
BACHELORTHESIS
Wolf Saure

Do tests really enable change?
On the relationship between
unit test coverage and
maintainablity of production
code.

FAKULTÄT TECHNIK UND INFORMATIK
Department Informatik

Faculty of Computer Science and Engineering
Department Computer Science

HOCHSCHULE FÜR ANGEWANDTE
WISSENSCHAFTEN HAMBURG

Hamburg University of Applied Sciences

Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung

im Studiengang Bachelor of Science Angewandte Informatik

am Department Informatik

der Fakultät Technik und Informatik

der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Stefan Sarstedt

Zweitgutachter: Prof. Dr. Bettina Buth

Eingereicht am: 22.10.2021

Wolf Saure

Do tests really enable change? On the relationship
between unit test coverage and maintainablity of

production code.

Wolf Saure

Thema der Arbeit

Do tests really enable change? On the relationship between unit test coverage and

maintainablity of production code.

Stichworte

Testabdeckung, Testaufwand, Softwarequalität, Wartbarkeit, Refactoring, Metriken, Code

Smells, Studie.

Kurzzusammenfassung

Softwarequalität und insbesondere der Aspekt der Wartbarkeit bestimmen zunehmend

über den langfristigen Erfolg von Softwareprojekten. Refactoring dient der Verbesserung

der Wartbarkeit und wird durch eine hohe Testabdeckung unterstützt. Es wird daher all-

gemein angenommen, dass ein Zusammenhang zwischen Testabdeckung und Wartbarkeit

besteht. Dieser Zusammenhang wurde in der vorliegenden Studie für 45 Java-basierte

Open-Source-Projekte auf Basis von Metriken und Code Smells statistisch untersucht.

Als Ergebnis wurde eine Vielzahl positiver Zusammenhänge mit hoher statistischer Sig-

ni�kanz nachgewiesen. Dies könnte ein Hinweis sein, dass Entwickler den Testaufwand

für schwer wartbaren Code erhöhen. Negative Zusammenhänge als Hinweis auf positive

Auswirkungen einer hohen Testabdeckung auf die Wartbarkeit wurden hingegen nur für

einzelne Projekte gefunden.

Wolf Saure

Title of Thesis

Do tests really enable change? On the relationship between unit test coverage and

maintainablity of production code.

Keywords

Test coverage, Test e�ort, Software quality, Software maintainability, Refactoring,

Metrics, Code smells, Survey.

iii

Abstract

Software quality and especially the aspect of maintainability increasingly determine the

long-term success of software projects. Refactoring serves to improve maintainability

and is supported by high test coverage. It is therefore generally assumed that there is a

correlation between test coverage and maintainability. This correlation was statistically

examined in the present survey for 45 Java-based open source projects on the basis

of metrics and code smells. As a result, a large number of positive correlations with

high statistical signi�cance were found. This could be an indication that developers

are increasing test e�ort for code that is di�cult to maintain. Negative correlations

indicating positive e�ects of high test coverage on maintainability, on the other hand,

were only found for individual projects.

iv

Contents

List of Figures viii

List of Tables x

1 Introduction 3

I Foundations 5

2 Software quality 6

2.1 De�nition and ISO/IEC 25010 quality model 6

2.2 Di�erent forms of requirements . 7

2.3 Summary . 8

3 Maintenance and maintainability 9

3.1 Software maintenance . 9

3.1.1 De�nition and position within software life cycle 9

3.1.2 Forms of maintenance . 10

3.2 What is maintainability and why is it important? 11

3.2.1 De�nition and subcharacteristics of maintainability 11

3.2.2 Maintainability and technical debt 12

3.2.3 Symptoms of low maintainability 13

3.2.4 Consequences . 14

3.3 Summary . 14

4 Refactoring � cure for the symptoms? 15

4.1 De�nition and scope of refactoring . 15

4.2 Signi�cance of refactoring for maintainability 16

4.3 Starting points . 16

4.3.1 Refactoring for higher modi�ability 17

v

Contents

4.3.2 Refactoring for higher analysability 17

4.4 Summary . 18

5 How can software quality be measured? 19

5.1 Test levels . 20

5.2 Test types . 21

5.3 Dynamic testing . 21

5.4 Static testing . 23

5.5 Measurement of test coverage on unit test level 25

5.5.1 Coverage types for functional testing (black box testing) 25

5.5.2 Coverage types for structure-based testing (white box testing) . . . 25

5.5.3 Signi�cance of test coverage for maintainability 27

5.6 Measurement of maintainability . 28

5.6.1 Maintainability metrics . 28

5.6.2 Code smells . 30

5.6.3 Problems and criticism . 30

5.7 Tool Support . 31

5.8 Summary . 32

II Study 34

6 Literature research 35

6.1 Works related to preliminary research question 36

6.2 Works related to �rst assumption . 37

6.3 Works related to second assumption . 38

6.4 Other related works . 39

6.5 Summary . 40

7 Research design 42

7.1 Hypothesis . 42

7.2 Study type . 42

7.3 Selection of software projects . 43

7.4 Tools and examination conditions . 46

7.4.1 Selection of tools . 46

7.4.2 Selection of coverage types . 47

7.4.3 Selection of maintainability metrics 47

vi

Contents

7.4.4 Statistical analysis technique . 49

7.5 Data collection and integration . 50

7.6 Data evaluation . 53

8 Results 54

8.1 Description of distributions . 55

8.2 Description of correlations . 58

8.2.1 Overall results for all repositories 58

8.2.2 Results for repositories with more than 30 classes 60

9 Discussion 68

9.1 Discussion of results . 68

9.2 Threats to validity . 69

10 Conclusions and future work 71

Bibliography 72

A Appendix 80

A.1 Description of metrics . 81

A.2 Repositories . 82

A.3 Data integration process - log �le . 85

A.4 Patterns . 86

A.4.1 LCPC-Pattern (low coverage + positive correlations) 86

A.4.2 HCNC-Pattern (high coverage + negative correlations) 89

A.4.3 Mixed pattern: LCPC (BC) + HCNC (IC,MC) 90

A.4.4 Repositories with positive correlations and unclear pattern 92

A.4.5 Repositories with mixed correlations and unclear pattern 93

Selbstständigkeitserklärung 96

vii

List of Figures

2.1 Quality characteriscs de�ned by the ISO/IEC 25010 product quality model 7

3.1 Maintainability within the ISO/IEC 25010:2011 product quality model . . 11

5.1 Example for a control �ow graph . 24

5.2 Control �ow graph for function calculate() 26

5.3 Software measurement - overview and focus of this work 33

6.1 Draft of a model and preliminary research question 35

6.2 Adapted model and research question . 41

7.1 Selection process for repositories. 45

7.2 Processes for collecting data from repositories 51

7.3 Process for integration of data . 52

8.1 Reasons why analysis data could not be retrieved from repositories. 54

8.2 Number of evaluated classes per repository 55

8.3 Distribution of coverage (all repositories). 56

8.4 Distribution of code smells (all repositories). 57

8.5 Distribution of metrics (all repositories). 58

8.6 Signi�cant correlations for all repositories. 59

8.8 Signi�cant correlations for di�erent coverage types 62

8.9 Repositories with "extreme" results. 63

8.10 Coverage for repositories with "extreme" results. 64

8.11 Mixed LCPC (BC)/HCNC (IC/MC) pattern in repository R4. 64

A.1 Example log �le for data integration process (repository N12). 85

A.2 LCPC-Pattern in repositories R9, R12 and N12. 86

A.3 LCPC-Pattern in repositories P10, R7 and P7. 87

A.4 LCPC-Pattern in repository P9. 88

viii

List of Figures

A.5 HCNC-Pattern in repository R11. 89

A.6 Mixed LCPC (BC) / HCNC (IC,MC) in repositories R4, P13 and P14. . . . 90

A.7 Mixed LCPC (BC) / HCNC (IC,MC) pattern in repository P5. 91

A.8 Repositories with only positive correlations and unclear pattern. 92

A.9 Repositories with mixed correlations and unclear pattern. 93

ix

List of Tables

8.1 Correlations for all repositories . 59

8.2 Number of signi�cant correlations in repositories with n > 30 classes . . . 60

8.3 Number of signi�cant correlations for di�erent coverage types 61

8.4 Number of signi�cant correlations for di�erent metrics 61

8.5 Patterns in repositories with more than 30 classes. 65

8.6 Top 10 signi�cant positive correlations (for repositories with n > 30 classes) 66

8.7 Top 10 signi�cant negative correlations (for repositories with n > 30 classes) 66

A.1 Description of metrics . 81

A.2 Random sample of GitHub repositories (relevance) 82

A.3 Random sample of GitHub repositories (popularity) 83

A.4 Random sample of GitHub repositories (last updated) 84

x

Acronyms

ACM Association for Computing Machinery

BC Branch Coverage

BP Code smells associated to PMD rule set Best Practices

CC Cyclomatic Complexity

CE E�erent Coupling

C&K Chidamber and Kemerer Suite

CLOC Comment Line of Code

CS Code smells associated to PMD rule set Code Style

CSV Comma Separated Values

DN Code smells associated to PMD rule set Design

DIT Depth of Inheritance Tree

HCNC High Coverage and Negative Correlations

HCNC (IC/MC) High Coverage and Negative Correlations � only for instruction and

method coverage

HTML Hypertext Markup Language

IC Instruction Coverage

IEC International Electrotechnical Commission

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

1

List of Tables

ISO International Organization for Standardization

ISTQP International Software Testing Quali�cation Board

JaCoCo Java Code Coverage Library

JLOC JavaDoc Lines of Code

LCPC Low Coverage and Positive Correlations

LCPC (BC) Low Coverage and Positive Correlations � only for branch coverage

MC Method Coverage

MI Maintainability Index

MPC Message Passing Coupling

MTTR Mean (or Median) Time To Repair

n/a not available

NOC Number of Children

OOD Object-Oriented Design

PMD The meaning is not clear (cf. [PMD21c])

RAP Rapid Application Development

SoC Separation of Concerns

SML Standard Meta Language

TDD Test Driven Development

UI User Interface

UML Uni�ed Modeling Language

XP Extreme Programming

2

1 Introduction

Computer software has an increasing impact on more and more aspects of everyday life

and on society as a whole. This development is in�uencing both safety and security con-

cerns and it has an increasing impact on the competitiveness of companies and products

(cf. [SL19, p. 1]).

Therefore, the quality of software is becoming a more and more crucial and important

success factor (cf. [SL19, p. 1], [FB20, p. 442]). One way of establishing quality are

software tests. Unit tests especially play a central role in agile software development (cf.

[CS14]).

Additionally, maintainability is of particular signi�cance in regards to quality. This

attribute describes the ease with which software can be changed, in order to implement

new features or to remove bugs (cf. [Int21a]). Low maintainability leads to increasing

maintenance costs and can, in the long run, endangers the success of software projects

(cf. [PMVV12]).

One way of increasing maintainability is the activity of "refactoring"; hereby the source

code of software programs is rewritten with the aim of making it easier to read, under-

stand and change (cf. [FBB+05, p. 53]).

It is widely assumed that there is a connection between test coverage and maintainabil-

ity. With a high level of test coverage, developers can con�dently make changes to the

productive code (cf. [Bec01, p. 46], [CS14, p. 2], [Mar09, p. 124]). On the other hand,

code changes are risky if the test coverage is inadequate and can prevent developers from

performing refactoring edits (cf. [KZN12, p. 4], [Lil20, p. 272]).

Therefore, test coverage is used in some projects as an indicator to quantify the main-

tainability of a software product (cf. [BFWZ18, p. 128]). But are test coverage and

maintainability really correlated to each other?

3

1 Introduction

So far, only one older study seems to exist that actually investigated a similar question

for SML and C++ projects (cf. [HS96]). However, there seem to be no studies that

correlate the aspects of test coverage and maintainability for Java projects. The aim of

this investigation is to close this gap.

The �rst part of this work (starting on page 6) lays the foundations in answering the

following questions:

� What is software quality?

� What role does software maintenance play in development?

� What is meant by "maintainability" and why is this important for software devel-

opment?

� What is meant by "refactoring" and in what way is this related to the aspect of

maintainability?

� How can maintainability � or more generally: software quality � be measured?

� What signi�cance do unit tests have for the quality of software?

� What kind of test coverage types exist?

The second part (starting on page 35) describes the study itself. Finally, the results can

be found in section 10 on page 71.

4

Part I

Foundations

5

2 Software quality

In this chapter it will brie�y be summarized how software quality can be de�ned and

conceptualized (section 2.1) and what is meant by software requirements (section 2.2).

2.1 De�nition and ISO/IEC 25010 quality model

The IEEE(1990) de�ne software quality as "(1) The degree to which a system, com-

ponent, or process meets speci�ed requirements. (2) The degree to which a system,

component, or process meets customer or user needs or expectations." [IEE90, p. 60].

A more recent but quite similar de�nition was given by the ISO (2011), who de�ne

software quality as the "degree to which a software product satis�es stated and implied

needs when used under speci�ed conditions" [Int21a].

From these de�nitions it can be concluded that there is no "absolute" quality but only

a quality relative to speci�c requirements associated with a speci�c software system.

To make the concept of quality more tangible (and measurable), quality models are used.

They describe the di�erent aspects of software quality and their relations to each other.

In the past, several quality models have been devised (cf. [FB20, p. 442 �.]). In 2011, the

international standard ISO/IEC 25010:2011 has been passed, which de�nes two separate

models (cf. [Int21a]):

� the quality in use model, which names �ve characteristics (e�ectiveness, e�ciency,

satisfaction, freedom from risk and context coverage) that describe the outcome of

the interaction between an user and a system when used within a speci�c context.

� the product quality model, which names eight characteristics and 31 subcharaca-

teristics, that describe both the static (e.g. some properties of the source code)

and the dynamic (e.g. how quickly a system responds to an user request) traits of

a software product.

6

2 Software quality

The product quality model has replaced the previous model de�ned within the ISO/IEC

9126 standard and is more frequently cited in literature (e.g., cf. [FB20]). Therefore,

reference is only made to the second model, which is illustrated in �g. 2.1:

Figure 2.1: Quality characteriscs de�ned by the ISO/IEC 25010 product quality model
(own representation based on [Int21a]).

As can be seen, the model consists of eight characteristics and 31 sub-characteristics. It

is beyond the scope of this work to give a detailed description of all attributes shown

above. Of interest is the characteristic of maintainability which will be described in more

detail later on.

2.2 Di�erent forms of requirements

From the de�nitions stated above the term requirements (= needs, expectations) is im-

portant. Pohl & Rupp (2015) di�erentiate three di�erent types of requirements (for

better illustration, the example of a text editor will be used):

� Functional requirements: they de�ne which functions a system has to o�er to its

users (e.g. the users of the editor should be able to underline passages of text and

they should be able to export a text as a pdf-�le).

7

2 Software quality

� Quality requirements (or non-functional requirements): they de�ne which kind of

quality goals a system shall meet (e.g. the text editor should be "performant" - the

start of the application should take less than two seconds; and the editor should be

"reliable" - when an error occurs, the text can still be recovered and not be lost).

� Ancillary conditions: they de�ne conditions for the product or the development

process, that should be met apart from functional or quality requirements (e.g. the

editor shall be realized as a web service and be available to customers until the end

of this year) (cf. [PR15, p. 8 f.]).

From the examples given above, it should be noted that the quality model does not de�ne

how the various types of quality can or should be measured. Instead, it is necessary that

all stakeholder groups need to be identi�ed and asked to give or agree on a precise

de�nition of those aspects of quality that are relevant to them (cf. [PR15, p. 22]).

Stakeholder of software products are all people and organisations that in�uence these

requirements. That are, of course, �rst and foremost customers using the system. Further

stakeholder groups are people that are involved in the development and organisations or

authorities that set standards or rules, which have to be abided by the software. Even

people who want to damage the system (e.g. hacker groups) need to be taken into account

in order to ward of attacks (cf. [PR15, p. 3, 142]).

2.3 Summary

In summary, it should be noted that software quality is based on requirements which are

voiced by di�erent groups that are somehow related to a software product. In the next

chapter, the attribute of maintainability � as part of the product quality model � shall

be described in more detail.

8

3 Maintenance and maintainability

Important (for the scope of this work) is the fact, that requirements (cf. section 2.2)

evolve during the life-cycle of a software system: the system is run under unforeseen

conditions, customers voice additional expectations, special use cases need to be consid-

ered or after some time of running problems occur that were not observed previously (cf.

[SL19, p. 94]; additionally: [PR15, p. 140 f.]), [LL13, p. 576]).

Consequently, the software needs to be adapted to these new or changing requirements

� it needs to be "maintained". But what precisely is "maintenance" and when does it

happen (section 3.1)? And what is "maintainability" and why is it of special importance,

at least in the long run (section 3.2 on page 11)?

3.1 Software maintenance

3.1.1 De�nition and position within software life cycle

Maintenance is de�ned by the IEEE � with regard to software � as the "process of modify-

ing a software system or component after delivery to correct faults, improve performance

or other attributes, or adapt to a changed environment" ([IEE90, p. 46]).

Here, the words "after delivery" are already hinting at the position of maintenance within

the life span of a software product. The so called software live cycle consists of the follow-

ing phases (cf. [IEE90, p. 68]): (a) Concept exploration, (b) Requirements, (c) Design,

(d) Implementation, (e) Test, (f) Installation and checkout, (g) Operation and main-

tenance and (h) Retirement. In contrast, the development cycle encompasses only the

phases until installation / delivery (cf. [IEE90, p. 73]).

Important for further understanding are the di�erences between existing development

models. These models are used to give a logical structure to the process of software

9

3 Maintenance and maintainability

development. According to Spillner & Linz (2019), two main models can be di�eren-

tiated: sequential and iterative-incremental development models (cf. [SL19, p. 53]):

� In sequential models (e.g. Waterfall- or V-Model), development phases are meant to

happen one after the other, in linear order and without repetition. After completing

the last phase of development, the product is delivered to its customers ([SL19, p.

53]). Behind this approach stands the conviction that it is possible to collect all

requirements from all stakeholder groups in one go � and that these requirements

will not change during the following development phases (which may well take

several years after the onset of a project: cf. [SL19, p. 54]).

� On the other hand, in iterative-incremental development models (e.g. RAP, XP,

Kanban, Scrum) a software product is delivered repeatedly to its end users. In each

iteration, all phases are run through; the functionality is extended or adapted and

the new version is tested, delivered and � important for the aspect of maintenance

� customer feedback is obtained (cf. [SL19, p. 58]).

As a consequence, the signi�cance of maintenance is di�erent for these two types of de-

velopment approaches. Whereas in sequential models maintenance happens not until the

main development has �nished, with the iterative approach the software is continuously

maintained during development as well.

Of importance is the fact that changes to a software system are more expensive, the later

they are made (cf. [PR15, 2]).

3.1.2 Forms of maintenance

According to the IEEE, the following forms of maintenance can be distinguished (cf.

[IEE90, p. 8, 22, 55, 57]; additionally: [FB20, p. 461]): (a) preventive maintenance: for

the prevention of problems which are likely to arise, e.g. potential bugs, (b) adaptive

maintenance: if changes in the environment have occurred and the program needs to be

adapted in order to work properly), (c) corrective maintenance: in order to resolve any

bugs or faults, which were found while testing or which have been reported by customers,

and (d) perfective maintenance: in order to improve some characteristics of a software

product, e.g. its performance or maintainability.

10

3 Maintenance and maintainability

Of special interest for this work is the last type of maintenance. Refactoring � i.e. the

process of changing code without modifying its behaviour, e.g. to enhance its readability

(cf. section 4.1) � can be viewed as a form of perfective maintenance.

3.2 What is maintainability and why is it important?

In section 2.1 the product quality model was introduced. In this model, maintainability

is one of eight characteristics (cf. �g. 3.1).

Figure 3.1: Maintainability within the ISO/IEC 25010:2011 product quality model (own
representation based on [Int21a]).

3.2.1 De�nition and subcharacteristics of maintainability

Maintainability is de�ned by the ISO/IEC 25010 standard as the "degree of e�ective-

ness and e�ciency with which a product or system can be modi�ed by the intended

maintainers" ([Int21a]).

According to this standard, maintainability can be further divided into the following

subcharacteristics:

� Modularity: the degree, to which a system is divided up into separate and � prefer-

ably � independent modules or components, where a change to one component will

not a�ect other components (cf. [Int21a]). A module can again be composed of

other modules (cf. [Lil20, p. 20]).

11

3 Maintenance and maintainability

� Analysability: the ease with which the maintainers of a system are able:

� to �nd out the cause of a failure,

� to identify which part of a system needs to be changed or

� to estimate the impact of changes to parts of a system (cf. [Int21a]).

� Modi�ability: The ISO/IEC de�nes this aspect as the ease with which a system

can be "modi�ed without introducing defects or degrading existing product quality"

([Int21a]). In the notes to this de�nition, the standard points out that modi�ability

is in�uenced both by modularity and analysability (cf. [Int21a]).

� Reusability: the degree, to which any part of a system (e.g. a method, a class or a

component) can be utilized in other systems as well (based on [Int21a]).

� Testability: the ease with which it is possible to de�ne test criteria and to implement

and execute software tests in order to �nd out if a system or part of a system ful�ls

these criteria ([Int21a]).

Which of these sub-aspects of maintainability is the one that is most important? From the

de�nition above, modi�ability seems to play a central role. According to Lilienthal

(2020), for long-lasting software products modularity is the key factor (cf. [Lil20, p.

66]). Other authors point out that the characteristics modi�ability and reusability are

important in order to diminish maintenance costs (cf. [SL19, p. 89]);

3.2.2 Maintainability and technical debt

Closely related to maintainability is the concept of technical debt. Cunningham (1992)

introduced this analogy to express that existing code must be continuously rewritten

and the design adapted to the implementation of new program features, in order to stay

maintainable in the log run: "Shipping �rst time code is like going into debt. A little

debt speeds development so long as it is paid back promptly with a rewrite. [...] Every

minute spent on not-quite-right code counts as interest on that debt. Entire engineering

organizations can be brought to a stand-still under the debt load of an unconsolidated

implementation, object-oriented or otherwise" ([Cun92]).

Technical debt symbolizes the additional e�ort and costs needed for maintenance (cf.

[Lil20, p. 4], [Vet13, p. 78]).

12

3 Maintenance and maintainability

Some authors further distinguish between di�erent forms of technical debt (defect debt,

implementation debt, design debt, documentation debt and testing debt), thus indicating

more precisely, what kind of maintenance e�ort is needed (e.g., �x defects, remove code

smells, improve the architecture, update documentation or write missing tests: cf. [Vet13,

p. 109], [Lil20, p. 14]). In the context of this work, only implementation and design debt

are of interest.

3.2.3 Symptoms of low maintainability

Why is the aspect of maintainability relevant to software development? One way of

answering this question is to point out what happens when a software product has a

low maintainability. According to Martin (2000), the following symptoms will begin to

appear [Mar00, p. 2 f.]):

� Rigidity: A system is rigid, when even simple changes take much longer than ex-

pected because of growing dependencies between modules. Thus, one modi�cation

leads to further modi�cations in related modules and so forth.

� Fragility: This symptom describes a software product, where modi�cations lead to

unexpected failures in other components, that sometimes do not even seem to be

related to the area where the change was introduced.

� Immobility: Here, dependencies between modules make it improbable if not im-

possible to reuse part of a software somewhere else. Therefore, instead of reusing

a method, class or module, it is simply rewritten.

� Viscosity: A system has a high viscosity when developers are tempted to implement

changes that compromise the design of a system. Either because of "di�cult"

design guidelines (design viscosity) or because of a slow or impractical development

environment (environment viscosity).

In summary, software with low maintainability has more dependencies which leads to

prolonged maintenance periods, unexpected failures and double code.

There are three main reasons for these symptoms: (a) there are changing requirements,

that were not foreseen when the original design of a system was conceived; (b) the changes

need to be implemented fast and (c) not all developers are familiar to the original design

guidelines ([Mar00, p. 3]).

13

3 Maintenance and maintainability

3.2.4 Consequences

As a consequence to the symptoms described above, it takes much longer to adapt soft-

ware with a low maintainability. According to Visser et al. (2016), in systems with

below average maintainability it takes twice the time to resolve issues or to implement

enhancements than in systems with above average maintainability (cf. [VRvdL+16, p.

3]).

In regards to the di�erent forms of maintenance (cf. p. 10): it takes longer to adapted it

to changing requirements, to �x bugs (so called issues), to enhance some quality aspect

or to prevent future faults.

Therefore, it comes not as a surprise that Poort et al. (2012) found out that � in the

eye of software architects � modi�ability is crucial for the success of software projects

(cf.[PMVV12]; additionally: [VRvdL+16, p. 3]).

Visser et al. see maintainability as an "Enabler" for other quality characteristics (as

depicted in �g. 3.1 on page 11), since for all kinds of changes it is necessary to �nd,

analyse, understand and test the source code - and this is easier in systems with higher

maintainability: "[...] optimizing a software system requires modi�cations to its source

code, whether for performance, functional suitability security, or any other of the seven

nonmaintainability characteristics de�ned by the ISO 25010" (cf. [VRvdL+16, p. 4]).

3.3 Summary

Maintenance for software products is necessary in order to �x bugs, adapt a system to

changing requirements or to enhance quality attributes. Whereas in traditional deve-

lopment models maintenance only happens after the end of the development process, in

iterative models software is maintained continuously.

Maintainability describes how easily a software product can be changed and adapted.

A system with low maintainability shows several symptoms, the common cause being

increasing dependencies between components. In the long run, this leads to higher de-

velopment costs and can endanger the success of software projects.

In the next chapter, the concept of refactoring will be presented � this can be seen as a

form of perfective maintenance with the aim of reducing technical debt.

14

4 Refactoring � cure for the symptoms?

In section 3.2.3, four symptoms of low maintainability have been described. Refactoring

can be seen as a "cure" in this regard. In section 4.1, the idea behind this concept will

be described brie�y; in section 4.2 on the next page, the relevance of refactoring for

maintainability will be depicted and in the remaining chapter (section 4.3) the starting

points for refactoring in practice will be described in more depth.

4.1 De�nition and scope of refactoring

Refactoring was de�ned by Fowler et al. (2005) as "a change made to the internal

structure of software to make it easier to understand and cheaper to modify without

changing its observable behaviour" [FBB+05, p. 53].

To give an example: in section 5.5 on page 25 a function named calculate() will be

presented that has three input parameters (two numbers and one operand) and returns a

numeric result. Refactoring � in a narrow sense � means that the function stays the same

in regards to both input parameters and return value. Thus, the "external behaviour"

will be the same � two by two should still yield four.

But, as Kim et al.(2012) summarize, in practice and in science di�erent de�nitions

are in use. In practice, not all refactoring changes are behaviour-preserving or they are

combined with other modi�cations that do change the behaviour (cf. [KZN12, p. 2]).

This perception is backed up by Leppänen et al. (2015), who found that developers

view refactoring as an activity that aims to redesign a system and that would take several

days rather than simple tasks like method renaming (cf. [LML+15, p. 64]).

It should be added that refactoring edits are not limited to production code. Since tests

can be "smelly" as well (cf. section 5.6.2), there is an equal need for optimization (cf.

[Mar09, p. 123]).

15

4 Refactoring � cure for the symptoms?

4.2 Signi�cance of refactoring for maintainability

According to the above de�nition (cf. section 4.1), refactoring is supposed to a�ect the fol-

lowing quality characteristics: understandability and changeability. Both are subcharac-

teristics of maintainability (naming according to ISO/IEC 25010 standard: analysability

and modi�ability; cf. section 3.2.1). But what is the rationale behind this assumption?

In chapter 3 it was stated that as requirements evolve or bugs are found the system needs

to be maintained, i.e. some source code needs to be added or changed. According to

Fowler et al.(2005), without refactoring the initial design of a software system will

deteriorate due to these changes: "[...] the code looses its structure. It becomes harder

to see the design by reading the code. Refactoring is rather like tidying up the code"

([FBB+05, p. 55]).

The need for a continuous code refurbishment is likewise expressed by the technical debt-

analogy (cf. section 3.2.2): refactoring is necessary in order to repay debts or otherwise

the maintenance e�ort will become unforeseeable (cf. [Lil20, p. 4 �.]).

4.3 Starting points

How can developers go about the task of refactoring code? In this section, some starting

points shall be illustrated.

Several books have been written with the aim to guide developers in writing code and

building software that is highly maintainable (e.g. [Mar09], [BF11], [VRvdL+16]). It

would be far beyond the scope of this work to give a su�cient introduction on the many

di�erent aspects that need to be taken into account in order to achieve this complex

task.

Instead, for the context of this study some examples shall be given on how to achieve

a higher level both in analysability and modi�ability � the two sub-characteristics of

maintainability mentioned in the de�nition for refactoring.

For a short repetition, analysability means the ease with which the cause of failures

can be found whereas modi�ability indicates how easy it is to modify a system without

introducing new defects (cf. section 3.2.1).

16

4 Refactoring � cure for the symptoms?

4.3.1 Refactoring for higher modi�ability

One central cause for low changeability is coupling (cf. section 3.2.3) � i.e. dependen-

cies between software components � which often is a consequence of suboptimal design

decisions. Coupling can have di�erent degrees of severity (cf. [LL13, p. 413]).

To improve object-oriented design (OOD), many di�erent design patterns have been

deceived. These patterns imply established solutions and best practices for design prob-

lems that developers frequently are confronted with ([GHJV15, p. 25 f.]). Many of these

patterns help to reduce dependencies between components. The observer pattern, for ex-

ample, decouples (a) a component that wants to inform about a change of state (b) from

those components that in some ways rely on or need to know about these changes (cf.

[GHJV15, p. 360]).

Additionally, there are more classical OOD principles like information hiding, which

means that software components should reveal as little information about their inter-

nal structure as possible (cf. [IEE90, p. 40]). This again helps to reduce dependencies

since now the internal structure of a component can be changed or improved without

a�ecting other components.

Last but not least, there are guidelines such as the Law of Demeter, which recommends

that a function or method should restrict calls to other methods to those that are directly

attached to a component � which promotes decoupling as well (cf. [LHR88, p. 326]).

4.3.2 Refactoring for higher analysability

There are several ways for organizing and writing source code so that other developers

have less di�culty to read it and understand how it works. This can be done on di�erent

levels.

On a higher level, there are again some common principles:

� Separation of Concerns (SoC) or Single Responsibility Principle advises that a soft-

ware component should be responsible for only one speci�c �eld of duty � or oth-

erwise it might become to complex and di�cult to understand ([LL13, p. 418],

[LML+15, p. 66]).

17

4 Refactoring � cure for the symptoms?

� Cohesion describes in how far the elements of a software component are related to

each other, belong together and serve a common purpose (cf. [FB20, p. 375, 418]).

A high level of cohesion is recommended for a comprehensible code structure (cf.

[Mar09, p. 141]).

On a more fundamental level, there are many recommendations regarding (a) naming

(e.g., should be meaningful and reveal the intention behind a code element: cf. [Mar09,

p. 18]), (b) size of functions (should be as small as possible: cf. [Mar09, p. 34]) or

(c) formatting (should be supportive for reading; e.g., additional blank lines to separate

di�erent concepts: cf. [Mar09, p. 78]).

All of these principles, patterns, guidelines and recommendations can be used as part

of refactoring edits and thus help to decrease coupling or improve understandability of

code.

4.4 Summary

The original idea of refactoring is to make rather small changes to the internal structure

of a code element without changing its external behaviour. In practice, a broader concept

seems to be in use that includes bigger changes of design and is not restricted to behaviour

preservation.

Nevertheless, the overall aim is to achieve higher code quality in regards to understand-

ability and changeability. Several principles, patterns and guidelines were deceived that

help to achieve this.

In order to estimate whether a refactoring edit was successful, it is necessary to somehow

measure respective quality attributes. How this can be done will be illustrated in the

next chapter.

18

5 How can software quality be measured?

In this work, the central question is whether unit test coverage is correlated to main-

tainability (cf. section 1). It will therefore be necessary in due course to measure both

aspects and see if a statistical relation can be proven.

In general, several aims are being pursued by measurements in regards to both the

development process as well as the software product itself (cf. [FB20, p. 14 �.], [LL13,

p. 297]):

� to visualize and understand relationships between development activities and af-

fected attributes (e.g., if there is a correlation between low maintainability and

duration / costs of maintenance activities, as described in section 3.2.4).

� to monitor and control those aspects of development that are relevant to the stake-

holders of a software project (e.g., to monitor the complexity of source code, which

may be important to future maintainers).

� to support decisions (which attributes of a product need special attention?).

� to improve both the development process and the quality attributes of a software

product to reach prede�ned targets (e.g., change the source code of those modules

that exceed a certain complexity value).

� to make forecasts (e.g., related to costs, target dates or the level of quality that

will probably be achieved).

Still, as Fenton & Bieman point out, in many software projects it is neglected to

measure central development attributes (cf. [FB20, p. 12 f.]).

For measuring those attributes, quality metrics are used. The IEEE de�nes quality metric

as follows: "[...] A function whose inputs are software data and whose output is a single

numerical value that can be interpreted as the degree to which the software possesses a

given quality attribute" ([IEE90, p. 60]).

19

5 How can software quality be measured?

To give an example: to calculate the size of a module, the lines of code can be counted.

From the above de�nition, the input is the source code of the module in question and

the output is the calculated size, say 125 lines of code. On �rst look, this seems to be

a simple and straightforward matter. Still, even here several di�erent approaches exist,

depending on whether empty lines, comments or data declarations are being taken into

account or not (cf. [FB20, p. 339 f.]; additionally: [Hof13, p. 250]).

Important, for this work, is the fact that there are two main approaches to measure

software attributes: the dynamic and the static approach (sections 5.3 and 5.4). But �rst

of all, some introductory explanations regarding test levels and test types are necessary

(sections 5.1 and 5.2). The chapter continues with an illustration of how test coverage

and maintainability can be measured (sections 5.5 and 5.6) followed by a brief description

of tools necessary for this task (section 5.7). Since the topic of measurement is of major

importance for the subsequent investigation, this chapter is somewhat more extensive.

5.1 Test levels

Traditionally, the following test levels are distinguished (cf. [SL19, p. 56, 62 �.], [Hof13,

p. 159]):

� Unit testing: Testing of individual and basic software components to �nd out

whether each component meets its speci�ed requirements.

� Integration testing: Here, it is tested whether groups of components work together

as expected.

� System testing: Testing if the system as a whole meets the requirements.

� Acceptance testing: This level resembles the system testing level, but here the view

of customers or later users is put forward and contractual requirements are tested

more explicitly. Moreover, in contrary to system testing, the customer is typically

directly involved as a tester.

For the context of this investigation, only the �rst level is of relevance.

20

5 How can software quality be measured?

5.2 Test types

In addition to test levels, several di�erent test types are named in literature which can be

grouped in functional, non-functional and structure based tests (cf. [SL19, p. 86 f.]):

� Functional tests check whether a test object ful�lls functional requirements (cf.

section 2.2) � e.g., if a method that multiplies two numbers returns the correct

value. This kind of tests are used on all test levels (cf. [SL19, p. 88]). Test cases

are designed by employing so-called black box test design techniques. This means

that only the input parameters and the return value are taken into account whereas

the internal structure of a component or method is irrelevant for the design of test

cases (black box testing; cf. [SL19, p. 141 �.], [LL13, p. 173 f.]).

� Non-functional tests, on the other hand, check to which degree non-functional re-

quirements (cf. section 2.1) are ful�lled. Here, each test type is focused on a

speci�c quality attribute, e.g. reliability tests, performance tests or usability tests

(cf. [SL19, p. 89 �.]).

� In opposition to functional tests, structure-based tests check the internal structure

of a software system, i.e. the control or data �ow within a component is tested and

used for the design of respective test cases (white box testing; cf. [SL19, p. 192

�.], [LL13, p. 174]).

Important, for the scope of this work, are two additional test types that are especially

related to maintenance:

� Con�rmation testing: this kind of testing is executed after an issue has been re-

solved in order to make sure that the failure does not occur anymore (cf. [Int21b]).

� Regression testing: Here, after a software modi�cation of any kind, existing tests

(often automated and only a sub-selection of all tests) are re-run to guarantee that

no new failures were introduced by the changes made (cf. [SL19, p. 98 �.]).

5.3 Dynamic testing

According to the IEEE (1990), a (dynamic) test is an "activity in which a system or

component is executed under speci�ed conditions, the results are observed or recorded,

21

5 How can software quality be measured?

and an evaluation is made of some aspect of the system or component. [...]" ([IEE90, p.

74]; also called dynamic analysis: cf. [Int21c]).

From this de�nition it should be noted that dynamic testing is only applicable for exe-

cutable code. The aim of this kind of testing is to �nd software failures (cf. [LL13, p.

480]), i.e. behavior of a system or component, where given requirements are not ful�lled,

either because the execution is too slow, the results are incorrect or because the system

terminates unexpectedly (cf. [IEE90, p. 32]).

When a failure is found, it becomes necessary to locate the speci�c part within the source

code, which causes the malfunction � this is typically called fault or defect (cf. [IEE90,

p. 32], [Int21c]).

Signi�cance of unit testing

This work focuses on unit test coverage. Why are unit or component tests especially

relevant? This is best described by the test automation pyramid (cf. [Coh09]). The test

pyramid is used as an analogy to show the recommended ratio of above mentioned test

levels: Most tests should be automated unit tests (the base of the pyramid) and only

a small percentage of tests should be dedicated to (manually) testing the user interface

(UI) � the tip of the pyramid.

The rationale, why unit tests should be preferred over UI tests is the following: Unit tests

(a) are much quicker than UI tests, (b) are easier to maintain, (c) are more reliable, since

UI tests can easily break; and they (d) usually give precise information as to where the

fault is located, thus relieving the task of �nding and �xing software bugs (cf. [Coh09],

[Fow12]).

The principles of Test Driven Design (TDD) (also called test-�rst-approach) reinforces

the role of units tests. TDD advises developers to write unit tests �rst before doing

anything else. The second step is to write only as much code as to make the test pass,

typically followed by the last step of refactoring the production code to make it easier to

maintain (cf. [SL19, p. 70 f.], [Mar09, p. 122 f.], [Bec01, p. 115 �.])

22

5 How can software quality be measured?

5.4 Static testing

In contrast to dynamic testing, static tests are not restricted to source code but can be

applied to all products that are generated as part of the software development or test

process (e.g. documentation of requirements or architecture as well as test plans, user

manuals or contracts; cf [SL19, p. 103 f.]).

Two di�erent approaches

The following two approaches can be distinguished: (a) Manual reviews, where any of the

just mentioned artifacts are being scrutinized by a group of experts. There are several dif-

ferent review types (such as informal review, technical review, inspection or walkthrough)

which di�er, for example, in the way the review process is organized and documented,

the time and e�ort needed or the goals that are being pursued (cf. [SL19, p. 105 �.],

[Hof13, p. 321 �.]). (b) Tool-supported analysis or automated static code analysis: here,

software tools are used to analyze source code or any other documents that have a formal

structure (e.g. UML speci�cations). In contrast to dynamic testing, the source code is

not executed here (cf. [SL19, p. 283], [Hof13, p. 247 �.]).

For the scope of this work, only the second approach is of interest.

Di�erent forms of automated code analysis

Static automated code analysis can be used for several di�erent purposes. Relevant for

this work are the following approaches:

� Analysis of control �ow: The control �ow describes which parts of source code are

being executed and which are not. It can be visualized by a control �ow graph;

di�erent variants, as to how the control �ow is modelled, exist (cf. [Hof13, p. 202

�.]). For illustration, the following graph is used (cf. �g. 5.1)

23

5 How can software quality be measured?

Figure 5.1: Example for a control �ow graph (own representation).

This graph shows a fairly simple function, where the control �ow is represented

by the edges (arrows) and code statements are represented by nodes (yellow boxes

plus two separate nodes representing start and end of the function). The example

graph is visualizing that (a) only when condition 1 is ful�lled, statement 1 will

be executed and the functions terminates; (b) otherwise statement 2 within the

loop will be executed as many times as condition 2 is ful�lled (this can one time,

many times or forever) and (c) �nally, when condition 2 is not ful�lled anymore,

the function ends as well.

Control �ow analysis is necessary for calculating test coverage (cf. section 5.5).

� Calculation of software metrics: All internal attributes � i.e., attributes of the

software product itself, without taking its behavior or environment into account

� can be calculated by respective software tools, e.g. metrics for size, complexity,

coupling or reuse (cf. [FB20, p. 88 �.], [Hof13, p. 247 �.]). This allows conclusions

to be drawn about external quality characteristics � like maintainability (cf. [FB20,

p. 90, 461 f.]). The relevant metrics for measuring maintainability will be described

in more detail in section 5.6.

24

5 How can software quality be measured?

5.5 Measurement of test coverage on unit test level

Test coverage can be de�ned as the "degree to which a given test or set of tests addresses

all speci�ed requirements for a given system or component" ([IEE90, p. 75]).

Depending on test level and test type (cf. sections 5.1 and 5.2), di�erent kinds of test

coverage targets are usually de�ned. The overall aim is to reach a high test coverage

with as few test cases as possible (e.g., cf. [Hof13, p. 175]).

On unit test level, both functional and structure-based tests are employed (cf. [SL19,

p. 88, 93]). In the ensuing descriptions, the following example is used for better illus-

tration: a function calculate(int num1; int num2; Operand op) that accepts two

integer numbers and an operator (MULT for multiplication, DIV for division), executes

a calculation depending on the operator and returns the result.

5.5.1 Coverage types for functional testing (black box testing)

A common way to design test cases for functional tests is equivalence partitioning. Here,

the input parameters are divided up into classes, where all values of that class behave

in the same way. For the example above, three numeric classes can be constructed:

negative numbers, positive numbers and zero. For each class of each parameter, a rep-

resentative is chosen (e.g., -5, 5, 0, MULT, DIV). Assuming a test case exists for all

possible combinations, a equivalence partition coverage of 100 % is achieved (cf. [Hof13,

p. 175]). Other forms of coverage are � for example � boundary value coverage or

state (transition) coverage (cf. [SL19, p. 162, 170]).

5.5.2 Coverage types for structure-based testing (white box testing)

As stated above (see section 5.2), in case of structure-based testing the internal structure

of a code element is used for testing (in this context, by looking at the control �ow).

Regarding the function calculate() mentioned above, the control �ow graph could

look like this (cf. �g. 5.2):

25

5 How can software quality be measured?

Figure 5.2: Control �ow graph for function calculate() (own representation).

In this graph are displayed ten edges (a to j) and nine nodes, which will be referred to

in the following explanations.

The most frequently cited coverage types are the following (cf. [SL19, p. 193 �.], [Hof13,

p. 200 �.]):

� Statement coverage: For a coverage of 100 % it is necessary that all statements

(nodes) are executed at least once. In the example above, to achieve this at least

two test cases are necessary (one multiplication and one division).

� Branch coverage / Decision coverage: Here, not the statements (nodes) are rele-

vant but the branches (arrows), depending on the decision in loops, if- or case-

statements or error handling situations. In case of the example, to obtain a cover-

age of 100 %, again both operands (MULT and DIV) must be used; additionally,

some other operand (e.g., ADD for the addition of two numbers) must be used as

a function argument as well in order to cover branch g.

26

5 How can software quality be measured?

� Condition coverage: In contrast to decision coverage, where a decisions are evalu-

ated as a whole (true or false), condition coverage has an even higher granularity.

Supposing, at the beginning of the example function it would checked in a single

if-statement that numbers are both greater than -100 and smaller than 100. Here,

both (atomic) conditions of the if-statement must be covered in order to achieve a

full coverage.

� Path coverage: Path coverage is taking into account individual paths (i.e., a se-

quence of nodes and edges) through a function. For the above example, the follow-

ing paths exist (for simplicity, nodes where omitted): {a, b, d, e, j}, {a, c, f, h, i,

e, j} and {a, c, g, i, e, j}. In case of loops (e.g., as in the graph in �g. 5.1), it is

not always possible to design test cases so that a full path coverage is achieved (or

it takes too long for the tests to run).

Evidently, designing test cases to achieve a high coverage in structure-based testing is

not an easy task and requires a high commitment � in regards to time e�ort as well as

in accuracy. Still, hidden defects are more likely to be found with white-box-tests rather

than black-box-tests. In the above function, for example, exists the fault that on using

an operand other then MULT or DIV would lead to an unexpected situation, where a

result is returned that was not assigned a value previously (cf. �g. 5.2).

5.5.3 Signi�cance of test coverage for maintainability

Why is test coverage relevant for keeping software maintainable? Since this question

touches the central idea of this work, existing sources will be quoted more fully.

Maintainability, as we have established, means that a software product can be changed

in an e�ective way in order to �x bugs, introduce new functionality or improve the design

(cf. sections 3.1.2 and 3.2.1).

One aspect frequently named in literature is that a high test coverage increases the level

of con�dence developers have in their software � and that this con�dence enables them

to change the code, as they can feel sure not to "break" any existing functionality.

As Martin (2009) writes: "It is unit tests that keep our code �exible, maintainable and

reusable. The reason is simple. If you have tests, you do not fear making changes to the

code! [...] Indeed, you can improve that architecture and design without fear [...] tests

enable change" (accentuation by Martin; [Mar09, p. 124]).

27

5 How can software quality be measured?

Lilienthal (2020) also stresses that in order to reduce implementation or design debt

(cf. section 3.2.2), the fundamental requirement is to have a high test coverage (i.e., low

test debt; cf. [Lil20, p. 14]).

Beck (2001) points out that tests not only have the short-term e�ect of increasing

con�dence, but help to keep software alive longer (cf. [Bec01, p. 46]). Additionally, tests

help to quickens up maintenance: "Once you have gotten used to testing, though, you

will quickly notice the gain in productivity [...] you no longer spent an hour for a bug,

you �nd it in minutes" ([Bec01, p. 46]).

Fowler (2005) supports the statements above by saying: "If you want to refactor, the

essential precondition is having solid tests [...] I don't see this as a disadvantage. I

've found that writing good tests greatly speeds up my programming, even if I am not

refactoring" ([FBB+05, p. 89]).

Last but not least, Choudhari & Suman (2014) add several more advantages of a high

test coverage: "Extensive test coverage provides several advantages in the maintenance

process such as instant feedback while working on legacy code, con�dence and courage

while making error-prone modi�cations, improved code readability, and faster impact

analysis before any modi�cations" ([CS14, p. 2]).

Summarized, a high test coverage is deemed in several ways as essential for maintainabil-

ity and thus for an e�ective maintenance process: (a) it increases con�dence, (b) relieves

the task of making changes or improving the design of existing code, (c) it speeds up the

�nding of defects, (d) helps to change legacy code and (e) increases readability.

5.6 Measurement of maintainability

In literature, two di�erent approaches are frequently named (e.g. [Vet13]) in order to

measure maintainability: metrics and code smells (cf. sections 5.6.1 and 5.6.2).

5.6.1 Maintainability metrics

As Fenton & Bieman (2021) point out, two di�erent views on maintainability exist

which can both be measured (cf. [FB20, p. 461 �.]).

28

5 How can software quality be measured?

External metrics

The external view on maintainability deals with the development or maintenance process,

i.e. with relations between a software product and its maintainers - those responsible for

resolving an issue, implement a new function or improve some quality characteristics (cf.

section 3.1.2).

Consequently, the so called external metrics seek to measure how e�cient software can

be maintained; a typical metric is the mean or median time to repair (MTTR), which

is measured by keeping track of the time to recognize and analyze a problem, make the

appropriate changes and do some administrative work related to solving the problem.

Additional metrics are, for example,

� the number of unresolved issues,

� the percentage of changes that lead to new faults or

� the number of modules that need to be adapted in order to implement a neccessary

change (cf. [FB20, p. 462]).

Evidently, these external metrics are related to the above mentioned symptoms of low

maintainability (cf. section 3.2.3).

Internal metrics

The internal view, on the other hand, deals with the software product itself without taking

into account its environment. Typical internal metrics in regards to maintainability are

focused on the structure of source code, its complexity, how easy it can be read or how

well documented it is (cf. [FB20, p. 463 �.]).

A plethora of metrics has been proposed; to name just the most popular: (a) McCabe's

Cyclomatic Complexity (CC), (b) E�erent Coupling (CE), (c) Chidamber and Kemerer

Suite (C&K), (d) The Halstead Suite, (e) Comment Line of Code (CLOC), (f) Lines of

Code (LOC) or (g) Maintainability Index (MI) (cf. [ACBV20, p. 6 �.]).

It is assumed that internal and external metrics are correlated. Since internal metrics

can be measured earlier and easier, they are used to predict the external ones (cf. [FB20,

p. 88 f., 462]).

29

5 How can software quality be measured?

For this work, too, it would have been impossible to collect external maintainability

metrics. Therefore, internal metrics were used (they are described in more detail in table

A.1 on page 81).

5.6.2 Code smells

Apart from metrics, another way to measure the maintainability of software are code

smells (e.g., cf. [Vet13, p. 84]).

Martin Fowler (together with Kent Beck) has coined the expression code smells

or bad smells to express when object-oriented code violates common design rules and

should be refactored in order to achieve higher maintainability (cf. [FBB+05, p. 75 �.],

[Vet13, p. 85], [SYA+13, p. 1144]).

These smells indicate, for example, duplicated code, classes that are too large, methods

that have too many parameters or classes that are not necessary (cf. [FBB+05, p. 75

�.]).

Over the years, additional code smells have been added (even fairly exotic ones, like

"energy code smells" that indicate code that might increase power consumption; cf.

[Vet13, p. 202]). Furthermore, recent research activities (e.g. [VMS+19], [PMA+19])

show an increasing interest in test smells, i.e. code smells that are typical for test code

(cf. [vDMvK02])

For the scope of this work, only smells related to maintainability issues in production

code are of interest (cf. sections 5.7 and 7.4.3).

5.6.3 Problems and criticism

Both maintainability metrics and code smells are not without criticism.

Ostberg & Wagner (2014), for example, express the opinion that the following metrics

are inappropriate (cf. [OW14, p. 33 f.]):

� Cyclomatic Complexity (CC): here, the authors point out that the complexity of

a control �ow graph and the complexity to understand the source code are not

necessarily the same.

30

5 How can software quality be measured?

� Halstead Suite: according to Ostberg & Wagner, this measure is not scienti�-

cally proven.

� Lines of Code (LOC): on the one hand, the di�erent ways to count would make this

metric di�cult to compare (cf. page 20); additionally, a large but structured code

segment could well be easier to understand than an unstructured small segment.

� Maintaiability Index (MI): this metric is built on the already criticized metrics;

additionally, according to the authors, it is not easy to understand.

More generally speaking, just because a metric and a quality attribute (e.g., complexity

and maintainability) seem to be correlated, this does not mean that this metric is really

a measure for that attribute (cf. [FB20, p. 463 f.]).

In regards to code smells, Zhang et al. (2011) found out that only few of the smells

originally proposed by Fowler & Beck have been scienti�cally investigated for their

e�ect on maintenance e�ort. Therefore, in their opinion there is not be enough evidence

to justify the use of code smells (cf. [ZHB11]).

Additionally, Sjøberg et al. (2013) have undertaken a study regarding the mainte-

nance e�ort of 12 code smells. They conclude that "the 12 types of code smells turned

out to be harmless with respect to e�ort" ([SYA+13, p. 1154]).

5.7 Tool Support

In this section software tools necessary to collect data for test coverage, maintainability

metrics and code smells shall brie�y be described.

Tools for test coverage

Coverage tools work as follows (cf. [SL19, p. 291]): (a) before execution, either the

source code or the byte code is instrumented, i.e. "probes" are inserted into the code

that register when an element (statement, branch, ...) has been covered; (b) tests are

executed and coverage data is collected; (c) from a protocol �le the coverage data is

analysed and statistics are generated.

31

5 How can software quality be measured?

Most tools support several programming languages, coverage types and export formats

(like HTML, CSV or PDF; cf. [YLW09, SI11]).

According to Alemerien & Magel (2014), the results reported by these tools vary

signi�cantly; the authors assume that this might be � among other reasons � due to

instrumentation type (byte- or source code), size and complexity of programs or di�erent

de�nitions of coverage (cf. [AM14, p. 17 �.]).

Tools for metrics and code smells

In contrast to code coverage tools, for the collection of metrics and code smells the source

code does not need to executed but can be analysed statically.

Tools for �nding code smells (like PMD or FindBugs) typically use con�gurable rules or

bug patterns to recognize violations (cf. [TEM13, p. 249]). PMD, for example, uses eight

di�erent rulesets in order to indicate more precisely what type of smell or �aw was found

(e.g., Code style, Design, Documentation or Security; cf. [PMD21b]). One shortcoming

often reported for this type of static analysis tools is that they report a vast amount of

issues that are no true faults ("false positives": cf. [VZS+12, p. 21]).

For the calculation of maintainability metrics, many tools are available that support

di�erent programming languages and sets of metrics (cf. [ACBV20]).

5.8 Summary

In lieu of a summary the following mindmap gives a basic overview of the many di�erent

levels and approaches for measuring software quality (cf. �g. 5.3 on the next page).

In this work, test coverage and maintainability metrics will be measured on unit test

level. Several di�erent coverage types exist.

For the calculation of test coverage, the code needs to be executed (dynamic testing)

and, additionally, the control �ow for all tests needs to be analysed (static analysis) �

regardless if the tests are functional or structure based. For measuring maintainability

metrics and code smells only static analysis is necessary. Luckily, tools exist that support

the measurement both of metrics/smells and coverage.

32

5 How can software quality be measured?

Figure 5.3: Software measurement - overview and focus of this work
(own representation based on [SL19]; green: measurements central for this
work; yellow: levels and approaches that are indirectly relevant).

The �rst part of this work has laid the foundations that were necessary for understanding

background and scope of the investigation. The next part will describe the investigation

itself.

33

Part II

Study

34

6 Literature research

The preliminary research question of this work was the following: Does unit test coverage

in�uence maintainability of production code?

With this question the following chain of assumptions was pursued (cf. section 5.5.3):

1. With a high level of unit test coverage developers feel encouraged to refactor ex-

isting production code as part of perfective maintenance activities. Implicitly, it

is expressed that developers will feel discouraged to refactor if the test coverage is

low.

2. These code changes are likely to a�ect maintainability in a positive way.

The preliminary research question and its assumptions are re�ected in the following draft

of a model (cf. �g. 6.1):

Figure 6.1: Draft of a model and preliminary research question (own representation).

Aim of the literature research is to �nd works related to both the preliminary research

question and the assumptions on which it is based. With this, the model will be rounded

up and a �nal research question / hypothesis will be derived.

35

6 Literature research

The following search terms were used: (("test coverage" OR "code coverage" OR "api

coverage" OR "coverage testing" OR "test gaps") AND ("software maintainability" OR

"software evolvability" OR "software sustainability" OR "software maintenance" OR

"refactoring" OR "software design")). No restrictions were made in regards to date of

publishing.

The search was conducted using the following scienti�c libraries:

� ACM Digital Library (cf. [ACM21]): 978 results

� IEEE Xplore (cf. [IEE21]): 112 results

� ScienceDirect (cf. [Els21]): 532 results

Additionally, from those articles that were found useful the list of references were searched

in order to �nd further related work that might be interesting.

6.1 Works related to preliminary research question

Bogner et al. (2018) have conducted an online survey with 60 participants to �nd

out which maintenance assurance techniques are most frequently used in industry (cf.

[BFWZ18, p. 127]). Interesting for the scope of this work is the fact that test coverage

is the most mentioned metric for estimating and controlling maintainability (reported by

one third of the participants; cf. [BFWZ18, p. 128]).

An study most similar to the preliminary research question was conducted by Harrison

& Samaraweera (1996), who focus on the programming languages C++ and SML (cf.

[HS96, p. 78]). The authors investigate relations between the number of test cases and

design metrics (e.g., non-comment source lines (NCSL) or number of functions called by

a program (N*)) and development metrics (e.g., time to �x known errors (TKE) or time

to implement modi�cations (TMR; cf. [HS96, p. 79]) � i.e., relations to both internal

and external maintainability metrics (cf. section 5.6.1).

They found positive correlations between the number of test cases and most design and

development metrics at 0.05 level of signi�cance for both programming languages (cf.

[HS96, p. 80 �.]).

That the correlations are positive instead of negative is insofar surprising as higher values

for these metrics indicate worse maintainability (e.g., more time to implement changes

36

6 Literature research

means that a system is "rigid": cf. section 3.2.3). From the assumptions made in section

6 the opposite would be expected: i.e., higher test e�ort "should" be correlated with

better maintainability � and that means lower values for both internal and external

metrics would be expected.

The positive correlation could be explained with the in�uence of production code metrics

on test e�ort. According to Toure et al. (2018), it would be too expensive to exert

equal test e�ort for all software components. Instead, "developers have to focus on

critical classes, requiring a relatively important testing e�ort, to ensure software quality"

([TBL18, p. 16]). To predict the expected test e�ort, metrics of production code (e.g.,

for size, complexity or coupling) can be used (cf. [TBL18, p. 17]).

6.2 Works related to �rst assumption

The �rst assumption is that developers feel encouraged to refactor when the test coverage

is high (cf. page 35).

Kim et al. (2012) conducted interviews with more than 300 developers at Microsoft;

additionally Leppänen et al.(2015) questioned 10 senior architects / developers at

Finish software companies; both surveys had the goal to �nd out what kind of obstacles,

risk factors and bene�ts interviewees associate with refactoring activity and in which

situations refactoring edits are initiated (cf. [KZN12, p. 4 �.], [LML+15]).

In regards to obstacles, indeed many developers said that low (regression) test coverage

prevents refactoring activity (cf. [KZN12, p. 4]). Therefore, in addition to automated

tests, a solid version control system was deemed a necessary precondition to refactoring

(cf. [LML+15, p. 67]). Further obstacles named by the interviewees are the need

to maintain backward compatibility (cf. [KZN12, p. 4]) and di�culties to convince

customers or management (cf. [LML+15, p. 66]).

Most of the interviewed developers (75,41 %) expressed their concern about introducing

new software faults and thus breaking builds as risks related to refactoring; additional

reasons were increased testing cost, less time for other tasks, merge con�icts and that it

is di�cult to measure the value of refactoring (cf. [KZN12, p. 5]). The latter reason as

well as the fear of introducing new bugs was also reported by Leppänen et al. (cf .

[LML+15, p. 66 f.]).

37

6 Literature research

As to the question what kind of situations made developers initiate refactoring activity,

the following were named: short term changes (57 %), the need to �x a bug (46 %),

poor readability or maintainability, code duplication and increasing dependencies (cf.

[KZN12, p. 5 f.]) as well as performance issues or the wish for higher reliability and

robustness (cf. [LML+15, p. 66]).

From these investigations it can be concluded that there are many in�uencing factors

in regards to refactoring activities. Low test coverage seems indeed to be regarded by

developers as an important, but by far not the only obstacle.

That testing costs are seen as an risk factor could emphasize the precondition of solid

coverage: if there are not enough tests, than prior to initiating refactoring edits more

tests need to be implemented in order to gain enough courage that the introduction of

new bugs will be noticed.

On the other hand, testing costs associated with refactoring can also arise because due

to code changes the alignment between production and test code can break � even if

the external behaviour remains unchanged (cf. [PBB16]). For example, white box tests

are designed with knowledge of the internal structure (cf. section 5.2) � and refactoring

edits aim to change and improve exactly these internals (cf. section 4.1). There are

other reasons why the consistency between production code and tests can break � as a

consequence, tests need to be adapted or added (cf. [PBB16]). Therefore, it is possible

that the additional test e�ort related to refactoring could discourage developers from

code improvements even if the initial test coverage is high.

Additionally, as Dinh-Trong et al. (2008) point out, unit tests alone are not always

su�cient for detecting behaviour-changing faults as some refactoring edits may well a�ect

more than one software component (cf. [DTGLR08, p. 255]).

6.3 Works related to second assumption

The second assumption is that after refactoring edits the maintainability of production

code is higher than before (cf. page 35).

When Kim et al. (2012) and Leppänen et al. (2015) asked developers in regards to

bene�ts of refactoring, the interview partners gave � among other reasons � the following

answers: (a) improved readability (43 %), (b) improved maintainability (30 %), (c) higher

38

6 Literature research

ease to add new features (37 %), (d) fewer bugs (27 %) (cf. [KZN12, p. 5]) as well as

(e) higher �exibility and reusability (cf. [LML+15, p. 66]).

It can be summarized that many developers share the assumption that refactoring ac-

tivities can have a positive in�uence on maintainability � but are there any quantitative

assessments to support this?

Kim et al., in addition to conducting interviews with developers, examined the impact

of refactoring edits on Windows 7 in regards to number of dependencies and defects

(cf. [KZN12, p. 7 f.]). They found that in binaries that were frequently refactored the

increase in dependencies between two versions is signi�cantly lower than in those that

were not refactored (cf. [KZN12, p. 9]).

Furthermore, Kolb at al. (2006) reported improved maintainability metrics after sev-

eral cycles of refactoring edits with the aim to reuse a legacy component. The average

�le size had decreased by -56.4 %, maximum function size by -79.1 % and Cyclomatic

Complexity by -45.9 % (cf. [KMPY06, p. 128]).

On the other hand, a more recent longitudinal study on 25 open source projects conducted

by Cedrim et al.(2016) found that only in 2.24 % of all cases refactoring edits succeeded

to eliminate code smells whereas in 2,66 % new smells were introduced; in all other cases

the smell density remained unchanged (cf. [CSGG16]).

These �ndings are backed up by research done by Bavota et al. (2015) who on three

Java open-source projects investigated relations between refactoring and software quality.

The authors report that only in 7 % of all cases developers succeeded in removing code

smells (cf. [BDD+15]).

6.4 Other related works

Some other works were found that are not directly relevant to the research question or

the two assumptions but still seem related and shall brie�y be mentioned.

For example, quite a few works use static code analysis to predict maintainability (cf.

[Vet13], [PGH+08], [THG20], [SOPF19])

39

6 Literature research

Additionally, there are works that investigate relations between test and production code.

For example, Tufano et al. (2016) found relations between tests smells and code smells

(cf. [TPB+16]).

6.5 Summary

Only one older work was found with an almost similar research question. Harrison &

Samaraweera (1996) found positive correlations between the number of test cases and

both internal and external maintainability metrics (cf. [HS96]). In addition, Bogner

et al. (2018) established that test coverage is the most favourite metric to estimate

software maintainability (cf. [BFWZ18]).

With the results gained by literature research, the preliminary model (cf. �g. 6.1 on

page 35) can be rounded up with the following relations (cf. �g. 6.2 on the next page):

� In addition to test coverage (relation a), refactoring seems to be in�uenced by

several factors (perceived obstacles and bene�ts as well as the speci�c situation

and pursued refactoring goals: relations d and e)

� Refactoring edits appear to have an backward impact on existing tests (relation b)

� According to Toure et al. (2018), maintainability metrics are used to focus test

e�ort on those software components that seem to be critical in some way (relation

f). It can be assumed that an increased test e�ort goes hand in hand with a higher

test coverage (relation g). This would explain the positive correlations between

number of test cases and maintainability found by Harrison & Samaraweera.

Especially the three backward relations (b, f and g) have an impact on the research

question. Previously, it was assumed that the relation between test coverage and main-

tainability is probably one-sided (cf. �g. 6.1 on page 35). Because of the named backward

relations and the �ndings by Harrison & Samaraweera, this assumption no longer

sounds plausible.

Instead, a bidirectional relationship between unit test coverage and maintainability is

assumed and the following research question will be investigated in this work:

Is unit test coverage correlated with maintainability of production code?

40

6 Literature research

Figure 6.2: Adapted model and research question (own representation).

41

7 Research design

7.1 Hypothesis

According to Fenton & Bieman (2020), the �rst step in a scienti�cal investigation is

to de�ne the goal that is pursued � and that this goal can be expressed in form of a

hypotheses (cf. [FB20, p. 139, 146]).

The aim of this investigation is to �nd an answer to the question, whether unit test

coverage and maintainability are correlated (cf. section 6.5 on page 40).

In order to make maintainability quanti�able (cf. [FB20, p. 139]), internal maintain-

ability metrics (cf. section 5.6.1 on page 29) were used. The following hypotheses were

proposed:

� H0: There is no relationship between unit test coverage and internal maintainability

metrics (null hypothesis).

� H1: There is a relationship between unit test coverage and internal maintainability

metrics (alternate hypothesis).

Coverage types, metrics and code smells used in this investigation are described in more

detail in sections 7.4.2 and 7.4.3 on page 47.

7.2 Study type

As Fenton & Bieman (2020) point out, the study type depends on

� the level of control researchers have on key variables,

� whether the events of interest have already taken place or not and

42

7 Research design

� the scale of an investigation (cf. [FB20, p. 135 �.]).

In this investigation it was planned to analyse source code written by other development

teams. As a consequence, it was not possible to control either of the variables (test

coverage or maintainability metrics). Furthermore, the event of interest (writing of source

code) had already taken place.

Lastly, the scale of this investigation depended on the e�ort needed to collect, analyse and

depict the data of interest. Since many convenient open-source tools for the collection of

coverage data and software metrics are available (cf. section 5.7 on page 31) and since a

Java tool could be written with which it was possible to integrate the collected data (cf.

�g. 7.3 on page 52), it was deemed practicable to analyse n > 30 development projects.

Therefore, a survey was chosen as the appropriate study type. According to Fenton

& Bieman (2020), a survey is "a retrospective study of a situation to try to document

relationships and outcomes. Thus, a survey is done after an event has occurred.[...]

[S]urveys try to poll what is happening broadly over large groups of projects [...]" ([FB20,

p. 136 f.]).

7.3 Selection of software projects

The target population of this investigation are all software projects that are: (a) open-

source, (b) written in Java as source code language, (c) listed on GitHub for easy instal-

lation, (d) using Gradle or Maven as build tool and (e) using JUnit for unit tests.

GitHub is a development platform, which allows individual developers as well as or-

ganisations to build and maintain software. The source code of software projects is

administrated within so called repositories (cf. [Git21c]). Within this work, the terms

"repositories" and (software) "projects" are used synonymously.

The reason to restrict the selection of projects to those using Gradle and Maven as build

tools is that it simpli�es the collection of coverage data (cf. section 7.5 on page 50).

A �rst cursory search on Github to �nd out how many repositories are based on Java

yielded almost six million results (cf. [Git21b]; accessed on 06.06.21). As a consequence,

a sample had to be drawn.

43

7 Research design

According to Sahner (1971), three conditions must be met so that a sample allows

conclusions to be drawn about the target population:

� Random sampling: each element of a population must be selectable with the same

probability (cf. [Sah71, p. 14 f.]).

� Independent sampling: the selection of one element may not in�uence the proba-

bility with which other elements are selected (cf. [Sah71, p. 16 f.]).

� Normal distribution: The attributes of interest (in this case: unit test coverage and

internal maintainability metrics) must be distributed normally within the target

population (cf. [Sah71, p. 39]). If the sample is large enough (n ≥ 30), this

condition can be safely ignored (cf. [Sah71, p. 53]).

It was not possible to make any assertions as to whether coverage or maintainability met-

rics are distributed normally. As a consequence, a sample size of at least 30 repositories

had to be achieved.

To select appropriate projects, the �rst approach was to send queries to the GitHub API

(cf. [Git21a]) using search terms like "language:java" and randomly select repositories

from the response. In the end, it proved to be not feasible to �nd enough projects which

satis�ed all selection criteria (see above).

The second approach was to look on MVNRepository for repositories which are tagged

with "GitHub". Like GitHub, MVNRepository serves as a development platform, from

which source code of software projects can be downloaded or directly integrated via build

tools. Several di�erent software categories are available; additionally, tags (like "spring",

"security" or "database") help to identify interesting repositories (cf. [Mvn21]).

Using this approach yielded 15 pages with each page containing 10 repositories resulting

in 150 projects altogether. However, it seemed unlikely that only such a small number of

software projects is available. Additionally, some repositories did not contain any Java

code.

Therefore, a di�erent approach was chosen to achieve better results. A query to MVN-

Repository with the search term "Java" was made, resulting in 40275 repositories. From

these, 4175 repositories were tagged with "GitHub" (accessed on 07.06.21). Still, a prob-

lem remained, since only the �rst 50 pages (= 500 repositories) were listed.

44

7 Research design

Figure 7.1: Selection process for repositories.

As a consequence, a fully random selection was not possible since not all of the 4175

repositories had the same chance to be chosen. To mitigate this, the list of results was

successively sorted by relevance, by popularity and by date of last commit. Each time,

15 repositories were randomly chosen resulting in a sample size of 45 (cf. �g. 7.1).

To gain a random sample, a self-written Java tool was used (RandomSampleGenerator).

The repositories were then manually installed.

45

7 Research design

The condition of independent sampling, on the other hand, is ful�lled since the sample

size is far less than 20 % of the target population (cf. [Sah71, p. 16 f.]).

7.4 Tools and examination conditions

A literature and internet research was conducted in order to identify works and webpages

suitable for the selection of appropriate tools, coverage types, metrics and code smells.

The following sources were used:

� Tools: Alemerien & Magel (2014), Ardito et al. (2020), Parfianowicz

(2017), Shahid & Ibrahim (2011), Tomas et al. (2013) and Yang & Weiss

(2009) (cf. [AM14, ACBV20, Par17, SI11, TEM13, YLW09]).

� Coverage types: Alemerien & Magel (2014), Hoffmann (2013), Shahid &

Ibrahim (2011), Spillner & Linz(2019) and Yang & Weiss (2009) (cf. [AM14,

Hof13, SI11, SL19, YLW09]).

� Maintainability metrics: Ardito et al. (2020) and Fenton & Bieman (2020)

(cf. [ACBV20, FB20]).

� Code smells: Fowler et al. (2005) and PMD (2021) (cf. [FBB+05, Mar09,

PMD21b])

7.4.1 Selection of tools

The �rst step was to select suitable tools for the purpose of collecting unit test coverage,

maintainability metrics and code smells.

Before selection, the following criteria were de�ned for all tools: (a) tool is still main-

tained in 2021, (b) open-source, (c) suitable for Java based projects, (d) availability of

appropriate output formats (e.g. CSV), (e) good documentation and (f) availability of

either command line interface, integration into an IDE (e.g. Eclipse or IntelliJ) or build

tool integration.

Additional criteria were de�ned for the di�erent tool types:

� Coverage and metric tools: they should support coverage types and metrics fre-

quently discussed in literature.

46

7 Research design

� Code smell tools: selection of smells related to maintainability is possible.

Based on the before mentioned criteria the following tools were chosen, installed and

tested for the intended purpose: (a) Coverage: JaCoCo (Version 0.8.8; cf. [Mou21b]);

(b) Metrics: MetricsReloaded (Version 1.11; cf. [Lei21a]); (c) Code smells: PMD

(Version 6.34.0; cf. [PMD21b]).

7.4.2 Selection of coverage types

The following coverage types were selected: branch-, instruction- and method-coverage,

which in the following text will be referred to as BC, IC and MC.

All are supported by JaCoCo (cf. [Mou21a]) and are frequently discussed in literature

(e.g. [Hof13, p. 206 �.], [SL19, p. 193 �.], [AM14], [YLW09]) � which were the criteria

for selection.

7.4.3 Selection of maintainability metrics

As mentioned before, there are two di�erent ways to measure maintainability: metrics

and code smells (cf. section 5.6.1 on page 28). Selection criteria for both were that they

had to be supported by the selected tools (MetricsReloaded and PMD) and � if possible

� that they are in widespread use in scienti�c literature.

Metrics

Ardito et al. (2020) have conducted a literature review on the most frequently used

maintainability metrics and respective tools for measurement. The authors identi�ed 14

metrics (or metric suites) which had a citation count above the median (cf. [ACBV20,

p. 13]).

Fortunately, MetricsReloaded can calculate most of these (cf. [Lei21b]). Some metrics

were omitted because no calculation on class level was available (e.g. CC and CE).

Also omitted were metrics related to documentation (e.g. JLOC and CLOC), since

documentation is not subjected to unit tests � and therefore not of interest for the scope

of this work.

47

7 Research design

Finally, some metrics (DIT, NOC and MPC) were omitted because it showed later that

in many cases these were not computable (resulting in "n/a"-values). In the �nal results,

this was the case for 377 out of 5131 classes (7,35 %).

What remained were the following: most of the metrics employed by the Chidamber and

Kemerer Suite (WMC, CBO, RFC, LCOM), two metrics from Halstead Suite (E and D)

as well as LOC and STAT (a description of all metrics used in this investigation can be

found in appendix A.1 on page 81). For all metrics used, higher values indicate lower

maintainability.

Code smells

PMD provides the following code smell rule sets: Best Practices, Code Style, Design,

Documentation, Error Prone, Multithreading, Performance and Security. A literature

research gave no results to the question which rules / rule sets are especially related to

maintainability.

Therefore, the following rules were selected based on experience and advice given by the

authors of "Clean Code" (cf. [Mar09]).

� All rules from rule set Design expect LoosePackageCoupling, since this rule indicates

a smell on package and not on class level (the selected rules are in following referred

to as DN)

� 11 rules from rule set Best Practices (BP) related to maintainability (ConstantsIn-

Interface, DefaultLabelNotLastInSwitchStmt, ForLoopCanBeForeach, ForLoopVari-

ableCount, LooseCoupling, OneDeclarationPerLine, UnusedAssignment, Unused-

FormalParameter, UnusedLocalVariable, UnusedPrivateField, UseCollectionIsEmpty)

� 15 rules from rule set Code Style (CS) related to maintainability (BooleanGet-

MethodName, ConfusingTernary, FieldDeclarationsShouldBeAtStartOfClass, For-

LoopShouldBeWhileLoop, IdenticalCatchBranches, LinguisticNaming, ShortClass-

Name, ShortMethodName, ShortVariable, UnnecessaryLocalBeforeReturn, Unnec-

essaryModi�er, UnnecessaryReturn, UselessQuali�edThis, UseShortArrayInitializer,

UseUnderscoresInNumericLiterals; a description of all Java rules can be found in

[PMD21a]).

48

7 Research design

Code smells (i.e., violations of these rules) were not counted for individual rules but

summarized for the rule sets named above (BP, CS, DN). A description of the process

for the collection and integration of data is given in section 7.5 on the next page.

Thus, a total of 11 maintainability metrics are used in this investigation: BP, CBO, CS,

D, DN, E, LCOM, LOC, RFC, STAT and WMC.

7.4.4 Statistical analysis technique

Strength of correlation (r)

To �nd an answer to the research question, correlations between the selected coverage

types and maintainability metrics need to be measured.

The appropriate statistical analysis technique depends on several factors (cf. [FB20, p.

241 �.]): (a) the aim of an investigation, (b) the scale of the measures (e.g., ordinal or ratio

scale) and (c) the assumed distribution of data (normal or non-normal distribution).

In case of this work,

� the aim of the investigation is to explore a relationship

� for all attributes, the measurements are on a ratio scale (i.e., they can be expressed

as numbers and a zero point exists: cf. [FHK+16, p. 16]) and

� it is not known how the data is distributed. Mostly, for software measures, it can

be assumed that the data is not normally distributed (cf. [FB20, p. 252]).

Under these circumstances, appropriate analysis techniques are either Spearmen's rho or

Kendall's tau as rank correlation coe�cients (cf. [FB20, p. 244]). Since Spearmen's rho

is more commonly used (cf. [FB20, p. 244, 253]), it was used for this investigation as

well (in the following called r).

It takes values between -1 (negative correlation) and 1 (positive correlation; cf. [FHK+16,

p. 135]). The strength can be grouped as follows (cf. [FHK+16, p. 130]):

� Weak correlation: |r| < 0.5 (in following: "weak r")

� Medium correlation: 0.5 ≤ |r| < 0.8 ("medium r")

� Strong correlation: |r| ≥ 0.8 ("strong r")

49

7 Research design

Signi�cance level (p)

As Fenton & Bieman point out, measures for association need to be accompanied by

a statistical test in order to determinate the level of signi�cance (cf. [FB20, p. 252]), in

the following abbreviated as p.

The lower the signi�cance level, the more likely �ndings are merely based on coincidence.

Typically (and in this text), 0.01 indicates a high and 0.05 a low level of signi�cance (in

following: "high p" and "low p"). This means that values of p ≤ 0.05 [0.01] indicate

that with a probability of 95 % [99 %] a �nding is not based on coincidence (cf. [Sah71,

p. 101 �.]) � in both cases, the alternate hypothesis will be accepted, but in the second

case the con�dence is higher.

7.5 Data collection and integration

The data was collected by using the tools mentioned above: JaCoCo (coverage data),

MetricsReloaded (maintainability metrics) and PMD (code smells). All tools support

CSV as export format.

Each tool was used in way to generate the respective CSV �le with as little e�ort as

possible: (a) For JaCoCo, a Gradle or Maven task was de�ned and executed as part of

the built process; (b) For MetricsReloaded, the chosen metrics were calculated within

IntelliJ IDE and (c) PMD was executed via command line (cf. �g. 7.2 on the following

page).

50

7 Research design

Figure 7.2: Processes for collecting data from repositories (executed manually).

The next step was to integrate the data from the previously generated CSV �les into a

common results �le. For this, another self-written Java tool was used (CsvIntegrator);

The integration process consists of several steps (cf. �g. 7.3 on the next page):

1. The coverage data is read; since MetricsReloaded apparently does not calculate

metrics for anonymous classes, these classes are skipped. For all other classes the

package name together with the name of the class is used as an unique ID. The

coverage data for each class is linked to its ID.

2. The metrics data is read and the ID for each class extracted; if coverage data exists

for this ID then the metrics data of this class is incorporated.

3. In the same way code smell data is handled, the di�erence being that code smells

are summed up for each rule set (BP, CS, DN) and not considered individually.

4. After all data is extracted (coverage, metrics and code smells) and linked to unique

IDs, a validation is carried out, because it showed that for some classes not all data

was available. This was due to the following reasons: (a) For some classes only

bytecode existed instead of source code. While JaCoCo and PMD could handle

this and still generate data, MetricsReloaded could not. (b) Other cases where

data could not be retrieved by all tools were interfaces with default methods.

51

7 Research design

5. Consequently, only those classes are taken into account for which all data could be

retrieved; these datasets are sorted by ID and written to a CSV results �le.

6. Finally, a log �le with more details is generated (cf. appendix A.3).

Figure 7.3: Process for integration of data, using a self-written Java tool (CsvIntegrator).

52

7 Research design

The CsvIntegrator tool was thoroughly tested on several di�erent repositories until it

could handle all cases described above.

7.6 Data evaluation

The data was analysed and visualized by using R (version 4.1.1; cf. [R F21]). Several R

scripts were written and used, for the combined analysis data of all classes as well as for

the individual repositories with more than 30 classes:

1. Firstly, an R script was used to calculate the signi�cance and strength of correla-

tions between all three coverage types and all 11 metrics (33 correlations altogether)

and to write the results to CSV tables (cors.r)

2. The generated CSV tables were then used in other scripts,

a) to count the number of signi�cant correlations and again to write the results

to other CSV tables (countcors.r) and

b) to generate plots for visualizing signi�cant correlations (corplots.r)

3. Finally, other scripts were used for generating plots to visualize the distribution

for the di�erent coverage, smell and metric types (boxplots.r) and for generating

plots to visualize more general aspects of this study (repoinfos.r)

53

8 Results

In 43 cases of the randomly chosen repositories it was not possible to extract the data

necessary for analysis, the main reason being build errors (cf. �g. 8.1).

Figure 8.1: Reasons why analysis data could not be retrieved from repositories.

As a consequence, additional repositories had to be chosen until 45 projects with all

necessary data (coverage, metrics and code smells) could be retrieved.

54

8 Results

The selected repositories included in the sample contained 5131 classes for which all

data (coverage, metrics and code smells) could be retrieved. On average, 114 analysable

classes were included in a single repository. Four projects contained more than 600 classes

(P9, R1, R9, R12) and 14 projects had less than 10 classes (cf. �g. 8.2). Tables with

repository details can be found in appendix A.2.

Figure 8.2: Number of evaluated classes per repository (n = 5131). N, R and P indicate
the order of the result set, from which the repositories were selected: sorted
by last commit (N), by popularity (P) or by relevance (R) .

8.1 Description of distributions

For a visual description of distributions, box-plots were used (cf. [FB20, 243]). In the

�rst graphic, the distribution of coverage is visualized (cf. �g. 8.3 on the following

page).

55

8 Results

Coverage

It can be seen that the most common value (median) for BC was zero and that 75 % of

all repositories had a coverage roughly below 50 %.

For both MC and IC, the coverage was much higher; in most cases, the projects had a

coverage of slightly below 40 %; one quarter of all repositories had a coverage between

40 and 90 %.

In all cases, some projects managed to gain a coverage of 100 %.

Figure 8.3: Distribution of coverage (all repositories).

Code smells

In order to visualize the full distribution of code smells and metrics, a logarithmic scale

was used.

56

8 Results

It can be seen that in most cases only few smells were found (for all smells the median

was 0). But, in opposite to coverage, a high number of outliers existed, with values up

to 1000 smells in some classes (cf. �g. 8.4).

Figure 8.4: Distribution of code smells (all repositories).

Metrics

In regards to metrics, most median values were below 50 with the exception of E, for

which values around 5000 were achieved. Similar to smells, many outliers existed (cf. �g.

8.5 on the following page).

57

8 Results

Figure 8.5: Distribution of metrics (all repositories).

8.2 Description of correlations

8.2.1 Overall results for all repositories

On the level for all projects (n=5131 classes) 20 out of 33 correlation were signi�cant; 18

were highly signi�cant (0.01 level) and two correlations had lower signi�cance (0.05 level).

The strength of all correlations was weak (|r| < 0.5; cf. section 7.4.4 on page 49). All

signi�cant correlations were positive expect two (cf. tab. 8.1 on the following page).

What stands out is that for BC all 11 correlations were highly signi�cant whereas for the

other coverage types only few relations with equal signi�cance could be identi�ed (IC: 3;

MC:4). IC is the only coverage type with signi�cant but very weak negative correlations.

58

8 Results

CBO, DN and LCOM are the only metrics for which signi�cant correlations with all

coverage types were found.

Coverage BC BC IC IC MC MC

Metric p r p r p r

BP 0,0000 0,11 0,0403 -0,03 0,0986 -0,02

CS 0,0000 0,23 0,5325 -0,01 0,3230 0,01

DN 0,0000 0,30 0,0225 0,03 0,0003 0,05

CBO 0,0000 0,36 0,0000 0,26 0,0000 0,28

D 0,0000 0,42 0,1271 -0,02 0,4140 0,01

E 0,0000 0,40 0,1067 -0,02 0,3790 0,01

LCOM 0,0000 0,15 0,0000 0,11 0,0000 0,10

LOC 0,0000 0,38 0,4853 -0,01 0,1585 0,02

RFC 0,0000 0,40 0,6208 0,01 0,0084 0,04

STAT 0,0000 0,40 0,0045 -0,04 0,8723 0,00

WMC 0,0000 0,40 0,1656 -0,02 0,3616 0,01

Table 8.1: Correlations for all repositories; bold = high (0.01 level), underlined = low
signi�cance (0.05 level), red = signi�cant negative correlations.

For a visual description, in the following graphic all signi�cant relations are displayed

(cf. �g. 8.6):

Figure 8.6: Signi�cant correlations for all repositories.

59

8 Results

8.2.2 Results for repositories with more than 30 classes

Correlation patterns

Since the signi�cant correlations on an overall level for all repositories were weak and

mostly positive it was then decided to have a closer look at individual projects (multi-

case-study). The rationale behind this decision was that maybe in some repositories

more and stronger negative correlations do indeed exist but which are � on the level of

all 45 projects � levelled out by other repositories with positive correlations.

To this end, it was decided to have a look on all projects with more than 30 classes. 18

of 45 repositories were found to match this criterion.

Repository Sum r Pos r Neg r Weak r Medium r Strong r Low p High p

R9 31 31 0 31 0 0 3 28

R12 30 30 0 30 0 0 3 27

P8 29 10 19 29 0 0 3 26

R1 29 12 17 25 4 0 2 27

R2 26 9 17 21 5 0 0 26

R4 25 11 14 21 4 0 2 23

P13 20 9 11 8 12 0 3 17

N12 18 18 0 18 0 0 12 6

P14 18 11 7 10 8 0 5 13

P9 16 13 3 16 0 0 4 12

R5 12 12 0 11 1 0 2 10

R11 12 1 11 7 5 0 4 8

P5 11 8 3 8 3 0 2 9

P11 10 10 0 1 9 0 0 10

N14 9 9 0 5 4 0 2 7

P10 6 6 0 6 0 0 6 0

R7 6 6 0 6 0 0 1 5

P7 3 3 0 3 0 0 3 0

Sum 311 209 102 256 55 0 57 254

Table 8.2: Number of signi�cant correlations in repositories with n > 30 classes; sorted
by sum of relations.

60

8 Results

As can be gained from table 8.2, the number of signi�cant correlations (sum r) varies

greatly: between three (P7) and 31 (R9). Remarkably, half of the repositories had nega-

tive correlations; roughly one third (102 of 311: 32,8 %) of all relations were negative � in

case of R11, almost all relations were negative. Additionally, in 10 projects correlations

with medium strength were found (55 of 311: 17,7 %).

In terms of di�erent coverage types, it can be noticed that most correlations were found

for BC (145, of which 42 had medium strength = 29,0 %) � and all were positive (cf.

table 8.3). In contrast, 91 correlations for IC were found (medium strength: 13,2 %;

negative: 64,8 %) and 75 for MC (1,3 %; 57,3 %).

Coverage Sum r Pos r Neg r Weak r Medium r Strong r Low p High p

BC 145 145 0 103 42 0 17 128

IC 91 32 59 79 12 0 22 69

MC 75 32 43 74 1 0 18 57

Table 8.3: Number of signi�cant correlations for di�erent coverage types (for repositories
with n > 30 classes; sorted by sum of relations).

These �ndings are visualized in �g. 8.8 on the following page. In regards to metrics, the

results are displayed in the following table (cf. 8.4).

Coverage Sum r Pos r Neg r Weak r Medium r Strong r Low p High p

STAT 34 22 12 27 7 0 4 30

WMC 34 21 13 27 7 0 5 29

LOC 33 18 15 29 4 0 3 30

E 32 22 10 24 8 0 5 27

D 31 20 11 23 8 0 3 28

DN 31 20 11 23 8 0 5 26

RFC 30 19 11 23 7 0 2 28

CBO 26 24 2 23 3 0 7 19

LCOM 25 15 10 23 2 0 7 18

CS 23 18 5 22 1 0 8 15

BP 12 10 2 12 0 0 8 4

Table 8.4: Number of signi�cant correlations for di�erent metrics (for repositories with
n > 30 classes; sorted by sum of relations).

61

8 Results

(a) Branch coverage

(b) Instruction coverage

(c) Method coverage

Figure 8.8: Signi�cant correlations for di�erent coverage types (for repositories with n >
30 classes).

62

8 Results

In regards to metrics, the �rst thing that attracts attention is that � in contrast to

repositories and coverage types � there seems to be a more even distribution:

� The �rst seven metrics have roughly the same amount of correlations: between 30

(RFC) and 34 (STAT).

� Additionally, most metrics have more or less the same percentage of negative rela-

tions: 30 - 40 %. Higher values were only found for LOC (45.5 %), lower values for

CS (21,7 %), BP (16,7 %) and CBO (7,7 %).

That the distribution of metrics is more even suggests that coverage type and repository

have a stronger in�uence on correlation than metric types. Therefore, two repositories

with "extreme" results shall be viewed more closely: one where all correlations were

positive (R9) and one where mostly negative correlations occurred: R11 (cf. �g. 8.9):

(a) Repository with only positive correlations

(b) Repository with mostly negative correlations

Figure 8.9: Repositories with "extreme" results.

63

8 Results

When looking at coverage distribution for both repositories, the di�erences are obvious

(cf. �g. 8.10):

(a) Coverage for repository with only
positive correlations (R9)

(b) Coverage for repository with
mostly negative correlations (R11)

Figure 8.10: Coverage for repositories with "extreme" results.

The �rst pattern of low coverage and positive correlations (in following: LCPC-pattern)

can be found in six other repositories as well, e.g. R12, N12 or R7 (cf. appendix A.4.1).

The second pattern of high coverage and negative correlations (HCNC-pattern) could

not be found with the same clarity as in R11. Instead, a mixture of both patterns seems

to be more typical: LCPC for branch coverage (LCPC (BC)) and HCNC for instruction

and method coverage (HCNC (IC/MC)) (cf. �g. 8.11).

(a) Coverage for repository R4 (b) Correlations for repository R4

Figure 8.11: Mixed LCPC (BC)/HCNC (IC/MC) pattern in repository R4.

64

8 Results

This pattern was observed for repositories P5, P14 and R13 as well (cf. appendix A.4.3

on page 90). For six repositories, no common pattern was recognized (cf. appendix A.4.4

and A.4.5). Summarized, the following patterns were found in repositories with more

than 30 classes (cf. tab. 8.5):

Pattern Number of
repositories

Repositories

LCPC 7 N12, P7, P9, P10, R7, R9, R12

HCNC 1 R11

Mixed LCPC (BC) / HCNC (IC/MC) 4 P5, P14, R4, R13

No apparent pattern 6 N14, P8, P11, R1, R2, R5

Table 8.5: Patterns in repositories with more than 30 classes.

For the description of these patterns only coverage types were taken into account. This

is due to the fact that for coverage both a lower and a upper limit exist � whereas for

maintainability metrics there is no real upper limit (cf. outliers in �g. 8.5 on page 58).

Additionally, no strict de�nition was used; instead, it was roughly estimated whether a

coverage distribution was higher or lower than the average (cf. �g. 8.3 on page 56).

Metric classes with strongest positive and negative correlations

On a higher level, which metric classes dominate positive and negative correlations? In

order to �nd an answer to this question, the top ten signi�cant correlations with highest

positive / negative strength were identi�ed (cf. tables 8.6 and 8.7 on the following

page):

Interestingly, in the majority of all cases positive correlations could be assigned to code

size � and only one coupling metric was found. In comparison, the majority of negative

correlations was due to design-related metrics (design size, coupling, cohesion and design

issues).

In summary, 45 projects with 5131 classes were analysed and the following results were

obtained in regards to the research question.

On the level for all projects (n=45; survey):

(1) 20 out of 33 signi�cant correlations were found, of which 18 were highly signi�cant

(0.01 level). (2) The strength of all correlations was weak. (3) All correlations were

65

8 Results

Repository Coverage Metric Classi�cation p r

P13 BC D Code size 0,0000 0,75

P14 BC WMC Design size 0,0000 0,73

P11 BC D Code size 0,0000 0,71

P11 BC WMC Design size 0,0000 0,71

P14 BC LOC Code size 0,0000 0,71

P11 BC STAT Code size 0,0000 0,70

P11 BC RFC Coupling 0,0000 0,70

N14 BC D Code size 0,0000 0,69

P11 BC LOC Code size 0,0000 0,68

P14 BC STAT Code size 0,0000 0,68

Table 8.6: Top 10 signi�cant positive correlations (for repositories with n > 30 classes);
classi�cation of metrics according to [FB20].

Repository Coverage Metric Classi�cation p r

P13 IC WMC Design size 0,0000 -0,66

P13 IC RFC Coupling 0,0000 -0,63

P13 IC DN Design issues 0,0000 -0,63

P13 IC LOC Code size 0,0000 -0,61

P13 IC STAT Code size 0,0000 -0,57

P13 IC LCOM Cohesion 0,0000 -0,57

P13 IC E Code size 0,0000 -0,55

R11 IC WMC Design size 0,0000 -0,55

R11 IC CBO Coupling 0,0000 -0,52

P13 MC LCOM Cohesion 0,0000 -0,51

Table 8.7: Top 10 signi�cant negative correlations (for repositories with n > 30 classes);
classi�cation of metrics according to [FB20] and [PMD21b].

positive except two. (4) For BC all correlations were highly signi�cant whereas for the

other coverage types only few relations had equal signi�cance. (5) IC was the only

coverage type with negative correlations. (6) DN and LCOM were the only metrics that

had signi�cant correlations with all coverage types.

66

8 Results

On the level for repositories with more than 30 classes (n=18; multi-case study):

(7) The number of signi�cant correlations varies greatly between projects; half of the

repositories had negative correlations and in ten repositories correlations were of medium

strength. (8) Most correlations were found for branch coverage (and with a higher per-

centage of medium strength relations). (9) All correlations for BC were positive whereas

IC and MC had around 60 % negative relations. (10) For metric types, the number of

correlations was more evenly distributed than for repository or coverage type. (11) Sev-

eral correlation patterns were discovered, the most common being LCPC, followed by

a mixed LCPC/HCNC-pattern; only one case of a relatively "pure" HCNC-pattern was

found. (12) The strongest positive correlations were dominated by size-related metrics

whereas the strongest negative correlations were related to metrics of design.

67

9 Discussion

9.1 Discussion of results

More than half of all possible correlations were of high signi�cance even if the strength

of relations was weak (results 1, 2).

That the number of correlations were more evenly distributed for metric types (10) may

be seen as evidence that coverage types and development practices in individual software

projects have a higher in�uence on the relation between coverage and maintainability

than the type of metrics.

Interesting is the �nding that the coverage types di�er in respect to number, strength and

direction of correlations (3, 8, 9). That only few relations for IC and MC were found on

level of all repositories can be explained with the fact that on level of individual projects

roughly half of all relations for IC and MC were negative (9) � thus, on a higher level,

the negative and positive correlations cancel each other out.

There seem to be more and stronger positive relations, both on the level of all 45 repos-

itories as well as on the level for projects with more than 30 classes (3, 8). This is a

similar result to what Harrison & Samaraweera (1996) reported ([HS96]). This can

be interpreted as an indication that developers increase their test e�ort for those com-

ponents that were rated as being in some way "critical" (cf. [TBL18]; cf. �g. 6.2 on

page 41). That for BC all correlations were positive (9) � in contrast to IC and MC �

and that LCPC was the most frequent pattern (11) can be seen as a hint that especially

BC is used with the aim of thoroughly testing these complex modules.

That IC and MC had a much higher percentage of negative correlations (9) raises the

question whether these coverage types indeed increase the con�dence to refactor with

the aim of better maintainability, as claimed by several authors (cf. section 5.5.3 on

page 27).

68

9 Discussion

The mixed LCPC (BC) / HCNC (IC/MC) pattern, found in four cases, may be seen as a

hint that in software projects both relations can be observed simultaneously: low BC as

an indicator that only critical components were tested in more depth � and a high IC /

MC with the e�ect of increasing con�dence for refactoring edits.

Interesting is the result that 70 % of the strongest positive correlations were dominated

by code-size metrics (12). This could be seen as a hint that developers focus their in-

depth testing activities on very large components in particular. In comparison, an equal

percentage of the strongest negative relations could be assigned to metrics of design

like coupling or cohesion. This might support the assumption that high test coverage

encourages refactoring activities with positive e�ects on design attributes. This �nding

is related to works by other researchers who reported less dependencies and decreased

complexity after refactoring edits (cf. [KZN12, p. 9], [KMPY06, p. 128]).

All in all, the evidence for a negative correlation between test coverage and maintain-

ability was much weaker than for a positive correlation. This may be due to the many

factors that in�uence refactoring activities (cf. [KZN12], [LML+15]).

9.2 Threats to validity

According to Wohlin et al. (2000), several problems can occur which might threaten

the validity of research results (cf. [WRH+00]; cited by [FB20, p. 143 f.]):

� Conclusion validity: For this type of validity, the appropriate statistical test needs

to be employed, the results need to be statistically signi�cant and the sample

size large enough. Additionally, the number of variables for which relations are

investigated should not be too large.

In this respect, no obvious threats were discovered, since only relations between

pairs of two variables were investigated. For sample size and statistical test, advises

in literature have been followed closely. Finally, the results were on a signi�cance

level of 0.05 or above. Still, for some observations (e.g. for the proposed patterns)

only few supportive cases were found. Therefore, these propositions should be

tested with a larger sample size.

� Construct validity: Most important, for this validity, is to use meaningful and

robust measures.

In this investigation, only those maintainability metrics were used, that have been

69

9 Discussion

most frequently discussed in scienti�c literature. Still � as described in section

5.6.3 on page 30 � some of these metrics have been criticised: CC (on which WMC

relies), the Halstead Suite (of which D and E were used) or LOC. In regards to

code smells, suitable rules have been selected in accordance with only one source

and, in addition, based on own experience. But smells were also subject of criticism

(cf. section 5.6.3). Therefore, the construct validity might � at least partly � be

threatened.

� Internal validity: For this validity type, some theory must exist as to how the vari-

ables under investigation are related to each other. Additionally, before the onset

of an investigation, the independent variable should be measured.

In this context, an explanatory model based on a literature �ndings has been pro-

posed (cf. �g. 6.2 on page 41). It was stated that both variables are supposedly

correlated; i.e. a two-sided relationship was assumed and reasons given for this.

Thus, both variables are dependent and independent at the same time. In addi-

tion, the aim of this investigation (a survey followed by a multi-case study) was

to document relations in retrospective. Therefore, it was not possible to measure

the independent variable(s) beforehand. What might be criticised, though, is that

it was nevertheless tried to make conclusions in regards to one-sided relations (for

example, a positive correlation between BC and maintainability metrics means that

developers probably have tested complex components more thoroughly).

� External validity: This kind of validity refers to the generalizability of an investiga-

tion. The results are generalizable, if the study environment and the study objects

are close to real-world conditions.

To achieve a higher generalizability � regarding the population of Java projects

listed on GitHub � in this investigation the study objects (repositories) were se-

lected randomly and the sample size was above 30 as proposed in literature (cf.

section 7.3 on page 43). As described in that section, it was not possible to gain a

fully random sample. Additionally, only a sub-population of all repositories listed

on GitHub was selected due to technical reasons (requirement: Maven or Gradle as

build tools). For the same reason, the selection was carried out on MVNRepository

and not directly on GitHub. Therefore, the external validity might be impaired.

70

10 Conclusions and future work

With 18 out of 33 correlations with high (0.01 level) and two correlations with low (0.05

level) signi�cance the alternative hypothesis (H1) is accepted: there is indeed a relation-

ship between unit test coverage and maintainability metrics � although the strength of

this correlation is weak on an overall level.

Most correlations were positive and towards branch coverage. This can be seen as an

indication that developers increase testing e�ort for "critical" components in particular

� and that branch coverage is important for this purpose.

Negative correlations � indicating positive e�ects of high test coverage on maintainability

� were only found for few of the projects. This may be due to the many factors that

in�uence refactoring activities. Still, it could be established that both instruction- and

method-coverage are of higher relevance here.

On these grounds, it can be concluded that in regards to the proposed model there seems

to be a much stronger relation in "backward" (test coverage ← maintainability) than in

"forward" direction (test coverage → maintainability).

Based on this work, for future research it seems of interest to explore the reasons behind

the �nding that individual projects di�er greatly in regards to number, strength and

direction of correlations between coverage and maintainability metrics. This could be

done by means of qualitative research, e.g. by interviewing the involved maintainers

and developers of repositories with "extreme" correlations (only positive, only / mostly

negative, no correlations at all) in regards to development model, used development tools,

signi�cance of refactoring activities, views on software quality / maintainability etc.

Additionally, it might be interesting to expand the research on other metrics, coverage

types or other types of software projects (proprietary software instead of open-source;

di�erent sectors of industry, etc.).

71

Bibliography

[ACBV20] Luca Ardito, Riccardo Coppola, Luca Barbato, and Diego Verga. A Tool-

Based Perspective on Software Code Maintainability Metrics: A Systematic

Literature Review. Scienti�c Programming, 2020(-):1�26, aug 2020.

[ACM21] ACM. ACM Digital library. https://dl.acm.org/, 2021. Accessed:

2021-09-09.

[AM14] Khalid Alemerien and Kenneth Magel. Examining the e�ectiveness of test-

ing coverage tools: An empirical study. International Journal of Software

Engineering and its Applications, 8(5):139�162, 2014.

[BDD+15] Gabriele Bavota, Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto,

and Fabio Palomba. An experimental investigation on the innate relation-

ship between quality and refactoring. Journal of Systems and Software,

107:1�14, sep 2015.

[Bec01] Kent Beck. Extreme Programming explained. Embrace change. 7th printing.

Addison-Wesley, 2001.

[BF11] Dustin Boswell and Trevor Foucher. The Art of Readable Code. Simple and

Practical Techniques for Writing Better Code. O'Reilly Media, Inc, 2011.

[BFWZ18] Justus Bogner, Jonas Fritzsch, Stefan Wagner, and Alfred Zimmermann.

Limiting Technical Debt with Maintainability Assurance � An Industry

Survey on Used Techniques and Di�erences with Service- and Microservice-

Based Systems. In Proceedings of the 2018 International Conference on

Technical Debt, volume 18, pages 125�133, New York, NY, USA, 2018.

ACM.

[Coh09] Mike Cohen. The Forgotten Layer of the Test Automation Pyra-

mid. https://www.mountaingoatsoftware.com/blog/the-

72

Bibliography

forgotten-layer-of-the-test-automation-pyramid, 2009.

Accessed: 2021-08-16.

[CS14] Jitender Choudhari and Ugrasen Suman. Extended iterative maintenance

life cycle using eXtreme programming. ACM SIGSOFT Software Engineer-

ing Notes, 39(1):1�12, feb 2014.

[CSGG16] Diego Cedrim, Leonardo Sousa, Rohit Gheyi, and Alessandro Garcia. Does

refactoring improve software structural quality? A longitudinal study of 25

projects. In SBES '16: Proceedings of the 30th Brazilian Symposium on

Software Engineering, pages 73�82, 2016.

[Cun92] CunninghamWard. The WyCash portfolio management system. ACM SIG-

PLAN OOPS Messenger, 4(2):29�30, dec 1992.

[DTGLR08] Trung Dinh-Trong, Birgit Geppert, J. Jenny Li, and Frank Roessler. Look-

ing for more con�dence in refactoring? - How to assess adequacy of your

refactoring tests -. In Proceedings - International Conference on Quality

Software, pages 255�263, 2008.

[Els21] Elsevier. ScienceDirect. https://www.sciencedirect.com/, 2021.

Accessed: 2021-09-09.

[FB20] Norman Fenton and James Biemann. Software Metrics. A Rigorous and

Practical Approach. Third Edition. CRC Press; Taylor & Francis Group,

LLC, 2020.

[FBB+05] Martin Fowler, Kent Beck, John Brant, John Opdyke, and Don Roberts.

Refactoring: Improving the Design of Existing Code. Sixteenth printing.

Addison Wesley Longman, Inc., 2005.

[FHK+16] Ludwig Fahrmeier, Christian Heumann, Rita Künstler, Iris Pigeot, and

Gerhard Tutz. Statistik. Der Weg zur Datenanalyse. Springer Spektrum,

Springer-Verlag GmbH: Berlin, Heidelberg, 8., überarb. u. erg. au�. 2016

edition edition, 2016.

[Fow12] Martin Fowler. TestPyramid. https://martinfowler.com/bliki/

TestPyramid.html, 2012. Accessed: 2021-08-16.

[GHJV15] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-

sign Patterns. Entwurfsmuster als Elemente wiederverwendbarer objektori-

entierter Software. mitp Verlags GmbH und Co. KG, 01 2015.

73

Bibliography

[Git21a] GitHub. Github API. https://api.github.com/search/

repositories?q=language:java, 2021. Accessed: 2021-06-06.

[Git21b] GitHub. Github: Search language:java. https://github.com/

search?q=language%3Ajava, 2021. Accessed: 2021-06-06.

[Git21c] GitHub. Github: Where the world builds software. https://github.

com, 2021. Accessed: 2021-06-06.

[Hof13] Dirk W. Ho�mann. Software-Qualität. 2. Au�age. Springer Vieweg, Berlin,

Heidelberg, 01 2013.

[HS96] R. Harrison and L. G. Samaraweera. Using test case metrics to predict code

quality and e�ort. ACM SIGSOFT Software Engineering Notes, 21(5):78�

88, sep 1996.

[IEE90] IEEE. IEEE Standard Glossary of Software Engineering Terminology. Of-

�ce, 121990(1):1, 1990.

[IEE21] IEEE. IEEE Xplore. https://ieeexplore.ieee.org/Xplore/

guesthome.jsp, 2021. Accessed: 2021-09-09.

[Int21a] International Organization for Standardization. ISO/IEC 25010:2011(en),

Systems and software engineering � Systems and software Quality Require-

ments and Evaluation (SQuaRE) � System and software quality mod-

els. https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:

ed-1:v1:en, 2021. Accessed: 2021-04-29.

[Int21b] International Software Testing Quali�cations Board. ISTQP Glos-

sary. https://glossary.istqb.org/en/search/confirmation%

20testing, 2021. Accessed: 2021-08-16.

[Int21c] International Software Testing Quali�cations Board. ISTQP Glossary.

https://glossary.istqb.org/en/search, 2021. Accessed: 2021-

08-16.

[KMPY06] Ronny Kolb, Dirk Muthig, Thomas Patzke, and Kazuyuki Yamauchi.

Refactoring a legacy component for reuse in a software product line: a

case study. Journal of Software Maintenance and Evolution: Research and

Practice, 18(2):109�132, mar 2006.

74

Bibliography

[KZN12] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. A Field

Study of Refactoring Challenges and Bene�ts. In Proceedings of the ACM

SIGSOFT 20th International Symposium on the Foundations of Software

Engineering - FSE '12, pages 1�11, New York, New York, USA, 2012. ACM

Press.

[Lei21a] Leijdekkers Bas. MetricsReloaded. https://github.com/

BasLeijdekkers/MetricsReloaded, 2021. Accessed: 2021-09-

21.

[Lei21b] Leijdekkers Bas. MetricsReloaded - metricDescriptions.

https://github.com/BasLeijdekkers/MetricsReloaded/

tree/master/stockmetrics/metricsDescriptions/

metricsDescriptions, 2021. Accessed: 2021-07-12.

[LHR88] K. Lieberherr, I. Holland, and A. Riel. Object-oriented programming:

An objective sense of style. In Conference Proceedings on Object-Oriented

Programming Systems, Languages and Applications, OOPSLA 1988, pages

323�334. Association for Computing Machinery, Inc, jan 1988.

[Lil20] Carola Lilienthal. Langlebige Software-Architekturen: Technische Schulden

analysieren, begrenzen und abbauen. 3., überarb. u. erw. Edition.

dpunkt.verlag GmbH, Heidelberg, 2020.

[LL13] Jochen Ludewig and Horst Lichter. Software Engineering, 3., korrigierte

Au�age. dpunkt.verlag GmbH, Heidelberg, 05 2013.

[LML+15] Marko Leppanen, Simo Makinen, Samuel Lahtinen, Outi Sievi-Korte,

Antti Pekka Tuovinen, and Tomi Mannisto. Refactoring-a Shot in the

Dark? IEEE Software, 32(6):62�70, nov 2015.

[Mar00] Rc Martin. Design principles and design patterns. Object Mentor, (c):1�34,

2000.

[Mar09] RC Martin. Clean Code: A Handbook of Agile Software Craftsmanship.

Pearson Education, Inc., 2009.

[Mou21a] Mountainminds GmbH & Co. KG and Contributors. Coverage Coun-

ters. https://www.jacoco.org/jacoco/trunk/doc/counters.

html, 2021. Accessed: 2021-09-21.

75

Bibliography

[Mou21b] Mountainminds GmbH & Co. KG and Contributors. JaCoCo - Java

Code Coverage Library. https://www.jacoco.org/jacoco/trunk/

index.html, 2021. Accessed: 2021-09-21.

[Mvn21] MvnRepository. MvnRepository: Search, Browse. Explore. https://

mvnrepository.com, 2021. Accessed: 2021-09-21.

[OW14] Jan Peter Ostberg and Stefan Wagner. On automatically collectable metrics

for software maintainability evaluation. In Proceedings - 2014 Joint Con-

ference of the International Workshop on Software Measurement, IWSM

2014 and the International Conference on Software Process and Product

Measurement, Mensura 2014, pages 32�37. Institute of Electrical and Elec-

tronics Engineers Inc., dec 2014.

[Par17] Par�anowicz Marek. Clover 4.1 : Comparison of code cover-

age tools. https://atlassian-docs.bitbucket.io/CLOVER/

Comparison-of-code-coverage-tools_681706101.html, 2017.

Accessed: 2021-09-22.

[PBB16] Harrie Passier, Lex Bijlsma, and Christoph Bockisch. Maintaining Unit

Tests During Refactoring. In Proceedings of the 13th International Con-

ference on Principles and Practices of Programming on the Java Platform:

Virtual Machines, Languages, and Tools, pages 1�6, New York, NY, USA,

2016. ACM.

[PGH+08] R. Plösch, H. Gruber, A. Hentschel, G. Pomberger, and S. Schi�er. On the

relation between external software quality and static code analysis. 32nd

Annual IEEE Software Engineering Workshop, SEW-32 2008, 1(1):169�

174, 2008.

[PMA+19] Anthony Peruma, Mohamed Wiem Mkaouer, Khalid Almalki, Ali Ouni,

Christian D Newman, and Fabio Palomba. On the distribution of test

smells in open source android applications: An exploratory study. In CAS-

CON 2019 Proceedings - Conference of the Centre for Advanced Studies on

Collaborative Research - Proceedings of the 29th Annual International Con-

ference on Computer Science and Software Engineering, volume 10, pages

193�202, 2019.

[PMD21a] PMD. Java Rules. https://pmd.github.io/latest/pmd_rules_

java.html, 2021. Accessed: 2021-09-22.

76

Bibliography

[PMD21b] PMD. PMD. An extensible cross-language static code analyzer. https:

//pmd.github.io/, 2021. Accessed: 2021-08-23.

[PMD21c] PMD. What does 'PMD' mean? https://pmd.github.io/latest/

pmd_projectdocs_trivia_meaning.html, 2021. Accessed: 2021-08-

23.

[PMVV12] Eltjo R. Poort, Nick Martens, Inge Van De Weerd, and Hans Van Vliet.

How architects see non-functional requirements: Beware of modi�ability.

Lecture Notes in Computer Science (including subseries Lecture Notes in

Arti�cial Intelligence and Lecture Notes in Bioinformatics), 7195 LNCS:37�

51, 2012.

[PR15] Klaus Pohl and Chris Rupp. Basiswissen Requirements Engineering, 4.

Au�age. dpunkt.verlag GmbH, Heidelberg, 07 2015.

[R F21] R Foundation. The R Project for Statistical Computing. https://www.

r-project.org/, 2021. Accessed: 2021-09-28.

[Sah71] Heinz Sahner. Schlieÿende Statistik. Studienskripten zur Soziologier. Her-

ausgegeben von E.K. Scheuch. Statistik für Soziologen 2. B. G. Teubner,

Stuttgart, 06 1971.

[SI11] Muhammad Shahid and Suhaimi Ibrahim. An Evaluation of Test Coverage

Tools in Software Testing. In 2011 International Conference on Telecom-

munication Technology and Applications, volume 5, pages 216�222, 2011.

[SL19] Andreas Spillner and Tilo Linz. Basiswissen Softwaretest. dpunkt.verlag

GmbH, Heidelberg, 06 2019.

[SOPF19] Markus Schnappinger, Mohd Hafeez Osman, Alexander Pretschner, and

Arnaud Fietzke. Learning a classi�er for prediction of maintainability based

on static analysis tools. In IEEE International Conference on Program

Comprehension, volume 2019-May, pages 243�248. IEEE Computer Society,

may 2019.

[SYA+13] Dag I.K. Sjoberg, Aiko Yamashita, Bente C.D. Anda, Audris Mockus, and

Tore Dyba. Quantifying the e�ect of code smells on maintenance e�ort.

IEEE Transactions on Software Engineering, 39(8):1144�1156, 2013.

77

Bibliography

[TBL18] Fadel Toure, Mourad Badri, and Luc Lamontagne. Predicting di�erent lev-

els of the unit testing e�ort of classes using source code metrics: a multiple

case study on open-source software. Innovations in Systems and Software

Engineering, 14(1):15�46, mar 2018.

[TEM13] P. Tomas, M. J. Escalona, and M. Mejias. Open source tools for measur-

ing the Internal Quality of Java software products. A survey. Computer

Standards and Interfaces, 36(1):244�255, nov 2013.

[THG20] Alexander Trautsch, Ste�en Herbold, and Jens Grabowski. A longitudi-

nal study of static analysis warning evolution and the e�ects of PMD on

software quality in Apache open source projects. Empirical Software Engi-

neering, 25(6):5137�5192, nov 2020.

[TPB+16] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta,

Rocco Oliveto, Andrea De Lucia, and Denys Poshyvanyk. An Empirical

Investigation into the Nature of Test Smells. In Proceedings of the 31st

IEEE/ACM International Conference on Automated Software Engineering,

pages 4�15, New York, NY, USA, 2016. ACM.

[vDMvK02] A. van Deursen, L. Moonen, A van Den Bergh, and Gerard Kok. Refactor-

ing test code. Extreme Programming Perspectives, pages 141�152, 2002.

[Vet13] A Vetro'. Empirical Assessment of the Impact of Automatic Static Analysis

on Code Quality. PhD thesis, Politecnico di Torino, 2013.

[VMS+19] Tássio Virgínio, Luana Almeida Martins, Larissa Rocha Soares, Ivan

Machado, Railana Santana, and Heitor Costa. On the in�uence of Test

Smells on Test Coverage. In Proceedings of the XXXIII Brazilian Sympo-

sium on Software Engineering, New York, NY, USA, 2019. ACM.

[VRvdL+16] Joost Visser, Sylvan Rigal, Rob van der Leek, Gijs Wijnholds, and Pascal

van Eck. Building Maintainable Software. O`Reilly Media, Inc.; Sabastopol,

08 2016.

[VZS+12] Antonio Vetro, Nico Zazworka, Forrest Shull, Carolyn Seaman, and

Michele A. Shaw. Investigating automatic static analysis results to identify

quality problems: An inductive study. In Proceedings of the 2012 IEEE

35th Software Engineering Workshop, SEW 2012, pages 21�31, 2012.

78

Bibliography

[WRH+00] Claes Wohlin, Per Runeson, Martin Hoest, Magnus C. Ohlsson, Bjoern

Regnell, and Anders Wesslen. Experimentation in Software Engineering.

Springer Science and Business Media, New York, 10 2000.

[YLW09] Q. Yang, J. J. Li, and D. M. Weiss. A Survey of Coverage-Based Testing

Tools. The Computer Journal, 52(5):589�597, aug 2009.

[ZHB11] Min Zhang, Tracy Hall, and Nathan Baddoo. Code Bad Smells: a review

of current knowledge. Journal of Software Maintenance and Evolution:

Research and Practice, 23(3):179�202, apr 2011.

79

80

A Appendix

A Appendix

A.1 Description of metrics

Abbr. Full name Description Classi�cation

WMC
Weighted
Method per
Class

Measures the sum of weights of all methods in a class.
The "weight" is a measure for complexity, typically
(like in MetricsReloaded) the Cyclomatic Complexity
(CC). Therefore, WMC is summing up the complexity
of all methods in a class.

Design Size

CBO
Coupling
Between
Objects

Calculates the number of classes or interfaces that
are coupled to a given class. Two classes are called
"coupled" to each other, if one class depends on the
other (e.g. because relying on an method implemented
there). In MetricsReloaded, dependencies due to in-
heritance are not counted.

Coupling

RFC
Response
For Class

RFC is, like CBO, a coupling measure. It calculates
the number of local methods as well as external meth-
ods that can potentially be called in response to a mes-
sage received by an object.

Coupling

LCOM
Lack of
Cohesion in
Methods

LCOM captures the cohesion of a class, "charakterized
by how closely the local methods are related to the
local instance variables in the class" ([FB20, p. 419]).
A value of more than 1 means that the class is not very
cohesive and most likely needs to be split up.

Cohesion

D
Halsteads
Di�culty

An estimate for the e�ort needed to maintain the
source code; Roughly said, it is calculated by counting
the elements of expressions (operands and operators).

Code Size

E
Halsteads
E�ort

Related to Halsteads Di�culty; To calculate E, D is
multiplied by the so called volume of a class, i.e. the
number of bits needed to store the source code.

Code Size

LOC
Lines of
code

Calculates the number of lines of code in each class.
In MetricsReloaded, the comments are counted, but
whitespace is omitted.

Code Size

STAT
Number of
Statements

Counts the number of statements in a class. Code Size

Table A.1: Description of metrics (cf. [ACBV20], [FB20], [Lei21b]); Classi�cation accor-
ding to [FB20].

81

A Appendix

A.2 Repositories

ID Name Type Commit Classes Link to repository on GitHub

R1 HTSJDK Gradle 8466c82 839 https://samtools.github.io/
htsjdk/

R2 JSQLParser
Library

Maven 8eb3d9a 331 https://github.com/JSQL
Parser/JSqlParser

R3 Hermod Java
Ser Descriptor
API

Maven 9fb87de 2 https://github.com/hermod
/hermod-java-ser-descriptor-
api

R4 Java Restify
HTTP Client

Maven baad629 97 https://github.com/ljtfreitas
/java-restify

R5 Java UnRar Gradle 8b6d9f9 91 https://github.com/junrar
/junrar

R6 Java SQL
ODBC

Maven aaa47de 20 https://github.com/nbbrd
/java-sql-util

R7 Clj DS Maven 6a45a1d 115 http://github.com/krukow/clj-
ds

R8 Java Property
Utils

Maven 382b0d1 1 https://github.com
/ansell/property-util

R9 Java Stellar
SDK

Gradle 67b2690 707 https://github.com
/stellar/java-stellar-sdk

R10 Java Di� Utili-
ties

Maven 3d5343c 28 https://github.com/java-di�-
utils/java-di�-utils

R11 Java JSON
Schema Gen-
erator

Maven 3369728 40 https://github.com/janlabrie
/jsonschema-generator

R12 Langx Java
Re�ection
AspectJ

Maven 2593558 942 https://github.com/fangjinuo
/langx-java

R13 Hermod Java
Ser API

Maven e170dda 3 https://github.com/hermod
/hermod-java-ser-api

R14 Generex Maven cda5912 5 https://github.com/mifmif
/Generex

R15 Java SemVer Maven 1f4996e 29 https://github.com/zafarkhaja
/jsemver

Table A.2: Random sample of GitHub repositories (found on mvnrepositories.com with
search term "Java" and results sorted by relevance).

82

A Appendix

ID Name Type Commit Classes Link to repository on GitHub

P1 Embedded Re-
dis

Maven b855803 22 https://github.com/kstyrc
/embedded-redis

P2 RxJava 3 In-
terop Library
For Java 8

Gradle ea8510a 21 https://github.com/akarnokd/
RxJavaJdk8Interop/

P3 Wget Maven 17ce5f4c 28 https://gitlab.com/axet/wget

P4 Text Recorder Gradle b393426 11 https://github.com/naturs
/TextRecorder/

P5 JSON Schema
Validator

Gradle d265c6b 140 https://github.com/java-
json-tools/json-schema-
validator

P6 Docker Java Maven 4f8f7b9 1 https://github.com/docker-
java/docker-java

P7 DevUtility In-
ternal

Maven 260e02f 112 https://github.com/eagle6688
/devutility.internal

P8 Sqlhelper
Dialect

Maven 6f53c34 303 https://github.com/fangjinuo
/sqlhelper

P9 Picard Gradle 77b9159 689 http://broadinstitute.github.io
/picard/

P10 Chicory Core Maven a88b05b 73 https://github.com/sviperll
/chicory

P11 Simple ODS
Library

Maven 1ac2e81 32 https://github.com/miachm
/SODS

P12 CID Maven d6b6a70 3 https://github.com/ipld/java-
cid

P13 JNBIS Maven 71c302b 60 https://github.com/kareez
/jnbis

P14 XsdParser Maven 78ba41c 87 https://github.com/xmlet
/XsdParser

P15 Software and
Algorithms

Maven 34c07b6 21 https://www.github.com
/KevinStern
/software-and-algorithms

Table A.3: Random sample of GitHub repositories (found on mvnrepositories.com with
search term "Java" and results sorted by popularity).

83

A Appendix

ID Name Type Commit Classes Link to repository on GitHub

N1 Lambda Fac-
tory

Maven 7428576 5 https://github.com/Hervian
/lambda-factory

N2 Ksuid Creator Maven fd1039d 4 http://github.com/f4b6a3
/ksuid-creator

N3 JTools Maven 59860 5 https://github.com/levkopo
/JTools

N4 Geocalc Maven 4f14539 12 https://github.com /grum-
limited/geocalc

N5 Iban4j Maven a1fa1c7 18 https://github.com /passion-
java4/iban4j

N6 ActivitiUtils Maven 7e14121 4 https://github.com /AppUn-
de�ned/javaUtils

N7 JD CLI Root Maven 2972045 20 https://github.com/kwart/jd-
cli

N8 Java Xid Maven 40ca6e2 1 https://github.com/0xShamil
/java-xid

N9 Azure De-
vOps Remote
Con�guration

Gradle 063cf43 11 https://github.com
/davidpolaniaac/azure-
devops-remote-con�guration-
for-java

N10 AWS
Lightweight
Client Java

Maven 205373a 26 https://github.com
/davidmoten/aws-
lightweight-client-java

N11 Protobuf
Swagger Map-
per

Maven 97dbbed 1 https://github.com
/robert2411/protobuf-object-
mapper

N12 Ja�ree Maven 29e32e1 112 https://github.com/kokorin
/Ja�ree

N13 Bot Core Gradle a3119d7 6 https://github.com
/dreamhead/object-bot

N14 Param Valida-
tor

Maven 3ac7d42 46 https://github.com/CatDou
/param-validator

N15 Caesar Maven e3097f5 7 https://github.com/Glusk
/caesar

Table A.4: Random sample of GitHub repositories (found on mvnrepositories.com with
search term "Java" and results sorted by date of last commit).

84

A Appendix

A.3 Data integration process - log �le

Figure A.1: Example log �le for data integration process (repository N12).

85

A Appendix

A.4 Patterns

A.4.1 LCPC-Pattern (low coverage + positive correlations)

(a) Coverage for repository R9 (b) Correlations for repository R9

(c) Coverage for repository R12 (d) Correlations for repository R12

(e) Coverage for repository N12 (f) Correlations for repository N12

Figure A.2: LCPC-Pattern in repositories R9, R12 and N12.

86

A Appendix

(a) Coverage for repository P10 (b) Correlations for repository P10

(c) Coverage for repository R7 (d) Correlations for repository R7

(e) Coverage for repository P7 (f) Correlations for repository P7

Figure A.3: LCPC-Pattern in repositories P10, R7 and P7.

87

A Appendix

(a) Coverage for repository P9 (b) Correlations for repository P9

Figure A.4: LCPC-Pattern in repository P9.

88

A Appendix

A.4.2 HCNC-Pattern (high coverage + negative correlations)

(a) Coverage for repository R11 (b) Correlations for repository R11

Figure A.5: HCNC-Pattern in repository R11.

89

A Appendix

A.4.3 Mixed pattern: LCPC (BC) + HCNC (IC,MC)

(a) Coverage for repository R4 (b) Correlations for repository R4

(c) Coverage for repository R13 (d) Correlations for repository R13

(e) Coverage for repository P14 (f) Correlations for repository P14

Figure A.6: Mixed LCPC (BC) / HCNC (IC,MC) in repositories R4, P13 and P14.

90

A Appendix

(a) Coverage for repository P5 (b) Correlations for repository P5

Figure A.7: Mixed LCPC (BC) / HCNC (IC,MC) pattern in repository P5.

91

A Appendix

A.4.4 Repositories with positive correlations and unclear pattern

(a) Coverage for repository R5 (b) Correlations for repository R5

(c) Coverage for repository P11 (d) Correlations for repository P11

(e) Coverage for repository N14 (f) Correlations for repository N14

Figure A.8: Repositories with only positive correlations and unclear pattern.

92

A Appendix

A.4.5 Repositories with mixed correlations and unclear pattern

(a) Coverage for repository R1 (b) Correlations for repository R1

(c) Coverage for repository R2 (d) Correlations for repository R2

(e) Coverage for repository P8 (f) Correlations for repository P8

Figure A.9: Repositories with mixed correlations and unclear pattern.

93

Glossary

Code smells This term is used to express when object-oriented code violates common

design rules and should be refactored in order to achieve higher maintainability.

Cohesion Cohesion describes in how far the elements of a software component are related

to each other, belong together and serve a common purpose. A high level of cohesion

is recommended for a comprehensible code structure.

Coupling Coupling describes the situation when software components depend on each

other. A system with low coupling is � in general � easier to maintain.

Dynamic test By use of dynamic tests the source code is executed in order to �nd

failures, i.e. cases where requirements are not ful�lled.

Fragility A symptom of low maintainability that describes a software product, where

modi�cations lead to unexpected failures in other components

Immobility A symptom of low maintainability, where dependencies between modules

make it improbable if not impossible to reuse part of a software somewhere else.

Maintainability The ease with which a system can be maintained. Maintainability is

one of eight software attributes de�ned within the product quality model. Sub-

characteristics are Modularity, Analysability, Reusability and Testability.

Maintenance Development activities with the aim to change a software system in or-

der to implement new or adapt existing features, �x/prevent problems or improve

quality attributes.

Quality metric Metrics are used to monitor and compare quality characteristics of soft-

ware systems. The source code is analysed and reduced to a single number that

describes, for example, the complexity of a component.

94

A Appendix

Product Quality Model A model proposed by the ISO/IEC 25010 standard that de-

scribes the quality of software products in terms of of eight quality characteristics

with further 31 subcharacteristics.

Refactoring Changes made to the internal structure of software with the aim to make

it easier to understand and cheaper to modify; in a narrower sense, these changes

should be rather small and not alter the observable behaviour.

Rigidity A symptom of low maintainability. A system is rigid, when even simple changes

take much longer than expected because of growing dependencies between modules.

Software requirements Needs or expectations that users or other relevant groups have

in regards to a software product. These can be either functional requirements (the

functions that a system should have) or nun-functuctional requirements (quality

goals in terms of reliability, maintainability, performance etc.).

Software Quality The degree to which a software product ful�ls requirements voiced by

relevant stakeholder groups.

Stakeholder Groups of persons or organisations that have an in�uence on software re-

quirements.

Static code analysis Form of analysis where the source code is inspected without exe-

cuting it; this is usually done in an automated way with the support of software

tools.

Test coverage Describes the degree to which speci�ed requirements for a component or

system are tested. Di�erent coverage types exist, e.g. statement coverage or branch

coverage.

Technical debt Represents the additional e�ort needed for maintenance and is a di�erent

way of characterizing the maintainability of a software product.

Unit tests Tests that are designed to check how far requirements for individual software

components are ful�lled without considering how these components work together.

Viscosity A symptom of low maintainability. A system has a high viscosity when devel-

opers are tempted to implement changes that compromise the design of a system.

95

Erklärung zur selbstständigen Bearbeitung einer Abschlussarbeit

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig

verfasst und nur die angegebenen Hilfsmittel benutzt habe. Wörtlich oder dem Sinn

nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich

gemacht.

Hamburg 22.10.2021

Ort Datum Unterschrift im Original

96

