TT
> >
=

MBURG

Bachelor Thesis

Marcel Delissen

Design and Implementation of a Demonstrator Bypassing
the Readout Protection in an Embedded System

Faculty of Computer Science and Engineering Fakultat Technik und Informatik
Department of Information and Electrical Engineering Department Informations- und Elektrotechnik

Marcel Delissen

Design and Implementation of a Demonstrator
Bypassing the Readout Protection in an Embedded
System

Bachelor Thesis based on the examination and study regulations
for the Bachelor of Engineering degree programme

Bachelor of Science Elektro- und Informationstechnik

at the Department of Information and Electrical Engineering

of the Faculty of Engineering and Computer Science

of the University of Applied Sciences Hamburg

Supervising examiner: Prof. Dr. Heike Neumann
Second examiner: Prof. Dr. Pawet Buczek

Day of delivery: 13. January 2022

Marcel Delissen

Title of Thesis

Design and Implementation of a Demonstrator Bypassing the Readout Protection in an
Embedded System

Keywords

Readout Protection (RDP), microcontroller, hardware security, flash memory, Serial
Wire Debug (SWD)

Abstract

This thesis describes the development and implementation of a demonstrator that
shows a vulnerability in the readout protection of a microcontroller. For this purpose,
the vulnerability in the readout protection is presented, a use case is designed and a
demonstrator is developed.

Marcel Delissen

Thema der Arbeit

Entwurf und Implementierung eines Demonstrators zur Umgehung des Ausleseschutzes
in einem eingebetteten System

Stichworte

Ausleseschutz, Mikrocontroller, Hardwaresicherheit, Flash-Speicher, Serial Wire Debug
(SWD)

Kurzzusammenfassung

Diese Thesis beschreibt die Entwicklung und Implementierung eines Demonstrators,
der eine Schwachstelle im Ausleseschutz eines Mikrocontrollers aufzeigt. Zu diesem
Zweck wird die Schwachstelle im Ausleseschutz vorgestellt, ein Anwendungsfall ent-
worfen und ein Demonstrator entwickelt.

Contents

List of Figures \L
List of Tables viii
Abbreviations iX
1 Introduction 1
2 Basics 3
2.1 Architecture of ARM 3
22 ARMDebugInterface 7
2.3 SerialWireDebug 9
2.3.1 BasicSWDOperation 10

2.3.2 SWD Protocol Operation 11

2.3.3 SW-DP and MEM-AP Register 14

2.3.4 Example of Reading fromthe SW-DP 18

2.3.5 Example of Reading from Flash Memory via the MEM-AP 19

3 Basis of the Attack 21
4 Requirements Specification 25
41 UseCaseRequirements. 25
4.2 Software Requirements 26
4.3 Hardware Requirements 26
4.4 Specifications-Summary 27

5 Concept 28
51 UseCase e 28
5.1.1 Use Case Description 29

5.2 ConceptOverview 30

Contents

5.3 The Password-ProtectedHardDisk
5.8.1 Unlocking GUI
5.3.2 FirmwareoftheHardDisk.
5.3.3 Hardware oftheHardDisk

5.4 Presentation of the Demonstrator
541 TheHardDiskPart.
542 TheAttackPart.
5.4.3 Live Demonstrationofthe Attack

5.5 Hardware forthe Attack,

6 Implementation
6.1 The Password-ProtectedHardDisk
6.1.1 Unlocking GUI
6.1.2 Firmware ofthe HardDisk
6.1.3 HardwareoftheDisk.
6.2 Presentation of the Demonstrator
6.2.1 StructureoftheGUI,
6.3 Limitations and Opportunities

7 Conlusion
Bibliography
A Appendix

Declaration

41
41
41
46
53
55
55
61

63

65

68

69

List of Figures

2.1 Simplified Block Diagram of a Cortex M0-based Microcontroller 5
2.2 ARM Cortex-MOMemoryMap 6
2.3 Simplified Block Diagram of an ADI implementation 8
2.4 OQverview of the Connection from the Debug Host to the Processor 10
25 SWDReadOperation 13
2.6 SWD Write Operation 14
2.7 SW-DP Control and Status Register (CTRL/STAT) 15
2.8 SW-DP Select Register 16
3.1 SetupoftheAttack, 23
3.2 An Assumption about the Timing of the Attack 24
51 SetupDemoDisk 29
5.2 Sketch of the Unlocking GUI. 32
5.3 Conceptualised Program Flow of the Firmware 33
5.4 STM32F0 Development Board 32F072BDISCOVERY 35
5.5 Demonstrator Board with an STM32F072RB 35
5.6 Sketch of the Presentation GUI - Master Slide 37
5.7 Sketch of the Attack Visualisation 38
5.8 Message Flow of the Attack Visualisation 39
5.9 Sketch of the Presentation GUI - Attack Slide 40
5.10 SEGGER J-Link Debugger oo 40
6.1 Flowchart of the Communication Thread 43
6.2 Sequence Diagram of the Unlocking GUI 44
6.3 Unlocking GUI with an unconnected Hard Disk 45
6.4 Unlocking GUI with a connected Hard Disk 45
6.5 FAT12File System Array 49
6.6 Encrypted FAT12 File System Array 51

Vi

List of Figures

6.7 Flowchart of the password-protected Hard Disk’s Firmware 53
6.8 Device under Attack in Housing - Topview 54
6.9 Device under Attack in Housing - Connector Front 54
6.10 Device under Attack in Housing-USB Front 54
6.11 Class Diagram of the Presentation 56
6.12 Visualisation of the Attack's Setup 58
6.13 Slide Explaining the Attack in the Presentation 59
6.14 Flowchartofthe Attack, 60

Vii

List of Tables

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1

5.1

6.1
6.2
6.3
6.4

Components in a Microcontroller 5
Bits of the Packet RequestPhase 12
Bits of the Acknowledge Response Phase 12
Bits of the Data TransferPhase 12
SW-DP Registersand Addresses, 14
MEM-AP Registersand Addresses, 17
Example of Reading fromDPIDR, 19
Readout Protection Options of the STM32F0 Series 22
Protocol for Password Evaluation 33
Message Queues for Communication between Threads 42
Modified Functions in the USB-CDC Example Application 47
Modified Functions in the USB-MSC Example Application 50
Parts of Presentation with the corresponding Page-Class 58

viii

Abbreviations

ADI ARM Debug Interface.

AES Advanced Encryption Standard (a symmetric-key cryptography algorithm).

AHB Advanced High-performance Bus.

AMBA Advanced Microcontroller Bus Architecture.

AP Access Port.

APB Advanced Peripheral Bus.

ASCIl American Standard Code for Information Interchange (character encoding stan-
dard).

CDC Communication Device Class.

CPU Central Processing Unit.

DAP Debug Access Port.

DP Debug Port.

ECB Electronic Codebook Modus (a block cipher operation mode).
FAT12 File Allocation Table (12-bit File Allocation Table).

GUI Graphical User Interface.

IDE Integrated Development Environment.

IRQ Interrupt Request.

Abbreviations

JTAG Joint Test Action Group (a standard of test/debug interfaces).

MCU Microcontroller Unit.
MEM-AP Memory Access Port.

MSC Mass Storage Class.

RDP Readout Protection.

ROM Read-only memory (type of non-volatile memory).

SD Secure Digital (memory card).
SDK Software Development Kit.
SRAM Static Random Access Memory.
SW-DP Serial Wire Debug Port.

SWD Serial Wire Debug.

UART Universal Asynchronous Receiver/Transmitter (a standard for asynchronous se-
rial communication.

USB Universal Serial Bus.

VCP Virtual COM port.

Number Systems

Binary numbers are preceded by 0b. Example: 0b101010
Hexadecimal numbers are preceded by 0x. Example: 0x2a
All other values are decimal. Example: 42

1 Introduction

Embedded systems, consisting of several components such as microcontrollers, are in-
creasingly used in everyday devices. For example, there are about 50 microcontrollers
in an average car [8]. Almost every technical device uses a microcontroller for con-
trol. Therefore, security in everyday devices is also becoming increasingly important.
These devices are often physically easily accessible and therefore need special protec-
tion. Attackers can access internal interfaces through physical access, such as debug
interfaces or other direct accesses. Therefore, the microcontroller, especially the mem-
ory, should be protected accordingly, as otherwise sensitive data such as passwords
or cryptographic keys can be stolen. Additionally, the theft of software also causes
considerable economic damage [10].

This readout protection protects the firmware stored in the microcontroller's memory
from being readout. Unfortunately, this security mechanism is not error-free or may
contain vulnerabilities, such as design flaws to bypass the readout protection. Another
possibility is the incorrect configuration of the readout protection [11] [13].

A paper shows that readout protection can be bypassed called "Shedding too much
Light on a Microcontroller’s Firmware Protection" [13]. The security researchers of this
paper found and described a logical vulnerability in the readout protection.

This thesis is about the development of a demonstrator that shows one of the vulnera-
bilities of the paper. A demonstrator shows how such an attack is possible. The target
audience of the demonstrator is primarily non-technical, and it has to be understand-
able for a large audience. It demonstrates an attack, preferably live, to convince the
majority of the need for security mechanisms in such products.

This demonstrator is being developed for NXP Semiconductors Germany GmbH (NXP),
which wants to use this demonstrator to introduce customers and visitors.

1 Introduction

This way of demonstrating security vulnerabilities or bypassing security measures is
not new at NXP. Several demonstrators are maintained by NXP and, in this case, newly
developed, such as in the bachelor thesis entitled "A Demonstrator for Optical Fault
Injection Attacks" [24], in which a demonstrator is revised and renewed.

This thesis is divided into the following sections. First, Chapter 2 describes the nec-
essary technical basics and technologies. Chapter 3 presents the paper from which
knowledge of this vulnerability originated. Then, in Chapter 4, the requirements that
NXP places on this demonstrator are presented. Based on these requirements, a con-
cept is presented in Chapter 5, implemented in Chapter 6 . Chapter 7, the conclusion,
gives a summary and an outlook for the demonstrator.

2 Basics

This chapter explains the technologies required for the attack and the implementation
of the demonstrator. In the first section, the architecture of an ARM Cortex-M0-based
microcontroller is described since such a microcontroller is being attacked. The attack
is carried out via the debugging interface of the microcontroller and is therefore covered
in the Section 2.2. The last Section 2.3 of this chapter covers the Serial Wire Debug
(SWD) transmission protocol used by the debugging interface.

2.1 Architecture of ARM

ARM Limited, or ARM for short, is a company that does not manufacture microcon-
trollers itself but has revolutionised the market in a lasting way. Before ARM launched
its Cortex series, the market for microcontrollers was very diverse. Many companies
developed and marketed their own controller families with their own instruction sets and
their architectures. The design approaches were also very different. As a result, prod-
ucts from the same manufacturer were sometimes incompatible with each other. Among
other things, this also affected the debug interfaces. Manufacturers had to provide tools
such as compilers, linkers, debuggers and sometimes IDEs in different variants. ARM
has unified the market by developing processors and different components. ARM only
sells the design of the components. The sale of the designs is called "intellectual prop-
erty" (IP), and the business model is IP licensing. [4, pp. 21ff.] and [23, pp. 5ff.]

In the following, one of these IPs - the ARM Cortex-M0 MCU - is presented as part of
the device under attack.

2 Basics

The ARM Cortex-MO0O Microcontroller Unit (MCU) contains all the essential elements
such as:

+ a Central Processing Unit (CPU) called a processor for short, for control and com-
puting tasks,

« memory systems like flash memory for program ROM and Static Random Access
Memory (SRAM) and

* interface hardware, such as a debug interface and other peripherals.

There are many different versions of these microcontrollers, which can be equipped
with different memory sizes and peripherals and come in different sized packages. The
Cortex-M processors are designed for the mainstream microcontroller market where
processing requirements are less critical than power consumption. Their design is suit-
able for general-purpose applications, which means they can be used in a wide range
of applications. [23, pp. 1, 7, 98]

A Cortex-M0 MCU is often packed with many different components. These components
communicate via a system bus in which messages are sent over a shared transmission
path.

A simplified block diagram with typical elements of a Cortex-M0-based microcontroller
is shown in Figure 2.1. The acronyms in the diagram are explained in Table 2.1.

[23, pp. 18f.]

2 Basics

Interrupts
(IRQs, NVII) > Processor » .
Digital logic
l System bus Memories
; - High Speed Bus Digital Peripherals
Boot ROM | Flas SRAM Peripherals Bridge
| Memory (e.g. GPIO Analogue / Mixed
8.)
Signal Peripherals
A
IRQs Peripheral bus
| I | |
UART Other Timers DAC ADC
peripherals
> —T A T
IRQs v v v +
(1/0 pads)

Figure 2.1: Simplified Block Diagram of a Cortex MO-based Microcontroller modified
from [23, pp. 19, 35]

Table 2.1: Components in a Microcontroller modified from [23, p. 19]

ltem

Description

ROM
Flash memory

SRAM
GPIO

UART

DAC
ADC

Timers

Read-only memory: Nonvolatile memory storage for program code.
A special type of ROM, which can be reprogrammed many times,
typically for storing program code.

Static Random Access Memory for data storage (volatile)

General Purpose Input/Output: a peripheral with parallel data
interface to control external devices and to read back external
signals status.

Universal Asynchronous Receiver/Transmitter:

a peripheral to handle data transfers in a simple serial

data protocol.

Digital to Analog Converter: a peripheral to convert data values
into analog signal level.

Analog to Digital Converter: a peripheral to convert analog
signal-level information into digital form.

Timers (or Counters) are modules that can count events, measure
time intervals and periodically execute parts of the program.

2 Basics

All these components are memory-mapped, and the communication interface is based
on read and write operations to particular addresses within this memory mapping.
Therefore, the memory and the peripherals are mapped to distinct areas in the ad-
dress space. All ARM Cortex-M processors have a 4 GB memory address space. This
partitioning is hard-wired, and each region has a recommended use to facilitate port-
ing software between different devices. The Cortex-M memory partitioning is shown in
Figure 2.2. [23, pp. 65, 97, 167] [4, pp. 28ff.]

OXEOOFFFFF OXEOOOEFFF
OxFFFFFFFF
Private
. System Control
System 0.5GB Peripheral Bus
(PPB) Space (SCS)
0xE0000000 Private Peripheral Bus
OXDFFFFFFF OxE0000000 0xEO00E000
External Device 1GB
0xA0000000
O0x9FFFFFFF
External RAM 1GB
0x60000000
Ox5FFFFFFF
Peripherals 0.5GB
0x40000000
Ox3FFFFFFF
SRAM 0.5GB
0x20000000
Ox1FFFFFFF
CODE 0.5GB
0x00000000

Figure 2.2: ARM Cortex-M0 Memory Map modified from [23, p. 98]

The memory mapped peripherals are available between 0x40000000 and Ox5FFFFFFF,
in this range the software can access peripherals (e.g. the I/O lines or serial interfaces).
Since this area is used differently on each Cortex depending on the peripherals, the
respective Technical Reference Manual must be consulted. [4, p. 28]

An important point is that microcontrollers, even if they have the same peripheral char-
acteristics on paper, can have completely different peripherals and therefore different
programming models (e.g. peripheral register definitions), and this varies from chip
manufacturer to chip manufacturer. [23, p. 20]

2 Basics

As shown in Figure 2.1, a Cortex-MO processor is typically divided into two bus sys-
tems:

* One is the system bus, which communicates with the memories including ROM,
Flash memory and SRAM, and with a few high speed peripherals.

» And secondly, the peripheral bus to which the other peripherals are connected.
This can have a different operating frequency than the system bus.

It is quite common for some of the peripherals to be connected to a separate peripheral
bus, which is connected to the main system bus via a bus bridge. This bus protocol
for the peripheral bus is usually based on Advanced Peripheral Bus (APB), a bus pro-
tocol described in the Advanced Microcontroller Bus Architecture (AMBA) [1], an open
standard specification for proprietary ARM buses. [23, p. 35]

The system bus is based on a bus protocol called Advanced High-performance Bus Lite
(AHB-Lite), which, like the data path in the processor core, is 32-bit wide and is also
defined in the AMBA standard. The AMBA standard is developed by ARM and is widely
used in semiconductor industry. [23, pp. 29, 32f., 166]

The Cortex-MO0 is based on the Von Neumann bus architecture. This means that an
instruction fetch and a data operation share the same bus and therefore cannot occur
simultaneously. [23, p. 12] [21, pp. 18f.]

In addition to the standard described for the hardware components, the next section
introduces another ARM standard, namely the ARM Debug Interface, which has stan-
dardised the debug interfaces.

2.2 ARM Debug Interface

This section explains the ARM Debug Interface (ADI), which is needed for the attack.
The ADI provides access to debug functionality that is provided by debug components
in an embedded System. An implementation of the ARM Debug Interface is called a
Debug Access Port (DAP). A DAP provides a debugger with a standard interface to
access debug resources in systems that use resource-specific methods to provide their
debug information. To access a debug resource, the debugger passes the appropriate
resource address information to the Debug Access Port, which executes the request

2 Basics

by selecting the appropriate resource and then accessing resource-specific transport
methods that are presented by the system to be debugged.

The block diagram in Figure 2.3 shows how an ADI implementation is connected be-
tween a debugger and the system to be debugged.

'DAP P
: AP Access I I
I
physical : select 1 :
|
debugger :CD"”EC“O": DP dat AP < —kp resource
| = > L
I
: | resource- ! | |
| | | specific : | |
: | | transport | : |
| b
| b
I AP < ' : $ resource
! > L
| : |
! | Isystem to be
L | :_debugged

Figure 2.3: Simplified Block diagram of an ADI implementation modified from [2, p. 25]

The Debug Access Port (DAP) shown in Figure 2.3 consists of the following elements:

Access Port

An Access Port (AP) accesses debug information from the system being debugged and
passes the information to the Debug Port. Examples of debug resources are the debug
registers of the core processor, ROM Table and flash memory.

Debug Port
The Debug Port (DP) provides a debugger with a common interface to access the infor-
mation that is held in the APs. The Debug Port includes the following elements:

A physical connection to the debugger. The ARM Debug Interface supports the
following physical connection types, with only one interface type occurring at a
time:

- Serial Wire Debug Port (SW-DP), which is covered in Section 2.3
- JTAG debug port (JTAG-DP)

- Serial Wire JTAG debug port (SWJ-DP), a combination of the previous two
interfaces.

The JTAG-DP and the SWJ-DP are not discussed below and are listed only for
completeness.

2 Basics

» DP registers, hold the required information to support the transport mechanism
that is implemented by the Debug Access Port.

The connection between the Debug Port and the Access Ports selects the appropriate
debug resource based on the address information provided by the debugger and trans-
ports the data between the Access Ports and the Debug Port. [2, pp. 23-26]

In the next section, a protocol that the debug interface uses is explained in more detail,
as it is needed for Chapter 3.

2.3 Serial Wire Debug

This section explains the protocol used for the attack.

Serial Wire Debug (SWD) uses an ARM standard protocol, which is described in the
ARM Debug Interface Architecture Specification [2] and is a Debug Port for small pack-
age microcontrollers. Serial Wire Debug is a standard interface for ARM processor-
based devices. SWD replaces the 5-pin JTAG port with a clock pin SWDCLK and a
bi-directional data pin SWDIO and provides all JTAG debug and test functions, as well
as real-time access to system memory without stopping the processor. [3]

The connection from the debug host to the processor goes through a Debug Port (DP)
interface called Serial Wire Debug Port (SW-DP) via an AHB-Access Port (AP), more
specifically the Memory Access Port (MEM-AP). The Memory Access Port is connected
to the system bus and has access to the memory, such as the flash memory. The
memory of the target can be read or written by using the MEM-AP. An overview of the
connection from the debug host to the processor is shown in the following Figure 2.4.
[22, p. 453]

2 Basics

Debug Host (PC)

Microcontroller

usB

Debug Interface
Hardware

Debug Port (DP)

Cortex-MO0 processor

Memory Access Port

Processor
core

NVIC,

debug g

A

y

Other
debug
units

Break
Point
Unit

- Internal bus system

. MEM-AP
interface ()
Debug
Protocol SW-DP < » AHB-AP
(Serial Wire)
Internal
debug bus Debug Access Port

(DAP) interface

PPB

»

Watch
Point
Unit

»-

System bus

APB
Bridge

L3 Other AP (for more
processors)

Y

Memory

Figure 2.4: Overview of the Connection from the Debug Host to the Processor modified

from [22, p. 453] and [20, p. 911ff.]

The next section describes the different phases of data transmission of the SWD proto-

col.

2.3.1 Basic SWD Operation

The ARM Serial Wire Debug interface uses a single bidirectional data connection and
a separate clock to transfer data synchronously. A successful operation on the wire

consists of three phases:

1. Packet request

The external host debugger issues a request to the Serial Wire Debug Port of the
microcontroller. The SW-DP is always the target of the request and works as a
bridge between the APs and the Host.

2. Acknowledge response

The target sends an acknowledge response to the host.

10

2 Basics

3. Data transfer phase
This phase is only present when a data read or data write request is followed by
a valid "OK" acknowledge response. The data transfer is one of:

— Target to host, following a read request called "RDATA".
— Host to target, following a write request called "WDATA".

To prevent conflicts, a turnaround period called "Trn" is required when the device driving
the wire changes. The default setting is a turnaround period of one clock cycle. For the
turnaround period, neither the host nor the target drives the wire. There is a turnaround
period between these phases, because the transmission direction changes. When the
SW-DP receives a packet request from the debug host, it responds immediately by
entering the acknowledge phase. For a write request, there is a turnaround period
between the acknowledge phase and the WDATA data transfer phase. Following the
WDATA data transfer phase the host continues to drive the wire. There is no additional
turnaround period. For a read request, there is no turnaround period between the
acknowledge phase and the data transfer phase. There is a turnaround period following
the RDATA data transfer phase. [2, p. 106]

All data values in SWD operations are transferred least significant bit (LSB) first. For
example, the "OK" Acknowledge response of 0b001 appears on the wire as 1, followed
by 0, followed by 0. [2, p. 108]

2.3.2 SWD Protocol Operation

This section explains which phases each SWD operation consists of, which information
bits are exchanged in these phases and then describes the transmission of read and
write operations.

11

2 Basics

1. Packet Request Phase
The host starts the transmission with the bits listed in Table 2.2.

Table 2.2: Bits of the Packet Request Phase (modified from [2, p. 110])

Bits Description

Start start bit, with value Ob1

APnDP Access to AP (0b1) or DP (0b0) (alternative name APDP)

RnW Read (0b1) or Write (0b0) request (alternative name RW)

A[2:3] AP or DP register address bits

Parity Even parity over the four bits APNnDP, RnW and A[2:3]

Stop single stop bit, this bit is always 0b0.

Park A single bit. The host must drive the Park bit HIGH to park
the line before tristating it for the turnaround period.

Trn The turnaround period. The target reads this as Ob1.

APNDP is used to select the AP or DP to be accessed. The two bits A[2:3] are used to
address the register of the selected AP or DP, and RnW is used to read from or write
to the selected register.

2. Acknowledge Response Phase
The acknowledge response is a three-bit target-to-host response and listed in Table 2.3.

Table 2.3: Bits of the Acknowledge Response Phase (modified from [2, pp. 110f.])
ACK][0:2] encoding Response

0b100 OK
0b010 WAIT
0b001 FAULT

3. Data Transfer Phase
Each data transfer ends with an even parity bit. The Bits of the Frame are listed in
Table 2.3.

Table 2.4: Bits of the Data Transfer Phase modified from [2, p. 111]

Bits Description

WDATA[0:31] 32 bits of write data, from host to target.
RDATA[0:31] 32 bits of read data, from target to host.
Parity A single parity bit for the data packet.

12

2 Basics

Diagram of the Read Operation

A successful read operation consists of three phases:
1. An eight-bit read packet request, from the host to the target.

Followed by a turnaround period "Trn".
2. A three-bit OK acknowledge response, from the target to the host.
3. A total 33-bit data transfer phase, where data "RDATA" is transferred
from the target to the host.
Followed by a "Trn".

Figure 2.5 shows the Diagram of a successful read operation.

-l

O

@
T % = = g1¥|c *E c
& § g |A28l 5| 2| § | & | ACKI0:2] RDATA[0:31] 5|E

Figure 2.5: SWD read operation modified from [2, p. 112]

Diagram of the Write Operation

A successful write operation consists of three phases and is shown in Figure 2.6
1. An eight-bit write packet request, from the host to the target.
Followed by a turnaround period "Trn".
2. A three-bit OK acknowledge response, from the target to the host.

Followed by a "Trn".
3. A total 33-bit data transfer phase, from the host to the target,

containing the data "WDATA" and a parity bit.
And also followed by a turnaround period.

13

2 Basics

A AR,

SWCLK

2 SlE|c c ‘? c
A[2:3] 5|3 S|E ACKJ[0:2] | = WDATA[0:31] 5 =

Start
APNnDP
RnW

Figure 2.6: SWD Write Operation modified from [2, p. 112]

The information from this section is taken from source [2, pp. 110-114], where further
information, e.g. on protocol errors, can be found. Errors are not dealt with in this
section, as this section only gives an overview of the functionality of the SWD protocol
and is not needed for the following chapters.

2.3.3 SW-DP and MEM-AP Register

Each ADI contains a single DP and can implement multiple APs that are conform with
one of the DP architecture versions. This section briefly describes the SW-DP and
MEM-AP registers for the DP architecture versions DPv1. For details about how the
register is implemented in a specific architecture version, see [2, pp. 48f.].

SW-DP Register
Table 2.5 shows the SW-DP registers and the corresponding addresses, which will be

described in more detail below.

Table 2.5: SW-DP Registers and Addresses modified from [2, p. 50]
Register name

Address Read | Write
0x00 DPIDR ABORT
0x04 CTRL/STAT | CTRL/STAT

0x08 RESEND SELECT
0x0C RDBUFF N/A

14

2 Basics

Debug Port Identification Register

The Debug Port Identification Register (DPIDR) provides information about the DP,
such as a part number, revision code, and version of the implemented DP architec-
ture.

Abort Register
The ABORT Register forces an AP transaction abort and on a SW-DP it is also used to
clear error and sticky flag conditions.

Control/Status Register
The Control and Status Register (CTRL/STAT) is a 32-bit register that is used to control
and obtains status information about the DP and is shown in Figure 2.7.

Only the bits CDBGPWRUPREQ and CSYSPWRUPREQ are given special attention,
as these bits are necessary for initialising the debugger.

31 30 29 28 27 26 25 24 23 1221 87 6 543210
TRNCNT MASKLANE
WDATAERR S
READOK
RESO
STICKYERR
CDBGRSTREQ STICKYCMP
CDBGRSTACK
CDBGPWRUPREQ TRNMODE
CDBGPWRUPACK
CSYSPWRUPREQ STICKYORUN
CSYSPWRUPACK ORUNDETECT

Figure 2.7: SW-DP Control and Status Register (CTRL/STAT) from [2, p. 56]

+ Bit [28] CDBGPWRUPREQ:
Debug powerup request. This bit controls the CDBGPWRUPREQ signal. This
signal is required for the power controller and is used to start up and activate the
clocks in the debug power domain.

« Bit [30] CSYSPWRUPREQ:
System powerup request. This bit controls the CSYSPWRUPREQ signal. This
signal is required for the power controller and is used to start up and activate the
system power domain.

15

2 Basics

It is necessary to generate a debug and a system power-on request, otherwise the DAP
will not answer any requests.

Resend Register
This register does not capture new data from the AP while a read operation is performed
on "RESEND" but returns the AP’s last read or DP RDBUFF read.

Select Register
SELECT is a 32-bit DP architecture register and selects

+ an Access Port and the active register banks within that AP or
 the DP address bank.

Figure 2.8 shows the SELECT register.

31 24 23 8 7 4 3 0
Reserved
APSEL RESO
N A)
APBANKSEL—T
DPBANKSEL

Figure 2.8: SW-DP Select Register from [2, p. 70]

* Bit [31:24] APSEL Selects the AP with the ID number APSEL

« Bit [7:4] APBANKSEL Selects the active four-word register bank on the current
AP.

+ Bit[3:0] DPBANKSEL Debug Port address bank select.

Read Buffer Register

The Read Buffer (RDBUFF) presents data (typically 32-bit) captured during the previous
AP read and allows the value to be returned repeatedly without generating a new AP
access.

16

2 Basics

MEM-AP Register

The Memory Access Port module is connected to the internal bus system of the pro-
cessor and has access to the memory. This allows the debugger to access all the
memories components, peripherals, debug components, and debug registers of the
processor. Table 2.6 shows the MEM-AP registers and the corresponding addresses.

Table 2.6: MEM-AP Registers and Addresses modified from [2, p. 151]

Bank | Address | Register name
0x00 Control/Status Word (CSW)
0x0 0x04 Transfer Adress (TAR)
0x08 RESERVED
0x0C Data Read/Write (DRW)
0x10 Banked Data 0 (BDO)
Ox1 0x14 Banked Data 1 (BD1)
0x18 Banked Data 2 (BD2)
0x1C Banked Data 3 (BD3)
OxF4 RESERVED
OxF O0xFO Configuration Reg. (CFQ)
OxF8 Debug Base Addr. (BASE)
0xFC Identification Register (IDR)

Identification Register

Every Access Port must implement an Identification Register (IDR) which identifies the
AP and provides information about the AP, such as a class type and revision code. An
IDR value of zero indicates that there is no AP present.

Control/Status Word register
The Control/Status Word register CSW holds control and status information for the
MEM-AP.

Transfer Address Register

The Transfer Address Register TAR holds the address for the next access to the mem-
ory system, or set of debug resources, which are connected to the MEM-AP. The MEM-
AP can be configured to automatically incremented the TAR value after each memory
access. Reading or writing to the TAR does not cause a memory access.

17

2 Basics

Data Read/Write register
The Data Read/Write register DRW is used for memory accesses:

» Writing to the DRW initiates a write to the address specified by the TAR.

* Reading from the DRW triggers a read request from the address stored in the
TAR. When the read access completes, the value is returned from the DRW.

Banked Data Registers
The Banked Data Registers, BD0-BD3, provide direct read or write access to a block of
four words of memory, starting at the address that is specified in the TAR.

Configuration register
The Configuration register CFG register hold information about the configuration of the
MEM-AP.

Debug Base Address register
The Debug Base Address register BASE is a pointer into the connected memory sys-
tem. It points to one of:

» The start of a set of debug registers for the single connected debug component.
» The start of a ROM Table that describes the connected debug components.

This brief summary of the MEM-AP registers does not include cross-references to the
detailed register descriptions. For more information about these registers, see on page
170 and following in source [2].

2.3.4 Example of Reading from the SW-DP

This subsection describes which bit sequence must be sent to read the the Debug Port
Identification Register (DPIDR) located in the SW-DP. This register provides information
about the Debug Port, such as a part number and revision code. Table 2.7 shows the
sequence of bits that must be sent to read the register entry. Reading this register is a
good way to check if the initialisation was successful and a connection exists.

18

2 Basics

Table 2.7: Example of Reading from DPIDR

) -
o |8&|3 188
Bit O < || A23] | |»|a|c
Value [1 [0 [1] 00 |10 |1|F

If 32-bit data are received after the OK acknowledge response, the connection to the
SW-DP works properly. For a Cortex-M0 MCU, the default response is 0x0bb11477.
[20, p. 9111f.]

2.3.5 Example of Reading from Flash Memory via the MEM-AP

This section shows which steps are necessary to read data from the flash memory with
a debugger via SWD. These steps are essential for the attack and will be described
later as minimal communication and are therefore listed briefly.

1. System reset (optional): Initially, a power cycle is performed to reset the system.

2. Initialising the debug interface: The steps described in the Arm Debug Interface
Specification [2, pp. 123ff.] are followed.

« First, the SWD interface is reset by applying the reset pattern to SWDIO and
SWCLK.

» Secondly, reading the IDCODE from the Serial Wire Debug Port is recom-
mended; see Section 2.3.4.

 Thirdly, set the System powerup request (CSYSPWRUPREQ) and Debug
powerup request (CDBGPWRUPREQ) in the CTRL/STAT Register of the
SW-DP to fully initialise the debug interface, see Section 2.3.3.

3. Setting the access width to 32 bits (optional): Although this is optional, it is rec-
ommended to switch to 32-bit mode, as this allows a whole word of 32 bits to be
read. To switch to 32-bit mode, set the value of the size field in the Control/Status
Word Register of the AHB Access Port, here the MEM-AP, to 0x02.

4. Setting the read address of the flash: The address to be read is written to the
Transfer Address Register of the MEM-AP.

19

2 Basics

5. Triggering the flash read access: A read access to the Data Read/Write Register
of the MEM-AP triggers the read access of the MEM-AP via the system bus, which
reads the flash memory.

6. Reading the data: The result of the previous access is read from the DP Read
Buffer Register. An "SWD OK" response is returned if flash memory access was
granted on success. In case of an error, "SWD ERROR" is returned. In the case
of "SWD OK", the word was correctly read from the flash memory and stored in
the DP read buffer register, where it can be read by the debugger.

Reading the DP Read Buffer Register is also possible if the CPU switches off the system
bus in the meantime. This note is important for the following chapter. [13, pp. 9f.]

20

3 Basis of the Attack

The vulnerability used for the demonstrator is based on a paper of the Fraunhofer Insti-
tute for Applied and Integrated Security, Fraunhofer AISEC for short. Fraunhofer AISEC
supports companies in securing their systems and products and researches in the field
of embedded systems and hardware components, among other things. The paper is
entitled "Shedding too much Light on a Microcontroller’s Firmware Protection” [13] and
investigates the safety concept of a specific microcontroller family.

The paper reports on the growing interest in testing the security mechanisms of newer
microcontrollers, including the ARM Cortex-M-based STM32 series. The widespread
use of these devices has finally sparked in their security mechanisms. Also, by the time
the paper was published, there were no publicly available penetration test results for
STM32 devices. Therefore, the paper’s authors conducted a thorough security analysis
of the STM32F0 sub-series, paying special attention to firmware readout protection.

The readout protection protects the memory in which the firmware is stored. This pro-
tection is intended to protect against unauthorized access. Flash readout protection is
the root of system security because reading the firmware protects against access to
the system’s security configuration. Bypassing the readout protection can completely
compromise other security mechanisms.

The paper begins by introducing the security system, which consists of three Levels.
The different Readout Protection (RDP) Levels differ as follows.

RDP Level 0 is the default configuration and is not restricted in any way. The debug
interface is active and allows full access to the device. Normally this level is only used
for development. This protection should be set by the developer after the firmware is
loaded to the embedded Flash memory.

21

3 Basis of the Attack

RDP Level 1 keeps the debug interface active, but restricts the access to the flash
memory. As soon as a debugger is connected, the flash memory is locked. A read ac-
cess generates a Hard Fault interrupt and a bus error. The protection can be increased
to RDP Level 2, but can also be downgraded to level 0, in which case the entire flash
memory content is erased.

RDP Level 2 is the most restricted and offers the highest security. Debug access
is completely disabled by permanently shutting down the interface. This level is irre-
versible and cannot be downgraded. Although RDP Level 2 offers the best protection,
RDP Level 1 is preferred. According to the paper, experience shows that companies do
not like to lock down their devices completely as this makes it difficult to troubleshoot
errors and failures. In addition, the manufacturer cannot analyse defective devices with
RDP Level 2. Overall, this leads to most devices being set to RDP Level 1.

The readout protection is part of the system configuration of the microcontroller and
is stored in a dedicated "option byte" section. In it, the three available RDP levels
are encoded with 16 bits of non-volatile memory. The 16 bits are implemented as
two consecutive bytes called "RDP" and "nRDP". In any intended configuration, nRDP
represents the bitwise complement of RDP. Table 3.1 shows the mapping of each RDP
and nRDP setting to the configured RDP level.

Table 3.1: Readout Protection Options of the STM32F0 Series according to the
Datasheet [20, p. 64]

nRDP RDP Resulting protection
0x55 OxAA RDP Level 0
Any other combination
except the values of levels 0 and 2 RDP Level 1
0x33 \ 0xCC RDP Level 2

RDP Level 0 and RDP Level 2 are each represented by exactly one complementary
byte pair. Any other configuration, including non-complementary byte pairs, is repre-
sented by RDP Level 1 by default. The factory setting is RDP Level 0.

This description is based on sources [13, pp. 2f.] and [20, p. 64]

Fraunhofer AISEC has demonstrated that this readout protection can be bypassed. This
approach is now explained and the setup is shown in Figure 3.1.

22

3 Basis of the Attack

v LELELELLLL
usB SWD T = oE
f swpio = =
—] STM32F0 E
/ \ J— SWCLK E E
) Debugger -~ T
Attackers Laptop Device under Attack

Figure 3.1: Setup of the Attack

An ARM MO0-based STM32F0 microcontroller was analyzed, in which protection against
flash access is given by RDP level 1. As soon as a debugger tries to read from the flash
memory via SWD, this triggers a Hard Fault interrupt, and the CPU cannot process any
further commands. The flash protection logic must be reset by a power cycle.

A closer investigation shows that the readout protection is not triggered for all SWD re-
quests but only for the system bus’s access. Access to SWD interface-internal registers
such as the Debug Port Identification Register (see Section 2.3.3) remains inconse-
quential, and the system continues to run. However, the flash is deactivated when the
debugger accesses another module such as peripherals, SRAM, or flash memory via
the system bus. The debugger triggers a transfer on the system bus by reading from or
writing to the SWD Memory Access Port Data Read/Write Register (see Section 2.3.3).
A more detailed analysis shows that the AHB transaction and thus the lockdown is trig-
gered by the last rising SWCLK edge of the corresponding SWD packet transmission.

However, the paper shows that reading from memory is still possible with RDP acti-
vated. A minimum initialization of the debug interface is required to mount the attack,
and the SWD communication needs to be reduced to a bare minimum. Experiments
show that the default software shipped with SWD Debugger (onboard Debugger and
the Segger J-Link Debugger) triggers the RDP protection while connecting. By reduc-
ing the communication, the SWD read request can be answered without triggering the
flash protection. The readout protection triggers the Hard Fault interrupt too late, which
means the request can be answered. It depends on the system busload whether the
read request succeeds or fails. The paper further investigated the relationship between

23

3 Basis of the Attack

a successful attack and the busload and came to the following conclusion. CPU instruc-
tion and data fetches have priority over debugging access during the arbitration. Thus,
the debugger has to wait for a free cycle on the bus to place the request. If the debug-
ger gains instant access to the bus, the access takes place before the flash protection
locking is triggered. The flash protection logic is triggered two cycles too late. Thus,
the firmware can be extracted at an average rate of 45 bytes per second. The largest
STM32F0 microcontrollers with up to 256 kByte of flash memory can be read entirely in
less than two hours. Further data and the methodology used for these results can be
found in the paper from the Frauenhofer AISEC by Obermaier and Tatschner [13].

An assumption about the timing of the attack is shown in Figure 3.2. It shows how
the debugger makes a read request to the flash memory via the system bus, received
and processed by the RDP. While the flash memory starts processing the request, the
RDP sends an IRQ to the CPU via the interrupt line and triggers a bus fault exception.
However, the flash memory could respond before the exception and thus fully answer
the request.

Debugger Flash RDP CPU

Read Request : 1

N

[
|

—F..

Time

Firmware Dump

Bus Fault
|"'|:I Exception

—ememep -

@

System Bus
------- >
>

Figure 3.2: An Assumption about the Timing of the Attack

24

4 Requirements Specification

This chapter lists the requirements that NXP places on a demonstrator. The basic re-
quirements for a demonstrator are as follows. A demonstrator is intended to be a live
demo showing an attack in real-time without preparations. The attack should be un-
derstandable for a broad audience, and the consequences should be impressive. The
demonstrator intends to show how important security measures are and that it is not
enough to trust existing security mechanisms because they can possibly be bypassed
or hacked. Therefore, the explanation of the attack must be greatly simplified, as the au-
dience does not necessarily have the required knowledge. A short and straightforward
explanation of the demonstrator and presentation of the attack is required for this.

The requirements are divided into three sections. At the beginning, the use case of the
demonstrator is described. Which is followed by the hardware and software require-
ments.

4.1 Use Case Requirements

The requirements for the use case, as already partially described, are as follows:

» The demonstrator and the attack should be easy to understand and follow. Only
widely known technology should be assumed.

* It should be impressively shown how essential firmware protection is.

+ It should be possible to demonstrate it live and therefore require little time and
effort, ideally, in a ca. 30-minute presentation

25

4 Requirements Specification

4.2 Software Requirements

The requirements for the software are also that it should be easy to understand. The
software should be executable on a modern and widely used operating system such as
Windows 10. The demonstrator should communicate via a straightforward Graphical
User Interface (GUI). The operation of the software should also be intuitive, and any
errors or system failures should be self-correctable and remediable, if possible. Another
requirement is that the user interface is resizable and the content displayed be scalable.
This requirement is necessary to change the window size for large or high-resolution
display devices.

4.3 Hardware Requirements

The requirements for the hardware are to keep a simple structure. This means that
it must only be limited to the connection of plugs. In the best case, these are also
protected against incorrect connection, like USB. This also means that, as with soft-
ware, errors and system failures can be corrected and fixed by themselves. Again, the
hardware should also be easy and intuitive to use as with the software. Therefore, if
possible, no additional hardware should be needed other than that included with the
demonstrator. The only exception, of course, is a computer or laptop. Another require-
ment for the demonstrator is that it needs to be easily and cost-effectively reproducible
in case the demonstrator breaks down.

This also includes that any errors or system failures can be corrected and dealt with
by themselves, if possible. Also, the handling of the demonstrator and implementation
should be intuitive.

26

4 Requirements Specification

4.4 Specifications - Summary

In this section, the requirements already specified are summarised in a list.

» The attack must be demonstrated live in an about 30-minute presentation, includ-
ing setup.

» The use case should be as comprehensible and convincing as possible
» Explanations should be simple and easy to understand

» The consequences of the attack clearly show that further or better protective mea-
sures are necessary

« Communication should take place via a clear Graphical User Interface
* The demonstrator should be simple in design and assembly

» The demonstrator should be easy to transport

» The demonstrator must be easily and cost-effectively duplicable

* The demonstrator must support Windows 10 as it is very well known.
+ Errors or system failures should be self-correctable and remediable

» Reverse polarity protected connections

In the next section, a concept is developed based on these specifications.

27

5 Concept

This chapter describes the concept of the demonstrator and is divided into five sections.
In the beginning, the use case is presented, which is necessary for understanding
the following overview of the demonstrator. In the Use Case section, the password-
protected hard disk is introduced. Then the concept of the password-protected hard
disk is described, followed by the section describing the presentation. In the last sec-
tion, the hardware necessary for the attack is described.

5.1 Use Case

In the use case, sensitive data must be read from the microcontroller’s flash memory
by exploiting the vulnerability described in Chapter 3. Therefore, a password-protected
storage medium, such as a USB hard drive, is chosen for the demonstrator. This tech-
nology and its handling are well known to the broad public, and the consequences of
bypassing the protection are severe. This Use Case meets the requirements of design-
ing an easy-to-understand use case and is also easy to handle, as USB hard drives
usually only require a USB cable to be connected. Password protection is also easy to
explain, as this procedure is widely known. The presentation of the password-protected
hard disk will only take a few minutes so that there is still enough time for the live demon-
stration of the attack, and thus all the requirements are met. It is essential to mention
that the password evaluation occurs on the hard disk, i.e. on the microcontroller. With
this design, it is possible that the password stored on the hard disk can be read out
for decryption. In this way, the password can be read from memory, as this must be
available for checking against an entered password.

28

5 Concept

5.1.1 Use Case Description

This section describes how to use the password-protected hard disk, and an overview
of the necessary components can be seen in Figure 5.1. This overview shows that
the hard disk is connected to a computer via USB and that no additional hardware is
required, which corresponds to the requirements. A straightforward GUI is displayed
on the computer screen, which is required to unlock and mount the hard drive. The
password is entered into this software and sends entered passwords to the hard drive.

Unlocking Software X

Unlocking Software

Connected

Password

USB

/ \ Disk
—

Host System

Figure 5.1: Setup Demo Disk

Prerequisites: The hard disk is initially encrypted so that the data cannot be read, and
no hard disk can be mounted at this time.

Post-conditions: After the hard disk is disconnected, it is encrypted again so that data
cannot be read.

Primary way: The hard disk is connected to the computer via a USB cable. The un-
locking software is then started and shows the successful connection to the hard disk,
and the password for unlocking can be entered. If an incorrect password was entered,
the software displays this, and the password can be entered again. The hard disk re-
mains encrypted at all times and cannot be mounted. There is no limit to the number

29

5 Concept

of incorrect passwords that can be entered, and there are no consequences. The un-
locking software indicates that the correct password has been entered and then starts
Windows File Explorer. Only at this point the hard is disk decrypted and accessible to
the operating system. The File Explorer is started at the mount point of the hard disk to
allow immediate access to the hard disk and increase user-friendliness. The unlocking
software exits shortly afterwards.

Alternatively, the unlocking software can be started before the hard disk is connected.
The software indicates that the hard disk is not yet connected and signals that it is ready
to receive the password when the hard disk is connected. This method also leads to
successful completion.

5.2 Concept Overview

This overview presents the different components of the demonstrator. A distinction is
made between the following parts.

» The password-protected hard disk, which includes the unlocking software.

» The presentation in which the hard disk is introduced, the attack is vividly de-
scribed and visualised, and the attack is demonstrated live.

The hard disk, especially the host application needed to communicate with the hard
disk, is developed as a stand-alone program and is not integrated into the presentation.
This separation increases authenticity, as the hard disk could be used independently
of the presentation. This separation also allows the scenario of a fictitious developer
of this password-protected hard disk, who only relies on the readout protection of the
hardware used during development and does not take further security measures. As a
result, the password used for encryption is stored in plaintext in the code and thus in
the microcontroller’'s flash memory. Exploiting the vulnerability shows that the readout
protection is insufficient, and the password can be read out, making the encryption of
the data obsolete. This problem only exists because no further security measures have
been taken to make it difficult to reconstruct the password.

30

5 Concept

5.3 The Password-Protected Hard Disk

This section is divided into the hard disk hardware, the software running on it, and
the software to unlock the hard disk. The unlocking software is presented first. The
firmware and the hardware follow.

5.3.1 Unlocking GUI

The main task of the unlocking GUI is to send the entered password to the hard disk for
evaluation. This software is a GUI because the user can enter data, i.e. the password,
and receive feedback on whether this is correct or incorrect. The following points are
necessary for this communication, particularly for program intuitiveness. These points
are shown in a concept sketch in Figure 5.2.

1. For simplicity, the GUI consists only of a description text field (1a) and an input
field (1 b) for the password.

2a. The connection status is be displayed immediately after the program starts and
regularly checked for up-to-dateness and changed if necessary.

2b. The software independently establishes a connection to the hard disk and displays
the connection’s current status.

3. If the hard disk is not connected, entering a password is impossible, indicated by
a grayed-out input field.

4. The input is hidden by using a password field.

5. The entry process is completed by pressing the Enter key, and the password will
be automatically transferred to the hard disk.

6. Feedback is given as to whether the password was entered correctly.

7. The GUI window automatically moves to the foreground and is centered.

31

5 Concept

Unlocking Software X

Welcome text and short description of the
software

C 2a+b
Connection status

Password
T 1b
*kdkkkkkk .

[ok] [auT]

Figure 5.2: Sketch of the Unlocking GUI

5.3.2 Firmware of the Hard Disk

This section introduces the concept of firmware. The firmware is the software executed
on the microcontroller and implements the functionalities of a password-protected hard
disk. Since the password evaluation takes place on the microcontroller, it must com-
municate with the host system. In order to make this particularly user-friendly and to
imitate a real hard disk as closely as possible, communication via USB is necessary.
This approach is in line with the requirements. So there is only one interface and one
cable for communication between the host and the hard disk. Everything necessary is
realised in software. Therefore, the software has two states. The initial state after start-
up is the communication state, in which it remains until the correct password has been
received. In this state, the user data are encrypted and cannot be accessed because
no hard disk can be mounted yet. The second state is the mass storage state, which
can only be reached with the correct password and makes the hard disk available to
the host as a USB storage medium and can be mounted as a hard disk. The program
flow is shown in Figure 5.3, which shows the states with the corresponding USB class
of the Communication Device Class (CDC) and the Mass Storage Class (MSC). More
about the different USB classes can be found at [5, pp. 169-189].

32

5 Concept

4)[USB CDC State }(7

Password
incorrect

Start

Login

Password
correct

[USB MSC State}

Disconnection

Figure 5.3: Conceptualised Program Flow of the Firmware

Intermediate steps such as decrypting the data between the two states have been omit-
ted for the sake of clarity. A modern encryption standard such as AES presents the se-
curity authentically. A full disk encryption (FDE) is remarkably authentic and is therefore

conceptualised.

A communication protocol is required to send the password to the hard disk. The fol-
lowing commands with corresponding responses need to be implemented to meet the
use case description and are listed in Table 5.1.

Table 5.1: Protocol for Password Evaluation

Message from Hostsystem | Response from Microcontoller | Explanation
"hello\n" or To test the

" ”l"
"HELLO\n" HELLO WORLD!! communication
"PASSWORD****\n" or "WRONG_PWN\r\n" **** represents
"password****\n" "RIGHT_PWN\r\n" the password

33

5 Concept

Since the protocol is not overly complex, it is implemented using serial communication
supported by USB’s CDC class. Using USB CDC has the advantage that all commu-
nication requires only the USB cable. A message containing the keyword "password"
and the password to be evaluated must be sent by the host to verify a password by the
microcontroller. The keyword is not separated from the actual password and is sent
together as one word. The non-printable character Newline (or Line Feed) "\n" ends the
string and thus shows a unique end.

The firmware must first connect to the host as a USB communication device and pro-
cess received messages. If an incorrect password was sent, the message
"WRONG_PWN\r\n" must be sent to the host, otherwise "RIGHT PWNM\r\n" must be sent,
and the USB class must be changed from the CDC to the USB MSC. As soon as the
device is disconnected, everything must be reset, and the password must be entered
again.

5.3.3 Hardware of the Hard Disk

Only ready-to-use development boards were used to reduce the development effort
to a minimum. The choice of hardware is limited to the STM32F0 series, as the
security vulnerability is restricted to this series. Since the use case is a portable
password-protected USB hard drive, the board must have a USB port that supports
USB device mode. The microcontroller can change the USB device classes in this
mode, implementing the communication protocol described in the previous section.
For the STM32FO0 series, only one compatible development board is offered, namely
the "32F072BDISCOVERY" with an STM32F072RB MCU. This development board is
shown in Figure 5.4 and more information about the development board and the MCU
can be found on the manufacturer’s website [16].

Since this board is provided with unnecessary equipment such as sensors, buttons and
an onboard debugger, a smaller board equipped with the same Microcontroller Unit was
chosen. In particular, the second USB port, which is for the onboard debugger, could
lead to irritation; therefore, the smaller board with only one USB port and no onboard
debugger was chosen and is shown in Figure 5.5.

34

5 Concept

Figure 5.4: STM32F0 Development Board 32F072BDISCOVERY

Figure 5.5: Demonstrator Board with an STM32F072RB

35

5 Concept

5.4 Presentation of the Demonstrator

The main task of the presentation is to introduce the password-protected hard disk,
explain the attack and demonstrate it live. For this purpose, the presentation will consist
of slides shown one after the other. These slides are high-resolution graphics so that
the presentation can be displayed well on high-resolution and large display devices, as
specified in the requirements. The presentation is divided into five parts, explained and
conceptualised in the following sections.

1. Presentation of the hard disk
2. Demonstration of the hard disk
3. Setup of the attack

4. Explanation of the attack

5. Demonstration of the attack

The sequence of the individual parts is explained in the following and why it is chosen
in this way. First, it is shown that it is a hard disk, and it is explained that a password
protects it and that this password must be transmitted to the hard disk so that the eval-
uation takes place on the hard disk (part 1). This introduction is made because the
password of this hard disk will be stolen later. The demonstration of the hard disk is
followed, which makes the explanation clearer and easier to follow, as the steps are
followed once (part 2). After the hard disk has been established, it is pointed out that
the password is stored on the hard disk for the evaluation, thus making it a target for
attack. The presentation of the attack setup (part 3) builds the bridge to the explanation
of the attack (part 4). The attack process is then explained simplified, followed by a live
demonstration (part 5).

All slides are uniformly structured, and Figure 5.6 shows the concept sketch of the
master page from which all others are derived.

36

5 Concept

Presentation X
Company name
Demo Title
Slide Title Area in which
® slides and
attack are
presented
Main Information/ Slide
Buttons to go
back and
forward in
presentation
< >

Figure 5.6: Sketch of the Presentation GUI - Master Slide

It is possible to use both the buttons and the arrow keys to make the operation of the
presentation as intuitive as possible. This GUI is structured like a classic presentation
with slides, in which the live demonstration is integrated.

5.4.1 The Hard Disk Part

Parts 1 and 2 of the presentation are conceptualised in this section. For Part 2, a vari-
ation of Figure 5.1 (Subsection 5.1.1) is used, and it is shown that the password has
to be sent to the hard drive to unlock it, which is illustrated by sending a password and
then opening the lock. For the second part, there will be a slide with a button to start
the unlocking software. After starting, the hard disk and software functionality is demon-
strated once. First, a wrong password is entered, showing that no hard disk is available.
Then the correct password is entered, showing that the hard disk is available.

5.4.2 The Attack Part

This section explains and conceptualises parts 3 and 4 of the presentation. For part
3, a simplified variation of Figure 3.1 from Chapter 3 is used. Part 4, the explanation

37

5 Concept

of the attack must be designed for a broad audience and therefore be very descriptive.
Since this vulnerability within the system is a race condition, a visualisation is required.
The designed visualisation shows which components are present and that they are
interconnected. The main components are the CPU, the debugger (partially housed in
the CPU), the RDP and the flash memory. Unfortunately, as described in Chapter 3,
the components’ connections are not entirely clear and thus are not described in detail.
The result is the simplified representation in Figure 5.7, which reflects the most likely
assumption as shown in Figure 3.2 in Chapter 3. Figure 5.9 illustrates how the race
condition is visualised. It is essential to show that the RDP is a little too slow or that the
flash memory lock message arrives too late, as shown in Figure 5.8.

This visualisation lends itself well to a presentation, and if the slides are shown one after
the other, the flow of information is more vivid. This visualisation is easier to understand
for an audience without technical expertise than the sequence diagram from Chapter 3
(Figure 3.2).

READ
PROTECTION

CPU

DEBUG
INTERFACE

FLASH
MEMORY

Figure 5.7: Sketch of the Attack Visualisation

Messages sent over these connections are shown as thicker lines from the sender to
the receiver, as shown in Figure 5.7.

38

5 Concept

READ READ READ
PROTECTION PROTECTION PROTECTION
DEBUG DEBUG DEBUG
INTERFACE INTERFACE INTERFACE
FLASH FLASH FLASH
MEMORY MEMORY MEMORY

Figure 5.8: Message Flow of the Attack Visualisation

The primary purpose of this visualisation is to show that the message from the RDP
arrives too late. This message tells the CPU that the debugger is not allowed to read
from the flash. However, the flash has answered the read request in the meantime.

5.4.3 Live Demonstration of the Attack

The attack slide, part 5 of the presentation, looks like the sketch shown in Figure 5.9
and can be started with the "Start" button and, if necessary, stopped with the "Stop"
button. During the attack, the firmware dump is output line by line. A line consists of
the address where the read operation was started, the firmware dump in hexadecimal
representation and the firmware dump interpreted in ASCII characters. After reading
out the firmware, the password that was the target of the reading is highlighted. The
attack occurs in the background and is executed by the presentation.

39

5 Concept

Presentation X

Company name

Demo Title

Start button

Stop button
Address of

Attack

Fimrware

dump
0x8000000% 20 00 06 98 08 00 01 59 61 08 00 01
0x8000010: 00 00 00 00 00 00 00 00 00 00 00 00 2 Byte
——Firmware
0x8000310: 00 00 00 38 08 00 00 f8 08 00 03 60 20 00 00 [dump in hex
0x8000320: 00 00 06 60 08 00 01 14 72 63 65 53 4b 20 74 I\ .. Secret K| Firmware
0x8000330: 6c 20 59 45 20 65 6b 69 69 6c 20 61 73 6e 65 | EY Tike a licens | _dump in ASCII
0x8000340: 72 6f 20 65 6d 6f 73 20 69 74 6¢c 65 20 | e or somthing el § .)
0x8000350: 20 21 65 73 45 44 78 30 45 42 44 41 00 00 46 |___Highlighted
0x8000360: ff Ff ff ff Ff ff ff ff ff ff ff ff £f ff £f £f password

Figure 5.9: Sketch of the Presentation GUI - Attack Slide

5.5 Hardware for the Attack

As described in Chapter 3, a debugger is also needed for the attack. Since the SEG-
GER J-Link is commonly used at NXP and software from NXP is already available
for this device, it was chosen for the demonstrator. The J-Link supports SWD at the
required low level, i.e. reading and writing registers needed for the attack. Tests in
advance have also shown that the J-Link is suitable. The SEGGER J-Link can be seen
in Figure 5.10.

Figure 5.10: SEGGER J-Link Debugger from [15]

40

6 Implementation

As with the concept, a distinction is made between the two following parts.

» The password-protected hard disk, which includes the unlocking GUI and the
firmware.

» The presentation, with the explanation and live demo of the attack and the hard
drive demonstration.

In the beginning, the implementation of the unlocking GUI and the hard disk firmware
is introduced. Then the implementation of the presentation is presented.

6.1 The Password-Protected Hard Disk

This section is divided into the software for unlocking the hard disk, which runs on
the host system, and the hard disk firmware, which runs on the microcontroller and
hardware for the demonstrator.

6.1.1 Unlocking GUI

The unlocking software is implemented with Python and with the help of the GUI toolkit
Tkinter. Tkinter was the first GUI toolkit for Python, which is why it is now part of the
standard Python package. [14]

In this way, it was possible to create a simple GUI as specified by the concept. The
GUI works with two threads. The main thread creates the visible window that the user
operates and updates the visual components. The second thread runs in the back-
ground, checks the connection status of the hard disk, passes changes and other data
via message queues to the main thread, which then updates the window. The second

41

6 Implementation

thread also manages the communication with the hard disk, sends entered passwords
to the microcontroller and passes the received response to the main thread. In this
way, the GUI remains responsive as soon as communication with the hard disk occurs.
The second thread, the communication thread, is described first, followed by the main
thread.

The Communication Thread

This section describes the thread that works in the background, the communication
thread. This worker thread automatically searches for the hard drive after the soft-
ware is started to increase usability. It searches for the unique USB identifiers, such as
the Vendor ID (VID) and the Product ID (PID), and thus identifies the hard disk. The
software also handles the connection initialisation, so the user only has to enter the
password. Communication occurs via three message queues. One queue syncs the
connection status from the communication thread to the main thread, another one re-
ceives the password from the main thread, and the last queue forwards the response
from the hard disk to the main thread. These three threads are described in Table 6.1.

Table 6.1: Message Queues for Communication between Threads
Name of the Queue Task of the Queue
The current connection status is transmitted
from the communication thread to the main thread.
The main thread sends the password
to the communication thread.
The response from the microcontroller
answerQueue is sent from the communications thread
to the main thread.

connectionQueue

passwordQueue

A flowchart of the communication thread can be seen in Figure 6.1. This flowchart
shows how an attempt is first made to connect to the hard disk. Whether a connection
could be established is saved and passed on to the main thread via the connection
queue. The following steps are repeated continuously until the thread is terminated.
This termination occurs when the microcontroller has received the correct password
and the main thread has received this message via the response queue. After this,
the loop and thus the communication thread is terminated. Within this loop, a check is
made to see if the connection status has changed since the last run. If so, it is forwarded
to the main thread. Otherwise, if a connection is established, it is checked whether

42

6 Implementation

a password has been received from the main thread via the password queue. If a
password is received, this password is sent to the microcontroller. The microcontroller’s
response is forwarded to the main thread via the answer queue.

connected? Hfalse

D‘ state = True

Av4
[connectionQueue.put(state)] [state = False]

Av4

[passwofdvguZue get()] [connectionQueue.put(state)]

A4

ans = connect()
sendAndReceive(pwd)

v

[answerQueue.put(ans)]

VL v Vv
4l>[sleep(250ms)]47

Figure 6.1: Flowchart of the Communication Thread

43

6 Implementation

Figure 6.2 shows a sequence diagram of the main thread and the communication
thread, illustrating the communication between the two threads through the queues.

’ mainThread ‘ ’connectionQueue‘ ‘passwordQueue‘ ‘ answerQueue ‘ ‘ communicationThread
loop)
get(status)
> Ioop/ check
connection
status
~ put(status)
et
update
connection
status
put(pwd) R
'[B get(pwd)
(1 S A retun
send pwd
get(ans) ~ to MCU
B put(ans) H
et e r

Figure 6.2: Sequence Diagram of the Unlocking GUI

44

6 Implementation

The Main Thread

As described at the beginning of the section, the main thread is responsible for the vis-
ible window and manages the displayed components. The concept chapter describes
these components as the welcome text and the description, the connection status, and
the password input field. Furthermore, there are two buttons in the GUI. The "Quit"
button can be used to end the program, and the "OK" button can be used to send the
entered password. This button can only be pressed when the hard disk is connected
and ready to receive. The window is shown in Figure 6.3 with an unconnected hard disk
and Figure 6.4 with a connected hard disk.

¥ Read Protection Attack Demo | Disk Demo - X

Welcome to the Read Protection Attack Demo.
This software handles the communication with the USB flash
If you enter the corret word, the USB device will mount itse

Figure 6.3: Unlocking GUI with an unconnected Hard Disk

¥ Read Protection Attack Demo | Disk Demo - X

Welcome to the Read Protection Attack Demo.
This software ha e communication with the USB flash drive.
If you enter the carrect password, the USB device will mount itself as a

Password

OK

Figure 6.4: Unlocking GUI with a connected Hard Disk

45

6 Implementation

As required by the concept, a password field has been implemented. The entered char-
acters cannot be read because they are displayed as an asterisk ™. In order to increase
the user-friendliness requested in the requirements, the window automatically centers
itself after start-up and automatically lifts itself into the foreground when changes are
made. Thus, all requirements for the software are fulfilled.

6.1.2 Firmware of the Hard Disk

The hard disk’s firmware is written in the C programming language. The basis for the
firmware is the Software Development Kit (SDK) from the microcontroller’s manufac-
turer [17]. This SDK served as the basis and had to be adapted in some places. The
SDK is chosen because it already offers executable projects that can easily be adapted
and provides many required functionalities. The communication functionalities via USB
and the hard disk are initially developed separately and later merged.

1. The USB Communication Device Class (CDC) sample application from the SDK
is adapted in the next subsection Communications Part of the Firmware.

2. The USB Mass Storage Class (MSC) sample application is adapted in the follow-
ing subsection Mass Storage Part of the Firmware.

3. These applications are merged with the required functionality, in subsection The
merged Firmware.

Communications Part of the Firmware

The USB-CDC sample application uses the USB device and UART peripherals. With
this application the MCU acts as a USB-to-UART bridge. This bridge is implemented
as a Virtual COM port, which means that on one side, the microcontroller exchanges
data with the host system via USB interface in device mode and on the other side,
the microcontroller exchanges data with other devices via UART interface. In this USB
example, three USB endpoints (separate communication channels) are declared in the
CDC class.

46

6 Implementation

These three endpoints are:

1. The Bulk IN endpoint.

This endpoint is for messages received via UART, which must be forwarded to the

host system from the microcontroller.

2. The Bulk OUT endpoint.

This endpoint is for messages received via USB from the host system, which must

be forwarded via UART.

3. The interrupt IN endpoint for setting and getting serial-port parameters.

The interrupt IN endpoint and is taken over unchanged, as it has all the necessary
functions. Only the callback functions of the Bulk IN and OUT endpoints for receiving

and transmitting are adapted.

Since the UART functionality is not needed, the functions are adapted so that messages
received via USB are not forwarded via the UART Interface but instead copied into a
buffer. Furthermore, messages can be sent to the host via USB without receiving via
the UART Interface. The status of the input buffer is periodically queried. If messages
are present, they are processed, and the request is answered.

The following had to be changed in the USB-CDC example for this functionality, as listed

in Table 6.2.

Table 6.2: Modified Functions in the USB-CDC Example Application

File Function

Explanation

usbd_cdc_interface.c | CDC_Itf_ Receive ()

usbd_cdc interface.c | CDC_Transmit_FS ()

Data received over USB OUT end-
point are sent over CDC inter-
face through this function

and copied into the buffer

instead of forwarding via the
UART Interface

Data to send over USB IN end-

point are sent over CDC inter-
face from this function.

47

6 Implementation

Mass Storage Part of the Firmware

The USB-MSC sample application is originally intended for more complex development
board with the same processor. This board has an internal SD card slot where the
sample application uses the microcontroller as a bridge and acts as a USB SD card
reader. In this way, the host system can address and access the SD card via the
microcontroller.

The functionality of the SD card is not adopted to keep the demonstrator as simple as
required. This way, no parts of the demonstrator, such as an SD card or the external
SD card holder, can be lost. Instead of the SD card, a file system for the hard disk is
implemented in the flash memory. The host system accesses the file system stored in
the flash memory block by block via USB. The file system in the flash memory replaces
the SD card and behaves like a real hard disk. This functionality is taken from the open-
source project TinyUSB. TinyUSB is a cross-platform open-source USB host/device
stack for embedded systems, and more information can be found on the project website
[9]. In this project, an array can be found that represents a complete FAT12 file system.
This file system contains a sample text file whose contents can be customized. Thus
the array is adopted for the hard disk firmware. Changes made by the host via USB
to the text files are initially buffered on the host side and are thus volatile since the
changed file system is not written to the flash memory after use. Therefore, the system
is in the same state with each new demonstration. A part of the FAT12 array is shown
in Figure 6.5.

48

6 Implementation

uint8_t msc_disk [STORAGE BLK NBR » STORAGE BLK SIZ] =

{ //——— Block0O: Boot Sector ————————————- //

// byte_per_sector = STORAGE BLK SIZ;

// fat12_sector_num_16 = STORAGE BLK NBR;

// sector_per_cluster = 1;

// reserved_sectors = 1;

// fat_num = 1;

// fat12_root_entry_num = 16;

// sector_per_fat = 1;

// sector_per_track = 1;

// head_num = 1;

// hidden_sectors = 0;

// drive_number = 0x80;

// media_type = 0xf8;

// extended_boot_signature = 0x29;

// filesystem_type = "FAT12

// volume_serial_number = 0x1234;

// volume_label = "NXP-USB MSC";

// FAT magic code at offset 510-511

{
0xEB, 0x3C, 0x90, 0x4D, 0x53, 0x44, Ox4F, 0x53,
0x35, 0x2E, 0x30, 0x00, 0x02, 0x01, 0x01, 0x00,
0x01, 0x10, 0x00, 0x10, 0x00, OxF8, 0x01, 0x00,
0x01, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x29, 0x34,
0x12, 0x00, 0x00, 'N’ , 'X’ , 'P’” , =7 [U |
‘s, 'B” , ', M, 'S, 'C’ , 0x46, 0x41,
0x54, 0x31, 0x32, 0x20, 0x20, 0x20, 0x00, 0x00,
// Zero up to 2 last bytes of FAT magic code
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x55, OxAA

1

Y —— Block1: FAT12 Table ————————————— //

{ OxF8, OxFF, OxFF, OxFF, OxOF // first 2 entries must

// be F8FF,

}s

third entry is cluster end of text file

————————————— Block2: Root Directory —————————-//
// first entry is volume label

N X, P =
‘M, 'S’ , 'C’ , 0x08,
0x00, 0x00, 0x00, 0x00,
0x65, 0x43, 0x00, 0x00,

v, ’s’ , 'B’, L0,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, Ox4F, 0x6D,
0x00, 0x00, 0x00, 0x00,

// second entry is text file

s, ’E’”, 'C , 'R,
‘T, ’X*, T’ , 0x20,
0x65, 0x43, 0x65, 0x43,
0x65, 0x43, 0x02, 0x00,
sizeof (FILE_CONTENT) -1,
0x00, 0x00, 0x00

E LT
0x00, 0xC6, 0x52, 0x6D,
0x00, 0x00, 0x88, 0x6D,

// file size

————————————— Block3: Text File Content ——————-//

FILE_CONTENT

Figure 6.5: FAT12 File System Array

49

6 Implementation

Building on this, encryption is applied to the entire file system residing in the flash
memory. The file system stored as an array is encrypted with Tiny AES. Tiny AES
is a lightweight implementation of the AES crypto algorithm in C, which supports the
standard key sizes (128/192/256-Bit) and the common block cipher operation modes,
like the Electronic Codebook Modus (ECB). The implementation of Tiny AES is based
on the recommendations of the National Institute of Standards and Technology (NIST).
[12] The file system is encrypted with an AES in ECB mode with a key length of 256
bits. Information on this can be found in NIST’s Specification for the AES [7] and in
NIST’s Paper "Recommendation for Block Cipher Modes of Operation” [6]. A part of the
encrypted FAT12 array is shown in Figure 6.6.

The following had to be changed in the USB-MSC example for this functionality, as
listed in Table 6.3.

Table 6.3: Modified Functions in the USB-MSC Example Application

File Function Explanation
stm32072b_eval_sd.c | STORAGE_GetCapacity () | Originally returns the
(This file is changed capacity of the SD card.
in usbd_storage.c) Instead, the hard coded

size of the array is returned.

stm32072b_eval _sd.c | STORAGE_IsReady () Since no SD card con-
nection needs to be
initiated or checked,
"ready" is always returned.

stm32072b_eval sd.c | STORAGE_Read () Instead of reading from
the SD card and writing to
a buffer, the requested
block is read from the
flash, decrypted and
written to the buffer.

50

6 Implementation

uint8_t msc_disk_enc[STORAGE_BLK NBR+STORAGE_BLK SIZ] =

{
Oxba, 0x59, Ox4a, 0x8a, 0x9d, 0x90, 0xd9, 0x19,
0x83, Oxaa, 0x32, 0x63, 0x90, Oxfb, 0x27, Oxcc,
0x45, 0x61, 0x86, Oxel, 0x90, Oxad, 0xc3, 0x49,
0xb3, 0x87, 0Oxdf, Oxcd, 0x8d, 0xd2, 0x17, 0xe9,
0xb7, Oxef, 0x9e, 0xf5, 0x34, 0x19, Oxdb, 0x13,
0xd7, 0x04, 0x81, Ox7a, 0x71, 0x02, 0x9c, 0xd6,
0x0c, 0Oxd1, Oxla, 0x40, Oxbf, 0x86, Oxac, Ox4a,
0x76, 0x58, 0x12, Oxcl1, 0xOf, Oxda, Oxe6, 0xb8,
0xf3, 0x95, 0x06, 0x91, 0x37, Ox2f, 0xe3, Oxca,
Oxed4, 0xf7, Oxaf, 0x76, Oxdd, Oxd4, 0x93, 0x77,

0xf3, 0x95, 0x06, 0x91, 0x37, 0x2f, 0xe3, Oxca,
Oxe4, 0xf7, Oxaf, 0x76, Oxdd, Oxd4, 0x93, 0x77,
0xc3, 0x62, 0x63, Ox4c, Oxe6, 0x30, Oxcl, 0x23,
0x70, Oxde, 0x6d, Oxbc, 0x27, 0x93, 0x5b, 0xb9,
0xf3, Oxdb, 0x3f, Oxel, 0Oxc5, Ox4b, 0xb8, 0x34,
0Oxc1, 0x56, 0x06, 0x22, Ox4c, Oxe6, Oxbe, 0x9e,
0xf3, 0x95, 0x06, 0x91, 0x37, 0x2f, 0xe3, Oxca,
Oxed4, 0xf7, Oxaf, 0x76, Oxdd, Oxd4, 0x93, 0x77,

0xf3, 0x95, 0x06, 0x91, 0x37, 0x2f, Oxe3, Oxca,
Oxed4, 0xf7, Oxaf, 0x76, Oxdd, Oxd4, 0x93, 0x77,
Oxda, Oxa3, Oxaf, Oxb5, 0xf1, Ox4a, Oxfb, Oxb5,
0xe3, 0x21, Oxfc, 0x87, 0x68, 0xc2, 0x66, 0x92,
0x76, 0x7b, Oxfb, 0x91, 0x38, 0xf1, Oxb7, Oxed,
0x11, Oxd4, Ox6b, 0x8b, Oxcb, 0x70, 0x68, 0xe0,
0x44, 0x52, 0xc7, 0xO0f, 0x17, Oxc1, 0x38, 0x3c,
0x8c, Oxed, 0x76, 0x20, OxO0f, 0x62, 0x43, 0xdO,
Oxe7, 0x0f, 0x97, Oxa5, 0xe9, Oxaa, 0x45, 0x72,
0xc2, 0xd2, 0x52, 0x3a, Ox7a, 0xc9, 0x31, Oxif,
0xf3, 0x95, 0x06, 0x91, 0x37, 0x2f, 0xe3, Oxca,
Oxe4, 0xf7, Oxaf, Ox76, Oxdd, Oxd4, 0x93, 0x77,

0xf3, 0x95, 0x06, 0x91, 0x37, 0x2f, 0xe3, Oxca,
Oxed4, 0xf7, Oxaf, 0x76, Oxdd, Oxd4, 0x93, 0x77,
0x53, 0x68, 0x15, 0Oxa8, 0xb6, O0xb6, 0x48, 0x53,
0Oxe5, 0x3a, 0x51, Oxla, 0x21, 0x85, 0x58, 0xb7,
0x11, Oxfb, 0x83, 0x44, 0x73, 0xf7, Oxcf, 0xc7,
0x7d, 0x8f, Oxel, 0x52, 0xb0, 0x15, 0x18, 0x64,
0xf3, 0x95, 0x06, 0x91, 0x37, 0x2f, 0xe3, Oxca,
Oxed4, 0xf7, Oxaf, 0x76, Oxdd, Oxd4, 0x93, 0x77,

0xf3, 0x95, 0x06, 0x91, 0x37, 0x2f, 0xe3, Oxca,
Oxe4, 0xf7, Oxaf, 0x76, Oxdd, Oxd4, 0x93, 0x77,
0xf3, 0x95, 0x06, 0x91, 0x37, 0x2f, 0xe3, Oxca,
Oxe4, 0xf7, Oxaf, 0x76, Oxdd, Oxd4, 0x93, 0x77,
0xf3, 0x95, 0x06, 0x91, 0x37, 0x2f, 0xe3, Oxca,
Oxe4, 0xf7, Oxaf, 0x76, Oxdd, 0xd4, 0x93, 0x77

Figure 6.6: Encrypted FAT12 File System Array

In summary, the following is implemented. An encrypted array is stored in the flash
memory. After decryption, this array becomes a FAT12 file system, which fulfils the
required Full Disk Encryption (FDE). The block requested by the host system via USB

51

6 Implementation

is read from the flash memory, decrypted and then passed on to the host system. Since
changes are not saved, it is strictly speaking a read-only disk.

The merged Firmware

This section describes how to merge the customised USB sample applications into the
password-protected hard disk firmware.

Since the previous applications can both communicate, i.e. receive a password via USB
and act like an encrypted hard disk, the following points need to be implemented for the
merge:

1. Change the USB class from CDC to MSC class after correctly entering the pass-
word.

2. Return to the starting point after disconnecting the USB connection.

3. Make sure that the password used to unlock the device can be read as a string
from the flash memory, i.e., it is stored there.

A simplified flowchart of the merged program is shown in Figure 6.7 and the steps
required are described below.

For point 1, as soon as the correct password is entered, the USB interrupts are de-
activated and then the USB interface is stopped and deinitialised. Afterwards, the
USB interface is initialised again, but as USB MSC device. To achieve this function-
ality, the documentation "STM32Cube USB device library" [18] and the "Description of
STM32F0xx HAL drivers" [19, p. 21-31, 33ff., 48ff.] had to be consulted.

For point 2, a reset function (NVIC_SystemReset ()) is called as soon as the connec-
tion is disconnected within the USB MSC state. This resets the microcontroller and the
program is restarted, returning the microcontroller to the USB CDC state. This function
requests a system reset by setting the system reset request flag (SYSRESETREQ) in
the Application Interrupt and Reset Control Register (AIRCR).

Finally, for item 3, the password is stored in plaintext as a character array in the main
function and used for comparison with the received password during the program run.
This way it is stored in the flash memory and can be read out.

52

6 Implementation

iNI(USB_CDC) | r-srsmmrsssmmsmssss sy

AV
state = CDC ‘ NVIC_SystemReset()
N

False

state==CDC

|

‘ USB_Disconnect() ’

l

‘ USBD_Stop() ’

l

{ USBD_Delnit() ’

l

{ init(USB_MSC) ’

inputBuffer
empty?

password

usB
connected?

4| state = MSC ’

Figure 6.7: Flowchart of the password-protected Hard Disk’s Firmware

6.1.3 Hardware of the Disk

Only reverse polarity-protected cables have to be connected for the assembly, as spec-
ified in the requirements. This connection is shown in Figure 6.9 and ensures that the
cable is not misused. For this purpose, a connector is soldered to the development
board, and the board is provided with housing. The housing for the development board

53

6 Implementation

of the hard disk is made with a 3D printer. The cover was made of transparent Plexiglas
to allow a view inside, seen in Figure 6.8 and 6.10.

610 812 B14 LW W
4 82 811 By e1s lo_,~(
D0 00 0

DO 0OOO0 Og

Figure 6.8: Device under Attack in Housing - Topview

Figure 6.9: Device under Attack in Housing Figure 6.10: Device under Attack in Hous-
- Connector Front ing - USB Front

54

6 Implementation

6.2 Presentation of the Demonstrator

This section describes the implementation of the presentation, which introduces the
hard drive, explains the attack and demonstrates it live. As with the unlocking GUI,
Python is used together with Tkinter for the implementation. A presentation developed
and used for other demonstrators is used as the basis for the implementation. In this
section, the structure of the GUI, the different classes and the implementation of the
attack are explained.

6.2.1 Structure of the GUI
The presentation consists of the following classes, which can also be seen in the class
diagram in Figure 6.11.

* MainView

+ SlideShow

» Page-Classes (Page1 to Page5)

» DebugJLink

The classes will be explained in this order.

55

6 Implementation

SlideShow

Title

Company name

Subtilte

Lift()

Page1 Page2 Page3 Page4 Pageb
Start() Attack()

MainView DebugdLink

Figure 6.11: Class Diagram of the Presentation

MainView

The MainView class is responsible for creating the visible window and managing it, i.e.,
creating and displaying various pages. The buttons for scrolling forwards and back-
wards are also managed in the Main-View class. These buttons call the 11 ft () func-
tion of Tkinter for the corresponding page, which lifts this page into the foreground and
thus makes it visible. All other pages lie behind it and can be displayed in order. After
the last page, the first page is displayed and the other way around.

A loading bar is displayed at the beginning to inform the user that the GUI has been
started. This feedback increases user-friendliness. This loading bar is necessary be-
cause the first reading, copying and pre-scaling of the graphics take about 5 seconds.
This time is necessary because the graphics are high resolution and can be used on
large and high-resolution display devices as specified in the requirements.

After the graphics have been processed, the pages are created. These inherit from
the class SlideShow, described in the next section. As soon as all pages have been
created, the loading bar is 100%. After that, the first page, Page1, is displayed, and
the loading bar is closed. The window is brought to the foreground of the main screen

56

6 Implementation

and displayed in full screen. In summary, the following happens from the user’s point of
view. After starting the presentation, the user sees only a loading bar displayed in the
center of the main screen in the foreground. This loading bar reaches 100% within a
few seconds, and the next moment, the first page of the presentation is full screen on
the main screen. The presentation can be operated using the buttons at the bottom or
with the arrow keys on the keyboard. As required, starting the software is very simple
and intuitive.

SlideShow

A base class is implemented from which all parts are inherit. This base class represents
the master slide shown in the concept (Figure 5.6). The base class contains the title of
the demonstrator, the name of the company and an area for slides. It is also possible to
display graphics that can be automatically scaled to the size of the window. The scaling
functionality has been adopted mainly from the existing presentation. The scaling func-
tionality saves the high-resolution original graphic and creates a copy used for scaling.
The original is saved to ensure the best possible quality. If the window is first reduced
and then enlarged again, this could lead to a loss of quality. Because when the window
is reduced, information is removed that is then missing when the window is enlarged.
In this case, the original is used, and the copy is replaced by the original. The renewed
copy can then be resized without loss of quality. The possibility of a slide show is also
implemented in the base class. This slide show makes it possible to display several
graphics one after the other, as is necessary, for example, when explaining the attack
and is described in the next section, among the other Pages.

Page-Classes
This section describes the page classes. There are five Page classes, each represent-

ing a part of the presentation and inherits from the basis-class SlideShow. Table 6.4
lists all five classes.

57

6 Implementation

Table 6.4: Parts of Presentation with the corresponding Page-Class

Name of the Page-Class | Part of the Presentation
Page1 Presentation of the hard disk
Page2 Demonstration of the hard disk
Page3 Setup of the attack

Page4 Explanation of the attack
Page5 Demonstration of the attack

Page1

Pagei1 shows the password-protected hard disk and that the password must be sent to
the hard disk. By inheritance, only a subtitle is assigned to the class, i.e. the title of the
slide "Explanation Disk" and the associated graphic for the slide show.

Page2

As with any page class, the subtitle must still be added to page2. This subtitle is called
"Demo Disk", and this page only has a button for starting the unlocking GUI, with which
the hard disk is presented and demonstrated live.

Page3
Page3 is titled "Attack" and shows the setup of the attack. Figure 6.12 shows this setup
visualisation.

\ USB SWD =
| \ = -
) \ =
ATTACKERS LAPTOP DEBUGGER DEVICE UNDER
ATTACK

Figure 6.12: Visualisation of the Attack’s Setup

Page4
Page4 describes the attack and is also named "Attack". For this, the graphics shown in
the concept are displayed and shown with stick point explanations. In Figure 6.13, the

58

6 Implementation

first graphic is shown, and the corresponding explanation is highlighted. This graphic
gives an overview of all components.

READ

PROTECTION PROCESS
EXCEPTION DEBUGGER sends read request to FLASH MEMORY
READ PROTECTION and FLASH MEMORY receive request

DEBUG
INTERFACE

READ PROTECTION sends EXCEPTION to CPU and
FLASH MEMORY starts processing read request

FLASH FLASH MEMORY is faster than READ PROTECTION
MEMORY and CPU shuts down system too late
- DEBUGGER receive 32 bit Data

Figure 6.13: Slide Explaining the Attack in the Presentation

Page5

Page 5 is the slide of the live attack and is called "Attack". There is only a start button
and a black field in the beginning. If the hard disk is still connected to the computer
via USB, it is pointed out that the USB cable must be disconnected. This notification
is necessary because the microcontroller is supplied with power via USB, and a restart
(power cycle) via the debugger is not possible. The attack, described in Chapter 3, be-
gins as soon as the Start button is pressed. After the start, another button is displayed
- the Stop button - with which the attack can be stopped. The read firmware is output
during the attack as described in the concept, and the password is highlighted in the
end. The class of the attack is described next.

DebugdLink

The class DebugJLink controls the J-Link debugger and thus executes the attack.
NXP’s software library is used to control the J-link. This library, Lab Control, contains
functions to communicate with the microcontroller via the minimal implementation of the
SWD protocol using the J-Link, which is necessary for the attack.

After the attack is started, it is checked whether the microcontroller is configured cor-
rectly. It is checked whether the read protection is set to RDP level 1. If this is not the

59

6 Implementation

case, the user can decide whether the protection should be switched on. If this option
is chosen, the current firmware is loaded into the flash memory and then RDP level 1
is set. This procedure fulfils the requirement that the software can correct errors itself.
The attack then begins with a restart (power cycle) of the microcontroller. Power cycle
means that the J-Link briefly switches off the microcontroller’s power supply. For read-
ing out the firmware, the steps described in section 4 are performed, and if the access
is successful, the address to be read is incremented. The password is searched and
marked if the firmware is completely read out. In addition, the focus is set to the position
of the password. The procedure is shown in a flowchart of the attack in Figure 6.14.

dbg = DebugdJLink() ’ ‘

‘ dump = dbg.read(addr) }47

\V4

is RDP
enabled?

False

enable?

False

True

‘dbg.flash(firmware.bin)} —D{ dbg.powerReset() ’ :
i J7 ‘ print(dump)

‘ dbg.enableRDP() J [addr = 0x0 }7
\— True " finish?

False

‘ highlight_pwd() ’ ‘ addr +=4 ’

!

‘ dbg.powerReset() ’<1—

Figure 6.14: Flowchart of the Attack

60

6 Implementation

6.3 Limitations and Opportunities

The demonstrator is in an operational state. Several test runs have shown that the com-
plete firmware with a size of nearly 32 kByte can be read in approximately 10 minutes.
That means one of the essential requirements, the live demonstration, has been suc-
cessfully implemented. Furthermore, typical errors are detected by the software. For
example, the presentation points out that the USB cable must be disconnected before
the attack begins. Otherwise, the attack is not possible. The presentation can also
check the status of the microcontroller and, if necessary, renew the firmware and switch
on the RDP.

Nevertheless, there is still potential for improvement. For one thing, the hard drive’s
locking mechanism could be reworked. A desirable feature would be the ability to
change the password. The password is currently hardcoded into the program and can-
not be changed. For this, the communication protocol would have to be extended to
include the possibility of changing the password, and a function would have to over-
write the old password in the flash memory with the new one. On the other hand, a
different operating mode of the AES would be desirable since the ECB mode encrypts
identical plaintext blocks into identical ciphertext blocks and thus does not hide data
patterns. Because the hard disk consists primarily of "0x00" entries, and these blocks
are uncomplicated to recognise. For this reason, the ECB is unsuitable for full disk
encryption, even if it is straightforward to implement.

Another essential point is the performance of the presentation. The presentation must
be revised, whereby the revision will focus on the performance of the graphics scaling.
In this area, optimising with a second thread with message queues could be helpful and
reduce the loading time in the beginning.

Further work will replace the J-Link debugger with a smaller, less expensive alternative
to better meet the requirement of duplicating quick and inexpensive this demonstrator.
During development, it was detected that the J-Link debugger could easily be replaced
by a debugger that supports SWD at all levels, especially the low level. Support for all
SWD levels means that the debugger supports flashing of the MCU and operation with
low-level functions, such as reading and writing registers, as required for the attack. The
debugger should be able to supply the MCU with power. This power supply should be
switchable since the microcontroller must be restarted via a power cycle. However, this
functionality could also be easily implemented with a transistor, which turns the power

61

6 Implementation

supply on and off. It would be conceivable to develop a debugger with a development
board and implement the SWD protocol. For this purpose, the development board used
for the hard disk could be used with the USB communications functionality already
developed. Also, the attack’s performance could possibly be increased by implementing
a self-made debugger. In the course of this, it could also be tested whether reducing
the capacity of the capacitor that stabilises the voltage supply influences the restart
duration. In other words, whether there is a significant correlation between the total
capacity of the voltage supply and the restart time.

The creation of a manual is still obligatory. This manual is included with the demon-
strator and describes the setup. This manual is provided on a USB flash drive. The
demonstrator will later be packed in a suitcase to make it handier and easier to trans-
port. This case contains the microcontroller, i.e. the hard disk, the debugger and the
USB flash drive with the manual, the presentation and the unlocking GUI.

62

7 Conlusion

In this bachelor thesis, a demonstrator is built that bypasses the readout protection and
thus reads out a microcontroller’s firmware. For this purpose, a suitable and authentic
use case was developed and implemented with corresponding hardware. The use case
consists of a portable password-protected USB hard disk, which can only be decrypted
and mounted with the correct password. The password is evaluated on the hard disk.
For this purpose, the password is sent to the hard disk via USB. Since the evaluation
takes place on the hard disk, the password must also be stored there for comparison,
making the hard disk the target of the attack. The attack shows how the readout pro-
tection is bypassed, and the password stored in the firmware is readout. The impact
of password theft is significant as it compromises the entire encryption. A presentation
was developed to demonstrate the attack that introduces the typical working hard disk
to the user and gives a live demonstration. Afterwards, the attack is explained and also
demonstrated live. The entire firmware, including the password, is read out in about
10 minutes. After reading out, the password is highlighted and presented, ending the
presentation.

This demonstrator fulfills almost all the requirements that were set for it. Thus, the most
important goals were achieved, which say that the hard drive and the attack have to be
live demos, and especially the attack is shown in real-time without preparations. It also
tries to explain the attack in an understandable way to a broad audience and show the
consequences as impressively as possible. The demonstrator shows the importance of
security measures and that it is not enough to rely on single security mechanisms, as
they may be bypassed or hacked.

One possibility to extend the demonstrator even further would be to implement the
much more secure RDP level 2 in this demonstrator so that the microcontroller is first
downgraded from level 2 to 1 and then read out. RDP Level 2 is more secure because
it permanently shuts down the entire debugging interface. However, possibilities for
successfully attacking the RDP level 2 were also presented in the Frauenhofer AISEC

63

7 Conlusion

paper by Obermaier and Tatschner [13]. Alternatively, also found in this presentation
[3]. In this presentation, one of the cryptocurrency hardware wallets will be cracked.
The attacks carried out on the hardware wallets range from leveraging the proprietary
bootloader protection to leveraging the web interfaces to physical attacks, including
glitches, to bypass the security implemented in the microcontroller of the wallet. These
attacks include glitching a microcontroller protected with RDP level 2 to 1. For this
extension, the microcontroller secured with RDP Level 2 could be downgraded from
Level 2 to Level 1 by attacking the power supply, which is shown in the presentation,
with a so-called voltage glitch, in which the power supply is briefly switched off, thereby
inducing an error in the digital logic of the microcontroller. Then the firmware can be
read out with the debugger.

64

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

ARM LTD.: AMBA® AHB Protocol Specification IHI 0033C. https://
developer.arm.com/documentation/ihi0033/1latest/, Last accessed:
04. Nov 2021. — Rev. C

ARM Ltb.: Arm Debug Interface Architecture Specification v5.1 IHI 0031F.
https://developer.arm.com/documentation/ihi0031/latest/, Last
accessed: 25 Jun 2021. — Rev. F

ARM LTD.: CoreSight Architecture: Serial Wire Debug. https://developer.
arm.com/architectures/cpu—-architecture/debug-visibility—

and-trace/coresight-architecture/serial-wire—debug, Last ac-

cessed: 25 Jun 2021. 2021

ASCHE, Rudiger R.: Embedded Controller - Grundlagen und praktische Umset-
zung fir industrielle Anwendungen. Berlin Heidelberg New York : Springer-Verlag,
2016. — ISBN 978-3-658-14850-8

AXELSON, Jan: USB Complete - The Developer’s Guide. Madison WI 53704 :
Lakeview Research, 2009. — ISBN 978-1-931-44808-6

DWORKIN, Morris: Recommendation for Block Cipher Modes of Operation / Na-
tional Institute of Standards and Technology. Washington, D.C., 2001 (NIST Spe-
cial Publication 800-38A 2001 Edition). — Forschungsbericht

DWORKIN, Morris ; BARKER, Elaine ; NECHVATAL, James ; FOTI, James ;
BAssHAM, Lawrence ; ROBACK, E. ; DRAY, James: Advanced Encryption Stan-
dard (AES). https:///doi.org/10.6028/NIST.FIPS.197, Last accessed:
04. Jan 2022. 2001-11-26 2001

FLEMING, Bill: Microcontroller Units in Automobiles [Automotive Electronics]. In:
IEEE Vehicular Technology Magazine 6 (2011), Nr. 3, S. 4-8

65

https://developer.arm.com/documentation/ihi0033/latest/
https://developer.arm.com/documentation/ihi0033/latest/
https://developer.arm.com/documentation/ihi0031/latest/
https://developer.arm.com/architectures/cpu-architecture/debug-visibility-and-trace/coresight-architecture/serial-wire-debug
https://developer.arm.com/architectures/cpu-architecture/debug-visibility-and-trace/coresight-architecture/serial-wire-debug
https://developer.arm.com/architectures/cpu-architecture/debug-visibility-and-trace/coresight-architecture/serial-wire-debug
https:///doi.org/10.6028/NIST.FIPS.197

Bibliography

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

HA THACH: TinyUSB. https://docs.tinyusb.org/en/latest/index.
html, Last accessed: 04. Jan 2022

INTEGRIERTE SICHERHEIT AISEC, Fraunhofer-Institut fir Angewandte und:
Produktschutz-Infografik.pdf. https://www.aisec.fraunhofer.
de/content/dam/aisec/Dokumente/Publikationen/Sonstige/
Produktschutz-Infografik.pdf, Last accessed: 10. Jan 2022

KHAN, Sultan Q.: Microcontroller Readback Protection: Bypasses and Defenses.
https://research.nccgroup.com/wp—-content/uploads/2020/02/
NCC-Group—-Whitepaper—-Microcontroller—-Readback-Protection—
1.pdf, Last accessed: 10. Jan 2022

KOKKE: tiny-AES-c. https://github.com/kokke/tiny-AES—-c, Last ac-
cessed: 04. Jan 2022

OBERMAIER, Johannes ; TATSCHNER, Stefan: Shedding too much Light
on a Microcontroller's Firmware Protection. In: 11th USENIX Workshop on
Offensive Technologies (WOOT 17). Vancouver, BC : USENIX Association,
2017.— URL https://www.usenix.org/conference/wootl7/workshop—
program/presentation/obermaier.— Last accessed: 04. Oct 2021

PYTHON SOFTWARE FOUNDATION: tkinter — Python interface to Tcl/Tk. https:

//docs.python.org/3/library/tkinter.html, Last accessed: 07. Dec
2021

SEGGER MICROCONTROLLER GMBH: Product Page J-Link Base. https:
//www.segger.com/products/debug-probes/j-link/models/j-
link-base/, Last accessed: 07. Dec 2021

STMICROELECTRONICS: Product overview: 32F072BDISCOVERY. https://
www.st.com/en/evaluation-tools/32£f072bdiscovery.html, Last ac-
cessed: 07. Dec 2021

STMICROELECTRONICS: STM32Cube MCU Package for STM32F0 series.
https://www.st.com/en/embedded-software/stm32cubef0.html,
Last accessed: 07. Dec 2021

STMICROELECTRONICS: UM1734 — STM32Cube USB device library.

http://www.st.com/st-web-ui/static/active/en/resource/

66

https://docs.tinyusb.org/en/latest/index.html
https://docs.tinyusb.org/en/latest/index.html
https://www.aisec.fraunhofer.de/content/dam/aisec/Dokumente/Publikationen/Sonstige/Produktschutz-Infografik.pdf
https://www.aisec.fraunhofer.de/content/dam/aisec/Dokumente/Publikationen/Sonstige/Produktschutz-Infografik.pdf
https://www.aisec.fraunhofer.de/content/dam/aisec/Dokumente/Publikationen/Sonstige/Produktschutz-Infografik.pdf
https://research.nccgroup.com/wp-content/uploads/2020/02/NCC-Group-Whitepaper-Microcontroller-Readback-Protection-1.pdf
https://research.nccgroup.com/wp-content/uploads/2020/02/NCC-Group-Whitepaper-Microcontroller-Readback-Protection-1.pdf
https://research.nccgroup.com/wp-content/uploads/2020/02/NCC-Group-Whitepaper-Microcontroller-Readback-Protection-1.pdf
https://github.com/kokke/tiny-AES-c
https://www.usenix.org/conference/woot17/workshop-program/presentation/obermaier
https://www.usenix.org/conference/woot17/workshop-program/presentation/obermaier
https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/tkinter.html
https://www.segger.com/products/debug-probes/j-link/models/j-link-base/
https://www.segger.com/products/debug-probes/j-link/models/j-link-base/
https://www.segger.com/products/debug-probes/j-link/models/j-link-base/
https://www.st.com/en/evaluation-tools/32f072bdiscovery.html
https://www.st.com/en/evaluation-tools/32f072bdiscovery.html
https://www.st.com/en/embedded-software/stm32cubef0.html
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00105256.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00105256.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00105256.pdf

Bibliography

[19]

[20]

[21]

[22]

[23]

[24]

technical/document/user_manual/DM00105256.pdf, Last accessed:
01. Dec 2021

STMICROELECTRONICS: UM1785 — Description of STM32F0xx HAL
drivers. http://www.st.com/st—-web-ui/static/active/en/resource/
technical/document/user_manual/DM00122015.pdf, Last accessed: 01.
Dec 2021

STMICROELECTRONICS: RMO0091 Reference manual. https:
//www.st.com/en/microcontrollers—-microprocessors/stm32f0-
series.html#documentation, Last accessed: 08. Oct 2021. 2021. — Rev 9

TANENBAUM, Andrew S.: Structured Computer Organization -. 5th Edition. Lon-
don : Prentice Hall, 2006. — ISBN 978-0-131-48521-1

YU, Joseph: The Definitive Guide to ARM® Cortex®-M3 and Cortex®-M4 Pro-
cessors. Third Edition. London : Newnes, 2013. — ISBN 978-0-124-07918-2

Y1u, Joseph: The Definitive Guide to ARM® Cortex®-MO0 and Cortex®-MO0+ Pro-
cessors. Second Edition. London : Newnes, 2015. — ISBN 978-0-12-803277-0

ZURNER, Dominik B.: A Demonstrator for Optical Fault Injection Attacks. 2018. —
URL https://reposit.haw—hamburg.de/handle/20.500.12738/8371

67

http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00105256.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00105256.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00105256.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00105256.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00105256.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00122015.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00122015.pdf
https://www.st.com/en/microcontrollers-microprocessors/stm32f0-series.html#documentation
https://www.st.com/en/microcontrollers-microprocessors/stm32f0-series.html#documentation
https://www.st.com/en/microcontrollers-microprocessors/stm32f0-series.html#documentation
https://reposit.haw-hamburg.de/handle/20.500.12738/8371

A Appendix

The appendix is located on a CD-ROM.

This CD-ROM can be inspected at the supervisors:

Prof. Dr. Heike Neumann <heike.neumann@haw-hamburg.de> and
Prof. Dr. Pawet Buczek <pawel.buczek@haw-hamburg.de>.

68

mailto:heike.neumann@haw-hamburg.de
mailto:pawel.buczek@haw-hamburg.de

Declaration

| declare that this Bachelor Thesis has been completed by myself independently without
outside help and only the defined sources and study aids were used.

Hamburg 13. January 2022

City Date Signature

69

	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Basics
	Architecture of ARM
	ARM Debug Interface
	Serial Wire Debug
	Basic SWD Operation
	SWD Protocol Operation
	SW-DP and MEM-AP Register
	Example of Reading from the SW-DP
	Example of Reading from Flash Memory via the MEM-AP

	Basis of the Attack
	Requirements Specification
	Use Case Requirements
	Software Requirements
	Hardware Requirements
	Specifications - Summary

	Concept
	Use Case
	Use Case Description

	Concept Overview
	The Password-Protected Hard Disk
	Unlocking GUI
	Firmware of the Hard Disk
	Hardware of the Hard Disk

	Presentation of the Demonstrator
	The Hard Disk Part
	The Attack Part
	Live Demonstration of the Attack

	Hardware for the Attack

	Implementation
	The Password-Protected Hard Disk
	Unlocking GUI
	Firmware of the Hard Disk
	Hardware of the Disk

	Presentation of the Demonstrator
	Structure of the GUI

	Limitations and Opportunities

	Conlusion
	Bibliography
	Appendix
	Declaration

