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Kurzzusammenfassung

Zukünftig werden Fahrzeuge mit einer Vielzahl von Teilnehmern in diversen Netzwerken,
von VANETs (Vehicular ad-hoc Networks) bis hin zum Internet kommunizieren. Das
werden andere Fahrzeuge, Infrastruktur, wie z.B. Ampeln, oder Services in der Cloud
sein. Diese V2X Kommunikation ist von zentraler Bedeutung, da sie die Verkehrssicher-
heit und Verkehrseffizienz erhöht, zur leichteren Wartung von Fahrzeugen beiträgt und
eine wichtige Rolle für die Realisierung autonomer Fahrzeuge spielt. Es ist zwingend
notwendig, dass die V2X Kommunikation entsprechend abgesichert wird, da sie sicher-
heitskritische Funktionen umfasst. Die Absicherung geschieht durch ein V2X Security
Gateway im Fahrzeug, welches den Fahrzeug-internen Diensten, die mit der Außenwelt
kommunizieren, als Proxy dient und sowohl die kryptografische Sicherheit, als auch die
Sicherheit auf dem Internet-, Transport- und Application-Layer gewährleistet. Eine
zentrale Komponente eines solchen V2X Security Gateways ist das V2X Application-
Level Gateway, welches die Proxy-Funktion, die kryptografische Sicherheit und Sicher-
heit auf dem Application-Layer realisiert. Die Sicherheit auf dem Application-Layer
umfasst die kontext-sensitive semantische Analyse von Anwendungsdaten, die Erkennung
von Application-Layer Protokoll-Verletzungen und die Erkennung von Application-Layer
DoS-Angriffen. Diese Arbeit stellt das Konzept und eine Prototyp-Implementierung eines
solchen V2X Application-Level Gateways vor. Die Implementierung wurde in einem Test-
Netzwerk, welches das interne Fahrzeug-Netzwerk repräsentiert, evaluiert. In dem Net-
zwerk, bestehend aus einem Edgecore SDN Switch, Intel NUCs und Raspberry Pis, welche
Fahrzeug ECUs repräsentieren, wurden mehrere V2X Szenarios simuliert: die Steuerung
des Kofferraums über HTTPS, das Erhalten von Verkehrs-Updates über MQTT und ein
einfacher V2V Traffic Safety Service der ETSI CAM nutzt. Jedes Szenario beinhaltete
Angriffe, welche für die Evaluierung des V2X Application-Level Gateways entworfen wur-
den. Es wurde gezeigt, dass das V2X Application-Level Gateway alle Angriffe erkennen
und darauf reagieren konnte.
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Abstract

Future cars will communicate with a variety of entities ranging from other vehicles and
infrastructure, such as traffic lights, to Internet-based services running on remote servers.
This V2X communication is essential for future vehicles, since it increases traffic safety
and traffic efficiency, contributes to easier vehicle maintenance and also plays an impor-
tant role for the realisation of autonomous vehicles. It is necessary that V2X communi-
cation is appropriately secured, especially since it includes safety-critical communication.
This can be done with a V2X Security Gateway in the vehicle, which serves as a proxy
for vehicle-internal services communicating with the outside world and ensures crypto-
graphic security as well as security on the internet-, transport- and application layer.
A central component of such a V2X Security Gateway is the V2X Application-Level
Gateway, which ensures security on the application layer, including a context-sensitive
semantic analysis of application data, detection of application layer protocol violations
and detection of application layer DoS attacks. It also realises the proxy-functionality
and ensures cryptographic security. This work presents a concept and prototype imple-
mentation of such a V2X Application-Level Gateway. The implementation was evaluated
with the V2X Application-Level Gateway software run on an Intel NUC integrated in
a test network representing an internal vehicle network. In this network, consisting of
an Edgecore SDN switch and Intel NUCs and Raspberry Pis representing vehicle ECUs,
several V2X scenarios like remotely controlling the vehicle trunk via HTTP, receiving
traffic updates via MQTT and a basic V2V traffic safety service using the ETSI CAM
were simulated. Each scenario included realistic attacks devised for evaluating the V2X
Application-Level Gateway. It was shown that with the traffic analysis in the V2X
Application-Level Gateway all attacks could be detected and handled.
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1 Introduction

Future cars will communicate with a variety of entities ranging from other vehicles (V2V:
vehicle to vehicle) and infrastructure such as traffic lights (V2I: vehicle to infrastructure),
to Internet-based services running on remote servers. All this external vehicle commu-
nication is called V2X communication. While most of the V2X communication will be
IP-based, real-time V2V or V2I communication will be realised over network- and trans-
port protocols developed for that purpose, such as WSMP [113, 64]. V2X communication
is realised via a Connectivity-Gateway [103] using different technologies such as DSRC
(Dedicated Short Range Communication), Wi-Fi (IEEE 802.11), LTE [26], 5G or Blue-
tooth.
For future vehicles V2X communication is essential. It increases traffic safety and traffic
efficiency, contributes to easier vehicle maintenance and also plays an important role for
the realisation of autonomous vehicles. E.g. ”over the air” ECU software updates allow
the fast maintenance of a great number of vehicles without the need to go to a car service
station. Traffic efficiency is enhanced by optimised navigation and route planning (which
in case of electric vehicles may depend on charging infrastructure) considering conditions
such as road traffic or weather in live-time. Safety applications like collision avoidance
enhance traffic safety. And some innovative functionality such as automated coordinated
driving cannot be realised without V2X.
In general communication in the automotive context is divided into 5 domains: engine
control, infotainment, maintenance, safety electronics (e.g. ABS, airbag, seat-belt pre-
tensioner) and comfort (e.g. power windows) [97]. V2X communication encompasses the
infotainment, maintenance and engine control domain, ranging from music streams to
ECU-software updates and inter-vehicle collision avoidance. Single use cases from the
comfort domain, such as setting the car heating, could be realised as well. Although most
of the V2X communication is soft real-time, in some instances, like the above mentioned
collision avoidance, it is hard real-time with deadlines in the milliseconds [12, 78, 118]. It
is mandatory that the V2X communication is appropriately secured, since it encompasses
safety-critical domains. This can be done with a V2X Security Gateway (see chapter 2,
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1 Introduction

Figure 1.1: Schematic: Modern car with V2X Security Gateway

section 2.2.4), which is part of the Connectivity-Gateway, see figure 1.1.A central compo-
nent of such a V2X Security Gateway is the V2X Application-Level Gateway. The V2X
Application-Level Gateway serves as a proxy decoupling the in-vehicle network from ex-
ternal communication partners. It ensures cryptographic security and application-level
security including a context-sensitive semantic analysis of application data, detection
of application layer protocol violations and detection of application layer DoS attacks.
Additionally it allows role-based access to in-vehicle resources and bandwidth control
of V2X traffic. The aim of this work is the development of a concept and prototype
implementation of such a V2X Application-Level Gateway.
This work is organised as follows: chapter 2 gives the necessary background on auto-
motive IT, IT-security concepts and semantic analysis, chapter 3 gives an overview of
related work, emphasising the contribution of this work and proceeds with a requirements
analysis. Chapter 4 discusses the concept of the V2X Application-Level Gateway em-
phasising context-sensitive semantic analysis and DoS detection based on the preceding
requirements analysis. In chapter 5 a prototype implementation is presented, which is
evaluated in chapter 6. Chapter 7 concludes this work and discusses future work.
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2 Background

This chapter gives the necessary background on automotive IT focusing on V2X commu-
nication, relevant IT-security concepts like security gateways and gives a definition of the
term ”semantic analysis” used in this work. It also gives an overview of application layer
protocols used in V2X communication and of known attacks related to these protocols
as well as their countermeasures. The application layer protocols range from automotive
protocols like the ETSI (European Telecommunications Standards Institute) ”Coopera-
tive Awareness Basic Service” or ”Diagnostics over IP” to traditional Web protocols like
HTTP(S).

2.1 IT-Security Concepts

2.1.1 Cryptographic Security

A key concept in IT-security is cryptographic security. In this work cryptographic security
is defined as confidentiality, integrity and authenticity. Confidentiality means that a
message sent by a sender to a receiver cannot be read by a third party. Integrity means
that a message sent by a sender to a receiver cannot be modified by a third party without
the receiver noticing it. Authenticity means that for every message the receiver can check
if the message originated from the sender or a third party. Cryptographic security can
be achieved with cryptographic algorithms. Cryptographic algorithms are classified into
symmetric algorithms, e.g. AES or DES and asymmetric algorithms, e.g. RSA or elliptic
curves [93]. Symmetric algorithms are generally faster than asymmetric algorithms, but
the number of cryptographic keys increases exponentially with a growing number of
users, while with asymmetric algorithms this increase is linear. The secure storage of the
cryptographic keys is critical for ensuring the cryptographic security of a system.

3



2 Background

2.1.2 Security Gateways, Application-Level Gateways and Intrusion
Detection Systems

Another important IT-security concept are security gateways. A security gateway di-
vides a network into an external network and an internal network and all communication
between the external and internal network runs exclusively over the security gateway.
E.g. the V2X security gateway separates the in-vehicle network from the internet or
VANETs and controls all traffic going through it, thus protecting the in-vehicle network
from threats in the external network. Depending on the OSI layer a component con-
trolling traffic operates on, it is either a packet filter, operating on the link-, internet-
and transport layer, or an application-level gateway (ALG) operating on the application
layer [86]. An ALG is a proxy which only forwards packets after controlling them on
the application-layer [15]. If the data are encrypted, the ALG should have the necessary
cryptographic functionality to decrypt them and encrypt them again before forwarding
the data. The definition of ”security gateway” used in this work is a component combin-
ing packet filters with an ALG [86, 15]. A related term is ”firewall”. In literature, both
the separate packet filter and ALG, as well as a component combining packet filters with
an ALG are called ”firewall” [86, 71]. So the terms ”firewall” and ”security gateway” can
be used as synonyms, but for clarity, in this work only the term ”security gateway” is
used.
Another related term is ”intrusion detection system” (IDS). An IDS detects attacks by
analysing network traffic [86]. Generally an IDS is classified as either ”anomaly-based”
or ”specification-based” [72]. An anomaly-based IDS detects attacks by identifying de-
viations from a defined norm. A simple example of such a deviation, or anomaly, is a
significantly increased packet rate. Known attacks with specific patterns can be described
with specifications. A specification-based IDS detects attacks by checking if messages
correspond to a defined specification, describing an attack. Instead of ”specification-
based”, also the terms ”signature-based” or ”rule-based” are used [60]. A problem with
specification-based intrusion detection systems is, that only known attacks can be de-
tected and the IDS has to be constantly updated. Also, to cover as many attacks as
possible, many specifications are needed [60]. With anomaly-based intrusion detection
systems false positive rates (i.e. a legitimate message is falsely classified as anomalous)
have to be minimised, especially in the automotive context, since false alarms can have
more severe consequences in vehicles than in e.g. a PC system [109, 60]. Detecting
anomalies is not limited to network metrics, such as e.g. packet rates, but can encom-
pass the semantics of messages. The IDS described in [60] e.g. checks if messages sent to
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2 Background

remote peers contain sensitive data. Anomaly detection can also be context-sensitive, i.e.
dependent on the current state of the system. E.g. for classifying a message as normal
or anomalous in a vehicle the vehicle’s current state (e.g. parked, driving, crashed) is
considered [109]. Increasingly, machine learning is used for anomaly detection [49]. The
IDS is trained to learn the ”normal behaviour” based on which it detects anomalies. An
IDS can either be network-based, i.e. located in the network or host-based, i.e. located
in the host it is to protect. An IDS that does not only detect attacks, but also reacts
to them, e.g. by dropping packets, is called an ”intrusion prevention system” (IPS) or
”intrusion detection and prevention system” (IDPS) [50].

2.1.3 Denial-of-Service Attacks

Denial-of-Service (DoS) attacks target the availability of a system, so that service to
legitimate users is denied. By overwhelming a target with traffic, its performance is
degraded, possibly to the extent of rendering it completely useless. DoS attacks can take
different forms and occur on different OSI layers but the general concept is always the
same: exhaust a resource of the target system so that legitimate users cannot use it.
An example of a transport layer DoS attack is TCP SYN flooding, where an attacker
generates a large number of packets with random source addresses and the TCP SYN
flag set, requesting allocation of a buffer at the receiving node and after the entire buffer
space is exhausted, legitimate users cannot connect with the victim machine [18]. DoS
attacks can also take place on the application layer: an attacker could try to overwhelm
a service with HTTP(S) requests or MQTT messages. DoS attacks where the attacker
uses a large number of sources to flood the target with traffic are called Distributed
Denial-of-Serice (DDoS) attacks [31].
Identifying (D)DoS traffic and (D)DoS protection are no trivial tasks. When it comes
to DDoS protection, the action a single network node, e.g. a single vehicle, can take to
protect itself from DDoS attacks is limited. Effective DDoS countermeasures are network-
based services aiming at filtering and dropping malicious traffic before it reaches the
intended target [68, 27]. For a single network node to protect itself from DoS attacks, or
at least mitigate these attacks, a mechanism known as Hashcash [7] has been proposed.
The basic principle behind this mechanism is to assign a cost to each participation in
a protocol with the protected network node, with a participation being e.g. making a
request. The requester has to compute a token (the computation is based on finding
partial hash-collisions) before the node proceeds with the protocol, e.g. processes the
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2 Background

request. Thus a DoS attack to overwhelm the node with requests becomes unfeasible
since every request requires a significant amount of resources, in this case, computational
power. This solution comes with the cost of reduced performance due to the computation
of the tokens and thus may not be applicable when performance is a critical factor. Also,
it is only suitable for DoS attacks, but not DDoS attacks, since in DDoS attacks the
attacker has a large number of processors at his disposal and thus can easily compute a
large number of tokens. Apart from applying the Hashcash mechanism a single network
node can protect itself from DoS attacks by deploying a host-based IDS detecting DoS
attacks and dropping messages so that the node is not overwhelmed by traffic. Ideally
only DoS traffic would be dropped and not legitimate traffic. However, identifying DoS
traffic and distinguishing DoS attacks from legitimately increased traffic is no easy task.
In many cases the traffic rate alone is not sufficient to define rules for identifying DoS
traffic. Instead, a more thorough analysis of the traffic is required, e.g. examining the
proportion of connection requests in all messages [53]. A high proportion of connection
requests is not typical for legitimate traffic and could indicate a DoS attack. For certain
use cases a (configurable) static rule set may be sufficient to identify DoS traffic, but
generally intrusion detection systems using machine learning are proposed as host-based
DoS countermeasures [53, 117, 76]. The advantage of a configurable static rule set is being
a lightweight solution. The rules do not have to be limited to the traffic itself, but can
also include the source of traffic, e.g. ”did the source of the packet appear before or after
the detection of the attack” [76]. While such a rule does not contribute to detection,
it can help to distinguish DoS traffic from legitimate traffic. The more distributed a
DoS attack is, the harder it becomes to distinguish DoS traffic from legitimate traffic,
since with an increasing number of sources, the DoS traffic per source decreases, more
resembling legitimate traffic in that respect. With DDoS an attacker does not have to
rely on fewer sources generating an abnormal amount of traffic (per source) but can
instead attack with a large number of sources generating normal amount of traffic (per
source).

2.2 IT in Modern Vehicles

2.2.1 The modern Vehicle Network

Since the V2X Application-Level Gateway is to protect the vehicle, or more specifically
the in-vehicle network, from attacks over V2X, this section gives a brief overview of
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2 Background

the future in-vehicle network. Traditionally the in-vehicle network consisted of multiple
ECUs (Electronic Control Unit) interconnected over different bus systems like CAN or
FlexRay. Modern in-vehicle networks consist of 50 to 100 ECUs. In the future the
ECUs will be interconnected over a Real-time Ethernet backbone with peripheral bus
systems, e.g. CAN [99], see figure 2.1. Increasing demand for bandwidth of vehicle

Figure 2.1: Modern in-vehicle network [111]

applications, e.g. from the infotainment domain or Advanced Driver Assistance Systems
(ADAS), makes the shift to a Real-time Ethernet backbone necessary. The traditional
bus systems like CAN will be used at the periphery of the network connecting sensors
and actuators requiring only low bandwidths. Also, the use of Ethernet technology in the
vehicle network allows complex topologies and the use of Software-Defined Networking
(SDN) facilitating security [47].
For future automotive networks a reduction of the number of ECUs and a centralisation
of computing power, so that multiple software components run on the same ECU, is
proposed [16]. Instead of adding new ECUs to offer new functionality, new software
components would be integrated into existing ECUs. For the software architecture of
future automotive networks a service-oriented architecture (SOA) is proposed [16]. In
a SOA service providers offer services to service consumers. Lose coupling of providers
and consumers is achieved with a middle-ware. An important aspect in the context of
services is moving functionality from the vehicle to the cloud: resource-intensive services
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can be moved to powerful external servers, which only increases the significance of V2X
communication.

2.2.2 V2X Communication

V2X communication can be divided into communication with cloud-based services on
the one hand and V2V and V2I communication on the other hand. The communication
with cloud-based services is traditional Web communication based on the internet in-
frastructure and the IP protocol stack using established application layer protocols like
HTTP(S) or MQTT. V2V and V2I communication, realising applications like safety-
critical collision avoidance, have hard real-time requirements and rely on direct short-
range communication in Vehicular Ad Hoc Networks (VANETs). While V2I solutions
exploit Road Side Units (RSUs) and require a large deployment investment, especially
when coupled with an RSU-to-RSU communication infrastructure, V2V solutions avoid
costly RSU installations and opportunistically exploit the VANET for the delivery of
messages [79]. The main challenge for the communication in VANETs are the highly
dynamic topologies, which come with frequent link breakages, network fragmentation,
and a high number of packet collisions and interferences [79]. An additional challenge
for a subset of safety-critical V2V applications requiring the exact (relative) positions
of vehicles, e.g. for collision avoidance, is the reliability of positioning information from
different sources like GPS and sensors, e.g. LIDAR or radar, under varying conditions
like bad weather or driving in a tunnel [52]. This aspect however, is beyond the scope of
this work.
The technology to realise VANET communication is Dedicated Short Range Communi-
cation (DSRC), which provides local-area, low-latency network connectivity and is based
on IEEE 802.11 and standardised as IEEE 802.11p [63] covering the physical and medium
access control (MAC) layers [112, 113, 52]. The spectrum allocated for V2X communi-
cation is 5.850 GHz to 5.925 GHz in the US and 5.855 to 5.925 GHz in Europe [65].
It is divided into several channels, see figure 2.2, page 9, over which entities exchange
V2X application data. One channel (Ch.178) is the control channel, which is used to
manage the exchange of application data between entities (e.g. for service providers to
advertise their service, including the information on which channel it operates and for
service consumers to receive this information about services of interest to them). The
remaining channels are used to exchange V2X application data, with one channel desig-
nated for time-critical safety-applications like collision avoidance (Ch.172 in the US) [65].

8



2 Background

Figure 2.2: The 5.9 GHz spectrum allocation [65]

All devices communicating over the channels are synchronised over UTC (Coordinated
Universal Time). On the link layer the devices exchange Ethernet frames via unicast
or multicast/broadcast. In the US the protocol stack for realising V2X communication
is specified in IEEE standards, in Europe it is specified in ETSI (European Telecom-
munications Standards Institute) standards. Initially, both the IEEE and ETSI V2X
communication stacks were based on IEEE 802.11p, however currently an alternative
technology to IEEE 802.11p is considered for V2X (especially V2V/V2I) communication
in Europe, namely the LTE-based LTE-V2X PC5, specified in ETSI EN 303 613 [39].
Both the ETSI and IEEE standards specify that above the link layer two protocol stacks
shall be used: the traditional IP-based stack on the one hand and a V2X-specific stack
with network layer and transport layer protocols designed for V2X communication on
the other [38, 113]. The V2X-specific stack is for high-priority, time-sensitive commu-
nication, while the IP-based stack is for supporting less demanding traditional Internet
applications [113]. Since the high-priority, time-sensitive communication, e.g. for colli-
sion avoidance, is limited to local peers and thus a global addressability, as offered by
IP, is unnecessary and the cost of the IP stack overhead in a dynamic environment with
hard real-time requirements is detrimental, this approach makes sense. The reason for
IP connectivity in VANETs [83] is facilitating compatibility and interoperability with
traditional internet or IoT applications by making a VANET node globally addressable
and enabling the use of the IP protocol stack in V2V and V2I communication.
The IEEE 1609 set of standards covers the layers based on IEEE 802.11p. It not only
covers the OSI network- and transport layers, but also a security layer designed to ensure
the cryptographic security of V2X communication. Collectively, IEEE 802.11p and IEEE
1609 are called wireless access in vehicular environments (WAVE) [113]. On the network
and transport layer IEEE 1609.3 [64] specifies the use of the WAVE Short Message
Protocol (WSMP) for a fast and efficient message exchange in VANETs, both for safety-
critical and non safety-critical applications [113, 112], see figure 2.3, page 10. WSMP
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Figure 2.3: Overview: WAVE OSI layers [113]

is used to transport application layer protocols. In WSMP an application is identified
by the Provider Service Identifier (PSID). The PSID is the equivalent to a port num-
ber, e.g. the ETSI Cooperative Awareness Basic Service, see below, is identified by the
PSID ”0x24”. A message in WSMP is called a WAVE Short Message (WSM). It consists
of a network header (WSMP-N-Header) providing network protocol functions, a trans-
port header (WSMP-T-Header), which contains the PSID, providing transport protocol
functions and a payload containing the application data, see figure 2.4. The WSM is
encapsulated in an Ethernet frame (Ether-Type: 0x88DC).

Figure 2.4: Structure of a WSM [64]
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A source application sends the WSM, encapsulated in an Ethernet frame, with a desti-
nation MAC address and a PSID. It is delivered to the receiving application based on
the PSID and the destination MAC address. When it comes to quality of service (QoS)
WSMP reverts to IEEE 802.11p (offering either ”QoSAck” or ”QoSNoAck” as per IEEE
Std 802.11) and offers no additional QoS.
V2V applications such as e.g. collision avoidance, which are transported over WSMP
(or other V2X network/transport protocols) have to be standardised so that vehicles
from different manufacturers can interact correctly. The idea is a common base message
standard for e.g. safety applications, which specifies the message structure and the rate
at which the messages are broadcasted. Such a common base message containing all rel-
evant information such as vehicle position, vehicle speed, acceleration, driving direction
etc. would ensure the compatibility of V2V safety applications, like collision avoidance,
from different manufacturers.
One such standard is the ETSI Cooperative Awareness Basic Service specified in ETSI
EN 302 637-2 [37]. It defines the structure of the base safety message, called Cooperative
Awareness Message (CAM), containing all relevant information regarding the vehicle (e.g.
its width and length) and its dynamics (e.g. position, speed, acceleration, heading etc.).
Figure 2.5 shows the general structure of an ETSI CAM as specified in [37]. The ITS
(Intelligent Transport System) PDU (Packet Data Unit) header, Basic Container and
HF (High Frequency) Container are mandatory fields, while the rest is optional. Every
CAM also contains a timestamp, i.e. the time of the generation of the CAM. The ITS

Figure 2.5: General structure of an ETSI CAM [37]

PDU header contains the protocol version and a unique identifier of the sender (station
ID), as well as an ID identifying the message as a message of the type ETSI CAM. The
Basic Container contains both the type of the sending system, e.g. passenger car or truck
and the latest geographic position of the sending system. The HF Container contains all
fast-changing information of the system, such as e.g. speed, see figure 2.6, page 12.
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Figure 2.6: ETSI CAM HF Container fields [37]

Most information in a CAM, e.g. the vehicle position, come with a confidence, since often
a 100% accuracy cannot be guaranteed. In case of the vehicle position its confidence is
defined as an ellipse (with the centre being being the vehicle position) with a predefined
confidence level (e.g. 95%).
It is specified that CAMs are broadcasted without acknowledgements or retransmissions.
Instead of a fixed broadcasting rate, adaptive rates depending on the sending vehicle’s
behaviour were proposed. E.g. an accelerating vehicle broadcasts CAMs more frequently
than a vehicle at a low constant speed. The minimum time between sending two CAMs
is 100 ms and the maximum time is 1000 ms. Within this minimum and maximum
the CAM frequency depends on the dynamics of the sending vehicle and the channel
congestion status. The default interval between two CAMs is the maximum time of
1000 ms. This interval decreases when the vehicle’s position changes more than 4 m, or
its speed changes by more than 5 m/s, or its heading changes by more than 4 degrees
within a certain time after the last CAM. The interval is set back to the maximum time
of 1000 ms when the changes in position, speed and direction remain under the defined
thresholds for a certain time, which is configurable.
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2.2.3 Digital Maps for Automotive Applications

For numerous V2X applications, ranging from navigation to safety critical real-time appli-
cations like collision avoidance, digital maps are essential. A digital map allows a vehicle
to be aware of its own position in the world, the positions of other objects like nearby
vehicles or trees and the geography of the surrounding environment, e.g. the structure
of the road network. A digital map can contain different types of objects: static objects
with small spatial expansion, such as road signs or trees, static continuous structures,
such as roads and dynamic objects, such as vehicles or pedestrians. Depending on the
use case, both the mapping process and the types of objects contained in the map and
thus the requirements regarding the map vary [70]:

• Navigation: the whole environment passed by the mapping vehicle should be
mapped. The map building can be done offline. In the automotive domain tradi-
tionally the focus is on static continues structures like roads, but depending on the
context a navigational digital map can also contain static objects like e.g. trees.
Since navigational maps cover larger areas, efficient storage is important.

• Real-time applications: the near environment of the vehicle needs to be mapped,
including both static and dynamic objects. Only up to date information is of
interest and the map is built online in real-time. This kind of maps is constructed
with information from sensors, such as e.g. laser scanners, and used for real-time
applications like collision avoidance. With the development of V2X communication
not only on-board sensors contribute to the construction of such maps, but also
information obtained from V2X messages from other traffic participants [106, 34].

In the automotive domain a concept to combine both the navigational and real-time
application maps has emerged: the Local Dynamic Map (LDM) [106, 34]. The LDM
combines static digital maps (i.e. navigational maps) with dynamic objects. It consists
of four layers, see figure 2.7, page page 14, with each layer containing different types of
objects [106, 34]:

1. Permanent Static: contains the information obtained from static digital maps, i.e.
static continuous structures such as roads and intersections.

2. Transient Static: extends the first layer by adding static objects with small spatial
extension, such as roadside infrastructure and landmarks.
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3. Transient Dynamic: adds temporary local information like weather or traffic con-
ditions, e.g. traffic jams, and traffic lights signal phases.

4. Highly Dynamic: extends the first three layers by adding dynamic objects such as
vehicles and pedestrians. The information about those objects is not limited to
their positions, but also includes other highly dynamic data like e.g. their velocity,
heading, etc. obtained from V2X messages and sensor data.

Figure 2.7: Layers of the Local Dynamic Map (LDM) [106]

The LDM stores the information in a database and has SQL as a query language. It is
standardised by ETSI and currently specified in ETSI EN 302 895 [36] and already mature
implementations both commercial and from the scientific community exist [106, 34].
However, they have certain shortcomings [34]: Most of the current approaches have a
database-centric model of the LDM using a static schema with the LDM objects being
mapped directly to relational tables. So new types of objects require a modification of
the schema, which makes it harder to add new domains, e.g. traffic regulations. Also, the
database schema cannot simply capture and query class hierarchies and the dependencies
between the different objects as it is not graph-based. Working on top of a static database
ignores the streaming nature of the dynamic LDM data, which advocates for real-time
queries over large amounts of data ”in-stream”, i.e. without storing. Thus [34] propose
the use of an additional stream database for the stream data suited for that purpose. For
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expressing relations between objects and modelling them as class hierarchies an ontology
is used. As the recent work on LDMs [34] shows, their development is still ongoing.

2.2.4 V2X Security Gateway

V2X communication is secured with a V2X Security Gateway, the general concept of
which was developed in [110]. It generally consists of 3 components, combined in a
common PAP-structure (packet filter - application-level gateway - packet filter - struc-
ture) [15]: 2 stateful packet filters, the first one for inbound-traffic, the second one for
outbound-traffic and an application-level gateway, the V2X Application-Level Gateway,
see figure 2.8.

Figure 2.8: Overview: V2X Security Gateway architecture

The stateful packet filters offer security on the internet- and transport layer protecting
against attacks like TCP SYN flooding. The V2X Application-Level Gateway offers se-
curity on the application layer. It serves as a proxy decoupling the in-vehicle network
from external communication partners and ensures cryptographic security. Additionally
it allows role-based access to in-vehicle resources and bandwidth control of V2X traffic.
The protection offered by the packet filters and the V2X Application-Level Gateway cov-
ers DoS detection on the respective OSI layers. Such security gateway solutions, while
novel in the domain of automotive security, are established concepts in the classical IT
security domain [15].

2.3 Application Layer Protocols used in V2X
Communication and related Attacks

With the integration of modern vehicles into the IoT the set of application layer protocols
used for V2X communication significantly increases, encompassing not only protocols
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from the automotive domain, but also typical IoT protocols like MQTT and traditional
Web protocols like HTTP(S) or DNS. The use of these protocols in V2X communication
not only allows a new level of interconnection of vehicles offering new functionality, but
also comes with new security risks, since vehicles become potential targets for a number
of known attacks like cross-site scripting or SQL injections.
This section gives an overview of (mostly IP-based) application layer protocols that can be
used in V2X communication, including representatives of the automotive domain, typical
IoT protocols and the traditional Web and attacks associated with these protocols. While
the focus in this work is on application layer protocols, it has to be kept in mind, that for
a complete security analysis also the lower layers of the OSI model have to be considered.
E.g. most application layer protocols presented here are based on either TCP or UDP,
or both, on the transport layer. Thus any service running on one of these application
layer protocols can be the target of a transport layer attack like TCP SYN flooding
or TCP session reset, TCP session hijacking, UDP datagram injection or UDP bomb
[75]. Also, an application layer protocol may be affected by or partly reliant on another
application layer protocol, so that an attack on the other protocol can affect the use
of the first application layer protocol. An example is the Dynamic Host Configuration
Protocol (DHCP) starvation attack [18, 75]: By flooding the local network with DHCP
requests form randomly generated MAC addresses, an attacker can deplete the available
pool of IP addresses in the DHCP server. Then, this attack will prevent a node from
obtaining an IP address and subsequently e.g. contacting any Voice over IP (VoIP) server
over the Session Initiation Protocol (SIP) [18] or performing configuration necessary for
communicating over Diagnostics over IP (DoIP) [75]. This way the DHCP starvation
attack can affect the use of the SIP or DoIP protocol. THE IEEE 802.1x specification
provides a mechanism where a node attached to a network port must authenticate its
MAC address prior to being able to transmit or receive traffic on the network. This
includes the DHCP request, thus preventing the attack [18].
The following application layer protocols have been identified for direct use in V2X
communication:

• ETSI Cooperative Awareness Basic Service

• DoIP (Diagnostics over IP) [30]

• SOME/IP (Scalable service-Oriented MiddlEware over IP) [107]

• MQTT (Message Queuing Telemetry Transport) [84]

16



2 Background

• AMQP (Advanced Message Queuing Protocol) [4]

• RTP (Real-time Transport Protocol)

• SIP (Session Initiation Protocol)

• HTTP(S) (Hypertext Transfer Protocol (Secure))

• DNS (Domain Name System)

• SSH (Secure Shell)

DoIP and SOME/IP are protocols from the automotive domain. While DoIP focuses on
the purpose of vehicle diagnostics, SOME/IP aims to provide a general scalable mecha-
nism for remote procedure calls and event notifications in a service-oriented context, ful-
filling the requirements regarding resource consumption in embedded systems. SOME/IP
supports both request-response and publish-subscribe messaging. A service has a unique
ID and every one of its methods, that can be called via remote procedure call, has a
method ID. Combined, the IDs identify a remote procedure call to a method of a service.
A client using a service also has an ID. SOME/IP messages consist of a header, contain-
ing the IDs and the length of the message among others and the payload.
MQTT and AMQP are both broker-based public-subscribe messaging protocols used in
the IoT. In MQTT a publisher can publish messages with ”topics” via a broker. A topic
is a hierarchical structured string (e.g. ”home/room1/temperature” to refer to the tem-
perature in the room). A publisher connects to the broker and then sends its messages
to the broker. A subscriber can connect to the broker and subscribe to a topic and the
broker then delivers the published messages of this topic to the subscriber. Any client
can publish and subscribe to any topic [54]. There are 3 quality of service classes: 1) ”at
most once” (QoS 0 ), where the message is sent only once and the client and broker take
no additional steps to acknowledge delivery (”fire and forget”), 2) ”at least once” (QoS
1 ), where the message is re-tried by the sender multiple times until acknowledgement is
received (acknowledged delivery) and 3) ”exactly once” (QoS 2 ), where the sender and
receiver engage in a two-level handshake to ensure only one copy of the message is re-
ceived (assured delivery). Similarly in AMQP a client can send a message via a publisher
to a broker, which stores the message in a queue. A subscriber receives the message from
the queue and delivers it to the receiving client. With routing keys it is possible to send
a message to exactly one receiver.
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RTP and SIP are protocols used in the context of real-time multimedia transmission
like e.g. ”Voice over IP” or video streaming. The data are transported over RTP, while
SIP performs all steps necessary before the exchange of data via RTP between two (or
more) communication partners can take place, like establishing the connection. E.g. in
the case of using RTP for ”Voice over IP” the call setup is done with SIP [18].
HTTP, DNS and SSH are well known application protocols from the traditional Web.
Simply put, HTTP is the protocol used for application data transfer in the Web, DNS
translates domain names to IP addresses and SSH realises secure connections to remote
network peers.
Various attacks on these protocols exist. These attacks differ in their aim, sophistication
and feasibility and thus have different potentials. There are attacks on the cryptographic
security, i.e. confidentiality, integrity and authenticity, like spoofing and eavesdropping,
DoS attacks, side channel attacks, which are based on information that is gained from
the physical implementation of a system, e.g. timing analysis, acoustic analysis or power
consumption analysis [89] and attacks generally based on malicious messages, e.g. buffer
overflow attacks, malformed messages deviating from the structure defined by the pro-
tocol, messages violating the protocol sequence, or messages with malicious content, e.g.
SQL injection. Less obvious examples of messages with malicious content are semanti-
cally incorrect, but otherwise normal messages, e.g. a message containing credit card
data with a value of ”13” for the field ”month”.
The semantic correctness of a message can also depend on the current context, e.g. the
message of a remote vehicle trunk control to open the trunk is semantically incorrect
when the vehicle is driving. A malicious message can either be created by an attacker
who is communicating with the target directly, or be a legitimate message intercepted
by the attacker and reused either without modification (replay attacks) or modified by
him. The aim of attacks based on malicious messages ranges from triggering bugs in
the targeted application to gaining unauthorised access to resources or taking control
of the target device. Attacks on integrity and authenticity have a similar aim, while
the immediate goal of eavesdropping and side channel attacks is illegitimately gaining
information. With DoS attacks the availability of a system is targeted.
The potential of a concrete attack is never defined by the attack itself alone, but also
by the ”value” of a target, e.g. a DoS attack targeting an ECU of the infotainment sys-
tem has less potential than a DoS attack targeting a safety-critical component. Also,
the effort of implementing countermeasures differs: e.g. for buffer overflow attacks it is
sufficient to check the size of the message and drop messages with an inappropriate size,
while e.g. detecting messages with malicious content is a more complex task. Generally,
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all these attacks have to be considered when using the application protocols listed above
in V2X communication.
Table 2.1 gives an overview of the protocols and the related attacks:

Table 2.1: Overview of V2X application-layer protocols and related attacks
Protocol Environment Protocol-Stack Attacks
HTTPS Web TCP/IP malicious messages, DoS attacks

DNS Web TCP or UDP/IP
spoofing, malicious messages, DoS
attack via DNS replies, DNS re-
binding

SSH Web TCP/IP brute force attacks, side channel
attacks

RTP Multimedia UDP/IP eavesdropping, malicious messages
(DoS)

SIP Multimedia TCP or UDP/IP spoofing, eavesdropping, malicious
messages, DoS attacks

MQTT IoT TCP/IP
spoofing, eavesdropping, malicious
messages, access control attacks
via topics, DoS attacks

AMQP IoT TCP (or UDP)/IP malicious messages, DoS attacks

Some/IP Automotive TCP or UDP/IP
spoofing, eavesdropping, malicious
messages (except buffer overflow
attacks), DoS attacks

DoIP Automotive TCP or UDP/IP
spoofing, malicious messages (ex-
cept buffer overflow attacks), DoS
attacks

Cooperative Awareness
Basic Service Automotive WSMP/ETSI malicious messages, DoS attacks

Since the ETSI Cooperative Awareness Basic Service is transported over WSMP, which
specifies means ensuring cryptographic security, attacks on cryptographic security prac-
tically do not apply to the ETSI Cooperative Awareness Basic Service. However attacks
based on malicious messages and DoS attacks are possible. While malformed messages
or buffer overflow attacks can be easily detected, due to the V2V context in which ETSI
Cooperative Awareness Basic Service is used, it is particularly vulnerable to messages
semantically incorrect in the current context, i.e. messages with false information re-
garding a vehicle, like a false vehicle position or acceleration. To detect such messages a
context-sensitive semantic analysis is required.
For DoIP an extensive security analysis can be found in [75]. To summarise, a lack of
authentication allows spoofing and a weak data integrity check allows the unauthorised
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modification of messages by an attacker. The proposed solution is to use cryptography
to ensure integrity and authenticity. Also, the DoIP specification prescribes a check of
the payload size to protect against buffer overflow attacks.
For SOME/IP [57] lists the following threats: spoofing due to a lack of authentication,
protocol violations, e.g. sending multiple responses to a request which should be an-
swered with only one response and packets modified by an attacker due to a lack of
integrity e.g. triggering bugs. Additionally, for use cases with hard real-time traffic (e.g.
cyclical safety messages every 100 ms) timing issues (e.g. deviations from defined cycle
times) have to be considered, however, this is relevant more for communication in the
in-vehicle network and less for V2X communication. Due to a lack of confidentiality,
eavesdropping is also possible. The proposed solutions is the use of cryptography to
ensure confidentiality, integrity and authenticity and a network IDS able to monitor all
traffic in the network to detect protocol violations, timing issues and malformed packets
[57]. For the detection of malformed messages and many protocol violations and timing
issues, a host IDS would be sufficient. The SOME/IP specification also prescribes a
check of the payload size to protect against buffer overflow attacks [107]. Also, for both
DoIP and SOME/IP DoS attacks are imaginable, though neither protocol facilitates DoS
attacks and for any attacker communicating with a target over DoIP or SOME/IP it is
possible to create and send malicious messages.
Since in MQTT any client can publish and subscribe to any topic, access control attacks
via topics, where an attacker gains unauthorised access to resources by subscribing or
publishing to a certain topic are possible [54, 41, 23]. In the absence of authentica-
tion, attackers can pose as the MQTT broker realising man-in-the-middle attacks [55].
Eavesdropping, attacks based on malicious messages and buffer overflow attacks are also
possible. The proposed solutions are the authentication of publishers, subscribers and
the broker and Access Control Lists (ACLs) specifying which users can publish/sub-
scribe to which topics [54, 28, 23]. To prevent eavesdropping and message modification,
MQTT would also have to offer confidentiality and integrity. The specification of MQTT
version 5.0 states that MQTT publishers and subscribers should offer authentication,
authorisation, integrity and confidentiality [9]. One recommended option for offering
confidentiality, integrity and authentication is TLS. With AMQP, buffer overflow attacks
and attacks based on malicious messages are possible. As for cryptographic security, en-
cryption and authentication is provided by TLS [80]. Also, for both MQTT and AMQP
DoS attacks are possible. DoS attacks could target either the broker or one or more
clients, with the broker probably being the preferred target due to its central role. In the
case of MQTT, messages from the quality of service class ”exactly once” are preferred for
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DoS attacks due to the involved four-part handshake on the application layer [23, 41].
Such DoS attacks can be detected with an IDS [53]. In the context of DoS attacks, the
automatic recover-ability from the DoS attack, the time taken for recovering and the im-
pact of broker failure (if it was the target of the DoS attack) are also significant security
concerns [53].
With RTP, due to a lack of cryptographic security, eavesdropping and the modification
and injection of packets is possible. Since RTP is used for the transport of audio or
video data, the most feasible attack with inserting or modifying packets is a DoS attack,
where the insertion or modification of packets causes a significant degradation of the
quality of the multimedia transmission [42, 2]. Buffer overflow attacks are also imagin-
able. One proposed solution is the Secure Real-time Transport Protocol (SRTP), which
provides confidentiality, message authentication, and replay protection for RTP traffic
[42]. However, SRTP incurs an additional overhead to verify the HMAC-SHA1 message
authentication code for each packet. Therefore [42] propose SRTP+, which significantly
decreases the verification overhead compared to SRTP and thereby increases the number
of faked packets required to mount a successful DoS attack.
For SIP [18, 35] list the following threats: due to a lack of cryptographic security, spoof-
ing is possible, allowing SIP registration hijacking. A user has to register itself with a
SIP proxy, which allows the proxy to direct inbound calls to the user. An attacker can
impersonate a user to a SIP proxy and replace the legitimate registration with its own
address, causing the inbound calls to be sent to the attacker. Also, eavesdropping, ma-
licious messages, replay attacks and buffer overflow attacks are possible. Known attacks
based on malicious messages are the Cancel- or Bye-Attack, where an attacker sends the
”Cancel” or ”Bye” command in the payload of a SIP message to a user to terminate an
ongoing conversation. Traditional DoS attacks by overwhelming the target with mes-
sages are also imaginable. The proposed solution is the use of cryptography (e.g. TLS)
to ensure confidentiality, integrity and authenticity [18, 35].
Most attacks on HTTP(S) are based on malicious messages. Prominent examples are
SQL injection or Cross-site scripting (XSS) [8, 102, 55]. Malicious content, e.g. an SQL
command in the case of SQL injection or a script in the case of XSS, is injected into the
HTTP(S) packet, e.g. into the URL or payload. Another known attack is HTTP request
smuggling [56], where HTTP header fields declaring the payload length are manipulated
and the payload contains a smuggled malicious HTTP request. Depending on the ap-
plication attacked via HTTP(S) malicious HTTP(S) messages can have various effects.
If e.g. access control is realised via the URL (e.g. resources of user1 are accessed via
”.../user1/...”), a modification of the URL allows access control attacks. Deviations from
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designated data types or patterns in the payload can possibly trigger bugs, e.g. if an
application handling credit card data receives a payload where the field ”month” is not
an integer in the range of 1 to 12. Buffer overflow [71] and DoS attacks are also possible
in HTTP(S).
With DNS, due to a lack of authentication and integrity, spoofing and packet manipu-
lation are possible, which is why DNSSEC was introduced [6]. DNSSEC secures DNS
data by providing data origin authentication and integrity by using digital signatures
[6]. Still, DNS servers can be used as amplifying reflectors in DoS attacks [61]. An
attacker sends DNS queries with a spoofed address, i.e. the address of the victim, which
is then overwhelmed by DNS replies. Another known attack is DNS rebinding [66]. An
attacker owning a domain name, e.g. ”attacker.com”, first needs to attract traffic to this
domain. The DNS queries for ”attacker.com” are answered with the IP address of the
attackers own server and a short Time-To-Live (TTL). The users’ browsers issue HTTP
requests to ”attacker.com” and receive a malicious HTML document. This HTML doc-
ument then issues a second HTTP request to ”attacker.com”. The user’s DNS cache has
expired (because of the short TTL), causing the browser to issue another DNS query for
”attacker.com”. This time,the attacker’s DNS server responds with the IP address of a
target server. The browser allows the attacker’s script to read HTTP responses from the
target server because the two connections share a single host name and therefore belong
to the same browser security origin [66]. Countermeasures are preventing malicious Web
sites from obtaining socket-level access to arbitrary IP addresses by appropriate socket
access policies of browser plug-ins and preventing the resolving of external host names to
internal IP addresses, so that ”attacker.com” cannot be resolved to internal IP addresses
of target servers, e.g. protected by a firewall [66]. Attacks based on malicious messages
are also possible with DNS.
Known attacks against SSH are brute force attacks on SSH passwords, trying different
character combinations, e.g. dictionary attacks trying every word from a word-list or
dictionary as password [92, 43] and side channel attacks [89]. In the case of SSH a known
side channel attack is a timing attack where the attacker is deducing information like e.g.
password length from the statistical analysis of timing behaviour of encrypted packets in
SSH [108, 89]. However, the feasibility of such attacks is disputed [59, 89].
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2.4 Semantic Analysis

The term ”semantic analysis” in literature is used in different contexts. These contexts
can generally be classified as video or image analysis, e.g. sports video analysis [33] or
cartographic image analysis [74], or text-based analysis, e.g. Latent Semantic Analysis
[25, 40, 58].
The semantic analysis of videos or images is generally a process beginning with pre-
processing to reduce the dimensionality and perform a segmentation of the input data
[33, 74], in the case of a single image called ”tresholding”, e.g. reducing a coloured image
to black and white. Next, single features are extracted, e.g. in case of a cartographic
image this can be a coastline or main road or in case of a sports video (frame) e.g. an
active region or dominant colour with which the frame can be classified. Based on these
features the semantic analysis can be performed.
The general idea behind text-based semantic analysis, like Latent Semantic Analysis, is
a statistical analysis based on a so called co-occurrence table or term-document matrix.
For n given documents and m given terms a co-occurrence table, or term-document
matrix, is created where every element s(mi, nj) denotes how often the term mi occurs
in document nj. Based on this, the semantic analysis of the terms is performed. An
example using this idea is the auto-debugging method presented in [87]. In general, to
debug a program consisting of n lines of code, the program is executed e.g. 10 times
and e.g. 4 times the result is not correct. Then for every line of code i it is checked in
how many of the 4 faulty runs it was called. If e.g. line 5 was called in each of the 4
faulty runs and line 8 was called in only 2 of the 4 faulty runs, line 5 is classified as more
suspicious than line 8. This way the lines of code that most probably are connected to a
software bug causing an error are automatically identified.
In this work the semantic analysis of data is generally defined as checking the conformity
of syntactically correct data by applying a set of semantic rules, see chapter 4, section 4.2.
The data are classified as semantically correct if they are in conformity with the given
semantic rule set. This work defines 3 types of semantic analysis:

• Stateless semantic analysis: the result of semantic analysis, i.e. the semantic cor-
rectness, is independent of the state of the analysed system, e.g. the value of ”13”
for the field ”month” is invalid regardless of the state of the system.

• Stateful semantic analysis: the result, i.e. semantic correctness, depends on the
state of the analysed system, e.g. the ”open” command of a remote trunk control
is invalid when the trunk is locked, but valid when the trunk is unlocked.
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• Context-sensitive semantic analysis: the result, i.e. semantic correctness, depends
on the context the analysed system operates in, e.g. in case of the remote trunk
control the ”open” command is invalid regardless of the state of the trunk when
the vehicle is driving. Here, the vehicle is the context in which the analysed sys-
tem, the trunk, operates. Technically the context-sensitive semantic analysis can
be seen as equivalent to the stateful semantic analysis, since in the end both the
analysed system’s state and the state of the context amount to ”a state” on which
the semantic correctness depends. But to emphasise the fact of the external de-
pendencies when a system is dependent on the context it operates in, which in the
automotive domain can be e.g. another component or multiple other components
of the vehicle, the abstract state of the vehicle (e.g. ”driving” or ”stopped”), the
conditions on the road (like the weather or traffic), etc., this work distinguishes
between ”stateful”- and ”context-sensitive (stateful)” semantic analysis.

The aim of semantic analysis in this work is to increase the safety of a remotely controlled
system by limiting the possible behaviour of the system to safe behaviour. So even
when cryptographic security is compromised and an attacker can influence the system’s
behaviour by sending commands, the potential damage is limited. E.g. with a semantic
analysis of commands to remotely control a vehicle trunk, it becomes impossible to
open the trunk via remote command while the vehicle is driving. V2V messages, e.g.
containing the positions of nearby vehicles, could also be viewed as a form of ”imlicit
remote control”, since they are messages from a remote sender affecting the receiving
vehicle’s behaviour, or at least they contribute to the vehicle’s decision on how to react in
a situation. E.g. messages containing the position of the preceding vehicle will contribute
to the receiving vehicle’s decision on how to behave (slow down, stop, etc.), which will
also be influenced by data from a range of sensors. The semantic analysis of a system’s
behaviour can possibly enhance safety in any scenario where machines interact with
humans, or with each other, e.g. in industrial plants, etc. It does not have to be limited
to a system’s external communication, but can also be realised for internal system control,
in case of vehicles, in the in-vehicle network.
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This chapter gives an overview of related work covering security gateways and security
proxies. With the increasing interconnection modern vehicles are undergoing the same
development as manufacturing is with its concept of ”Industry 4.0”, which results in
an integration of both in the ”Internet of Things” (IoT). Thus not only work from the
automotive domain is presented, but also work from the industrial domain, the IoT and
the traditional Web. With modern vehicles being integrated into the IoT, the traditional
distinction between the automotive and IoT domain may become less reasonable, with the
automotive domain becoming a sub-domain of the IoT. But since special properties and
constraints apply to the automotive domain compared with other IoT devices, e.g. safety-
and hard real-time requirements and a wider range of functional domains encompassing
infotainment, engine control and safety electronics, it remains a distinctive sub-domain
and thus is treated separately in this work. Also, this chapter presents the requirements
analysis considering the application protocols and related attacks from chapter 2, from
which the concept of the V2X Application-Level Gateway is derived.

3.1 Related Work

3.1.1 Automotive Security Gateways

Most of the work covering automotive security gateways, focuses exclusively on securing
the communication of the in-vehicle network, like the work of Pese et al. [95]. In [95]
Pese et al. present the concept and prototype implementation of an automotive firewall
to prevent inter-domain attacks in an Ethernet-based in-vehicle network with a domain
architecture. In a domain architecture the network is divided into several domains like
infotainment, engine control etc. and each domain is connected to the rest of the network
via a domain controller, which separates its domain from the rest of the network. The
domain controllers are connected via an Ethernet-backbone. The automotive firewall is
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to prevent attacks from one domain against devices of another domain. It consists of
a stateless packet filter which filters the Ethernet-traffic according to configured rules
and a stateful packet filter which filters the IP/TCP- and UDP-traffic according to con-
figured rules. The stateless packet filter is implemented in hardware for performance
reasons, while the more complex stateful packet filter is implemented in software. The
stateless packet filter is located between the network domain segments controlling all
inter-domain Ethernet-traffic. The stateful packet filter is implemented on every domain
controller filtering incoming traffic that passed the stateless packet filter. The automo-
tive firewall offers security on the link- and transport layer. To additionally offer security
on the internet-layer the filtering of IP-traffic according to configured rules could also
be implemented in a stateless packet filter. Whereas [95] can offer security on the link-
, network- and transport layer, the V2X Application-Level Gateway proposed by this
work secures the application layer and thus is complementary to packet filter solutions
like [95]. Combined they offer comprehensive security of V2X communication covering
all relevant OSI layers. In [60] an automotive IDS primarily securing the in-vehicle net-
work is proposed, but [60] also state that the IDS should detect the leakage of sensitive
information via V2X. This requires the IDS to check if V2X messages contain sensitive
data, which can be done with a semantic analysis of application data to determine if
they are sensitive. In [109] propose context-awareness or context-sensitivity as a useful
feature of future automotive intrusion detection systems. In such an IDS anomaly detec-
tion would be context-sensitive, i.e. dependent on the current state of the vehicle. E.g.
for classifying a message as normal or anomalous the vehicle’s current state (e.g. parked,
driving, crashed) would be considered. The functionality described by [60] and [109], i.e.
semantic analysis and context-awareness, are key aspects and functional requirements for
the V2X Application-Level Gateway proposed by this work.
Of the work covering V2X security most focus on the realisation of cryptographic security
of V2X communication [115], e.g. in the context of ECU software updates [62], or on se-
curity issues in VANETs like authentication [19, 51, 46], Denial-of-Service (DoS) attacks
[11, 117] or misbehaviour detection [100, 44] in VANETs. Misbehaviour detection here
means the detection of network nodes spreading false information in the network due to
either malfunction or malicious intent, in the context of VANETs e.g. falsely reporting a
traffic accident. Few papers focus on securing V2X communication from the perspective
of a vehicle built-in security gateway, which offers more functionality than decrypting
and encrypting V2X traffic and checking certificates and signatures. One of them is the
work of Bouard et al. [13] presenting a proxy securing the communication between CE
(Consumer Electronics) devices and ECUs of the in-vehicle network, which is realised
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via the proxy. The purpose of this security proxy is decoupling the CE devices from the
ECUs and ensuring that only authorised devices can communicate with the ECUs. The
security proxy communicates via a secure IP-based middleware, e.g. SEIS [45], with the
ECUs, only passing on messages from authenticated CE devices to them. Like [13] the
V2X Application-Level Gateway proposed by this work is a proxy decoupling ECUs of
the in-vehicle network from external devices. Unlike [13] it is not focusing on CE devices
specifically and provides extended functionality like context-sensitive semantic analysis
or DoS detection. In [117] Yang et al. describe an intrusion detection system (IDS) based
on machine learning for V2X communication to detect DoS attacks, port scans, brute
force attacks (presumably on cryptographic security) and some web-based attacks (SQL
injection, cross-site scripting (XSS)). The use of different machine learning algorithms is
evaluated. It was shown that generally with tree-based algorithms a higher accuracy and
detection rate was achieved than with K-nearest neighbour and support vector machine
approaches. The application layer security functionality from [117] targets some attacks
identified to be prevented by the V2X Application-Level Gateway proposed by this work,
e.g. web-based attacks, and thus could be incorporated into the V2X Application-Level
Gateway.
The contribution of this work is a V2X Application-Level Gateway for securing V2X com-
munication. In addition to ensuring cryptographic security and offering proxy function-
ality decoupling in-vehicle ECUs from the outside world, it secures V2X communication
on the application layer, including a context-sensitive semantic analysis of application
data and detecting application-layer DoS attacks. It also uses a role-based access ap-
proach with ACLs to deny unauthorised access to in-vehicle resources via V2X and allows
bandwidth control of V2X traffic.

3.1.2 IoT and Industrial Security Gateways and Proxies

When it comes to gateways or proxies in the IoT or the industrial domain the focus has
often been on protocol translation ensuring the interoperability of heterogeneous devices
or systems. Also, gateways for coordination or data integration, like a gateway for mak-
ing vehicle sensor data available for processing in the cloud [67] are covered. Increasingly
however, the issue of security is also being addressed. An example is the IoT gateway
presented in [90] using TLS for cryptographic security. With the use of TLS the data is
encrypted and an authentication of peers is possible. The IoT security proxy presented
in [17] uses symmetric-key algorithms for the encryption of data exchanged between the
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proxy and other devices and for the authentication of these devices thereby addressing
cryptographic security. Symmetric-key algorithms are used for simplicity and perfor-
mance reasons. Additionally the proxy uses Access Control Lists (ACLs), which specify
the set of operations that each group is allowed to perform. To perform an operation
protected by an ACL, a requester must include a certificate in his request, proving he is
a member of a group allowed to perform that operation. The industrial security proxy
described in [114] also restricts access to resources, e.g. an operation, using a role-based
approach. It also implements a rudimentary form of semantic analysis of application
data: if a command is sent to a device via the security proxy, it checks if that command
is in the set of commands that the device is able to execute at all and if not, drops the
invalid command.
Another useful feature is bandwidth control, e.g. implemented in the proxy described in
[116]. In this case bandwidth is managed by arranging all network streams in a so called
stream hierarchy, which is represented by a graph. Network streams are represented by
the leaf nodes of this graph. The internal nodes implement a certain bandwidth distribu-
tion technique, e.g. ”Mutex”, which ensures that at all times at most one of its children is
assigned with bandwidth. Other distribution techniques are ”Priority”, assigning band-
width according to the priorities of its children and ”Weight”, assigning bandwidth by
distributing the available bandwidth between all its children according to defined weights
of streams. Another feature that can enhance security is virtualisation. The IoT gateway
”LEGIoT” presented in [82] is using Docker [29] for the virtualisation of all its components
via Docker containers. This allows a fast building process, instantiation, easy manage-
ment and isolation of components giving the system flexibility. Virtualisation comes at
the cost of increased resource demand, e.g. memory or CPU performance, in the case of
[82] to run the Docker Engine realising the virtualisation on the system.
Yet another interesting feature is context-awareness like in the IoT-eHealth gateway pro-
posed by [3]. The definitions of ”context” and ”context-awareness” used by [3] are from
[1], with context being any information that can be used to characterise the situation of
an entity (e.g. an object) and context-awareness being the use of context (e.g. by an
application) to provide relevant information or service. In case of the V2X Application-
Level Gateway the vehicle’s state and the environment could be context.
An example of using learning-based anomaly-detection in an IoT security gateway is
[88], where the gateway is part of a distributed system utilising federated learning. Each
security gateway acts as a local access gateway to the Internet for a number of IoT de-
vices. It monitors the communication of the IoT devices and detects anomalies based on
anomaly detection models it trains locally. The local models are aggregated to a global
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detection model. Due to the diversity of IoT devices the models are device-type-specific
(e.g. camera, smart plug, smart coffee machine). A general criterion for classifying IoT
devices is the complexity and variance of their network traffic [48].
The above mentioned security measures from the IoT and industrial domain are applica-
ble in the context of an automotive V2X Application-Level Gateway. Summing up, that
is: proxy-functionality, cryptographic security and application layer security including
the semantic analysis of application data, ACLs realising role-based access to resources,
a context-awareness of the system, which is useful for the semantic analysis of application
data, bandwidth control, anomaly-detection and virtualisation.

3.1.3 Web Security Gateways and Proxies

In general, web security gateways and web security proxies offer similar functionality to
that of IoT or industrial security gateways and proxies: the proxy-functionality, encryp-
tion, application layer security [69, 14], which in this case is limited to Web protocols like
HTTP [77], bandwidth control [10] and the semantic analysis of application data [104].
The web security proxy presented in [104] analyses the application data and classifies it
as either valid or invalid according to predefined rules, e.g. ”the data-type must be int”.
The set of rules can easily be extended. Only if the data is valid the HTTP request or
response is forwarded. An additional useful feature of web security gateways and proxies,
is logging [77]. Since modern vehicles are both consumers and providers of web services,
the above mentioned functionality is applicable in the context of an automotive V2X
Application-Level Gateway.

3.2 Requirements

For the V2X Application-Level Gateway the requirements result from its task to secure
the V2X communication. A central aspect is securing applications from the threats pre-
sented in chapter 2, section 2.3. The first step is to identify which of these threats can
be addressed in a V2X Application-Level Gateway and which should to be addressed
elsewhere. E.g. transport layer attacks such as TCP SYN flooding or UDP datagram
injection are addressed in packet filters securing the communication on the network- and
transport layer and not in ALGs securing communication on the application layer comple-
mentary to such packet filters. Since side channel attacks are based on information that
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is gained from the physical implementation of a system, e.g. timing analysis, acoustic
analysis or power consumption analysis, it makes little sense to address them in an ALG.
Also, application layer attacks that affect V2X communication by targeting resources
not protected by the V2X Application-Level Gateway can hardly be addressed by it, e.g.
DHCP starvation attacks exhausting available IP addresses to prevent IP-based V2X
communication. Since DDoS attacks are countered or mitigated in the network and not
by a single network node, they cannot be addressed effectively in the V2X Application-
Level Gateway. When it comes to DoS attacks, the V2X Application-Level Gateway
could protect the in-vehicle network from application layer DoS attacks via V2X. DoS
attacks on the lower OSI layers, e.g. TCP SYN flooding, are addressed in components
protecting the link-, internet- and transport layer.
Protection from application layer DoS attacks can be realised by identifying and dropping
DoS traffic. The identification of DoS traffic can either be based on machine learning
or configurable static rules. In both cases the basic principle is the same: when one (or
more) characteristic (e.g. requests per second) of the traffic from a source surpasses a
certain threshold it is identified as DoS traffic and dropped. To effectively protect from
DoS attacks on the application layer the following questions have to be answered first:
Which of the in-vehicle services are threatened? And what is their specification with
respect to DoS detection, i.e. how regular or irregular is the communication? For ser-
vices with uniform communication patterns configurable static rules would be sufficient
for DoS detection, while services with diverse communication patterns require the use
of learning-based DoS detection. Although simple threshold-based techniques are prone
to incorrectly classifying normal traffic as anomalous traffic and are unable to adapt to
the evolving nature of attacks [22] and more sophisticated anomaly detection algorithms,
particularly those using machine learning, can help minimise false positives [32], in the
automotive domain simple uses cases exist, for which simple threshold-based techniques
are sufficient. An example would be locking and unlocking the doors or opening and
closing the vehicle trunk via V2X. In both cases, where a panicked (or very impatient)
user pressing the button multiple times in a second is the most extreme valid scenario,
any number of requests beyond a few per second can generally safely be classified as a
DoS attack (or a malfunction).
In-vehicle services directly threatened by application layer DoS attacks via V2X are all
services offering some functionality to clients via V2X communication, i.e. services being
a server reachable via the internet (or a VANET). In-vehicle clients using V2X can be
targeted by DoS attacks if the external server they communicate with is compromised
and used to launch a DoS attack against its clients. If an attacker manages to overwhelm
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the entire ECU of the targeted V2X service with his DoS attack or even whole parts
of the in-vehicle network, he can also affect other services, even those not using V2X.
This would make any service of the in-vehicle network potentially vulnerable to V2X
application layer DoS attacks. So by identifying and dropping DoS traffic targeting V2X
services, the entire vehicle network is protected.
DoS traffic is identified based on network flow statistics like bandwidth and packet inter-
arrival time [32, 88] and message features like packet size and message type (see chapter 2,
section 2.1.3) [76, 53, 32, 88, 117]. The most effective application layer DoS attack against
an application would be one tailored to the application using simple as possible requests
asking the application to perform the most complex and, in terms of resources, costly
operation possible. Such attacks could be easier detected if detection too would be tai-
lored to the application. The operations of an application would have to be classified
according to their costs in terms of resources. Then, additionally to the above mentioned
features like packet size and packet inter-arrival time, the resource cost of the traffic
could be used for detection. However such a classification requires that all operations
of an application can be assigned to a distinct class, which may not always be possi-
ble for an application. Also, for the resource cost to be used as additional feature for
DoS detection, it is necessary for an application that normal traffic does follow a certain
pattern in respect to resource cost which is distinguishable from DoS traffic. E.g. the
legitimate traffic of a service offering access to multimedia may predominantly consist of
messages requesting video data, which would be classified as the highest cost operations
of the application. In this case an application layer DoS attack would not differ from
legitimate traffic in terms of resource cost and the feature resource cost would offer no
improvement to a detection based on network flow statistics and simple message features
like packet size. Another aspect is scalability: in the context of DoS detection e.g. [32]
states that ”in order for an algorithm to scale to high bandwidth application, a given
algorithm must rely on network flow statistics (how packets are sent) as opposed to deep
packet inspection (what is in a packet)”. Any detection using the resource cost of traffic
as a feature, would have to scale to a sufficient bandwidth.
To reduce the feasibility of DoS attacks the Hashcash mechanism, see chapter 2, sec-
tion 2.1.3, is a possible option, however the reduction of performance due to Hashcash
has to be taken into account. Similarly, the V2X Application-Level Gateway could also
detect brute force attacks and reduce their feasibility.
Many threats presented in chapter 2, section 2.3 stem from a lack of cryptographic se-
curity, e.g. eavesdropping, spoofing or message modification. Therefore, providing cryp-
tographic security is a key requirement for the V2X Application-Level Gateway. Also,
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application layer security beyond protection from application layer DoS attacks has to be
provided: attacks based on malicious messages must be addressed, which is essential if
cryptographic security has been compromised or in the absence of cryptographic security.
Attacks based on malicious messages can be classified as:

• buffer overflow attacks

• malformed messages (deviating from the structure defined by the protocol)

• messages violating the protocol message sequence

• messages with malicious content (e.g. SQL injection)

This work defines 2 classes of malicious content:

• ”explicitly malicious content”: e.g. SQL injection or malware, which is solely used
in and specially developed for attacks

• malicious semantics: meaning content ”normal in itself” but malicious in the con-
crete context, like e.g. the value ”13” for a field ”month” or the ”open” command
for the trunk of a driving vehicle

The V2X Application-Level Gateway can react in several ways to a malicious message:
it can silently drop it, it can drop it and report the attack e.g. to a security centre, or it
can notify another component to take action.
Application layer security can be divided into 2 dimensions: the application layer proto-
col and the application data. With respect to application layer security the application
layer data is independent from the application layer protocol, since it can be transported
by any application layer protocol and thus the two can be viewed separately. For the
application layer protocol it has to be checked if the header violates the protocol or, if
possible, contains malicious content, such as e.g. an SQL injection in an HTTP(S) URL.
For deviations from the defined structure of the header, protocol-specific stateless checks
are sufficient, while violation of the message sequence, e.g. receiving a ”CONNACK”
without a prior ”CONNECT” in MQTT, requires protocol-specific stateful checks. For
application data it has to be checked if it follows the defined structure and contains no
malicious content, such as SQL injections. In most cases of ”explicitly malicious content”
stateless checks using regular expressions are sufficient. Additionally the semantics of
the application data have to be checked, since an otherwise correct message can contain
semantically incorrect data, like e.g. the value ”13” for the field ”month” of credit card
data. This may require either stateless or stateful checks. As the correctness of the
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semantics of a payload may depend on the context a system operates in, e.g. in case
of a remote vehicle trunk control, the check has to be context-sensitive when necessary.
Buffer overflow attacks can be easily addressed by checking the sizes of messages.
The following requirements, divided into functional- and performance requirements, have
been identified after researching security gateways and proxies in the automotive-, IoT-,
industrial- and web domain and analysing attacks on application protocols suitable for
use in V2X communication:

Functional requirements:

1. Providing cryptographic security: ensuring confidentiality, integrity and authentic-
ity of V2X traffic to protect the privacy of vehicle- or user-related data and the
vehicle itself from attacks and manipulation. For the communication between the
V2X Application-Level Gateway and the outside world stronger encryption can
be used, while the communication between V2X Application-Level Gateway and
vehicle internal services can be secured by weaker encryption to relieve ECUs.

2. Providing application layer security: controlling V2X data on the application layer
according to predefined rules, including a context-sensitive (stateful) semantic anal-
ysis (see chapter 2. section 2.4 and chapter 4, section 4.2) and the detection of
application layer protocol violations (caused by either malformed messages or mes-
sage sequence violations). This requires the V2X Application-Level Gateway to be
aware of all in-vehicle services using V2X to load the respective security configu-
rations (containing the rules etc.). This enhances the protection of the privacy of
vehicle- or user-related data and the vehicle itself from attacks and manipulation.
It addresses threats based on malicious messages.

3. Providing proxy-functionality: serving as a proxy to vehicle-internal services com-
municating with the outside world to decouple the in-vehicle network from external
communication partners. A service running in the in-vehicle network is reachable
over the V2X Application-Level Gateway over a certain IP and port by outside
world peers. The V2X Application-Level Gateway can reach this service in the
internal network over another (internal) IP and port. A mapping between exter-
nal and internal IP addresses and ports is required. For security reasons, to hide
information from potential attackers, this mapping should be dynamic.

4. Support of IP-based application layer protocols (such HTTP(S), MQTT or SOME/IP),
since most V2X traffic will probably be IP-based.
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5. Support of application layer protocols (such as ETSI Cooperative Awareness Basic
Service) based on V2X-specific network- and transport layer protocols (such as
WSMP), since especially real-time V2V/V2I traffic will be based on a V2X-specific
stack instead of the IP stack.

6. Realising role-based access to resources via Access Control Lists to prevent unau-
thorised access.

7. Allowing bandwidth control of V2X traffic: dividing bandwidth among applications
(like [116] in section 3.1.2) to optimise vehicle performance in every situation, e.g.
by prioritising critical services if necessary.

8. Detecting application layer DoS attacks via V2X, when possible dropping DoS traf-
fic and when applicable, reducing the feasibility of DoS attacks with the Hashcash
mechanism.

9. Detecting brute force attacks via V2X, when possible dropping brute force traf-
fic and when applicable, reducing the feasibility of brute force attacks with the
Hashcash mechanism.

10. Configurability of the system, e.g. updating/adding new rules for semantic analysis
or bandwidth control to facilitate maintenance and ensure optimum performance
over a long product life cycle.

11. Logging functionality to facilitate maintenance.

Performance requirements:

1. Hard real-time capability to support end-to-end delays in the milliseconds (<100
ms and for the most demanding use cases <10 ms) for hard real-time V2X com-
munication such as traffic safety. The message frequency for such applications is
10 Hz [12, 78, 118]. For non safety V2X applications such as infotainment or traf-
fic efficiency the end-to-end delay of messages is in the range of 100 ms to >1s
[12, 78, 118].

2. The V2X Application-Level Gateway has to handle sufficient throughput for all
V2X traffic. Throughput for a V2X application is in the range of 5 Kbps to 700
Mbps, ranging from 10 to 80 Mbps for most applications [12, 78]. So for n V2X ap-
plications in a vehicle the throughput D can be described as: D =

∑n
i=1 di with di
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being the throughput of application i, which is in the range of 5 Kbps to 700 Mbps.

3.3 Application Layer Protocol Vulnerabilities - An
Exemplary Comparison

With a list of application protocols suitable for V2X communication and related attacks
addressed by the V2X Application-Level Gateway and the countermeasures to these at-
tacks identified, the vulnerability of the different protocols to attacks is compared, to
determine which attacks are universal and which are applicable only for certain proto-
cols or under certain conditions. The focus of this work is on universal countermeasures
to universal attacks instead of specialised countermeasures for specialised attacks. For
the comparison HTTPS, MQTT and the ETSI Cooperative Awareness Basic Service were
chosen, each representing a different domain: traditional Web, IoT and the automotive
domain. Since numerous work on cryptographic security already exists, this work focuses
on attacks based on malicious messages and application layer DoS attacks, while attacks
on cryptographic security are not considered in the comparison. The vulnerability to
the different classes of malicious messages identified in section 3.2, i.e. buffer overflow
attacks, malformed messages (deviating from the structure defined by the protocol), mes-
sages violating the protocol message sequence and messages with malicious content (e.g.
SQL injection or semantically incorrect payload) and to application layer DoS attacks is
compared, see table 3.1, page 36. The 3 protocols are similarly vulnerable to all classes of
attacks, with the exception of the ETSI Cooperative Awareness Basic Service not being
vulnerable to message sequence violations, since there are no different message types and
defined sequences for ETSI CAMs and HTTPS being vulnerable to message sequence
violations only if a service specifies a certain sequence of HTTP messages (GET, POST,
etc.). So generally all attack classes are widely applicable, with protocol message se-
quence violations being limited to stateful application layer protocols.
Buffer overflow attacks and application layer DoS attacks are universal attacks following
the same pattern regardless of the targeted protocol or application: the first exceeds the
allowed size of data transported in a message, the second exceeds the allowed amount of
traffic. Thus the countermeasures are also universal: checking the size of the transported
data or detecting excess traffic and reacting accordingly, e.g. dropping it. Whereas at-
tacks based on malformed messages or malicious content and protocol message sequence
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Table 3.1: Overview of selected application-layer protocols vulnerability
Attack HTTPS MQTT ETSI CAM Countermeasure
Buffer overflow + + + Message size check
Malformed message + + + Stateless structural check
Message sequence violation - + - - Stateful protocol check
Malicious content + + + Stateful/stateless content check
DoS + ++ + Detection, Hashcash

++ protocol facilitates the attack
+ attack is applicable
- attack is possible only under certain conditions

- - attack is not applicable

violations are specific attacks tailored to the targeted application or protocol. However
the concepts on which the specific countermeasures to these attacks (e.g. filters for SQL
injections) are based, are universal: like stateless regular expressions (applicable for e.g.
malformed messages) or the concept of statefulness. Since numerous work on stateless
filtering of data using regular expressions exists, this work focuses on the development
of a concept for a stateful semantic analysis of application data as a universal counter-
measure against attacks based on malicious content requiring a stateful analysis. It is
examined if this concept of a stateful analysis is applicable for preventing application
layer protocol message sequence violations, using MQTT as an example. Also, the de-
tection of application layer DoS attacks is included, since they are applicable against
basically any application and application layer protocol. Additionally buffer overflow
attacks are covered.
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In this chapter the concept of the V2X Application-Level Gateway based on the require-
ments analysis given in chapter 3 is presented. First the proposed architecture of the
V2X Application-Level Gateway is presented. Next the realisation of a stateful analysis
applicable for both (context-sensitive) stateful semantic analysis and application layer
protocol message sequence violations is discussed. Also, application layer DoS detec-
tion and the transfer of some of the functionality of the V2X Application-Level Gateway
to the cloud, where more resources like computing power and memory are available, is
discussed.

4.1 Architecture

The architecture of the V2X Application-Level Gateway was developed based on the re-
quirements identified in chapter 3, section 3.2, the concept of service-oriented communica-
tion and the general best-practice application-level gateway (ALG) software architecture
described in [101]. The definition of an ALG used in [101] focuses solely on the proxy-
functionality, while this work uses a definition that additionally encompasses security
aspects, see chapter 2, section 2.1.2. The architecture of [101], see figure 4.1 (page 38),
reifies several design patterns and is extensible. It decouples input from output (Router
pattern), service initialisation from the tasks performed once the service is initialised (Ac-
ceptor and Connector patterns) and event demultiplexing and event handler dispatching
from services performed in response to events (Reactor pattern). Connection requests or
data, in an automotive context from either vehicle-internal services or external services,
are received at the communication endpoints. In case of a connection request the Reactor
notifies the Acceptor, which then establishes the connection from the service to the ALG.
The Connector is used to proactively establish connections from the ALG to services.
In case of data the Reactor notifies the Input Handler, which then receives the data,
consults the Routing Table and requests the Output Handler to forward the data to the
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destination. There can be multiple Input Handlers and Output Handlers, e.g. one for
each connection. The Input Handler and Output Handler provide proxy functionality
to services communicating via the ALG and thus the architecture meets the functional
requirement 3), see chapter 3, section 3.2.
This base architecture was extended by several components to meet all requirements
defined in chapter 3, section 3.2, see figure 4.2 (page 39). The additional components

Figure 4.1: Overview: Best-practice ALG software architecture according to [101]

provide the entire security functionality, whereas the base architecture components pro-
vide the basic communication functionality. The architecture in figure 4.2 contains all
components necessary to meet the requirements defined in chapter 3, but since the focus
of this work is the analysis of traffic in V2X Application-Level Gateways, and for better
clarity, the relationship of some components to the rest of the architecture (e.g. the
Logging Component or the Management Component) is not detailed here.
The Encryption/Decryption Components for inbound and outbound traffic provide cryp-
tographic security, meeting requirement 1). For ensuring cryptographic security, Hard-
ware Security Modules (HSMs) [5] can be used in the V2X Application-Level Gateway.
The Access Control Component manages the ACLs realising role-based access to re-
sources, meeting requirement 6). A message is only forwarded if it is valid according to
the ACLs.
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An Input Handler and Output Handler form a connection between a service provider
and consumer. Each connection has a service-specific Analyzer Component consisting
of one ore more modules controlling the application data according to predefined rules,
including a context-sensitive semantic analysis if necessary, which meets requirement 2).
A message is only forwarded if it is valid. The modules can also detect application
layer DoS and brute force attacks, meeting requirements 8) and 9). The Context Mod-
ule holds the context required for context-sensitive semantic analysis, see section 4.2.
The Analyzer Components have to support all relevant IP-based application protocols,
meeting requirement 4) and all relevant non IP-based application protocols, meeting re-
quirement 5). This can be achieved with exchangeable protocol-specific sub-components
for the Analyzer Component, each supporting an application protocol, e.g. HTTP(S)
or MQTT. The Connection Manager manages all (active) connections. The Bandwidth

Figure 4.2: Overview: conceptual V2X Application-Level Gateway architecture

Control Component allows to manage the bandwidth of V2X traffic via the Connection
Manager, according to certain distribution techniques, meeting requirement 7). With
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the Logging Component, which logs the activity of the other components, requirement
11) is met. Via the Management Component the Analyzer Components, Context Module,
Access Control Component, Bandwidth Control Component and the Logging Component
can be configured, meeting requirement 10). So the developed architecture meets all
functional requirements identified in chapter 3, section 3.2.
Since each message is sequentially processed by a constant number of components and
additionally a parallel processing of messages is possible with multiple parallel channels
(e.g. for real-time traffic) and the input is decoupled from the output, the architecture
can also meet all performance requirements defined in chapter 3, section 3.2.
As already mentioned, the V2X Application-Level Gateway has to be aware of all vehicle-
internal services using V2X by having access to a central vehicle service registry contain-
ing those services . The general issues of service registration and discovery are beyond
the scope of the V2X Application-Level Gateway and thus only briefly described in the
context of updating its list of V2X services. Each vehicle internal V2X service provider
has to register with a service registry. An external service consumer can then look up
this service provider and they can communicate via the V2X Application-Level Gateway,
see figure 4.3. Conversely, an external service provider registers with a service registry

Figure 4.3: Communication between vehicle services and external services

and a vehicle internal V2X service consumer can look it up. Additionally, the vehicle
internal V2X service consumer has to register with the vehicle service registry, so that
with each registration of either a vehicle internal V2X service consumer or a vehicle inter-
nal V2X service provider with the vehicle service registry, the list of V2X services of the
V2X Application-Level Gateway is updated so that the respective security configuration
(containing the rules for analysis etc.) can be loaded.
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4.2 Semantic Analysis of Application Data

4.2.1 Overview

In this work the semantic analysis of data is defined as checking the conformity of syn-
tactically correct data by applying a set of semantic rules. The data are classified as se-
mantically correct if they are in conformity with the given semantic rule set. This paper
defines 2 classes of semantic rules: structural rules and content-related rules. Structural
rules refer to properties like payload size or data type, while content-related rules refer to
the application-specific meaning of data. E.g. the string ”Hamburg” is a semantically cor-
rect destination for the navigation system, while the (syntactically correct) string ”Asdf”
is not. In this case the content-related rule is, that the string has to be in a defined
set of known destinations. Another example would be a message, that is expected to
contain the part of a software update. One structural rule for such a message is, that its
payload size is in a specific range of bytes (for the last part of the update this range can
be different, since the last part can possibly be only a few bytes). If checking the payload
size finds it is only a few bytes (and it is not the last part of the update), the message
will be classified as invalid and the system will react accordingly, probably dropping the
message. A semantic rule can be either stateless or stateful. In the first example above,
the semantic correctness is independent of the the state and thus the rule is classified
as stateless. In the second example, if the specified range for the size of a message is
different for the last part of the update, the semantic correctness depends on the state,
i.e. if the system is in the state ”receiving last part of update” or not and therefore the
rule is classified as stateful.
Additionally, semantic analysis can be context-sensitive, i.e. depend on the current con-
text. A general definition of context is any information that can be used to characterise
the state and the environment of an entity (e.g. an object) [1]. In the case of a vehicle,
the context is the vehicle’s state and possibly also the state of its environment, e.g. the
weather or traffic. This work distinguishes between stateful semantic analysis, where
only the state of the analysed system itself is relevant as context and context-sensitive
semantic analysis, where not only the analysed system itself is relevant, but also the
context it operates in, e.g. in case of a vehicle the traffic or weather. The term ”context-
sensitive” emphasises the external dependencies of the analysed system. The context
can be modelled with different degrees of complexity and levels of abstraction depending
on the use-cases requiring context. For example for the modelling of a vehicle’s state a
simple state machine consisting of only the two states ”driving” and ”stopped” can be
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sufficient in some cases, while others might e.g. require a modelling with distinct speeds
(e.g. all speeds in a range from 0 km/h to 120 km/h with a resolution of 2 km/h).

4.2.2 Stateful Semantic Analysis

This section gives a formal definition of a stateful semantic analysis and a concrete ex-
ample of context-sensitive stateful semantic analysis. Figure 4.4 shows state machines
describing the correct behaviour of a vehicle’s trunk and a vehicle’s state. For both state
machines the alphabet corresponds to a set of commands to control the system. E.g.
the command to lock the trunk (”lock”), which is in the set of known commands, is se-
mantically incorrect if the trunk is open (state ”OPEN”), while the command to close
it (”close”) would be semantically correct. For better clarity, only the valid state transi-
tions are depicted. All other transitions are invalid and would result in an error state.
Self-transitions are not allowed, since redundant commands shall not be processed, e.g.
a trunk in open state shall not process the ”open” command.

Figure 4.4: Simple state machines describing the correct behaviour of a vehicle trunk and
a vehicle’s state
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For a semantic analysis in some cases it may not be enough to know the state of one
component, e.g. the trunk, but rather the states of a composition of components or the
state of the entire vehicle are required. The command to open the trunk (”open”) for
instance is semantically incorrect, regardless of the state of the trunk, if the vehicle is
driving (state ”driving”).
A system (e.g. a vehicle trunk) can be modelled as a finite state machine (FSM) con-
sisting of a set of states S (including an initial state s0), an alphabet Σ and a transition
function δ: S × Σ → S. In the case of the vehicle trunk the alphabet consists of events
corresponding to commands such as ”open” or ”close” to control the trunk, see figure 4.4
(page 42). A stateful semantic analysis of such a system can be realised with a func-
tion ”valid” mapping the system’s states S and alphabet Σ on Boolean values true and
false:

valid : S × Σ→ {true, false} (4.1)

For a state s ∈ S and an event σ ∈ Σ the valid function is true when the event σ is
semantically correct in state s and false otherwise, i.e. when the transition function δ
returns a state s′ ∈ S for s and σ:

valid(s, σ) ⇐⇒ δ(s, σ) 6= ∅ (4.2)

E.g. valid(open, close) = true, while valid(closed & locked, open) = false. For the
vehicle trunk the valid function can be realised with table 4.1. For a system with n states
and an alphabet size of m the table realising the valid function has n ∗m entries. The
time complexity of the valid function is O(1), since it amounts to a lookup in a table.

Table 4.1: Table for the valid function for a vehicle trunk
State / Command unlock lock open close
Closed & Locked true false false false
Closed & Unlocked false true true false
Open false false false true

The semantic correctness of events in a system (e.g. a vehicle trunk) can depend on the
state of another system (e.g. the state of the vehicle, see figure 4.4, page 42). In this
case the first is called the dependent system and the latter the affecting system. The
set of states of the dependent system is Sd and the alphabet is Σd. The set of states
of the affecting system is Sa and the alphabet is Σa. The dependent system and the
affecting system are a composition of systems. The alphabet Σ of such a composition
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is Σ = Σd ∪ Σa. Analogously to the above valid function defined for a single system
(see 4.1 and 4.2), for an event σ ∈ Σ a valid function for a composition of systems shall
determine whether σ is semantically correct with the dependent system in a state sd and
the affecting system in state sa. That is, if σ is semantically correct, the valid function
shall return true, otherwise it shall return false. The signature for such a validcomp

function is:
validcomp : Sd × Sa × Σ→ {true, false} (4.3)

Since the dependent system does not affect the affecting system, for a σ ∈ Σa it is
sufficient to check whether σ is semantically correct in the state sa ∈ Sa, for which the
valid function defined in 4.2 can be re-used. For a σ ∈ Σd the valid function defined
in 4.2 can also be re-used to check if σ is semantically correct in the state sd ∈ Sd. But
additionally for a σ ∈ Σd it has to be checked whether it is semantically correct in the
state sa ∈ Sa, since the dependent system is affected by the affecting system. Therefore
a context function has to be defined that for a given σ ∈ Σd and sa ∈ Sa determines
whether σ is semantically correct in state sa. The signature for such a context function
is:

context : Sa × Σd → {true, false} (4.4)

The definition of this context function is specific for every pair of a dependent and
affecting system. In the example of the vehicle trunk and vehicle state (see figure 4.4,
page 42) the context function can be realised with table 4.2.

Table 4.2: Table for the valid function for a vehicle trunk dependent on the vehicle’s state
State / Command unlock lock open close
Stopped true true true true
Driving false true false true

Using the valid function defined in 4.2 and the context function from 4.4 the validcomp

function can be defined as:

validcomp(sd, sa, σ) =



true, if σ ∈ Σa ∧ σ /∈ Σd ∧ valid(sa, σ)

true, if σ ∈ Σd ∧ σ /∈ Σa ∧ valid(sd, σ) ∧ context(sa, σ)

true, if σ ∈ Σd ∩ Σa ∧ valid(sd, σ) ∧ valid(sa, σ) ∧ context(sa, σ)

false, otherwise
(4.5)
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With the validcomp function defined in 4.5 for any σ ∈ Σ, sd ∈ Sd and sa ∈ Sa it can be
checked if σ is semantically correct, e.g. validcomp(closed & unlocked, stopped, open) =

true, while validcomp(closed & unlocked, driving, open) = false.
In cases when only the dependent system’s alphabet Σd needs to be validated, it is suf-
ficient to realise the validcomp function covering Σd only. This is the case in the above
example where the vehicle trunk is the dependent system and the vehicle’s state is the
affecting system. So the validcomp function can be realised with two separate tables: one
for the trunk and one for the vehicle’s state. The table for the trunk remains unchanged,
see table 4.1, page 43, and determines for a σ ∈ Σd and a state sd ∈ Sd whether σ is
semantically correct in state sd. The table for the vehicle’s state, see table 4.2, page 44,
i.e. the realisation of the context function, determines for a σ ∈ Σd and a state sa ∈ Sa

whether σ is semantically correct in state sa. The outcomes of both tables are combined
in a conjunction, i.e. the Boolean AND operation, to determine whether σ ∈ Σd is cor-
rect with the trunk being in state sd and the affecting system, i.e. the vehicle, being in
state sa.
For a dependent system with nd states and an alphabet size of m and an affecting system
with na states the table for the dependent system has nd ∗m entries and the table for the
affecting system has na∗m entries, resulting in a total of (nd+na)∗m entries for realising
the validcomp function covering Σd. The time complexity is again O(1). Separate tables
for each system are easier to maintain, e.g. when the affecting system is modified.
A dependent system can depend on more than one affecting system. In case of multiple
affecting systems, the affecting systems can affect the dependent system either indepen-
dently of each other, or interdependently. Figure 4.5 depicts a dependent system FSM1

with a set of states Sd = {E,F} and an alphabet Σd = {e, f} affected by affecting
systems FSM2 (with a set of states Sa1 = {A,B} and an alphabet Σa1) and FSM3 (with
a set of states Sa2 = {C,D} and an alphabet Σa2).

Figure 4.5: Exemplary dependent system with two affecting systems
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When the state of affecting system FSM2 has no effect on how the other affecting system
FSM3 affects the dependent system FSM1 (and vice versa) the affecting systems affect
the dependent system independently of each other. E.g. the event e ∈ Σd triggers the
transition of the dependent system from state F to E. Suppose that this transition of
the dependent system is only valid when the affecting system FSM2 is in state A and the
affecting system FSM3 is in state C. Though both affecting systems affect the dependent
system, they do so independently of each other. Thus in case of multiple independently
affecting systems each affecting system can be considered separately in the semantic anal-
ysis. For every affecting system ai a function validcomp i of the form 4.5 can be evaluated.
The resulting Boolean values have to be combined in a conjunction to determine whether
the given event is valid or not. If the conjunction results in true the event is valid, else
it is invalid. Again the validcomp functions can be realised with tables. For a dependent
system with nd states, an alphabet Σd of the size m and k affecting systems with ni

states each, this would result in a total of (nd +
∑k

i=1 ni) ∗ m entries for realising the
validcomp functions. Separate tables for each system are easier to maintain, e.g. when
affecting systems are added or removed.
When the state of affecting system FSM2 does have an effect on how the other affecting
system FSM3 affects the dependent system FSM1 (or vice versa) the affecting systems
affect the dependent system interdependently. An example for figure 4.5 would be if the
event e ∈ Σd, which triggers the transition of the dependent system from state F to E,
was only valid either when FSM2 is in state A and FSM3 is in state C, or when FSM2 is
in state B and FSM3 is in state D. With interdependently affecting systems the effect of
an affecting system on the validity of an event of the dependent system σ ∈ Σd cannot be
considered separately in the semantic analysis. For evaluating an event with a validcomp

function this means that the used context function cannot be defined for the dependent
system’s alphabet Σd and the set of states of a single affecting system like in 4.4. Instead
the context function has to return true or false for a given event σ ∈ Σd and any possible
constellation of the interdependently affecting systems’ states. So with k interdepen-
dently affecting systems it has to be defined for the dependent system’s alphabet Σd and
the cross product of states Sa1 × Sa2 × ...× Sak. For realising the valid function with a
table this means that for a dependent system with k interdependently affecting systems
the cross product of the dependent and affecting systems’ states Sd × Sa1 × ... × Sak

is required. For a dependent system with nd states, an alphabet Σd of the size m and
k affecting systems with ni states each, this would result in a total of m ∗ nd ∗

∏k
i=1 ni

entries for realising the validcomp function. So the interdependence significantly increases
the space complexity of the analysis compared to independently affecting systems.
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For a correct analysis the V2X Application-Level Gateway has to get the current states
of all relevant components. E.g. in the remote trunk control example it needs the cur-
rent states of the trunk and the vehicle at all time. This context update of the V2X
Application-Level Gateway can generally be realised with 2 different methods: either the
gateway is notified whenever a context state change occurs or it proactively requests the
current state. The request can be sent either periodically, or each time a certain event
occurs (”event-driven”). E.g. the arrival of data for a context-sensitive semantic analysis
could be such an event. So there are 3 different approaches to compare: context notifica-
tions, periodic context requests and event-driven context requests. To identify the best
approach, they are compared based on 2 criteria: their contribution to the (in-vehicle)
network load and the effort of an efficient implementation.
The contribution of the context update to the network load of the in-vehicle network
depends mainly on the size and frequency of the notification- and request/response-
messages. The size is constant for all messages and the request approaches come with
an additional message compared to the notification approach. With the event-driven
context requests approach the frequency of request/reply-messages could be significantly
elevated by an attacker by sending a great number of messages to the V2X Application-
Level Gateway. Since for every received message it sends a request and receives a reply
this would result in unpredictable higher network load. Whereas with the periodic re-
quest approach and the notification approach even if the configured frequency is high,
the network load is a priori known. So when it comes to the contribution to the network
load, the notification approach has a lesser contribution than the periodic request ap-
proach, while the event-driven request approach can be ruled out as an alternative due
to its vulnerability.
When it comes to the effort of an efficient implementation, for the periodic request ap-
proach reasonable cycle times have to be identified first, while the notification approach
can be implemented directly. So under the criteria of contribution to in-vehicle network
load and the effort of an efficient implementation the notification approach is preferable
for realising context updates and therefore used in the V2X Application-Level Gateway.
In any vehicle security architecture the V2X Security Gateway is only the first line of de-
fence. The semantic analysis of data, e.g. the command to open the trunk, can not only
be performed by the V2X Application-Level Gateway, but additionally also by ECUs of
the in-vehicle network e.g. a domain controller, see figure 4.6, page 48. In this case the
ECU has to be able to decrypt the data prior to analysis. It also has to have knowledge
of the context required for a context-sensitive semantic analysis if such an analysis is to
be performed. Performing a (context-sensitive) semantic analysis of the same data in
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Figure 4.6: Simple example of distributed semantic analysis in a vehicle

multiple components increases security, since if an attacker e.g. manages to surpass the
V2X Application-Level Gateway, e.g. by compromising a component of the in-vehicle
network, he would still have to surpass a second line of defence. On the other hand
the effect of the analysis on a component’s performance has to be taken into account.
For instance if the V2X Application-Level Gateway is already processing a lot of traf-
fic, for performance reasons the semantic analysis performed by it could be limited to
a general analysis on higher levels of abstraction, e.g. checking the data types, while a
more specific, e.g. context-sensitive analysis would be performed in an in-vehicle ECU.
So for performance reasons an interlocking of the analysis in multiple components, which
still covers the entire semantics of the data, but with little or no redundancy, could be
preferred depending on the network load and resources available in the vehicle.
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4.2.3 Semantic Analysis of ETSI CAMs

For the stateful analysis in section 4.2.2 the dependent and affecting systems could be
modelled with limited numbers of distinct states such as ”open” or ”driving”. This makes
a valid function mapping the states and alphabet on Boolean values, realised with tables,
an efficient solution. However, often instead of operating on a set of distinct states and
an alphabet with a limited number of elements like in section 4.2.2, the semantic analy-
sis amounts to comparing a discrete value to one or more thresholds. For the semantic
analysis in the automotive domain this is the case for e.g. the analysis of V2V messages
like ETSI CAMs (chapter 2, section 2.2.2).
When deciding on the extent and complexity of the analysis of ETSI CAMs it has to be
kept in mind that ETSI CAMs are not the only source of information on nearby objects
a modern vehicle will use to assess the situation around it. Information on nearby ob-
jects will also, or even primarily, come from a range of sensors, like e.g. LIDAR (Light
Detection and Ranging) or cameras. The data from all these sensors will be merged with
the data from ETSI CAMs to get the best possible assessment of the situation around
the vehicle, see figure 4.7. For nearby vehicles that are not in the range of any sensor,
i.e. occluded vehicles, ETSI CAMs will be the only source of information until vehicles
start sharing their sensor-based knowledge on nearby objects via V2V. From the merged

Figure 4.7: Analysis based data from multiple sources: ETSI CAMs and sensors
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data the vehicle gets a list of objects, which will be stored in the LDM complementing
the map data. The LDM can be accessed by any component requiring information on
the vehicle’s environment, e.g. the V2X Application-Level Gateway to get information
on nearby vehicles for the semantic analysis of ETSI CAMs. Using that information
and a physical model the V2X Application-Level Gateway can analyse the data of ETSI
CAMs. For such an analysis the LDM data has to come with time-stamps indicating how
”old” the information is. Note that due to the sampling rates of the sensors, the update
frequency of the LDM is greater than the ETSI CAM frequency, i.e. the information on
objects can be updated based on sensor data without the reception of an ETSI CAM.
The physical model generally contains all physics-related information necessary for eval-
uating vehicle data such as speed or position.
So ETSI CAM data can not only be validated by analysing ETSI CAMs only, but it can
also be validated using the data from sensors like LIDAR and cameras. If the information
from an ETSI CAM deviates from the LIDAR and camera data, especially when the LI-
DAR and camera data are coherent, this is a strong indication that the ETSI CAM data
is invalid. A central aspect when comparing the reliability of ETSI CAMs and sensors
such as LIDAR or cameras, is that the sensor data is based on physical measurements,
while ETSI CAM data is based on trusting that the sender is neither malicious nor com-
promised nor malfunctioning.
For the detection of many attacks, especially sophisticated attacks, it makes sense to
base the analysis on the merged data from both ETSI CAMs and sensors, as depicted
in figure 4.7, instead of analysing ETSI CAM data only. This way, the analysis will not
be performed redundantly on each separate set of data, i.e. ETSI CAMs, LIDAR and
camera data, but instead it will be performed on the merged data, which offers better
information and certainty. A typical attack realised via ETSI CAMs would be sending
ETSI CAMs representing vehicles that do not exist to influence the behaviour of receiv-
ing vehicles. Such an attack can be detected easier by analysing the merged data, since
to insert a fake object which is in the field of view of the vehicle’s sensors, also the sensor
data would have to be manipulated, which is impossible for an attacker using only ETSI
CAMs. Fake occluded vehicles would still be an option for the attacker, but this requires
knowledge of the current field of view of all of the vehicle’s sensors and besides, inserting
a fake occluded vehicle is not as effective as inserting a fake vehicle that could have a
direct impact on the attacked target, e.g. collide directly at any moment. In the fu-
ture vehicles could also share their (sensor-based) knowledge on nearby objects via V2V,
which on the one hand would add a new attack vector (i.e. spreading false information
about objects), but on the other hand would increase the difficulty of spoofing using
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fake objects. When two or more objects from the object list overlap, this could indicate
an attack, i.e. inserted fake objects overlapping with real objects, or a collision of real
objects. Again, assessing the probability of a collision based on the merged data makes
more sense than using the information from ETSI CAMs alone. To correctly assess such
a situation, not only the current states (here: positions) of nearby objects are required,
but the analysis has to take into account sequences of states (over time). E.g. in the
example of the collision, the sequences of the objects’ positions up to the overlapping,
i.e. before they overlap, determines the probability of the overlapping being a collision:
if the sequences of the objects’ positions result in a realistic collision course, the over-
lapping is likely to be a collision. Furthermore, the sequences of the objects’ positions
after they overlap for the first time, determine the probability of the overlapping being a
collision: if the objects’ positions do not change, the overlapping is even more likely to be
a collision, while e.g. two overlapping objects moving parallel to the analysing vehicle,
which is driving on a highway, exclude a collision and indicate an attack.
Yet another example is the analysis of the heading of vehicles. If e.g. all nearby vehicles
on a one-way road are heading north (according to their ETSI CAMs) and one vehicle
sends an ETSI CAM saying it is heading south, this deviation can be better checked
based on the merged data from both sensors and ETSI CAMs instead of just analysing
ETSI CAMs.
So for detecting attacks where state information of multiple objects has to be compared
or a more complex analysis of a single object’s state over a longer period of time is re-
quired, it is better to analyse the merged data instead of analysing only ETSI CAMs.
The goal of the semantic analysis of ETSI CAMs is to identify ETSI CAMs which con-
tain information that contradicts the laws of physics or ignores the technical limitations
of modern road vehicles, to do a filtering of messages before more complex analyses are
performed on the merged data. An example would be an ETSI CAM containing a vehicle
speed of 600 km/h, which exceeds what is possible with current technologies used in road
vehicles.
When analysing the data from ETSI CAMs it has to be kept in mind, that most come
with a confidence, since often a 100% accuracy of the data cannot be guaranteed. E.g.
the vehicle position information usually comes with a predefined confidence level (e.g.
95%) [37]. One way of dealing with inaccuracies is defining tolerances used in the analysis
to account for possible deviations of the ETSI CAM data from the real situation. To
account for deviations due to inaccuracies in the measurement of a vehicle’s state infor-
mation (e.g. position or speed) a configurable tolerance for the analysis of ETSI CAMs
should be specified for each physical quantity like position, speed etc. Another aspect
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are atypical situations where the ETSI CAM data deviates from what is expected in a
normal situation. An example would be a vehicle driving on a slippery road, where the
speed information from the ETSI CAM may not correspond to the real moving speed of
the vehicle, depending on how the speed is measured. E.g. a vehicle on an icy road might
report a speed of 14 m/s, while actually driving with a speed of 12 m/s and covering a
distance of 12 m in one second, which would conflict with the speed information of the
ETSI CAM (14 m/s). To express different levels of certainty whether an ETSI CAM
is valid or not and to correctly assess a wider range of scenarios, i.e. reduce the proba-
bility of false positives in case of unusual but possible events like e.g. a vehicle driving
on a slippery road or a collision, this work defines 3 classifications of ETSI CAMs, see
figure 4.8: 1) typical (and therefore valid), 2) atypical (but possible and therefore also
valid, but with a warning) and 3) invalid (due to conflict with the laws of physics or
technological boundaries, i.e. a violation of the physical model used for analysis).

Figure 4.8: Classification of ETSI CAMs

The semantic analysis of ETSI CAMs can be either stateless or stateful. For checking a
single value x, e.g. the (current) vehicle speed, a stateless analysis comparing the value x
to a threshold can be sufficient. The threshold defines an upper or lower bound for valid
values. One threshold is mandatory, while a second one is optional. E.g. for the vehicle
speed an upper bound, e.g. 550 km/h, restricting the vehicle speed to values possible
with modern road vehicles is sufficient, since ETSI CAMs use unsigned integers for the
vehicle speed and negative speeds are not defined and therefore the lower bound of 0
km/h is superfluous. The valid function for such a stateless semantic analysis of ETSI
CAMs can be defined as 4.6, with x being a single value from an ETSI CAM and a and
b being thresholds.

valid(x) ⇐⇒ a ≤ x ≤ b (4.6)

A threshold, or a pair of thresholds, divides all possible values into two sets: valid and
invalid values. The physical model defines the thresholds for all physical quantities of a
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vehicle, i.e. speed, acceleration etc. To additionally classify a valid value as either typical
or atypical, another threshold (or pair of thresholds) has to be defined for a function of
the form 4.6:

typical(x) ⇐⇒ a ≤ x ≤ b

E.g. for the vehicle speed a possible upper bound for typical values could be 220 km/h
(covering the scenario of fast drivers on a highway). So e.g. while a speed >550 km/h
would be classified as invalid, a speed ≤550 km/h but >220 km/h would be classified as
valid but atypical and a speed ≤220 km/h would be classified as valid and typical.
The thresholds to classify a valid value as either typical or atypical could be configured
dynamically depending on the environment of the vehicle. E.g. the vehicle speed could
be classified as typical or atypical depending on whether the vehicle is currently driving
in a city or on a highway. Since such an analysis uses state information, i.e. information
on the vehicle’s environment, it would be classified as stateful analysis. Typical stateful
analysis of ETSI CAMs would be comparing the change from the previous vehicle state,
e.g. the last known vehicle position (obtained from the LDM), to the current vehicle
state, e.g. the current vehicle position (obtained from the received ETSI CAM), to a
threshold. The change from the previous state to the current state that is possible in a
given time interval 4t is limited by the physical model. E.g. the position of a vehicle
with a maximum driving speed of 153 m/s cannot change by more than 153 m in one
second. The general form of a valid function defined in 4.6 can also be used for such a
stateful analysis of ETSI CAMs with 4x being the state change (that occurred in a time
interval 4t) and a and b being thresholds that need to be defined accordingly, depending
on the specifics of the analysis:

valid(4x) ⇐⇒ a ≤ 4x ≤ b

For the position change 4x of a vehicle with a maximum speed vmax (e.g. 550 km/h) a
valid function could be defined as:

valid(4x) ⇐⇒ 0 ≤ 4x ≤ vmax · 4t

Analogously to the above distinction of valid values into typical and atypical values,
again a second threshold could be defined to distinguish between typical and atypical
position changes.
So far only a single physical quantity, e.g. vehicle speed or position change, was compared
to a configurable threshold derived from the technical limitations of modern road vehicles
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(e.g. maximum speed). Usually multiple physical quantities are related, with their
relationship being defined by the laws of physics. An example is the position and speed
of a vehicle. The rest of this section exemplary shows the analysis of related ETSI
CAM data, here position and speed data. First the relationship between the data has
to be identified. Then equations and inequalities resulting from this relationship, which
can be used for the classification of related ETSI CAM data, have to be defined. Also
all necessary assumptions that have to hold for the above model to apply have to be
formulated.
It is now examined how an ETSI CAM can be classified based on the consistency of its
position and speed data with the physical model. When including a vehicle’s position
in the semantic analysis of ETSI CAMs one has to be aware of the difference between
the position change (displacement) 4x of a vehicle and the distance d travelled by the
vehicle, see figure 4.9. The distance d travelled can be equal to, or greater than the

Figure 4.9: Position change (displacement) 4x and distance d

position change 4x, depending on whether the route of the vehicle was a straight line or
curved, i.e.:

4x ≤ d (4.7)

The (average) speed s of an object is defined as the distance travelled d in the time4t:

s =
d

4t
=⇒ d = s · 4t (4.8)
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The position change 4x in the time 4t defines the (average) velocity of an object:

v =
4x
4t

=⇒ 4x = v · 4t (4.9)

From an ETSI CAM the current speed si of the vehicle and the position change 4x
between the current and the previous state can be determined. The speed si-1 in the
previous state can be obtained from the LDM. The time 4t between the current and
the previous state is in the range of 100 ms to 1 second for occluded vehicles, whose
state is only updated upon the reception of an ETSI CAM, since no sensor data on it
is available. Due to an increase in ETSI CAM frequency with increasing dynamics (i.e.
significant changes in position, speed or heading) 4t is closer to the minimum period of
100 ms for vehicles in dynamic situations, while during steady driving 4t is closer to the
maximum period of 1 second. Note that the range of 100 ms to 1 second is only true,
when there are no significant network losses increasing the time between two consecutive
ETSI CAMs. For vehicles that are not occluded and therefore their state is also updated
based on sensor data the range of 4t decreases. For occluded vehicles the range of 4t
can be decreased when sensor data is shared via V2V without significant network losses.
With the assumption that for sufficiently small 4t the speed function of a driving vehicle
in the time interval 4t can be approximated with a monotonous function, the speed si-1
and si is the minimum and maximum speed (or the other way round) in the time interval
4t. From 4.7 and 4.8 follows:

4x ≤ s · 4t (4.10)

Let smax = max(si-1, si) be the maximum speed in the time interval 4t. The average
speed s is unknown and could only be calculated from si-1 and si under the assumption
of linearity of the speed function in 4t, but s can be substituted with smax without
changing the inequality in 4.10:

4x ≤ smax · 4t (4.11)

So with 4.11 the upper bound b for the change in position 4x between two consecutive
states with a sufficiently small 4t can be defined as:

b = smax · 4t

This upper bound can be used in a valid function of the form 4.6 for a stateful semantic
analysis of ETSI CAMs checking if a CAM is in accordance with the physical model in
respect to the change in position 4x.
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Of course, if an attacker manipulates data consistently (e.g. vehicle position and speed)
and within certain boundaries (e.g. maximum speed), so that it is in accordance with
the physical model, such a manipulation cannot be detected with the semantic analysis
of ETSI CAMs presented in this section.

4.3 Application Layer Protocol Message Sequence
Violation

In this section it is examined whether the stateful analysis presented in section 4.2.2
for the semantic analysis of application data can also be applied to detecting protocol
message sequence violations in application layer protocols. Message sequence violations
are naturally only applicable to stateful protocols with defined sequences, e.g. MQTT
[84] (where e.g. a PUBLISH has to come after a CONNECT and CONNACK ) and not
applicable to stateless protocols like e.g. the ETSI Cooperative Awareness Basic Service.
Therefore, the MQTT protocol is used exemplary in this section to examine whether
the stateful analysis presented in section 4.2.2 is applicable for the detection of protocol
message sequence violations.
The V2X Application-Level Gateway, which acts as an intermediary between in-vehicle
MQTT clients and an MQTT broker, see figure 4.10, has to classify the incoming and
outgoing MQTT messages as valid or invalid depending on whether they adhere to the
message sequence defined in the protocol or not (for better clarity, the acknowledgements
of PUBLISH messages (QoS > 0 ) are not depicted).

Figure 4.10: V2X Application-Level Gateway as intermediary between MQTT client and
broker (used elements from [85])
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Since the V2X Application-Level Gateway protects only in-vehicle MQTT clients (and
not MQTT brokers), the analysis of the MQTT message sequence is done from the
perspective of an MQTT client, i.e. the V2X Application-Level Gateway expects e.g.
CONNECT messages to be outgoing only and CONNACK messages to be incoming
only.
When an MQTT client sends a message to the broker, e.g. a CONNECT or SUBSCRIBE,
it expects a certain response, e.g. a CONNACK or SUBACK. So by deliberately not
answering, the broker violates the defined message sequence. However, from the per-
spective of the client such a violation of the protocol message sequence is impossible
to distinguish from messages lost due to problems in the network and thus is not de-
tected by the V2X Application-Level Gateway. The MQTT protocol does not specify
an exact re-transmission mechanism or time-outs for lost (unacknowledged) messages,
but it does specify a set of rules for handling messages that require acknowledgements
(SUBSCRIBE, UNSUBSCRIBE and PUBLISH (QoS > 0 )) [84], see below. The V2X
Application-Level Gateway only detects violations by received messages σ, using a valid
function. The valid function was defined in 4.1 and 4.2 in section 4.2.2 (page 43) as:

valid : S × Σ→ {true, false}

valid(s, σ) ⇐⇒ δ(s, σ) 6= ∅

To apply this valid function for detecting protocol message sequence violations in appli-
cation layer protocols, the set of states of the protocol S and the set of messages Σ have
to be mapped on Boolean values true and false, using the transition function δ, which
defines the protocol message sequence, analogous to the states and events of an analysed
system in the semantic analysis in section 4.2.2. So that for a protocol state s ∈ S and
a message σ ∈ Σ it can be determined whether the message σ adheres to the message
sequence defined by the protocol or violates it.
However, in case of the MQTT protocol the set of states S and the alphabet Σ cannot
be defined as easily as in the case of a system with a limited number of discrete states
and events, like e.g. a vehicle trunk. In MQTT, once a client has connected with a
broker, it can send SUBSCRIBE messages, each containing a topic and a packet ID,
to the broker to subscribe to topics. For every SUBSCRIBE message it has to receive
a SUBACK message containing the packet ID of the respective SUBSCRIBE message.
Unsubscribing works analogously to subscribing. UNSUBSCRIBE messages containing
no matching topic are also acknowledged with an UNSUBACK. A client can have only
one subscription to the same topic. Therefore it is specified that upon receiving a SUB-
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SCRIBE message from a client containing a topic to which the client already subscribed,
the broker replaces the existing subscription with an (identical) subscription to that re-
ceived topic.
Publishing messages with the quality of service level QoS 1 works analogously to sub-
scribing: the receiver acknowledges every PUBLISH with a PUBACK. Publishing with
QoS 2 features a two-level handshake where the publisher additionally acknowledges the
reception of the receivers acknowledgement, which in turn is acknowledged by the re-
ceiver, so that both the publisher and receiver are sure that both know that the message
was delivered, see figure 4.11. The sender of a PUBLISH with QoS 2 must treat it as
unacknowledged until receiving the corresponding PUBREC from the receiver, which the
sender acknowledges with a PUBREL. The sender must not re-send the PUBLISH once
it has sent the corresponding PUBREL. The receiver must acknowledge every PUB-
LISH with a PUBREC until it receives the PUBREL, but must not further process
duplicate PUBLISH messages. The receiver must acknowledge every PUBREL with a
PUBCOMP. After sending the PUBCOMP the receiver must treat any subsequent PUB-
LISH messages as new messages. While the MQTT protocol does not specify an exact

Figure 4.11: MQTT Quality of Service: QoS 1 and QoS 2 [85]

re-transmission mechanism or time-outs for publishing with QoS > 0, it limits the num-
ber of unacknowledged PUBLISH messages a client or broker can manage concurrently.
For every MQTT client and broker a limit for the number of PUBLISH messages it can
send without receiving an acknowledgement has to be configured. A counter is initialised
with this limit and it is decremented every time a PUBLISH (QoS > 0 ) is sent and
incremented every time a PUBACK (for QoS 1 ) or PUBCOMP (for QoS 2 ) is received.
If the counter reaches a value of ”0”, no more PUBLISH messages (QoS > 0 ) can be
sent, until the counter is incremented by receiving PUBACK or PUBCOMP messages.
So modelling the exact state of the MQTT protocol in detail with one FSM seems im-
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practical, since once the client is connected, each SUBSCRIBE, UNSUBSCRIBE and
PUBLISH (QoS > 0 ) message (and their respective acknowledgements) adds informa-
tion to the current state, resulting in complex global states of the modelled system, as
a client can e.g. subscribe to a topic and then while waiting for the acknowledgement,
publish multiple messages, again expecting an acknowledgement for each. Also the def-
inition of an alphabet Σ, which explicitly includes all messages of the MQTT protocol
σ ∈ Σ, and is required for the valid function defined in section 4.2.2, is impractical: for
some MQTT messages, like e.g. CONNECT or CONNACK, only their message type
contributes to the state information and thus is sufficient for distinctly identifying them
in this context, which is why CONNECT and CONNACK could be added as elements
of such an alphabet Σ. But for others, like e.g. SUBSCRIBE or PUBACK, in addition
to the message type, also the packet ID contributes to the state information and thus is
also required for identification, which is why e.g. SUBSCRIBE and PUBACK cannot
be added as elements of such an alphabet Σ. Instead, every possible combination of e.g.
SUBSCRIBE and a packet ID would have to be added as elements of the alphabet Σ. So
instead of using one FSM, multiple (smaller) parallel FSMs can be used. One approach
is a hierarchical FSM with a top-level automaton processing MQTT messages according
to only their message type, see figure 4.12 and multiple parallel second-level automatons
in the ”Connected” top-level state processing MQTT messages according to both their
message type and packet IDs, see figure 4.13, page 60. The top-level automaton is de-
fined by a set of simple states S, being only a reduced set of abstract states of the MQTT
protocol (”Unconnected”, ”Connecting” and ”Connected”), an alphabet Σ consisting of all
MQTT message types and a transition function δ: S × Σ → S modelling the MQTT
message sequence (as defined by the MQTT protocol), given only the reduced set of
abstract states and message types of the MQTT protocol.

Figure 4.12: MQTT communication from the perspective of an MQTT client
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Every MQTT message in the ”Connected”-state that is identified by both its message
type and a packet ID x (e.g. SUBSCRIBE or PUBLISH (QoS > 0 )) is processed in
an instance x of a second-level automaton defined by a set of simple states S (e.g. S =
{Connected, Subscribing, Subscribed}), an alphabet Σ consisting of the respective subset
of MQTT message types (e.g. Σ = {SUBSCRIBE, SUBACK}) and a transition function
δ: S × Σ → S modelling the respective MQTT message sequence part, see figure 4.13.
So for every packet ID x an instance x of a second-level automaton exists.

Figure 4.13: MQTT communication from the perspective of an MQTT client

Since it is possible for a message to be sent and delivered multiple times, duplicate
instances of automatons are allowed. However one message always triggers only one in-
stance of an automaton, in case of duplicates, the ”oldest” instance is triggered. This
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way the stateful analysis defined in section 4.2.2 can be used for the detection of message
sequence violations. For every MQTT message σ a valid function based on the top-level
automaton is applied. If required (in case σ has a packet ID) also a valid function based
on the respective second-level automaton is applied. In case of a message σ with a packet
ID, the conjunction (logical AND) of both Boolean values returned by the valid func-
tions has to be used to determine whether the message adheres to the defined protocol
sequence or not. The analysis in this work focuses on the following set of MQTT message
types:

• CONNECT

• CONNACK

• PUBLISH

• PUBACK (only QoS 1 )

• PUBREC (only QoS 2 )

• PUBREL (only QoS 2 )

• PUBCOMP (only QoS 2 )

• SUBSCRIBE

• SUBACK

• UNSUBSCRIBE

• UNSUBACK

• DISCONNECT

Analogously to semantic analysis in section 4.2.2 the valid function can be realised with a
table for the top-level automaton. With such a table the V2X Application-Level Gateway
can classify incoming (broker to client) and outgoing (client to broker) MQTT messages
as invalid, when their message type indicates a message sequence violation. Incoming and
outgoing MQTT traffic differs, see figure 4.10, page 56. E.g. a CONNECT, SUBSCRIBE
or UNSUBSCRIBE should only be accepted by the V2X Application-Level Gateway from
an MQTT client, while e.g. a CONNACK, SUBACK or UNSUBACK should only be
accepted from an MQTT broker. To handle these different conditions for incoming and
outgoing messages one solution are two different tables: one for outgoing ’client to broker’
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traffic, see table 4.3, and one for incoming ’broker to client’ traffic, see table 4.4. This
way the compliance with different protocol roles can be efficiently integrated into the
control of the protocol message sequence.

Table 4.3: Table for the valid function for the MQTT protocol (client-side)
Message / State Unconnected Connecting Connected
CONNECT true false false
CONNACK false false false
PUBLISH false false true
PUBACK false false true
PUBREC false false true
PUBREL false false true
PUBCOMP false false true
SUBSCRIBE false false true
SUBACK false false false
UNSUBSCRIBE false false true
UNSUBACK false false false
DISCONNECT false false true

Table 4.4: Table for the valid function for the MQTT protocol (broker-side)
Message / State Unconnected Connecting Connected
CONNECT false false false
CONNACK false true false
PUBLISH false false true
PUBACK false false true
PUBREC false false true
PUBREL false false true
PUBCOMP false false true
SUBSCRIBE false false false
SUBACK false false true
UNSUBSCRIBE false false false
UNSUBACK false false true
DISCONNECT false false false
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The second-level automatons (for messages identified by their packet ID) can be imple-
mented efficiently using lists, see figure 4.14. Adding a packet ID from a message (e.g.
a SUBSCRIBE message) to a list corresponds to creating an instance of the respec-
tive automaton, while finding (and deleting) a packet ID upon a list-lookup corresponds
to triggering the respective automaton instance (and deleting it if the final state was
reached).

Figure 4.14: Detecting message sequence violations using lists (used elements from [85])

The packet IDs of outgoing (client to broker) messages, except acknowledgements, are
stored in the Client to Broker List (i.e. packet IDs of SUBSCRIBE, UNSUBSCRIBE
and PUBLISH QoS 1 messages). For incoming (broker to client) acknowledgements (i.e.
SUBACK, UNSUBACK and PUBACK ) it is checked whether their packet ID is on the
Client to Broker List and if it is, the message is classified as valid and the list entry is
deleted. Otherwise the message is classified as violating the message sequence.Since it
is possible for a message to be sent and delivered multiple times, duplicate entries are
allowed.
Analogously, the packet IDs of incoming (broker to client) PUBLISH QoS 1 messages
are stored in the Broker to Client List. For outgoing (client to broker) acknowledgements
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(i.e. PUBACK ) it is checked whether their packet ID is on the Broker to Client List
and if it is, the message is classified as valid and the list entry is deleted. Otherwise the
message is classified as violating the message sequence.
Detecting message sequence violations for publishing with QoS 2 messages works anal-
ogously, see figure 4.15. Since publishing with QoS 2 requires more state information

Figure 4.15: Message sequence violations detection for client-to-broker QoS 2 publishing,
using lists (used elements from [85])

than communication with QoS < 2, multiple lists to account for the different acknowl-
edgements are required. The additional lists can be viewed as extensions of the Client
to Broker List or Broker to Client List respectively. For an outgoing PUBLISH it is
checked whether its packet identifier is in the PUBREL-List, i.e. whether a correspond-
ing PUBREL was sent. If none was sent, the PUBLISH is valid and its packet identifier
is added to the PUBLISH-List. For an incoming PUBREC it is checked whether its
packet identifier is in the PUBLISH-List, i.e. a corresponding PUBLISH is awaiting
acknowledgement. If it is, the PUBREC is valid and its packet identifier is added to the
PUBREC-List. For an outgoing PUBREL it is checked whether its packet identifier is
in the PUBREC-List, i.e. whether a corresponding PUBREC was received. If it was re-
ceived, the PUBREL is valid and its packet identifier is added to the PUBREL-List. For
an incoming PUBCOMP it is checked whether its packet identifier is in the PUBREL-
List, i.e. a corresponding PUBREL is awaiting acknowledgement. If it is, the PUBCOMP
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is valid. Broker to client traffic is handled analogously. List entries for messages that
require acknowledgement but are never acknowledged, e.g. a SUBSCRIBE lost due to
network problems, will never be deleted. To prevent the size of the list from exceeding
a configured maximum size, the oldest entries have to be deleted if the size of the list
reaches the configured maximum size due to heavy network losses.
The solution proposed in this section ensures the adherence to the defined MQTT pro-
tocol message sequence. It was shown that it can be realised using the stateful analysis
defined in section 4.2.2. For an application protocol modelled with n states and an alpha-
bet of the size m the table realising the valid function has n∗m entries. Additionally, for
MQTT a list (Client to Broker List/Broker to Client List) with a dynamically changing
size is required. The size of the list depends on the amount of messages sent. The time
complexity of the valid function for messages classified only based on their message type
is O(1), since it amounts to a lookup in a table, while messages classified based on both
their message type and packet ID require an additional lookup in a list. Since the list
containing n packet IDs can be sorted and in case of duplicate entries each lookup only
needs to return a single ID, a binary search, which has a time complexity of O(log n),
can be used.
Of course, to ensure that an MQTT message is valid and can be forwarded by the V2X
Application-Level Gateway to its destination, additional analysis of the structure and
content of the header and payload is required, e.g. whether an incoming PUBLISH mes-
sage is valid, also depends on whether its topic is in the list of subscribed topics. The same
is true for an outgoing UNSUBSCRIBE. This work classifies messages with unmatched
topics as messages with malicious content and not protocol message sequence violations,
hence they are not covered in the analysis presented in this section. Also, PUBLISH
and SUBSCRIBE messages could be filtered according to a black-list or white-list. But
since this section focuses on message sequence violations, this additional analysis is not
covered at this point.
In case an MQTT connection between a client and the broker breaks down, it can be
re-established and the communication can continue where it broke off, i.e. the client
and the broker still hold the state of the protocol before the connection broke down.
The client has to reconnect with a CONNECT message, which the broker acknowledges
with a CONNACK. The broker can identify a re-connecting MQTT client by its client
ID. The client ID identifies each MQTT client that connects to an MQTT broker and
should be unique per client and broker. When an MQTT connection breaks down, also
the V2X Application-Level Gateway has to keep the relevant state information of this
connection, i.e. the states of all second-level automatons (the lists) and assign it to the
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new connection once the disconnected MQTT client has reconnected with the broker
and continues communication where it broke off. For this, the V2X Application-Level
Gateway also uses the client ID. The state of the top-level automaton is not kept, since
a re-connecting MQTT client can only resume communication after it established an
MQTT connection with the broker, i.e. reached the ”Connected” state after receiving a
CONNACK. The lists of a client’s connection are deleted only after the client disconnects
via MQTT DISCONNECT.

4.4 Application Layer DoS Detection

To realise the detection of application layer DoS attacks in the V2X Application-Level
Gateway the following traffic and packet features identified in chapter 3 are used:

• number of messages per period of time (e.g. requests per second)

• packet inter-arrival time

• packet size

• ratio of packet types (e.g. the ratio of connection requests in MQTT traffic)

• number of connections

To control the traffic with respect to each feature a separate module for each feature is
proposed: a Messages per Period Module, an Inter-arrival Time Module, a Packet Size
Module, a Packet Type Ratio Module and a Connections Limit Module. For each of the
features a threshold can be configured to distinguish DoS traffic from normal traffic.
When the threshold is exceeded, the traffic is identified as DoS traffic and the V2X
Application-Level Gateway can react accordingly, e.g. drop the traffic. Once the traffic
normalises, i.e. is within the configured threshold, the traffic is identified as normal traffic
and again forwarded by the V2X Application-Level Gateway.
The Connections Limit Module limits the number of connections allowed for a service.
Once the configured limit is reached, no more connections for the service are accepted or
established. The Connections Limit Module is integrated into the Connection Manager,
see section 4.1. Since all the other modules are used for controlling the traffic of a single
connection, they are integrated into the Analyzer Component, see section 4.1, of the
respective connection. The Messages per Period Module limits the number of messages
allowed in a configurable period of time, e.g. 10 messages in 1 second. If the number
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of messages received in the configured period exceeds the configured threshold, i.e. the
number of messages allowed, the traffic is identified as DoS traffic. E.g. if 20 messages
are received in 1 second with the above configuration of 10 messages allowed in 1 second,
the messages after the 10-th message are identified as DoS traffic. The Inter-arrival Time
Module specifies the minimum packet inter-arrival time allowed. When the packet inter-
arrival time of received messages drops below this minimum, the traffic is identified as
DoS traffic. E.g. if a minimum packet inter-arrival time of 100 ms is configured and the
inter-arrival time of received consecutive messages is <100 ms the traffic is identified as
DoS traffic. Optionally a period and a number of messages with an inter-arrival time less
than the configured minimum allowed can be specified. E.g. with a configured period
of 1 second, a minimum packet inter-arrival time of 100 ms and a number of messages
allowed of 5, 5 messages with an inter-arrival time less than 100 ms are allowed per
second.
The Packet Size Module specifies an upper bound and lower bound for the size of packets.
Packets with a size out of bounds are identified as DoS traffic. Like in the above module,
optionally a period and a number of packets with a size out of bounds allowed in that
period can be specified. E.g. with a configured period of 1 second and a number of
packets allowed of 10, 10 messages with a size out of bounds are allowed per second.
The Packet Type Ratio Module specifies the allowed ratio of configurable message types
of an application layer protocol, e.g. the ratio of MQTT CONNECT messages in MQTT
traffic. A high proportion of MQTT CONNECT messages is not typical for legitimate
traffic and could indicate a DoS attack. In addition to message types and their respective
ratios, the period of time for which to calculate the ratios has to be configured. In the
MQTT example the proportion of CONNECT messages will naturally be relatively high
in the beginning and not reflect the nature of the traffic, while in time it will drop for
legitimate traffic and remain relatively high in case of DoS traffic and thus be useful for
detecting DoS traffic.
These modules, with the exception of the Packet Type Ratio Module, can be used for any
application using any application layer protocol. The use of the Packet Type Ratio Module
only makes sense when the application layer protocol defines different message types,
like e.g. MQTT. In this work the thresholds are configured statically and learning-based
techniques are not employed, since a static configuration is sufficient for the automotive
use cases covered in this work, i.e. the remote control of a vehicle trunk, receiving traffic
updates and a simple V2V safety service based on ETSI CAMs.
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4.5 Cloud-based Approach

The V2X Application-Level Gateway does not necessarily have to be deployed as one
component in the vehicle. Instead, some functionality could be transferred to the cloud,
see figure 4.16, to relieve the V2X Application-Level Gateway component built into the
vehicle.

Figure 4.16: Cloud-based V2X Application-Level Gateway

In order to keep the delays of the direct V2V and V2I VANET communication low,
it would still be entirely handled by the component built into the vehicle. But all
Internet-based V2X communication could be handled by the cloud-based component.
The vehicle-based component would only communicate with the cloud-based component
over a cryptographically secured link and its only tasks regarding Internet-based traffic
would be handling the encryption and the mapping of external addresses to vehicle in-
ternal addresses. The remaining functionality of the V2X Application-Level Gateway,
like application layer security or access control, would be transferred to the cloud, where
a lot more resources like memory and computing power are available than in a vehicle.
Apart from being able to devote more resources to the transferred tasks, another benefit
is cutting costs by having cheaper devices built in the vehicles and deploying multiple
cloud-based V2X Application-Level Gateway components on one server. With one server
handling multiple vehicles the data integration, which is a necessary step for e.g. a com-
prehensive ”big data” analysis, becomes easier. A downside is the dependency of the
vehicles on the cloud infrastructure.
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In this chapter a prototype implementation of the concept of a V2X Application-Level
Gateway described in chapter 4 is presented.

5.1 Implementation Overview

The prototype implementation serves as a proxy for V2X services, allowing both TCP/IP-
based and WSMP-based communication between vehicle-internal services and external
services. It focuses on providing application layer security, allowing the integration of
different analysis modules securing V2X communication on the application layer. These
analysis modules have to implement a defined interface (”IAnalysis”, see below). The
prototype implementation was written in C++.
It can be divided into 3 layers: a network layer, a buffering layer and an application-
level layer, see figure 5.1. The network layer handles the communication of the V2X

Figure 5.1: Implementation layers
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Application-Level Gateway with other devices via sockets. It supports both the IP stack
and the WSMP stack. The IP stack was implemented using the POCO libraries [96].
Since the POCO libraries do not cover the link layer (OSI layer 2) or other network
layer protocols besides IP, the WSMP stack was implemented based on raw sockets. The
implementation of WSMP for this work only supports WSMs with the mandatory fields
and options necessary for associating the data transported in the payload with an appli-
cation protocol (e.g. ETSI Cooperative Awareness Basic Service).
For performance reasons, to avoid unnecessary copying, data arriving at the V2X Appli-
cation-Level Gateway is directly received into buffers where it can be analysed. These
buffers comprise the buffering layer. The application-level layer encompassing the anal-
ysis modules, accesses this buffering layer directly.
For the prototype the following analysis modules have been implemented: an exemplary
module for the context-sensitive semantic analysis of application data for a service re-
motely controlling the vehicle trunk with commands such as ”open” or ”lock” via HTTPS
(see section 5.2.1), a module for detecting MQTT message sequence violations (see sec-
tion 5.2.3), a module checking the payload size to prevent buffer overflow attacks via
too large payloads, a module controlling the messages per period of time, i.e. the data
rate of a connection, used for application layer DoS detection (as described in chapter 4,
section 4.4) and a module for the context-sensitive semantic analysis of ETSI CAMs (see
section 5.2.2). For the application layer DoS detection for connectionless ETSI CAM
traffic the data rate of each sending vehicle is analysed.
While being aware of the vulnerabilities of TLS [20], to offer some degree of cryptographic
security, SSL (with openssl [91]) is used for securing the TCP/IP-based communication
over the V2X Application-Level Gateway. For cryptographically securing the TCP/IP-
based communication SSL was used, because the POCO libraries used for the implemen-
tation, offer ready to use SSL functionality. Since cryptographic security is not the focus
of this work, the cryptographic layer for the WSMP stack [65] was not implemented.
When the V2X Application-Level Gateway classifies a message as valid, it is forwarded to
its destination. When a message is classified as invalid, the policy defined for the proto-
type is to drop the message and report detected attacks. Since the V2X Application-Level
Gateway will be integrated into a vehicle network as part of the CoRE research group’s
[24] contribution to the SecVI project [105], it reports attacks to an Automotive Cyber
Defense Center in the cloud [73]. The Automotive Cyber Defense Center uses a cloud in-
frastructure to monitor the cyber-security of large vehicle fleets and carry out incidence
responses. IoT Edge technologies allow the security management of each vehicle. By
monitoring a vehicle fleet, attacks can be detected through the correlations of anomalies
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between multiple vehicles that cannot be detected by a single vehicle. The state of a
vehicle’s IT-infrastructure is monitored with security sensors in the car, including the
V2X Application-Level Gateway [73, 81].
Reporting to the Automotive Cyber Defense Center by any component in the vehicle
network is done via a central controller. To report an attack, a component, e.g. the V2X
Application-Level Gateway, has to broadcast an Ethernet frame with the Ether-Type
0xFFAD containing the report. The controller then reports the attack to the Automo-
tive Cyber Defense Center. The V2X Application-Level Gateway prototype includes a
LoggingComponent that handles the reporting of attacks to the Automotive Cyber De-
fense Center.
Also, the following libraries were used: the pugixml library [98] was used for reading
configurations from XML files and serialization was realised with the cereal library [21].
A general overview of the prototype implementation’s key elements realising the main
functionality is depicted in figure 5.2 for the IP stack.

Figure 5.2: Prototype implementation overview (IP stack)

A CustomSocketAcceptor, derived from POCOs SocketAcceptor class, accepts incoming
connection requests, e.g. from a remote trunk control client and creates a Connection
upon accepting, to handle the accepted connection. Via an SSLSocketConnector an SSL
connection to the remote peer, e.g. a remote trunk control server, is proactively estab-
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lished (”Connector-Acceptor Pattern”). The CustomSocketAcceptor and Connection are
called by a POCO SocketReactor whenever a new connection request or application data
arrive, to handle the request or data (”Reactor Pattern”).
Upon creation, the Connection is configured by the ConnectionManager, which uses con-
figured factories to create the appropriate objects (”Factory Pattern”).
Compared to the IP stack, the implementation for the WSMP stack is simpler, see fig-
ure 5.3. A Connection, which is configured by the ConnectionManager, receives Ethernet
frames directly from a network interface via a raw socket and also sends outgoing Ethernet
frames via a raw socket. A Connection consists of a CompositeBuffer for incoming traf-

Figure 5.3: Prototype implementation overview (WSMP stack)

fic and a CompositeBuffer for outgoing traffic, a ConnectionHandler for incoming traffic
and a ConnectionHandler for outgoing traffic writing to and reading from the buffers and
an analyzer module for incoming traffic and an analyzer module for outgoing traffic, see
figure 5.4 (page 73). The ConnectionHandler can either be an SSLConnectionHandler
realising a TCP connection with SSL (on the IP stack) or a WSMPConnectionHandler
based on raw sockets, which extracts the application data from WSMs encapsulated in
Ethernet frames. The ConnectionHandler for incoming traffic writes the data to the
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CompositeBuffer, which notifies the analyzer module whenever it transitions from empty
to not-empty and vice versa, or from not-full to full and vice versa. The analyzer module
reads the data from the CompositeBuffer and performs its analysis and if the data is
valid, it orders the ConnectionHandler for outgoing traffic to read the data from the
CompositeBuffer and send them to the destination, see figure 5.4. For traffic going the
other way round, the Connection works analogously.

Figure 5.4: Connection over V2X Application-Level Gateway

The analyzer module has to implement the interface IAnalysis with an ”analyse”-method
(signature: ”bool analyse(input)”) allowing the integration into a Connection and can be
tailored to a specific application. The analyzer module itself can be one single module
or consist of multiple modules. Generally it consists of a set of rules and checks if the
received data is valid or not, according to the defined set of rules. These rules can apply
to the packet as a whole (e.g. size of the packet), the header or the payload. A rule, or a
set of rules, can be encapsulated in a module implementing the IAnalysis interface and
multiple modules can be combined in an arbitrarily complex Boolean function within the
top-level analyzer module. This modular approach allows the flexible creation of complex
analyses from simpler modules and facilitates maintainability and code re-use.
For an analysis of a (protocol-specific) header or the payload transported by an ap-
plication protocol, e.g. HTTP, a protocol-specific extractor module for extracting the
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relevant information from the message stored in the buffer is necessary, see figure 5.5,
since the buffer only stores ”raw data”. For extracting specific parts of the payload, the

Figure 5.5: UML class-diagram: Extractor used by analyzer modules to extract relevant
information

extractor also has to be application-specific. An analyzer module uses an extractor mod-
ule, implementing the ”IExtractor ” interface, to correctly interpret the data stored in a
CompositeBuffer. E.g. with the HTTPPayloadExtractor the payload of an HTTP mes-
sage can be extracted (without copying) from a CompositeBuffer and then analysed by
the analyzer module. For the MQTT protocol an extractor for extracting data from an
MQTT message, e.g. the MQTT message type and packet identifier, was implemented,
allowing the detection of MQTT message sequence violations by an analyzer module.
For ETSI CAMs an extractor to access the data, e.g. the sending vehicle’s last position,
was implemented.
A CompositeBuffer consists of multiple modules, see figure 5.6 (page 75): a simple buffer
module containing the buffer data accessible via an interface (IDataBuffer), a module
for controlling the read- and write-indices of the buffer module and a module for fill-level
control of the buffer. Components writing to and reading from a CompositeBuffer do
not have to manage the read- and write-indices themselves. Instead, the access method
(e.g. FIFO) is implemented in the BufferAccessIndexControl module (implementing the
IBufferAccessIndexControl interface), which controls how the buffer module (implement-
ing the interface IDataBuffer) stores the data. The CompositeBuffer accesses this data
via the IDataBuffer interface using the indices from the BufferAccessIndexControl mod-
ule. This modularisation facilitates flexibility, maintainability and code re-use.
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Figure 5.6: UML class-diagram: CompositeBuffer

5.2 Stateful Analysis

5.2.1 Context-sensitive Semantic Analysis

For a context-sensitive semantic analysis as described in chapter 4, section 4.2 the an-
alyzer module has to know the relevant context, e.g. the vehicle’s current state, at all
time. In this prototype implementation the vehicle state is decomposed into separate
subsystem states: an abstract vehicle state describing whether the vehicle is driving or
not and the trunk state. The V2X Application-Level Gateway has a ContextModule for
every subsystem holding the subsystem’s current state, see figure 5.7 (page 76). It is no-
tified of every state change in any of the subsystems, so that the ContextModules always
hold the correct states.
An analyzer module can use the ContextModules to check if a given payload is valid in
the current state. E.g. the analyzer module for the remote trunk control realising a valid
function with tables for the trunk and the vehicle state, see tables 5.1 and 5.2 (page 76),
maps a command to the column index of each table (e.g. ”open” to index ”2”) and the
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Figure 5.7: V2X ALG context modules

states from the ContextModules to the line indexes of the respective tables (e.g. ”Closed
& Unlocked” to index ”1” and ”Stopped” to index ”0”) to determine whether the command
is valid in the current state. Only when both tables return true for the given command
it is classified as valid, otherwise it is invalid.

Table 5.1: Table for the valid function for a vehicle trunk
State / Command unlock lock open close
Closed & Locked true false false false
Closed & Unlocked false true true false
Open false false false true

Table 5.2: Table for the valid function for a vehicle trunk dependent on the vehicle’s state
State / Command unlock lock open close
Stopped true true true true
Driving false true false true

The ContextModules hold the state of the vehicle and it is possible to add more modules,
not only describing the vehicle itself, but also the state of the vehicle’s environment, e.g.
whether it is dark or not (day or night).
Normally, the main component for holding the state of the vehicle’s environment is the
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LDM, see chapter 2, section 2.2.3, which contains information on nearby objects (e.g.
nearby vehicles’ positions) and also information on road conditions, such as e.g. ”slip-
pery road”. Since for this work no information on the vehicle’s environment beyond ETSI
CAMs is required and for the semantic analysis of ETSI CAMs it is sufficient to store
the information from the ETSI CAMs in a local object list, see section 5.2.2, the LDM
is not part of the implementation and substituted with the local object list.

5.2.2 Semantic Analysis of ETSI CAMs

The analyzer module for the semantic analysis of ETSI CAMs implemented for the
prototype determines whether an ETSI CAM from a vehicle is valid, based on whether
its data deviates from the expected values, see chapter 4, section 4.2.3. This is done
exemplary for the vehicle’s speed and position.
The ETSI CAM (see chapter 2, section 2.2.2) implementation for this work includes
only selected elements necessary for exemplary realising the semantic analysis of ETSI
CAMs for the prototype. Specifically, the mandatory elements, i.e. the ITS PDU header,
the time-stamp, the Basic Container and the HF Container are included, with the HF
Container containing the mandatory field ”speed” (measured in centimetres per second).
The position coordinates were implemented as x,y-coordinates of a 2-dimensional plane
instead of the WGS 84 (World Geodetic System 1984) to simplify calculations.
For the semantic analysis of ETSI CAMs the analyzer module uses a Physical Model
and a Local Object List, see figure 5.8. A list entry represents the last known state of a
vehicle, i.e. its position and speed. Upon receiving a valid ETSI CAM the corresponding
vehicle in the list is updated. The time-stamp from the ETSI CAM is also stored in the
list entry.

Figure 5.8: ETSI CAM analysis components

The Physical Model contains the thresholds resulting from the laws of physics and the
technical limitations of road vehicles, which for this implementation corresponds to a
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speed limit of 550 km/h, which no road vehicle is expected to exceed in the near future
and a maximum change in position between two consecutive vehicle states derived from
that speed limit. To express the different levels of certainty as to whether an ETSI CAM
is valid or not and to correctly assess a wider range of scenarios, besides the speed limit
of 550 km/h a threshold of 220 km/h was added, see figure 5.9.

Figure 5.9: ETSI CAM analysis thresholds

While a speed of >550 km/h is impossible and an ETSI CAM containing such a speed
is classified as invalid and dropped (and a malicious semantics attack is reported to the
Automotive Cyber Defense Center), a speed of>220 km/h but≤550 km/h is unusual, but
possible e.g. when driving on a highway. An ETSI CAM with such a speed information,
if otherwise valid, is classified as atypical but valid and forwarded with a warning sent
to the Automotive Cyber Defense Center. An ETSI CAM containing a speed of ≤220
km/h is classified as valid and forwarded normally.
With the reception of every ETSI CAM the change in position 4x is calculated using
the position information from the ETSI CAM and the last known position from the Local
Object List. Also the time elapsed between the update of the last known position and the
current position, 4t, is calculated using the time-stamps in the Local Object List and the
received ETSI CAM. The current speed and the speed in the previous state are obtained
from the ETSI CAM and the Local Object List respectively. With this information it
is checked whether the position and speed information of an ETSI CAM are consistent
with the physical model defined in chapter 4, section 4.2.3, i.e. ”4x ≤ smax · 4t”. ETSI
CAMs that are consistent with the physical model are classified as valid and forwarded
normally. When an ETSI CAM is found to be inconsistent with the physical model it
is classified as invalid and dropped and a malicious semantics attack is reported to the
Automotive Cyber Defense Center. To account for a possible inaccuracy of the speed
and position data, a configurable tolerance δ is used, see figure 5.9. An ETSI CAM with
data inconsistent with the physical model, but not exceeding the threshold including the
tolerance, is classified as atypical but valid and forwarded with a warning sent to the
Automotive Cyber Defense Center.

78



5 Prototype Implementation

5.2.3 Protocol Message Sequence Violation

Exemplary modules, one for incoming and one for outgoing traffic, for detecting protocol
message sequence violations have been implemented for the MQTT protocol, following
the concept described in chapter 4, section 4.3. The valid function for both incoming
broker-to-client and outgoing client-to-broker traffic was realised with the respective ta-
bles (see table 5.3 and table 5.4 on page 79). The message type of the analysed MQTT
message is mapped to a column index (e.g. CONNECT to index ”0”) and the current
protocol state is mapped to a line index (e.g. ”Unconnected” to index ”0”) resulting in
a Boolean value saying whether messages with the given message type (from either an
MQTT client or broker) are valid in the current protocol state or not.

Table 5.3: Table for the valid function for the MQTT protocol (client-side)
Message / State Unconnected Connecting Connected
CONNECT true false false
CONNACK false false false
PUBLISH false false true
PUBACK false false true
PUBREC false false true
PUBREL false false true
PUBCOMP false false true
SUBSCRIBE false false true
SUBACK false false false
UNSUBSCRIBE false false true
UNSUBACK false false false
DISCONNECT false false true

For messages that in addition to their message type also need their packet ID checked to
determine whether they are valid (e.g. PUBACK or SUBACK ), additionally the Client
to Broker List or Broker to Client List is checked. So for e.g. a PUBACK message first
the table checks whether a message with the message type PUBACK is generally allowed
in the current MQTT protocol state (e.g. ”Connected”) and if it is, the list is used to
check whether the PUBACK message is valid based on its packet ID.
There is a Client to Broker List and Broker to Client List (each including the (sub-) lists
required for messages with QoS 2 ) for every client ID to allow continuous operation in
the event of an MQTT connection breaking down and the client re-connecting with the
broker (over the V2X Application-Level Gateway) and resuming communication where
it broke off.
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Table 5.4: Table for the valid function for the MQTT protocol (broker-side)
Message / State Unconnected Connecting Connected
CONNECT false false false
CONNACK false true false
PUBLISH false false true
PUBACK false false true
PUBREC false false true
PUBREL false false true
PUBCOMP false false true
SUBSCRIBE false false false
SUBACK false false true
UNSUBSCRIBE false false false
UNSUBACK false false true
DISCONNECT false false false

The lists and the protocol state are held in a separate component, the MQTT state
module, used by both the broker-to-client and client-to-broker modules to analyse the
MQTT messages, see figure 5.10.

Figure 5.10: MQTT protocol analysis components

The MQTT protocol state is modelled with a finite state machine (FSM) using an effi-
cient implementation of the state pattern [94]. In this state pattern implementation each
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state of an FSM is a separate struct derived from a common base struct, see listing 5.1.
Each state is identified by a unique state code and has to implement all possible transi-
tions to other states. The change of states is realised with the placement operator new.
The state pattern was chosen for its clarity, extensibility and maintainability. The state
is updated with every valid incoming or outgoing MQTT message.

Listing 5.1: State pattern: MQTT protocol

struct IMQTTProtocolState {
///Unique MQTT s t a t e code f o r the s t a t e ( used as va l i d−t a b l e l i n e index ) .
uint8_t stateCode ;

//Process the message CONNECT.
virtual void s igna lConnect ( ) = 0 ;

//Process the message CONNACK.
virtual void s ignalConnack ( ) = 0 ;
. . .
//Process the message DISCONNECT.
virtual void s i gna lD i s connec t ( ) = 0 ;

} ;

class MQTTAbstractFSM{
protected :

///MQTT pro t o co l "Unconnected" s t a t e . This i s the i n i t i a l s t a t e .
struct Unconnected : public IMQTTProtocolState{

///Constructor .
Unconnected ( ){

std : : cout<<"Unconnected"<<std : : endl ;
stateCode = 0 ;

}

// Trans i t ion to "Connecting " .
void s igna lConnect ( ) ov e r r i d e {

new( this ) Connecting ;
}

// In v a l i d !
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void s ignalConnack ( ) ove r r i d e {}

. . .

// S e l f t r a n s i t i o n : a l r eady d i sconnec ted .
void s i gna lD i s connec t ( ) ov e r r i d e {}

} ;

//Remaining s t a t e s : ’ ’ s t r u c t Connecting ’ ’ , ’ ’ s t r u c t Connected ’ ’ .
. . .

//The current s t a t e .
Unconnected p ro to co l S t a t e ;

//Pointer to curren t s t a t e .
IMQTTProtocolState ∗ s t a t ePo in t e r ;

public :

//Constructor .
MQTTAbstractFSM ( ) : s t a t ePo in t e r (&pro to co lS t a t e ){}

// De lega t e s the message CONNECT to the curren t s t a t e .
void s igna lConnect ( ){

s ta t ePo in te r−>signa lConnect ( ) ;
}

// De lega t e s the message CONNACK to the current s t a t e .
void s ignalConnack ( ){

s ta t ePo in te r−>signalConnack ( ) ;
}

. . .
} ;
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5.3 Service Registration with the V2X Application-Level
Gateway

To communicate via the V2X Application-Level Gateway services running in the in-
vehicle network have to register with it. This is done via Remote Method Invocation
(RMI) over a specified interface, see figure 5.11. A remote client, e.g. running on an
ECU, can register V2X services with the V2X Application-Level Gateway by calling
the ”registerService”-method of the contract interface ”IServiceRegistration” implemented
by a V2XServiceRegistration stub, which takes a service’s name, version, role (service
provider or consumer), provider address (in case of IP-based services the provider IP),
provider port and application layer protocol (e.g. HTTP) as parameters.
A skeleton on the V2X Application-Level Gateway’s side then does the unmarshalling and
calls the remote implementation registering the V2X service with the V2X Application-
Level Gateway. This registration is done via HTTPS to offer some degree of cryptographic
security.

Figure 5.11: V2X service registration via RMI
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In this chapter the developed prototype implementation of the V2X Application-Level
Gateway is evaluated. It is shown that the V2X Application-Level Gateway protects
the vehicle from attacks via V2X identified in chapter 3, section 3.2: attacks based on
malicious semantics, application layer protocol message sequence violations, application
layer DoS attacks and buffer overflow attacks.
The attacks are executed exemplary for the following application layer protocols: HTTP,
MQTT and the ETSI Cooperative Awareness Basic Service. The following applications,
developed for the evaluation, were attacked: an application for remotely controlling the
vehicle trunk via HTTPS, one for receiving and displaying subscribed traffic updates
(e.g. congestion warnings) via MQTT and a simple V2V traffic safety service using
ETSI CAMs.

6.1 Overview

For the evaluation the prototype implementation of the V2X Application-Level Gateway
was deployed in a test network representing an internal vehicle network, see figure 6.1,
page 85. The network consists of an Edgecore SDN switch which connects multiple
Intel NUCs and Raspberry Pis representing vehicle ECUs. With this network the use
of Ethernet technology and Software-defined networking (SDN) in combination with
security mechanisms, like e.g. anomaly detection, in future vehicle networks is evaluated
by the CoRE research group [24] as part of the SecVI project [105]. The goal is a low-
complexity, robust and secure in-vehicle network satisfying the requirements of future
vehicles like sufficient bandwidth and connectivity.
The V2X Application-Level Gateway is part of such a network protecting it as a first line
of defence against attacks from the outside world. The HTTPS remote trunk control, the
MQTT traffic update service and the V2V traffic safety service using ETSI CAMs were
also deployed in this network. After successful evaluation, the internal vehicle network
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developed by the CoRE research group is deployed in the SecVI demonstration vehicle,
see figure 6.2, page 86.
For the evaluation of the V2X Application-Level Gateway, application layer attacks via
V2X on these applications were simulated. When the V2X Application-Level Gateway
classifies a message as invalid, which indicates an attack, the policy defined for the
prototype is to drop the message and report the attack to the Automotive Cyber Defense
Center (see chapter 5, section 5.1).

Figure 6.1: In-vehicle test network

Besides the V2X Application-Level Gateway prototype the following 9 components were
implemented and deployed in the evaluation:

• Trunk Control Server: allows a remote client to control a simulated vehicle
trunk via a set of defined commands.

• Trunk Control Client: for remotely controlling a vehicle trunk via a set of defined
commands.

• V2X Service Registrator: allowing to register V2X services via HTTPS with
the V2X Application-Level Gateway.
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• Vehicle-State Control: holds the vehicle state (”driving” or ”stopped”) and no-
tifies registered observers upon any state change.

• MQTT Traffic Update Publisher: for publishing traffic updates (e.g. conges-
tion warnings).

• MQTT Traffic Update Subscriber: for receiving and displaying traffic updates.

• Malicious MQTT Broker: a rudimentary MQTT broker that can be configured
to violate the MQTT protocol message sequence.

• ETSI CAM Generator: generates and sends ETSI CAMs coming from multiple
(simulated) sources: an attacker and several regular vehicles.

• V2V Traffic Safety Service: receives ETSI CAMs and displays safety-relevant
information on the nearby objects (position and current speed).

Figure 6.2: SecVI project demonstration vehicle

The trunk control server allows a remote client to connect and control the simulated
trunk with the following set of simple commands: ”unlock”, ”open”, ”close” and ”lock”. It
holds the state of the trunk (possible states: ”closed and locked”, ”closed and unlocked”
and ”open”), which changes upon receiving the appropriate command, see figure 6.3
(page 87). Multiple observers can register to be notified via HTTPS by the trunk control
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Figure 6.3: Trunk control state machine implemented by the trunk control server

server upon any state change. The trunk control client connects to a trunk control server
and sends the commands allowing remote trunk control to it. Additionally the trunk
control client can send malformed payloads, i.e. invalid commands. The communication
between trunk control server and client is via HTTPS. The vehicle-state control holds the
state of the vehicle (possible states: ”driving” and ”stopped”), which can be switched via
keyboard. Multiple observers can register to be notified via HTTPS by the vehicle-state
control upon any state change.
The MQTT traffic update publisher publishes traffic updates, such as congestion warn-
ings, via the malicious MQTT broker. The MQTT traffic update subscriber can subscribe
to traffic updates and displays the received updates. The malicious MQTT broker allows
clients to publish and subscribe and can be configured to violate the MQTT protocol,
e.g. by sending a SUBACK message without a prior SUBSCRIBE message from a client.
The ETSI CAM generator can be configured to generate and send ETSI CAMs coming
from multiple (simulated) sources: an attacker and several regular vehicles. An ETSI
CAM contains basic information from the sending entity such as its ID, the latest posi-
tion and its current speed. The ETSI CAMs of the regular vehicles are generated based
on a configurable initial position and a constant driving speed. For the attacker the ETSI
CAM generator can generate ETSI CAMs with either typical data, atypical data (e.g.
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very high, but still realistic, speed), or malicious semantic (i.e. invalid data). It can
generate 2 types of ETSI CAMs with malicious semantics:

• ETSI CAMs that ignore the technical limitations of modern vehicles containing
values that exceed values imaginable for road vehicles in the near future, e.g. a
vehicle speed greater than 550 km/h, which can be detected using stateless analysis.

• ETSI CAMs that contradict the laws of physics or ignore the technical limitations
of modern vehicles by containing values that deviate too much from the values
possible based on the previous state of the object, e.g. when the distance between
the position from the ETSI CAM and the previous position exceeds the distance
possible when driving with maximum speed. Detecting these ETSI CAMs requires
stateful analysis.

The V2V traffic safety service receives ETSI CAMs from the ETSI CAM generator and
displays safety-relevant information on the nearby simulated vehicles (position and cur-
rent speed).
The trunk control client, the MQTT traffic update publisher and the ETSI CAM gener-
ator can be configured to perform both application layer DoS attacks and buffer overflow
attacks, i.e. sending a message exceeding the size allowed by a given application. The
trunk control server, V2X service registrator and vehicle-state control were run on the
Zonal Controller Rear Left, the MQTT traffic update subscriber was run on the Zonal
Controller Front Right and the basic V2V traffic safety service was run on the Zonal
Controller Rear Right, see figure 6.1, page 85. The trunk control client, MQTT traffic
update publisher, malicious MQTT broker and ETSI CAM generator were run outside
the in-vehicle network.
Figure 6.4, page 89, shows the general setup of the described components. With this
setup the V2X Application-Level Gateway was evaluated by analysing the traffic in the
following simulated V2X scenarios including attacks. The general application layer at-
tacks identified in chapter 3, section 3.2 are:

• buffer overflow attacks

• malformed messages

• messages violating the application layer protocol message sequence

• messages with malicious content

• application layer DoS attacks
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Figure 6.4: Schematic setup for the evaluation of the V2X Application-Level Gateway

Since this work focuses on the semantic analysis of application data, attacks based on
malicious semantics were picked as representatives of messages with malicious content.
To cover attacks on the application layer protocol itself and not only attacks on applica-
tion data, a violation against the MQTT protocol message sequence is included, since of
the used application layer protocols, MQTT is most suitable for such attacks. Applica-
tion layer DoS attacks are included due to being an attack class distinct from malicious
messages because of their attack pattern, i.e. a flood of messages harmless in themselves
as opposed to a single harmful message. For a broader coverage of attacks based on
malicious messages, buffer overflow attacks are also included.

6.2 Attacking the HTTPS Remote Trunk Control Service

The remote control of the vehicle trunk via HTTPS was simulated and attacked. The
attacks in this scenario were:
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1. attacks based on malicious semantics requiring a context-sensitive semantic analysis

2. buffer overflow attacks, here, messages with a payload that exceeds the maximum
payload size allowed by the application

3. an application layer DoS attack

The V2X Application-Level Gateway was tested by sending commands to it from the
trunk control client. To define the test classes for the evaluation of the context-sensitive
semantic analysis of a remote trunk control, the possible input, in the form of a received
event σ in an arbitrary (non-error) trunk state, was classified based on the outcome of
the valid function defined in chapter 4, section 4.2.2. This is done for both the vehicle
trunk viewed as an isolated system and as part of a driving vehicle, see figure 6.5. When
the vehicle trunk (viewed as an isolated system) is in an arbitrary (non-error) state s
and receives an event σ, this event can either be in the set of known trunk commands,
i.e. be an element of the trunk alphabet Σ (σ ∈ Σ), or it can be an unknown command
(σ /∈ Σ), for which the valid function valid(s, σ) is always false (test class 4 ). An event
σ ∈ Σ is a valid command when valid(s, σ) is true, which is the case when σ triggers a
transition to a valid trunk state, i.e. δ(s, σ) 6= ∅. When an event σ ∈ Σ does not trigger
a transition to a valid trunk state, valid(s, σ) is false and σ is an invalid command,
regardless of the context the trunk operates in (test class 2 ).

Figure 6.5: Defining test classes for the evaluation of the semantic analysis of a remote
trunk control

The trunk, as part of a vehicle, is a dependent system (where the set of states is called
Sd and the alphabet Σd), which is affected by the vehicle (an affecting system with a
set of states Sa and an alphabet Σa). I.e. the trunk’s behaviour also depends on the
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state of the vehicle sa ∈ Sa. When the vehicle is in driving state (sa == driving), the
trunk’s behaviour differs from its behaviour as an isolated system, e.g. it cannot be
opened. When the vehicle is not in driving state, the trunk behaves in the same way it
would behave as an isolated system, which is why for the further definition of test classes
only the driving state is considered. When the trunk is in an arbitrary (non-error) state
sd and the vehicle is driving, which corresponds to a system state sd,driving, a received
event σ can be an element of the trunk alphabet Σ (σ ∈ Σd), or it can be an unknown
command (σ /∈ Σd), for which the valid function valid(sd,driving, σ) is always false (test
class 4 ). An event σ ∈ Σd is a valid command when valid(sd,driving, σ) is true (test class
1 ) and invalid when valid(sd,driving, σ) is false (test class 2 ). Summarising, whether
a known command is valid, depends on both the trunk and vehicle state, while invalid
commands can be distinguished into commands being invalid depending on both the
trunk and vehicle state, or just the trunk state. So for this evaluation 4 test classes of
commands were defined:

1. valid commands

2. commands invalid independently from the context, such as the ”lock”-command in
”open”-state

3. commands invalid only in a certain context, such as the ”open”-command in ”closed
and unlocked”-state with the vehicle in ”driving”-state

4. unknown commands, such as ”xyz”, which are invalid per se

These test classes cover all possible attacks on the semantics of remotely controlling a
vehicle trunk. Buffer overflow attacks and an application layer DoS attack are also per-
formed. The V2X Application-Level Gateway is expected to forward all valid commands
to the trunk control server and drop all invalid commands. It is also expected to drop
the buffer overflow attack messages and all application layer DoS messages during such
an attack. Also, all attacks should be reported to the Automotive Cyber Defense Center.
In the tests commands from all 4 test classes were sent with the vehicle either stopped
or in driving state, see the sequence diagram in figure 6.6, page 92.
First the V2X Application-Level Gateway registered itself with the trunk control server
and vehicle-state control to receive notifications upon state changes, so that it holds
the vehicle state correctly at all time, which is necessary for the context-sensitive se-
mantic analysis. Then the V2X service registrator registered the remote trunk control
service with the V2X Application-Level Gateway, so that it can serve as a proxy for the
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Figure 6.6: Sequence of the evaluation in the remote trunk control scenario

trunk control server and client. Next, the trunk control client connected to the V2X
Application-Level Gateway, which proactively established a connection to the trunk con-
trol server. Now the trunk control client can remotely control the vehicle trunk via the
V2X Application-Level Gateway.
First, valid commands (test class 1 ) were sent with the vehicle state being ”stopped”.
They were all forwarded, which is the expected correct behaviour. Next, some invalid
commands, such as the ”lock”-command in ”open”-state and the ”open”-command in
”closed and locked”-state (test class 2 ) and unknown commands (test class 4 ), were
sent, with the vehicle state being ”stopped”. They were all dropped, which is the ex-
pected correct behaviour.
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Then the vehicle state was switched to ”driving”. First valid commands (test class 1 )
were sent and then invalid commands were sent. Of the invalid commands some were un-
known (test class 4 ), invalid independently from the context, such as the ”lock”-command
in ”open”-state (test class 2 ), while others were only invalid with the vehicle in ”driving”-
state, such as the ”open”-command in ”closed and unlocked”-state (test class 3 ). The
valid commands were all forwarded, while all invalid commands were dropped, which is
the expected correct behaviour. Also, all attacks were reported to the Automotive Cyber
Defense Center.
Next, buffer overflow attacks and an application layer DoS attack were launched, see the
sequence diagram in figure 6.6, page 92. First, 400 buffer overflow messages were sent,
which were dropped by the V2X Application-Level Gateway, see figure 6.7. Then an
application layer DoS attack was launched, sending an amount of commands per second,
which exceeds the number of messages per second allowed for the remote trunk control.
Here 10 was configured as a maximum threshold, which is seen as a realistic value still
covering the scenario of a panicked user pressing the button multiple times, which rep-
resents the highest possible valid traffic rate. The DoS rate was 20 messages per second
and 1000 DoS messages were sent (resulting in an attack duration of ∼50 seconds). After
some time valid messages were sent again. The V2X Application-Level Gateway dropped
all DoS messages during the DoS attack, see figure 6.7. It forwarded all valid messages
after the application layer DoS attack. Also, the buffer overflow and application layer
DoS attacks were reported to the Automotive Cyber Defense Center.

Figure 6.7: Sent and dropped application layer DoS and buffer overflow messages
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6.3 Attacking the MQTT Traffic Update Service

A service for traffic updates via MQTT was simulated. The attacks in this scenario
were:

1. attacks based on protocol message sequence violation requiring a stateful analysis

2. buffer overflow attacks, here, messages with a payload that exceeds the maximum
payload size allowed by the application

3. an application layer DoS attack

A buffer overflow attack does not necessarily have to be realised via the payload. E.g.
with MQTT PUBLISH messages an attacker could insert a topic with a length exceed-
ing the maximum length the MQTT client (or broker) can handle. The topic is always
preceded by a field declaring the length of the topic and any receiver will only process the
amount of bytes specified in that topic length field, with most implementations probably
checking if the value of the topic length field exceeds the topic length the receiver can
handle. For the payload, no such field declaring the length exists, making it more likely
for an implementation not to check the payload size than not to check the topic length.
This higher probability of a successful buffer overflow attack via the payload is the reason
why it was chosen as a representative of buffer overflow attacks.
From the perspective of an attacker the MQTT messages most suited for an application
layer DoS attack against an MQTT client are PUBLISH messages with QoS 2, since ad-
ditionally to a payload the client might process, it is required to acknowledge the message
with a PUBREC and then await an acknowledgement for that PUBREC, which again
has to be acknowledged. But from the perspective of the V2X Application-Level Gate-
way prototype implementation, which realises an application layer DoS detection based
solely on the traffic rate, it makes no difference whether an application layer DoS attack
is realised with PUBLISH messages with QoS 2 or QoS 0, since incoming messages are
classified as DoS traffic based only on their traffic rate. This is why for this evaluation
the application layer DoS attack was realised with PUBLISH messages with QoS 0.
To define the test classes for the evaluation of the detection of message sequence vio-
lations, the MQTT protocol message sequence was divided into sub-sequences. Each
sub-sequence consists of a number of consecutive MQTT messages (e.g. sub-sequence:
{CONNECT, CONNACK} consisting of 2 messages) and there is no overlapping of the
sub-sequences, i.e. for 2 sub-sequences the intersection is ∅ (e.g. {CONNECT, CON-
NACK} ∩ {PUBLISH (QoS1 ), PUBACK} = ∅). Every sub-sequence covers one of the

94



6 Evaluation

automatons to model the MQTT protocol defined in chapter 4, section 4.3, figure 4.13
(page 60). To avoid overlapping, the top-level automaton (see chapter 4, section 4.3,
figure 4.12 (page 59) is redefined as a set of smaller automatons, see figure 6.8.

Figure 6.8: MQTT top-level automaton redefinition for sub-sequence automatons

For every MQTT message mi in a sub-sequence it is checked for every possible subsequent
message mi+1 whether mi+1 violates the defined protocol sequence, see figures 6.9 to 6.11,
pages 95 and 96 (the colour red indicates a sequence violation, the colour green indicates
adherence to the protocol sequence). A message mi+1 violates the defined protocol se-
quence when it does not correspond to a transition in the respective automaton from
chapter 4, section 4.3 (or in case of the top-level automaton its redefinition in figure 6.8).
For the CONNECT message (m0) the subsequent message (m1) can either be CON-
NACK or another message, which would be a sequence violation, because in this case
only CONNACK corresponds to a transition in the respective automaton, see figure 6.8.

Figure 6.9: Defining test classes for the evaluation of message sequence violation detection
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Analogously for e.g. a PUBLISH (QoS1 ) message (m0) with a packet identifier x (ID: x ),
the subsequent message (m1) can either be a PUBACK with a matching packet identifier
(ID = x ), or an ID 6= x, or another message. In this case the latter two are sequence
violations, since neither corresponds to a transition in an automaton, with ID 6= x being
an ID for which there is no outstanding acknowledgement.

Figure 6.10: Defining test classes for the evaluation of message sequence violation detec-
tion

Figure 6.11: Defining test classes for evaluating message sequence violation detection

Note that the goal of the above analysis is to derive test classes for the evaluation of
the detection of protocol message sequence violations defined in chapter 4, section 4.3.
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Therefore, to derive test classes, every sub-sequence (and the corresponding automaton)
is treated separately here. So e.g. the correct MQTT sequence, where after a SUB-
SCRIBE has been sent, a PUBLISH QoS1 is sent and after that the corresponding
PUBACK and SUBACK is received, is divided into the two parallel sub-sequences here:
SUBSCRIBE and corresponding SUBACK on the one hand and PUBLISH QoS1 and
the corresponding PUBACK on the other hand.
Since a violation by the deliberate lack of a reply by the broker cannot be detected by
the V2X Application-Level Gateway, it is not considered in this evaluation. Also, since
this work classifies messages with unmatched topics as messages with malicious content
and not protocol message sequence violations, they are not covered in the evaluation.
For the evaluation of detecting protocol message sequence violations 4 test classes of
messages were defined:

1. messages adhering to the defined sequence classified based on their message type
only (e.g. CONNECT )

2. messages adhering to the defined sequence classified based on both their message
type and packet ID (e.g. a SUBACK corresponding to a SUBSCRIBE )

3. messages violating the defined sequence classified based on their message type only
(e.g. a SUBACK without a prior CONNACK )

4. messages violating the defined sequence classified based on both their message type
and packet ID (e.g. a SUBACK without a prior matching SUBSCRIBE )

To cover the defined test classes, using MQTT with QoS 0 is sufficient. The V2X
Application-Level Gateway is expected to forward all messages adhering to the MQTT
protocol sequence and to drop all messages violating the MQTT protocol sequence. It is
also expected to drop all buffer overflow attack messages and all application layer DoS
messages. Also, all attacks should be reported to the Automotive Cyber Defense Center.
Once the V2X service registrator has registered the MQTT traffic update service with
the V2X Application-Level Gateway, so that it can serve as a proxy for the MQTT traffic
update subscriber and the malicious MQTT broker, the MQTT traffic update subscriber
connected to the V2X Application-Level Gateway which proactively established a con-
nection to the malicious MQTT broker, see the sequence diagram in figure 6.12, page 98.
The malicious MQTT broker answered the CONNECT with a SUBACK first, violating
the defined protocol sequence and then correctly acknowledged the connection request
with a CONNACK (covering test classes 1 and 3 ). The MQTT traffic update publisher
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Figure 6.12: Sequence of the evaluation in the traffic update scenario

also connected to the malicious MQTT broker. Now the MQTT traffic update pub-
lisher is ready to publish traffic updates via the malicious MQTT broker and the MQTT
traffic update subscriber is ready to subscribe to receive traffic updates via the V2X
Application-Level Gateway and the malicious MQTT broker. The MQTT traffic update
subscriber subscribed to receive traffic updates and the malicious MQTT broker first
violated the message sequence of the MQTT protocol by sending a SUBACK message
with an invalid packet ID to the MQTT traffic update subscriber (covering test class 4 ),
but then correctly acknowledged the SUBSCRIBE with a SUBACK with a matching
packet ID (covering test class 2 ).
Next, the MQTT traffic update publisher published several traffic updates with the topic
the subscriber subscribed to. All valid messages, i.e. adhering to the defined protocol
sequence, were forwarded by the V2X Application-Level Gateway, while all invalid mes-
sages, i.e. violating the defined protocol sequence, were dropped.
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Next, buffer overflow attacks and an application layer DoS attack were launched by
the MQTT traffic update publisher, see the sequence diagram in figure 6.12, page 98.
First, 100 buffer overflow messages were published, which were dropped by the V2X
Application-Level Gateway, see figure 6.13. Then the application layer DoS attack was
launched by publishing an amount of traffic updates per period, which exceeds the num-
ber of messages allowed per period for the traffic update service. Here 1 was configured
as a maximum threshold for a period of 1 second, which is seen as realistic for receiving
traffic updates. The DoS rate was 2 messages per second and 200 DoS messages were
sent (resulting in an attack duration of ∼100 seconds). After some time regular traffic
updates were sent again. The V2X Application-Level Gateway dropped all DoS messages
during the DoS attack, see figure 6.13. It forwarded all valid messages after the appli-
cation layer DoS attack. Also, the message sequence violations, the buffer overflow and
application layer DoS attacks were reported to the Automotive Cyber Defense Center.

Figure 6.13: Sent and dropped application layer DoS and buffer overflow messages

6.4 Attacking the ETSI CAM V2V Traffic Safety Service

A V2V traffic safety service using ETSI CAMs was simulated. The attacks in this scenario
were:

1. attacks based on malicious semantics requiring a semantic analysis
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2. buffer overflow attacks, here, messages with a payload that exceeds the maximum
payload size allowed by the application

3. an application layer DoS attack

The test classes for the evaluation of the semantic analysis of ETSI CAMs were defined
based on the analysis in chapter 4, section 4.2.3. The following 5 test classes were
defined:

1. valid ETSI CAMs containing correct data

2. ETSI CAMs that ignore the technical limitations of modern vehicles containing
values that exceed values imaginable for road vehicles in the near future, which can
be detected using stateless analysis

3. ETSI CAMs containing values that are realistic, but only typical in extreme situ-
ations and suspicious in a normal situation

4. ETSI CAMs that contradict the laws of physics or ignore the technical limitations
of modern vehicles by containing values that deviate too much from the values
possible based on the previous state of the object, which can be detected using
stateful analysis

5. ETSI CAMs containing values that deviate from the values expected in a normal
situation, based on the previous state of the object, but still are in accordance with
the laws of physics and the technical limitations of modern vehicles

Specifically, for representing the second and third test class, ETSI CAMs containing
vehicle speeds of more than 550 km/h and 220 km/h respectively, were chosen. For rep-
resenting the fourth test class, ETSI CAMs containing conflicting vehicle position and
speed information were chosen, i.e. vehicle positions and speeds that deviate from the
expected values. E.g. when the position change is 25 m for a given time interval, but the
speed during this time interval did not exceed 10 m/s, this contradicts the model defined
in chapter 4, section 4.2.3. For the fifth test class also ETSI CAMs with contradicting
vehicle positions and speeds were chosen. However, for this test class the deviations are
small enough so that with the configured tolerance δ the data is classified as atypical but
still valid.
The ETSI CAM generator sends ETSI CAMs of each test class to the V2X Application-
Level Gateway, see the sequence diagram in figure 6.14, page 101. The V2X Application-
Level Gateway is expected to forward all valid ETSI CAMs and to drop all invalid ETSI
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Figure 6.14: Sequence of the evaluation in the traffic update scenario

CAMs. It is also expected to drop all buffer overflow attack messages and all applica-
tion layer DoS messages. Also, all attacks should be reported to the Automotive Cyber
Defense Center.
First the V2X service registrator registered the V2V traffic safety service with the V2X
Application-Level Gateway, so that it can serve as a proxy for the V2V traffic safety ser-
vice and the ETSI CAM generator simulating several vehicles sending ETSI CAMs. Next,
the ETSI CAM generator generated and sent valid ETSI CAMs, The V2X Application-
Level Gateway classified them as valid and forwarded them normally. Then the ETSI
CAM generator (specifically the attacker component) generated and sent ETSI CAMs
containing vehicle speeds of more than 550 km/h and 220 km/h respectively, covering test
classes 2 and 3. The V2X Application-Level Gateway classified ETSI CAMs containing
speeds >550 km/h as invalid, dropped them and reported an attack to the Automo-
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tive Cyber Defense Center. ETSI CAMs containing speeds >220 km/h but ≤550 km/h
were classified as valid and forwarded, but a warning was sent to the Automotive Cyber
Defense Center. Next, ETSI CAMs with a vehicle position where the change from the
previous position exceeds the distance possible when driving with the given speed (i.e.
4x > smax · 4t + δ) were generated and sent, covering test class 4. They were classified
as invalid, dropped and reported to the Automotive Cyber Defense Center. Then ETSI
CAMs with a vehicle position where the change from the previous position exceeds the
distance possible when driving with the given speed, but still falls below the threshold
including the tolerance (i.e. smax · 4t < 4x ≤ smax · 4t + δ) were generated and sent,
covering test class 5. They were classified as valid and forwarded, but a warning was
sent to the Automotive Cyber Defense Center.
Next, buffer overflow attacks and an application layer DoS attack were launched by the
ETSI CAM generator (specifically the attacker component), see the sequence diagram in
figure 6.14, page 101. First, 400 buffer overflow messages were sent, which were dropped
by the V2X Application-Level Gateway, see figure 6.15. Then the application layer DoS
attack was launched by sending an ETSI CAM each 50 ms thereby exceeding the 100
ms allowed between two consecutive ETSI CAMs. During the attack 1000 DoS messages
were sent. After some time valid ETSI CAMs were sent again. The V2X Application-
Level Gateway dropped all DoS messages during the DoS attack, see figure 6.15. It
forwarded all valid messages after the application layer DoS attack. Also, the buffer
overflow- and application layer DoS attacks were each reported to the Automotive Cyber
Defense Center.

Figure 6.15: Sent and dropped application layer DoS and buffer overflow messages
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6.5 Summary

Table 6.1 summarises the evaluation. For the given application protocols HTTPS, MQTT
and ETSI CAMs of the ETSI Cooperative Awareness Basic Service all performed attacks,
namely buffer overflow attack, protocol message sequence violation, application layer DoS
attack and malicious semantics, were detected and the messages dropped by the V2X
Application-Level Gateway, while all valid messages were forwarded as expected. This
shows that the stateful analysis presented in chapter 4 allows the realisation of both a
context-sensitive semantic analysis and the detection of protocol message sequence vio-
lations. The developed prototype meets the requirements of providing application layer
security, proxy-functionality and supporting both IP-based and not IP-based application
layer protocols for V2X communication.

Table 6.1: Evaluation overview: protocols and detected attacks
Attack HTTPS MQTT ETSI CAM
Buffer overflow X X X
Message sequence violation - X -
Malicious Semantics X - X
Application layer DoS X X X

Xperformed and detected
- not performed
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In this work the concept of a V2X Application-Level Gateway was developed. The main
requirements of such a gateway are that it offers application layer security of the V2X
communication, including the context-sensitive semantic analysis of application data,
detection of application layer protocol violations and detection of application layer DoS
attacks, as well as proxy functionality and cryptographic security. It has to support both
IP-based application protocols and application protocols based on V2X-specific network-
and transport layer protocols, such as the ETSI Cooperative Awareness Basic Service,
which can be based on WSMP. Additionally it enables bandwidth control of V2X traffic
and a role-based access to in-vehicle resources via ACLs.
From these requirements the architecture of the V2X Application-Level Gateway, which
is based on the general best-practice application-level gateway software architecture from
[101], was derived. Based on this concept, a prototype was developed. The prototype
implementation offers the following functionality: it serves as a proxy for V2X services,
allowing both TCP/IP-based communication and WSMP-based communication between
vehicle-internal services and external services. It allows the integration of modules se-
curing V2X communication on the application layer. These modules have to implement
a defined interface to be integrated into the V2X Application-Level Gateway. For the
prototype the following modules have been implemented: an exemplary module for the
context-sensitive semantic analysis of application data for a service remotely controlling
the vehicle trunk via commands such as ”open” or ”lock”, a module for detecting MQTT
protocol violations, a module checking the payload size to prevent buffer overflow attacks
via oversized payloads, a module for application layer DoS detection controlling the data
rate of application messages, i.e. messages per period of time and a module for the se-
mantic analysis of ETSI CAMs. To offer some degree of cryptographic security SSL is
used for securing TCP/IP-based communication.
The implementation was evaluated with the V2X Application-Level Gateway software
run on an Intel NUC integrated in a test network representing an internal vehicle net-
work, which was developed by the CoRE research group [24]. In this network, consisting
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of an Edgecore SDN switch and Intel NUCs and Raspberry Pis representing vehicle ECUs,
several V2X scenarios including attacks were simulated. This test network will be de-
ployed in a test vehicle as part of the SecVI project [105]. For the tests 3 applications
were developed: one for remotely controlling the vehicle trunk via HTTPS, one for receiv-
ing traffic updates (e.g. congestion warnings) via MQTT and a basic V2V traffic safety
service using ETSI CAMs. The vehicle trunk remote control service was attacked with
malformed messages, i.e. invalid commands, and malicious semantics, e.g. the ”open”
command while the vehicle is driving. The traffic update service was attacked with mes-
sages violating the MQTT protocol message sequence, e.g. a SUBACK without a prior
corresponding SUBSCRIBE. The basic V2V traffic safety service was attacked with ma-
licious semantics, e.g. speeds exceeding the maximum speed possible with modern road
vehicles. All services were also targeted by application layer DoS attacks exceeding nor-
mal traffic rates and buffer overflow attacks where the payloads exceeded the maximum
payload size specified by each service. It was shown that the V2X Application-Level
Gateway detected all attacks and dropped all invalid messages and DoS traffic after de-
tecting an application layer DoS attack and reported every attack.
The goal of future work is further development of the V2X Application-Level Gateway by
extending the functionality providing more modules securing communication on the ap-
plication layer. Protocol-specific modules could be added to prevent protocol violations
for given application layer protocols like e.g. HTTP or SOME/IP, or to detect certain
explicitly malicious content like e.g. SQL injections. Also, the semantic analysis of ETSI
CAMs could be extended, e.g. by extending the physical model used for analysis.
To optimise application layer DoS detection the use of machine learning solutions for
identifying DoS traffic could be examined. In the context of DoS attacks it could be
analysed, if mechanisms like Hashcash are a suitable measure for DoS protection for
automotive applications. Also, the remaining features of the V2X Application-Level
Gateway like bandwidth control and role-based access to in-vehicle resources via ACLs
could be further specified and implemented in the prototype.
Another possible area of research are the packet filter components of the V2X Security
Gateway securing the communication on the network- and transport layer complementary
to the V2X Application-Level Gateway. The safe storage and protection of cryptographic
keys, certificates and configurations against manipulation could be yet another subject
of future research, since potential attackers could have physical access to the automotive
hardware.
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