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Kurzzusammenfassung

Das Ziel des Internets der Dinge (IoT) ist es eine Vielzahl an heterogenen Geräten
über ein globales Netzwerk zu verbinden, so dass jeder mit jedem über jedes Protokoll
und Netzwerk miteinander interagieren kann. Essentiell für eine solche Umgebung sind
robuste und fehlertolerante Infrastrukturdienste. Einer davon ist service discovery.
Das verteilte, heterogene und sehr dynamische Verhalten im IoT führt zu neuen
Anforderungen und insbesondere auch Herausforderungen für diese Dienste. Diese Arbeit
stellt einen Ansatz für einen solchen Verzeichnisdienst vor und evaluiert diesen mit Hilfe
von fault-injection Methoden.
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Abstract

The Internet of Things (IoT) is envisioned to bring a multitude of heterogeneous devices
together; interconnected via a global network infrastructure. In order to provide such
an environment, it is crucial to provide IoT applications and devices with robust and
fault-tolerant infrastructure services that minimize the need for human intervention.
Such an essential infrastructure service is discovery. The distributed, dynamic and
heterogeneous nature of the IoT however brings new challenges and requirements to
the design and development of discovery services. These challenges have to be addressed
by IoT implementations. Therefore, this thesis evaluates the challenges that discovery
mechanisms face in the context of the IoT, proposes a fault-tolerant discovery service
approach, evaluates this approach and provides a framework that can help to integrate
fault-injection experiments in the development cycle.
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1 Introduction

This chapter outlines the motivation of this thesis, shorty illustrates the challenges that
come with Service Discovery in an Internet of Things environment, defines the goals of
this work and finally gives a short overview of the thesis’ structure.

1.1 Motivation

The Internet of Things (IoT) is envisioned to bring a multitude of heterogeneous devices
together; interconnected via a global network infrastructure as illustrated in Figure 1.1a.
However, currently the IoT is made up of manufacturer-oriented silos that connect
proprietary devices via a proprietary gateway to the internet as illustrated in Figure 1.1b.
From this it follows, that only devices from the same manufacturer can really communicate
and interact with each other. This goes against the idea of a open and interoperable
network that can connect heterogeneous devices that can interact with each other.

In order to provide an open and interoperable global network infrastructure, it is crucial
to provide IoT applications and devices with robust and fault-tolerant infrastructure
services that minimize the need for human intervention. Such an essential infrastructure
service is discovery. It is generally accepted that effective service discovery is of great
importance for the interoperability and openness of the future Internet of Things [38].

The distributed, dynamic and heterogeneous nature of the IoT however brings new
challenges and requirements to the design and development of discovery services. To
illustrate; such challenges include IoT devices that operate in Low-Power and Lossy
Networks (IoT). Low-Power and Lossy Network are typically composed of many embedded
devices with limited power, memory, and processing resources interconnected by a variety
of links, such as IEEE 802.15.4 or low-power Wi-Fi [46]. These links are usually character-
ized by high loss rates, low bandwidth, and instability. One can easily imagine that use
cases such as industrial monitoring, building automation, smart homes, health care,
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1 Introduction

better understanding about the value of different fault-tolerance measures in the context
of the IoT.

Furthermore, the thesis proposes a test framework for measuring the degree of fault-
tolerance of a given IoT service. The test framework is specifically tailored to simulate
the characteristics of the IoT.

1.3 Organization

The thesis is organized as follows:

Chapter 2 – Challenges and Characteristics – provides an overview of the topics: Internet
of Things, Discovery Services, and Fault-Tolerance.

Chapter 3 – Related Work – provides a short overview of the scientific work related to
the development of discovery services for the Internet of Things.

Chapter 4 – Context-Aware Distributed Discovery Service – presents the proposed context-
aware and distributed service discovery approach for the Internet of Things.

Chapter 5 – Experiment Setup – describes the experiment environment and procedures
that are applied to the measurements performed in this thesis. Furthermore, network
measurement and analysis tools are presented that were used to help identify the level
of fault-tolerance.

Chapter 6 – Evaluation – discusses the challenges of fault-tolerance in the context of the
Internet of Things. Evaluates the proposed approach.

Chapter 7 – Conclusion – summarizes the findings of this thesis and provides an outlook
for future work.

3



2 Challenges and Characteristics

This chapter provides an overview of the topics Internet of Things, discovery services,
context and fault tolerance. The topics are introduced by characterizing the major
concepts and challenges that need to be taken into account for the design of infrastructure
services . This forms the basis for the evaluation of related work in chapter 3 and needs
to be taken into account for the design of the proposed approach in chapter 4.

2.1 Internet of Things

The Internet of Things (IoT) is visualized to seamlessly bring a multitude of heterogeneous
devices together that interact with each other via a global network infrastructure [3].

Even though the IoT is a widely used term a definitive commonly-accepted definition
can not be provided. The European Research Cluster on IoT (IERC) defines the IoT
in [41] as: The Internet of Things allows people and things to be connected anytime,
anyplace, with anything and anyone, ideally using any path/network, and any service.
IERC’s understanding of the Internet of Things is illustrated in Figure 2.1.

Anytime
any context

IoT

Anyone

anybody

Any service

any business

Any path

any network

Any place

anywhere

Anything

any device

Figure 2.1: Definition of the Internet of Things according to IERC [41]
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2 Challenges and Characteristics

Atzori et al. evaluate in [3] numerous definitions of IoT and come to the following
conclusion: The Internet of Things is a conceptual framework that leverages on the
availability of heterogeneous devices and interconnection solutions, as well as augmented
physical objects providing a shared information base on global scale, to support the
design of applications involving at the same virtual level both people and representations
of objects. [3]

The IoT is characterized by heterogeneous and often constrained devices that are part
of a ultra-large scale global network infrastructure with large numbers of events and
spontaneous interactions in a dynamically changing environment [38]. Based on the
proposed requirements for middleware in the IoT from [38], this thesis proposes a set of
requirements that are crucial for IoT discovery services:

• Discovery services need to be highly scalable in order to accommodate growth in
connected devices and their accommodating services.

• In order to support many different use cases, discovery services should allow discovery
on a different scales. The discovery scope can reach from a few feet, to local,
corporate and also global scales.

• Many IoT use cases not only rely on service information at the location of the
requester, but also at remote locations. The discovery mechanisms should support
such use cases.

• IoT applications also often depend not only on logical correctness but also on
timeliness as many IoT services and applications provide a near real-time state of
the physical world. Thus, discovery services need to provide real-time services to
IoT applications.

• Reliability and availability is vital for discovery services. Therefore, it is crucial for
a discovery mechanism to be fault-tolerant.

• Security and privacy also need to be taken into account when designing discovery
services.

Architecturally discovery services need to be distributed in order to fulfill nonfunctional
requirements, like scalability and availability.

• In order to control complexity, self-governance (autonomy) and self-management
(autonomicity) need to be achieved.

5



2 Challenges and Characteristics

• Moreover, it needs to be taken into account that the level of heterogeneity of
technologies in the IoT domain is high. Thus, interoperability is a crucial requirement.
In order to support interoperability and to overcome the challenges of heterogeneous
devices, a discovery service might need to be semantics-aware if no common vocabulary
is used.

• The importance of context-awareness in the IoT is discussed in subsection 2.3.

2.2 Discovery Services

Service discovery describes the ability to locate services that comply with a set of
requirements without prior knowledge about services. Ververidis et al. characterizes
service discovery in [47] as follows: Service Discovery is a process that enables connected
devices to advertise their services, query services provided by other entities, select the
most appropriately matched services and invoke services. MacKenzie et al. [29] defines a
service as follows: A service is a mechanism to enable access to one or more capabilities
via a prescribed interface and is exercised consistent with constraints and policies as
specified by the service description. This paper adopts the proposed definition of service
discovery from [47] and the definition of a service as proposed in [29].

Service discovery protocols can be partitioned in Non-IP-based, such as ZigBee and
Bluetooth SDP, and IP-based approaches. This work only focuses on IP-based approaches,
because these are more significant in IoT scenarios than Non-IP-based approaches [3].

2.2.1 Architecture

Discovery service architectures can be categorized into three basic types:

• Directory-less approaches do not use a directory to store service information.
Service information dissemination relies on multicast, broadcast or some form of
flooding [47].

• Directory-based approaches use a directory to store service information.

• Hybrid approaches also use a directory to store service information. If a service
cannot locate a directory server, a directory-less mechanism can be used to advertise
a service [47].

6





2 Challenges and Characteristics

Directory-based architectures can be further categorized as overlay-based and overlay-less
approaches. Overlay-based approaches can be used to control the multicast of discovery
queries. A controlled multicast restricts and can greatly reduce the network traffic.
Furthermore, overlay networks in the form of distributed hash tables can be used as a
distributed directory. However, overlay networks require nodes to periodically perform
routines to form and maintain the overlay network topology. Algorithms to form and
maintain the overlay topology are both resource demanding tasks. Thus, this approach
might not be suitable for constrained nodes.

Directory-less In directory-less architectures there are no service directory nodes that
mediate the communication between service consumers and service providers. Such an
approach might seem less complex in regards to the functionality that has to be provided.
Functions related to registration an maintenance, including validation and updates, do
not have to be implemented. However new challenges come with the lack of a directory: A
directory-less approach has to determine the frequency of service provider advertisements,
in order to reduce the network load and redundant transmissions. Directory-less approaches
can either use a global flooding mechanisms or some form of controlled flooding mechanism
for service provider advertisements or service consumer requests. Instead of broadcasting
advertisements or requests, multicasting can be used. Another alternative for selective
forwarding can be leveraged by name-based routing. Named data networking (NDN)
might be a promising approach that belongs to the class of information-centric networking
(ICN) that tries to move from a host-centric to an information-centric paradigm. In NDN
routing is based on names instead of host identifiers, such as IP addresses.

2.2.2 Discovery

Search The search procedure is responsible for searching for suitable services by given
filter options in the search message. The techniques used by the search procedure
depends on the chosen architectural type. In case of directory-based approaches the
search procedure can either be active or passive. If service registration is stored in the
local cache of the contacted service discovery node, the search procedure forwards a
search message to all other nodes if no suitable services are registered in its local cache.
This thesis defines this method as active search. If every service discovery node store
all service registrations, then a search in its local cache is sufficient. This thesis defines
this method as passive search. Passive search will be faster than active search, because

8



2 Challenges and Characteristics

a lookup in the local cache is sufficient. However, changes in the environment have to
propagate to every service discovery node in the cluster. From this is follows that state
changes can lead to inconsistent caches and depending on the contacted nodes query
result might differ until equilibrium is reached again. Another approach is selectively
forwarding search message to other service discovery nodes by using some form of rules
or other reasoning technique. Directory-less approaches rely on some form of flooding,
multicast or some form of overlay networking technique for search message forwarding.

Selection The query result from the search request can lead to a set of suitable
services, that all match the patterns provided in the search message filter options. The
selection procedure is an essential part of the discovery process, because it is responsible
for choosing the most suitable service that is finally invoked. Selection can either be
manually performed by the end-user or done automatically by a criteria-based algorithm.
The automatic selection procedure is especially important in machine-to-machine (M2M)
communication. Since, M2M communication can be viewed as an important part of the
IoT, an automatic selection procedure is essential for a discovery service for the IoT.
The criteria used can be for example network metrics, such as lowest hop count, round-
trip-time, packet loss rate, or maximal bandwidth. Other criteria might also be service
provider specific, such as radio-cycle, current load or energy level.

Search and selection procedures are often integrated, but responsibilities can shift. In
directory-less approaches, search and selection is typically performed by the nodes that
needs to discover a suitable service. In directory-based approaches search and selection
can both be performed by the service discovery node. However, the responsibility to
select the suitable service that will be invoked can also be handed off to the requesting
node. The requesting node can either forward the set of suitable service to the user to
make the choice manually or implement a selection algorithm.

2.3 Context and Context-Awareness

Context is any information that can be used to characterize the situation of an entity as
defined in [1]. In [49] the decisive role of context in the Internet of Things is illustrated.
They argue that humans as well as things provide context information. These trigger
events which invoke IoT services. Thus, context plays a significant role for many IoT use
cases. Most IoT use cases are driven by context information of users and things, such as

9
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Push/Pull Model
Query or Subscription

Pre-Processing
Data Fusion
Conetxt Inference

Static / Dynamic
Key-Value, Markup
Scheme, Graphical,
Object-based, Logic-
based or ontology-
based

Acquisition Modeling Reasoning    Dissemination

Push/Pull Model
Frequency
Direct or Intermediate
Sensed, derived or
manual conext

Figure 2.3: Context Life Cycle

geographical location. From this it follows that service discovery in IoT also has to be
context-aware.

With the rapidly growing number of connected devices the amount of available services
also increases greatly. In order to effectively enable provision of adequate services to users
and other services based on their surrounding environment, context-awareness is believed
to be crucial. Perera et al. argue in [35] that context-aware computing has already played
an important role in previous paradigms, therefore it is likely to successfully overcome
the described challenges.

This thesis adopts the commonly recognized definition of context and context-awareness
as proposed in [1].

Any information that can be used to characterize the situation of an entity. An entity
is a person, place, or object that is considered relevant to the interaction between a
user and an application, including the user and the application themselves.

Furthermore, context-awareness is defined in [1] as follows:

A system is context-aware if it uses context to provide relevant information or
services to the user, where relevancy depends in the user’s task.

This thesis adopts the context life cycle proposed in [34] to design a context-aware IoT
discovery service approach. According to [34] the context life cycle consists of four stages
as depicted in Figure 2.3.

2.3.1 Context Acquisition

A push or pull model can be primarily used for context acquisition. In the push model
the context source pushes context data to the context sink. The component that provides

10



2 Challenges and Characteristics

the context, e.g. a physical or virtual sensor in the IoT context, is called context source.
The context sink is the component that is responsible for acquiring context data. In the
pull model the context sink poses a request, e.g. query, to the context source to ask for
context data.

The pull model has the advantage that the context sink can request new context information
from context sources, when these are needed for context reasoning. It provides the context
sink with a near real-time view of the environments state. Thus, context-reasoning can
be performed on more up-to-date context information. However, there are also some
disadvantages that come with the pull model. The context sink can overwhelm a context
source with requests asking for context state. The context source might not be able to
process the requests fast enough, or work energy efficient. The context sink also has no
information on the frequency of context state changes of context sources. Hence, requests
might be unnecessarily sent during a period of infrequent context state changes. This
not only unnecessarily congests the network infrastructure, but also forces the context
source to process requests even though no context state change has occurred. It is also
possible that context requests arrive at an inconvenient point in time, due to a context
source radio cycle, or low energy levels. Since low processing power, unreliable and small-
bandwidth networks and constrained access to energy are core characteristics of the IoT,
a pull model might not be the most efficient approach.

The push model has the advantage that the responsibility of sending and updating
context state lies with the context source. Thus, this model prevents by design that
the context source can be overwhelmed by context update requests or is contacted by
the context sink at inconvenient times. Since the context source is responsible for sending
and updating context state the constrained resources of processing power, energy and
networking capabilities can be more efficiently utilized by the context source. Once the
context state changes the context source can either immediately or periodically send the
update to the context sink. The update frequency can therefore be set by the context
source and depend on the current work load, energy levels and network infrastructure
state. A disadvantage of the push model comes with the inability of the context sink to
contact or force the context source to send an update. The context reasoning process
might work with old and even false context information, leading to false context reasoning
results. The context sink can neither be sure about the freshness [11] of the context
information nor if the context source is even still alive.

11
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2.3.2 Context Modeling

The term context modeling is also widely refereed to as context representation. It is the
second stage in the context life cycle. Context Modeling defines the process of collecting
data.

Context models can be either static or dynamic. Static context models have a predefined
set of context data points that are collected or distributed. [51] The requirements that
need to be taken into consideration when modelling context information are identified and
explained in [9] as heterogeneity, mobility, relationships, dependencies, timeliness – i.e.
freshness –, imperfections, reasoning, and efficient context provisioning. The parameters
that are considered for context modeling are very subjective and vary from one use case
to another. In [34] Perera et. al. provide high-level guidance towards modeling context
in different use cases, but there is no standard to specify what type of information needs
to be considered in context modeling.

Popular techniques for modeling context are: key-value, markup-scheme, graphical,
object-based, logic-based, and ontology-based. Each of the techniques has its own
advantages and disadvantages depending on the specific use case. Key-value modeling
uses key-value-pairs to model context information. It is the simplest form of context
modeling compared to other techniques. It uses different representations such as text
files or binary formats. Key-value modeling is easy to manage and process, but is not
very scalable. It is not a suitable approach to store complex data structures. Hierarchical
structures of relationships cannot be easily modeled.

Markup Scheme Modeling, also called tagged encoding, models data using tags. Popular
markup languages such as eXtensible Markup Language (XML) provide tools for sophisticated
validation checks. Range checking or regular expressions are also to some degree possible
in schema definitions. However, because of its lack of design specifications, context
modeling, retrieval, interoperability, and re-usability over different markup schemes can
be difficult. The lightweight, text-based, language-independent data interchange format
JavaScript Object Notation (JSON) [12] also allows data to be hierarchically structured.
Validation by schema definitions is also possible with JSON.Wright, Andrews and Hutton
propose the JSON-Schema validation method in [50]. Tuples can also be used as a tag-
based modeling approach as described in [51].

Object-based modeling is similar to the graph-based approach as it also use relationships
and hierarchical structures. This approach promotes re-usability and encapsulation. It
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can be easily integrated with many programming languages as those are object oriented
by design. However, object-based approaches are commonly programming language
specific which decreases interoperability. Thus, this approach is rather used in non-
shared internal context modeling scenarios.

Logic-based Modeling uses facts, expressions and rules to represent context. Rules are
primarily used to express policies, constraints, and preferences. Logic-based Modeling
supports logic-based reasoning. In ontology-based modeling context is organized into
ontologies using semantic techniques, commonly known standards are the RDF, the
RDFS, the OWL and the OWL-S. Ontology-based modeling supports semantic reasoning.
However, context representation can be quite complex and context retrieval can be
computationally intensive and time consuming when the amount of data increases.

2.3.3 Context Reasoning

The third stage of the context life cycle is context reasoning. Context reasoning can be
defined as a method of deducing new knowledge, i.e. high-level context deductions, based
on the available set of contexts as stated by Bikakis et. al. in [10].

Perera et. al. classify in [34] six categories of context reasoning techniques: supervised
learning, unsupervised learning, rules, fuzzy logic, ontological reasoning, and probabilistic
reasoning.

Rules are a simple and straightforward method for context reasoning. Rules usually
follow the structure of if-then-else. Rules are simple to define, are relatively easy
to extend and are less resources intensive according to storage and processing power
compared to other reasoning models. Rules are expected to play a significant role in the
IoT, where they are the easiest and simplest way to model human thinking and reasoning
in machines [34].

Ontology-based reasoning has the advantage that it integrates well with ontology-based
modeling. Ontology-based modeling is discussed in section 2.3.2. Ontological reasoning
has the disadvantage that it is not capable of finding missing values or ambiguous
information, where statistical reasoning techniques are quite good at. Rules can be used
to minimize this weakness by generating new context information based on available
low-level context. Missing values can also be tackled by having rules that enable missing
values to be replaced with suitable predefined values. [33]
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Lim and Dey evaluate in [28] the popularity of conext reasoning models of 109 context-
aware applications as well as 50 recognition applications. They come to the conclusion
that over half of the applications use rule-based techniques, followed by about 15%
supervised learning (decision tree) techniques, and about 13% probabilistic logic-based
techniques.

2.3.4 Context Dissemination

The last stage of the context life cycle is context dissemination. It provides methods
to deliver context to the consumers. From the consumer perspective this task can be
called context acquisition. It is the counterpart to the first phase in the context life
cycle and the discussion in section 2.3.1 is completely applicable. Two methods that
are commonly used in context distribution are query-based approaches and subscription-
based approaches.

2.4 Fault-Tolerance

Partial failure is an omnipresent characteristic of the IoT environment. From this it
follows that fault tolerance is not just an important goal in the design of distributed
systems, but essential in the case of the IoT.

2.4.1 Basics

Fault tolerance is defined by the IEEE Standards Committee in [19] as the ability of a
system or component to continue normal operation despite the presence of hardware or
software faults. As concluded in [45] the distributed system has to be constructed in a
way that it can automatically recover from partial failures without seriously affecting the
overall performance.

Pullum states in [36] that the requirements for fault tolerant systems are strongly related
to the requirements for dependable systems. Kopetz defines in [22] availability, reliability,
safety and maintainability as key requirements for dependable systems. Availability refers
to the probability that a system is working correctly at any given moment in time. Thus,
availability can be defined as a function of time that returns the average fraction of time
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that the system has been working correctly [36]. Reliability is defined as the ability of a
system to perform its required functions under stated condition for a specified period of
time [19]. It is important to notice that reliability is defined in terms of a time interval
instead of an instant in time. A system that functions incorrectly for just a second every
day has an outstanding availability, but rather poor reliability. Safety is the systems’
ability to prevent the coinsurance of catastrophic events in the presence of critical failure
modes (malign), e.g. fatal errors [23]. Maintainability is defined as the measure of time
interval required to repair a system after the occurrence of a non-critical failure modes
(benign) [23].

The fault tolerance discipline distinguishes between a human action (a mistake), its
manifestation (a hardware or software fault), the result of the fault (a failure), and
the amount by which the result is incorrect (the error). A failure is defined as the
inability of a system to perform its required functions within specified performance
requirements. Error tolerance describes the ability of a system or component to continue
normal operation despite the presence of erroneous inputs. Robustness is the degree to
which a system or component can function correctly in the presence of invalid inputs or
stressful environmental conditions. [19]

2.4.2 Failure Models

Failures and Faults have been categorized by [45, 13, 4] and adopted in this thesis as
follows:

Crash Failure A crash failure brings a system to a premature halt. A typical crash
failure can be observed when an operating system crashes and comes to a complete
halt. In this case the only solution seems to be to perform a cold restart.

Omission Failure An omission failure occurs when a system fails to respond to a request.
Omission failures can be further categorized as follows:

Receive omission failure In the case of receive omission failures the system never
receives the request. This failure can even occur if the connection was correctly
established, because e.g. no thread is actually processing incoming connections.

Process omission failure A failure during processing, e.g. due to infinite loops or
faulty memory management. In contrast to receive omission failures the state
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of the system might have been partly changed or corrupted during the parts
of processing that ran correctly.

Send omission failure Send omission failures occur if the system receives the request,
processes the request, but fails to send the response. In contrast to receive
omission failures the state of the system might have been changed after processing.

Timing Failure Failures related to timing. These types of failure occur if the response
lies outside of a specified time interval. Timing failures can seriously impact the
user experience and is e.g. in the case of streaming platforms an important failure
to mitigate. Furthermore, timing failures might also lead to critical failure modes, if
results are e.g. needed in hard real-time applications such as many process control
systems.

Response Failure The returned answer by the system is incorrect. Two kind of failures
may occur. Either the system simply returns a wrong answer. This is called a
value failure. On the other hand the system might receive a request that it
processed incorrectly, because the implementation is not designed to handle such
an edge case. As a result a state-transition failure occurs. Thus, this type of failure
is called state-transition failure.

Arbitraty Failure These types of failure are also called byzantine failure. This failure
may happen if a server randomly produces incorrect response at different points in
time. A possible reason for byzantine failures might be malfunctioning components
that give conflicting information to different parts of the system. A possible solution
to byzantine failures are multiple different processes that all compute a result to
the same input and perform a majority vote to determine a possibly correct result
as proposed by [25].
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As argued in section 2 context-awareness and service composition are crucial features of
service discovery in the context of IoT. Therefore, state-of-the-art approaches [33, 15, 27,
48, 37, 52, 26, 21, 17, 42] from recent years are evaluated according to their architectural
decisions, discovery mechanisms, service descriptions models, context-awareness and
service composition.

3.1 Architecture

Service discovery architectures can be divided into three basic categories: directory-
based, directory-less, and hybrid architectures. All evaluated approaches use either
directory-based or hybrid architectures.

Directory-less approaches do not need to maintain a service description directory. This
can be advantages in high mobility networks, because a drawback of an directory-based
approach is that the directory needs to be kept up-to-date. In a high mobility network
this might become a challenge. In directory-less approaches service advertisements and
requests are based on flooding [47]. However, flooding limit the discovery scope to
the local network. This excludes many IoT use cases that rely on information from
a remote location. Moreover, flooding has potentially a very high overhead, because
service advertisements and requests are delivered to many nodes that are not interested
in the information. Therefore, directory-less approaches are not suitable in a broader
perspective on IoT.

Since almost all approaches offer discovery of services on a global scale a directory-
based or hybrid approach is more suitable. Compared to previous surveys [38] and [5]
the number of approaches that utilize P2P architectures – mainly distributed hash tables
(DHT) – has greatly increased as depicted in Table 3.1. Other directory-based approaches
are based on DNS implementations or agent-based architectures.
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3 Related Work

In [21] an approach that utilizes DNS-SD [14] for discovery and CoAP [39] to control
IoT nodes is proposed. This design allows service discovery on a global scale. However,
the discovery of services is a multi-step process. First, a list of IoT devices of a specific
DNS domain is retrieved. Then, the services offered by these IoT devices have to be
queried individually. This procedure is rather ineffective if only specific services need
to be discovered. Furthermore, DNS record propagation is known to be a rather slow
process in magnitude of days rather than seconds or minutes. One advantage of utilizing
well established and globally used technology, like DNS, is that implementation becomes
easier because an existing infrastructure only has to be extended. DNS-based approaches
are only suitable in the IoT context, if the IoT device to be used is already know a
priori. Furthermore, such an approach cannot effectively implement context awareness
and service composition. The reason for this is that the relevant information are only
available at the service level and are limited to the restrictions of the TXT record.

An agent-based approach is proposed in [37]. In this approach the IoT network consists
of high-level devices, such as smartphones, tablets, etc., and low-level devices like sensor
nodes. Every high-level device is an agent. Each agent holds a local service registry.

The advantage of this approach is that data is decentralized and no global control is
needed. Each agent in the multi-agent system is an autonomous decision-making entity
that only has an incomplete view. In most cases multiple agents have to work together
to satisfy a request.

In [38] it is stated that these autonomously acting agents can lead to unpredictability
and they are susceptible to message loss. Moreover, the time needed to discover the
requested services can vary depending on the agent that first receives the request. It
is possible that the number of agents needed to satisfy the request greatly varies. And
since the agents work sequentially the overall discovery time also varies.

DHT-based architectures are utilized in the approaches [15, 27, 26] and [42]. DHT-based
architectures are often used because they implement a distributed data structure. These
are based on hash tables that can be used as a distributed directory. Furthermore,
they can be deployed instantly as they are not dependent on infrastructural provisions.
Most implementations have good scalability capabilities in regards to complexity of
communication and storage, and are reliable. However, a drawback of most DHTs is that
they cannot control where data is stored. Moreover, most DHT implementation also
introduce a communication overhead as compared to the shortest path in the underlying
network, also known as delay stretch. Generally data is stored at the node that is
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responsible for the hash range that the generated hash of data to be saved belongs to.
Li et al. overcome this by using the SkipNet overlay network that allows explicit control
content availability and placement [27].

A hybrid approach based on blockchain technology is proposed in [17]. Essentially a
blockchain is a distributed database of records as stated in [16].

Trust, traceability, transparency and security are part of the strengths of blockchain
technology. However, these strengths come at a price; a lack in performance as compared
to other databases is a major drawback of blockchains. Transactions are more complex in
blockchains as signatures have to be verified, consensus mechanisms have to be applied,
and transactions have to be processed by every node individually [32].

Because a blockchain keeps a record of all transactions back to the first block, scalability
is also an concerning issue. A single global blockchain for service discovery is therefore
not feasible. Moreover, it is stated in [17] that naming, discovery as well as privacy are
further challenges in blockchain-based discovery architectures.

Blockchain-based approaches are strong when it comes to trust, traceability, transparency
and security. These are properties that are often neglected by many proposed approaches.
The only approach that addresses these challenges is proposed in [17]. However, in the
case of blockchain they come at a great price: A decline in scalability. Hence, blockchain
might not be a suitable technology for service discovery in IoT.

Fault tolerance is a crucial requirement for infrastructure services such as service discovery
mechanisms. However, none of the proposed approaches specifically addresses this crucial
requirement. Thus, an assessment of the fault-tolerant capabilities of the proposed
approaches can only be derived from the architectural choices, design decisions and
used technology. Table 3.1 illustrates that none of the proposed approaches uses a
comprehensive approach to fault-tolerance. The approaches [33, 15, 48, 37, 17, 42] do
not use any mechanism to increase the systems’ fault-tolerance capabilities and do not
uses a technology that provides some fault-tolerance capabilities. The approaches [27,
52, 26, 21] also do not implement specific fault-tolerant mechanisms, but make use of
technologies that might provide some level of fault-tolerance. Kim et. al propose in [21]
an approach that is based on the existing domain name system. The domain name system
is based on a inverted tree architectural style that uses redundancy to provide basic fault-
tolerance capabilities. The remaining approaches are partly or fully based on DHT-based
architectures. Distributed hash tables (DHT) distribute a key-space over a number of
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nodes. Each node is responsible for a subset of the key-space. If one node fails only a
subset of the key-space might not be available, depending on the DHT implementation’s
approach towards redundancy. DHT implementations can provide different levels of
fault-tolerance.

3.2 Discovery Mechanism

As illustrated in Figure 2.2 discovery consists of search and selection mechanisms. Search
is either performed on a directory of registered services or by flooding if no directory
is used. In case of directory-less or hybrid approaches service description distribution
can either be flooded periodically by service providers or triggered by service request
messages. Selection of suitable services can either be performed by the requester after a
list of discovered services is received or automatically by the discovery service based in
the requester’s query. If selection is done by the discovery service the queries have to be
able to express the requester’s requirements.

Many approaches only support simple search mechanisms based on some kind of numerical
or string-based identifier. Selection therefore has to be done by the requester. By design
DHT-based approaches promote simple lookup schemes. The reason for this is that
data is organized in key-value-pairs. The DHT-based approaches [27] and [26] do not
overcome the mentioned design limitation. Even though context information for services
is provided in information repositories, the data can only be used after the resource or
service is discovered via a priori known unique identifier. This goes against the idea
of discovering a set of suitable services according to a set of specified requirements. In
[21] a DNS-based discovery approach is proposed. Service discovery is based on a DNS
lookup and returns published services of an IoT node. However, the DNS name of the
IoT node has to be known by the requester prior to the lookup. The work presented in
[42] is also limited to discovering resources or services by a unique identifier. This goes
against the definition of service discovery provided in section 2.2 which states that no
knowledge about the service to be discovered should be needed a priori.

To overcome this drawback of DHTs [15] proposes a DHT-based overlay architecture
consisting of two overlay networks. The first DHT maps geographical locations to CoAP
Gateways. The second DHT maps CoAP Gateways to a list of offered services by
these gateways. This approach overcomes the lookup limitations described in the last
paragraph, but introduces a larger communication overhead because discovery is now a
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multi-step process. First a requester gets a list of gateways in a geographical area and
then has to iterate over that list to retrieve the services provided by the IoT gateways.
Furthermore, the requester has to use more resources, such as storage, computing power
and energy, for service discovery. In case of constrained devices this approach can be
disadvantageous.

An agent-based discovery mechanism is proposed in [37]. This approach is based on a
set of input-output-pairs that is passed to an agent. The agent then searches and selects
appropriate services based on the request and returns a list of services to the requester.
The advantage of the agent-based approach is that search and selection is performed by
agents and the requester does not have to spend resources in selection. On the other hand
the effectiveness of a multi-agent-based approach strongly depends on the coordination
mechanism. Agent-based approaches might reduce the complexity of designing a system,
but at the risk of unpredictability because of the autonomous nature of agents [38].

In [17] an approach based on blockchain technology is proposed. Blockchain-based
approaches often have the same weaknesses as DNS-based and DHT-based approaches.
They try to overcome this weakness by restricting the scope of discovery to the broadcast
domain of the requester. The requester broadcasts a generic message in order to receive
blockchain addresses of service providers from IoT devices. Thus, this approach only
supports specific use cases. For example use cases that rely on service information from
spatial proximity can not be undoubtedly supported.

An alternative is attribute-based naming. The approaches [33, 27, 52] and [26] are
ontology-based and use concept matching for discovery. Thus, in these approaches it
is not necessary to know the name of a resource or service a priori. Depending on the
specific technique context reasoning can be quite computationally intensive.

3.3 Service Description & Context-Awareness

As illustrated in Table 3.1 only half of the evaluated approaches are context-aware. The
majority of approaches use ontology-based context modeling. The approach [48] uses a
markup scheme based approach for context modeling.

Presumably all ontology-based approaches use OWL-S [30] for context modeling. Because
of its service grounding concept OWL-S is not only restricted to WSDL. Thus, it can
be used as an description model for IoT use cases. However as a traditional web service
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technology, OWL-S offers rather rich and heavyweight descriptions of service’s functional
and non-functional properties. From this it follows that communication and computation
can be quite intensive. Therefore, OWL-S might not be the best candidate for the IoT.

A balance between a lightweight service description scheme that is also suitable for
context- and QoS-aware service discovery is crucial. Some ontology approaches already
exists that are specifically designed for the IoT, e.g. IoT-Lite [8].

This ontology reduces the complexity by focusing on key concepts of IoT that allow
interoperability and discovery. However, IoT-lite can also be extended by different models
to increase its expressiveness. [8]

It can be observed that context reasoning is mostly based on logic, policies and rules.
The approach proposed in [27] also applies semantics reasoning. The context reasoning
methods are chosen by approaches to find a balance between good reasoning capabilities,
limited computation capabilities and timeliness.

Other approaches [15] and [42] use the CoRE Link Format [39] for service descriptions.
However, it is a rather simple description model based on key-value-pairs that might
be too restrictive for context-aware discovery. In [48] the Physical Markup Language
(PML), a specification designed specifically for describing physical objects in a physical
environment, is used. However since the IoT has evolved from being mostly based on
RFID tags PML’s scope is rather limited. Other approaches, [21] and [37], use DNS
records or tuples to describe services. These models are also rather limited in describing
services and only allow for simple lookup mechanisms.

3.4 Service Composition

Service composition describes the process of selecting a set of services, so that the
resulting composed service satisfies the user’s functional and non-functional requirements.
As illustrated in Table 3.1 only one approach supports service composition.

The approach that offers service composition is a bio-inspired agent-based service discovery
architecture proposed in [37]. However, the approach offers only very basic service
composition capabilities, because of the simple service description model based on 2-
tuples. This approach can only satisfy functional requirements, such as input and output
parameter. It does not include non-functional requirements in the selection of services
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for composition. Context-aware service composition is therefore not possible. However,
we believe that context-aware service composition is a crucial requirement for discovery
services in IoT because of the dynamic, context-sensitive and heterogeneous nature of
the IoT.

In [18] service composition techniques for the IoT are surveyed. They come to the
conclusion that the IoT brings new challenges to service composition that are not yet
overcome by any existing work. According to [18] many approaches improve execution
time, scalability, and cost. However, availability and reliability is rarely considered.
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4 Context-Aware Distributed Discovery
Service

This thesis proposes a fault tolerant discovery mechanism that enables consumers, e.g.
end-users, to locate IoT services that comply with a set of requirements without prior
knowledge about such services. The proposed approach is called Context-aware Distributed
Discovery Service (CaDDS). The approach enables consumers to search and select suitable
IoT services on a local, as well as on a global, scale.

4.1 Architecture

The proposed discovery service CaDDS follows a handle-driven, context-aware, and fault-
tolerant directory-based approach. The major components of CaDDS’s architecture
design are illustrated in Figure 4.1. CaDDS uses a short-term distributed cache Query-
Cache as a directory. In order to keep the directory up-to-date CaDDS utilizes a
distributed publish-subscribe architecture. The component that embodies the publish-
subscribe architecture is called QueryDistribution as depicted in Figure 4.1.

Generally, directory-based approaches are by design less suitable to be used in service
discovery for the IoT. First, if a directory just holds immutable IoT service provider data,
e.g. metadata, a request cannot be satisfied by a single directory lookup. It takes several
iterations by following multiple handles until suitable service providers are selected. This
extensively increases communication overhead and the overall discovery time. Second, if
a directory holds mutable IoT service provider data, i.e. state, constant record update
routines either by pull or push methods are essential in order to keep the directory
up-to-date and portrait a near perfect image of the real-world state. Thus, a directory-
based approach can come at great communication cost due to the update mechanism.
Furthermore, a great deviation between directory state and real-world IoT state can
lead to a great number of false-positive results. This might cause even greater delays
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in applications, because the false-positive service provider handles have to be recognized
as faulty and the discovery process might even has to be repeated. Furthermore, is can
harm the user-experience and will not be adopted. Thus, an approach that is based on
a directory has to cope with these challenges.

The proposed approach tries to mitigate the discussed challenges by using a short-term
cache rather than a long-term directory storage. Furthermore, there is no registration
routine for service providers in order to publicize their services. CaDDS rather uses a
novel demand-based approach to build the directory. The demand-based approach is
build on a publish-subscribe architecture. Service providers subscribe to suitable topics
and once demand arises the service consumer query is disseminated by publishing. The
strength of this approach is that each IoT service provider only needs to update its own
state internally, which it has to do anyway, and subscribe to suitable topics for consumer
query requests. Once a service consumer request is received the service provider decides
whether it can satisfy the query requirements or not. The service provider offers are then
distributed by the QueryCache component. The publish-subscribe architecture not only
supports the demand-based approach, but also allows flexibility in membership changes.
By design it is possible for service providers to join and leave CaDDS at any time without
great administrative expense. Thus, this approach might be more suitable for constantly
changing environments and varying state of IoT services, because it does not rely on
registration and update routines.

As this approach is based on a short-term cache to store service provider information, an
update routine has to be implemented. Section 2.2 highlights that a unsuitable update
frequency not only unnecessarily uses network resources, but can also use up vital service
provider resources. If the service provider spend a significant amount of time in the
update routine it cannot handle consumer requests. In order to mitigate this challenge
the publish-subscribe architecture uses a pull model. Thus, the service provider can
pull consumer query requests at a convenient time. Caching is then used to stretch the
update cycle. Furthermore, this work assumes that consumer query distribution will
follow a long-tail distribution: A small amount of query requests generates the great
majority of traffic and the majority of query will only generate some traffic. From, this it
follows that caching plays a crucial role in discovery services. The expiration time can be
specifically set for different needs. This is reasonable as different needs require different
update cycles.
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Furthermore, CaDDS is a general-purpose design approach that can potentially be used
in many different domains and for various use cases. Besides public implementations, that
provide access to publicly available IoT services, private and corporate implementations
with different use cases and characteristics are also possible. Hence, the proposed
approach can be tailored to different discovery scopes.

Efficiency and scalability are also important requirements for discovery mechanisms,
especially in the context of the IoT. Unnecessary request distribution is minimized by
two aspects: First, CaDDS is designed to be partitioned into multiple disjoint clusters.
Partitioning by service area, i.e. geographical region, is only one of many possible metrics.
Cluster selection needs to be made by the type of partition. Second, each service provider
is categorized by a need selector. The need selector describes the need that is satisfied
by the service. Each service provider subscribes to the topic associated with its need
selector at the cluster responsible for its service area.

Making the assumption that the great majority of service consumer requests are location-
dependent, a partition by geographical region is proposed for a discovery service in
a public context. In case of publicly available IoT services, a smart-city or -country
solution can be realized by the following partition scheme: <rc>.<cc>.cadds.net

for addressing a CaDDS clusters. The country code <cc> follows the two-letter codes
defined in ISO 3166-1:2013 [20]. A possible country code is de for Germany. The regional
code <rc> is derived from the postal code and is therefore country-dependent. As an
example: In order to find suitable services, e.g. in the center of Hamburg near the
University of Applied Sciences, a service consumer would therefore connect to CaDDS
by querying the address 20xxx.de.cadds.net, because the service areas postal code is
20099 Hamburg, Germany. This example uses a wildcard character x to specify that
the specified service area is any german postal code starting with 20. In metropolitan
areas it might be necessary to partition even further by using less wildcard characters.
The component Core implements the interfaces for service consumers, -providers and the
core functionality of CaDDS. The public interfaces are based on HTTP as it provides
a well-known application protocol that is suitable for a resource-based approach. The
HTTP-based approach that uses JSON as a data exchange format leverages the openness
and interoperability of the approach.

The publish-subscribe architecture is based on Apache Kafka. Apache Kafka is described
in [44] as a project that aims to provide a unified, high-throughput, low-latency distributed
platform for handling real-time data streams. Furthermore, it allows to be used in a
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message queuing or a publish-subscribe fashion. This allows to mitigate the weaknesses
of each messaging model. Each Apache Kafka cluster is limited by the number of topics
it can manage, but not by the number of subscribers. Moreover, it possible to group
subscribers in consumer groups to follow the message queuing model.

The CacheQuery component uses the distributed ignite cache. Ignite is described in [43]
as a horizontally scalable, fault-tolerant distributed in-memory computing platform for
building real-time applications that can process terabytes of data with in-memory speed.
Ignite is a ACID-compliant key-value store that can be horizontally scaled in a shared
nothing architecture. Hence, it is suitable to be used as the query cache in the CaDDS
architecture.

4.2 Fault Tolerance

Based on [36] designing and implementing fault tolerant systems can be divided into
three main parts: failure prevention, failure removal and failure masking.

4.2.1 Fault Tolerance Techniques

Figure 4.2 provides an overview of techniques used to achieve fault tolerance. These
techniques are discussed in more detail in the following subsections.

Failure Prevention

Failure Prevention is an essential part in the software engineering process for fault tolerant
systems, by reducing the number of faults introduced during software construction.
Failure Prevention techniques contribute to the system’s dependability through rigorous
specification of system requirements, use of structured design and programming methods,
formal methods and software reusability. The reuse of software is very attractive for
numerous reasons: Software reusability as it reduces the development costs. But more
important in the case of fault-tolerant systems, it possibly increases the dependability.
Software that has been well exercised is less likely to fail, because many faults have
already been reported and fixed.
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Figure 4.2: Overview of Fault Tolerance Techniques

Failure Removal

These techniques are employed during software verification and validation to enhance the
dependability of a software system. One of the most common fault removal techniques
involves acceptance tests. Acceptance tests mostly are used in wrappers and recovery
blocks. They are used to test for reasonableness of inputs or outputs.

Most acceptance tests fall into one of the following categories: (1) Timing checks are used
if a rough idea of the execution time of a piece of code exists. A so called watchdog timer
can be set accordingly. If the timer triggers, the system can assume that a failure has
occurred. (2) Usually it is much easier to check if the output is correct than incorrect. In
this case acceptance tests to output verification can be used. Probabilistic tests cannot
detect every erroneous event, but most. Sometimes this is sufficient and saves time. (3)
However, the correctness of the output cannot always be exactly calculated and checked.
In this case, range checks are used to specify a range of correct possible values. Values
outside these bounds are considered erroneous. [24]

Other techniques include formal inspection and formal design proofs. Formal inspection
focuses on examining source code by comparing it to the software specification in order
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to locate faults, correct them and verify the correctness. Formal design proofs try to
achieve a mathematical proof of the correctness of a software system.

Failure Masking

According to [45] the key technique for masking the occurrence of failures from other
processes is to use redundancy. Redundancy is the property of having more of a resource,
e.g. process, than is minimal necessary to perform the task. As failure occurs, redundancy
is exploited to mask or otherwise work around these failures. Thus, maintaining the
desired level of functionality. Redundancy can take several forms: hardware, software,
information, and time [24].

Information Redundancy In order to tolerate errors in data that may occur when
data is transmitted over a noisy channel, such as the internet, or even if it is stored
on disk, information redundancy is introduced. The most common form of information
redundancy is coding. Error-detecting or error-correcting algorithms are used to protect
data. Coding, such as parity-bits or checksums, add bits to data that allow the transmitted
or stored data to be verified for correctness, and in some cases even correct the erroneous
data bits. Storage virtualization is another example for information redundancy. A well-
known example is the Redundant Array of Independent Disks (RAID). There are various
RAID configurations that allow different levels of availability and reliability. Moreover,
data replication in distributed systems may also help with data accessibility. Keeping
a copy of data on just a single node will cause this node to become single point of
failure (SPOF) and a single point of communication (SPOC). The node might become
a performance bottleneck and leave the data vulnerable to the failure of the node. A
possible solution would be to keep identical copies of data on multiple nodes.

Temporal Redundancy Nodes can also exploit temporal redundancy through the
re-execution of the same programm or function on the same hardware [24]. Temporal
redundancy is mainly effective against transient faults. Especially in networking scenarios
temporal redundancy can be effective, because network faults, such as packet loss due
to buffer overflows or hardware malfunctions, are mostly transient faults. A well-known
example of temporal redundancy are retransmissions of data segments at the transport
layer. Temporal redundancy can also be used when other means of detecting errors is
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in place and the system is able to recover from the effects of the fault by repeating the
computation (re-execution) [24].

Hardware Redundancy This type of redundancy is provided by incorporating extra
hardware in the design. The additional hardware can either detect or override the
effects of a failed component. The main objective of static hardware redundancy is
to immediately mask a failure. In the case of three processors the majority of the
output can be used to override a wrong output. On the other hand, dynamic hardware
redundancy uses spare components that are activated upon failure of the currently active
component.

Software Redundancy Every large piece of software that has ever been produced has
contained faults, i.e. bugs, as stated in [24]. One way to exploit software redundancy
is to have multiple different versions of a component, also called n-version programming
(NVP). In NVP, N independent development teams design and implement components
to the same software specifications, resulting in N components. There are two main
ways to use these different components: (1) Different development teams implement a
component to the same software specification and a consensus algorithm is used to vote
for the correct input. (2) The versions that are implemented differ in complexity. The
primary version uses the component that uses the most effective/accurate, but maybe
rather complex, algorithm. Secondary versions use less effective/accurate, but also less
complex, algorithms to solve the same problem. Secondary versions are used upon the
failure of the primary version. Thus, multiple versions of a component can either be
executed concurrently or sequentially upon failure detection. It should be noted that,
concurrent execution requires hardware redundancy and sequential execution require time
redundancy.

4.2.2 Fault Tolerance Approach

The proposed approach uses structured design and programming approaches such as
wrappers to validate queries and offer based on JSON schemas. However, even if building
robust software in order to mitigate the number of possible failures is important, this
section focuses more on the fault tolerance techniques that need to be applied in a
distributed context.
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As described in section 2.4, the reuse of software components and systems can be
beneficial when building fault-tolerant systems. Such components are under constant
testing through usage in production systems and therefore are less likely to fail as
compared to custom solutions. Hence, the proposed approach makes use of the Apache
Kafka distributed publish-subscribe architecture. As stated in [44] more than 80% of all
fortune 100 companies use Kafka in their production systems. Furthermore, the proposed
approach uses Ignite as a distributed caching component. According to [43], Ignite is
used at many major companies, such as Microsoft, Netflix, Apple and Paypal, in their
production systems.

As partial failure and changing network characteristics play a major role in the IoT,
infrastructure services such as discovery mechanisms have to cope with such challenges.
According to [45] a key technique for failure masking is redundancy. The concept of
redundancy is used in CaDDS on multiple levels:

Redundancy can be used on a informational-, temporal-, software-, and hardware level.
Information, such as query requests and service provider offers can be distributed either
when they are stored in the query cache or the queries are published via kafka. Both kafka
and ignite replicate the received data. In the proposed system, kafka makes sure that a
received messages is replicated at n−1 nodes, n being the number of replicas. While ignite
replicates messages to a all nodes. Thus, information redundancy can ensure that data
is accessible even in case of disk failure. Furthermore, the borker and core component,
i.e. service, can be replicated. The broker component is used as a handle driven broker,
in case of the scenario without further fault-tolerance measured, that is used internally.
And in the fault-tolerant scenario the broker has to become a forwarding broker that also
supports a load balancing function.

The core component offers a stateless service to consumers and providers. Therefore,
the core component can be easily scaled by replication. As the core component offers
a stateless service, all replicas can be active and process consumer request queries or
provider offers. However, as the core component interacts with kafka and ignite, fault
detection algorithms need to be implemented. A failure detection algorithm needs to
take the following cases into account: node failure, network failure or degradation and
node stress. Such a mechanism can either use an active or passive approach. In an active
approach the component that needs to detect failure sends heartbeats to the components
that need to be observed. In a passive approach the observed components regularly send
messages to prove that they are alive. An example of a passive approach can by achieved

33



4 Context-Aware Distributed Discovery Service

by gossip protocols. The proposed approach will implement both strategies and compare
them. In case of the active approach the core component uses heartbeats to monitor the
state of the QueryCache and QueryDistribution services. In case of the passive approach
the components QueryCache and QueryDistribution disseminate their status to the core
components.

1 def probe_service_tcp(service_handle, remaining, failed, successful) do

2 if remaining == 0 or failed >= 3 do

3 if failed >= 3 do

4 %{:service => service_handle, :state => :unavailable}

5 else

6 if failed == 0 and successful >= 5 do

7 %{:service => service_handle, :state => :available}

8 end

9 end

10 else

11 {_name, addr, port, _probe, update_frequency} = service_handle

12 {status, socket} = :gen_tcp.connect(addr, port, [:binary])

13 if status == :ok do

14 :gen_tcp.close(socket)

15 :timer.sleep(update_frequency)

16 probe_service_tcp(service_handle, remaining-1, failed, successful+1)

17 else

18 if status == :error do

19 :timer.sleep(update_frequency)

20 probe_service_tcp(service_handle, remaining-1, failed+1, successful

)

21 end

22 end

23 end

24 end

25
26 probe_service_tcp(

27 %{:service => "CaddsCore", :addr => "cadds_core_1", :port => 4000,

28 :update_frequency => 1000, :probe => "/ping" :state => :available}, 5, 0,

0})

Listing 4.1: Failure Detector based on TCP Probe

The forwarding broker supports two failure detection algorithms that are evaluated in
the experiments. The first algorithm approach uses TCP probes to judge about the
availability of the service under test. A successful TCP connection establishment is
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used as a probe. Once the connection is established the service under test is marked
as available. If three consecutive tests fail, the service is marked down and becomes
unavailable. Listing 4.1 illustrates the TCP-based failure detection algorithm.

The second failure detection algorithm generates a HTTP dialog and evaluates the
response according to the status code that is returned and the overall response time.
Other than that the structure of the HTTP-based failure detector is similar to the
TCP-based mechanism. Based on the metrics collected via the HTTP probes the load
balancing mechanism can favor services that provide good metrics and postpone services
that seem to struggle. An alternative would be to evaluate the forwarded traffic in order
to gain information about the state of a service, but this follows a reactive rather than a
proactive approach. In order to prevent the occurrence of failed responses an proactive
approach is favored.

The proposed approach is run in the containerized environment docker. A containerized
environment brings multiple advantages. From a fault-tolerance point of view, in such an
environment services can be easily scaled and monitored. Policies on crash failures can
be implemented. An example of such a policy can be to start a new replicated container
of a given service if the number of replicas does not match the specified goal. A container
environment can only mask crash failures by replication. Other types of failures need to
be engaged in the distributed application.

In order to ensure that data is transferred complete, in-order and to ensure the integrity
of the transferred data the transport protocol TCP is used for communication between
CaDDS components. Hardware redundancy is not used in the proposed proof-of-concept
approach, but could easily be implemented in order to mitigate the risk of node failure
in case of a failed power supply or corrupt disk.

4.3 Discovery Mechanism

The proposed approach implements a handle-driven and context-aware discovery mecha-
nism. As described in section 2.2, the discovery process consists of two parts: search and
selection. Search is implicitly dealt with by the need selector based publish-subscribe
architecture. Service Providers subscribed to the specific topic process request query
messages. If they can satisfy the requirements a service offer is generated. Thus, part
of the selection process is already been performed by the service providers. The final
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selection is done by the service consumer, once the service offers have been collected.
Thus, the selection process is split between service providers and the consumer. Compared
to other approaches evaluated in section 3 – that shift the selection process to the
consumer – the proposed approach reduces the computational cost for consumers in
the selection process. Thus, this approach is especially beneficial for battery-powered
devices, such as smartphone.

In order to find suitable service providers, in a certain geographical region, the service
consumer connects to the administrative CaDDS cluster and posts a query request. In
case of a geographical partition scheme the address of the administrative cluster can be
derived from the postal code that is specified in the request query. To find suitable service,
e.g near the location of the University of Applied Sciences Hamburg, a service consumer
needs to connect e.g. to the administrative CaDDS cluster at 20xxx.de.cadds.net. Once
the request is submitted to the cluster and the query is already cached, service provider
offers from the cache are returned. If the query is not not in cache, it is published to
the topic that is responsible for the need selector specified in the request. To collect
offers, the service consumer retrieves the service provider offers from the response cache
by using the returned query hash.

Service Providers connect, according to their service area, to one of more administrative
CaDDS clusters and subscribe to the topic that is responsible to the need selector they
satisfy. It is quite possible that some service provider will connect to multiple CaDDS
clusters: Either the service area of the service provider stretches over multiple regions or
the service area crosses one or more regional borders. This can certainly put more load on
the service provider, because they might need to process requests from multiple queues.
The difference between service area and area subscribed to might be proportional to
the number of discarded messages. Messages are discarded because the service provider
cannot satisfy the requirements of the request. The service provider periodically pulls
new messages, i.e. service consumer query requests, from the CaDDS cluster.

4.4 Service Description Model

The service description model uses a hybrid naming scheme, consisting of a structured
and an attribute-based description model. Service Providers describe their service by
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attribute-based naming and make their service available by subscribing to certain geogra-
phical regions (structured naming). The proposed implementation uses JSON [12] as an
string-based encoding method.

This service description model uses a schema-less, i.e. implicit schema. An implicit
schema has the disadvantage that the application has to know which keys might exist
and check for their existence before accessing the data. The reason for this is that no
schema is enforced by the database. However, an implicit schema is more flexible and
thus more suitable in scenarios where data is heterogeneous. Furthermore, data that
belongs together usually resides in a file. This can be an advantage because no complex
joins have to be performed. Thus, an implicit schema is the better choice for consumer
queries and provider offers in the context of the IoT.

Listing 4.2 exemplifies a service consumer request message.

1 {

2 "api_version":"0.1",

3 "query": {

4 "query_version": "0.1",

5 "need":"parking",

6 "location": {

7 "country_code": "DE",

8 "postal_code": "20099",

9 "street": "Berliner Tor"

10 },

11 "spec_params": {

12 "vehicle": {"type": "van"},

13 "diabled_parking": false,

14 "electric_charging": true,

15 "toll_free": true

16 }

17 }

18 }

Listing 4.2: Description Model Request Example

Each request and response message consists of a set of common fields and need -dependent
fields. Common fields make up the smallest common denominator across all services. As
the proposed approach focuses on partition by geographical region, mandatory keys are
need and location. Through this method, interoperability and the heterogeneity of IoT
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devices is better supported. A request requires common fields, such as version, location,
and a need selector. Additional parameters can be added in the specific parameters
section spec_params. The specific parameters section can accept values according to the
specified need selector.

The response, as illustrated in Figure 4.3, consists of the original query, a hash, that can
be used when querying the cache directly, and a list of service provider offers.

1 {

2 "query": {},

3 "offers": [],

4 "hash": "c61f64a130d6d945..9b210"

5 }

Listing 4.3: Description Model Response Example

For this approach to work it is necessary to define a vocabulary for needs and need-
specific parameters and value ranges. Due to the version tag, as part of the common
fields, the vocabulary and associated values can evolve in an iterative process. This
is clearly a drawback to other approaches that support semantic similarity matching.
However, these approaches are computationally rather intensive and thus might not be
the best option for an IoT setting.

Through this service description model it is possible to bring a new level of context-
awareness to discovery services that is not limited to the location of consumers / providers
and is not heavy-weight. Ontology-based approaches allow for a very detailed description
of context. However, they are heavy-weight and computational expensive. JSON on the
other hand is rather light-weight. It is not just a container for key-value pairs, but allows
to describe simple objects. Thus, it can also cope with more complex context descriptions.
Context reasoning is based on rules and policies. Furthermore, it is possible for service
providers to act as service consumers an find sub-services, e.g. transportation services,
to satisfy consumer requirements. Thus, a certain level of service composition can be
achieved by the proposed approach.

Private and Corporate setups can benefit from authentication and authorization. User
management or API keys can be used in conjunction with HTTPS to restrict access to
the CaDDS cluster. Furthermore, Apache Kafka supports ACL to restrict the access to
certain topics. However, this requires some administrative work for user management
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and ACL configuration. Moreover, private and corporate setups could be restricted to
be only accessible by clients from the home or corporate network.

In the context of public setups the encryption of data in transit between the service
consumer/provider applications and CaDDS is possible via HTTPS. However, if there is
no registration or validation process of service providers user requests could be collected
from multiple topics and used improperly. Thus, user behavior could be tracked. To
mitigate this weakness, location data should not be too explicit. To achieve this, house
numbers can be omitted in the initial request or slightly altered.

Furthermore, being not too specific when it comes to location data in the initial query is
also beneficial when it comes to caching of queries. Query distribution will most likely
follow a long tail distribution. This means that some queries will be very popular and
requested by the majority of consumers and some queries are only of interest to a few
consumers. From this it follows that caching will be crucial for discovery mechanisms.
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The verification of distributed systems is quite more complex than the verification of non-
distributed systems. A distributed systems differs fundamentally from a non-distributed
system as follows: It lacks global state, a global time frame and shows non-deterministic
behavior [7]. This is the reason that makes it quite hard to verify the correctness of a
distributed system.

5.1 Verification Methods

Figure 5.1 provides an overview of possible techniques that can be used to verify the
correctness of a distributed system or at least gain confidence in it. The proposed
techniques can be grouped into three categories: Proactive methods can be used before
the system is deployed and used productively, reactive method can only be used effectively
once a failure has occurred and hybrid approaches can either be used during development
and in production.

Software Testing through e.g. unit or integration tests are a techniques that is widely
used in non-distributed systems. And even if the scope of tests that can be performed
in a distributed context might be limited. [53] demonstrates that such tests are quite
useful. Yuan et al. shows in [53] that three or fewer nodes are sufficient to reproduce
most failures. Furthermore, [53] evaluates that testing error-handling code can prevent
the majority of catastrophic failures. In addition, incorrect error handling of non fetal
errors is the cause of most catastrophic failures. Yuan et al. demand in [53] that at
minimum error handling code should be verified through the use of unit and integration
tests.

Formal verification is another important proactive verification method. Formal verification
systems allow developers to verify the correctness of a system by proof. A important
technique to proof the correctness of a system is propositional logic using formal languages.
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Figure 5.1: Overview of Verification Methods of Distributed Systems

For every system that needs to be verified a definition of the program, a list of failure
classes, and a specification of the guarantees needs to be specified. These specifications
are then used to verify the correctness of the system under test by proof. Amazon used
formal verification to proof the correctness of core components of the Simple Storage
Service as described in [31]. Another formal method, model checking, can also determine
if a system is provably correct. Model checkers use state-space exploration to prove
the correctness of a system. All formal verification techniques can become incredibly
time and resource consuming given a multitude of inputs and failure modes a system.
Furthermore, one cannot conclude that the correctness of a system can be derived from
the correctness of the individual components [6].

Random model checkers cannot provable declare a system to be correct, but they can help
to build confidence in the system under test. Random model checker generate random
inputs and tests to a given specification of properties. If the properties hold for all inputs
that were generated the system passes the test run. If some properties could not hold
a counterexample is provided. Random model checkers try to mitigate the time and
resource challenges by exploring only part of the system’s state space.

A reactive approach is to deploy the system and use monitoring to be able to act on
failure. Monitoring through logs, tracing and alters can be used for human intervention
in order to fix a problem before a failure occurs or as a basis for post-mortem analysis.
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Hybrid approaches on the other hand are quite promising methods to engage verification.
Canarying is a deployment-pattern that gradually introduces new code into the production
system. Instead of replacing all nodes of a service with the new code, only a few nodes
are upgraded to the new code. Then, monitoring can be used to compare important
metrics of the new nodes with the statistics of the nodes that still operate on the older
code base. If the metrics show that the nodes with the new code operate better, more
nodes can be upgraded to the new code. On the other hand, if metrics show that the
newly introduced code performs worse, the upgrade can be rolled back. This approach
can greatly decrease the risk of major failure, but the conclusion that can be drawn from
canarying are only as good as the diversity in the test period. If during the test period
network characteristics were perfect and no important nodes failed the conclusions might
be limited. Thus, the duration and environmental challenges need to be acceptable in
order to get useful results. Canarying cannot verify a systems correctness or its fault
tolerance, it can only make a statement about the changed behavior in comparison to
other versions.

Methods based on fault injection deliberately cause or introduce a fault in the system.
In distributed systems a fault can range from a dropped message to the loss of an entire
region. The benefit of fault injection is that is can be used from the very early stages
of the development cycle to the production system. The fault injection technique forces
failures to occur which allows system engineers to observe and measure the effects and
implications of such a failure. As with all the other techniques, monitoring is also a
crucial part of the fault injection method as it allows system engineers to analyze the
system’s behavior.

Ongoing research focuses on a method called lineage-driven fault injection. This technique
tries to greatly reduce the state space. It starts with correct outputs and works its way
back to uncover possible failures, as described in [2].

From all discussed verification techniques only formal methods can provable test system
correctness. All other methods can only increase the confidence in the system. However,
using formal methods becomes rather impossible if the number of services increases in
a distributed system. Thus, formal methods are only suitable to evaluate a few core
components, as also discussed in [31]. The most promising technique is fault injection
as it can be adopted at every stage of the development cycle from early prototypes to
production systems. This thesis will focus on a fault injection-based approach to evaluate
the proposed discovery service CaDDS.
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5.2 Experiment Design

Traditionally, metrics to measure fault-tolerance depend on those designed for availability
and reliability. All these metrics are defined as a function of time. An example for
such a metric is Mean-Time-to-Failure (MTTF). MTTF is defined as the average time
until a component fails [45]. A major drawback of these metrics is their definition as
a function of time. Especially in high-available and high-reliable systems a huge time
period, e.g. perhaps the last year, has to be taken into account for accurate predictions.
This also means that changes to the system that improve fault-tolerance are not visible
instantaneously. Furthermore, the validity of measurements is greater if data comes from
the production system.

However, this method is neither suitable during development nor for prototype implemen-
tations. A modern approach, that is suitable for prototype implementations – as it is
often the case in scientific papers, relies on the concept of chaos engineering. Chaos
Engineering is the discipline of experimenting on a distributed system in order to build
confidence in its capability to withstand turbulent conditions in production [6]. The
advantage of this approach is that it can be used in development and for prototypes.
Moreover, implementation changes can be evaluated and rated instantaneously.

Therefore, chaos engineering can be used at different abstraction levels and scopes for
evaluation. The proposed fault injection-based experiment setup uses chaos engineering
to evaluate a systems’ fault-tolerance capabilities by running multiple repeatable fault-
injection experiments in a virtualized environment (e.g. Docker) as black box tests.
A fault is injected into the system and for a set period of time the behavior of the
system under test is recorded and evaluated against baseline metrics. The process of an
experiment run is illustrated in Figure 5.2.

The proposed system is evaluated to the following criteria:

• The system under test is expected to return a correct response. A correct response
to be expected to return a HTTP status code that lies between 100 and 499.
Responses that differ from this specification will be considered a response failure.

• The system under test is expected that the upper quantile for the recorded response
time is below 100ms.

In order to be able to fault-inject an instance of a service and to establish an experiment
environment that is controllable and repeatable container virtualization is used. Docker is
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Figure 5.2: Sequence of an Experiment Run

a platform as a service product that uses OS-virtualization to run software in standardized
units called containers. Containers are isolated from each other and contain everything
that is needed to run a specific software. This includes libraries, system tools, code and
a runtime environment. Services can be defined in a configuration file and easily scaled.
Moreover, docker also provides a load balancing function to present multiple replicas of a
service as a single instance to the host machine. Another interesting feature of docker is
its ability to restart a container on failure and ensure that a specified number of replicas
run a every point in time. Furthermore, the host can interact with running container via
the docker CLI. The CLI can not only be used to start and stop containers, but also to
invoke commands on containers. This is especially useful in an experiment setup.

Injecting node failure and restarting nodes is rather straight forward achieved with docker
commands stop and start. In order to inject node stress the linux command-line
tool stress-ng is used. stress-ng is able to stress test a system by exercising
various physical subsystems of a computer as well as the various operating system kernel
interfaces. Manipulation of engress or ingress traffic of specific containers can be achieved
using the linux command-line tool tc.

Through virtualization it is possible to establish a stable initial state of the system-
under-test before running a given experiment. This makes experiments repeatable and
more conclusive. Additionally, containers run in a dedicated virtual network that can
be easily controlled and manipulated during an experiment. Furthermore, limitations
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Table 5.1: Overview of Experiments
C Category Exp.No. Description

1 Node Failure
1.a 1-3 container of g ∈ G, FDTCP

1.b 1-3 container of g ∈ G, FDHTTP

1.c 1-3 container of g ∈ G, temporary failure

2 Node Stress
2.a 1-3 container of g ∈ G, FDTCP , CPU stress

2.b 1-3 container of g ∈ G, FDHTTP , CPU
stress

2.c 1-3 container of g ∈ G, FDTCP , Disk stress

2.d 1-3 container of g ∈ G, FDHTTP , Disk
stress

3 Network Manipulation
3.a 1-3 container of g ∈ G, FDTCP , delay:

1000ms

3.b 1-3 container of g ∈ G, FDHTTP , delay:
1000ms

3.c 1-3 container of g ∈ G, FDTCP , loss: 10%
3.d 1-3 container of g ∈ G, FDHTTP , loss: 10%

on scalability can be neglected, because most of the catastrophic errors in distributed
systems can be reproduced with three or fewer nodes, as stated in [53].

The proposed experiment approach has two main advantages: First, it offers a uniform
experiment environment, which makes it possible to compare different approaches and
implementations. Second, projects can incorporate this fault-injection based approach
early in the development process, in order to create IoT services with a greater degree of
fault-tolerance.

Service Groups are defined as G = Core,Broker,QueryCache,QueryDist. Failure
Detection types are FDTCP for the TCP-based mode and FDHTTP for the HTTP-
based mode. The fault-tolerant test framework focuses on the types of faults stated in
Table 5.1.
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6 Evaluation

This chapter discusses the measurement results from the experiment runs and the applied
fault-tolerance techniques are evaluated in different failure scenarios. The section Zero-
Redundancy focuses on the experiment runs that were conducted on the proposed approach
without any fault-tolerance techniques applied. The section Tripple-Redundancy evaluates
the experiment runs that were conducted on the proposed approach with a total of three
replicas for each component. An experiment is considered successful if the HTTP status
code that is returned is ranged between 200 and 499 and the upper percentile of the
response time is lower than 100 ms, as specified in chapter 5.

6.1 Zero-Redundancy

In order to better understand the systems behavior, the proposed approach is evaluated
without redundancy and failure detection techniques applied. Only the measures that
increase the resilience to erroneous inputs and network error, such as a failed socket
connection, are implemented. Thus, the system will not fail if it receives malformed
requests or fails to connect to other components.

All following plots are composed in the same way (e.g. see Figure 6.1): The upper plot
displays the round-trip-time of a request, labeled execution time. The lower plot shows
the number of successful requests, i.e. responses that return a HTTP status code between
200 and 499, and failed request that return a http status code between 500 and 599. The
first measurement is always the baseline. This data series is taken before any faults are
injected into the system. It is used as a guide to visualize the degree of deviation.

46



































6 Evaluation

Table (DHT) this behavior is especially interesting as many other research approaches
also incorporate or solely depend on DHTs.

Moreover, Ignite is also vulnerable to changes in link characteristics due to delay. Figure
A.5 illustrates that nodes of the Ignite cluster can even crash if another node experiences
a great delay. This is a rare incident, as it could only be reproduced two times in several
experiment runs, but it was observed. Furthermore, in case of an introduced delay the
number of multiple creations of new query cache entries could be related to a cluster
that became disjoint. This is a great example that every component of a system and the
system as a whole has to be evaluate using experiments to exploit weaknesses. A possible
way to mitigate the failure of the cache cluster would be to introduce a local cache for
each client and core service containing the most popular consumer queries and provider
offers.

Other services, such as the core service, handled the introduced delay rather well. Up
to n − 1 instances the failure could be mitigated by the HTTP-based failure detector.
The TCP-based approach did not perform well in this scenario. In case of n− 1 affected
instances the HTTP-based approach was able to completely mask the fault.

Furthermore, as illustrated in chapter 4, the proposed discovery approach is designed to
be deployed in multiple disjoint clusters according to the partitioning scheme. Thus, a
failure of a whole cluster would indeed make the cluster become unavailable, but other
clusters can continue to work. Since the clusters are disjoint a partial failure is not
supposed to have an impact on other clusters of the CaDDS.

In order to further examine the system more experiments, especially with more dynamic
behavior, would be interesting to conduct. Furthermore, it would be quite interesting
to to implement passive failure detection algorithms in order to evaluate their strengths
and weaknesses as compared to active approaches. Using caching on multiple levels and
consensus algorithms to determine the state of another service, e.g. in order to detect
disjoint clusters, would be also be interesting.
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7 Conclusion

The main focus of this thesis is to demonstrate and evaluate the importance of fault-
tolerant systems in the context of infrastructure services, such as discovery mechanisms,
especially for the IoT. This thesis proposes a discovery service that complies with the
requirements of the IoT, as discussed in chapter 2, and promotes the openness and
interoperability of the future IoT. Currently, the IoT is still a collection of silos with
devices that use proprietary software and application protocols connected via proprietary
gateways. In order to transition to an open and interoperable environment in which
anyone can communicate with every service through any network and over any protocol,
robust and fault-tolerant infrastructure services are essential.

This thesis offers an open and interoperable approach for service discovery in the IoT.
Furthermore, the proposed approach is evaluated based on different fault-tolerance levels.
The evaluation compares a system with no process redundancy to an approach that
uses process redundancy to mask failures of different kinds. The two approaches are
evaluated using fault-injection methods. The experiments are able to demonstrate that
robust software can withstand some faults, but faults such as crash failures, changes in
network characteristics or stress cannot be masked or only to a certain extend. Proposing
two different failure detection mechanism, this thesis is able to demonstrate the areas in
which they perform effectively and their shortcomings. It can be concluded that effective
failure detection is crucial for masking failures.

Moreover, this thesis shows that the DHT-based cache application ignite reacts rather
sensible to stress and delay, leading to a disjoint cluster topology and even to crash
failure of the whole cluster. This is an interesting observation as many other research
approaches on discovery services for the IoT rely partly or fully on similar DHT-based
architectures. This exemplifies the importance of evaluating all components of a system,
also the "off the shelf" components, such as distributed hash table components, that are
incorporated into the system.
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7 Conclusion

Further evaluations using more dynamic experiments, passive fault detection mechanisms
via information dissemination, would be quite interesting to conduct on the proposed
approach. Moreover the effects of different layers of caching could also be of interest.
The caveat of further caching could be that caches at different levels might represent
different states of the IoT environment and might increase the amount of false-positive
results.
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Glossary

availability The degree to which a system or component is operational and accessible
when required for use.

context Any information that can be used to characterize the situation of an entity.

context acquisition Process of acquiring context from various sources.

context dissemination Process of distributing context information to interested consumers.

context reasoning A method of deducing new knowledge and better understanding,
based on available context.

context representation The process of collecting data. Context models can either be
static or dynamic.

context sink A component that is responsible for acquiring context data.

context source A component that provides context data, e.g. a physical or virtual sensor
in the IoT scenario.

context-awareness Using context to provide relevant information or services to the user,
where relevancy depends in the user’s task.

error The difference between a computed, observed, or measured value or condition and
the true, specified, or theoretically correct value or condition [19]. An error is part
of the system’s state that may lead to a failure [45].

error tolerance The ability of a system or component to continue normal operation
despite the presence of erroneous inputs.
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Glossary

failure The inability of a system or component to perform its required functions within
specified performance requirements. Note: The fault tolerance discipline distinguishes
between a human action (a mistake), its manifestation (a hardware or software
fault), the result of the fault (a failure), and the amount by which the result is
incorrect (the error).

failure mode The physical or functional manifestation of a failure. For example, a
system in failure mode may be characterized by slow operation, incorrect outputs,
or complete termination of execution.

fatal error An error that results in the complete inability of a system or component to
function.

fault An incorrect step, process, or data definition in a computer program [19]. A fault
is the cause of an error [45].

fault injection Deliberately cause or introduce a fault in a system.

fault tolerance The ability of a system or component to continue normal operation
despite the presence of hardware or software faults.

fault tolerant Pertaining to a system or component that is able to continue normal
operation despite the presence of faults.

freshness Describes how "old" a piece of information is. Freshness can be distinguished
in a currency and timeliness factor [11].

maintainability Measure of the time interval required to repair a system after the occurrence
of a non critical failure mode.

mistake A human action that produces an incorrect result.

reliability The ability of a system or component to perform its required functions under
stated conditions for a specified period of time.

robustness The degree to which a system or component can function correctly in the
presence of invalid inputs or stressful environmental conditions.

safety The ability of a system to prevent the occurrence of catastrophic events in the
presence of critical failure modes.
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Glossary

ZigBee A low-cost, low-power, wireless mesh network standard targeted at battery-
powered devices in wireless control and monitoring applications [40].

78



Erklärung zur selbstständigen Bearbeitung einer Abschlussarbeit

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig
verfasst und nur die angegebenen Hilfsmittel benutzt habe. Wörtlich oder dem Sinn
nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich
gemacht.

Ort Datum Unterschrift im Original

79




