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Kurzzusammenfassung

In dieser Arbeit werden globale kontextualisierte Repräsentationen (GCoRe) vorgestellt
- ein Zusatzmodul zu bestehenden Transformer-basierten Sprachmodellen, das die Leis-
tung bei Question-Answering / Machine-Reading-Comprehension Aufgaben verbessert.
Während Transformer-basierte Modelle eine begrenzte Eingabelänge haben und oft nicht
in der Lage sind, globalen Kontext und weitreichende Abhängigkeiten zu erfassen, wird
GCoRe entwickelt, um diese Probleme zu entschärfen, indem Graph-Inferenz mit Graph
Neural Networks auf einem Kontextgraphen durchgeführt wird, der aus dem gesamten
Eingabetext konstruiert wurde. Die kontextualisierten Token-Embeddings werden dann
mit den aus dem Kontextgraphen abgeleiteten globalen kontextualisierten Merkmalen
angereichert. Die Experiment-Ergebnisse zeigen, dass GCoRe das Basismodell im
HotpotQA-Datensatz, der aus komplexen Fragen und langen Kontexttexten besteht, um
0,57% übertrifft. Auch im SQuAD 2.0-Datensatz, der kürzere Absätze und Single-Hop-
Fragen enthält, übertrifft GCoRe das Basismodell um 0.15%. Besonders bemerkenswert
ist, dass GCoRe eine Frage, die Schlussfolgerungen über familiäre Beziehungen erfordert,
korrekt beantwortet, während das Basismodell DeBERTa v3 die Frage nicht korrekt
beantworten kann.
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Abstract

This thesis introduces Global Contextualized Representations (GCoRe) – an add-on mod-
ule to existing Transformer-based language models, which helps improve the performance
on Question Answering / Machine Reading Comprehension tasks. Whereas Transformer-
based models have limited input length and often fail to capture global context and
long-range dependencies, GCoRe is designed to mitigate these problems by performing
graph inference using Graph Neural Networks on a context graph constructed from the
entire input text. The contextualized token embeddings are then augmented with the
inferred global contextualized features derived from the context graph. The experimental
results demonstrate that GCoRe surpasses the baseline model by 0.57% in the HotpotQA
dataset, which comprises complex questions and lengthy context texts. GCoRe also out-
performs the baseline model by 0.15% in the SQuAD 2.0 dataset which contains shorter
paragraphs and single-hop questions. Notably, GCoRe accurately answers a question
that requires reasoning about familial relationships, while the baseline model, DeBERTa
v3, fails to answer the question correctly.
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1 Introduction

1.1 Question Answering

Question answering (QA) is a crucial aspect of Natural Language Processing (NLP),
which aims to develop systems or algorithms capable of responding to questions in natural
language. Essentially, QA involves enabling machines to comprehend and extract relevant
information from natural language texts like articles or documents.

QA systems are no longer a foreign concept and are widely used in many applications,
such as search engines, virtual assistants, information retrieval, or educational systems.
In the past decade, big QA systems have emerged, such as Google Duplex [15] and IBM
Watson [8]. A state-of-the-art language processing model known as ChatGPT [5, 18]
has demonstrated a remarkable ability to generate human-like responses to questions.
The appearance of ChatGPT has greatly increased the attention and interest in QA
systems.

Figure 1.1: An example of Question Answering from the SQuADv2 Dataset [21].

Question Answering requires machines to comprehend text to correctly answer a question.
This task is one of the most challenging in Natural Language Processing, as questions

1



1 Introduction

can have answers located anywhere within lengthy contexts. In some cases, reasoning
and inference are required to answer the question.

One of the major advancements in NLP is the utilization of transformer-based models.
BERT [7] stands out as a prominent transformer-based model, serving as a basis for
many state-of-the-art models in the field of NLP. BERT has displayed exceptional per-
formance in various NLP tasks, including Question Answering. Despite its achievements,
transformer-based models, in general, still have some limitations, which will be discussed
in the next section and Chapter 2.

1.2 Passage splitting and its problem

Analogous to many deep learning models, Transformer-based approaches require a fixed
sequence length. However, dealing with lengthy text is often a challenge in question-
answering tasks.

Figure 1.2: An illustration of passage splitting.

For instance, in a QA task, the input text may be a long paragraph or even an entire
article. However, BERT-based models usually have a maximum sequence length of 512,
which is inadequate to process longer texts. A common workaround is to split a long
input text into multiple passages and feed them into the model separately. In cases where
the input text is shorter than the maximum sequence length, the text will be padded to
the maximum length.

2



1 Introduction

Because there are no dependencies between forward passes, it is necessary to feed the
question into the model along with each passage. This allows the model to attend to the
relationship between the tokens of the question and the passage. Figure 1.3 provides a
visual representation of the typical input sequence layout. Special tokens are added to
the input sequence to mark the beginning and end of the question and passage.

Figure 1.3: Illustration of an common input sequence layout.

Each passage is treated as a stand-alone input sequence; the model is trained to predict
the answer for each passage independently. It assigns a score to each token in the passage
to indicate the likelihood of the token being the beginning or end of the answer.

As each passage is treated as an individual input sequence and is processed independently,
a token can only attend to nearby tokens due to the maximum sequence length limit.
Therefore, the model is unable to capture the overall context of the input text and can
only comprehend the local context of each passage.

A common workaround is to perform passage splitting with overlapping. In other words,
passages are produced by a sliding window of maximum input length with a small stride.
By doing so, the model can increase the probability of capturing the necessary information
to answer the question in a single passage.

However, if the question is complex and requires information from multiple passages,
then the model may struggle to provide a correct answer. Passage splitting not only
restricts the model’s capability to capture the global context of the input text but also
inherently reduces the model’s ability to reason. The shortcomings of passage splitting
are the motivation for the method proposed in this thesis.

3



1 Introduction

1.3 Objectives

In addition to the limitations of Transformer-based models mentioned in the previous
section, the pre-training process requires a large amount of data and computational
resources. Such requirements can be a challenge, especially for smaller organizations.
With these considerations in mind, the objectives of this thesis are as follows:

• To look for new techniques that can capture global context of input texts with-
out being limited to a fixed input length, so that the model can achieve better
performance in Question Answering tasks.

• To develop a method to enhance Question Answering task performance without
the need for pre-training. The proposed model should be able to integrate with
any pre-trained transformer models.

• To evaluate the effectiveness of the proposed method on different datasets with
different characteristics, namely SQuAD 2.0 [21] and HotpotQA [29].

The focus of the thesis is on developing a novel technique that can improve the perfor-
mance of Transformer-based models in Question Answering tasks. Some of the design
choices made in this thesis are influenced by the limitations of time and computational
resources. The main objective of this thesis is to provide a proof-of-concept for the
proposed method, rather than to achieve state-of-the-art performance on Question An-
swering tasks.

1.4 Structure

The thesis is structured into six chapters. The first chapter presents a brief introduction
to Question Answering. This chapter discusses passage splitting and its limitations, which
were the motivation for the thesis. In addition, this chapter presents the objectives and
structure of the thesis.

The second chapter presents the background on the Transformer architecture, as well
as the building blocks of transformers. The chapter then analyzes the state-of-the-art
methods, namely BERT and DeBERTa. The limitations of BERT-based models are also
discussed.

4



1 Introduction

The third chapter provides the background for Graph Neural Networks (GNNs). It dis-
cusses the nature of non-Euclidean data and the limitations of traditional deep learning
methods. The chapter also describes a framework for GNNs, namely Message Passing
Neural Networks (MPNNs), which is the fundamental framework for many GNN archi-
tectures.

The fourth chapter introduces the Global Contextualized Representations (GCoRe) mod-
ule, which is the main contribution of the thesis. This chapter first presents an architec-
tural overview of GCoRe and then describes the inner workings of the individual building
blocks. The design choices in each building block are also discussed.

The fifth chapter presents the experimental setup and results. The results are presented
and analyzed in detail. The effectiveness and limitations of GCoRe are discussed.

The last chapter concludes the thesis and presents future work.

5



2 Transformers

This chapter provides an objective background on the Transformer architecture along
with BERT and its successor, DeBERTa.

2.1 Architecture

Recurrent neural networks (RNNs) have the problem of vanishing gradients, which pre-
vents the model from capturing long-term dependencies. Long short-term memory
(LSTM) [13] and gated recurrent unit (GRU) [6] are two widely utilized RNN mod-
els that tackle this problem through the adoption of a gating mechanism that allows the
model to selectively update the hidden state. Bi-directional LSTM [11] is an extension
of LSTM that enables the model to capture the context both before and after a token.
Despite their effectiveness, these methods are still challenged by the sequential nature of
RNNs, resulting in high computational costs and a limited ability for parallelization.

Figure 2.1: The encoder decoder architecture in seq-to-seq problems.

6



2 Transformers

The transformer architecture, presented by Vaswani et al. in the paper "Attention Is All
You Need" [24], addressed these limitations by introducing a novel attention mechanism
that allows the model to capture long-term dependencies and process the entire sequence
in parallel. As demonstrated in various NLP tasks, including machine translation, text
summarization, and question answering, the transformer architecture has outperformed
prior state-of-the-art models.

Figure 2.2: The transformer architecture [24]

The transformer architecture features an encoder-decoder structure which was originally
proposed by Sutskerver et al. in the paper "Sequence to Sequence Learning with Neural
Networks" [23] to solve sequence-to-sequence (seq2seq) problems such as machine trans-
lation and text summarization. The encoder accepts the input sequence and encodes it
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into a context vector, which serves as a summary of the input sequence. The decoder
receives the context vector from the encoder and decodes it into the output sequence. A
key difference between the transformer architecture and the original encoder-decoder for
seq2seq problems is that the transformer architecture does not use RNNs, but instead
uses the attention mechanism which will be discussed in the next section.

A typical transformer model consists of several encoder and decoder layers. The archi-
tecture of a transformer is illustrated in Figure 2.2.

2.2 Self-attention mechanism

Self-attention is a mechanism that allows the model to capture the contextual relation-
ships between tokens in the input sequence. The idea of attention was first introduced
in the paper "Neural Machine Translation by Jointly Learning to Align and Translate"
[1] by Bahdanau et al. for machine translation tasks.

Figure 2.3: An example of attention mechanism [27]

The fundamental concept behind the attention mechanism is to enable the model to
selectively focus on important parts of the input sequence. Essentially, implementing
an attention mechanism involves computing an attention weight αi,j between token i

and j of the input sequence, and subsequently multiplying this attention weight by the
corresponding representation vector xj to obtain the weighted representation vector (see

8
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Equation 2.1).

αi,j = attention_score(xi, xj)

x′i,j = xi + xjαi,j

(2.1)

There are various self-attention mechanisms available. One of the most commonly used
self-attention mechanisms is the scaled dot product attention mechanism. Consequently,
this thesis will be focusing on the scaled dot-product attention and refer to it as the
self-attention mechanism.

Figure 2.4: The scaled dot-product attention mechanism

Formally, the self-attention for an input sequence X is calculated as follows, where the
weight matrices for the query, key, and value are denoted as WQ, WK , and WV respec-
tively, and the dimension of the key is represented by dk:

Q = XWQ

K = XWK

V = XWV

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

(2.2)

The self-attention mechanism computes similarity scores between the query and key
by taking their dot product, followed by scaling the result with the square root of the
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dimension of the key. The scaled dot-product, represented by QKT
√
dk

, is then normalized
by a softmax function to obtain the attention weights. The final output of the attention
layer is obtained by multiplying the attention weights with the value V . Figure 2.4
provides a technical illustration of the scaled dot-product attention mechanism.

2.3 Multi-head attention

The transformer architecture utilizes the self-attention mechanism multiple times in par-
allel in one step, each time using different query, key, and value weight matrices. This
technique is commonly referred to as multi-head attention. The outputs of the attention
heads are concatenated and passed through a linear layer to obtain the final output. The
multi-head attention mechanism is visualized in Figure 2.5.

Figure 2.5: The multi-head attention mechanism

Mathematically, the computation for multi-head attention is as follows, where h rep-
resents the number of attention heads and WO represents the weight matrix for the

10



2 Transformers

output:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O

headi = Attention(Q,K, V )
(2.3)

2.4 Position encoding

The Transformer architecture differs from LSTM in that it takes the entire input sequence
together and processes it simultaneously, instead of processing input embeddings one at
a time sequentially. However, this approach creates a challenge in capturing information
related to the position of tokens in the input sequence.

To tackle this issue, the Transformer architecture incorporates position encoding, which
introduces positional information into input embeddings. The authors of the paper "At-
tention Is All You Need" [24] suggest adding position encoding to the input embeddings
before model input. The following formula is proposed for computing the position en-
coding, where pos refers to the token position in the input sequence, i represents the
embedding dimension, dE is the embedding dimension size and n is a user-defined con-
stant:

PE(pos,2i) = sin(
pos

n2i/dE
)

PE(pos,2i+1) = cos(
pos

n2i/dE
)

(2.4)

The main purpose of the equation 2.4 is to provide a unique encoding for each position.
While it is true that both the sine and cosine functions are periodic and collisions may
occur, the parameter i varies the frequency for each dimension. This significantly reduces
the chance of encoding collisions between positions. Finally, the position encoding is
added to the input embeddings to obtain the final input embeddings.

The calculation of position encoding is not limited to using only the sine and cosine
functions as illustrated in Equation 2.4. Any function that creates a unique encoding
for each position can be used. Numerous techniques have been suggested for computing
position encoding, including learned position encoding and relative position encoding.

11
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2.5 BERT

Bi-directional Encoder Representations from Transformers, also known as BERT, is a
transformer-based model introduced by Devlin et al. in 2018. Before BERT, the most
commonly used models for obtaining word embeddings were Word2vec [16] and Glove
[19]. Word2vec and GloVe use a lower dimensional space to represent words instead of
relying on one-hot encoding, which becomes high dimensional for large vocabularies.

Word2vec utilizes a shallow neural network to generate word embeddings, while GloVe
uses a co-occurrence matrix to generate word embeddings. The resulting embeddings
from Word2vec and GloVe are able to capture the semantic and syntactic relationships
between words, where similar words tend to be close to each other in the embedding
space. Arithmetic operations, such as eking − eman + ewoman ≈ equeen, can be performed
with the word embeddings.

Figure 2.6: An illustration of Word2vec and GloVe word embeddings

However, the word embeddings generated by Word2vec and GloVe are static, meaning
they remain the same regardless of the context of the sentence. For example, the word
embeddings of the word "cell" are the same in the sentences "The cell is the basic unit
of life" and "The prisoner is locked in a cell". This is a key limitation of Word2vec and
GloVe, preventing them from capturing the contextual relationships between words.

BERT is a contextualized word embedding model. This implies that the word embeddings
vary based on the context. Thanks to the transformer architecture, each token in the
input sequence can potentially be influenced by all other tokens in the input sequence;

12
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thus, the word embeddings of the word "cell" in the sentences "The cell is the basic
unit of life" and "The prisoner is locked in a cell" are different, because the model can
recognize that the word "cell" in the first sentence refers to a biological cell, while the
word "cell" in the second sentence refers to a prison cell.

Figure 2.7: BERT architecture [7]

BERT consists of an encoder stack consisting of several transformer layers. Prior to feed-
ing the input sequence into BERT, the input sequence is first tokenized into a sequence of
tokens. Each token denotes a word or subword, for instance, "playing" is tokenized into
"play" and "##ing" (Figure 2.8). The rationale behind this method is that the model
can learn the embeddings of subwords and then combine them to obtain the embeddings
of words that are not in the vocabulary.

Figure 2.8: An example of an input sequence for BERT [7].

13
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Segment encoding is a binary vector used to distinguish between two segments in the
input sequence in Question Answering tasks. The input sequence includes the question
and the passage with special tokens indicating the start and end of each segment. The
beginning of the input sequence is marked with the [CLS] token to represent the entire
input sequence. The [SEP] symbol is appended to the end of each segment to indicate
the segment’s termination.

The token embeddings are combined with position encoding and segment encoding and
then sent through the encoder stack to generate the final output. The result of BERT
is a sequence of vectors, each of which represents the embedding of the corresponding
token in the input sequence.

The entire output or a part of it can be used as the input for downstream tasks. For
instance, in the context of Question Answering tasks, the [CLS] token can serve as
classifier input for predicting whether the answer to a question is present in a given
passage. Additionally, the output of each token can be fed to a classifier to determine
whether the token is the beginning/ending of the answer. Figure 2.8 depicts BERT’s
input sequence.

2.6 DeBERTa: Disentangled Attention

As a further development of transformer-based architectures, DeBERTa [12] introduces
a novel mechanism to improve the performance of BERT-based models – disentangled
attention.

The authors of DeBERTa observed that attention to a pair of words depends not only
on their content but also on their relative positions. Unlike BERT, which utilizes the
sum of content and position embeddings for input, DeBERTa separately utilizes con-
tent and position embeddings, meaning that each token is represented by two vectors.
The attention score between two tokens is determined by the sum of three components:
content-to-content, content-to-position, and position-to-content.

αi,j = HiH
T
j +HiP

T
j|i + Pi|jH

T
j (2.5)
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Figure 2.9: The difference between BERT and DeBERTa.

The position-to-position component has been omitted by the authors of DeBERTa be-
cause it does not provide any meaningful information. From the perspective of the
self-attention mechanism, the disentangled attention can be formulated as follows:

Qc = XWQ,c Kc = XWK,c Vc = XWV,c

Qp = XWQ,p Kp = XWK,p

Ai,j = Qc
iK

c
j
⊺ +Qc

iK
p
d(i,j)

⊺
+Kc

jQ
p
d(j,i)

⊺

Att = softmax(
A√
3d

)Vc

(2.6)

Where the function d(i, j) represents the relative distance between tokens i and j in
the input sequence. The third component (position-to-content) Kc

jQ
p
d(j,i)

⊺ utilizes the
distance d(j, i) instead of d(i, j), as it calculates the attention of the key at position j to
the query at position i.

2.7 Limitations

BERT and its variant have achieved remarkable performance in many NLP tasks. Recent
advancements, including DeBERTa, have enhanced BERT’s performance by introducing
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novel attention mechanisms. Referring to Chapter 1, which outlines the challenge of
handling lengthy input sequences in BERT-based models, while novel attention mecha-
nisms can help the model to better understand the input sequence, they cannot help the
model to capture the global context of long input sequences, as the input sequence is still
limited to the maximum sequence length.

Additionally, the author noted the absence of an overview of the input that serves as a
big picture, because BERT-based models treat the input sequence only as a sequence of
tokens. The model’s ability to understand relationships between entities, therefore, is
reduced because the attention mechanism operates at the token level, which means that
relationships between entities are not explicitly processed.

The author argues that if the model can have a big picture of the input that does not
contain tokens of word pieces, but instead contains entities and their relationships, not
only can the model capture the global context of the input, but it can also improve the
reasoning ability of the model.

Given their capacity to represent entities and their relationships, graphs are a reasonable
candidate for capturing the global context of the input sequence. The following chapter
will present Graph Neural Networks, a class of neural networks that are capable of
processing graph data.
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3 Graph Neural Networks

This chapter presents a brief introduction to graphs and gives an overview of Graph
Neural Networks (GNNs) – one of the fundamental building blocks in the proposed
method.

3.1 Non-Euclidean space and graphs

Traditional deep learning methods are typically designed to process data in Euclidean
space, which is defined as a space with a finite number of dimensions in which the
Euclidean postulates apply. The distance between two points in Euclidean space can be
calculated using the Euclidean distance. For instance, a 2-dimensional Euclidean space
is a plane, and a 3-dimensional Euclidean space is the space in which we live.

Figure 3.1: An example of a tree where the Euclidean distance between two nodes does
not reflect the distance between them.

However, the linear structure of Euclidean space is not always sufficient to represent data.
A tree is an example of data that cannot be represented in Euclidean space because the
distance between two nodes in the data is not defined by the Euclidean distance, but
instead by the number of edges in the shortest path between them. For instance, the
distance from node 1 to node 5 in Figure 3.1 is greater than the distance from node 1
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to node 4, even though node 5 is closer to node 1 than node 4 in terms of Euclidean
distance.

Bronstein et al. [4] point out that many real-world data are not Euclidean; social net-
works, sensor networks, citation networks, knowledge graphs, and protein-protein inter-
action networks are all non-Euclidean.

Figure 3.2: Euclideanization of data.

Natural language text is also non-Euclidean. A text document can be represented as a
series of words that can be transformed into vectors by using word embeddings. However,
this representation loses the relationships between words and the syntactical structure
of the text, which are defined by language. The burden of recovering these relationships
and structures is shifted to the model.

As a method to make the knowledge embedded in textual data explicit, knowledge graphs
(or semantic networks) are introduced. These graphs represent knowledge in a structured
way. In Figure 3.3, the knowledge graph depicts the fact that "Paris is the capital of
France" and "France is in Europe". The explicit representation of knowledge in knowl-
edge graphs makes it possible to improve or simplify the information retrieval process.

Since conventional deep learning techniques are not capable of processing non-Euclidean
data directly, Euclideanization is a widely used workaround in most deep learning tasks.
The concept involves transforming non-Euclidean data to Euclidean space before apply-
ing conventional methods. Nevertheless, Euclideanization may not always be the optimal
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approach, as the data may lose some of its characteristics when converted to Euclidean
space. For instance, embeddings can be utilized to transform a knowledge graph into
vectors, which can then be processed using conventional deep learning methods. How-
ever, this approach results in a loss of the graph’s structural information, along with an
increased sparsity of the data and thus an increased computational cost.

The need arises, therefore, for deep learning methods capable of handling non-Euclidean
data directly without requiring Euclideanization.

Figure 3.3: An example of a knowledge graph.

3.2 Relational inductive biases

Inductive bias, also known as learning bias, refers to a collection of presumptions or
preexisting knowledge about data or the solution space that directs the learning process
towards optimal outcomes [3]. In other words, inductive bias decides how a model favors
one solution over another.

Geman et al. discussed inductive bias as a tradeoff between bias and variance [9]. A
model with a strong inductive bias is more likely to produce the correct result, but it
may not generalize well.
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Figure 3.4: Inductive biases in convolutional layers and recurrent layers [3].

Relational inductive biases constrain the relationships between entities and are present in
the standard components of deep learning, including convolutional and recurrent layers.

Convolutional layers assume local connectivity in the data and use small kernels (filters)
to extract local patterns from the input. Another aspect of relational inductive bias
in convolutional layers is translational invariance. Translational invariance means that
convolutional layers recognize patterns regardless of their location in the input data by
sharing kernel weights. In contrast, recurrent layers take into account temporal depen-
dencies in the data. The output of each time step depends not only on the input of that
time step but also on the output generated during the previous time step.

While traditional deep learning methods contain various relational inductive biases, no
building block can operate directly on non-Euclidean data, such as graphs, and exploit
their structural information. This is the motivation for the development of Graph Neural
Networks (GNNs), which will be discussed in the next section.

3.3 Message Passing Neural Networks

Since conventional neural networks struggle to efficiently process graphs due to their non-
Euclidean properties, a novel paradigm called Graph Neural Networks (GNNs) has been
developed to address this problem. GNNs constitute a category of deep learning models
that can process graph data directly without the requirement for Euclideanization.
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Figure 3.5: GNN and CNN both exploit the local connectivity of the data [26].

Similar to convolutional neural networks, GNNs utilize the local connectivity of data.
In the case of images, which are 2-dimensional arrays, local connectivity is defined by
the spatial relationship between pixels. For graphs, local connectivity is defined by the
relationship between nodes and their neighbors. Figure 3.5 illustrates the similarities
between GNNs and CNNs in regard to local connectivity. Essentially, GNNs generalize
convolutional neural networks to non-Euclidean data.

Several GNN models have been proposed. They all share the common concept that
each node in the graph has a hidden state, whose value is updated based on the node’s
neighbors and itself. Gilmer et al. [10] introduced the "Message Passing Neural Network"
(MPNN), a fundamental framework for GNNs. The MPNN method comprises two stages:
message passing and readout.

Message Passing

Let G = (V,E) represent an undirected graph, where V is the set of nodes and E is the
set of edges. vi ∈ V denotes the i-th node in the graph, while eij ∈ E represents the
edge linking node vi and node vj . The set of neighbors of node vi is denoted as N(i).
Each node vi has a hidden state hti at timestep t. Moreover, feature vector kij can be
associated with every edge eij .

Each node vi computes a message mt+1
i on the basis of its own hidden state hti, the

hidden states of its neighbors htj , and the edge features kij . Equations 3.1 and 3.2 depict
the message passing phase of the MPNN framework [10]. A message function Mt and
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Figure 3.6: An illustration of the message passing phase.

a node update function Ut are used in this process. In a similar way, edge features can
also be learned.

mt+1
i =

∑
j∈N(i)

Mt(h
t
i, h

t
j , kij) (3.1)

ht+1
i = Ut(h

t
i,m

t+1
i ) (3.2)

Within the MPNN framework, there are various functions available for updating messages
and for updating nodes. For instance, Battaglia et al. utilized multi-layer perceptrons
(MLPs) for both message and node update functions in Interaction Networks [2]. Mean-
while, Schütt et al. employed a neural network for the message function and a simple sum
Ut(h

t
i,m

t+1
i ) = hti +mt+1

i for the node update function in Deep Tensor Neural Networks
[22]. The selection of functions depends on the characteristics of the data and the task
at hand.

Readout

After completing the message passing phase, the hidden state of both nodes and edges
can be utilized for downstream tasks. In scenarios involving graph-level tasks, a readout
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function may be employed to combine the hidden states of the nodes and generate a
graph-level representation.
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4 Model architecture

This chapter presents an overview of GCoRe, followed by a detailed analysis of the
building block mechanisms and a discussion of design decisions.

4.1 Overview

Transformer-based models pose a significant limitation in their fixed input length. A
common workaround is to divide the input into smaller chunks (passages) and feed them
into the model separately. However, this approach is not ideal as it does not capture the
global context of the input. To solve this problem, the author uses Graph Neural Net-
works to capture the global context of the given text without being limited to the length
of the passage. The global context information is then added back to the contextualized
features.

Essentially, question answering aims to extract knowledge or information from a given
document to find the answer. Such information is often better represented in the form of
graphs. Graph data is better suited for logical reasoning than a sequence of tokens be-
cause there are explicit relationships between entities on the graph. Furthermore, Graph
Neural Networks face no limitations in input length and can execute graph inference on
knowledge graphs of any scale. Therefore, the author believes that using graphs and
GNNs can help improve the performance on Question Answering tasks.

This thesis introduces Global Contextualized Representations (GCoRe), which can be
integrated into any existing transformer-based model. GCoRe is composed of four main
components:

1. Graph Builder constructs a graph from the text’s context. Each node includes
metadata for a word or an entity in the text, and each edge represents a relationship
between the words.
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Figure 4.1: The overview of GCoRe’s architecture.

2. Base Language Model is a Transformer-based model that is used to extract
contextualized features from the input text.

3. Span Aggregation Block aggregates contextualized features of words in the same
span across all passages, creating a single vector representation for each span.

4. Graph Attention Block: infers global contextualized features of the nodes in
the context graph based on their span representations, and then adds the inferred
features to the contextualized features to produce the global contextualized features
for individual tokens.

As depicted in Figure 4.1, the input text is divided into several passages, which are fed
into the base language model as usual. However, the forward pass of the base language
model is interrupted after the first few layers.
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A context graph is then constructed by the graph builder utilizing the entire input text.
The contextualized features after the first few layers of the base language model are then
fed into the Span Aggregation Block along with the context graph, which generates a
span representation for each node in the graph.

The Graph Attention Block then infers the global contextualized features from the graph
and adds them back to the contextualized features of the individual passages. This pro-
cess produces the final contextualized features for each passage, which are then consumed
by the rest of the base language model before being used in downstream tasks.

The main difference between the proposed approach and traditional methods is that all
passages belonging to the same context document must be processed before the outputs
for the individual passages can be computed.

4.2 Graph builder

Figure 4.2: The graph builder.

Utilizing context graphs to enhance the ability to capture word dependencies is the central
concept of GCoRe. The quality of context graphs, therefore, plays an important role in
the performance of GCoRe, both in terms of computational cost and accuracy. The
graph builder is responsible for constructing the context graph from the input text.

The graph builder takes text input and outputs a graph with nodes that contain metadata
for words or entities, including the word itself, its part-of-speech tag, its named entity
tag, and its absolute position in the text. Meanwhile, each edge in the graph indicates a
relationship between the words, such as a syntactic dependency or a co-reference.
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GCoRe does not limit the construction method of the graph builder. Therefore, any
method capable of constructing a graph from the input text may be implemented.

Although knowledge graphs are a suitable choice for the graph builder, their implementa-
tion is beyond the scope of this thesis and demands significant resources. To demonstrate
the feasibility of the concept and maintain the thesis’s scope, the author utilizes a graph
builder that combines syntactic dependency parsing, entity recognition, and coreference
resolution.

4.2.1 Syntactic dependency graph

Figure 4.3: An example of a syntactic dependency graph.

Syntactic dependency graphs are used in a variety of NLP tasks, including machine
translation, information extraction, and question answering. They serve as fundamen-
tal structures that illustrate the grammatical connections between words in a sentence.
These graphs depict how words relate to each other, with nodes representing words and
edges representing syntactic dependencies, such as subject-verb and noun-modifier rela-
tionships. Figure 4.3 shows an example of a syntactic dependency graph.

Although syntactic dependency graphs may not be as expressive as knowledge graphs,
they are easier to construct. The author believes that syntactic dependency graphs can
be a good starting point for constructing context graphs.

However, one of the problems with syntactic dependency graphs of individual sentences
is that they are not connected. This makes the ability of the model to capture the global
context of the text more difficult. A solution to this problem will be discussed in later
sections.
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Figure 4.4: Syntactic dependency graphs of individual sentences are disconnected.

4.2.2 Entity recognition

The previous chapter addressed the limitations of BERT-based models and the necessity
for a method that can operate on entity level rather than only token level. This thesis
used entity recognition to construct word-spans from the input text in preparation for
further processing.

Figure 4.5: An example of entity recognition.

Entity recognition tasks require models to identify and categorize specific entities within
text, such as names of people, organizations, locations, or dates. This process improves
reading comprehension and helps create more structured text. The output of entity
recognition is a structured representation of the input, tagged with appropriate labels
to identify the entities. For example, in the sentence "Steve Jobs founded Apple Inc.
in Cupertino," entity recognition would identify "Apple Inc." as an organization, "Steve
Jobs" as a person, and "Cupertino" as a location.

The recognized entities can be used to construct word spans from the input text and lay
the foundation for graph contraction and coreference resolution in the later steps.

28



4 Model architecture

4.2.3 Graph contraction

Graph contraction is the merging of nodes in a graph. The author suggests a straight-
forward method of merging nodes that belong to the same word span.

Graph contraction is applied to the syntactic dependency graph to produce a graph
that contains word spans instead of individual words. An example of graph contraction
applied to the syntactic dependency graph can be seen in Figure 4.6 as depicted in Figure
4.3.

Figure 4.6: An example of graph contraction.

After performing entity recognition and graph contraction, the resulting graph is trans-
formed into an entity-level context graph. Graph contraction reduces the number of
nodes in the graph, which lowers the computational cost of the graph inference block.
However, the resulting graph is still disconnected, which hinders the model from captur-
ing the global context of the text. To address this problem, the author used coreference
resolution.

4.2.4 Coreference resolution

Coreference resolution is the process of identifying all expressions that refer to a specific
entity within a text. This step is critical in constructing the context graph because it can
connect mentions that relate to the same entity, thereby linking the syntactic dependency
graphs of individual sentences.

Consider the previous example followed by a second sentence "Apple Inc. was founded by
Steve Jobs in Cupertino. He revolutionized the tech industry." Here, the pronoun "He"
lacks explicit identification. Coreference resolution helps to link "He" to its antecedent,
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which in this case is "Steve Jobs", and thereby connects the syntactic dependency graphs
of the two sentences. The resulting graph is shown in Figure 4.7.

Figure 4.7: An example of coreference resolution.

Combining syntactic dependency parsing, entity recognition, and coreference resolution
produces interconnected networks that encapsulate both syntactic and semantic rela-
tionships. Entities identified through entity recognition provide informative nodes, while
coreference resolution bridges mentions that refer to the same entity.

4.3 Span aggregation block

To perform graph inference on entity level context graphs, it is necessary to modify not
only the graph structure but also the representation of the nodes. The Span Aggregation
Block (SAB) is responsible for the aggregation of the contextualized features of the words
in the same span across all passages, producing a single vector representation for each
span.

After the text is split into multiple passages, it undergoes tokenization and is fed into the
base language model. The resulting contextualized token embeddings are then passed
into the Span Aggregation Block.
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Figure 4.8: The span aggregation block.

4.3.1 Entity-to-Node Mapping

Context graphs in the early stage contain metadata for each node in the graph, which
effectively contains information about the start and end positions of each word span.

Using the provided metadata from the context graph, the Span Aggregation Block selects
contextualized token embeddings of words within the same span and assigns them to the
corresponding node.

Because an entity may appear multiple times within one or more passages, each node
within the graph could have multiple sets of contextualized token embeddings linked to
it after completing the entity-to-node mapping step.

4.3.2 Forward projection and aggregation

The objective of this process is to merge all contextualized token embeddings associated
with a node into a single vector representation for that node.

First, each set of contextualized token embeddings is padded to a maximum length. Next,
the padded sets are projected into the same dimensional space as the span representa-
tions. This step is referred to as forward projection, to differentiate it from the back
projection step in the Graph Attention Block. The forward projection is performed by a
linear layer that is shared by all nodes.
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Figure 4.9: The fordward projection and aggregation.

A shared bidirectional LSTM layer aggregates the projected embeddings, resulting in a
single vector representation for each set. Each node in the graph may contain multiple
span representations after the LSTM layer.

Lastly, a pooling layer is used to aggregate the representations for each node. The author
used max pooling in this research since it ensures that the representation of a span is
not influenced by the number of times the span appears in the text, but only by its
content. The max pooling guides the model to produce positive outputs for important
information.

The output of the Span Aggregation Block is a context graph that contains a span
representation in each node.

4.4 Graph attention block

The Graph Attention Block (GAB) is the final building block of GCoRe. GAB contains
two sub-blocks: graph inference and information enrichment.

4.4.1 Graph inference

The graph inference block takes the span representations from the span aggregation block
and infers the contextualized features of the nodes in the graph.
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Figure 4.10: The graph attention block.

The graph inference block consists of multiple layers of Graph Attention Networks (GAT)
[25] with Jumping Knowledge [28]. The graph inference block works similarly to a trans-
former, but at entity-level and across all passages of the input text. Each node in the
graph inference phase attends to its neighbors and aggregates their features.

The representation h′i of a node i in a GAT layer is computed as follows:

h′i = αi,iWhi +
∑
j∈Ni

αi,jWhj (4.1)

where Ni is the set of neighbors of node i, W is a weight matrix, and αi,j is the attention
coefficient between node i and j according to paper "Graph Attention Networks" [25].

The author decided to limit the number of layers in the graph inference block to 2-3
layers to avoid the oversmoothing problem in GNNs [17].

Oversmoothing is a problem that arises when a GNN contains too many layers. In each
layer, the information of a node is propagated to its neighbors. When the number of
layers surpasses a certain threshold, the information is distributed to every node in the
graph, resulting in a loss of structural information for the graph.

Edge embeddings are utilized in this work to distinguish the direction of edges, which is
important when using syntactic dependency graphs. Although they could differentiate
the type of connection between nodes, a more extensive text corpus is necessary to learn
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Figure 4.11: The attention mechanism of GAT [25].

the appropriate embedding space. Therefore, this thesis uses a simple edge embedding
that distinguishes only the direction of the edges.

The jumping knowledge mechanism aggregates the outputs of all GAT layers in the graph
inference block. This approach enables the model to capture information from multiple
levels of information propagation in the graph. Some information can be gathered from
direct neighbors, while some other information can only be gathered from distant neigh-
bors. This work uses max pooling in the jumping knowledge layer to combine the span
representations across all propagation steps.

Figure 4.12: The computation in a graph layer over multiple time-steps.

4.4.2 Backprojection and information enrichment

After the graph inference stage, the span representations undergo projection back to the
contextualized token embeddings space, getting ready to be added to the contextualized
token embeddings originating from the base language model.
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Figure 4.13: Information enrichment.

The information of a span flows back to all tokens belonging to that span. The author
implements an attention mechanism to regulate the flow of information from the span
representations to their tokens, since some tokens may not be relevant to the actual
meaning of the span, such as stop words or punctuation marks.

The span representations only contribute to the tokens that belong to their corresponding
spans. This can be achieved by applying a mask to the span representations based on
their absolute positions in the text. For every passage, the new token representations are
calculated as follows:

rs = Wbhs (4.2)

x′i = xi +
∑
s∈S

mi,sAttention(xi, rs, rs) (4.3)

where mi,s represents the mask for node i and span s, Wb denotes the weight matrix for
the back projection, hs denotes the representation of span s from the graph inference
block, and Attention(xi, rs, rs) refers to the attention between xi and the back-projected
span representation rs.

The global contextualized representations, then, can be consumed by the rest of the base
language model before being consumed by downstream tasks.
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Representation alignment

Representation alignment involves ensuring compatibility and alignment of learned em-
beddings or feature representations. It is intended to allow the different components of
the model to co-operate with each other more effectively.

Figure 4.14: Forward-projection and Backprojection.

Figure 4.14 illustrates the process of transforming a representation from one space to
another in GCoRe. Initially, the forward projection layer projects the contextualized
token embeddings into the space of the span representations. After the graph inference
stage, the span representations are projected back to the space of the contextualized
token embeddings.

Inspired by KnowBert [20], the weight matrix of the back-projection layer is initialized
with the inverse of the weight matrix of the forward projection layer. This initialization
encourages the model to learn representations that are compatible with the representa-
tions of the base language model.

4.5 Training and evaluation

The typical training approach for transformer-based models processes individual passages
separately. The model is trained to predict the answer for each passage, and the final
answer is the one with the highest probability. However, this method is not directly ap-
plicable to GCoRe, as GCoRe requires all passages to be processed before graph inference
can be performed.
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To resolve this matter, the author proposes a method that uses memory to store the
processed passages of the same sample and performs graph inference after all passages
have been processed. This method ensures that the training process for GCoRe is akin
to that of standard transformer-based models. As a result, GCoRe can be adapted to
existing code bases with minimal modifications.

Algorithm 1 GCoRe’s forward procedure
Input: The dataset S which is a non-shuffled list of passage for all samples, the graph

builder function compute_graph to retrieve the context graph for a sample, the two
parts of the base language model M1 and M2, the span aggregation block SAB, the
graph inference block GAB and the final prediction layer predict

Output: The list of predicted answers answers for all passages in S
G← null
latest_id← null
states← {}
answers← {}
S′ ← append(S, null)
for si ∈ S′ do

if si = null or latest_id ̸= si.sample_id then
if latest_id ̸= null then

aggregated_states← SAB(G, states)
gcore_features← GAB(G, aggregated_states, states)
for fi ∈ gcore_features do

ai ← predict(M2(fi)) ▷ Predict the answer for each input
answers← append(answers, ai)

end for
states← {} ▷ Clear the memory

end if
if si ̸= null then

G← compute_graph(si.sample) ▷ Compute a new graph
latest_id← si.sample_id

end if
end if
if si ̸= null then

hi ←M1(si)
states← append(states, hi) ▷ Store hi for later processing

end if
end for
return answers

The process requires that the data remains non-shuffled and be passed to the model in
sequential order. As each passage has a sample identifier associated with it, the graph
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builder can reuse the computed context graph for all passages that belong to the same
sample, helping to reduce the computational cost of constructing context graphs.

The model keeps track of the passages it has processed and the most recent sample iden-
tifier in memory. When a new sample is encountered, the model compares its identifier
with the stored identifier. If the identifier is different, the model performs graph inference
using the data stored in memory and returns the answer. After that, the model clears
the memory and proceeds with the current sample. The proposed forward procedure is
represented in Algorithm 1.

4.6 Discussion

GCoRe is a versatile add-on module that can be easily integrated into any transformer-
based model. One of the significant improvements of GCoRe over the baseline model
is its ability to capture the global context of the input text beyond the passage length
limitation.

The construction method for the context graph is not limited to any particular method,
which allows the model to be flexible and adaptable to different datasets. This work
presents a proof of concept by combining syntactic dependency parsing, entity recogni-
tion, and coreference resolution to construct the context graph. The author suggests that
GCoRe’s performance can be further enhanced by employing more sophisticated meth-
ods such as a knowledge graph for constructing the context graph. On the other hand,
constructing graphs causes more computational overhead. Hence, it is crucial to adopt
an appropriate caching strategy to mitigate the computation cost during the training
process.

The Span Aggregation Block combines all contextualized token embeddings that belong
to a span into a single vector representation. Since entity recognition information is
available, performance can be further improved by learning embeddings for entity types.
In addition, the Span Aggregation Block can be extended with an external knowledge
base to enrich span representations. KnowBert [20] has demonstrated improved model
performance through the enrichment of contextualized token embeddings with an external
knowledge base.

Edge embeddings can differentiate relationships between entities, potentially enhancing
graph inference performance. Creating an effective embedding space requires access to
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large text corpora, which is beyond the scope of this work. Nevertheless, in conjunc-
tion with the integration of knowledge graphs and external knowledge bases, this is a
promising direction for future work.

The training and evaluation procedure of GCoRe requires all passages belonging to the
same sample to be processed before graph inference is performed. The author proposed
a procedure that uses memory to store the processed passages of the same sample and
performs graph inference after all passages of that sample have been processed. The
proposed procedure makes the training process of GCoRe similar to that of a traditional
transformer-based model, which helps GCoRe adapt to existing code bases with minimal
changes.

During training, the procedure requires the training data to be non-shuffled. If dis-
tributed training is required, the training data must be split so that all passages belong-
ing to the same sample are in the same batch. The proposed procedure does not differ
from the usual procedure during inference, since the model always processes all passages
of the sample before returning the answer.
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To evaluate the effectiveness of GCoRe, the author conducts experiments on two datasets:
HotpotQA [29] and SQuADv2 [21].

5.1 Setup

The author compares the performance of GCoRe with the baseline model, which is a
pre-trained DeBERTa v3 model – a state-of-the-art transformational model for question-
answering tasks. In the experiments, the xsmall version of DeBERTa v3 is used, with 12
layers and a hidden size of 384. To perform entity recognition and coreference resolution,
the spaCy library [14] is utilized along with a pre-trained English language model.

The experiments were conducted using a single NVIDIA RTX 3090 GPU with 24 GB of
memory. The models are trained for 8 epochs in all experiments.

Learning rate scheduler

The training procedure is identical for both datasets and is not different from the usual
fine-tuning of a transformer-based model, except that the learning rate (LR) is controlled
by a modified linear scheduler with warm-up.

The learning rate is increased linearly by the scheduler from zero up to the designated
value during the warm-up period. Afterward, the learning rate is then decreased by the
scheduler to a pre-defined value instead of zero, which is used until the completion of
the training process. The author has found that a capped learning rate is more effective
than a learning rate that decreases to zero. The warm-up phase is set to 20% of the total
number of training steps. The learning rate scheduler is illustrated in Figure 5.1.
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Figure 5.1: An illustration of the learning rate scheduler.

Stride and max entity length

The stride of the sliding window is set to 400. The maximum length of a node in the
context graph is 6, meaning that each entity can contain up to 6 tokens, and excessive
tokens are truncated.

Dynamic batch size

GCoRe differs from traditional transformer-based models as it requires all passages to
be processed prior to graph inference. Hence, the batch size of GCoRe is not static.

During training, the batch size adjusts dynamically based on the number of passages in
the training samples. This approach guarantees that all passages belonging to the same
sample are in the same batch, and backpropagation occurs after processing all passages
and computing the loss. Gradient accumulation aggregates multiple batches’ gradients
before performing backpropagation. In the experiments, the gradient is accumulated for
8 batches before performing backpropagation.

Classification head

This work adopts a traditional approach to Question Answering by predicting the start
and end positions of the answer span. The global contextualized representations are fed
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into a classification head, which has a linear layer and a softmax layer, to predict the
start and end positions of the answer span.

The linear layer projects the global contextualized representations into a 2-dimensional
vector, which is then fed into the softmax layer to compute the probability distribution
of the start and end positions of the response span.

5.2 Results

Comparison with baseline model

The first experiment was performed on the HotpotQA dataset, which is a large dataset
containing long texts and many multi-hop questions.

The results are presented in Table 5.1. The GCoRe model outperforms the baseline
model by 0.57% in Exact Match and 0.25% in F1 score.

Model Exact Match F1

Baseline (DeBERTa v3 xsmall) 55.46 69.65
GCoRe + DeBERTa v3 xsmall 56.03 69.90

Table 5.1: The result (%) for the HotpotQA development set

The result of the first experiment shows that GCoRe is able to improve the performance
of the baseline model on the HotpotQA dataset by a relatively large margin, where the
text are long and an example usually contains multiple passages.

Inject position

The primary objective of the second experiment is to examine the impact of the inject
position on the performance of GCoRe.

The inject position is where to split the base transformer model into two halves and
is denoted by the number of the first layers. For instance, the inject position of layer 4
means that the output of the 4th transformer layer will be fed into the GCoRe module.
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Figure 5.2: The trade-off between low and high inject position.

There is a trade-off between low and high inject position. A high inject position allows
the model to capture more context information, as it has access to more layers of the
transformer model in the early stage. However, a high inject position also means that
the model has fewer layers to process the global contextualized features from the Graph
Attention Block.

A low inject position, on the other hand, has more layers to process the global contextu-
alized features from the Graph Attention Block. However, the span representations may
contain less information from the context text, since the model has access to fewer layers
of the base transformer model in the early stage. This trade-off is illustrated in Figure
5.2.

Position Exact Match F1

Layer 4 55.59 69.54
Layer 6 55.63 69.70
Layer 8 56.03 69.90
Layer 9 55.73 69.65
Layer 10 55.27 69.07

Table 5.2: The result (%) for the HotpotQA development set with different inject posi-
tions

The results show that the inject position after the 8th layer yields the best performance.

Number of GNN layers

The author conducted an experiment in which the number of GNN layers was varied.
The optimal number of GNN layers depends on the structure of the context graph.
For example, hierarchical graphs may require more GNN layers than densely connected
graphs.
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The table 5.3 shows that the model with 3 GNN layers yields the best performance in
this experiment.

Number of layers Exact Match F1

2 55.72 69.63
3 56.03 69.90
4 55.60 69.65

Table 5.3: The result (%) for the HotpotQA development set with different number of
GNN layers

Dimension size of span representations

The dimension size for token embeddings utilized was 384, Under the assumption that
the dimensions of token embeddings are effectively utilized during the pre-training phase
of the base language model, the dimensions of span representations ought to be greater
than those of token embeddings.

Dimension size Exact Match F1

512 55.53 69.56
768 56.03 69.90
1024 54.89 68.87

Table 5.4: The result (%) for the HotpotQA development set with different dimension
sizes for span representations

The author experimented with span representations using different dimension sizes of
512, 768, and 1024. The results are presented in table 5.4 and show that the model with
a dimension size of 768 gives the best performance.

Short context texts in SQuADv2

On the SQuADv2 dataset, the GCoRe model outperforms the baseline model by 0.15%
in Exact Match and 0.01% in F1 score, as presented in Table 5.5.
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Model Exact Match F1
Baseline (DeBERTa v3 xsmall) 80.75 83.88
GCoRe + DeBERTa v3 xsmall 80.90 83.89

Table 5.5: The result (%) for the SQuADv2 development set

Although the improvement is not significant, the result shows that GCoRe can improve
the performance of the baseline model on the SQuADv2 dataset, where input texts are
relatively short and an example usually contains only one passage.

This experiment has shown that GCoRe is able to improve the performance of the baseline
model even on short context texts. This suggests that the use of graph inference has had
a positive impact on token representations. The author hypothesizes that the reason is
because GCoRe allows the model to perform entity-level reasoning, which is not possible
with the baseline model.

Adding a question node

The author conducted a graph modification experiment involving the addition of a special
node to the graph representing the question. The query node is linked to all the nodes
in the graph, thereby enabling the model to learn the connection between the query and
the entities.

However, the author found that the performance of the model did not benefit from the
presence of the question node. The author hypothesized that the entities in the context
graph already attend to the question tokens through the self-attention mechanism in the
transformer layers. Since the question is represented by a node rather than an entity-
level graph, there are no explicit interactions modeled between the entities in the question
and the context graph. Consequently, the question node does not provide any additional
information to the model.

5.3 Interactive experiments

An interactive application is developed to experiment interactively with the GCoRe
model. The application allows the user to enter a question and a context text. The
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application, then, provides the answer and a confidence score. A context graph for the
input is also displayed.

Figure 5.3: An interactive application for GCoRe.

The author employed the GCoRe model, which was trained using the HotpotQA dataset,
to conduct the interactive experiments.

Reasoning ability

This experiment utilizes DeBERTa v3’s base version as the baseline model, which pos-
sesses 86M backbone parameters. The GCoRe model is identical to the model in the
previous experiments, utilizing DeBERTa v3’s xsmall version, which has only 22M back-
bone parameters.

The question and the context text were crafted to test the reasoning ability of the model.
The context describes a familial network where some of the relationships are not explicitly
stated. The model, therefore, must perform reasoning on the familial relationships in the
context to answer the question accurately.
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Context: Alex is a man who is married to Katherine, forming a spousal relation-
ship between them. Katherine, in turn, is connected to Bob as her son-in-law. This
intricate familial network continues to extend, as Bob is the father of a daughter.
The mother of this daughter is Petty, who shares a sibling bond with a man named
Carl.
Question: Who is the grandmother of Bob’s daughter?

GCoRe: Katherine DeBERTa v3: Petty

GCoRe was able to answer the question correctly, while the baseline model failed to
answer the question. The baseline model predicted the answer to be Petty, who is the
mother of Bob’s daughter. The baseline model failed to perform reasoning on the familial
relationships in the context text.

Figure 5.4: The context graph for the manually crafted context.

The context graph for the context text is shown in Figure 5.4. The green area represents
the nodes that contribute to the answer. As seen in the green section, coreference resolu-
tion linked "Bob" from two subgraphs, connecting the important information from two
sentences.
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Since the baseline model only applies the attention mechanism at the token level, it is
more difficult to capture intricate relationships between entities. On the contrary, GCoRe
executes graph inference at the entity level, enabling the model to better comprehend
the connections.

Out-of-Domain Question Answering

Context: John Dalton’s original atomic hypothesis assumed that all elements
were monatomic and that the atoms in compounds would normally have the sim-
plest atomic ratios with respect to one another. For example, Dalton assumed
that water’s formula was HO, giving the atomic mass of oxygen as 8 times that of
hydrogen, instead of the modern value of about 16. In 1805, Joseph Louis Gay-
Lussac and Alexander von Humboldt showed that water is formed of two volumes
of hydrogen and one volume of oxygen; and by 1811 Amedeo Avogadro had arrived
at the correct interpretation of water’s composition, based on what is now called
Avogadro’s law and the assumption of diatomic elemental molecules.

The author utilized data from the SQuADv2 dataset to conduct out-of-domain question
answering on the topic Oxygen. This topic is not included in the HotpotQA dataset and
comprises numerous domain-specific terms.

Question: What did John Dalton think that all elements were in number present
in compounds?
GCoRe: monatomic

Question: What was Dalton’s erroneous formula for water?
GCoRe: HO

Question: What element did Gay-Lussac and von Humboldt discover was present
in twice the amount of oxygen in water?
GCoRe: diatomic elemental
Ground truth: hydrogen

The model answered some questions correctly. However, it was unable to answer more
complex questions that required logical reasoning about the topic.
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5.4 Discussion

HotpotQA and SQuADv2 are two different datasets that contain different types of ques-
tions. HotpotQA consists of multi-hop questions that require the model to reason over
multiple passages. In contrast, SQuADv2 consists of questions that can be answered
in a single pass. The performance of GCoRe outperforms the baseline model on both
datasets. The improvement is more significant in the HotpotQA dataset, which contains
long texts and complex questions with multiple hops. However, the improvement in
the SQuADv2 dataset is not significant because the texts are relatively short and the
questions are relatively simple. The graph inference mechanism in GCoRe has proven
its ability to capture global context more efficiently, which is beneficial for long texts.
The baseline model lacks the ability to perform entity-level reasoning, which GCoRe can
do.

In this work, a modified linear scheduler with warm up was used to control the learning
rate. The original linear scheduler, which linearly decreases the learning rate to zero, did
not help improve performance because the learning rate was too low for the model to
learn. A small number of training steps during the fine-tuning process results in a steep
slope of the learning rate reduction, causing the learning rate to drop to zero too quickly,
preventing the model from learning. The capped learning rate, on the other hand, allows
the model to learn more effectively while still benefiting from the warm up phase.

Typically, the step size of the sliding window is kept small to ensure that tokens in the
passages have a better chance to attend to important information. In the experiments,
the stride was set to 400, which is close to the maximum length of context in a passage.
The reason is that the context graph already captures the global context, which allows
the model to attend to important information more effectively. Therefore, a token doesn’t
need to attend to too many other tokens in its surroundings.

There is a trade-off in the selection of the inject position. The author conducted exper-
iments with different inject positions and discovered that the inject position after the
8th layer gives the best performance. As the inject position increases, the model has
access to more layers of the base transformer model in the early stage, which means that
the context graph can receive more information from the context text. The remaining
four layers are sufficient to effectively process the global contextualized features from the
Graph Attention Block.
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Adding a question node to the context graph did not improve the performance of the
model. The reason may be that there are no explicit interactions between the entities
in the question and the context graph, and the token representations of the context
text already attend to the question tokens through the self-attention mechanism in the
transformer layers. However, another entity-level graph representing the question, a
question graph, might improve the performance of the model. This topic is left for future
work.

During the interactive experiments, the author found that GCoRe was able to answer
some out-of-domain questions. However, the model was unable to generate accurate
answers to more complicated questions.

The model successfully provided the correct answer to a question created by the au-
thor that required reasoning about the familial relationships in the context text, while
DeBERTa v3 failed to provide the correct answer. GCoRe was able to produce a con-
text graph that linked important information, allowing the model to reason more effec-
tively.
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6.1 Summary

The pre-training process of a base language model is expensive in terms of computation
and time. The major goal of this work is to construct novel methods to improve the
performance of existing pre-trained base language models on Question Answering tasks
without requiring further pre-training of the base language model.

Transformer-based models struggle to capture long-term dependencies in input data,
particularly with lengthy inputs. This problem arises because these models have a fixed
input length, forcing inputs to be split into multiple passages, which then need to be
processed independently. This can lead to difficulty in capturing relationships between
tokens at the beginning and the end of a long text. GCoRe addresses this issue by cre-
ating a context graph for the entire input text and using it to perform graph inference.
Furthermore, GCoRe can be easily integrated into any pre-trained Transformer-based
model with minimal changes, since it only interrupts the forward pass of the base lan-
guage model and enriches token representations with global contextual information. Span
representations in GCoRe are encouraged to adapt to the learned token representation
space of the base language model.

Context graphs generated by GCoRe comprise entities and relations between them.
Therefore, the model is capable of operating on entity level, whereas Transformer-based
models only operate on token level. In the Graph Attention Block of GCoRe, nodes in
the context graph undergo updates by gathering information from their neighbors, which
are entities that are related to them. As a result, performing graph inference on entity
level has positively contributed to the reasoning ability of the model. GCoRe accurately
answered a manually crafted question about familial relationships during an interactive
experiment, while DeBERTa v3 failed. The context graph produced by GCoRe for the
question has illustrated its contributions to the reasoning process.
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GCoRe was trained on a single NVIDIA RTX 3090 GPU with 24GB of memory, and its
performance was evaluated on two Question Answering tasks: HotpotQA and SQuADv2.
GCoRe achieved an improvement of 0.57% in Exact Match and 0.25% in F1 Score on the
HotpotQA dataset, which contains long context text and multi-hop questions. On the
SQuADv2, a smaller dataset featuring short passages and single-hop questions, GCoRe
achieved a marginal improvement of 0.15% in Exact Match and 0.01% in F1 score.

The results of the experiment showed that GCoRe effectively improves the performance
of the base language model. It should be noted that the model showed significant im-
provement on a dataset with long texts, while the improvement on a dataset comprising
shorter texts was more moderate. The results suggest that GCoRe captures the global
context of longer texts more effectively than the baseline model. Furthermore, utilizing
context graphs can enhance performance regardless of whether the key information is
spread across multiple passages or concentrated in a single passage.

6.2 Future work

Knowledge graphs are a promising candidate for context graphs in GCoRe because en-
tities in knowledge graphs and their relationships are explicit. It is anticipated that
utilizing knowledge graphs as context graphs in GCoRe will yield better outcomes.

The Span Aggregation Block uses a Bi-LSTM layer to combine token representations.
To enhance its performance, learned entity embeddings should be implemented to aug-
ment external knowledge. Implementing learned entity embeddings could also improve
representation alignment and generalization ability. Furthermore, an external knowledge
base could enrich the information contained in the context graph.

Instead of adding an extra node representing the question, another entity-level graph for
the question could be constructed. There is a potential to improve the model’s reasoning
and information extraction capabilities through the interaction between entities in the
question graph and the context graph. This is a promising direction for future research.

Further analysis of the effectiveness of GCoRe can be achieved by experimenting with
other and larger base language models. The concept of utilizing context graphs to en-
hance token representations in GCoRe can also be applied to other NLP tasks, such as
text summarization, document classification, and information retrieval, to improve the
processing and comprehension of textual information.
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