first chance the agent has, to pick which dice to keep and which to
reroll. If the agent chooses to keep all the dice with [1,1,1,1,1], it will move to State
3, and will not be allowed a chance to reroll. However, if the agent choses any
option but the aforementioned, it will move to State 2.

• State 2 is the final opportunity the agent gets to change the dice. After this dice
reroll, the agent moves to State 3.

• State 3 marks the end of the dice actions and the beginning of the category actions.
Only when the agent is in this state, can it choose between any of the remaining
point categories.

Figure 4.2: Diagram showing the possible states during the dice rolling stage
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Observation space The observation space encompasses all the information that the
agent needs to know about the environment, so that it can make better choices when
choosing an action. The information will be passed to the agent after each action has
been taken. The information that will be passed along contains the values of each of
the dice, a Boolean2 value for each category where ’0’ represents a free category and ’1’
represents a category that has already been filled, and the current dice state of the game,
as shown in Figure 4.3. Using the rule of product [24], the total number of possible states
can be calculated which equals to 254, 803, 968.

Figure 4.3: Environment observation space

4.2.2 Reward Structure

The reward structure defines when the agent will receive a reward, and on what conditions
this reward is based upon. These two parameters need to be chosen carefully, so that the
agent can be encouraged to accumulate a higher amount of points in the entire game, and
can be discouraged from choosing the category which offers the most amount of points
per round, but which could yield a higher amount if saved for later.

Yahtzee is a finite game, so the ’when’ could easily be set as the end of the game, and
only once all the categories have been filled, will the reward be distributed. Although,
since an entire game does last quite long, it might be helpful for the agent to have some
intermittent rewards given after each category is chosen.

Setting the reward conditions proves to be slightly trickier, since in this case there is
no opponent against which to measure the score. Using an optimal strategy [27] an
average score would be around 254 points. If all the categories were filled with their
maximum scores, the player would receive a total of 340 points (excluding bonuses), so
it can be assumed that an average score is close to 75% of the maximum score. This
is the benchmark against which the agent will be measured, and the final reward will
be given once the score is higher than 254 points. While, having a score of 254 points

2Data with only two possible values, for example 0/1 or True/False
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would not be enough for the agent to compete against more advanced players, it does
make the agent comparable to an average human, and this threshold could be raised if it
is exceeded during the training process. For the intermittent rewards, a high benchmark
(75% - 80%) also needs to be used so as to incentivize the agent to save the categories
for more fitting dice sets.

4.3 Reinforcement Learning

This game will be trained using reinforcement learning, for which there are many algo-
rithms possible, as detailed in Chapter 2. The algorithms that were considered for the
implementation of Yahtzee were the Policy Gradient algorithm, the Q-learning algorithm,
which were chosen since they represent two of the main approaches taken in reinforce-
ment learning, the policy-focused method and the value-focused method, and the Actor
Critic algorithm, which was designed to be a combination of these two approaches.

The two algorithms that will be implemented are the Policy Gradient algorithm and the
Advantage Actor Critic algorithm. The Q-learning algorithm was not chosen, because for
it to be effective it has to sample a large amount of states, a large amount of times. As
calculated in Section 4.2.1, there are a lot of possible states that the environment could
be in, thus for the agent to have a good overview of the results of certain state action
pairs, it would take a very long amount of time, and very high computing power. And
even if higher computing power was available, the deep Q-learning approach might not
be the best approach to a game with a stochastic environment like Yahtzee, since random
outcome of the dice rolls makes it difficult to get sufficient data for each possibility.

In the Advantage Actor Critic algorithm, the advantage will be calculated as the differ-
ence between the discounted cumulative reward Gt and the value function as shown in
Equation (4.1).

A(st, at) = Gt − V (st, ϕ) (4.1)

For both algorithms, the number of hidden layers, and the size of each of those layers will
be experimented with during the implementation process. The network will be tested
with one, two, and three hidden layers, and the size of the layers will vary throughout.
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The effect of these different parameters will be analysed not only in terms of the accumu-
lated rewards but also in the number of steps it takes to complete one training episode
which consists of an entire game. Since the game itself contains a very large number of
states, it is important to not add too much complexity in the neural networks, which will
only add to the computation power needed.
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This chapter will discuss how the implementation process was done, how well the plan
defined in Chapter 4 was carried out, and what parts of the plan were changed.

5.1 Tools

The reinforcement learning was carried out using the OpenAI Gym1 library and Py-
Torch2. OpenAi Gym helps in creating the general outline of the environment, and has
a lot of resources relating to the creation of the action and environment spaces. PyTorch
is a machine learning framework that eases the use of complex reinforcement learning
algorithms, and since it is a Python library, it has a lot of documentation and examples
aimed towards beginners [18]. The implementation was done in PyCharm, which is a
Python IDE3 which gives a good overview of the project files, and makes it easier to
navigate through them. It also has a debugging mode, in which the program can be
suspended at certain points, and the developer can execute commands one at a time
while seeing how the variables and the environment change.

5.2 Game Design

To create the game environment, the OpenAI Gym library was used, which already has
a makeshift template of the necessary variables and functions needed. The action space
remained the same as planned, with 45 different actions representing the dice rolls and
the category picks. The observation space, was represented with a variety of Spaces4

1https://www.gymlibrary.dev/
2https://pytorch.org/
3Integrated development environment
4Data structures defined by the OpenAI Gym library, which help to identify certain values in the

learning environment.
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[18]. At the end, the structure that was used to store information about the categories
and the dice, was the Discrete structure, which can hold the value of any integer between
a user-defined minimum and maximum value. At first, the dice values were held in a
MultiDiscrete space, which is an array of Discrete values and the categories were held in
a MultiBinary space, with the Binary structure being similar to the Discrete structure
but having only two possible values. This however caused problems when getting the
shape of the observation space, since it meant that multiple arrays were nested within
each other, and had to be traversed through in order to find their size.

The categories were initialised in a separate file, which also checked whether the dice
met the requirements of the categories, and subsequently calculated the points for the
dice, as shown in Figure A.1. To make the lookup of the dice points per category easier
during the game, the dice points were stored in a data frame, which had 13 columns
representing the categories, and 252 rows representing a unique combination of the dice.
The maximum points of each category were also stored, so as to make the calculation of
the reward thresholds easier.

5.2.1 Action Handling

In the game of Yahtzee, it is possible to have invalid actions, such as when the agent
picks a category that is already chosen, and this procedure needs to be handled program-
matically. At first, it was decided to make the action space dynamic5; after each time
step the possible actions will be evaluated, and only the valid actions would be returned
to the agent. This method was chosen, since it would theoretically allow the training to
be done faster, but unfortunately, it proved to be quite difficult to combine with most re-
inforcement learning tools, which use static action spaces. Static action spaces are used,
since neural networks in reinforcement learning, base the size of the output layer on the
size of the action space, since the neural network will return a probability distribution of
which actions should be chosen. This means that when the neural network is initialized,
the size of the action space is also declared, and the agent can sample any action from
that action space. However, if the environment were to return the valid actions, the size
of the action space would be constantly changing. The next action handling method that
was chosen, consisted of letting the agent choose from all the actions possible, but if it
chose an invalid action then it would be prompted for a new action until a valid one was

5Constantly changing, not static
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chosen. This method, which ended up being used for the remainder of the training pro-
cess, proved to be easy to combine with reinforcement learning methods, but extended
the time of the training in two main ways:

• Firstly, after each action was chosen, the current state of the environment and the
availability of the categories had to be checked, which added unnecessary time to
each turn.

• Secondly, since during the training the agent tries to learn which actions have a
higher return, it would sometimes have a preference for certain actions that either
were invalid or represented a category that had already been filled. This would
extend the training time by an extremely high amount, since the agent would loop
between 10 to 15 actions that were invalid and ignore all other actions.

5.2.2 Rewards

In Chapter 4, the category rewards would be given out only when the agent scored more
than 80% of the maximum category points. This method proved to be ineffective in the
early stages of training, thus the threshold was subsequently lowered to 50%, and if the
agent scored less than that amount a negative reward or punishment was given, as shown
in Figure 5.1. The end of the game reward was also changed and instead two different
rewards were given based on how high the accumulated amount of points were. If the
agent scored between 50%− 80% of the maximum amount of points, a reward of +2 was
given, and if the score was higher than 80% a reward of +5 points was given.

5.2.3 Game model

The game Yahtzee has a very large number of paths and actions that can be taken, from
deciding which dice to reroll, to weighing out the current and future benefits of each
category. In order to reduce this inconvenience, it was planned to first train the model
on a minimized version of the game, which would have three dice instead of five, and seven
point-categories instead of thirteen. Unfortunately, some categories could only be used
with all of the dice, and changing the model would have meant changing the requirements
and point calculation of each category. The seven point-category model worked well in
the early implementation stages, and it allowed for faster traversal through the different
stages in the game, which meant that the entire game could be tested quite quickly and
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any errors that may have been made in the implementation could be easily found. It
also made it easier to test different approaches for solving a certain problem, for example
changing the data structure used for displaying whether the category was filled is much
easier to do for seven categories rather than 13. After there were no more errors during
the creation of the model or the neural networks, the six other point-categories were
added.

Figure 5.1: Reward system

5.3 Training

5.3.1 Advantage Actor Critic algorithm

This algorithm involves the co-operation of two neural networks, called Actor and Critic,
as shown in Figure 5.2. These two networks are nearly identical in their set up, with the
only difference being the softmax6 distribution of the final value in the Actor class. This

6Function which is used to convert real values into a probability distribution
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is needed, because during the training, the actor learns which actions are more beneficial
in certain states and gives those actions a higher probability to be chosen. Whereas
the final value of the neural network in the Critic class, is used to define the difference
between the actual and the expected outcome.

Figure 5.2: A2C algorithm implementation

As mentioned in Chapter 4, the Actor Critic algorithm will be implemented with the
discounted cumulative reward advantage. The algorithm was first tried with one hidden
layer with a size of 256, and then with two hidden layers, the first one having a size of
128 and the second having a size of 256. Since the computation power needed is quite
high, the first training sessions were run for 100 episodes, an episode consisting of one full
game. The two main results that are going to be analysed are the trend of the average
rewards per game, and the average amount of steps it took to complete one game, a step
consisting of the process of picking an action and checking the validity of the action. The
training results can be seen in Figure 5.3.

Figure 5.3: Comparison of the A2C algorithm with one/two hidden layers
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In an ideal case one game round should take a minimum of 39 steps and a maximum
of 52 steps to complete, however in the training sessions the number of steps needed
rose exponentially. The reasons for this can be attributed to the action handling process
and the static action space, as detailed in Section 5.2. The network with two hidden
layers performed especially poorly in this aspect, with some rounds taking more than
a million steps to complete. This proved to be a large obstacle in the training process,
since the agent needs a large amount of samples of state and action combinations to
optimise its action sampling. During the conception phase, it was planned to test out
the algorithm with three hidden layers, but based on the factors mentioned above, it was
not implemented since it would add a computational strain.

Based on the reward system as shown in Figure 5.1, the maximum cumulative reward
would be +18, if the agent manages to receive a +1 reward for each category and a +5

reward for having a high total score, whereas the minimum score or punishment, would be
−13 which occurs if the agent gets a −1 penalty for each category. Within 100 episodes,
the average reward in all training sessions converged to ≈ −10.5. Both algorithms have a
high amount of penalties in the first 20−30 episodes, but the algorithm with one hidden
layer displays a more constant increasing trend in the average reward accumulated.

Figure 5.4: A2C algorithm with one hidden layer of 32 nodes

Since the algorithm with one hidden layer with a size of 128 performed slightly better
than the one with two hidden layers, it was decided that other training sessions should
experiment with different neural network dimensions. Figure 5.4 and Figure 5.5 show
the results of the training sessions when the size of the neural network was set to 32 and
64. While the network with a size of 64 shows a steadier increase in the rewards received,
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at the end of the 100 episodes the penalties are roughly the same, so these two networks
have to be compared further.

Figure 5.5: A2C algorithm with one hidden layer of 64 nodes

During the training sessions discussed above, the parameter γ (gamma), was set to 0.99.
As mentioned in Section 2.3, the closer that γ gets to 1, the more importance is placed
on future rewards. In the case of Yahtzee, the simple procedure of picking a category
requires a sequence of 3 − 4 actions, so placing an importance on foresight aids in the
training process. During one of the training sessions, γ was set to a very low amount
≈ 0.1, but this proved to be very inefficient, and the agent struggled to complete even 50
episodes. The training process is deemed unfinished when the completion of one episode
starts exceeding the one-hour mark, since the constant computing causes a large strain on
the system used. A longer computing time is expected in the later stages of the training
since the agent has accumulated more data about the different state action pairs, but
for it to happen in the early stages of the training means that the learning can not be
carried out sufficiently.

5.3.2 Policy Gradient algorithm

The Policy Gradient algorithm’s main goal is to find a certain parameter, or set of
parameters, for which the agent can achieve the maximum reward. Figure 5.6 shows the
implementation of how this optimization is done. The first section of the code snippet
calculates the discounted cumulative reward by summing up the total of the rewards
stored with γ minimizing the rewards that are further away. The second section starts by
collecting the output of the neural network, which is a list of probabilities for each action,
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and then uses a PyTorch sampler7 to choose one action. As mentioned in Equation (2.5)
the parameter J is calculated, which combines the discounted cumulative reward with
the probability of action a in state s. So that the agent can score the highest amount of
points, this parameter needs to be maximised and gradient ascent needs to be performed.
A PyTorch optimizer is used to perform the gradient shift shown in Equation (2.3) and
then to update the weights of the neural network.

Figure 5.6: Policy Gradient algorithm implementation

Figure 5.7: Policy Gradient algorithm

The Policy Gradient algorithm contains a network with one hidden layer with a size of
128, and γ = 0.99, the results of which can be seen in Figure 5.7. The algorithm had
a maximum training duration of 100 episodes, but they were not able to be complete.

7Categorical
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The reason for this could be because the average number of steps needed to complete
one game rose up to over 6 digits, but since this also happened during the Actor Critic
algorithm training session, the culprit could be the Policy Gradient algorithm itself. Over
the course of the episodes, the trend of the average rewards oscillates quite a lot, but at
the end of the training session the average lies at ≈ −10.2.

5.3.3 Result comparison

Figure 5.8: Advantage Actor Critic algorithm with one hidden layer (32) | 500 episodes

Figure 5.9: Advantage Actor Critic algorithm with one hidden layer (64) | 500 episodes

Based on the results from the experiments above, it is clear that the Advantage Actor
Critic algorithm fits the Yahtzee game model better. While it is difficult to make defini-
tive comparisons, since all the algorithms ran for the same amount of time, the Policy
Gradient method did prove to be quite inefficient time wise. As for the A2C algorithm,
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Figure 5.10: Advantage Actor Critic algorithm with one hidden layer (128) | 500 episodes

the networks with one hidden layer of size 32, 64, and 128 were chosen to run for a longer
amount of episodes, since in this project the main goal is to see a rising trend in the
average rewards received and there does exist a time and computing constraint.

The results of the longer training sessions can be shown in Figure 5.8, Figure 5.9, and
Figure 5.10. From these figures it can be seen that the network with a layer of size 64 did
not perform well since there was no improvement shown during the 500 episodes. The
network with a layer of size 128 showed a slightly larger increase in results compared to the
network with a layer of size 32, but the latter managed to complete the training session in
a shorter amount of time. What makes choosing between different reinforcement learning
algorithms difficult is the risk-benefit trade-off, which is shown well in this case. One
algorithm runs faster but has a slightly lower improvement rate, whereas the other has a
higher improvement rate, but this comes at the cost of time. In the end, both networks
do show improvements over time and they fit quite well with the game model.
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This chapter will discuss the overall progress of the thesis and the software solution,
any problems that arose and how this work could be continued in the future. The
observations and learnings from this project will be split into two sections, one regarding
the reinforcement learning process, and the other regarding the conversion of Yahtzee
into a software model.

6.1 Yahtzee

The game Yahtzee is quite a simple game in and of itself, since the only things a player
needs are five dice and a list of the point-categories. All these elements can easily
be programmed, however the difficulties lie in the interactions between them. In the
beginning of this process, a lot of emphasis was placed on trying to get the agent to
simulate a human player; an unfortunate consequence of this ended up being that the
agent was required to make a lot of unnecessary decisions during the game. A human
player might take shortcuts through certain decisions or bypass them completely, but
the agent had to make a clear, well thought out decision each time, which in some cases
hindered its progress. Some examples of these decisions are mentioned below:

• As mentioned in Chapter 5, handling invalid actions was quite difficult to do, and
the method chosen ended up slowing down the training process immensely. Most
reinforcement learning algorithms that were researched, use static action spaces, so
the action handling had to be built around it. However, if this project was built
upon in the future, spending more time trying to find a reinforcement learning
method that can accommodate dynamic action spaces, would be a large improve-
ment. This way the valid actions can be communicated directly to the agent, which
allows for faster gameplay.
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• At the beginning of each round, the agent would have to make the decision to roll
all five dice, which translates to picking the action a = 0. This also added to the
time needed for the training sessions, since during the early stages, the agent does
not know that each round should begin with this action, so it would keep trying to
sample randomly from the action space.

• During the first two dice rolling rounds, the agent can choose to exit the dice rolling
round and enter the category picking round, by choosing to keep all the dice, with
the action a = 31. This was created to mimic human gameplay, since a human
player would mentally confirm the dice before picking a category. This feature is
quite an important one to have, since it does not add much to the computation
power needed, and it allows the agent to figure out the shortcut of confirming the
dice earlier on, on its own. If the agent could easily skip from the first dice roll
round to the category picking round, then it would focus on getting the rewards as
quick as it can, instead of using the benefits that the second dice roll provides.

6.2 Reinforcement learning

This project was the first foray of the author into the field of deep learning, and rein-
forcement learning in particular. This inexperience in working with deep learning, meant
that choosing the optimal reinforcement learning method was challenging. While theo-
retically, all reinforcement learning methods could have been used, having knowledge of
more modern methods would have made the training process quicker and more efficient.
Below, some issues that arose during the implementation of the reinforcement learning
algorithm will be listed:

• During the training sessions, networks with one or two hidden layers with sizes
of 128 or 256 were used, which was mostly to keep the training time low. Other
experiments could be done with even larger neural networks, both in terms of size
and number of layers, and it could be observed how those factors affect the learning
performance

• In the implementation phase, most of the training sessions had a length of 100

episodes, which led to the agent not having a good overview of the possible states
and actions, and thus not correcting its performance. If the training sessions had
lasted for thousands of episodes, the agent would have had more learning time, and
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the efficiency of the different reinforcement learning algorithms could be compared
better.

• One resource which was not used enough during the implementation, was the hpc
cluster available at the university. HPC (high-performance computing) clusters use
a network of computers or servers to allow the resolving of complex problems [26].
The author had not worked with hpc clusters before, and found it quite difficult to
navigate the environment and to transfer the files from the Python development
environment to the file system used by the hpc cluster.

• The development of the reinforcement learning aspect of this project could also
have been started earlier. More focus was spent on making sure the game model
was developed correctly, and that it communicated the rules of the game clearly to
the agent. This led to certain design mistakes being revealed too late in the training
process; therefore, developing the game model and the deep learning concurrently
would have been beneficial.

6.3 Conclusion

At the beginning of this research paper, the goal that was stated, was to train the agent
to learn the rules of the game Yahtzee and to learn from its previous mistakes and try
to improve its performance. This section will discuss whether the project met this goal
and whether the goal was correctly set.

The first part of this goal refers to both the game model and the agent. The game
model creates and communicates the rules to the agent, who in turn is responsible for
using deep learning to try and remember those rules so that the lowest number of invalid
actions are chosen. At the end of the implementation stage the agent still required a
very large amount of steps to complete one game, which means that this part of the goal
has not yet been achieved. The second part of the goal applies to only the agent and the
neural networks that it contains. As was shown in Chapter 5, there were a lot of different
factors which affected the performance of the agent. Although, while the agent did still
receive penalties during the training session, it did manage to improve its performance
and increase its rewards over the training period. Thus, the second part of the goal has
been achieved.
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Taking into consideration the author’s inexperience with working with deep learning, this
goal might have been a bit too ambitious. With a game this large in size, and a variety
of different reinforcement learning algorithms that could be used, it would take a lot of
resources for the agent to significantly improve its gameplay in a relatively short amount
of time. The points mentioned in the first two sections, show that even though there
were issues in the development process, the game Yahtzee is capable of being learned
by a reinforcement learning agent, and this thesis could serve as a foundation for other
future works. The author would advise future researchers or students who try and build
upon this project, to develop the game model and the deep learning aspects concurrently,
and to focus on deep learning algorithms, that while may be more complex or show less
improvement over time, might also fit the game model better.
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A Appendix

A.1 Action Values

Table A.1 maps the actions values in the action space with what the actions concretely
represent in the game.

Table A.1: Dice Actions in Yahtzee
Action Value Action Type Description

0 [0,0,0,0,0] All dice are rolled
1 [0,0,0,0,1] Dice 5 is kept
2 [0,0,0,1,0] Dice 4 is kept
3 [0,0,0,1,1] Dice 4, 5 are kept
4 [0,0,1,0,0] Dice 3 is kept
5 [0,0,1,0,1] Dice 3, 5 are kept
6 [0,0,1,1,0] Dice 3, 4 are kept
7 [0,0,1,1,1] Dice 3, 4, 5 are kept
8 [0,1,0,0,0] Dice 2 is kept
9 [0,1,0,0,1] Dice 2, 5 are kept

10 [0,1,0,1,0] Dice 2, 4, are kept
11 [0,1,0,1,1] Dice 2, 4, 5 are kept
12 [0,1,1,0,0] Dice 2, 3 are kept
13 [0,1,1,0,1] Dice 2, 3, 5 are kept
14 [0,1,1,1,0] Dice 2, 3, 4 are kept
15 [0,1,1,1,1] Dice 2, 3, 4, 5 are kept
16 [1,0,0,0,0] Dice 1 is kept
17 [1,0,0,0,1] Dice 1, 5 are kept
18 [1,0,0,1,0] Dice 1, 4 are kept
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19 [1,0,0,1,1] Dice 1, 4, 5 are kept
20 [1,0,1,0,0] Dice 1, 3 are kept
21 [1,0,1,0,1] Dice 1, 3,5 are kept
22 [1,0,1,1,0] Dice 1, 3, 4 are kept
23 [1,0,1,1,1] Dice 1, 3, 4, 5 are kept
24 [1,1,0,0,0] Dice 1, 2 are kept
25 [1,1,0,0,1] Dice 1, 2, 5 are kept
26 [1,1,0,1,0] Dice 1, 2, 4 are kept
27 [1,1,0,1,1] Dice 1, 2, 4, 5 are kept
28 [1,1,1,0,0] Dice 1, 2, 3 are kept
29 [1,1,1,0,1] Dice 1, 2, 3, 5 are kept
30 [1,1,1,1,0] Dice 1, 2, 3, 4 are kept
31 [1,1,1,1,1] All dice are kept
32 Category 01 Aces
33 Category 02 Twos
34 Category 03 Threes
35 Category 04 Fours
36 Category 05 Fives
37 Category 06 Sixes
38 Category 07 Three of a kind
39 Category 08 Four of a kind
40 Category 09 Full house
41 Category 10 Small straight
42 Category 11 Large straight
43 Category 12 Yahtzee
44 Category 13 Chance

A.2 Point-categories

fig. A.1 shows the creation of the table that maps all unique dice combinations to their
points for each category. The seven if-statements go through each dice combination, and
check whether they fit the requirement for each category. If they do not, the points
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are set to 0, and if they do, the points are calculated based on the rules mentioned in
Table 2.1. There are three possible point calculations:

• The points are a set value, for example, the Yahtzee category.

• The points are the sum of all of the dice.

• The points are the sum of one specific dice value, for example, the Threes category
sums up all the dice that have a value of 3.

Figure A.1: Creation of table that holds the points for all dice combinations
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