
 1

BACHELOR THESIS
Alemseged Zerihun Demissie

Design and prototype implementation of
an analytics platform in Azure using
DevOps and Infrastructure as Code

FAKULTÄT TECHNIK UND INFORMATIK
Department Informa:ons- und Elektrotechnik
FACULTY OF ENGINEERING AND COMPUTER SCIENCE
Department of Informa:on and Electrical Engineering

HOCHSCHULE FÜR ANGEWANDTE
WISSENSCHAFTEN HAMBURG
Hamburg University of Applied Sciences

 2

Alemseged Zerihun Demissie

Design and prototype implementation of an analytics
platform in Azure using DevOps and Infrastructure as Code

Bachelor Thesis based on the examination and study regulations for the Bachelor of
Engineering degree programme Information Engineering
at the Department of Information and Electrical Engineering
of the Faculty of Engineering and Computer Science
of the University of Applied Sciences Hamburg
Supervising examiner: Prof. Dr. Kolja Eger
Second examiner: Prof. Dr Robert Heß
Day of delivery: 06. January 2023

 3

Alemseged Zerihun Demissie

Title of Thesis

Design and prototype implementa:on of an analy:cs plaIorm in Azure using DevOps
and infrastructure as Code

Keywords

Cloud, DevOps, Azure, Open Data, Analy:cs, Prototype

Abstract

This paper details the design and prototype implementa:on of an analy:cs plaIorm
on MicrosoO Azure, leveraging DevOps and Infrastructure as Code (IaC). The project
integrates containeriza:on and Azure services, u:lizing Azure DevOps for con:nuous
integra:on and Terraform for infrastructure management. The focus is on
demonstra:ng the efficiency, scalability, and reliability of the plaIorm in a cloud
environment. The findings highlight the prac:cality of combining cloud compu:ng,
DevOps, and IaC, offering valuable insights for similar implementa:ons in the cloud
compu:ng field.

Alemseged Zerihun Demissie

Thema der Bachelorthesis

Design und Prototyp-Implemen:erung einer AnalyseplaWorm in Azure unter
Verwendung von DevOps und Infrastruktur als Code

S<chworte

Cloud, DevOps, Azure, Open Data, Analy:cs, Prototyp

Kurzzusammenfassung

In diesem Dokument werden der Entwurf und die Prototypenimplemen:erung einer
AnalyseplaWorm auf MicrosoO Azure unter Nutzung von DevOps und Infrastructure
as Code (IaC) detailliert beschrieben. Das Projekt integriert Containerisierung und
Azure-Dienste und nutzt Azure DevOps für die kon:nuierliche Integra:on und
Terraform für die Infrastrukturverwaltung. Der Fokus liegt auf dem Nachweis der
Effizienz, Skalierbarkeit und Zuverlässigkeit der PlaWorm in einer Cloud-Umgebung.
Die Ergebnisse unterstreichen die Prak:kabilität der Kombina:on von Cloud
Compu:ng, DevOps und IaC und bieten wertvolle Erkenntnisse für ähnliche
Implemen:erungen im Cloud-Compu:ng-Bereich.

 4

Table of Contents

1. INTRODUCTION .. 5

1.1 ENTOSE-E ... 5
1.2 TOPIC STRUCTURE .. 6

2. BACKGROUND .. 7

2.1 CLOUD .. 7
2.1.1 How cloud compu.ng func.ons .. 7
2.1.2 Cloud Infrastructure .. 7
2.1.3 Cloud Deployment Models .. 8
2.1.4 Cloud services .. 8
2.1.5 Azure Cloud Provider ... 9
2.1.6 Main service models of cloud compu.ng .. 9

2.2 INFRASTRUCTURE AS CODE ... 10
2.3 VIRTUAL MACHINES .. 11
2.4 CONTAINERIZATION ... 12
2.5 VIRTUALIZATION VS. CONTAINERIZATION .. 13
2.6 SERVERLESS ... 14
2.7 DEVOPS ... 16

2.7.1 DevOps Architecture ... 16
3. REQUIREMENTS .. 19

3.1 REQUIREMENT OVERVIEW .. 19
4. DESIGN ... 23

4.1 CONTAINERIZED WEB APP SERVICE .. 23
4.1.1 Technologies and Tools .. 24
4.1.2 Architecture Design for Containerized Web App ... 28

4.2 AZURE FUNCTIONS APP ... 29
4.2.1 Architecture Design for Azure func.ons .. 30

4.3 FRONTEND .. 32
5. IMPLEMENTATION .. 34

5.1 INITIAL CONFIGURATION AND LOCAL ENVIRONMENT SETUP .. 34
5.2 INFRASTRUCTURE .. 35

5.2.1 Code Structure and Best Prac.ces for Terraform .. 35
5.2.2 Database ... 36
5.2.3 Web App Backend ... 36
5.2.4 Serverless Azure Func.ons .. 37
5.2.5 Sta.c Web App Frontend ... 38

5.3 SOURCE CODE .. 39
5.3.1 FastAPI Web Service .. 39
5.3.2 Serverless func.on app ... 40

5.4 PIPELINES .. 40
6. TEST AND EVALUATION ... 42

7. SUMMARY .. 45

BIBLIOGRAPHY .. 46

 5

1. Introduction

Cloud computing and DevOps enhance software development and deployment process. Cloud

computing offers scalable resources and services on-demand, thereby removing the need for local

infrastructure and facilitating seamless data and resource management across the internet. DevOps

complements this by optimizing the development lifecycle, promoting continuous integration and

deployment, with these technologies the primary objective of this thesis project is to design and

develop a prototype for an analytics platform. Hosted on the Azure cloud, this platform aims to

provide users with intuitive insights into electricity generation, interacting seamlessly with them.

Utilizing data from the ENTSO-E Transparency Platform as a data source exemplar, it will compute

the average electricity production from various types in a selected country. This will serve as a

tangible demonstration of the platform's capabilities, illustrating how one can design an analytics

platform on Azure Cloud. Moreover, the prototype is engineered with an emphasis on integrating

Cloud and DevOps methodologies to ensure the robustness of continuous integration and deployment,

thereby enhancing the platform's efficacy and adaptability for real-world usage.

1.1 ENTOSE-E

The European Network of Transmission System Operators for Electricity (ENTSO-E) is an

association that facilitates cooperation among European transmission system operators (TSOs).

Comprising 39 TSOs from 35 countries, it oversees the operation of Europe's electricity grid, the

world's largest interconnected electrical system. The organization aims to ensure a reliable electricity

supply, support the transition to sustainable energy, and enhance the efficiency of the European

internal electricity market, in line with mandates from EU legislation [1].

The ENTSO-E Transparency Platform aims to provide free, continuous access to pan-European

electricity market data for all users, across six main categories: Load, Generation, Transmission,

Balancing, Outages, and Congestion Management. This thesis focuses mainly on the Generation

category, specifically on the "Actual Generation per Production Type" data view. This data view

provides information on the actual generation of electricity per production type, showing real-time or

historical generation data categorized by different types of energy sources or production technologies.

Examples include Biomass, Fossil Gas, and Nuclear.

 6

1.2 Topic Structure

The following aspects of the topic are going to be discussed thoroughly.

• Background: This chapter serves as the theoretical foundation, equipping readers with

essential background knowledge necessary for understanding the project. It delves into

foundational theories, key concepts, and relevant literature, establishing the academic context

of the thesis project.

• Requirements: This chapter outlines the project's requirements in detail. It explores both user

requirements – expectations from end-users – and functional requirements – specific

behaviors and functions the project must exhibit.

• Design: The design process of the application is detailed in this chapter. It encompasses the

architectural layout and the selection of technologies, including the rationale behind these

choices. This section demonstrates how the design approach aligns with the previously

outlined requirements, showcasing the decision-making process and its contribution to

building an effective application.

• Implementation: This chapter narrates the transformation of designs and plans into a

working application. It includes the development process, coding, integration of components,

and innovative techniques employed. Challenges encountered and strategies used to address

them are also key aspects. This section underscores the practical application of theoretical

design, providing insight into the real-world functioning of the project.

• Test and Evaluation: The effectiveness of the application is assessed in this chapter. It

outlines the testing methods used and includes a comprehensive analysis of test results. This

chapter is pivotal in validating the project, providing an objective assessment of how well the

application meets the outlined requirements.

• Summary: This chapter synthesizes all key points, recapitulating objectives, major findings,

and overall significance. It reflects on the contributions made to the field and potential

practical implications.

• Bibliography: This is the section where all the sources will be cited.

 7

2. Background

2.1 Cloud

In the modern computing landscape, "cloud computing" involves utilizing servers accessible over the

Internet for data storage and software execution. These servers are distributed across multiple

geographical locations, negating the need for individuals or organizations to manage or own physical

servers [2].

One of the significant advantages of cloud computing is its ability to facilitate data and software

access from nearly any Internet-connected device. This convenience arises from the centralized

storage and processing on these online servers, rather than on individual devices. For instance, should

a laptop malfunction, important files stored on a cloud service such as Google Drive remain

accessible from an alternate computer. The same principle applies to online email services like

Outlook and additional data storage solutions, including Apple iCloud [2].

2.1.1 How cloud computing functions

Cloud computing operates using a technology known as virtualization. This technology creates a

digital-only "virtual computer" that acts just like a real computer with its own hardware. Each of these

digital computers, or "virtual machines," is separated from the others, even though they might share

the same physical machine. This separation ensures that they don't interact with each other, keeping

files and applications on one virtual machine hidden from the others [2].

Virtualization also lets one server act like many, which is good for making the most out of the

hardware it's running on. In a way, a single data center can function like multiple data centers. This

means cloud service providers can serve more customers at the same time without driving up costs.

Even if one server in the cloud fails, the cloud service as a whole usually stays up and running. This is

because cloud providers often use backup systems across different locations [2].

To use these cloud services, people connect via an app or a web browser over the Internet, regardless

of the device they are using.

2.1.2 Cloud Infrastructure

Cloud infrastructure refers to the hardware and software components such as servers, storage,

networking resources, and virtualization software that are needed to support the computing

requirements of a cloud computing model. In essence, cloud infrastructure allows the management of

 8

traditional workloads while also providing the flexibility to deliver new, cloud-native, and container-

based applications [2].

2.1.3 Cloud Deployment Models

Cloud deployment models define a cloud environment's characteristics with respect to ownership,

magnitude, accessibility, and purpose. These models pinpoint the server locations and the entities

responsible for their management. Each model outlines the architecture of cloud infrastructure,

detailing customization capabilities and whether services are pre-provided or self-constructed.

Furthermore, these models establish the nature of interaction between the infrastructure and end-users.

Below, various deployment models in the realm of cloud computing are delineated.

The three main different types of cloud infrastructure:

• Public Cloud: Public clouds deliver resources, such as compute, storage, network, develop-

and-deploy environments, and applications over the internet. They are owned and run by

third-party cloud service providers. The most known and used public cloud providers are

AWS, Azure, and Google Cloud [3].

• Private Cloud: Private clouds are built, run, and used by a single organization, typically

located on-premises. They provide greater control, customization, and data security but come

with similar costs and resource limitations associated with traditional IT environments [3].

• Hybrid Cloud: Environments that mix at least one private computing environment with one

or more public clouds are called hybrid clouds. They allow users to leverage the resources and

services from different computing environments and choose which is the most optimal for the

workloads [3].

2.1.4 Cloud services

The resources available in the cloud are known as "services," since they are actively managed by a

cloud provider. A cloud service provider is an information technology company that provides on-

demand, scalable computing resources like computing power, data storage, or applications over the

internet. These services are sorted into several different categories, or service models [3].

 9

For this project, the Azure cloud provider was selected based on the criteria outlined in the

'Requirements' chapter.

2.1.5 Azure Cloud Provider

Azure is a cloud computing platform offered by Microsoft that provides a wide range of cloud

services, including compute, analytics, storage, and networking. Azure is a public cloud platform that

offers more than 200 products and cloud services accessible over the public internet. Primary

designed to help businesses manage challenges and meet their organizational goals by providing tools

that support all industries, including e-commerce, finance, and a variety of Fortune 500 companies.

Azure is compatible with open-source technologies, which gives users the flexibility to use their

preferred tools and technologies [4].

2.1.6 Main service models of cloud computing

• Software-as-a-Service (SaaS): In this model, applications reside on cloud servers and are

accessible through the Internet, eliminating the need for installation on individual devices.

The arrangement can like renting a house: the landlord maintains the house, but the tenant

mostly gets to use it as if they owned it. Notable examples of SaaS applications are Salesforce

for managing customer interactions, MailChimp for mass emailing, and Slack for team

collaboration [3].

• Platform-as-a-Service (PaaS): This model focuses on providing organizations with the

resources needed to build their own applications, rather than hosting pre-built applications for

them. PaaS suppliers provide a full set of development tools, infrastructure, and operating

systems via the Internet. The situation is like renting all the tools and equipment necessary for

building a house, instead of renting the house itself. Examples of PaaS providers include

Heroku and Microsoft Azure [3].

• Infrastructure-as-a-Service (IaaS): This model allows organizations to lease servers and

storage space from a cloud service provider. The leased infrastructure is then used by the

organization to construct and manage their own applications. The arrangement is like a

company leasing a plot of land on which they can build whatever they want — but they need

to provide their own building equipment and materials. Notable IaaS providers include

DigitalOcean, Google Compute Engine, and OpenStack [3].

 10

Previously, the primary models of cloud computing were SaaS, PaaS, and IaaS, and nearly all cloud

services could be categorized under one of these headings. Lately, however, a fourth model has come

into play.

• Function-as-a-Service (FaaS): This model, often referred to as serverless computing,

allows applications to be broken down into smaller, individual functions that operate only

when activated. Think of it like a utility bill where one only pays for what is used, such as

turning on a light only when needed and paying for just that usage [5].

Although the term is "serverless," these applications do indeed run on servers. The difference is that

the servers are managed by the service provider, not the organization using the application.

Additionally, these serverless functions can automatically adjust to handle more or fewer users, like

how a utility grid adjusts to supply power during peak or low demand. Serverless computing offers a

flexible and cost-efficient approach to application development and management [5].

2.2 Infrastructure as Code

Infrastructure as Code (IaC) means using code to set up and manage infrastructure instead of doing it

by manual processes. With IaC, simple config files are used to describe how things should be set up

which ultimately makes changes and sharing easier.

Tools such as Terraform, AWS CloudFormation, and Ansible are widely used for this purpose. They

provide the capability to set up the desired configuration in a file, which is then utilized to automate

the setup process.

Advantages of Infrastructure as Code

• Self-service: When teams set up systems manually, often only a few individuals know the

process and have the necessary access. This can lead to delays as the team expands. Using

code for system setup allows for automation, enabling any developer to initiate the setup as

needed [6].

• Speed and safety: Automating system setup through code is faster because computers

operate more quickly than manual processes. It's also more reliable because computers follow

instructions consistently, reducing errors [6].

 11

• Documentation: Using code for system setup ensures that the system's workings are

accessible to all. It acts as a guidebook that remains available even in the absence of key

individuals [6].

• Version control: Storing different versions of setup code provides a record of all changes

made. If issues arise, this record can be consulted to identify recent changes. If necessary,

reverting to a previous version becomes an option [6].

• Validation: Defining system setup in code allows for thorough checks of every modification.

The code can be reviewed, tested, and analyzed using tools, reducing the likelihood of errors

[6].

• Reuse: Parts of the setup code can be repurposed for various projects. This approach avoids

starting from scratch and builds on reliable, tested components [6].

• Happiness: Using code for system setup enhances job satisfaction. Manual, repetitive tasks

can become tedious and stressful. Automation allows computers to handle repetitive tasks,

while developers focus on creative aspects [6].

2.3 Virtual Machines

A virtual machine (VM) is an emulation of a physical computer, functioning as its digital counterpart.

While the actual hardware is termed the 'host', the VM is often referred to as the 'guest'.

VMs enable the creation of multiple independent environments, each boasting its own operating

system and applications, all on a singular physical machine. These VMs don't directly communicate

with the host hardware. Instead, a software layer known as a 'hypervisor' acts as the mediator,

allocating essential computing resources such as CPU, memory, and storage to each VM. This

separation ensures VMs operate without affecting each other [7].

Virtualization allows a physical computer, often called a 'bare metal server', to separate its operating

system (OS) and applications from its hardware. With the aid of a hypervisor, this computer can

fragment itself into multiple "virtual machines" (VMs). Each VM operates its own OS and

applications, yet shares the original server's resources, such as memory and storage.

 12

The hypervisor acts as a manager, distributing the bare metal server's resources amongst these VMs

while ensuring they operate harmoniously without interference [7].

There are two main hypervisor types:

• Type 1 Hypervisors: These run directly on the physical hardware, essentially replacing the

OS. Software tools, like VMware’s vSphere, help create VMs on these hypervisors, allowing

the installation of guest OSs and the possibility of using one VM as a template for others [7].

• Type 2 Hypervisors: Operating as an application within an OS, these are commonly used for

individual desktops or laptops. Users manually create a VM and decide on the allocation of

physical resources. Advanced features might include options like 3D graphics acceleration

[7].

2.4 Containerization

Containerization involves encapsulating software code with the necessary operating system (OS)

libraries and dependencies into a single, streamlined unit termed a "container." These containers,

lighter and more efficient than traditional virtual machines (VMs), serve as the foundational units for

contemporary cloud-native applications [8].

The primary advantage of containerization is its ability to ensure software consistency across different

environments. Traditional development often sees code behaving differently when shifted from one

environment to another, leading to potential bugs. Containerization addresses this by bundling the

application with all essential configuration files, libraries, and dependencies. This abstraction ensures

that the container remains independent of the host OS, facilitating smooth execution across various

platforms without compatibility issues [8].

Though the idea of containerization has been around for decades, its popularity surged with the

introduction of the open-source Docker Engine in 2013. This provided the industry with a

standardized approach to container creation, bolstering the widespread adoption of the technology.

Nowadays, organizations increasingly lean on containerization for both developing new applications

and updating existing ones for cloud compatibility [8].

Containers have the reputation of being "lightweight" because they utilize the host machine's OS

kernel and don't need a separate operating system for each application. This compact nature allows

them to occupy less space than a VM, reducing startup times and facilitating the concurrent operation

 13

of multiple containers on the same computing resources. The result is better efficiency and reduced

operational costs [8].

The most significant advantage of containerization is the ability to ensure that applications can be

developed once and executed anywhere. This versatility accelerates the development process,

safeguards against dependency on a single cloud provider, and offers benefits like simplified

management, enhanced security, and fault isolation.

2.5 Virtualization vs. Containerization

As mentioned above, both containers and VMs allow multiple software applications to run in a single

environment, optimizing compute efficiency by maximizing resource utilization and minimizing

overhead. Yet, despite their similar objectives, there are clear and inherent differences in their design,

functionality, and use cases that set them apart from one another.

Fig 1. The difference between a container (left) and a virtual machine (right) [9]

Virtual Machines (VMs):

• VMs allow different operating systems and applications to run concurrently on a single

computer. This means an organization could have both Linux and Windows or multiple OS

versions on one server [10].

 14

• Each application, alongside its associated files, libraries, dependencies, and even a copy of the

OS, is packaged as a VM [10].

• By running multiple VMs on one machine, cost savings in capital, operations, and energy are

optimized [10].

Containers:

• Containers further streamline resource use. They package application code with its associated

configuration files, libraries, and dependencies into a singular executable software package

[10].

• Unlike VMs, containers don't include a copy of the OS. All containers on a system share the

host system's OS via the container runtime engine [10].

• Containers are "lightweight," sharing the machine's OS kernel. They don't have the overhead

of an OS for each application, making them quicker to start and more resource-efficient than

VMs. This leads to even greater savings in server and licensing costs [10].

2.6 Serverless

Serverless computing is an innovative paradigm in cloud services that promises to simplify the

development and operation of applications by abstracting away the complexities of server

management. Despite the term, serverless computing does not eliminate servers but makes their

existence transparent to developers. It allows them to focus solely on writing code without worrying

about the underlying infrastructure. This computing model operates on the principle of NoOps,

meaning "no operations," where traditional server management and maintenance tasks are completely

offloaded to the cloud provider [11].

NoOps approach is epitomized by Function-as-a-Service (FaaS) which is described on the beginning

of this chapter under Main service models of cloud computing sub-Chapter, where individual

functions are triggered by events or HTTP requests, executed in stateless containers that are spun up

and down by the provider as needed.

The automated scaling or elasticity of serverless computing is one of its core features. It ensures that

resources are dynamically allocated and billed based on actual usage, providing a fine-grained, pay-

 15

as-you-go cost model. This means applications can scale from a few requests to millions without any

manual intervention [11].

The evolution of serverless computing can be traced back to the advancements in virtualization and

cloud services. It is the next step in the evolution of cloud offerings, following IaaS, PaaS, and SaaS,

further reducing complexity and operational overhead for developers.

Serverless computing offers several advantages over traditional cloud service models. Here are some

of the key benefits:

• Cost-Efficiency: With serverless, you only pay for the compute time you consume. There is

no charge when your code is not running, making it an economical choice for various

applications, especially those with variable workloads [11].

• Scalability: Serverless architectures inherently handle scaling automatically. As the number

of requests for a function increases, the cloud provider automatically allocates more resources

to handle the load [11].

• Developer Productivity: By abstracting away the server management aspect, developers can

focus on writing code rather than worrying about the infrastructure. This leads to faster

deployment of applications and features [11].

• Quick Time-to-Market: Serverless computing allows businesses to bring products to market

more quickly due to the reduced operational complexity and the ability to rapidly deploy and

update applications [11].

• Improved Latency: Serverless architectures can deploy instances of applications in multiple

geographic regions, reducing latency by serving requests from the nearest data center [11].

• Ecosystem and Community: The growing serverless ecosystem provides a rich set of tools

and services that can be integrated, offering solutions for monitoring, security, and continuous

deployment, among others [11].

• Focus on User Experience: Freed from infrastructure concerns, organizations can dedicate

more resources to user experience and innovation [11].

 16

serverless computing represents a significant shift in how businesses deploy and manage applications,

offering numerous benefits in terms of cost, scalability, and operational efficiency. As the market for

serverless continues to grow, it is likely to become an even more integral part of the cloud computing

landscape.

2.7 DevOps

DevOps is an updated software development approach that focuses on better coordination,

communication, and automation between software developers and IT operations. This helps in

delivering software more quickly and reliably. In the past, software developers and IT operations often

worked separately, causing delays in software releases. DevOps aims to fix this issue by bringing

these teams closer together. As a result, many companies are moving from old methods to DevOps

[12].

Before DevOps, developers mainly worked on creating features, while the operations team looked

after the stability and performance of these features. This separation sometimes led to problems such

as system outages and misunderstandings. However, with DevOps—combining Development and

Operations—there's a push for [12]:

• Making the work cycle faster.

• Quickly adding new features.

• Improving teamwork between development and operations.

By following this approach, teams work better together, communicate more, and use automation tools

more often. This automation helps in reducing mistakes and makes processes like testing and

deployment more efficient. [12]

2.7.1 DevOps Architecture

Both the development and operations teams are needed to release apps. The development side

includes understanding needs, designing, building, and testing software. On the other side, operations

manage these software components. With DevOps, the gap between these two sides is closed, which

can lead to faster software delivery. The DevOps method is useful for various applications, like those

on the cloud. It also helps in smoothly adding new features. When the two teams work separately, it

takes more time to create and manage software [12].

 17

Modern software development can be complex. Making decisions for such software can depend on

many factors. DevOps helps complex software development handle this complexity by giving a way

to always improve, try new things, and get feedback quickly. DevOps needs a structured setup to

manage its tools and processes. A good setup can make software delivery efficient, accurate, and

scalable. [12]

The DevOps lifecycle is a continuous software development process that employs DevOps best

practices to plan, build, integrate, deploy, monitor, operate, and offer continuous feedback throughout

the software’s lifecycle. It is often represented by a continuous loop diagram as seen below –

Fig 2. The DevOps lifecycle

• Plan: In the planning stage, teams map out the project. Unlike traditional ways of developing

software, this method expects to go back and repeat steps when needed. This means we're

always thinking about both past lessons and future cycles. All teams need to be involved to

make sure nothing is missed [13].

• Code: In the coding phase, developers write the code, making it ready for the steps that come

next. They follow the details from the planning stage, making sure the code fits the project's

goals [13].

• Build: During this phase, new code is added to the project. If needed, the project is changed

to fit this new code. Tools like GitHub are often used. Developers ask to add their code, it's

 18

checked, and if it's good, it's added to the project. This way works well even when adding

new things or fixing problems [13].

• Test: Here, the team checks everything to make sure the project works right. They also look

for any special issues. An "edge case" is a problem that happens only in rare situations, and a

"corner case" is when several unusual things happen at once [13].

• Release: This phase means the code is checked and ready to be used more widely. If

everything is okay and there are no big problems, the project is ready to move on [13].

• Deploy: Now, the project is set up for everyone to use. While it used to be mostly the job of

certain teams, in DevOps, everyone helps out. Working together like this makes sure

everything runs smoothly [13].

• Operate: During this phase, the project is live, and people start using it. This isn't the last

step. Instead, it helps guide what to do next, making sure everything works in the real world

[13].

• Monitor: In this last stage, the team keeps an eye on how the project is used. They take note

of feedback, issues, or ways to make it better. This information is used for the next cycle,

helping to improve the whole process. [13]

 19

3. Requirements

In this chapter, the MoSCoW prioritization technique [14] will be used to establish the criteria for goal

setting. Only Three specific categories will be used to set the requirements: 'Must-haves' which are

essential for completing the prototype, ‘Should-haves' which are optional yet important initiatives that

are not vital but add significant value and Could-haves' which are nice to have initiatives that will

enhance the prototype if included. These requirements will be explained throughout the chapter and

listed in full at the end.

3.1 Requirement Overview

The overall user requirement is to develop an interactive analytics platform prototype on Azure cloud.

This platform should calculate the actual average electricity generated per production type for a

specified country, using data from the ENTSO-E Transparency Platform as a proof of concept to show

case how one cloud design an analytics platform on Azure cloud. The prototype should incorporate

Cloud and DevOps practices to enable continuous integration and deployment.

The requirements for the prototype platform are divided into two main sections: "Functional

Requirements" and "End user Requirements" These sections encompass the functionalities expected

from the platform from a user's perspective and the underlying system operations necessary to

facilitate those functionalities.

Functional Requirements

Functional requirements describe the operations and functionalities that the system needs to fulfill to

support user functionalities and maintain smooth and secure operations:

• Cloud Implementation: The prototype platform should be implemented on Microsoft

Azure cloud.

• Infrastructure as Code: The prototype platform should use infrastructure as code to create

the necessary infrastructures. The chosen infrastructure as code tools and practices should be

employed to automate the infrastructure setup.

 20

• Automated Pipelines: The prototype platform should have automated pipelines for

creating the infrastructure and deploying the application. The pipelines should ensure

consistent and reliable deployment of the platform.

• Infrastructure Destruction: The prototype platform should provide a pipeline or

mechanism to destroy the entire infrastructure when needed. The destruction process should

be automated and ensure the removal of resources.

• Partial Infrastructure Destruction: The platform should allow for the destruction of

stateless resources while preserving stateful resources.

• Resource Split: The prototype should be able to divide stateless and stateful resources.

• Data Collection: The data should be collected from ENTSO-E Transparency Platform via

API request based on the user input.

• Calculation: As a proof of concept, the prototype platform should calculate the average

value of the generated electricity per production type based on the input from the user using

the data collected from ENTSO-E Transparency Platform.

• Time Triggered Calculation: The prototype platform should include a feature that triggers

a scheduled job to calculate the monthly average value of electricity generated per production

type for a specified country.

• Data Storage: The prototype platform should save both the user's input data and the

computed average value in a type of database that is suitable for the data's nature and

structure. This selected database should have the capacity to manage large quantities of data

efficiently.

 21

End User Requirements

User requirements detail the functionalities and features that will be directly accessed and used by the

end-users of the platform:

• Input Data: The platform should feature a website equipped with a form for users to filter

the required data. The form should prompt users to enter details such as the start date, end

date, country, security token, and generation type so that the calculation can be performed

using those inputs.

• Data Presentation: The prototype platform should display the stored data from the

database back to the website. The data should include information such as the initial and end

dates, country, generation type, and the calculated average value.

• Data Deletion: The platform should provide the ability to delete data directly from the

website. Users should be able to select specific data entries for deletion.

Requirements Table

The requirements for judging the model can be grouped into two categories:

1. Must-Have: The success of the project hinges on these items. Their inclusion is non-

negotiable, as the project would lack purpose without them. Simply put, it's a MoSCoW top-

priority requirement.

2. Should-Have: These items are important but not as critical as the "must-have" ones. They

are deemed a secondary priority, meaning they hold significance but aren't vital for success.

3. Could-Have: These items are desirable but not necessary. They rank below the first two

categories, making them a third-tier priority. If their inclusion compromises cost or deadlines,

they should be excluded. They should only be considered if they don't hinder other project

aspects.

 22

The following are all the requirements listed for the prototype’ acceptance.

ID Must/Should/Could

Have

Requirement

1 Must Cloud Implementation

2 Must Infrastructure as code

3 Must Automated Pipelines

4 Must Infrastructure Destruction

5 Could Partial Infrastructure Destruction

6 Could Resource Split

7 Must Data Collection

8 Must Calculation

9 Could Time Triggered Calculation

10 Must Data Storage

11 Must Input Data

12 Should Data Presentation

13 Should Data Deletion

Table 3.1: Requirements Table with each requirement having an ID number, whether the requirement

is a must, could or should be had by the end of the development and implementation phase.

 23

4. Design

This chapter focuses on the architecture design for an interactive analytics platform deployed on

Azure cloud. As stated on the requirement chapter the platform aims to calculate the average

electricity generation per production type for specific countries using open data from ENTOSE-E's

platform. Two architectural approaches will be explored: a containerized Azure Web App Service and

a solution utilizing Azure Functions.

The following sections will detail the technologies chosen for each architectural model and the

reasons for their selection. The criteria for these choices include scalability, cost, performance, and

deployment considerations based on the requirements given.

The architecture is designed with specific goals in mind, such as ensuring responsive performance,

maintainability, and the capacity to handle varying workloads. The chapter will provide insights into

how each architecture meets these objectives, presenting a clear view of the platform's design

considerations.

4.1 Containerized Web App Service

A containerized Azure Web App is a cloud computing platform that enables the deployment and

running of containerized web applications. Containers, often orchestrated with Docker, bundle an

application with its environment and dependencies into a single package, providing consistency and

isolation from the underlying infrastructure as stated in the Background chapter. This approach opens

the possibly to build and deploy applications that can run anywhere, with the assurance that the

behavior will be consistent across different environments.

For the interactive analytics platform, leveraging a containerized Azure Web App Service presents

several practical benefits. The platform's deployment within Docker containers guarantees

environmental consistency, ensuring that the future complex data processing behaves predictably

across different deployment stages. This is crucial for maintaining the integrity of calculations and

user experience. Additionally, the containerized approach allows for rapid deployment and iteration, a

valuable feature for a prototype project where features and fixes need to be rolled out quickly. Azure's

scaling capabilities are particularly advantageous for an analytics platform; they enable the service to

adapt to varying workloads seamlessly, ensuring that performance remains stable even during peak

data processing times. The integration with other Azure services simplifies the extension of the

platform's capabilities, such as Cosmos DB and secure access management, without complicating the

infrastructure. The managed environment of Azure App Service means less time spent on operational

 24

overhead like maintenance and load balancing, freeing up resources to enhance the analytics

functions. Moreover, the platform benefits from Azure's DevOps support which is one of the main

requirements of the prototype project, facilitating a smooth continuous integration and deployment

pipeline, which is essential for a platform that is expected to evolve rapidly. Finally, the pay-as-you-go

pricing model of Azure App Service ensures cost-effectiveness, minimizing expenses during periods

of low usage—a crucial factor for keeping the project economically viable while it scales according to

demand.

4.1.1 Technologies and Tools

Version control system (Git)

In the realm of software engineering, collaborative projects often involve multiple developers making

modifications to a shared code repository. To manage this collaborative effort effectively, there's a

need for a mechanism that enables the team to make concurrent changes without overwriting each

other's work and to maintain a record of the code's evolution.

Azure Repos is a set of version control tools that allow developers to manage their code and

collaborate on code development. It provides two types of version control: Git, which is a distributed

version control system, and Team Foundation Version Control (TFVC), which is a centralised version

control system. Azure Repos includes free unlimited private Git repositories, making it easy to

integrate it with Azure cloud. Hence this project aims to use Azure cloud as a cloud provider, Azure

Repos has been chosen to be the version control system.

Terraform

Terraform offers a straightforward view of its functionality. It's an open-source tool developed by

HashiCorp using the Go programming language. This Go code turns into a single tool named

'terraform' for each supported operating system.

This tool can set up systems from various devices, like a personal computer or a server, without

needing additional setup. Internally, 'terraform' communicates with different service providers like

Amazon Web Services (AWS), Azure, Google Cloud, DigitalOcean, OpenStack, and more using API

calls. This means Terraform uses the existing infrastructure of these providers and the authentication

methods already in place, such as existing API keys for AWS [6].

Terraform requires configurations to know which API calls to make. These configurations are text

files that describe the desired system setup [6]. They represent the 'code' in 'infrastructure as code'.

 25

Given the popularity of the software among Cloud Engineers and the features listed above Terraform

has been chosen to be the IoC tool for provisioning the Azure cloud services.

Python Fast API

FastAPI is a modern, high-performance web framework for building APIs with Python 3.6+,

leveraging standard Python type hints. Azure Functions, which will be discussed in more detail later,

is a serverless compute service that allows for the execution of event-driven or HTTP-triggered code

on a fully managed infrastructure [15].

This service supports frameworks compatible with HTTP-triggered Python functions, FastAPI

included. Bearing this in mind, FastAPI is utilized to interact with ENTOSE-E's API to retrieve the

necessary data for performing calculations, and then it stores the computed data into the database.

Azure Cosmos DB

Cosmos DB is a scalable, worldwide database from Microsoft Azure that's easy to manage and offers

quick response times. It can handle various data models and query APIs. As a cloud-based NoSQL

database, it's part of Azure's Platform as a Service (PaaS) [16]. Some even call it a serverless database

due to its high availability, reliability, and data processing capacity.

The data produced by ENTOSE-E is NoSQL with an XML schema. To store this kind of unstructured

data, Cosmos DB is ideal, as highlighted by its capabilities described in the previous paragraph.

Azure Key Vault

Azure Key Vault provides a centralized storage service for sensitive application data such as API

tokens, app secrets, and passwords. This service eliminates the need to embed secret values within

application code, allowing applications with the right permissions to retrieve secrets from the

designated vault. [17, 16, 16]

To securely access data in Cosmos DB from backend, serverless services, or other Azure cloud

resources, a connection string is required. This string provides connection details to an Azure Cosmos

DB account, including account name, password, and endpoint. After creation, this connection string

can be saved in Azure Key Vault. Access is then controlled by policy permissions, ensuring only

applications or services with the correct permissions can retrieve data from Cosmos DB.

 26

Azure DevOps

Azure DevOps, a SaaS offering from Microsoft, is tailored for managing DevOps environments, with

a focus on agile software development and pipeline automation [18]. While it boasts a countless of

features like artifacts, repos, pipelines, agile tools, and test plans, this project is going to only explore

repos and pipelines.

A standout feature of Azure DevOps is the automation of pipelines, which are essential for the

building, testing, and deploying of applications. The use of YAML for pipeline configuration is

particularly advantageous because of its seamless integration with version control systems hosted on

Azure repos, which ease future updates and changes. Due to these benefits, YAML configurations

have been selected to automate creation of cloud resources and deployment processes within this

thesis project.

Diving deeper into application configuration, environment variables are essential if one want to

prioritize pipelines security and reusability. Within Azure Pipelines, these variables are organized into

'variable groups', which are accessible in the portal's Library section. These groups are vital for

customizing the application during its journey through the pipelines. These variables can either be

sourced from Azure Key Vault or manually entered in the portal.

The subsequent implementation chapter will delve into how these environment variables are utilized

to store Azure credentials, terraform backend credentials, and frontend parameters, with a more in-

depth discussion in the implementation segment.

Azure App Service and Container Registry

Azure App Service is a comprehensive, fully managed platform for creating, deploying, and

expanding web applications. Its standout feature is its ability to autonomously oversee the underlying

infrastructure, enabling developers to focus on crafting the code that powers their enterprises [19].

Azure App Service offers support for numerous programming languages, with Python being one of

them, as well as developer tools and frameworks, encompassing both Microsoft-specific solutions and

third-party software and systems.

The other feature of Azure App Service range of scalability options. As a Developer one can manually

scale the app or let Azure automatically adjust the compute resources as demand for the web

application changes or in case of this project when there is a need for more computation. It also

integrates well with Azure DevOps and Azure Container Registry allowing for a continuous

 27

deployment and version control. This means that developers can push updates and enhancements to

their web apps in real-time, without worrying about downtime or manual deployment processes.

Azure Container Registry (ACR) is a private registry service that allows to build, store, and manage

container images and artifacts for all types of containers deployment [20]. To deploy a containerized

application to Azure App Service, the container image needs to be stored in a container registry such

as ACR. Azure App Service can then be configured to pull the container image from the registry and

run it as a web application [21]. For this project the custom created docker image with the necessary

dependency requirements is going to be stored on ACR and run the application on Azure web app.

Azure Service Plan

As stated above Azure App Service is another platform-as-a-service (PaaS) offering from Microsoft

Azure that creates the possibility to build, deploy, and scale web apps and APIs. An App Service plan

is required to run an app service and it defines a set of compute resources for the app service to run on

[22].

The cost of App Service plans is determined by the plan's tier and the quantity of instances. These

tiers encompass Free, Shared, Basic, Standard, Premium, and Isolated [23].

The Free and Shared tiers are primarily for development and testing which is being used for this

prototype project, whereas the Basic, Standard, and Premium tiers are designed for production

workloads and operate on dedicated virtual machine instances.

 28

4.1.2 Architecture Design for Containerized Web App

Fig 3. Architecture design for containerized web app

The Architecture consists of an Azure App Service Web App designed to fetch and process data from

the ENTOSE-E API and subsequently store the computed average results in a Cosmos DB..

• Functionality:

• Receives specific data parameters from a user via an API call.

• Makes an API request to ENTOSE-E using the provided data to retrieve raw

data.

• Calculates the average value based on the retrieved data.

• Stores the computed average value in Cosmos DB.

• Security: Accesses Cosmos DB using a connection string securely stored in an Azure

Key Vault.

 29

Azure Web App Service is primarily designed for hosting web applications, RESTful APIs, and

backend services. It offers a robust environment for continuous operation and meets the "Must-Have"

requirements outlined in the Requirements table form the second chapter. Azure Web App is best

suited for applications with continuous traffic or those requiring persistent server connections. If the

prototype expects constant user traffic, this architectural design is the most suitable choice in this

scenario. However, it's worth noting that Azure Web App doesn't inherently support event-driven

execution like Azure Functions does, which is going to explored in detail next.

4.2 Azure Functions App

Azure Functions operates as a serverless computing platform, enabling developers to establish event-

driven applications without the complexities of infrastructure management. This platform

accommodates various programming languages, such as C#, JavaScript, F#, Java, and Python. Azure

Functions presents a range of hosting alternatives tailored for diverse business and application

demands, ranging from entirely serverless configurations with billing based on execution time, to

traditional hosting approaches like Azure App Service plans and Premium plans [24].

 Additionally, Azure Functions can activate processes through different triggers, like HTTP endpoint

access or a predetermined timer, and integrates seamlessly with resources, including storage and

queues, through specialized bindings [25].

In the Requirements chapter, it is specified that the system could support two distinct calculation

processes: one that responds to data input by the user, and another that operates on a predetermined

schedule. Azure Functions provides the necessary capabilities to meet these requirements. It allows

for the implementation of an HTTP-triggered function to handle on-demand calculations when data is

supplied by the user. Additionally, Azure Functions offers a timer-trigger feature to automatically

carry out calculations at scheduled intervals.

 30

4.2.1 Architecture Design for Azure functions

Fig 3. Architecture design for azure functions

This time the above Architecture consists of two Azure Functions designed to fetch and process data
from the ENTOSE-E API using two event driven triggers and subsequently store the computed
average results in a Cosmos DB.

1. HTTP API Triggered Azure Function:

• Trigger: Activated by an HTTP API call.

• Functionality:

• Receives specific data parameters from the frontend provided by the user.

• Makes an API request to ENTOSE-E using the provided data to retrieve raw

data.

• Calculates the average value based on the retrieved data.

• Stores the computed average value in Cosmos DB.

• Security: Accesses Cosmos DB using a connection string stored securely in an Azure

Key Vault.

 31

2. Scheduled Time Triggered Azure Function:

• Trigger: Activated automatically on the 3rd day of every month.

• Functionality:

• Fetches data from the ENTOSE-E API based on predefined filtered values.

• Calculates the monthly average value from the fetched data.

• Stores the computed monthly average value in Cosmos DB.

• Security: Uses the same secure connection string from the Azure Key Vault to access

Cosmos DB.

Azure Functions offer a key advantage for applications that don't run continuously but need to

respond to specific events, such as a new data entry from the user or the monthly scheduled job. This

contrasts with Azure Web App Service, which is designed to run continuously and handle regular web

traffic.

For a prototype that processes information occasionally say only a few times a day or week and serves

a small number of users, Azure Functions is a suitable choice. It's activated only when needed, runs

the necessary code, and then shuts down, which can keep costs low since billing is based on the

number of times the function is triggered and the duration of its execution.

However, this pay-per-use model could lead to unpredictable costs. If the application suddenly gets

more traffic and the functions are triggered more often than expected, the cost could increase quickly.

This means that while Azure Functions can be cost-effective for infrequent tasks, there's a risk of cost

spikes if usage patterns change and become less predictable.

When planning to use Azure Functions, it's important to estimate how often the functions will run to

understand potential costs better. The service is great for saving money when usage is low, but it's also

crucial to monitor it to avoid unexpected charges if the frequency of the functions' triggers increases.

 32

4.3 Frontend

Azure Static Web Apps is a service that simplifies the hosting and deployment of static web content,

serving HTML, CSS, JavaScript, and image files directly from a content delivery network (CDN). It's

optimized for static websites and web applications that rely on client-side processing. [26]

React is a popular open-source JavaScript library for building user interfaces, particularly for single-

page applications where you need a responsive and dynamic client-side user experience. React's

component-based architecture makes it a good fit for modern web applications, allowing developers

to create large web applications that can change data, without reloading the page [27].

Azure Static Web Apps service is utilized to host the front end of the project, which is developed

using React. This setup provides a robust platform for delivering static content, augmented by React's

capabilities for creating dynamic and responsive user interfaces.

Fig 5. Frontend application design

The front-end application features a form that allows users to input several parameters: the country,

production type, start date, end date, and a security token obtained from the ENTOSE-E website. This

form is designed to capture user input necessary for querying the analytics platform. A submit button

is provided to add the entry to the system.

 33

Additionally, the interface includes a section where users can view the calculated average values

retrieved from the database. This data is presented along with associated start and end dates, as well as

a unique identifier for each entry. To facilitate data management, each data point is accompanied by a

delete button, enabling users to remove entries from the database as needed.

This interactive and user-friendly interface ensures that users can easily interact with the analytics

platform, inputting and managing their data with ease while utilizing the security measures provided

by the ENTOSE-E token system.

 34

5. Implementation

This proof-of-concept project has been developed on a MacBook Pro utilizing macOS 14 Sonoma. All

the utilized command-line tools and commands have been executed in the macOS Terminal. It's

important to note that while this document doesn't include specific instructions for Windows and

Linux, equivalent tools and commands do exist for those operating systems. For code editing and

database management, Visual Studio Code and Azure Data Studio were used, respectively. Both tools

are available and compatible with Windows and Linux platforms.

5.1 Initial Configuration and Local Environment Setup

The implementation of our infrastructure as code (IaC) begins with the setup of a local development

environment that facilitates the deployment of resources to the Azure cloud platform. The

configuration tasks involve the following key steps:

1. Install Terraform: Terraform is an open-source IaC tool that enables the definition and

provisioning of cloud infrastructure using a high-level configuration language known as

HashiCorp Configuration Language (HCL). To begin, Terraform must be installed on the

local machine.

2. Set Up Azure CLI: The Azure Command-Line Interface (CLI) is a set of commands used to

manage Azure resources. It is necessary to install the Azure CLI to enable Terraform to

interact with Azure.

3. Create Azure Service Principal: Terraform requires authentication to manage resources

within Azure. This authentication is provided through an Azure Service Principal, which is an

identity created for use with applications, hosted services, and automated tools to access

Azure resources. This can be achieved via the following Azure CLI command:

az ad sp create-for-rbac --role="Contributor" --scopes="/subscriptions/YOUR_SUBSCRIPTION_ID"

This command will output information that includes an application ID, password, and tenant ID,
which are used to configure Terraform's Azure provider and later this information is also used to set
up the automatic pipelines.

 35

5.2 Infrastructure

Before diving into the implementation details, it's important to understand the concept of Terraform

modules while dealing with infrastructure. Modules in Terraform are self-contained packages of

Terraform configurations that are managed as a group. Modules are used to create reusable

components, improve organization, and to treat pieces of infrastructure as a black box. [28]

5.2.1 Code Structure and Best Practices for Terraform

Incorporating to Terraform best practices is essential for maintainability and reusability. Well-

structured and modular code is easier to maintain, understand, and scale, which is particularly

beneficial as infrastructure complexity increases. This structured approach also facilitates

collaboration, as it enhances readability and allows for more straightforward navigation of the

codebase. Best practices also improve version control processes by logically organizing the code into

manageable units, reducing the risk of conflicts and errors [29].

• main.tf: file contains the definitions of the resources that Terraform will manage. It is where

the modules get invoked, for instance, to create resources like Cosmos DB and Key Vault.

• variables.tf: Here, variables are declared that will be consumed within the Terraform

configurations. This allows for a dynamic setup that can be customized for different

environments or deployments.

• outputs.tf: Outputs are like return values for a Terraform module. This file declares the

output values that we can use to display or use elsewhere in our Terraform configuration.

• providers.tf: In this file, we define the providers that Terraform will use to interact with the

cloud services. For Azure, we will configure the Azure provider with the credentials obtained

from the service principal.

• terraform.tfvars: Here, the actual values are specified for the variables defined in

variables.tf. The terraform.tfvars file are automatically loaded by Terraform to populate

variables, also making it an ideal place to store environment-specific configurations for the

future.

 36

5.2.2 Database

The Terraform configuration file which is found under infra/database directory of the project

repository sets up an Azure environment with two main components: an Azure Cosmos DB account

and an Azure Key Vault.

• Resource Group: It starts by creating a Resource Group called "rg-stateful-lastalab",
which is a logical container for grouping related stateful Azure resources for the project.

• Cosmos DB: It then uses the module cosmosdb which is found under modules directory of the

project to deploy Azure Cosmos DB, a globally distributed, multi-model database service.

The module is parameterized to customize the deployment based on the project's needs and

can easily be modified for future by changing the parameters from terraform.tfvars file.

• Key Vault: Following that, another keyvault module is used from the same modules directory

to deploy Azure Key Vault, a service that safeguards cryptographic keys and other secrets

used by cloud applications and services. The Key Vault is configured to store the connection

string of the Cosmos DB as a secret, which enhances the security of sensitive data.

All the terraform configuration files are designed to be modular and reusable, and it incorporates

variables to allow for flexibility and customization of the Azure resources according to the project's

requirements. It also includes tagging of resources for better management and identification within

Azure. After creating the Cosmos DB, the next step is to create backend infrastructure for the

containerized service web app.

5.2.3 Web App Backend

The Terraform configuration file, located in the infra/backend directory of the project repository,

orchestrates the setup of an Azure environment customized for a stateless web application. Before

creating the stateless web application, a resource group named "rg-stateless-lastalab", is

established in the infra/stateless-rg directory to group all the stateless resources in one location. This

also facilitates the simultaneous deletion of the stateless resources, fulfilling one of the 'Cloud Have'

requirements from the second chapter.

• Azure Data Retrieval: The main.tf file starts by gathering information about the current

Azure client configuration, as well as details of existing Azure Resource Groups and a

Cosmos DB account.

 37

• Azure Key Vault: Reads data from an Azure Key Vault to obtain the Cosmos DB connection

string, which is crucial for the web application's database operations.

• Azure Container Registry (ACR): Provisions an ACR for storing Docker images, using the

name derived from the project name and located in the stateless resource group.

• Service Plan & Web App: Establishes a Linux-based Azure Service Plan and Web App in the

stateless resource group. The Web App is configured with environment variables including the

Cosmos DB connection string from the Key Vault.

• Managed Identity & Role Assignment: Sets up a system-assigned managed identity for the

Web App and assigns it a role to pull images from the ACR. This identity is also granted

permissions to access secrets in the Key Vault.

• Key Vault Access Policy: Updates the Key Vault access policy to allow the Web App's

managed identity to perform operations on secrets within the Key Vault.

The provided terraform.tfvars file supplies the necessary values for variables like project names,

resource group names, and the Key Vault name, ensuring the resources are correctly labeled and

associated with the project. This script ensures that the web application has secure access to the

database connection string and manages container deployment effectively. While it's possible to skip

the creation of the Azure Function for now, as it's part of the second infrastructure design, it's better to

proceed with it at this stage since it relates to Terraform, which is currently under discussion.

5.2.4 Serverless Azure Functions

The Terraform configuration file, situated within the infra/serverless directory of the project's

repository, creates a serverless application infrastructure in Azure. Here’s what it accomplishes:

• Azure Context Retrieval: It starts by collecting information about the current Azure client

and the details of existing Resource Groups, along with the Cosmos DB account data same as

the backend configuration.

• Key Vault Secrets: Accesses an Azure Key Vault to retrieve the Cosmos DB connection

string, ensuring secure database communication for the serverless application.

 38

• Storage Account: Provisions an Azure Storage Account in the stateless resource group, which

is essential for storing data and files used by Azure functions.

• Service Plan: Creates a service plan under the name provided by "lastalab-app-service-

plan", which is a prerequisite for hosting serverless functions on Azure.

• Application Insights: Sets up Azure Application Insights with the name lastalab-app-

insights for monitoring and analyzing the performance and usage of the serverless

application which is going to be useful for future.

• Linux Function App: Deploys an Azure Linux Function App configured for Python runtime.

It uses the created storage account and service plan and is tailored with CORS settings and

application insights. The function app is also configured with environment variables that

include database connection details fetched from the Key Vault.

5.2.5 Static Web App Frontend

The Terraform configuration located in infra/frontend directory of the project repository, start with

the similar approach like web app backend and serverless function app configuration, it retrieves

necessary Azure client and Resource Group context and then proceed to provisioning the following

resource to create a secure, scalable, and easily managed environment for serving a frontend static

web application, with sensitive information such as deployment tokens securely handled by Azure

Key Vault.

• Static Site: Provisions an Azure Static Site for hosting static content. It's a scalable and

serverless hosting service for static web applications, configured under the stateless resource

group with the provided project name.

• Key Vault Secret: Updates the Azure Key Vault with a new secret holding the Azure Static

Site's API key. This allows for secure storage and retrieval of the API key, which is essential

for automated deployment processes to the static site.

The reason for having a static web app is to enable the development of an independent frontend that

can function effectively for both the web app and serverless components.

 39

5.3 Source Code

In this subchapter, the focus will be on the creation of the backend API integration with the ENTOSE-

E platform. It will also delve into how this computed value is sent to Cosmos DB for storage. This

process will be explored for both the containerized web app and serverless Azure Functions.

5.3.1 FastAPI Web Service

The source code file located in the src/backend directory of the project creates the necessary backend
API integration to interact with the ENTOSE-E platform API, fetching filtered data based on user
input. It begins the process,

• CORS Middleware: It configures Cross-Origin Resource Sharing (CORS) to allow requests

from any origin, enabling the web service to be called from different domains.

• Data Retrieval Endpoint (/get_all_data/): This endpoint fetches all the data stored from the

Cosmos database, assigns a string ID to each data, and returns them so that the data can be

displayed on the frontend .

• Data Filtering and Insertion Endpoint (/get_filtered_data/): This endpoint accepts a new

entry from the user, filters out the security token for security purposes, and performs the

average calculation on the filtered data from ENTOSE-E API response then stores it in the

Cosmos database.

• Data Deletion Endpoint (/delete_data/{id}): This endpoint deletes an entry from the database

using its ID. If the entry is not found, it raises an HTTP 404 error.

• Data Models: EntryIn is for input data from the user, which includes Country, PSR Type

(Electric Generation type), Security Token, and start and end dates. EntryDB is for Cosmos

database entries.

• Dockerfile: The docker file located located in src/backend helps to set up a Docker container

with Python 3.10, installs dependencies from a requirements.txt file, and runs the FastAPI

application using Uvicorn.

• Configuration settings: to manage environment variables that configure the connection to

the Cosmos DB, such as endpoint, key, database name, and collection name.

Overall, this service provides a RESTful API to interact with a Cosmos Database and integrates with

an external energy data API, demonstrating data ingestion, processing, and CRUD operations within a

Dockerized Python application.

 40

5.3.2 Serverless function app

The FST API python script function_app, located in the src/serverless directory, is designed to work

with Azure Functions, a serverless compute service that executes event-triggered code without the

need for explicit provisioning or infrastructure management. The script defines a timer-triggered

function that calculates the monthly average electricity generated from Biomass in Germany every 3rd

day of the month. It utilizes the same API integration, data modeling, and data processing as the Fast

API Web service, enabling computation based on user input as well. This Azure Function is intended

for deployment in the cloud, where it operates in a fully managed environment. It's scheduled to

execute without manual intervention if needed.

5.4 Pipelines

The azdo directory of the project serves as the foundation for defining DevOps processes within the

project. It is organized into subdirectories that cater to different aspects of infrastructure management

and application deployment.

azdo/infra: Within the azdo/infra directory, there are YAML files responsible for managing the

lifecycle of infrastructure on Azure through Terraform. These pipelines are manually triggered, which

allows for controlled execution of infrastructure changes. The pipelines include stages for planning,

which generates a Terraform execution plan, and applying, where the plan is executed to provision,

update and destroy the infrastructure. This setup is crafted to manage a variety of resource types in the

Azure cloud environment.

azdo/code: The YAML files in the azdo/code directory define pipelines for continuous integration

and deployment of applications. These pipelines are configured to respond to changes in the main

branch of the repository, building and deploying the appropriate application components:

• For the backend, the pipeline builds a Docker image and pushes it to the Azure Container

Registry. Subsequently, it deploys the image to an Azure Web App.

• The serverless application deployment is automated to Azure Functions directly upon updates.

• The frontend deployment pipeline is designed to deploy static content to Azure Static Web

Apps.

 41

Each YAML configuration is tailored to the specific deployment needs of the application component it

serves, ensuring that the build and deployment processes are optimized for backend, frontend, and

serverless architectures.

azdo/scripts: Scripts located in the azdo/scripts directory are utilized to configure and initialize the

Terraform backend, crucial for state management in Terraform. These scripts facilitate the setup of a

secure Azure Storage Account for storing the Terraform state, enabling consistent infrastructure

management practices.

Integration into Azure DevOps

The YAML files are integrated into Azure DevOps by creating pipelines that reference these files.

This integration allows for the automation of build and deployment processes, as well as infrastructure

provisioning within Azure DevOps, leveraging the version-controlled configurations for consistency

and repeatability.

This structure supports the DevOps goal of automating and streamlining the build, deployment, and

infrastructure management processes to facilitate a smooth and efficient continuous integration and

deployment workflow.

 42

6. Test and Evaluation

This chapter presents a comprehensive evaluation of the interactive Azure cloud-based analytics

platform designed for this project. The platform's core function is to enable users to filter data from

the ENTOSE-E platform based on specific parameters, facilitating the calculation of average

electricity generation values for different generation types in various countries. The evaluations focus

on the platform's pipeline operations, functional capabilities, and scheduled computational tasks.

Emphasis is placed on ensuring that the platform not only meets the specified requirements but also

provides reliability and efficiency in its operations.

Test Case 1: Pipeline Resource Management

The first test case involves the examination of the pipeline's ability to manage resources effectively.

This process includes the creation, deployment, and destruction of resources on Azure Cloud through

Azure DevOps. The test scenario involved executing respective pipelines and observing their

performance in handling these tasks.

Results: The pipelines demonstrated a high level of efficiency and accuracy. They successfully

created and deployed necessary resources to build the prototype platform, and also managed the

partial destruction of stateless resources. This test case confirmed the reliability and effectiveness of

the pipeline in resource management.

Requirement list for the above taste cases:

Requirements Done

Cloud Implementation Yes

Infrastructure as code Yes

Automated Pipelines Yes

Infrastructure Destruction Yes

Partial Infrastructure Destruction Yes

Resource Split Yes

 43

Test Case 2: Functional Capability of the Prototype
The second test case focused on the platform's functional capability, specifically its ability to process

user inputs, perform calculations, display results and data deletion .

The test used a sample input:

Country: 10Y1001A1001A83F

PSR Type: B01

Start Date: 01/02/2023

End Date: 07/02/2023

Security Token: xxx-xxx

Results: The platform successfully utilized these parameters to send an API request to the ENTOSE-E

platform. It then accurately calculated the average value based on the provided parameters.

Furthermore, the platform effectively stored the user parameters, a unique identifier, and the

calculated average value in the database. Users were able to view this stored data, complete with a

deletion option, on the web application. This test case affirmed the prototype's ability to handle

functional requirements efficiently.

Requirement list for the above taste cases:

Requirements Done

Data Input Yes

Data Collection Yes

Calculation Yes

Data Storage Yes

Data Presentation Yes

Data Deletion Yes

 44

Test Case 3: Scheduled Monthly Average Computation

The third test case assessed the Azure Function serverless design resource's capability to perform

scheduled monthly average computations.

Results: This function demonstrated consistent performance while being tested using Azure functions

test cases, furthermore it successfully completed the scheduled tasks. Monthly computations were

performed accurately, showcasing the platform's capability to handle automated, time-bound tasks

effectively.

Requirement list for the above taste cases:

Requirement Done

Time Triggered Calculation Yes

 45

7. Summary

This thesis project achieved its goal by designing and developing a prototype for an analytics platform

hosted on Azure cloud. This platform provides users with insightful analytics about electricity

generation. It uses data from the ENTSO-E Transparency Platform to calculate the average electricity

produced by different types of production in various countries, demonstrating its practical use.

A key aspect of the project's success was the integration of Cloud and DevOps methodologies. This

integration enabled the implementation of continuous integration and deployment processes,

improving the platform's efficiency and adaptability for real-world applications. The developed

pipelines are essential, allowing for the creation, partial distribution, and full destruction of resources,

all managed efficiently through the pipelines.

The thesis also aimed to explore two distinct prototype architectural approaches to design interactive

analytical platform. The first, a Containerized Azure Web App Service, is ideal for applications that

expect continuous traffic but has limitations in supporting event-driven execution. The second, Azure

Functions, is designed for on-demand calculations and is better suited for event-driven, on-demand

computational tasks. This exploration provides insights into the strengths and applications of each

architecture design, suggesting the Azure Web App Service for scenarios with constant traffic and

Azure Functions for event-driven data processing.

The prototype's design is extensible, which means it can adapt to future technological advancements

and changing requirements,. This dual architectural approach helps in evaluating and selecting

suitable technology as the needs of the platform evolve, ensuring its long-term relevance and

scalability. This project can also be extended by combing two of the designs when there is a need for

both continues traffic and event-driven data processes. In conclusion, the thesis not only delivers a

functional analytics platform prototype but also contributes to the understanding of Cloud and

DevOps integration in real-world applications. It highlights the potential of cloud-based solutions in

data analytics and emphasizes the importance of adaptable architecture in the rapidly evolving

technology landscape.

 46

Bibliography

[1] entose, "ENTSO-E Mission Statement," [Online]. Available:

hips://www.entsoe.eu/about/inside-entsoe/objec:ves/. [Accessed November 2023].
[2] B. Okhuoya and B. Uzoma, "Cloud compu:ng," A research on cloud compu0ng , 2022.
[3] A. Ishart, "Cloud Compu:ng - A Comprehensive Definiton," Journal of Compu0ng and

Management Studies, 2017.
[4] MicrosoO Azure, "Azure Cloud," [Online]. Available: hips://azure.microsoO.com/en-

us/resources/cloud-compu:ng-dic:onary/what-is-azure. [Accessed October 2023].
[5] cloudflare, "what is the cloud," [Online]. Available: hips://www.cloudflare.com/en-

gb/learning/cloud/what-is-the-cloud/. [Accessed October 2023].
[6] Y. Brikman, Terraform up & running, O'Reilly, 2017, pp. 19-22.
[7] IBM, "What are virtual machines," 2023. [Online]. Available:

hips://www.ibm.com/topics/virtual-machines. [Accessed October 2023].
[8] IBM, "What is containeriza:on," 2023. [Online]. Available:

hips://www.ibm.com/topics/containeriza:on. [Accessed 10 2023].
[9] Huawei Technologies, Cloud Compu:ng Technology, Hangzhou, Zhejiang, China: Posts

& Telecom Press, 2021.
[10] IBM, "Containers vs. Virtual Machines," [Online]. Available:

hips://www.ibm.com/blog/containers-vs-vms/. [Accessed October 2023].
[11] N. H. Samuel Kounev, "Serverless Compu:ng: what it is, and what it is not?," 2023.
[12] R. T. Amitkumar V. Jha, "From theory to prac:ce: Understanding DevOps culture and

mindset," Cogent Engineering, pp. 7-9, 2023.
[13] S. Das, "DevOps Lifecycle : Different Phases in DevOps," 24 02 2023. [Online].

Available: hips://www.browserstack.com/guide/devops-lifecycle. [Accessed 10
2023].

[14] A. Business, "MoSCoW Priori:sa:on," [Online]. Available:
hips://www.agilebusiness.org/dsdm-project-framework/moscow-prioririsa:on.html.
[Accessed October 2023].

[15] MicrosoO Azure, "Using FastAPI Framework with Azure Func:ons," June 2023.
[Online]. Available: hips://learn.microsoO.com/en-us/samples/azure-
samples/fastapi-on-azure-func:ons/azure-func:ons-python-create-fastapi-app/.
[Accessed October 2023].

[16] MicrosoO Azure, "Azure cosmos DB," February 2023. [Online]. Available:
hips://learn.microsoO.com/en-us/azure/cosmos-db/resource-model. [Accessed
October 2023].

[17] MicrosoO Azure, "About Azure Key Vault," March 2023. [Online]. Available:
hips://learn.microsoO.com/en-us/azure/key-vault/general/overview. [Accessed
October 2023].

[18] MicrosoO Azure, "Azure DevOps," [Online]. Available: hips://azure.microsoO.com/en-
us/products/devops#features. [Accessed October 2023].

 47

[19] MicrosoO Azure , "App Service," [Online]. Available: hips://learn.microsoO.com/en-
us/azure/app-service/overview.

[20] MicrosoO Azure, "Introduc:on to Container registries in Azure," June 2023. [Online].
Available: hips://learn.microsoO.com/en-us/azure/container-registry/container-
registry-intro. [Accessed October 2023].

[21] MicrosoO Azure, "Con:nuous deployment with custom containers in Azure App
Service," July 2023. [Online]. Available: hips://learn.microsoO.com/en-us/azure/app-
service/deploy-ci-cd-custom-container?tabs=acr&pivots=container-linux. [Accessed
October 2023].

[22] MicrosoO Azure, "Azure App Service plan overview," May 2023. [Online]. Available:
hips://learn.microsoO.com/en-us/azure/app-service/overview-hos:ng-plans.
[Accessed October 2023].

[23] MicrosoO Azure, "App Service pricing," [Online]. Available:
hips://azure.microsoO.com/en-us/pricing/details/app-service/windows/. [Accessed
October 2023].

[24] MicrosoO Azure, "Azure Func:ons," [Online]. Available:
hips://azure.microsoO.com/en-us/products/func:ons. [Accessed October 2023].

[25] MicrosoO Azure, "Azure Func:ons triggers and bindings concepts," June 2023.
[Online]. Available: hips://learn.microsoO.com/en-GB/azure/azure-
func:ons/func:ons-triggers-bindings?tabs=isolated-process%2Cpython-
v2&pivots=programming-language-python. [Accessed October 2023].

[26] MicrosoO Azure, "What is Azure Sta:c Web Apps?," April 2023. [Online]. Available:
hips://learn.microsoO.com/en-us/azure/sta:c-web-apps/overview. [Accessed
October 2023].

[27] React, [Online]. Available: hips://legacy.reactjs.org/. [Accessed October 2023].
[28] Hashicorp, "Modules," [Online]. Available:

hips://developer.hashicorp.com/terraform/language/modules. [Accessed October
2023].

[29] Google Cloud, "Best prac:ces for using Terraform," [Online]. Available:
hips://cloud.google.com/docs/terraform/best-prac:ces-for-terraform. [Accessed
October 2023].

 48

Declaration

I declare that this Bachelor Thesis has been completed by myself independently without
outside help and only the defined sources and study aids were used.

Hamburg, _______________ __________________________

